
NAIST-IS-DD1461206

Doctoral Dissertation

Practical Model-free Reinforcement
Learning in Complex Robot Systems

with High Dimensional States

Yunduan Cui

September 9, 2017

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Yunduan Cui

Thesis Committee:
Professor Kenji Sugimoto (Supervisor)
Professor Tsukasa Ogasawara (Co-supervisor)
Associate Professor Takamitsu Matsubara (Co-supervisor)
Assistant Professor Masaki Ogura (Co-supervisor)
Assistant Professor Taisuke Kobayashi (Co-supervisor)

Practical Model-free Reinforcement
Learning in Complex Robot Systems

with High Dimensional States∗

Yunduan Cui

Abstract

As a promising learning paradigm in recent years, reinforcement learning learns
good policies by interacting with an unknown environment and thus being suit-
able to the scenario of controlling robots to explore in challenging tasks. On the
other hand, both the main two groups of reinforcement learning algorithms, the
value function approach and the policy search, are still impractical in model-free
learning of complex robot systems due to several limitations. The value func-
tion approach learns value function over all states and actions without any prior
knowledge but suffers from both the unstable learning process with insufficient
real world samples and the intractable computational complexity in high dimen-
sional systems. The policy search efficiently finds an optimal solution in a local
area while being sensitive to the initialization of a well parameterized policy based
on some knowledge of the task and model.
The motivation of this thesis is to explore practical model-free reinforcement

learning algorithm to control complex robot systems. Our main idea is to take
advantages of both the value function approach and the policy search. We propose
a new approach that focuses on learning the global value function from the local
sample space defined by the current policy. The Kullback-Leibler divergence is
employed to limit the over large policy update in order to generate samples in
continuous and local areas. Other machine learning methods are then applied

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1461206, September 9, 2017.

i

on the local samples to locally approximate the value function. This framework
solves the high sampling cost and intractable computational complexity without
requiring any prior knowledge of the model or task.
Two algorithms are proposed based on this framework as examples: Local Up-

date Dynamic Policy Programming (LUDPP) and Kernel Dynamic Policy Pro-
gramming (KDPP). We first investigate the learning performance of the proposed
methods in a range of simulation tasks including pendulum swing up and multi-
ply DOF manipulator reaching, the proposed algorithms significantly outperform
the conventional algorithms in high dimensional cases. Both LUDPP and KDPP
are then successfully applied to control a Pneumatic Artificial Muscle (PAM)
driven robotic hand, a high-dimensional system in finger position control and
unscrew bottle cap task respectively while given limited samples and with ordi-
nary computing resources. All results indicate the practicability of the proposed
framework in controlling complex robot systems.

Keywords:

Reinforcement Learning, Robotic Learning, Pneumatic Artificial Muscles

ii

Contents

List of Figures iv

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 3
1.3 Contribution . 4

2 Preliminaries 7
2.1 Markov Decision Processes . 7
2.2 Properties of Markov Decision Processes 9
2.3 Value Function based Approach 12
2.4 Policy Search . 14

3 Dynamic Policy Programming 16
3.1 Kullback-Leibler Divergence in Bellman Equation 16
3.2 Action Preferences with Linear Function Approximation 20
3.3 SADPP with Sample Reuse . 22
3.4 Learn Global Value Function via Local Samples Space 28

4 Local Update Dynamic Policy Programming 29
4.1 Proposed Method . 29

4.1.1 Local Update of Value Function 30
4.1.2 Sample Reuse and Exploration 31
4.1.3 LUDPP with RBFs . 32

4.2 Simulation Results . 34
4.2.1 Pendulum Swing Up . 34
4.2.2 Multiple DOF Manipulator Reaching 38

iii

4.3 Real Robot Experiment . 44
4.3.1 Pneumatic Artificial Muscles Driven Robots 44
4.3.2 Platform: Shadow Dexterous Hand 46
4.3.3 Position Reaching Control using LUDPP 47

Experimental Setting . 47
Results . 48

4.4 Summary of LUDPP . 52

5 Kernel Dynamic Policy Programming 53
5.1 Proposed Method . 54

5.1.1 Kernel Trick . 54
5.1.2 Action Preferences with Kernel Function Approximation . 55
5.1.3 Online Selection of a Regression Subset 56
5.1.4 Kernel Dynamic Policy Programming 57

5.2 Simulation Results . 59
5.2.1 Simulation Setting . 59
5.2.2 Results . 61

5.3 Real Robot Experiment . 67
5.3.1 Learning Unscrewing Bottle Cap using KDPP 68

Experimental Setting . 68
Results . 70

5.4 Summary of KDPP . 73

6 Discussions 74
6.1 Related Works . 74
6.2 Open Issues in Algorithm . 75

6.2.1 Support of Continuous Actions 75
6.2.2 Combination with Deep Reinforcement Learning 75
6.2.3 Utilization of the Kernel 76

6.3 Open Issues in Robot Control . 76
6.3.1 Multiple Targets Task . 76
6.3.2 Better Designed Action Set 76
6.3.3 Application in Other Areas 77

iv

7 Conclusions 78

A Appendix: Environment-adaptive Interaction Primitives 81
A.1 Introduction . 81
A.2 Approach . 83

A.2.1 Dynamic Movement Primitives 83
A.2.2 Interaction Primitives in human-robot cooperation tasks . 83

A.3 Simulation Results . 86
A.4 Experimental Results . 89
A.5 Conclusion . 92

References 96

Publication List 108

v

List of Figures

1.1 An example of Robot throwing ball using reinforcement learning. 1
1.2 Proposed framework: learning value function from local area. . . . 4

2.1 The framework of reinforcement learning, s is the state of the
environment, a is the action the learning agent make, r is the
reward signal. 7

3.1 The simulation of pendulum swing up. 24
3.2 Comparison between SADPP and LSPI with different number of

samples in pendulum swinging up task. 25
3.3 Comparison of approximate value function V between SADPP

(right) and LSPI (left), both with 5 × 200 samples per iteration.
X axis is the state of angle, Y axis is the state of angle velocity. . 26

3.4 Comparison of policy map generate from approximate Q function
and action preferences function between SADPP (right) and LSPI
(left), both with 5× 200 samples per iteration. X axis is the state
of angle, Y axis is the state of angle velocity. Red, green and blue
areas represent action -1, 0 and 1 torque respectively. 27

4.1 The framework of local update dynamic policy programming. . . . 30
4.2 The principle of applying Nearest Neighbor Search: calculating/updating

the weights of activated RBFs instead of all is more tractable. . . 31
4.3 The simulation of n DOF manipulator reaching tasks. 34
4.4 The learning result of pendulum swing up. Top: comparison be-

tween LUDPP (left) and LULSPI (right). Bottom: the average
size of local update RBFs in LUDPP. 36

vi

4.5 One example of the update of value function (action preferences
function) in pendulum swing up (the high value area is red and
low area is blue). 37

4.6 The learning result of two DOF manipulator reaching task. Top:
comparison between LUDPP (left) and LULSPI (right). Bottom:
the average size of local update RBFs in LUDPP. 39

4.7 Samples and active basis functions in the first 5 iterations of two
DOFmanipulator reaching with LUDPP (left) and LULSPI (right).
•: Center points of active basis functions; •: Samples generated
in current iteration; •: Samples generated in next iteration. The
X axis and Y axis represent θ1 and θ2, respectively and the Z axis
represents umix. 40

4.8 The learning result of three DOF manipulator reaching task. Top:
comparison between LUDPP (left) and LULSPI (right). Bottom:
the average size of local update RBFs in LUDPP. 41

4.9 The learning result of four DOF manipulator reaching task. Top:
comparison between LUDPP (left) and LULSPI (right). Bottom:
the average size of local update RBFs in LUDPP. 42

4.10 The Shadow Dexterous Hand. 46
4.11 The learning result of two DOF finger reaching control of shadow

dexterous hand with error bar of standard deviation. 49
4.12 Snapshot of two DOF finger reaching control of shadow dexterous

hand. (the white line demonstrates the target position) 50
4.13 The analysis of one learned policy in two DOF finger reaching control. 51

5.1 The principle of applying Kernel trick: calculating infinite dimen-
sional basis functions on state-action space by kernel functions on
samples space. 55

5.2 The average learning results of the n DOF manipulator reaching
task over 100 repetitions. 62

5.3 An example of iteratively generated samples in the n DOF manip-
ulator reaching task; the red dot is the target position. 63

5.4 The average number of RBFs used for function approximation in
the n DOF manipulator reaching task over 100 repetitions. 63

vii

5.5 The average learning results of KDPP with different set of η in the
five DOF manipulator reaching task over ten repetitions. 64

5.6 The average learning results of KDPP with different set of TOL
in the five DOF manipulator reaching task over ten repetitions. . 65

5.7 The average number of RBFs used for function approximation of
KDPP with different set of TOL in the five DOF manipulator
reaching task over ten repetitions. 65

5.8 The average Bellman error in each iterations of one learning. . . . 66
5.9 Experimental setting of unscrewing a bottle cap via the Shadow

Dexterous Hand. 69
5.10 The average learning result of unscrewing a bottle cap via the

Shadow Dexterous Hand over five repetitions, with error bar of
standard deviation. 70

5.11 The 32 dimensional state of learning samples and test rollouts in
ten iterations by t-SNE. The color demonstrates the value function
value of each state. Gray arrows show the movement of robot ac-
tions in 1, 5, 7 and 9 iteration over this 2D space, the corresponding
screen shots are shown in the left. 71

5.12 The 32 dimensional state of learning samples and test rollouts in
ten iterations by t-SNE. The color demonstrates the value function
value of each state. Gray arrows show the movement of robot ac-
tions in 1, 5, 7 and 9 iteration over this 2D space, the corresponding
screen shots are shown in the left. 72

7.1 The overall view of all proposed methods in this thesis. 79

A-1 Schematic diagram of EaIPs: an extension of IPs to adapt to en-
vironmental conditions. In IPs, a robot predicts trajectory param-
eters to cooperate with a human partner after observing a brief
movement period. EalPs enable robots to consider additional en-
vironmental conditions during trajectory prediction. 82

A-2 Trajectories of training samples (blue) and testing samples (or-
ange) to cross three objects on a 2D plan in simulation. 86

viii

A-3 Predicted trajectories of one testing samples (t∗ = 100, only X axis
is observable) with different environmental parameters. (Objects
D and E are not included in training samples) 87

A-4 Comparison of trajectory prediction accuracy between IPs and
EaIPs. DTW distance (vertical axis) is a unitless measure of error
between two temporally aligned signals. 88

A-5 NAIST Baxter research robot learning system. 90
A-6 Training trajectories for three objects. 91
A-7 Baxter left gripper trajectory from EalP across various objects. . . 92
A-8 Results of EalP trajectory generation in cooperative covering task

with different environmental conditions. 93

ix

1 Introduction

1.1 Background

Figure 1.1: An example of Robot throwing ball using reinforcement learning.

Image that we hope one robot to automatically learn how to throw a ball to the
target. As shown in Fig. 1.1, the robot firstly throws the ball according to its cur-
rent knowledge (e.g., random actions at the beginning), then judge how good the
performance is (the closer to the target, the better performance) and updates its
knowledge. Repeating this strategy, the robot will iteratively improve its perfor-
mance and finally achieve the task. This learning strategy is called reinforcement

1

learning [1,2], a learning paradigm inspired by behaviorist psychology where the
agent learns to interact with the environment in order to maximize some long
term cumulative rewards. As one integral part of contemporary machine learn-
ing, reinforcement learning is different to other learning methods like supervised
learning [3] and imitation learning [4,5]. The learning reinforces the good decision
making while penalizes the bad decision making according to the reward signal
collected from the environment. With capability of exploring unknown worlds,
reinforcement learning becomes an popular approach that expresses a remarkably
broad range of robot control problems in a natural manner [6,7], i.e., deriving the
robots to learn complex tasks by exploring and interacting with the environment.
The main problem solved in reinforcement learning is to calculate the value

function to indicate the long-term reward of all states. It naturally turns to a
good policy by following the value function to reach high reward state. In robot
control domain, the reinforcement learning algorithms are mainly divided into
two groups according to [6,7]: the value function approach and the policy search,
which can be viewed as direct and indirect methods to learn the value function.
The value function approach, e.g. Q-learning [8, 9], SARSA [10], Least squares
policy evaluation (LSPE) [11], and Least Squares Policy Iteration (LSPI) [12–14],
attempts to learn a complete optimal value function among all states and actions
and generates an optimal policy for discrete actions in accordance to it based on
the Bellman Principle of Optimality [15]. Its applications in real robot control
include multiple robot cooperation in soccer game [16], three-link and two-joint
robot [17], bimanual reaching task using humanoid robot [18] and autonomous
vehicle control [19]. The policy search [20], e.g., REINFORCE method [21], Nat-
ural Actor-Critic [22], Relative Entropy Policy Search [23], Policy Improvement
with Path Integrals (PI2) [24] and Guided Policy Search [25], initiates a control
policy parameterized by prior task knowledge (e.g. a Central Pattern Genera-
tor (CPG) [26] or Dynamic Movement Primitives (DMP) [27,28]) and gradually
updates the parameters within a localized region of state-action space. It has
been successfully applied to several robots in different tasks including: simple
biped robot [29], helicopter flight [30], robot swings baseball [31], humanoid biped
robot [32] and 12 DOF robot dog [33].

2

1.2 Motivation

Besides the current applications of both the value function approach and the pol-
icy search in robot control domain, on the other hand, applying them to complex
robot systems with high dimensional states still remains a big challenge due to
several issues including the high cost of generating samples in real robots, the
lack of the model knowledge and the intractable computational complexity. The
value function approach, where function approximation is commonly utilized to
represent the value function, becomes problematic when working with complex
robot systems featuring continuous states. The insufficient sample quantity due
to the difficulties of gathering enough samples to densely fill the relevant region
of state-action space on real complex robot systems, rapidly results in both un-
stable value function approximation and overly large policy updates that cause
divergence during learning. It is called the curse of insufficient samples. The
computational complexity of approximating the value function quickly becomes
intractable as system dimensionality increases. It is the curse of dimensionality.
By contrast, the policy search is believed to be more popular in controlling

complex robots according to [6, 7]. It improves the stability of learning and re-
duces computational complexity by only searching the parameter space of control
policy instead of the entire-state-action space. By carefully selecting a suitable
parameterized policy via knowledge from simulation, model dynamics [34], human
demonstration [5] or imitation learning [4, 5], the learning process will optimize
the performance of policy to a quite good one quickly. Unfortunately, the policy
search requires suitable parameterized and initialized control policies based on
prior knowledge of tasks and models that are not always available.
Compared with the model-free methods mentioned above, the model-based

reinforcement learning refers to learning optimal behavior indirectly by learning
a model of the environment [34,35]. On the other hand, it is challenging to learn
a enough good model with given limited samples, especially in large dimensional
state space. The learned model may worsen the learning compared with the
model-free reinforcement learning. In this thesis, we will not touch model-based
reinforcement learning.
The motivation of this thesis rises from the challenge above. We aim to explore

practical model-free reinforcement learning algorithms in complex robot systems

3

current policy 𝜋"
new policy 𝜋

True value function Local function approximation via samples

Nearest Neighbor Search,
Kernel Trick …

Smooth policy update

Figure 1.2: Proposed framework: learning value function from local area.

to fulfill: no estimation of model during learning, stably learning with insufficient
real world samples, tractable computational complexity in high dimensional sys-
tems and no requirement of suitable parameterized control policies. Our main
idea is to take advantages of both the value function approach and the policy
search. Following the strategy of the policy search, we learn the global value
function from samples generated in local areas in order to stabilize the learning
process. Once the global value function can be efficiently approximated via these
local samples, the curse of dimensionality could be solved. On the other hand,
we learn a parameterized value function rather than a policy following the value
function approach to be pure free to the prior knowledge of tasks and models.

1.3 Contribution

A new reinforcement learning framework is proposed to accomplish this idea.
It is inspired by a optimize control algorithm Dynamic Policy Programming
(DPP) [36–38] that employs Kullback-Leibler divergence to limit the over large
policy update. We first extend DPP to a reinforcement learning algorithm with
exploration. By smoothing the update of the exploration policy, the insufficient
samples are generated in local areas that smoothly move following this policy to
construct a continue area in global state-action space. These local samples are
further utilized to efficiently approximating value function with other machine
learning methods. Figure. 1.2 shows the proposed framework.
Two new value function approach based algorithms are introduced as exam-

ples of the proposed framework: Local Update Dynamic Policy Programming

4

(LUDPP) and Kernel Dynamic Policy Programming (KDPP). Both two algo-
rithms stabilize the learning by adding the Kullback-Leibler divergence between
current and new policies as a regularization term. Different machine learning
methods, Nearest Neighbor Search (NNS) [39] and kernel trick [40], are em-
ployed in LUDPP and KDPP to reduce the computational complexity in high-
dimensional systems.
The learning performance of LUDPP and KDPP are first investigated in sim-

ulation tasks with increase number of system dimensions and compared with
conventional value function approach based learning algorithms with the same
machine learning methods (NNS and kernel trick). With the increase number of
system dimensions and insufficient samples, the proposed methods greatly out-
perform the conventional ones. Then LUDPP and KDPP are applied to control
the Shadow Dexterous Hand [41], a Pneumatic Artificial Muscle (PAM) driven
humanoid robot hand. LUDPP successfully learns one finger position reaching
task with a limited computational resource while other conventional methods
cannot. KDPP learns unscrewing a bottle cap with the aid of touch sensors.
This combined system has a 32 dimensional state space with 625 discrete actions
whose high state-action dimensionality renders it impractical for conventional
value function approach based algorithms to the best of our knowledge, whereas
KDPP converged to a viable solution within a small number of learning iterations
while given limited samples.
Besides the proposed framework and LUDPP [42, 43], KDPP [44, 45], the au-

thor has also carried out research in extending DPP to deep reinforcement learn-
ing [46–50] for controlling robot handle deformable objects [51], intelligent driving
assistance based on DPP for disabled people [52] and Environment-adaptive In-
teraction Primitives (EalPs), a new algorithm for motor skill learning for human
robot cooperation [53]1. For the reason of consistency, this thesis will only in-
troduce EaIPs as a work related to learning policy parameterized by DMP ib
appendix.
The remainder of this thesis is organized as follows. In Chapter 2, preliminar-

ies of reinforcement learning and Markov Decision Process are introduced. The

1these two works are cooperations between Nara Institute of Science and Technology and Uni-
versity of Technology, Sydney

5

smooth policy update using Kullback-Leibler divergence is presented in Chapter
3 as the foundation of the proposed framework. LUDPP, KDPP and the cor-
responding simulation results, analysis and real robot experiment of Pneumatic
Artificial Muscle (PAM) driven humanoid robot hand are in Chapters 4 and 5
respectively. The discussions and conclusions are in Chapters 6 and 7. Lastly, an
appendix gives more details of EaIPs, another proposed algorithm for adaptive
motion planning in human-robot cooperation.

6

2 Preliminaries

In this chapter, the basic definitions and properties of the Markov decision process
(MDP), and the notation that will be used in the reminder of this thesis are first
introduced. Then a brief introduction of the value function approach and the
policy search is presented.

2.1 Markov Decision Processes

Figure 2.1: The framework of reinforcement learning, s is the state of the en-
vironment, a is the action the learning agent make, r is the reward
signal.

The Markov decision processes (MDP) [54, 55] is usually used to represent
problems in reinforcement learning. It models the system we hope to control to
several states, and allows the agent to do different actions to the environment.
The solution of a MDP is to select actions according to states to obtain high

7

reward. In each time step, the learning agent interacts with a dynamic environ-
ment by taking action a according to its current policy π, observes the state of
the environment in next step and obtains the reward signal. The policy of mak-
ing decision of action a will be reinforced if the reward is good/positive and vice
versa. By repeating this learning loop, the agent will be able to iteratively learn
a good policy that maximize the long term reward.
MDP gives a formalism of planning actions for environment in the face of un-

certain. It is a discrete time stochastic process defined by a 5-tuple (S,A,P ,R, γ)
consisting of:

• S = {s1, s2, ..., sn} is a finite set of control states that represents the differ-
ent situations in which decisions must be made.

• A = {a1,a2, ...,am} is a finite set of control actions for agent.

• P is the transition model of the process; P(s,a, s′) is the probability of
transitioning from state s to state s′ under action a.

• R is the reward (or cost) function of the process that maps transitions to
real numbers, R : S ×A×S 7→ R; when transitioning from state s to state
s′ under the action a, the agent gets the reward R(s,a, s′); for simplicity,
we define the expected reward for taking action a in state s by:

R(s,a) =
∑
s′∈S
P(s,a, s′)R(s,a, s′) (2.1)

• γ ∈ (0, 1) is the discount factor that exponentially discounts future rewards
of MDP in an infinite horizon. It is an implicit way to introduce the notion
of elapsed time in the process.

As one discrete-time process, MDP begins at time t0 in state s0 ∈ S. The agent
observes the state at each time step st and makes an action at ∈ A. The state
of next step st+1 is obtained from P(st,at, st+1) while the reward is determined
by R(st,at, st+1).
MDP’s horizon h, i.e., the span of the process over time, can be infinite (the

process runs forever), finite (the process will stop in a finite number of steps) and
fixed (the process runs for a fixed number of steps). We also define episode as

8

a complete run of MDP in h steps which consists a sequence of states, actions,
and rewards. The expected discounted total reward of one episode is therefore
calculated by:

Est∼P

[
h∑
t=0

γtR(st,at, st+1)
∣∣∣∣∣s0 = s

]
. (2.2)

2.2 Properties of Markov Decision Processes

The goal of the agent in reinforcement learning is to optimize the expected dis-
counted total reward in Eq. (2.2) by selecting actions a0,a1, ...,ah and interacting
with the process. A stochastic policy π : S 7→ Ω(A), indicates the agent’s prob-
ability of choosing all actions in each state. π(a|s) represents the probability
of taking action a at state s. π : S 7→ A represents the function of choosing
a good policy at the state s that fulfills π(s) = arg maxa π(a|s). The expected
discounted total reward with policy π is defined by:

Est∼P;at∼π

[
h∑
t=0

γtR(st,at, st+1)
∣∣∣∣∣s0 = s

]
, (2.3)

an optimal policy π∗ maximizing the expected discounted total reward follows:

π∗ = arg max
π

Est∼P;at∼π

[
h∑
t=0

γtR(st,at, st+1)
∣∣∣∣∣s0 = s

]
. (2.4)

According to [54], there exists at least one optimal policy for each MDP.
In order to evaluate the goodness of each state, Eq. (2.3), the expected total

reward when the process starts in state s following policy π, is defined by the
state value function V π : S 7→ R:

V π(s) = Est∼P;at∼π

[
h∑
t=0

γtR(st,at, st+1)
∣∣∣∣∣s0 = s

]
, (2.5)

It is often convenient to associate state value functions with state-action pairs
rather than states. The expected total discounted reward upon choosing action
a from state s and then following policy π is defined by the state-action value
function Qπ : S ×A 7→ R:

Qπ(s,a) = Est∼P;at∼π

[
h∑
t=0

γtR(st,at, st+1)
∣∣∣∣∣s0 = s,a0 = a

]
, (2.6)

9

The optimal expected value functions V ∗ : S 7→ R and Q∗ : S × A 7→ R are
then defined by:

V ∗(s) = max
π

V π(s), (2.7)

Q∗(s,a) = max
π

Qπ(s,a). (2.8)

The state value function satisfies Bellman equations that are used to efficiently
solve MDP. They are recursive definitions of the value function which consists
of two parts, the immediate reward, and the expected sum of future discounted
rewards:

V π(s) =
∑
a∈A

π(a|s)
(
R(s,a) + γ

∑
s′∈S
P(s,a, s′)V π(s′)

)
, (2.9)

Since the V π, V ∗ and Qπ, Q∗ have relationship:

V π(s) = Qπ
(
s, π(s)

)
, (2.10)

The state-action value function also satisfies Bellman equations following:

Qπ(s,a) = R(s,a) + γ
∑
s′∈S

P(s,a, s′)
∑
a′∈A

π(a′|s′)Qπ(s′ ,a′). (2.11)

It is also convenient to represent the Bellman equations of state-action function
using matrix notation:

Qπ = R + γP
∏
π

Qπ (2.12)

whereQπ and R are victors with size |S||A|, P is a |S||A|×|S|matrix of transition
model P that fulfills:

P
(
(s,a), s′

)
= P(a, s, s′), (2.13)

The learning result of unscrewing bottle cap using Shadow Dexterous Hand.The
learning result of unscrewing bottle cap using Shadow Dexterous Hand. One
|S| × |S||A| stochastic matrix ∏π is defined to describe π:∏

π

(
s
′
, (s′ ,a′)

)
= π(a′|s′). (2.14)

10

In order to analytically or iteratively to obtain the value of Qπ, the linear system
based Equation (2.12) is built:(

I − γP
∏
π

)
Qπ = R. (2.15)

Searching an optimal policy π∗ following Eq. (2.4), the corresponding optimal
state value function and state-action value function satisfy bellman equations
according to Eqs. (2.9) and (2.11):

V ∗(s) = max
a∈A

[
R(s,a) + γ

∑
s′∈S
P(s,a, s′)V ∗(s′)

]
, (2.16)

Q∗(s,a) = R(s,a) + γ
∑
s′∈S

P(s,a, s′) max
a′∈A

Q∗(s′ ,a′). (2.17)

The corresponding matrix format is:

Q∗ = R + γP
Q∗∏

max
Q∗ (2.18)

whereQ∗ and R are victors with size |S||A|, P is a |S||A|×|S|matrix of transition
model P following Eq. (2.13). Another stochastic matrix ∏Q∗

max with same size of∏
π is defined by:

Q∗∏
max

(
s
′
, (s′ ,a′)

)
=

 1 if a
′ = arg maxaQ∗(s,a

′)
0 , otherwise

. (2.19)

The solution of the k-th iteration is converged to Q∗ by iteratively approximating
following:

Qk+1 = R + γP
Qk∏

max
Qk. (2.20)

As another view of the the Bellman equations of state-action value function Q,
the Bellman operators T π and Bellman optimality operator T are defined by:

(T πQπ)(s,a) , R(s,a) + γ
∑
s′∈S

P(s,a, s′)
∑
a′∈A

π(a′ |s′)Qπ(s′ ,a′), (2.21)

(T Q∗)(s,a) , R(s,a) + γ
∑
s′∈S

P(s,a, s′) max
a′∈A

Q∗(s′ ,a′). (2.22)

According to [56], both two operators above are contraction mappings. For
every policy π and any two state-action value functions Q and Q′ , it follows:

‖T πQ− T πQ′‖ ≤ γ‖Q−Q′‖, ‖T Q− T Q′‖ ≤ γ‖Q−Q′‖. (2.23)

11

Algorithm 1 Value Iteration and Policy Iteration
Require: S,A,P ,Rγ, ε and initial state-action function Q0

1: Initialize state-action function Q′ ← Q0

2: repeat
3: Q← Q

′

4: Q
′ ← R + γP

∏Q
max Q

5: until ‖Q−Q′‖∞ < ε

6: π(s)← arg maxa∈AQ
′(s,a),∀s ∈ S

7: return π

Algorithm 2 Policy Iteration
Require: S,A,P ,Rγ and initial policy π0

1: Initialize policy π′ ← π0

2: repeat
3: π ← π

′

4: Qπ ←
(
I − γP ∏

π

)−1
R

5: π
′(s)← arg maxa∈AQπ(s,a),∀s ∈ S

6: until π = π
′

7: return π

2.3 Value Function based Approach

The value function approach, e.g. Q-learning [8, 9], SARSA [10], Least squares
policy evaluation (LSPE) [11], and Least Squares Policy Iteration (LSPI) [12–14],
attempts to learn a complete optimal value function among all states and actions
and generates an optimal policy for discrete actions in accordance to it. It starts
from dynamic programming on MDP [55] which includes value iteration [54] and
policy iteration [57].
As the pseudo code of value iteration shown in Algorithm 1, the value itera-

tion calculates the optimal state-action value function Q∗ by iteratively applying
Bellman optimality operator on initial state-action value function Q0 since the op-
timal policy π∗ can be obtained by selecting actions according to Q∗ greedily [54].
On the other hand, policy iteration keeps an arbitrary policy π in memory and
search the optimal policy by iteratively improving this policy [57] following Al-

12

gorithm 2. Combining them with function approximation, we get approximate
value iteration (AVI) and approximate value iteration (API) to solve MDP with
continuous states. According to [56, 58], both AVI and API have error bounds
without committing to any particular approximation method that indicates their
practicability following:

Theorem 2.3.1. Define Q̂πk to be the approximate value function on Qπk , a
boundary of approximate policy evaluation ε is defined by:

ε = lim sup
k→∞

‖Q̂πk −Qπk‖∞.

If πk is the greedy policy of Qπ̂k , the loss bound in the presence of approximation
error bound follows:

lim sup
k→∞

‖Q∗ −Qπk‖∞ ≤
2γε

(1− γ)2

where γ is the discount factor of MDP.

Both AVI and API require the knowledge of the transition model P which is
difficult to obtain in real world problems. One solution is model-free learning that
directly learns the value function via operating a appropriate tradeoff between
exploration of the new actions/states and exploitation of the current knowledge
without knowing the transition model. This thesis focus on model-free reinforce-
ment learning. The famous and widely used value function approaches include
Q-learning [8], SARSA [10], Least-Squares Policy Iteration (LSPI) [12, 59] and
Least Squares Policy Evaluation (LSPE) [11].
In principle, the value function based approach requires a global convergence

of the state-action space. Once the optimal value function is obtained, it is easy
to find the optimal policy by simply greedily choosing actions to optimize it ac-
cording to Eqs. (2.16) and (2.17). However, the value function based approach
becomes problematic when working with complex robot systems featuring con-
tinuous states, where function approximation is commonly utilized to represent
the value function. Insufficient sample quantity due to the difficulties of gath-
ering enough samples to densely fill the relevant region of state-action space on
real complex robot systems, rapidly results in both unstable value function ap-
proximation and overly large policy updates that cause both divergence during

13

learning and dangerous actions generated by over large policy deviations in real
world systems. It turns to some practical approaches that learn first step solution
in simulations and then move to real robots [17]. Moreover, the computational
complexity of exploring the entire state-action space and approximating the state-
value function exponentially with the increase of the system dimensionality in-
creases and quickly becomes intractable with common computational resources.
All the challenges above result in limited applications of the value function based
approach in robot control problems including multiple robot cooperation in soc-
cer game [16], three-link and two-joint robot [17], bimanual reaching task using
humanoid robot [18] and autonomous vehicle control [19]. It is believed that
the recent research has given up to approximate the whole value function and
rather directly learns the control policy from local trajectories/rollouts due to
the intractable calculation and insufficient samples in real world [6, 7].

2.4 Policy Search

As another alternative solution to the robot control problems with high dimen-
sional state space besides the value function approach, the policy search [22, 60]
is the most popular way to generate control policy in robotics that naturally
supports continuous actions and be able to benefit from well selected initial poli-
cies according to [6, 7]. Several algorithms are developed in this group including
REINFORCE method [21], Natural Actor-Critic [22], Relative Entropy Policy
Search [23], Policy Improvement with Path Integrals (PI2) [24] and Guided Pol-
icy Search [25].
The central idea of the policy search is to learn a policy without calculating or

approximating the value function V or Q. It efficiently represents and learns a
good approximated policy π̂(∗,θk) where θk is a free parameter. The optimization
of policy is operated locally around the current π̂(∗,θk) by calculating ∆θk that
increase the expected reward of MDP in Eq. (2.3). The approximated policy is
then updated by θi+1 = θi + ∆θk where ∆θi is obtained by performing gradient
algorithms on the expected reward:

∆θk = α∇θk
Est∼P;at∼π̂(∗,θk)

[
h∑
t=0

γtR(st,at, st+1)
∣∣∣∣∣s0 = s

]
, (2.24)

14

α ∈ [0, 1] is the learning rate. The optimal parameter θ∗ follows:

θ∗ = arg max
θ

Est∼P;at∼π̂(∗,θk)

[
h∑
t=0

γtR(st,at, st+1)
∣∣∣∣∣s0 = s

]
. (2.25)

Compared with the value function approaches, on the other hand, the policy
search improves the stability of learning and reduces computational complexity
by only searching the parameter space of control policy instead of the entire-state-
action space and therefore be popular in robot control: simple biped robot [29],
helicopter flight [30], robot swings baseball [31], humanoid biped robot [32] and 12
DOF robot dog [33]. On the other hand, the policy search has its own limitations:
the performance is gradually improved by only considering the current policy
and its neighborhood in the policy search. Furthermore, it requires properly
designed policy model with tunable parameters (e.g., a Central Pattern Generator
[26] or Dynamic Movement Primitives [27, 28]) based on the prior knowledge
of robot systems and tasks. Even though such a knowledge could be obtained
from model dynamics [34], human demonstration [5] or imitation learning [4, 5],
the application of the policy search is still limited when no prior knowledge is
available.

15

3 Dynamic Policy Programming

In this chapter, we first introduce Dynamic Policy Programming (DPP) [36–38]
and its extension with linear function approximation, Sampling-based Approxi-
mate Dynamic Policy Programming (SADPP). As the foundation of the proposed
framework in this thesis, both DPP and SADPP stably solve MDPs with smooth
policy updates by employing the Kullback-Leibler divergence between current
and new policies as a regularization term. Then we investigate the learning per-
formance of SADPP with samples reuse in a pendulum swing up simulation, and
compare it with LSPI. The results indicate the positive effect of smooth policy
update in the learning using limited number of samples.

3.1 Kullback-Leibler Divergence in Bellman
Equation

The Kullback–Leibler divergence [61, 62], also called information divergence, in-
formation gain, relative entropy and KL divergence is defined to measure the
non-symmetric difference between two probability distributions. In MDP, having
the current policy π(a|s) and the baseline policy π̄(a|s), the Kullback-Leibler
divergence measures the difference between these two probability distributions
following:

KL
(
π(·|s)‖π̄(·|s)

)
=
∑
a∈A

π(a|s) log
(
π(a|s)
π̄(a|s)

)
. (3.1)

According to [36–38], a new algorithm called Dynamic Policy Programming (DPP)
is proposed by adding the Kullback-Leibler divergence to the expected reward rst

as a penalty term to build a new value function:

V π
π̄ (s) = Est∼P;at∼π

[
h∑
t=0
γt
(
R(st,at, st+1)− 1

η
KL

(
π(·|st)‖π̄(·|st)

))∣∣∣∣∣s0 = s

]
,(3.2)

16

where η ∈ (0, 1] is the inverse temperature to control the effect of Kullback-Leibler
divergence term: the the reward is less related to the difference between π(a|s)
and π̄(a|s) with the increase of η. Combine Eqs. (3.2) and (2.9), the Bellman
equations of state value function with Kullback-Leibler divergence satisfies:

V π
π̄ (s) =

∑
a∈A

π(a|s)
[
R(s,a) + γ

∑
s′∈S
P(s,a, s′)V π

π̄ (s′)− 1
η

log
(
π(a|s)
π̄(a|s)

)]
, (3.3)

As a modified version of Eq. (2.5), Eq. (3.3) minimizes the difference between
the current policy π and the baseline policy π̄ while maximizing the expected
reward. The balance of these two sides is controlled by η. Following [36, 63], let
η be a positive constant, for all s ∈ S the optimal value function V ∗π̄ (s) and for
all (s,a) ∈ S ×A the optimal policy π̄∗(a|s) respectively satisfy:

V ∗π̄ (s) = max
π

∑
a∈A

π(a|s)
[
R(s,a)+γ

∑
s′∈S
P(s,a, s′)V ∗π̄ (s′)− 1

η
log

(
π(a|s)
π̄(a|s)

)]
.(3.4)

Following [36,63], the maximization of Eq. (3.4) can be performed in a closed
form. let η be a positive constant, for all s ∈ S the optimal value function V ∗π̄ (s)
and for all (s,a) ∈ S ×A the optimal policy π̄∗(a|s) respectively satisfy:

V ∗π̄ (s) = 1
η

log
∑
a∈A

π̄(a|s) exp
[
η
∑
s′∈S
P(s,a, s′)

(
R(s,a, s′) + γV ∗π̄ (s′)

)]
(3.5)

π̄∗(a|s) =
π̄(a|s) exp

[
η
∑
s′∈S
P(s,a, s′)

(
R(s,a, s′) + γV ∗π̄ (s′)

)]
exp

(
ηV ∗π̄ (s)

) . (3.6)

These results are derived by applying Lagrangian multipliers to Eq. (3.3) and
calculating the maximization with constraints ∑a∈A π(a|s) = 1, 0 < π(a|s) < 1.
Since π̄∗(a|s) is a function of the baseline policy π̄(a|s), the optimal state value

function V ∗π̄ and transition model P , we can first obtain the optimal state value
function by a fixed-point iteration:

V k+1
π̄ (s) = 1

η
log

∑
a∈A

π̄(a|s) exp
[
η
∑
s′∈S
P(s,a, s′)

(
R(s,a, s′) + γV k

π̄ (s′)
)]
. (3.7)

In order to solve the MDP and calculate the optimal policy π∗, a double-loop
algorithm is repeated by repeating the baseline policy π̄ is replaced by new policy

17

calculated via Eq. (3.6) at each step. It is the main loop of DPP that contains
both state value function update and policy update as:

V k+1
π̄ (s) = 1

η
log

∑
a∈A

π̄k(a|s) exp
[
η
∑
s′∈S
P(s,a, s′)

(
R(s,a, s′) + γV k

π̄ (s′)
)]
, (3.8)

π̄k+1(a|s) =
π̄k(a|s) exp

[
η
∑
s′∈S
P(s,a, s′)

(
R(s,a, s′) + γV k

π̄ (s′)
)]

exp
(
ηV k+1

π̄ (s)
) . (3.9)

To simply DPP’s loop, the action preferences function Ψk [1] for all state-action
pairs (s, a) ∈ S ×A is defined by:

Ψk+1(s,a) , 1
η

log π̄k(a|s) +
∑
s′∈S
P(s,a, s′)

(
R(s,a, s′) + γV k

π̄ (s′)
)
. (3.10)

By plugging Eq. (3.10) in to Eqs. (3.8) and (3.9), we deduce a simple loop of
DPP:

V k+1
π̄ (s) = 1

η
log

∑
a∈A

exp
(
ηΨk(s,a)

)
, (3.11)

π̄k+1(a) =
exp

(
ηΨk(s,a)

)
∑
a′∈A exp

(
ηΨk(s,a′)

) . (3.12)

Finally, a Bellman-like recursion of DPP is obtained by plugging the loop above
to Eq. (3.10):

Ψk+1(s,a)=Ψk(s,a)Ψk(s)+
∑
s′∈S
P(s,a, s′)

(
R(s,a, s′)+γLηΨk(s′)

)
−LηΨk(s)

=Ψk(s,a)+R(s,a) + γ
∑
s′∈S
P(s,a, s′)LηΨk(s′)−LηΨk(s).

(3.13)

where the operator Lη is defined by:

LηΨ(s) , 1
η

log
∑
a∈A

exp(ηΨ(s,a)). (3.14)

18

To get a more analytically tractable recursion according to [36], LηΨ(s) is re-
placed by a Boltzmann soft-max operator:

MηΨ(s) =
∑
a∈A

exp
(
ηΨ(s,a)

)
Ψ(s,a)∑

a′∈A exp
(
ηΨ(s,a′)

) . (3.15)

It is proved in [64] that the difference between theMη and Lη is limited following:

|Lη(x)−Mη(x)| ≤ log (|A|)
η

. (3.16)

Then the final recursion with Boltzmann soft-max operator is as follows:

Ψk+1(s,a), OΨk(s,a)
=Ψk(s,a)+R(s,a) + γ

∑
s′∈S
P(s,a, s′)MηΨk(s′)−MηΨk(s), (3.17)

O is an operator defined on Ψk and the Bellman operator T πkΨk(s,a) represents
R(s,a) + γ

∑
s′∈S P(s,a, s′)MηΨk(s′).

Like other AVI and API algorithms, DPP with function approximation have
error boundary without committing to any particular approximation method.
According to [36–38], DPP has a better error boundary than other value function
approaches following theorem 3.1.1:

Theorem 3.1.1. Define Q̂π0 , Q̂π1 , ..., Q̂πk to be the approximate value function
on k steps sequence, a average boundary of function approximation ε̄ is defined
by:

ε̄ = lim sup
k→∞

∑k
j=0 ‖T πjQ̂πj − Q̂πj+1‖∞

k + 1 .

If πk is the greedy policy of Qπ̂k , the loss bound in the presence of approximation
error bound follows:

lim sup
k→∞

‖Q∗ −Qπk‖∞ ≤
2γε̄

(1− γ)2

where γ is the discount factor of MDP.

Obviously, the average error ε̄ is usually smaller than the supremum norm
of error ε. Therefore, compared with other AVI and API algorithms, DPP is

19

guaranteed to achieve a near-optimal performance in the approximation of value
function even the individual errors εk are very large.
In this section, we introduce the algorithm of the original dynamic policy pro-

gramming. By applying Kullback–Leibler divergence, DPP is able to limited
the over large policy update represented by the action preferences function, ie, a
smooth policy update. As the key feature we utilized in our proposed framework,
the corresponding sampling distribution will thus be changed slightly between
two iterations and make the generated samples located in a local area of the
whole state space.

3.2 Action Preferences with Linear Function
Approximation

Original DPP is not a reinforcement learning algorithm since it is only applica-
ble to problems with discrete states and prior knowledge about the underlying
model. In order to extend DPP to model-free reinforcement Learning of large
scale problems with continuous states s ∈ S, Sampling-based Approximate Dy-
namic Policy Programming (SADPP),L is proposed in [36]. Defining the n-th
state-action pair from a set of N samples as xn = [sn,an]n=1:N , SADPP approx-
imates action preferences function via Linear Function Approximation (LFA):
Ψ̂k(xn) = φ(xn)Tθk where φ(xn) denotes the M × 1 output vector of m basis
functions, [ϕ1(xn), ..., ϕM(xn)]T where ϕi : S × A 7→ R is a bounded real value
function, and θk is the correspondingM×1 weight vector. There are many types
of basis functions for function approximation, e.g. the Radial Basis Function
(RBF) is defined as:

ϕ(x) = exp
(
− ‖x− c‖

2
2

ρ2

)
, (3.18)

c is the center of the RBF in the state-action space and ρ is a bandwidth param-
eter.
Using LFA, the DPP operator is approximated by finding a new weight vector

θk+1 that projects OΨ̂k on the column space spanned by the vector of basis
functions Φ =

[
φ(x1), ...,φ(xN)

]T
. The loss function for LFA to minimize is

20

Algorithm 3 Sampling-based Approximate Dynamic Policy Programming
Require: η, γ, σ,K and N

1: initialize weights vector θ0

2: for k = 0, 1, ..., K − 1 do
3: generate samples {(sn,an, s

′
n)}n=1:N from distribution µ

4: for each n = 1, 2, 3, ..., N do
5: for each a ∈ A do
6: Ψ̂k(sn,a) = θT

kφ(sn,a)
7: Ψ̂k(s

′
n,a) = θT

kφ(s′n,a)

8: MηΨ̂k(sn) = ∑
a∈A

exp
(
ηΨ̂k(sn,a)

)
Ψ̂k(sn,a)∑

b∈A exp
(
ηΨ̂k(sn,b)

)
9: MηΨ̂k(s

′
n) = ∑

a∈A
exp
(
ηΨ̂k(s′n,a)

)
Ψ̂k(s′n,a)∑

b∈A exp
(
ηΨ̂k(s′n,b)

)
10: OΨ̂k(sn,an) = φ(sn,an)Tθ +R(sn,an, s

′
n) + γMηΨ̂k(s

′
n)−MηΨ̂k(sn)

11: A = ∑
n=1:N

φ(sn,an)φT(sn,an) + σ2NI

12: B = ∑
n=1:N
OΨ̂k(sn,an)φ(sn,an)

13: θk+1 = A−1B

14: return θK

defined by:

J(θ; Ψ̂) , ‖Φθ −OΨ̂k‖2
2,µ (3.19)

where OΨ̂t is N × 1 matrix with elements OΨ̂t(s,a) following Eq. (3.17) and µ
is a probability measure on S ×A.
Applying least-squares regression to get the optimal θ that minimizes J(θ; Ψ̂),

an orthogonal projection is operated to project OΨ̂k to the space spanned by Φ
by multiplying Φ(ΦTΦ)−1ΦT following [65]:

Φθ = Φ(ΦTΦ)−1ΦTOΨ̂k (3.20)

The update of SADPP therefore follows:

θk+1 = arg min J(θ; Ψ̂) =
[
E(ΦTΦ)

]−1
E(ΦTOΨ̂k). (3.21)

21

where the expectation is taken w.r.t. (x,a) ∼ µ. Since it is infeasible to com-
pute OΨ̂k) for all states and actions in large scale problems, the least-squares
solution can be estimated by N i.i.d. samples xn = [sn,an]n=1:N drawn from the
distribution µ following the empirical loss:

J̃(θ; Ψ̂) , 1
N

N∑
n=1

(
φ(xn)Tθ −OΨ̂k

)2
+ σ2θTθ, (3.22)

σ is a regularization term to avoid over-fitting due to limited sample quantity.
The least-square solution of SADPP therefore is:

θk+1 = [ΦTΦ + σ2I]−1ΦTOΨ̂k. (3.23)

The pseudo code of SADPP is showed in Algorithm 3.

3.3 SADPP with Sample Reuse

In the studies of DPP [36–38], SADPP with linear function approximate is only
applied in toy experiments as a supplement of theory. It does not have a explo-
ration policy but only generates samples from a distributution µ. In this section,
we combines SADPP and sample reuse to achieve a rollout based algorithm with
exploration.
With sample reuse, the samples are obtained by rollout based interaction with

the robot in each iteration and will be reused in the future learning. In the k-th
iteration, the data are generated under the current policy πk and defined as:

Dπk = {T πk

1 , T π
k

2 , ..., T π
k

M }. (3.24)

It contains M rollout trajectories with totally M ×N samples:

T π
k

m = {(sπk

m,n,a
πk

m,n, s
′πk

m,n)}n=1:N (3.25)

In order to achieve an exploration based learning, at the beginning of the k-th
iteration, SADPP obtains data by a soft-max exploration:

πexplore(a|s) = exp(ηexploreΨ̂k(s,a))∑
a′∈A exp(ηexploreΨ̂k(s,a′))

(3.26)

22

Algorithm 4 SADPP with Sample Reuse
Require: η, ηexplore, γ, σ,K,M and N

1: initialize weights vector θ0

2: for k = 0, 1, ..., K − 1 do
3: generate samples Dπk by following πexplore

4: for each
{

(sim,n,aim,n, s
′i
m,n)

}
i=0:k, m=1:M, n=1:N

do
5: for each a ∈ A do
6: Ψ̂k(sim,n,a) = θT

k φ(sim,n,a)
7: Ψ̂k(s′im,n,a) = θT

k φ(s′im,n,a)

8: MηΨ̂k(sim,n) = ∑
a∈A

exp(ηΨ̂k(si
m,n,a))Ψ̂k(si

m,n,a)∑
b∈A exp(ηΨ̂k(si

m,n,b))

9: MηΨ̂k(s′im,n) = ∑
a∈A

exp(ηΨ̂k(s′im,n,a))Ψ̂k(s′im,n,a)∑
b∈A exp(ηΨ̂k(s′im,n,b))

10: A = ∑
n=1:N

φ(sn,an)φT(sn,an) + σ2NI

11: B = ∑
n=1:N
OΨ̂k(sn,an)φ(sn,an)

12: OΨ̂k(sim,n,aim,n) = θ
′Tφ

′(sim,n,aim,n) + R(sim,n,aim,n, s
′i
m,n) +

γMηΨ̂k(s
′i
m,n)−MηΨ̂k(sim,n)

13: A = ∑
i=0:k,m=1:M,n=1:N

Φ(sim,n,aim,n)ΦT(sim,n,aim,n) + σ2NI

14: B = ∑
i=0:k,m=1:M,n=1:N

OΨ̂k(sim,n,aim,n)Φ(sim,n,aim,n)

15: θk+1 = A−1B

16: return θK

where the parameter ηexplore is the temperature to control the randomness of the
soft-max function during exploration. The pseudo code of SADPP with sample
reuse is showed in Algorithm 4.
In this section, SADPP is applied in pendulum swing up with comparison of

Least Square Policy Iteration (LSPI) [12, 13]. In the simulation of pendulum
swing up shown in Fig. 3.1, the pendulum mass m = 0.8kg, the bar’s length
l = 1.5m, gravity g = 9.8m/s2 and dissipation d = 0.3, the time step ∆ t = 0.1s.
The control state is [θ, θ̇] where the pendulum angle θ ∈ [−π, π) rad and the
angle velocity θ̇ ∈ [−3π, 3π] rad/s. The action is the torque τ ∈ {−1, 0, 1} N ·m.
The reward function is defined as R = −(θ − 0)2 as the swing up angle is 0.
For both SADPP and LSPI, the gaussian function is used in linear function

23

Figure 3.1: The simulation of pendulum swing up.

approximate as basis function. In this experiment, 11 basis functions in one state
dimension, and 3 basis functions for each action are used. The total number
of basis functions is 112 × 3 = 363. The parameters in SADPP is set as: α =
0.01, γ = 0.95, η = ηexplore = 0.01. In each rollout of one iteration, the pendulum
state is initialized to a randomly perturbed state very close to [−π, 0]. We define
the reward as the accumulated R from the initial state to the final state in
one rollout following the current greedy policy. The stop criteria is reward >

−300. Fig.3.2 shows the learning result (all data is the average value of 10 times
experiments).
According to the result, due to the lack of smoothness in the policy update with

limited number of samples, LSPI was easy to diverge while SADPP has a more
stable learning and converge to a larger reward. To converge to the same high
reward, LSPI needed double times length of rollout trajectory than SADPP. The
effect of Kullback–Leibler divergence in the smooth policy update is also analysed
in this simulation task. Figures 3.3 and 3.4 show the comparison of SADPP and
LSPI in both approximate value function V and policy map according to the
largest value action in the approximate action preferences and Q function during
one time learning. Initialized by RBFs with random weights in the 0-th iteration
with limited number of samples generated per iteration, it is difficult for LSPI to
learn a stable approximate value function. The over large policy update results

24

Iteration
0 5 10 15 20 25 30

R
ew

ar
d

-104

-103

-102 Pendulum Swing Up

SADPP 5 # 200 samples/iteration
LSPI 5 # 200 samples/iteration
LSPI 5 # 400 samples/iteration

Figure 3.2: Comparison between SADPP and LSPI with different number of
samples in pendulum swinging up task.

to a messy policy map that could not achieve the swing up task. On the other
hand, under the restriction of the Kullback–Leibler divergence, SADPP is able
to smoothly update the policy map to achieve the swing up task under the same
experiment setting. This result indicate the importance of smooth policy update
in a successful learning with limited number of samples.
The convergence of DPP has been theoretically proven according to [36–38],

while DPP with function approximation has also been proven to have a better
asymptotic performance-loss bound than other approximate policy iteration and
approximate value iteration approaches with the assumption that a generative
model of an MDP is obtained to generate the next sample for all state-action
pairs [66, 67]. The results of toy simulation above indicate that SADPP with
sample reuse outperformed LSPI in the presence of function approximation and
limited sampling budget per iteration. The positive effect of smooth policy up-
date on sampling policy which results to a more stable learning with limited
number of samples is also demonstrated. However, besides one application in in-
verse reinforcement learning [68], DPP/SADPP is still unable to fully utilize its
smooth policy update in real world robot control due to the intractable computa-
tional complexity with exponentially growing size of RBFs φ in high dimensional
systems.

25

Figure 3.3: Comparison of approximate value function V between SADPP (right)
and LSPI (left), both with 5 × 200 samples per iteration. X axis is
the state of angle, Y axis is the state of angle velocity.

26

Figure 3.4: Comparison of policy map generate from approximate Q function
and action preferences function between SADPP (right) and LSPI
(left), both with 5× 200 samples per iteration. X axis is the state of
angle, Y axis is the state of angle velocity. Red, green and blue areas
represent action -1, 0 and 1 torque respectively.

27

3.4 Learn Global Value Function via Local
Samples Space

Let’s turn back to the current limitations of reinforcement learning in robot con-
trol domain mentioned in Chapter 1. The value function approach is able to learn
a global value function but be easy to diverge with insufficient samples. Further-
more, the computational complexity in high dimensional systems is intractable.
On the other hand, the policy search learns a parameterized policy rather than
value function. The optimal is searched in a local area to reduce the complex-
ity while selecting and initializing the parameterized policy suitably always need
extra prior knowledge of the models and tasks.
A new reinforcement learning framework is proposed in this thesis to take ad-

vantages of both the value function approach and the policy search. The main
idea comes from the nature of DPP. Since the over large policy update can be
restrained by Kullback–Leibler divergence, we can iteratively approximate the
global value function via samples in a local area driven by a smoothly updated
exploration policy. Thus, even the real world samples are insufficient, we could
focus on accurately approximate the value function in a local area defined by gen-
erated samples. This strategy is similar to the policy search but no parameterized
policy is required. Furthermore, the foundation fo solving the curse of dimension-
ality in high dimensional systems is provided by the smooth policy update. Once
the learning progress is stabilized locally, other machine learning algorithms could
be easily applied to the corresponding area to efficiently approximate the value
function. Intuitively, this framework update the value function instead of the
parameterized policy in a local area based on rollout exploration while the value
function is able to be efficiently approximated via other machine learning tricks.
In the following two chapters, two examples of the proposed framework will be

introduced: Local Update Dynamic Policy Programming (LUDPP) and Kernel
Dynamic Policy Programming (KDPP). They utilize different machine learning
methods, nearest neighbor search (NNS) [39] and kernel trick [40] respectively,
but all be practical to MDP with high dimensional state space, especially when
the samples are insufficient.

28

4 Local Update Dynamic Policy
Programming

In this chapter, a new value function approach based reinforcement learning al-
gorithm, Local Update Dynamic Policy Programming (LUDPP) is proposed to
work in the high dimensional state-action space with much reduced computational
complexity. LUDPP exploits the nature of the smooth policy update inherited by
Dynamic Policy Programming (DPP) [36–38]. It is able to update its value func-
tion in a far smaller local area selected by the current samples of state and action
every iteration and therefore considerably reduce the computational complexity
in both time and space.

4.1 Proposed Method

The idea of locally updating the approximated value function in reinforcement
learning algorithms is inspired by the locally updated Gaussian process regression
[69] and the locally weighted learning in control [70] which achieve efficiency
by limiting the calculation in a local area rather than a global space. LUDPP
limits the updating of value function (action preferences function) in a local area
instead of the global state-action space to simplify the calculation every iteration.
LUDPP is naturally suitable to this idea because of its sampling efficiency and
stable learning while such a local update should not be recommended in general
reinforcement learning algorithms since the approximated value function becomes
cruder: the distribution of samples will be generated following this inaccurate
value function and turns to a cruder value function.

29

Figure 4.1: The framework of local update dynamic policy programming.

4.1.1 Local Update of Value Function

According to the Chapter 3, DPP is suitable to be combined with the local update
as its control policy is updated smoothly by adding Kullback-Leibler divergence
between the current and previous policy in the reward function. LUDPP exploits
the nature of smooth policy update from DPP and be able to keep a stable local
update of value function. Figure 4.1 illustrates the framework of LUDPP. The
samples in each iteration are generated following the current value function. A
local area covering all current samples (translucent area) is selected to locally
update the value function. Thanks to Kullback-Leibler divergence, LUDPP gen-
erates samples smoothly from the low reward area to the high reward area. The
large overlapped local area between the previous and current iteration lead to a
accurate approximation of the value function since it contributes to the learning
continuously.

30

sample point activated RBFs

current policy 𝜋"
new policy 𝜋

continuous samples
from smooth policy select activated RBFs 𝚽′ ≪ 𝚽

Update only activated
RBFs 𝚿	

∗ ≈ 𝜽+,𝚽′

Figure 4.2: The principle of applying Nearest Neighbor Search: calculat-
ing/updating the weights of activated RBFs instead of all is more
tractable.

4.1.2 Sample Reuse and Exploration

Samples are generated by roll-out-based interaction in LUDPP. Since the weights
vector will be re-constructed every iteration according to Eq. (3.23), sample reuse
is applied to efficiently utilize the limited learning samples. We define the data
generated in the k-th iteration following control policy πk by:

Dk = {T k1 , T k2 , ..., T kM} (4.1)

which contains M roll-out trajectories and each trajectory contains N samples:

T km =
{

(skm,n,akm,n, s′km,n)
}
n=1:N

. (4.2)

A soft-max exploration policy is used for the exploration in LUDPP. In the
k-th iteration, the exploration policy πexplore following Eq. (3.12):

πexplore(a|s) = exp(ηexploreΨ̂k(s,a))∑
a′∈A exp(ηexploreΨ̂k(s,a′))

(4.3)

The temperature ηexplore controls the randomness of the soft-max function.

31

4.1.3 LUDPP with RBFs

In this subsection, the detail of LUDPP using RBFs is introduced as one imple-
mentation. the RBFs basis function φRBF is defined follows Eq. (3.18):

φRBF (s,a) = exp
(
− ‖x− c‖

2
2

ξ2

)
(4.4)

where x = [s,a] is the input vector, c is the center of this RBF in the state-
action space and ξ is a bandwidth parameter. Since basis function whose center
has closer Euclidean distance to the x contributes more to the approximation of
the value function in this point, it is convenient to applying Nearest Neighbor
Search (NNS) [39, 71] to search the active basis function close enough to the
samples in current iteration and determine the local area in Fig. 4.1. With only
the weights of active basis functions being updated, this local update is assumed
to be sufficient to represent the approximated value function. Figure 4.2 shows
the main principle of this strategy. There are many methods for NNS, e.g., K-
Dimensional Tree [72] and Locality-Sensitive Hashing [73]. Here we abstract the
process of NNS to a function:

(θ′ ,φ′ , iactive) = NNS(θk,φ,Dk, PNNS). (4.5)

The input parameter θk is the weights vector in the k-th iteration, φ is the original
basis functions vector, Dk is the generated data, PNNS controls the number of
nearest basis functions to search for each samples in Dk. NNS() searches the
active basis function φ′ and the corresponding weights vector θ′ and saves the
index of active basis functions in iactive.
LUDPP has an internal smoothness in policy update following the principle of

DPP. The exploration policy πexplore is defined to be smoothly updated as the
action preferences Ψ̂k’s update is smooth. With this smooth exploration policy,
the generated samples are assumed to move to the high-reward area of state-action
space smoothly. This feature may reduce the sampling’s bias during learning, but
also fulfills the requirement of LUDPP’s local update: this partial update highly
requires no steep update of policy occurs in order to make the locally active area
of basis functions moves smoothly so that the active basis functions make strong
effect continuously in the next iterations.

32

Algorithm 5 LUDPP using RBFs
Require: φ, ηexplore, η, γ, σ,K,M,N and PNNS

1: initialize weights vector θ0

2: for k = 0, 1, ..., K − 1 do
3: generate samples Dk by following πexplore following Eq. (4.3)
4: (θ′ ,φ′ , iactive) = NNS(φ,θk,Dk, PNNS)
5: for each

{
(sim,n,aim,n, s

′i
m,n)

}
i=0:k, m=1:M, n=1:N

do
6: for each a ∈ A do
7: Ψ̂k(sim,n,a) = θ

′T
kφ

′(sim,n,a)
8: Ψ̂k(s

′i
m,n,a) = θ

′T
kφ

′(s′im,n,a)

9: MηΨ̂k(sim,n) = ∑
a∈A

exp
(
ηΨ̂k(si

m,n,a)
)

Ψ̂k(si
m,n,a)∑

b∈A exp
(
ηΨ̂k(si

m,n,b)
)

10: MηΨ̂k(s
′i
m,n) = ∑

a∈A
exp
(
ηΨ̂k(s′im,n,a)

)
Ψ̂k(s′im,n,a)∑

b∈A exp
(
ηΨ̂k(s′im,n,b)

)
11: OΨ̂k(sim,n,aim,n) = θ

′Tφ
′(sim,n,aim,n) + R(sim,n,aim,n, s

′i
m,n) +

γMηΨ̂k(s
′i
m,n)−MηΨ̂k(sim,n)

12: A = ∑
i=0:k,m=1:M,n=1:N

φ
′(sim,n,aim,n)φ′T(sim,n,aim,n) + σ2NI

13: B = ∑
i=0:k,m=1:M,n=1:N

OΨ̂k(sim,n,aim,n)φ′(sim,n,aim,n)

14: θk+1(iactive) = A−1B

15: return θK

Algorithm 5 is the pseudo code of LUDPP using RBFs. After generating sam-
ples following the current exploration policy πexplore in the k-th iteration, the
active RBFs are calculated by Eq. (4.5) in line 4. From lines 5 to 13, OΨ̂k among
all samples is calculated. Lines 14 to 16 calculate the new weights vector locally
following Eq. (3.23). Notice line 16 calls a matrix inversion with time complexity
O(n3) [74] when the matrix size is (n× n) . This local update cuts considerably
the size of matrices A from φ×φ to φ′ ×φ′ in some high-dimensional problems
(e.g., in the case of matrices with several millions rows and columns). If PNNS is
suitable to find a small local RBFs vector that |φ| � |φ′ |, the local update will
reduce the computation complexity of updating weights vector greatly.

33

Figure 4.3: The simulation of n DOF manipulator reaching tasks.

4.2 Simulation Results

In this section, LUDPP using RBFs is applied to the simulation of pendulum
swing up (shown in Fig.3.1) and n (two to four) DOF manipulator reaching tasks
(shown in Fig. 4.3). As one of the most popular and efficient algorithms in this
area, LSPI [12, 75, 76] shares the same least squares update law with DPP. The
only difference is that LSPI does not consider the Kullback-Leibler divergence
between policies to control the smoothness of policy update. Therefore we com-
bine NNS with LSPI to achieve a Local Update Least Square Policy Iteration
(LULSPI) using RBFs as comparison in this simulation.

4.2.1 Pendulum Swing Up

In this simulation, the parameters of pendulum swing up were set as: mass
m = 0.8 kg, the bar’s length l = 1.5m, gravity g = 9.8m/s2, time step ∆ t = 0.1 s
and the parameter of dissipative loss of energy (e.g., friction in the elements of
the pendulum) d = 0.3. The continuous state is [θ, θ̇]T where θ ∈ [−π, π) rad
is the angle between the current pendulum position and the swing up position,
θ̇ ∈ [−3π, 3π] rad/s is the angle velocity. The discrete action is torque τ ∈
{−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}N ·m. The reward function is defined as R =

34

−θ2 to give high reward or low cost when the pendulum is close to the swing up
position. Defining the swing up position as 12 o’clock position, θ = 0 rad, the
state was initialized to 6 o’clock position, θ = π rad with 0 angle velocity at the
beginning of each roll-out. While the proposed approach allows agent to learn
from various initial states and generate good solution, we set one initial state in
simulations in order to simplify the task and reduce the requirement of samples
and iterations.
For the function approximation, 20 RBFs with ξ = 0.5 were set in each di-

mension of state and 9 RBFs with ξ = 0.2 for the action space. 3600 RBFs were
arranged in a 20×20×9 grid over a 3-dimensional state-action space. The param-
eters of SADPP and LUDPP were set as α = 0.01, γ = 0.95, η = 0.0001, β = 0.01.
Totally 10 × 200 samples, 10 trajectories and each one has 200 steps, were gen-
erated every iteration in learning. A test roll-out with a greedy control policy
was operated 500 steps before each iteration. The learning stopped when the
accumulative reward in the last 400 steps in test roll-out was more than 0.5. It
requires the pendulum to swing up in the first 100 steps and then kept stable for
the next 400 steps. All data was the average over 10 times experiments.
The learning result is shown in Fig. 4.4, both SADPP and LSPI worked well

without the local update. SADPP converged to the highest reward with 10×200
samples/iteration. On the other hand, setting PNNS to 100 and 10, LUDPP
converged to a close reward with almost same number of iterations compared
with SADPP while LULSPI converged to a lower reward of SADPP with several
iterations more. When we set PNNS = 1, LUDPP was able to converge to a high
reward with a bit more iterations while LULSPI could not converge at all. For
the number of RBFs, LUDPP averagely updated 30.6% RBFs (1101.46 of 3600)
when PNNS = 1.
Figure 4.5 shows one example of LUDPP and LULSPI’s learning in the first

10 iterations under the view point of value function (action preferences function)
update (PNNS = 1). The first and second rows show the highest value of action
preferences function with the corresponding action among the state-action space
in SADPP and LUDPP, respectively. The third and fourth rows show LSPI and
LULSPI’s value function, i.e., the highest value of Q function with the corre-
sponding action, among the state-action space. In each small figure, the X axis

35

Figure 4.4: The learning result of pendulum swing up. Top: comparison between
LUDPP (left) and LULSPI (right). Bottom: the average size of local
update RBFs in LUDPP.

36

Figure 4.5: One example of the update of value function (action preferences
function) in pendulum swing up (the high value area is red and low
area is blue).

37

is the angle, Y axis is the angle velocity. In LUDPP, the crude approximation of
local update worked good. LUDPP’s smooth policy update kept the local update
stable. Even though the action preferences function in the first iteration had
several incorrect high value areas, LUDPP finally learned a similar action pref-
erences function of SADPP’s. On the other hand, the value function of LULSPI
was updated incorrectly compared with LSPI’s.

4.2.2 Multiple DOF Manipulator Reaching

In the n DOF manipulator reaching (n = 2, 3, 4), we investigate the learn-
ing performance of LUDPP in higher state-action space with different setting
of parameter PNNS. The continuous state in this task is [θ1, θ2, ..., θn]T where
θi ∈ [−π

2 ,
π
2] rad is the angle of the i-th joint. Discrete actions [u1, u2, ..., un]T

have three values for each joint: increase/decrease 0.0875 rad joint angle and
maintain the current angle. The first joint is set to the position [0, 0] and the
length of one limb between two joints is set to 1

n
m. All joint angles are initial-

ized to 0 at the beginning of each roll-out. The reward function is defined as
R = −1000× ((px −Xtarget)2 + (py − Ytarget)2) where [px, py] is the end-effector’s
position and Xtarget = 0.6830, Ytarget = 0 are the targets to reach. We set the
parameter setting of algorithm like pendulum swing up. The stopping criterion
is that the reward of the last state in the test roll-out is more than −1. All data
was the average over 10 times experiments.
For the function approximation, nine RBFs with ξ = 0.5 were set in each

dimension of state and three RBFs with ξ = 0.2 for the action space. In two
DOF manipulator reaching task, totally 729 RBFs were arranged in a 9 × 9 ×
3 × 3 grid over a four dimensional state-action space. LUDPP was trained with
10 samples/iteration and PNNS = {1, 10, 50, 100}. In three DOF manipulator
reaching task, 19683 RBFs were arranged in a 9× 9× 9× 3× 3× 3 grid over a six
dimensional state-action space. LUDPP was trained with 10 samples/iteration
and PNNS = {1, 10, 100, 1000}. In four DOF manipulator reaching task, the total
number of RBFs becomes 9×9×9×9×3×3×3×3 = 531441 that is intractable
to SADPP/LSPI using our computational server. We trained LUDPP with 10
samples/iteration. In order to investigate the effect of different setting of meta
parameter PNNS, we set PNNS ∈ [1, 1000] with the same number of interval.

38

Figure 4.6: The learning result of two DOF manipulator reaching task. Top:
comparison between LUDPP (left) and LULSPI (right). Bottom: the
average size of local update RBFs in LUDPP.

39

1

LULSPILUDPP

2

3

4

5

X

Z Y

X

Z Y

X

Z Y

X

Z Y

X

Z Y

X

Z Y

X

Z Y

X

Z Y

X

Z Y

X

Z Y

Algorithm

Ite
ra
tio
n

Figure 4.7: Samples and active basis functions in the first 5 iterations of two
DOF manipulator reaching with LUDPP (left) and LULSPI (right).
•: Center points of active basis functions; •: Samples generated in
current iteration; •: Samples generated in next iteration. The X axis
and Y axis represent θ1 and θ2, respectively and the Z axis represents
umix.

40

Figure 4.8: The learning result of three DOF manipulator reaching task. Top:
comparison between LUDPP (left) and LULSPI (right). Bottom: the
average size of local update RBFs in LUDPP.

41

Figure 4.9: The learning result of four DOF manipulator reaching task. Top:
comparison between LUDPP (left) and LULSPI (right). Bottom: the
average size of local update RBFs in LUDPP.

42

Figure 4.6 (top) shows the learning results of LUDPP (left) and LULSPI (right)
in two DOF manipulator reaching. The average RBFs updated in each iteration is
illustrate in Fig. 4.6 (bottom). Because SADPP has a better samples complexity
than LSPI, with the same number of samples, SADPP converged to a better
reward. Applying the local update, LUDPP was able to converge to a very high
reward within 30 iterations’ learning with PNNS being set as 10, 50 and 100. It
learned to a similar result of SADPP while only update 14.38% (PNNS = 10),
25.68% (PNNS = 50) and 36.64% (PNNS = 100) RBFs. On the other hand,
LULSPI resulted in a poor performance.
The four dimensional data of two DOF manipulator reaching ([θ1, θ2, u1, u2]T)

was translated to a three dimensional one ([θ1, θ2, umix]T) to investigate the the
local update of LUDPP from an intuitive viewpoint. We defined umix with nine
discrete actions to represent all nine different setting of [u1, u2]T. One example
of LUDPP and LULSPI’s learning in the first five iterations was shown in Fig.
4.7. The red dots are the active RBFs’ center which determined the local area of
the whole state-action space. The blue dots are samples in the current iteration.
They are used to find the active RBFs by nearest neighbor search. The samples
generated in the next iteration were represented by green dots. According to
the left column of Fig. 4.7, LUDPP updated its policy smoothly. The samples
generated in the next iteration were close to previous samples and therefore be
able to utilize the active RBFs efficiently. In contrast, LULSPI generated samples
in a steep way.
In three DOF manipulator reaching, LUDPP similarly outperformed LULSPI

according to Figs. 4.8. Only 36.26% (PNNS = 1000), 15.60% (PNNS = 100),
6.87% (PNNS = 10) RBFs being updated to converge to a close result of SADPP
within 30 iterations in LUDPP. Both LSPI and LULSPI could not converge to a
good solution stably.
Due to the limitation of both calculation time and hardware, no SADPP and

LSPI was trained in four DOF manipulator reaching with a eight dimensional
state-action space and 531441 RBFs. Only LUDPP and LULSPI with 10 × 50
samples/iteration were trained. Parameter PNNS is set as 1, 10, 100 and 1000.
As shown in Fig. 4.9, LUDPP’s learning result was improved with the increasing
PNNS. Its successful rate of learning is high with 5.17% (PNNS = 1000) and

43

1.68% (PNNS = 100) RBFs being updated while LULSPI could not converge at
all.

4.3 Real Robot Experiment

In this section, we apply the proposed reinforcement algorithm, LUDPP, to
Shadow Dexterous Hand [41], a Pneumatic Artificial Muscle (PAM) driven hu-
manoid robot hand in position reaching task. The related works of applying
reinforcement learning to control PAM driven robots are all using policy search
algorithms [77, 78], where the prior knowledge of robot systems is obtained by
software simulator or human demonstrations. On the other hand, the proposed
framework achieves purely model-free and self-exploration reinforcement learning
can be used without any prior knowledge of model/simulator/demonstrations.
We first give an introduction of the features and model of Pneumatic Artificial

Muscle (PAM) driven robots. Then we go the details of the platform, Shadow
Dexterous Hand. Lastly, we show the real experiment of LUDPP in this platform.

4.3.1 Pneumatic Artificial Muscles Driven Robots

Pneumatic Artificial Muscle (PAM) is an attractive device for use as an actua-
tor for a wide variety of robots after having been widely employed in industrial
automation. Thanks to its flexible, lightweight, compliant structure that ap-
proximates real muscles and high power-to-weight ratio, PAM-driven robot is
highly suitable to execute tasks with our nearby living environments in dealing
with the several objects and tools as required, physically interact to the humans
for supporting their daily activities or rehabilitation purposes (e.g., elastic or-
thoses [79] and rehabilitation/training exoskeleton systems [80]). Unfortunately,
the PAM-driven robot has not only high system dimensionality but also nonlin-
earities from pressure dynamics, mechanical structure, hysteresis phenomena and
mass flow rate [81–83]. It is difficult to accurately model and control by tradi-
tional model-free control [84] from intelligent PID [85] to neural networks [86]
and fuzzy system [87] approaches.
As one potential solution, reinforcement learning is able to iteratively learn

control policies without model. However, applying the policy search algorithms

44

to PAM-driven robot is limited since the control signal for PAM-driven robot is
discrete (to control the valve to inflate, deflate and hold the current pressure)
while the initial policy could not be intuitively obtained. Even though the value
function approach typically employs discrete control actions and be able to learn
without prior model knowledge for initial policy, applying it to control PAM-
driven robot is still challenging: the curse of high system dimensionality results
to an impractical calculation complexity while the the learning is fragile due to
curse of insufficient learning samples. Therefore it is suitable to evaluate the
work of this thesis on the PAM-driven robot since the motivation according to
our motivation.
The McKibben pneumatic artificial muscle has an internal rubber tube sur-

rounded by a cylindrical mesh braided by inextensible threads [83]. The cylin-
drical form of PAM is retained by sealing both ends of its two-layered tube by
caps that have connectors to supply compressed air. A contraction force is gen-
erated by PAM when the long axis shortens due to the inextensible threads by
filling compressed air to the tube. With such a unique structure, PAM has high
power-to-weight, good flexibility and be suitable to drive robots to interact with
humans safely. On the other hand, PAM is difficult to model and control due to
the nonlinearities in its structure like pressure dynamics, hysteresis phenomena
and the effect of mass flow rate. According to [81–83], a simple equation of PAM’s
axial tension F follows:

F = −(P − P0)dV
dL

(4.6)

where P is the internal gas pressure and P0 is the environment pressure (101.325
kPa), dV and dL are the change of PAM volume and the axial displacement of
PAM, respectively. For one governable joint is driven by two antagonistically
placed PAMs (denoted by subscript 1 and 2), the torque follows:

τ = F1 − F2 = −(P1 − P0)dV1

dL1
+ (P2 − P0)dV2

dL2
(4.7)

According to Eqs. (4.6) and (4.7), the modeling and controlling of PAM-driven
robot by the traditional methods is challenging because of both the difficulty
of accurately measuring the volume and length of PAM in real world and the
consideration of the moment arm of every muscle depending on joint angles.

45

Figure 4.10: The Shadow Dexterous Hand.

As another feasible approach, reinforcement learning is able to learn the control
policy of PAM-driven robot without the knowledge of dynamics and therefore does
not require the measurement of PAM’s volume and length. However, the unstable
function approximation and infeasible computational complexity makes previous
value function approach based algorithms (e.g., Q-learning [8] and LSPI [12])
infeasible in the application of such a high-dimensional robot system.

4.3.2 Platform: Shadow Dexterous Hand

In this thesis, the platform for real robot experiments the Shadow Dexterous
Hand, one PAM-driven humanoid robot hand, which is an advanced humanoid
robot hand system that reproduces as closely as possible the kinematics and
dexterity of the human hand using pneumatic artificial muscles [41].

46

According to Fig. 4.10, the Shadow Dexterous Hand has three fingers while
each finger has four joints. Two extra joints are used to control the wrist. The
joint 1 of each finger is disable since a BioTac tactile sensor with capability
of measuring forces, vibrations and heat flow (http://www.syntouchllc.com) is
attached on. Each governable joint is driven by two antagonistically placed PAMs.
There are three control actions for one PAM’s valve: inflating, deflating and
holding the current pressure. The state space of one governable joint in the
Shadow Dexterous Hand is a four dimensional vector [θ, θ̇, P1, P2]T where θ and
θ̇ are the the joint angle and angular velocity respectively, P1 and P2 are the air
pressures of the two antagonistic PAMs. The action space is [u1, u2]T where u1

and u2 being their corresponding actions.
For the computational resource, a computational server with Intel Xeon E5-

2697 v2 CPU and 250 GB memory was used. The control framework of the
Shadow Dexterous Hand was achieved by Robot Operating System (ROS) [88].
The reinforcement learning algorithms were written in Matlab. Its Robotics Sys-
tem Toolbox is used for communication between Matlab and ROS.

4.3.3 Position Reaching Control using LUDPP

In this section, we apply LUDPP to a two DOF finger reaching control of a
Shadow Dexterous Hand (Fig. 4.10) as one application of controlling PAM-driven
robots. This task has a 12-dimensional state-action space that is intractable to
typical value function based RL algorithms.

Experimental Setting

Our task is controlling the joint 2: Ja (proximal-phalangeal joint) and the joint
3: Jb(metacarpal-phalangeal joint) of the shadow dexterous hand (Fig. ??) to
reach one finger to the target position. According to Section 2, one joint has
a 6 dimensional state-action space. In this 2 joints control, the control state is
s = [θa, θ̇a, Pa1, Pa2, θb, θ̇b, Pb1, Pb2]T and the action is u = [ua1, ua2, ub1, ub2] with 3
discrete actions: filling air in, releasing air out and hold the current air pressure.
Thus, a 12 dimensional state-action space is generated.
For function approximation, we set three RBFs in each dimension of the state-

47

action space. The total number of RBFs was 312 = 531441. Such a huge number
of RBFs made the calculation intractable to SADPP and LSPI under our compu-
tation server. More than 2TB space is required to save a 531441×531441 matrix
in Matlab and calculating its inversion needs a very huge number of memory and
extremely long time.
We apply LUDPP to face the challenge of the curse of dimensionality in this

experiment. For the parameters of LUDPP, we set PNNS = 500 and other pa-
rameters as same as the simulation tasks’ in Section 4. The target positions were
set to θtarget,a = 1.5 rad, θtarget,b = 1.0 rad. The reward function was defined
by R = −1000 × ((θa − θtarget,a)2 + (θb − θtarget,b)2). At the beginning of each
roll-out, the initial state of the shadow dexterous hand was set as: θa = 0 rad,
θb = 0.6 rad, θ̇a = θ̇b = 0 rad/s. The air pressures in all relative PAMs were
set from 100 to 300 kPa. We generated 5 trajectories with totally 5× 50 samples
every iteration. The control loop runs at 1.25Hz while each action operates for
0.25 s. A test roll-out with a greedy control policy is carried out at the beginning
of each iteration. The reward of its last state Rtest is recorded. The stopping
criterion is Rtest ≥ −100. The stopping criterion is not strict, since we focus
on investigating the learning performance of our proposed algorithm. We used
a computational server with Intel Xeon E5-2697 v2 CPU and 250 GB memory.
The average calculate time of one iteration is around 10 minutes and the whole
learning time of one experiment with 20 iterations including generating samples
and updating weights is around 4 hours.

Results

The learning result based on 5 times experiments is shown in Fig. 4.11 where
LUDPP converged to a stable policy with a limited number of samples (250
samples/iteration) and iterations (15 iteration). The average number of locally
updated RBFs over 5 times experiments is 51606.17 that is only 9.71% of the
totally 531441 RBFs among the 12-dimensional state-action space.
Figure 4.12 shows one learning’s snapshot of the test roll-out’s control trajecto-

ries (15 time steps) in the first, 5-th, 10-th and 15-th iteration. The white lines on
figure demonstrate the target position. In the first iteration, two antagonistically
placed PAMs could not cooperate to move the corresponding joint to the target

48

Iteration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ew

ar
d

-3000

-2500

-2000

-1500

-1000

-500

0
Two DOF finger reaching control of shadow dexterous hand

LUDPP, P
NNS

 = 500 with 5 # 50 samples/iteration

Figure 4.11: The learning result of two DOF finger reaching control of shadow
dexterous hand with error bar of standard deviation.

position as control policy π follows the initial action preferences function approx-
imated by RBFs with random weights. The shadow hand started to move its
finger to the target position iteratively according to the 5-th and 10-th iterations
and finally get a good solution in the 15-th iteration.
Figure 4.13 shows the analysis of the 15-th iteration’s control trajectory. The

left row shows four PAMs’ action trajectories. The middle row shows their cor-
responding air pressure. The angle trajectories of two joints is in the right row.
In this iteration, LUDPP learned to cooperate the two antagonistically placed
PAMs with opposite actions (filling air in/releasing air out) to move the joint
following Eq. (4.7). On the other hand, LUDPP also considered the nonlinear
dynamics of air pressure and axial displacement (unobservable state) to fix and
keep the position of joints accurately by some small actions.
In this experiment, LUDPP reduces the intractable calculation of a PAM-

driven robot system with 12 dimensional state-action space to a tractable one
and smoothly converges to a good solution with limited number of samples and
iterations. This result suggests that LUDPP has a good potential to be applied
in advanced robot systems with highly nonlinear dynamics while other value

49

Figure 4.12: Snapshot of two DOF finger reaching control of shadow dexterous
hand. (the white line demonstrates the target position)

50

Fill Air

Keep

Release Air

Fill Air

Keep

Release Air

Fill Air

Keep

Release Air

Fill Air

Keep

Release Air

Air pressure (kpa)

Air pressure (kpa)

Air pressure (kpa)

Air pressure (kpa)

Joint angle (rad)

Joint angle (rad)

Figure 4.13: The analysis of one learned policy in two DOF finger reaching con-
trol.

51

function based RL algorithms are commonly limited to some small scale problems.

4.4 Summary of LUDPP

All simulation and real robot experiment results in this section support that
LUDPP worked good with its action preference function being updated locally.
Once a suitable PNNS is set, LUDPP is able to learn as good as SADPP to learn
a good solution and considerably reduces the computational complexity while
LULSPI approximates its value function incorrectly and diverges easily without
smooth policy update. This result met our assumption that the smooth policy
update stabilizes the local update. With the increase of the system dimensions,
the percentage of the locally updated RBFs will shrink to a very small as seen in all
simulations. Supported by Figs. 4.5 and 4.7, the error of function approximation
increased iteratively and made the learning difficult to converge in LULSPI. The
non-smooth policy update results in a crude approximation of value function as
the active RBFs updated in the current iteration contributed less to the samples
in the next iteration due to the long distance between them. The simulation
results also show that LUDPP also has a better sample complexity similar to
SADPP. With the same number of samples and suitable setting of PNNS, LUDPP
outperformed LSPI in the converged reward.
On the the other hand, the computational complexity of LUDPP is still in-

tractable in complex tasks. In real robot experiment, LUDPP need to calculate
50000 RBFs (9.71% of all) is still too expensive due to the large total number of
the RBFs. In the next chapter, we will further update it to a more efficient algo-
rithm, KDPP by representing the approximate value function by infinite RBFs
using kernel trick [40,89].

52

5 Kernel Dynamic Policy
Programming

In this chapter another new value function approach based Reinforcement Learn-
ing algorithm, Kernel Dynamic Policy Programming (KDPP), is proposed to
learn tasks represented by high dimensional states Markov decision process with
both increased stability and much reduced computational complexity. KDPP in-
herits the smooth policy update of Dynamic Policy Programming (DPP) [36–38]
which allows for stable value function approximation when faced with insufficient
samples in high dimensional state-action spaces, by considering the Kullback-
Leibler divergence between current and new policies as a regularization term.
The stable learning of an approximated value function then allows for applica-
tion of the kernel trick [40,89] to implicitly represent and update the approximate
value function of high dimensional state-action spaces using the inner product of
pairs of generated samples, to reduce both learning divergence and sometimes
intractable computational complexity.
We investigate the scalability of KDPP by comparing it with existing kernel

trick based value function approaches: kernel based least squares policy iterations
(KLSPI) [90, 91] and kernel based least squares policy evaluation (KLSPE) [92]
in a simulated n DOF manipulator reaching task (n = 2, 5, 10, 20, 40). A further
analysis of the accuracy of kernel based value function approximation in KDPP,
KLSPI and KLSPE is conducted to demonstrate the improved performance of
our proposed algorithm. As an application to a real high dimensional robot
system, we also apply KDPP to control the Shadow Dexterous Hand, a Pneumatic
Artificial Muscle (PAM) driven humanoid hand, to unscrew a bottle cap with the
aid of touch sensors. This combined system has a 32 dimensional state space with
625 discrete actions whose high state-action dimensionality renders it impractical

53

for conventional value function approach algorithms to the best of our knowledge,
whereas KDPP converged to a viable solution within a small number of learning
iterations while given limited samples.

5.1 Proposed Method

The idea of applying the kernel trick in value function approaches is proposed
in [90–92] in order to efficiently approximate value function in high-dimensional
systems. However, to the best of our knowledge, the current research is lim-
ited in simulations with low dimensionality because the kernel selected from an
overly aggressively updated policy results in both a brittle kernel function approx-
imation and diverged learning. In this section, combining SADPP with kernel
function approximation results in our proposed Kernel Dynamic Policy Program-
ming (KDPP) with the ability to iteratively select kernels based on a smoothly
updated sampling policy, which leads to a stable kernel function approximation
in high-dimensional systems with a limited number of samples.

5.1.1 Kernel Trick

According to [93], define a kernel as a symmetric function between two points as
k(xi,xj) = k(xj,xi), a kernel matrix as K storing kernel values for all pairs in
a dataset with [K]ij = [K]ji = k(xi,xj). The kernel function can be interpreted
as a inner product between the two points in a higher-dimensional space follow-
ing Mercer’s theorem [94] if K is positive semi-definite. The kernel trick is to
use this property to represent a high-dimensional, implicit feature space without
ever computing the coordinates of the data in that space, but rather by simply
computing the inner products between the pairs of data in the feature space. It
is a widely applied technology in machine learning with several popular kernels,
e.g., Fisher, Polynomial and RBF kernels.

54

current policy 𝜋"
new policy 𝜋

continuous samples
from smooth policy

define kernel function
𝑘 𝒙%,𝒙' = 𝝓 𝒙% ,𝝓 𝒙'

approximate value function
ψ	∗(𝒙) ≈ 𝒌 𝒙 1𝜶

samples set
{𝒙4𝟏,…𝒙47}

for any point 𝒙:
𝒌 𝒙 = 𝑘 𝒙, 𝒙4% ,… , 𝑘 𝒙, 𝒙47 	, 𝒌 𝒙 = 𝑁

calculate infinite dimensional feature by kernel

assume infinite feature
space

𝝓 𝒙 = ∞

Figure 5.1: The principle of applying Kernel trick: calculating infinite dimen-
sional basis functions on state-action space by kernel functions on
samples space.

5.1.2 Action Preferences with Kernel Function
Approximation

In this research, we apply the kernel trick to action preferences with LFA to
overcome the curse of dimensionality: rather than explicitly computing the co-
ordinates of the matrix ΦTΦ which is intractable with high system dimension-
ality, computationally cheaper inner products among samples are employed to
efficiently approximate action preferences.
Start from the approximated action preferences via LFA: Ψ̂t+1(x) = φ(x)Tθt+1,

plug Eq. (3.23) into it, the approximated action preferences function becomes:

Ψ̂t+1(x) = φ(x)T[ΦTΦ + σ2I]−1ΦTOΨ̂t (5.1)

which can be represented using the Woodbury identity:

Ψ̂t+1(x) = φ(x)TΦT[ΦΦT + σ2I]−1OΨ̂t. (5.2)

Defining a N × N kernel matrix K := ΦΦT that [K]ij = 〈φ(xi),φ(xj)〉 =:
k(xi,xj) and a N × 1 vector k(x) = [k(x, x̃1), ..., k(x, x̃N)]T, the approximated
action preferences function represented by the kernel is obtained as:

Ψ̂t+1(x) = k(x)T[K + σ2I]−1OΨ̂t = k(x)Tαt+1 (5.3)

55

where αt+1 = [K + σ2I]−1OΨ̂t is the N × 1 dual variable vector of M × 1 weight
vector θt+1. The main principle of KDPP is shown in Fig 5.1. As a further
extension of LUDPP, KDPP is able to calculate even infinite dimensional basis
functions, i.e., |φ(x)| =∞, by translating it to kernel functions on samples space.

5.1.3 Online Selection of a Regression Subset

Employing the kernel trick, the action preferences function is efficiently approxi-
mated onN sample pairs following Eq. (5.3). The next step is to select a subset of
samples Dkernel = [x̃n]n=1:N ′ , N

′ � N to reduce computational complexity. Ac-
cording to [91,92], the output vector of basis functions φ(x) = [ϕ1(x), ..., ϕM(x)]T

should be approximated by Dkernel with the corresponding N ′ × 1 weight vector
α:

φ(x) ≈ [φ(x̃1), ..., φ(x̃N ′)]α. (5.4)

To minimize the error of approximation ‖φ(x)−[φ(x̃1), ..., φ(x̃N ′)]α‖2, α follows:

α = K−1
N ′N ′

kN ′ (x) (5.5)

where KN ′N ′ is a N ′ × N
′ kernel matrix of subset with [KN ′N ′]ij = k(x̃i, x̃j).

kN ′ (x) represents vector [k(x, x̃1), ..., k(x, x̃M)]T. Defining [KNN ′]ij = k(xi, x̃j),
the calculation of kernel matrix is reduced from all samples to a subset Dkernel:

K ≈KNN ′K
−1
N ′N ′

KT
NN ′ , (5.6)

k(xi,xj) ≈ kN ′ (xi)TK−1
N ′N ′

kN ′ (xj). (5.7)

Define the new generated samples including state and action as x∗ = [s∗,a∗].
For on-line selection of Dkernel during the learning process, we calculate the vari-
ance of each generated sample x∗ approximated by the current Dkernel that indi-
cates its informativeness (i.e., approximate linear dependency (ALD) analysis):

δ∗ = k(x∗,x∗)− kN ′ (x∗)T(KN ′N ′)−1kN ′ (x∗). (5.8)

If the corresponding δ∗ exceeds a given threshold, x∗ is considered to be suf-
ficiently unique to add to Dk as a new feature since the current Dk could not

56

accurately approximate δ∗. Intuitionally, the kernel function approximation with
online selection of regression set can be treated as adaptively selecting RBFs
from samples to efficiently approximate the function among the current known
state-action space. It considerably reduces the computational complexity in high
dimensional problem where the observe space is usually far smaller than the whole
one.

5.1.4 Kernel Dynamic Policy Programming

Here we detail the pseudocode of KDPP in Algorithm 6. KDPP is a model-free
reinforcement learning algorithm, its samples are obtained by rollout-based inter-
action with the plant/environment every iteration and reused in future learnings.
The data generated in the t-th iteration is defined as Dt = {D1

t , ..., D
I
t } containing

I rollout trajectories. Each trajectory has J samples: Di
t = {(si,jt ,ai,jt , s′i,jt)}j=1:J .

According to Algorithm 6, the inputs are the temperature of the Kullback-
Leibler divergence term η, regularization term σ, number of iterations T , number
of rollouts I, rollout length J , and TOL as the threshold for on-line regression
subset selection. In line 1, KDPP initializes the regression subset Dkernel as an
empty set, and α as an empty vector with size N ′ = 0. From lines 3 to 6,
KDPP first generates samples. At the first iteration (t = 0), the samples are
generated by a purely random policy πrandom. For later iterations t ≥ 1, samples
are generated by a soft-max exploration policy defined as:

πexplore(a|s) = exp(ηexploreΨ̂t(s,a))∑
a′∈A exp(ηexploreΨ̂t(s,a′))

. (5.9)

It is based on the baseline policy π̄ of each iteration following Eq. (3.26) where
Ψ(s,a) is approximated by the current subset of kernel ridge regression [95]
Dkernel. The randomness of exploration is controlled by a temperature parameter
ηexplore. The baseline policy is determined by the current subset of kernel with
initial weights at the first iteration, and then be selected as the policy updated
in the previous iteration. It is implicitly represented by the action preference
functions and be unnecessary to calculated. From lines 7 to 15, the subset for
kernel ridge regression Dkernel is built from samples D0, following Eq. (5.8) with
threshold TOL (if Dkernel is empty, the current sample is added). α is expanded

57

Algorithm 6 Kernel Dynamic Policy Programming
Require: η, γ, σ, T , I, J and TOL.

1: initialize Dkernel = ∅, α = ∅ and N ′ = 0.
2: for t= 0, 1, 2, ..., T
3: if t == 0
4: generate Dt by πrandom

5: else
6: generate Dt by πexplore

t

7: for each {xi,jt = [si,jt ,ai,jt]}i=1:I,j=1:J ∈ Dt
8: if Dkernel == ∅
9: N

′ = N
′ + 1

10: add x̃N ′ = xi,jt to Dkernel and αN ′ = 0 to α
11: else
12: calculate δ = k(xi,jt ,xi,jt)− kN ′ (x

i,j
t)T(KN ′N ′)−1kN ′ (x

i,j
t)

13: if δ > TOL
14: N

′ = N
′ + 1

15: add x̃N ′ = xi,jt to Dkernel and αN ′ = 0 to α
16: for each {(si,jl ,a

i,j
l , s

′i,j
l)}l=0:t,i=1:I,j=1:J

17: for each a ∈ A
18: Ψ̂t([si,jl ,a]) = ∑N

′

n=1 k(x̃n, [si,jl ,a])αn
19: Ψ̂t([s′i,jl ,a]) = ∑N

′

n=1 k(x̃n, [s′i,jl ,a])αn
20: MηΨ̂t(si,jl) = ∑

a∈A
exp(ηΨ̂t([si,j

l
,a]))Ψ̂t([si,j

l
,a])∑

b∈A exp(ηΨ̂t([si,j
l
,b]))

21: MηΨ̂t(s′i,jl) = ∑
a∈A

exp(ηΨ̂t([s′i,j
l
,a]))Ψ̂t([s′i,j

l
,a])∑

b∈A exp(ηΨ̂t([s′i,j
l
,b]))

22: OΨ̂t([si,jl ,a
i,j
l]) = ∑M

m=1 k(x̃m, [si,jl ,a
i,j
l])αm + r

ai,j
l

si,j
l
,s′i,j

l

+γMηΨ̂t(s′i,jl)−MηΨ̂t(si,jl)
23: update α = [KN ′N ′ + σ2I]−1OΨ̂t

24: return Dkernel and α

58

by adding the corresponding new dual variable term αN ′ = 0, and then updating
from lines 16 to 23.

5.2 Simulation Results

5.2.1 Simulation Setting

In this section the learning performance of KDPP is investigated in a simulated
n DOF manipulator reaching task (n = 2, 5, 10, 20, 40). It is an interesting and
suitable task to investigate the performance of value function approach based
reinforcement learning in robot control problems with high dimensional state
space because it keeps the basic framework of robot control while it can be eas-
ily extended to different dimensional state space with the corresponding DOFs
with low computational complexity. The continuous states in this are defined
as [θ1, θ2, ..., θn]T. θi ∈ [−π

2 ,
π
2] rad represents the angle in the i-th joint of ma-

nipulator. Each joint has five discrete actions, [−0.0875, 0.0175, 0, 0.0175, 0.0875]
rad, i.e., −5◦, −1◦, 0◦, 1◦ and 5◦) in angle space, to increment the joint with the
respective angle. We define an action at each time step as one move on one joint
so the total number of actions is reduced to (n × 4) + 1 (four valid movements
for each joint and one stop action).
The aim of this definition is to simplify the problem and avoid the intractable

larger action space and focus on to investigate the performance in tasks with
higher dimensional state space since it is the focus feature of the proposed method.
If we redefine the actions to make them move all the joints at a time in 20 DOF
manipulator reaching task, the action space will have 520 � 1013 actions which
is intractable to calculate. The first joint is set to position [0, 0]. The length of
each limb between two joints is set to 1

n
m. All angles are initialized to 0 rad

at the start of the simulation. The target position to reach in two dimensional
axes is set as Xtarget = 0.6830, Ytarget = 0, and the reward function is set as
R = −1000×

(
(Xtarget−X)2 + (Ytarget− Y)2

)
where X, Y is the current position

of end-effector. Learning is deemed finished when the reward from a test rollout
of the last state is more than −1. The following results are derived from 100
repetitions of the same experiment.

59

Table 5.1: List of algorithms compared in simulation

Algorithm Update type Kernel trick KL term
LSPI [12,59] one-shot × ×
LSPE [11] iterative × ×
SADPP [36–38] one-shot × ©
KLSPI [90,91] one-shot © ×
KLPE [92] iterative © ×
KDPP one-shot © ©

A comparison with five other algorithms (Table 5.1) is conducted. Least
Squares Policy Programming (LSPI) [12, 59], Least Squares Policy Evaluation
(LSPE) [11] and Sampling-based Approximate Dynamic Policy Programming
(SADPP) [36–38] are conventional value function approaches using linear func-
tion approximation while SADPP employs the Kullback-Leibler divergence (KL
term). Both LSPI and SADPP directly obtain least square solutions from the
projected Bellman equation, their new weight vectors are rebuilt every itera-
tion following θnew = A−1B, i.e., “one-shot” update, whereas LSPE updates its
weight vector iteratively following θnew = θold + βA−1B, where β is the learning
rate [96]. Therefore, LSPI has a non-smooth “one-shot” update, LSPE has a
“iterative” update controlled by β and SADPP has a smooth “one-shot” update.
We also compare the respective kernelized versions of LSPI and LSPE that use
kernel function approximation: Kernel-based Least Squares Policy Programming
(KLSPI) [90, 91] and Kernelizing Least squares policy evaluation (KLSPE) [92].
To the best of the authors’ knowledge, KLSPI and KLSPE are the only existing
kernel trick based value function approaches to date.
The parameters of all algorithms in two, five and ten DOFmanipulator reaching

tasks are set to γ = 0.95, σ = 0.1, T = 50, I = 5, J = 100 (Algorithm 6).
Both SADPP and KDPP have η = 0.01. All kernel based algorithms share
TOL = 0.025. For 20 and 40 DOF manipulator reaching tasks, the rollout
number is increased to I = 10, while threshold TOL = 0.05. All kernel based
algorithms use RBF kernels.

60

5.2.2 Results

The learning performance in n DOF manipulator, (n = 2, 5, 10, 20, 40), reaching
tasks is demonstrated in Fig. 5.2. The best learning policies represented by
a trajectory in 50 steps and the success rate over 10 repetitions of all kernel
based algorithms are shown in Fig. 5.3. The average number of features used for
approximate value function is shown in Fig. 5.4.
The learning result of three DOFmanipulator reaching task is shown in Fig. 5.2a

where all algorithms learned good control policies. For linear function approxima-
tion, with 9 RBFs added in each dimension of state, a total 92× (4×2 + 1) = 729
RBFs are required while a subset with less than 60 features is used in kernel func-
tion approximation. Both function approximation methods worked well in this
task. In the five DOF manipulator reaching task, the required RBFs for linear
function approximation are significantly increased to 95×(4×5+1) = 1240029�
105. Saving and calculating such huge weight matrices is impossible using ordi-
nary computing hardware. Instead, we only put 5 RBFs in each dimension of state
to employ totally 55 × (4 × 5 + 1) = 78125 RBFs. According to Fig. 5.2b, even
though SADPP converged to a higher reward compared to LSPI and LSPE in the
five DOF manipulator reaching task, its learning performance is far worse than all
kernel value function approaches due to the poor function approximation by its
limited number of RBFs, whereas all kernel trick based value function approaches
efficiently represent the value function by tiny subsets built from samples (less
than 200 features). Starting from 10 DOF, SADPP, LSPI and LSPE were not
attempted because the total number of RBFs required by linear function approx-
imation grows to 910× 41� 1010, 920× 81� 1020 and 940× 161� 1040 at 10, 20
and 40 DOF respectively. On the other hand the application of KLSPI, KLSPE
and KDPP is not limited by high DOF systems, requiring only several thousand
RBFs to build the kernel even at 40 DOF. However, the learning performance of
KLSPI and KLSPE degenerated as DOF increased in both reward (Figs. 5.2c,
5.2d and 5.2e) and success rate (Fig. 5.3), whereas KDPP kept learning viable
solutions to obtain high rewards with high stability.
We also trained KDPP with different settings of η in a five DOF reaching task

to investigate its effect on learning. Figure 5.5 illustrates our results based the
average of ten repetitions. With a decrease of η, the Kullback-Leilber term in

61

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

-103

-102

-101

-100

-10-1
2 DOF Manipulator Reaching

KDPP
KLSPI
KLSPE
SADPP
LSPI
LSPE

(a)

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

-103

-102

-101

-100

-10-1
5 DOF Manipulator Reaching

KDPP
KLSPI
KLSPE
SADPP
LSPI
LSPE

(b)

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

-103

-102

-101

-100

-10-1
10 DOF Manipulator Reaching

KDPP
KLSPI
KLSPE

(c)

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

-103

-102

-101

-100

-10-1
20 DOF Manipulator Reaching

KDPP
KLSPI
KLSPE

(d)

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

-103

-102

-101

-100

-10-1
40 DOF Manipulator Reaching

KDPP
KLSPI
KLSPE

(e)

Figure 5.2: The average learning results of the n DOF manipulator reaching task
over 100 repetitions.

62

2 DOF

KDPP

KLSPI

KLSPE

Success rate: 93%

Success rate: 84%

Success rate: 86%

Success rate: 91%

Success rate: 73%

Success rate: 84%

Success rate: 88%

Success rate: 20%

Success rate: 8%

Success rate: 82%

Success rate: 21%

Success rate: 5%

Success rate: 77%

Success rate: 22%

Success rate: 2%

5 DOF 10 DOF 20 DOF 40 DOF
Step

1 50

Figure 5.3: An example of iteratively generated samples in the n DOF manipu-
lator reaching task; the red dot is the target position.

Number of DOF
2 DOF 5 DOF 10 DOF 20 DOF 40 DOF

N
um

be
r o

f R
BF

s

100

1010

1020

1030

1040

1050 The Usage of RBFs in Function Approximation

KDPP
KLSPI
KLSPE
SADPP/LSPI/LSPE

Figure 5.4: The average number of RBFs used for function approximation in the
n DOF manipulator reaching task over 100 repetitions.

63

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

-104

-103

-102

-101

-100

-10-1
KDPP in 5 DOF Manipulator Reaching with different 2

2 = 0.1
2 = 0.075
2 = 0.05
2 = 0.025
2 = 0.01
2 = 0.001
2 = 0.0001
2 = 0.00001

Figure 5.5: The average learning results of KDPP with different set of η in the
five DOF manipulator reaching task over ten repetitions.

Eq. (3.4) limits the policy update more, and therefore slows down the rate of
learning. On the other hand by increasing η, SADPP/KDPP will increasingly
ignore the Kullback-Leilber term. While SADPP/KDPP theoretically turns into
KLSPI/LSPI with η → +∞ according to [37], a large η causes numerical instabil-
ities in real applications, resulting in excessively large weights that in turn cause
divergences in learning.
The effect of different settings of TOL in the five DOF reaching task was in-

vestigated in Figs. 5.6 and 5.7. With a increase of TOL, less RBFs were selected
to build the kernel and therefore limits its capability of function approximation.
(when TOL = 1, KDPP could not learn to a good result with only one RBF
in its kernel set) On the other hand, TOL turns to a huge kernel size which is
intractable to high-dimensional systems. The selection of TOL should be well
considered to balance of both approximation ability and computational complex-
ity.
To investigate all three kernel based algorithms’ capabilities of function ap-

proximation, we define the Bellman error for one sample (s,a, s′) in the k-th
iteration following [93]:

BN
(
V̂k+1(s)

)
= ‖V̂k+1(s)−

(
Rass′ + γV̂k(s′)

)
‖2 (5.10)

64

Iteration
0 5 10 15 20 25 30 35 40 45 50

R
ew

ar
d

-104

-103

-102

-101

-100

-10-1
KDPP in 5 DOF Manipulator Reaching with different TOL

TOL = 1
TOL = 0.5
TOL = 0.1
TOL = 0.05
TOL = 0.025
TOL = 0.01
TOL = 0.005
TOL = 0.001

Figure 5.6: The average learning results of KDPP with different set of TOL in
the five DOF manipulator reaching task over ten repetitions.

TOL = 1 TOL = 0.5 TOL = 0.1 TOL = 0.05 TOL = 0.025 TOL = 0.01 TOL = 0.005 TOL = 0.001

N
um

be
r o

f R
BF

s

0

100

200

300

400

500

600

700

800
The Usage of RBFs of KDPP with Different TOL in 5 DOF Manipulator Reaching

1 21.2
92.4

131.1 163.9

260.8

376.5

674.3

Figure 5.7: The average number of RBFs used for function approximation of
KDPP with different set of TOL in the five DOF manipulator reach-
ing task over ten repetitions.

65

Iteration
0 5 10 15 20 25 30

A
ve

ra
ge

 B
el

lm
an

 E
rr

or

0

200

400

600

800

1000

1200

1400
The Average Bellman Error in 2 DOF Manipulator Reaching

KDPP
KLSPI
KLSPE

(a)

Iteration
0 5 10 15 20 25 30

A
ve

ra
ge

 B
el

lm
an

 E
rr

or

0

200

400

600

800

1000

1200

1400
The Average Bellman Error in 40 DOF Manipulator Reaching

KDPP
KLSPI
KLSPE

(b)

Figure 5.8: The average Bellman error in each iterations of one learning.

66

where V̂k indicate the approximated value function translated from the action
preferences function/Q function approximated via kernel, e.g., in KDPP it follows
Eq. (3.11), in the k-th iteration. BN(V̂k+1(s)) represents the error between
the baseline and updated approximated value functions in state s. The average
Bellman errors among the current samples in the first 30 iteration’s learning of 2
and 40 DOF reaching tasks using all three kernel based algorithms are measured
in Fig. 5.8.
For the 2 DOF case in Fig. 5.8a, KDPP and KLSPE smoothly decrease their

average Bellman error owing to the Kullback-Leibler divergence and the iterative
update style respectively, while KLSPI has a steeper decrease but finally reaches
a lower error. All three algorithms are able to build suitable subsets of kernels
to accurately approximate the value function, however only KDPP reaches a
small average Bellman error iteratively while both KLSPI and KLSPE could
not in the 40 DOF case (Fig. 5.8b). This result indicates the superiority of
our proposed algorithm in high dimensional state space: leveraging the smooth
policy update, KDPP limits overly large policy updates and generates samples
that iteratively move to a high reward area. The kernel built by such smooth
movement of samples contributes towards better approximated value function
in high dimensional state space. In comparison, KLSPI and KLSPE could not
generate samples that smoothly move to high reward areas as learning suffers
without control over the policy update: excessively large policy updates at the
beginning of the learning yield poor samples that are far away from high reward
areas. These poor samples result in a less expressive subset to approximate the
value function in high reward areas via the kernel trick and therefore worsens the
policy in the next iteration.

5.3 Real Robot Experiment

In this section, we apply the proposed reinforcement algorithm, KDPP, to Shadow
Dexterous Hand to learn unscrewing bottle cap. Compared with the position
control task using LUDPP in Chapter 4, this task is more chaillenging with a far
higher dimensional state space. The experimental setting of Shadow Dexterous
Hand follows Section 4.3.2.

67

5.3.1 Learning Unscrewing Bottle Cap using KDPP

In this section, KDPP is applied to control the Shadow Dexterous Hand to learn
unscrewing a bottle cap using two fingers without modeled dynamics and an
initial policy. It forms an appealing task to be solved by reinforcement learning
because the knowledge of physical interactions between robot and environment
(e.g. the amount of normal force required to generate enough friction in order to
rotate the cap using a single finger) is difficult to model.

Experimental Setting

Figure 5.9 shows our experimental setting. Each finger of the Shadow Dexterous
Hand has three joints. Each joint is controlled by two antagonistic PAMs with
discrete actions u: inflating, deflating and holding the current pressure. The
control state of a joint is four dimensional [θ, θ̇, P1, P2]T with two dimensional
action [u1, u2]T, where θ is the joint angle, θ̇ is the angular velocity, P1 and P2

are the air pressures of the two antagonistic PAMs, and u1 and u2 being their
corresponding actions. A BioTac tactile sensor (http://www.syntouchllc.com)
is attached to the end of each finger. Capable of measuring forces, vibrations
and heat flow, the BioTac tactile sensor is only utilized to measure pressure in
this experiment. We divide the touch area into four parts (up, down, left and
right), and regularize the pressure values of each part for a four dimensional
state [Tup, Tdown, Tleft, Tright]T to [0, 1]. Thus, the control state of each finger has
3× 4 + 4 = 16 dimensions.
Controlling two full fingers to unscrew bottle cap requires a 32 dimensional

state space. Here we create 625 actions that limit one joint in each finger to in-
flate/deflate at each time step. A Microsoft Kinect was set in front of the Shadow
Dexterous Hand to obtain the current state of the bottle cap, by capturing the
position of a small red marker attached to the cap. During learning, if the cap
was unscrewed; i.e. the marker moved down along the vertical Y axis, a high
reward is obtained. Ten trajectories with 10 × 50 samples were generated every
iteration, with the initial position of the fingers fixed to be close to the bottle
cap. The same parameters for KDPP as used in the simulation experiment were
used. The control loop runs at 1.25Hz while each action operates for 0.25 seconds.
Before each iteration, a test rollout with a greedy control policy is carried out

68

Figure 5.9: Experimental setting of unscrewing a bottle cap via the Shadow Dex-
terous Hand.

69

Iteration
1 2 3 4 5 6 7 8 9 10

M
ov

em
en

t o
f

ca
p

m
ar

ke
r

0

5

10

15

20

Shadown Hand Unscrew Bottle Cap

With BioTac tactile sensors
Without BioTac tactile sensors

Figure 5.10: The average learning result of unscrewing a bottle cap via the
Shadow Dexterous Hand over five repetitions, with error bar of stan-
dard deviation.

twice; the reward Rtest = (Ystart − Yend) represents the movement between the
initial and final position of marker along the Y axis as captured by the Kinect.
The stopping criterion is Rtest ≥ 18 , when the cap has rotated more than 120◦.
Policies for unscrewing the cap both with and without the use of the tactile sen-
sors were learned five times each by KDPP. We used a computational server with
Intel Xeon E5-2697 v2 CPU and 250 GB memory.

Results

Figure 4.11 shows the average five repetitions learning results over . KDPP suc-
cessfully learned the value function for both the 24 dimensional state (without
tactile sensing) and 32 dimensional state (with tactile sensing) cases, resulting
in good policies to unscrew the bottle cap within ten iterations. Learning per-
formance is improved by incorporating tactile information compared to learning
without tactile information, while the computational complexity is kept tractable
for operating on ordinary computing hardware: by the 10-th iteration, on aver-
age KDPP approximated the value function by 2493.8 RBFs while the entire

70

Figure 5.11: The 32 dimensional state of learning samples and test rollouts in ten
iterations by t-SNE. The color demonstrates the value function value
of each state. Gray arrows show the movement of robot actions in
1, 5, 7 and 9 iteration over this 2D space, the corresponding screen
shots are shown in the left.

computation time was 62.8 seconds.
Applying t-Distributed Stochastic Neighbor Embedding (t-SNE) [97,98], a reli-

able dimensionality reduction technique for the visualization of high dimensional
datasets, allows transforming all the learning samples and test rollouts from one
trial into a 2D figure representing all 32 dimensional states explored (the visual-
ization is based on states without the value function’ value). Then we calculate
the corresponding value function’s value of each 2D points and demonstrate them
by color. In order to track the learning of KDPP, we select some sequential snap-
shots from the Kinect during the test rollouts of iterations 1, 5, 7 and 9 iteration
and follow their states in Fig. 5.12. In the first iteration, KDPP could not reach
any high value area when the fingers failed to reach the cap, the test rollout only

71

Figure 5.12: The 32 dimensional state of learning samples and test rollouts in ten
iterations by t-SNE. The color demonstrates the value function value
of each state. Gray arrows show the movement of robot actions in
1, 5, 7 and 9 iteration over this 2D space, the corresponding screen
shots are shown in the left.

72

moved a circle in low value area (blue) while the robot failed to even touch the
bottle cap. From iterations 3 to 9, KDPP smoothly explored unknown areas and
progressively updated its approximated value function to build a policy to move
from the blue area to the red. Correspondingly, the robot performs increasingly
successful movements towards unscrewing the bottle cap.

5.4 Summary of KDPP

In this section, KDPP is intriduced as an extension of LUDPP to approximate
the value function by infnite number of features which is implicitly calculated by
kernel function. As a practical extension of DPP and kernelized value function
approach based reinforcement learning methods, KDPP stabilizes value function
approximation by adding the Kullback-Leibler divergence as a regularization term
to keep policy updates smooth. Exploiting this smoothness, KDPP successfully
utilizes the kernel trick to represent and update the high dimensional approximate
value function using generated samples which considerably reduces computational
complexity. From our simulation results KDPP was able to learn viable solutions
in very high dimensional systems with a small number of samples, while other
kernel value function approaches such as KLSPI could not. In the real robot
experiment, we successfully apply KDPP to learn unscrewing bottle cap task in a
complex system with 32 dimensional state space. It not only learned good policy,
but also achieve very efficient calculation in both time and space.

73

6 Discussions

The framework proposed in this thesis combines smooth policy update and differ-
ent machine learning algorithms to solve both the curses of insufficient samples
and dimensionality in order to control robot systems with high dimensional state
space. According to the results in this study, the framework outperformed several
conventional methods and show its potential in robot control domain. On the
other hand, the current frameworks has several limitations in both algorithm and
application that need to be improved further. We discuss them in this chapter.

6.1 Related Works

The proposed framework is to update the value function from local area of sam-
ples. To keep samples generated in a local area, we employ the Dynamic Policy
Programming (DPP) [36–38] which firstly add the Kullback-Leibler divergence
into the value function update. We extend DPP to robot control domain by
combining it with sample reuse and softmax exploration. Furthermore, different
machine learning methods, NNS and kernel trick, are introduced to work with
DPP to efficiently approximate the value function in a local area and therefore be
practical in complex robot systems. Our work can be viewed as a value function
approach version of Relative Entropy Policy Search [23, 99] and Guided Policy
Search [25,100] that are all policy search algorithms using Kullback-Leibler diver-
gence. While avoiding several limitations of both the value function approach and
the policy search, the proposed framework still has some issues on both algorithm
and real robot control parts.

74

6.2 Open Issues in Algorithm

6.2.1 Support of Continuous Actions

The first issue is the lack of supporting continuous and/or large number of ac-
tions. Be similar to all other value function approach algorithms, the current
framework naturally support only discrete actions. It could not efficiently ap-
proximate value function with huge number or continuous actions since it calcu-
late the action preference function over all actions. To extend the value function
approach to support continuous actions, One popular solution is the determin-
istic policy gradient (DPG) [101]. It maintains a parameterized actor function
µ(s, θµ) which specifies the current policy by deterministically mapping states to
a specific action. This actor function could be obtained by applying gradient de-
scent methods besides the learning of Q function. Another solution comes from
Continuous-action Approximate Policy Iteration (CAPI) [102]. It using kernel
functions and linear polynomials to get the gradient information of a differen-
tiable approximated value function for policy search in continuous action space.
However, it is challenging to apply both DPG and CAPI to DPP since the softmax
function over all actions required by DPP becomes intractable with continuous
actions. Moreover, it is still intractable for the methods above to handle high
dimensional continuous actions.

6.2.2 Combination with Deep Reinforcement Learning

Another interesting issue is to apply the proposed framework to deep reinforce-
ment learning [46–50] which usually learn features with high dimensional raw
image via deep neural networks [103] in robot control domain. Since sufficient
training samples are too arduous for physical robot systems, our framework may
contribute to a faster convergence with limited number of samples in deep rein-
forcement learning. Our first step work called Deep Dynamic Policy Programming
has been in [51]. In this work, we combine deep reinforcement learning with DPP
to control a humanoid robot to learn flipping deformable objects with sample
efficiency where the only input state is the high dimensional raw image captured
by camera.

75

6.2.3 Utilization of the Kernel

The next issue is to further explore the power of the kernel method in our frame-
work since the kernel trick used in KDPP is not yet developed sufficiently. For
example, the parameters of kernel function is not carefully selected in this thesis.
Only the Gaussian kernel function is considered in current work, while other ker-
nel functions also contribute in kernel value function approach [102]. Moreover,
applying kernel embeddings [104, 105] to smoothly learn the value function and
an implicit dynamics model from limited samples should be a suitable strategy
in robot control domain. Following the related works in [106, 107], it will be in-
teresting to estimate the dynamics model during learning of KDPP which turns
the current framework from model-free to model based one.

6.3 Open Issues in Robot Control

6.3.1 Multiple Targets Task

On limitation of the current study is the only one target task in both simulation
and real robot experiments, i.e., one target position to reach and unscrewing
bottle cap in order to simplify the experiments. It is possible and interesting to
extend the proposed framework to multiple tasks, e.g., controlling the finger to
reach multiple positions, learning unscrewing/screwing bottle cap, by designing
several reward (cost) functions and applying the proposed framework to learn
generative solutions of complex tasks following [108].

6.3.2 Better Designed Action Set

It is also important to extend the action set to more complex and better designed
one, e.g., defining the meaningful predefined patterns in octopus arm simulation
[92] and applying muscle synergies [109]. For a wider range of applications, we
intend to apply the proposed framework to more interesting tasks like working in
kitchen. Since the proposed algorithms are value function based approach that
support discrete actions and has a global view of the whole task, they are suitable
to be a rough decision maker in a large robot learning system where the details

76

of actions are achieved by other algorithms like policy search. One good example
is to build action set by robot movement learned by EaIP proposed in Appendix,
then learn challenging tasks using the proposed framework.

6.3.3 Application in Other Areas

Lastly, we would like to continue applying the proposed algorithms in differ-
ent algorithms. One good example is our cooperation work with University of
Technology, Sydney in robot wheelchair driving assistance [52]. In this work,
we applied the smooth policy update of DPP to help disabled and aged peoples
to drive their wheel chair easily by softly considering both the user input and
experts’ demonstrations.

77

7 Conclusions

A new reinforcement learning framework is proposed in this thesis that aims to
practical applications of model-free reinforcement learning in controlling complex
robot systems with limited number of real world samples and a tractable compu-
tational complexity. Taking the advantages of both value function approach and
the policy search, the proposed framework updates and approximates the value
function from samples generated by a Kullback-Leibler divergence based smoothly
updated exploration policy. It can be viewed as a local samples space and turns to
a stable learning when the samples is insufficient to cover the whole state-action
space and therefore provide foundation to run other machine learning algorithms
to efficiently approximate the value function. While policy search algorithms
with Kullback-Leibler divergence (e.g., Relative Entropy Policy Search [23, 99]
and Guided Policy Search [25,100]) are successful in the robot control literature,
to the best our knowledge, this study is the first time to explore the capabil-
ity of learning the global value function via a local viewpoint by employing the
Kullback-Leibler divergence in robot control domain. Compared with the most
popular solution in the robot control domain, the policy search that benefits
from well selected initial policies and naturally supports continuous actions, the
proposed framework is a good alterative solution when a carefully selected param-
eterized policy according to different tasks is unavailable. It is pure model-free
and self-exploration and can be used without any prior knowledge while they
are difficult to be applied to control problems with continuous actions and large
action space.
In this thesis, two corresponding algorithms, LUDPP and KDPP, are proposed

as examples. Both of them share the smooth policy update strategy, LUDPP
limits the update of approximate value function in a local area selected by the
current samples of state and action every iteration via Nearest Neighbor Search

78

DPP with real
exploration

Local update DPP

Kernel DPP
• Sampling efficiency
• Stable learning
• LFA
• Toy problem, dim < 4

• Sampling efficiency
• Stable learning
• NNS + LFA
• Real robot problem, dim < 10

• Sampling efficiency
• Stable learning
• KFA
• Real robot problem, dim > 30

Figure 7.1: The overall view of all proposed methods in this thesis.

(NNS) [39] rather than the whole state-action space; As a further update of
LUDPP, KDPP employs the kernel trick [40] to implicitly represent and update
the approximate value function of high dimensional state spaces using the inner
product of pairs of generated samples, i.e., adaptively selecting basis functions
from samples to efficiently approximate the function among the current known
state-action space.
The learning performances of both LUDPP and KDPP were firstly investigated

by simulation tasks, N DOF manipulator reach control with comparison of the
conventional algorithms without smooth policy update. Applying NNS, LUDPP
is able to achieve 4 DOF reaching tasks by updating only about 5% of 105 RBFs
which is required by common linear function approximation. On the other hand,
the local update trick could not work on the compared algorithm without smooth
policy update. For KDPP, it is able to achieve even 40 DOF manipulator reaching
task with a only around 2500 RBFs, as comparison, common linear function
approximation need more than 1040 RBFs which is intractable to any current
computational resource. As comparison, all other kernel based value function
approaches could not learn in such a challenging task without smooth policy
update.
Then the two proposed algorithms are applied to Shadow Dexterous Hand [41],

79

a Pneumatic Artificial Muscle (PAM) driven humanoid robot hand as real appli-
cations: LUDPP was applied to a two DOF finger reaching control. This task
has a 12-dimensional state-action space and therefore requires a huge number of
basis functions to approximate the value function. It successfully learned a good
control policy within 20 iterations and only updated less than 10% basis func-
tions. KDPP was applied to the task of unscrewing a bottle cap using Shadow
Dexterous Hand. The whole system has a 32 dimensional state space with 625
discrete actions. Generating only 500 samples per iteration, KDPP successfully
learned viable solutions within 10 iterations. The average size of the implicit
features using the kernel trick is only less than 3000 whereas� 1020 RBFs are re-
quired for linear function approximation in conventional value function approach
based algorithms. These results indicate both LUDPP and KDPP’s potential for
application on other complex robot systems. Figure 7.1 summarize the proposed
methods with their performances in this thesis.
In summary, the contribution of this thesis is twofold. For the part of algo-

rithm, this research explored the potential of applying value function approach
to complex robot control problems and provided solutions to the curses of insuf-
ficient samples and dimensionality. We proposed a prior model knowledge free
framework to face the limitations of the policy search. For the part of real robot
experiment, we successfully applied the proposed algorithms to control Pneumatic
Artificial Muscle (PAM) driven robot to learn challenging task like unscrewing
bottle cap. Our framework does not require huge number of samples and knowl-
edge of tasks and models. It turns to an efficient solution to model-free learning
control of a variety of PAM driven devices, e.g., wearable robots that physically
interact to the humans for supporting their daily activities or rehabilitation pur-
poses.

80

A Appendix:
Environment-adaptive
Interaction Primitives

A.1 Introduction

In this chapter, we introduce Environment-adaptive Interaction Primitives (EaIPs),
a cooperation research between Nara Institute of Science and Technology and Uni-
versity of Technology, Sydney. The purpose of EaIPs is to design a learning-from-
demonstration framework for human-robot cooperative tasks with additional en-
vironmental conditions (e,g, the size of target object). After learning from train-
ing samples of both human and robot movement to finish a task under different
environmental settings, the framework must be able to predict suitable robot
motor skills to satisfy both a short partner observation period and novel environ-
mental conditions.
EaIPs build upon the Interaction Primitives [110] (IPs) framework, which al-

low for a robot and human to perform collaborative tasks by converging upon a
suitable parameter set for the execution of Dynamic Movement Primitives [28]
(DMPs) after observing some initial period of human partner movement. In order
to allow IPs to function in more complex situations, we integrate environmental
parameters about the task to be accomplished into the parameter inference step
for Environment-adaptive Interaction Primitives (EalPs) (Fig A-1), which give
inferences that consider both partner behavior and parameters describing envi-
ronmental conditions. This is more aligned with the approach a human would
undertake when collaborating with another person; information about the best
action for them to perform must not come solely from his partner, but also from

81

Figure A-1: Schematic diagram of EaIPs: an extension of IPs to adapt to envi-
ronmental conditions. In IPs, a robot predicts trajectory parameters
to cooperate with a human partner after observing a brief movement
period. EalPs enable robots to consider additional environmental
conditions during trajectory prediction.

their shared environment. The impact of this contribution is twofold; the first
being that the delay caused by partner observation can be significantly reduced,
which allows for more immediate and fluent robot motion in situations where the
human actions are ambiguous in the initial moments. The second effect is the ca-
pacity of adapting different environmental conditions in prediction. When faced
with novel environmental parameters the prediction is inevitably tuned to pa-
rameters that allow for a similar basic trajectory structure, whereas conventional
IPs require additional training data in scenarios where scaling a DMP on human
motion no longer ensures safety. These improvements allow the EalPs framework
to be robust against poor inferences from noisy observations of partner behavior.

82

A.2 Approach

A.2.1 Dynamic Movement Primitives

Encoding trajectory of human or robot movements, DMP [28] is formally written
as a dynamic system:

ÿ(t) =
(
αy

(
βy
(
g − y(t)

)
−
(ẏ(t)
τ

))
+ f(xt)

)
τ 2 (A.1)

where αy and βy are constants, y is the state variable of the trajectory, g is the
target position, τ is a time constant and t is the time step. f(xt) is the forcing
function built by M Gaussian basis functions and a corresponding M ×1 weights
vector w:

f(xt) =
∑M
i=1 ψi(xt)wixt∑M
j=1 ψj(xt)

= φ(xt)Tw, (A.2)

x follows a canonical system: ẋ = −αxxτ where x0 = 1.
To learn a weight vectorw of DMP encoding a T step trajectory y = [y(t), ẏ(t), ÿ(t)]Tt=1:T ,

the forcing function that reproduces the sample trajectory from the t-th step is
calculated according to Eq. (A.1):

f(xt) = 1
τ 2 ÿ(t)− αy

(
βy
(
g − y(t)

)
− ẏ(t)

τ

)
. (A.3)

The system can be resolved with f = Φw where Φ = [φ(x1), ..., φ(xT)]T and
f = [f(x1), ..., f(xT)]T . Its least squares solution follows:

w = (ΦTΦ)−1ΦTf (A.4)

A.2.2 Interaction Primitives in human-robot cooperation
tasks

According to [110], applying Interaction primitives (IPs) to human-robot coop-
eration tasks has two steps: 1. Estimating phase of observed human movement.
2. predicting robot motor skills with a partially observation of only human’s
movement.

83

Dynamic Time Warping (DTW) [111] is employed to estimate the phase of
observed human movement. Given one partially observed human movement
[y∗1, ...,y∗T ′]

T and one reference movement [y1, ...,yT]T , the full human movement
during the original demonstration of the task. DTW measures the similarity be-
tween these two temporal sequences and provides the index t∗ reflecting the frame
in the reference movement which produces minimal costs with respect to the ob-
served query movement, i.e., [y∗1, ...,y∗T ′]

T is close to [y1, ...,yt∗]T . The estimated
phase of partially observed human movement is therefore:

x∗ = exp
− αx

(
t∗

T

)
τ

. (A.5)

For the prediction of robot motor skills with a partially observation of human’s
movement using IPs, we firstly prepare S sets of N DoFs trajectories that are
time-scaled to the same length T as the training samples:

Y = [Yhuman,Yrobot] =

y1

1 ... y1
N

...
yS1 ... ySN

 (A.6)

where N is the totally number of DoFs for both human and robot. Defining yji ,
wj
i and g

j
i as the trajectory, weights vector and target position of the i-th DoF in

the j-th demonstration respectively, θ[j] = [wj
1
T
, gj1, ...,w

j
N

T
, gjN]T , j = 1, ..., S is

the DMPs parameter vector learned from [yj1, ...,yjN]. Thus p(θ), the distribution
among the parameter vector samples θ[j], j = 1, ..., S, follows:

p(θ) = N (θ|µθ,Σθ), (A.7)

µθ =
∑S
j=1 θ

[j]

S
,Σθ =

∑S
j=1(θ[j] − µθ)(θ[j] − µθ)T

S
. (A.8)

Note that θ = [θhuman,θrobot]T contains the parameter vectors of both human
and robot.
Partially observing human’s movement and estimating its phase x∗ according

to a reference movement by DTW, the trajectories Y ∗human = [y∗1, ...,y∗n]T are
resampled from the observed movement where n < N is the DoFs of human

84

movement. The unavailable trajectories of robot Y ∗robot are set to 0. Defining
Y ∗ = [Y ∗human,Y ∗robot], the prediction of both human and robot’s parameter vector
is represented by:

p(θ|Y ∗) ∝ p(Y ∗|θ)p(θ). (A.9)

The likelihood p(Y ∗|θ) is modeled by a Gaussian distribution of the forcing
function:

p(Y ∗|θ) ∼ N (F ∗|Ωθ, σ2I) (A.10)

where F ∗ has two parts: F ∗human = [f ∗1 , ...,f ∗n]T is the observed forcing function
of Y ∗human, its element is given by:

f ∗i (xt) = 1
τ 2 ÿ

∗
i (t)− αy

(
− βyy∗i (t)−

ẏ∗i (t)
τ

)
. (A.11)

F ∗robot is the unavailable forcing function of robot and set as 0. The matrix
Ωθ contains the forcing function with relationship to Φ̃t = [φ(xt)T , αyβy] over
learning samples for 1 ≤ t ≤ t∗:

Ωθ =

Φ̃ 0

0 Φ̃ 0 ...
...
0 0

w1

g1
...
wN

gN

(A.12)

with the Φ̃ related to θrobot in Ω being set to 0. σ2 is the observation noise
variance.
The joint distribution p(Y ∗,θ) is also a Gaussian distribution given the likeli-

hood p(θ|Y ∗):

N
(F ∗

θ

 ∣∣∣∣∣
Ωθ
µθ

 ,
 A ΣθΩT

ΩΣT
θ Σθ

) (A.13)

where A = σ2I + ΩΣθΩ. The mean and variance of conditional distribution
p(θ|Y ∗) is derived as:

µθ|y∗ = µθ + ΣθΩTA−1(F ∗ −Ωµθ),
Σθ|y∗ = Σθ −ΣθΩTA−1ΩΣθ.

(A.14)

After obtaining θ, the robot motor skills are operated by running DMPs with
parameter vector θrobot with estimated phase x∗.

85

Figure A-2: Trajectories of training samples (blue) and testing samples (orange)
to cross three objects on a 2D plan in simulation.

A.3 Simulation Results

EalPs are firstly applied to a toy simulation that simplifies our task of covering
objects with a plastic bag in three-dimensional space, to passing over rectangular
objects of different size in a two-dimensional space. As shown in Fig. A-2 there are
three rectangular objects, each allocated an environmental attribute as a measure
of their height: 125, 215 and 305 pixels respectively. 30 training trajectories (blue)
and 15 testing (orange) trajectories (each with 500 steps) are generated by hand.
All trajectories in simulation have two DoFs (X and Y axis). We compare the
inference accuracy of IPs and EalPs between two situations: a full observation
(both horizontal and vertical movement) and a partial observation (horizontal
movement only) over 15 testing trajectories with different lengths of observed
trajectories. The inference accuracy is represented by the average dynamic time
warping distance between the predicted and original trajectories.
According to the results shown in Fig. A-4, EalPs considerably improve the in-

ference accuracy in this simulation. In the full observation case where both X and

86

Figure A-3: Predicted trajectories of one testing samples (t∗ = 100, only X axis
is observable) with different environmental parameters. (Objects D
and E are not included in training samples)

Y axis trajectories are observable, both IPs and EalPs have better prediction with
the increase of the observed trajectories’ length. On the other hand EalPs predict
better than IPs with shorter observed trajectories (t∗ ≤ 100 steps) because the
environment parameter indicates the target object’s class, whereas the early steps
in both horizontal and vertical movements contain less information to determine
which object is being covered. As all trajectories in X axis are very similar in
Fig. A-2, the prediction is more challenging in the partial observation case where
only horizontal movements are available. IPs cannot predict accurately even after
observing 60% of the trajectory while EalPs have almost identical performance
to the full observation case, showing the environmental parameter’s capability of
improving prediction performance with partially observed trajectories that lack
sufficient information.
The environment parameter not only improves the inference accuracy, but also

enables EalPs to generalize trajectories for tasks with unknown environmental
setting according to training samples. Given a 100 steps test trajectory in the

87

(a) The average inference accuracy of full observation.

(b) The average inference accuracy of partial observation.

Figure A-4: Comparison of trajectory prediction accuracy between IPs and
EaIPs. DTW distance (vertical axis) is a unitless measure of error
between two temporally aligned signals.

88

single observation case, trajectories based on different environmental parameters
are shown in Fig. A-3 where 100 trajectories generated by N (θ|µθ,Σθ) for each
object are represented by transparent lines, and solid lines represent the mean
trajectories. We add new objects D and E that are not included in training sam-
ples to investigate EalPs’ generalization ability. This shows the EalPs’ capability
of generating suitable trajectories to new situations; EalPs successfully obtain
movement style from samples and automatically adjust the scale of trajectories
to fit new environments according to the relationship between the trained and
new environmental parameters.
These simulation results show the potential of EalPs in the early stages of move-

ment inference of human-robot tasks. EalPs are able to give accurate prediction
with short and partially observed trajectories from a very brief observation and
can generate suitable co-operative robot movement. Moreover, EalPs adjust their
prediction to fit new environments based on the knowledge learned from training
samples. It reduces the requirement of training samples to cover many possible
cases, while still allowing robots to intelligently co-operate with humans when
dealing with various objects.

A.4 Experimental Results

For validation in a real experiment, the NAIST Baxter robot (Fig A-5) was made
to hold one corner of a large plastic bag stationary with its right gripper, while its
left gripper held another corner of the bag and swept it over a large object to cover
it in tandem with his partner, who moves both hands. The NAIST Baxter has
three Kinect V2 sensors (Fig A-5a) providing visualization of the robot from left,
right and birds-eye views (Fig A-5b). Brightly colored cleaning gloves are worn
by the interaction partner throughout gathering of training data and testing, so
the Kinects can track the partner’s hands in real-time. Data communication and
logging was managed via the Robot Operating System (www.ros.org) middleware.
Five training trajectories were gathered for each of three objects (Fig A-6a): a

75 cm high stool, an 80 cm high office chair and a 90 cm high cabinet. Sample
trajectories (Fig A-6b-A-6c) containing the poses of the Baxter’s grippers and the
positions of the partner’s hands were then cut and interpolated in Matlab to be of

89

(a) The Baxter research robot with three Kinect V2.

(b) Point cloud generated by Kinects.

Figure A-5: NAIST Baxter research robot learning system.

90

(a) Objects for training samples with e as height.

Stool Chair Cabinet

(b) Examples of training sample generation, captured by Kinect V2
sensors.

Human left hand Human right hand
Baxter left hand

𝑒 = 90cm 𝑒 = 80cm 𝑒 = 75cmY

X

Z

(c) 15 training sets (includes human left/right hand, and Baxter left
hand gripper).

Figure A-6: Training trajectories for three objects.

91

Y X

Z
Initial Position

With the increase of 𝑒

𝑒 = 90cm

𝑒 = 80cm

𝑒 = 75cm

𝑒 = 100cm

Baxter left hand

Figure A-7: Baxter left gripper trajectory from EalP across various objects.

uniform length for EalP training. For ease of differentiability, the imaginary axes
of gripper orientation Quaternions were learned instead of their Euler equivalents.
Figure A-7 shows the Baxter’s left gripper trajectory in the execution of EalP
for covering each of the three known objects with a new interaction partner, as
well as a novel fourth object: the 90 cm high cabinet elevated by an additional
10 cm. It can be seen that each trajectory is suitably changed to satisfy each
environmental parameter, and is robust to both inconsistent starting positions
of the partner’s hands and significant noise from glove tracking throughout their
motion. Only 50 partner observations (1.5 seconds) were required to converge
on the parameter sets that resulted in the trajectories shown. Figure A-8 shows
object coverage by the interaction partner and the EalP-generated trajectories
from Figure A-7, showing appropriate movements within the Baxter arm’s range
of motion.

A.5 Conclusion

This work presents an extension of the Interaction Primitives framework to allow
for more natural human-robot interaction. By taking into account environmen-
tal conditions along with parameters describing human behavior, the robot can

92

Figure A-8: Results of EalP trajectory generation in cooperative covering task
with different environmental conditions.

93

quickly and confidently determine suitable parameters of motor skills even when
faced with ambiguous behavior from the human partner during initial moments of
their collaborative activity. The additional environmental parameter allows some
knowledge of behavioral ’style’ desirable of the robot to be learned independently
from the human. Experimental results in both simulation of a toy problem and
on a real humanoid platform show that these allow for fast and accurate task
generalizations despite poorly informative early partner behavior. For future in-
vestigation we intend to pursue the application of dimensionality reduction tech-
niques for learning more rigidly structured trajectories [112], and the tracking of
more of the human partner’s body for achieving increasingly complex collabora-
tive human-robot activities with stochastic environmental parameters from sensor
data. Also, we are going to combine EaIPs with deep neural networks [103] to
learn from automatically generated multiple environment parameters.

94

Acknowledgements

My first and deepest gratitude goes to Associate Professor Takamitsu Matsubara
for his encouragement, patience in supervision. He taught me how to become a
true researcher via both his creative ideas and positive attitude to any challenge.
I fully enjoy exploring with him. It is my proud to be his student and friend.
Then I would like to express my heartfelt gratitude to Professor Kenji Sugimoto
for his kind instruction and massive support. I will never forget his help and
encouragement in my hard time during these three years. I also would like to
thank other thesis committee members: Professor Tsukasa Ogasawara, Assistant
Professor Masaki Ogura and Assistant Professor Taisuke Kobayashi, for their
valuable comments and kind support.
I appreciate Associate Professor Jaime Valls Miro from University of Tech-

nology, Sydney for his supervision and beer when I was in Australia, Associate
Professor Sang-Ho Hyon from Ritsumekan University for his taking care during
my short visiting, and Assistant Professor Ming Ding from Robotics Laboratory,
NAIST for his kind assist in experiments. Furthermore, my thanks would go
to all members in Intelligent System Control Laboratory, NAIST for their kind
help during these three years and the staff in NAIST office for their great job
and assistance. Another gratitude goes to one of my best friends, and my best
co-worker, Mr. James Poon for his great friendship. I enjoy our cooperation in
both Japan and Australia.
My thanks would also go to my beloved parents for their loving considerations,

great confidence, and other family members for their encouragement. Finally, my
gratitude goes to my wife for her constant love, understanding and encouragement
during my journey of PhD. Her daily talk via Internet helps me relax from stressful
research while her tolerance of my occasional vulgar moods is a testament in itself
of her unyielding devotion and love.

95

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[2] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning:
A survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285,
1996.

[3] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer, 2006.

[4] S. Schaal, A. Ijspeert, and A. Billard, “Computational approaches to motor
learning by imitation,” Philosophical transactions of the royal society of
london b: biological sciences, vol. 358, no. 1431, pp. 537–547, 2003.

[5] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and autonomous systems, vol. 57,
no. 5, pp. 469–483, 2009.

[6] S. Schaal and C. G. Atkeson, “Learning control in robotics,” IEEE robotics
& automation magazine, vol. 17, no. 2, pp. 20–29, 2010.

[7] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The international journal of robotics research (IJRR), vol. 32,
no. 11, pp. 1238–1274, 2013.

[8] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[9] C. J. C. H. Watkins, Learning from delayed rewards. PhD thesis, University
of Cambridge England, 1989.

96

[10] R. S. Sutton, “Generalization in reinforcement learning: Successful exam-
ples using sparse coarse coding,” pp. 1038–1044, 1996.

[11] A. Nedić and D. P. Bertsekas, “Least squares policy evaluation algo-
rithms with linear function approximation,” Discrete event dynamic sys-
tems, vol. 13, no. 1-2, pp. 79–110, 2003.

[12] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” The jour-
nal of machine learning research (JMLR), vol. 4, no. 44, pp. 1107–1149,
2003.

[13] M. G. Lagoudakis, Efficient approximate policy iteration methods for se-
quential decision making in reinforcement learning. PhD thesis, Duke Uni-
versity, Durham, NC, 2003.

[14] D. P. Bertsekas, “Approximate policy iteration: A survey and some new
methods,” Journal of control theory and applications, vol. 9, no. 3, pp. 310–
335, 2011.

[15] R. Bellman, “Dynamic programming and lagrange multipliers,” Proceedings
of the national academy of sciences, vol. 42, no. 10, pp. 767–769, 1956.

[16] E. Uchibe, M. Asada, and K. Hosoda, “Cooperative behavior acquisition in
multi-mobile robots environment by reinforcement learning based on state
vector estimation,” in IEEE international conference on robotics and au-
tomation (ICRA), vol. 2, pp. 1558–1563, 1998.

[17] J. Morimoto and K. Doya, “Acquisition of stand-up behavior by a real
robot using hierarchical reinforcement learning,” Robotics and autonomous
systems, vol. 36, no. 1, pp. 37–51, 2001.

[18] S. Bitzer, M. Howard, and S. Vijayakumar, “Using dimensionality reduction
to exploit constraints in reinforcement learning,” in IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS), pp. 3219–3225,
2010.

97

[19] T. Hester, M. Quinlan, and P. Stone, “RTMBA: A real-time model-based re-
inforcement learning architecture for robot control,” in IEEE international
conference on robotics and automation (ICRA), pp. 85–90, 2012.

[20] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approximation,”
in Neural information processing systems (NIPS), pp. 1057–1063, 2000.

[21] R. J. Williams, “Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning,” Machine learning, vol. 8, no. 3, pp. 229–256,
1992.

[22] J. Peters and S. Schaal, “Natural actor-critic,” Neurocomputing, vol. 71,
no. 7, pp. 1180–1190, 2008.

[23] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search.,” in
Association of the advancement of artificial intelligence (AAAI), pp. 1607–
1612, 2010.

[24] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral con-
trol approach to reinforcement learning,” The journal of machine learning
research (JMLR), vol. 11, pp. 3137–3181, 2010.

[25] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manipula-
tion skills with guided policy search,” in IEEE international conference on
robotics and automation (ICRA), pp. 156–163, 2015.

[26] A. J. Ijspeert, “Central pattern generators for locomotion control in animals
and robots: a review,” Neural networks, vol. 21, no. 4, pp. 642–653, 2008.

[27] S. Schaal, “Dynamic movement primitives - a framework for motor control
in humans and humanoid robotics,” in Adaptive motion of animals and
machines, pp. 261–280, 2006.

[28] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dy-
namical movement primitives: learning attractor models for motor behav-
iors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

98

[29] R. Tedrake, T. W. Zhang, and H. S. Seung, “Stochastic policy gradient
reinforcement learning on a simple 3d biped,” in IEEE/RSJ international
conference on intelligent robots and systems (IROS), vol. 3, pp. 2849–2854,
2004.

[30] A. Ng, A. Coates, M. Diel, V. Ganapathi, J. Schulte, B. Tse, E. Berger,
and E. Liang, “Autonomous inverted helicopter flight via reinforcement
learning,” Experimental robotics IX, pp. 363–372, 2006.

[31] J. Peters and S. Schaal, “Policy gradient methods for robotics,” in
IEEE/RSJ international conference on intelligent robots and systems
(IROS), pp. 2219–2225, 2006.

[32] G. Endo, J. Morimoto, T. Matsubara, J. Nakanishi, and G. Cheng, “Learn-
ing CPG-based biped locomotion with a policy gradient method: Applica-
tion to a humanoid robot,” The international journal of robotics research,
vol. 27, no. 2, pp. 213–228, 2008.

[33] E. Theodorou, J. Buchli, and S. Schaal, “Reinforcement learning of motor
skills in high dimensions: A path integral approach,” in IEEE international
conference on robotics and automation (ICRA), pp. 2397–2403, 2010.

[34] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and data-
efficient approach to policy search,” in International conference on machine
learning (ICML), pp. 465–472, 2011.

[35] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of re-
inforcement learning to aerobatic helicopter flight,” in Neural information
processing systems (NIPS), pp. 1–8, 2007.

[36] M. G. Azar, V. Gómez, and H. J. Kappen, “Dynamic policy programming
with function approximation,” in International conference on artificial in-
telligence and statistics AISTATS, pp. 119–127, 2011.

[37] M. G. Azar, V. Gómez, and H. J. Kappen, “Dynamic policy programming,”
The journal of machine learning research (JMLR), vol. 13, no. 1, pp. 3207–
3245, 2012.

99

[38] M. G. Azar, On the theory of reinforcement learning: methods, convergence
analysis and sample complexity. PhD thesis, Radboud University Nijmegen,
2012.

[39] A. Andoni, Nearest neighbor search: the old, the new, and the impossible.
PhD thesis, Massachusetts Institute of Technology, 2009.

[40] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis.
Cambridge university press, 2004.

[41] R. Walker, “Shadow dextrous hand technical specification,” Shadow robot
company, 2013.

[42] Y. Cui, T. Matsubara, and K. Sugimoto, “Local update dynamic policy pro-
gramming in reinforcement learning of pneumatic artificial muscle-driven
humanoid hand control,” in IEEE-RAS international conference on hu-
manoid robots (Humanoids), pp. 1083–1089, 2015.

[43] Y. Cui, T. Matsubara, and K. Sugimoto, “Pneumatic artificial muscle-
driven robot control using local update reinforcement learning,” Advanced
robotics, vol. 31, no. 8, pp. 397–412, 2017.

[44] Y. Cui, T. Matsubara, and K. Sugimoto, “Kernel dynamic policy pro-
gramming: Practical reinforcement learning for high-dimensional robots,”
in IEEE-RAS international conference on humanoid robots (Humanoids),
pp. 662–667, 2016.

[45] Y. Cui, T. Matsubara, and K. Sugimoto, “Kernel dynamic policy program-
ming: Applicable reinforcement learning to robot systems with high dimen-
sional states,” Neural networks, vol. 94, pp. 13–23, 2017.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, pp. 529–533, 2015.

100

[47] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with
double q-learning,” in Association of the advancement of artificial intelli-
gence (AAAI), pp. 2094–2100, 2016.

[48] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Fre-
itas, “Dueling network architectures for deep reinforcement learning,” in In-
ternational conference on machine lLearning (ICML), pp. 1995–2003, 2016.

[49] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmark-
ing deep reinforcement learning for continuous control,” in International
conference on machine learning (ICML), pp. 1329–1338, 2016.

[50] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
“Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[51] Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara, “Deep dynamic policy
programming for robot control with raw images,” in IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS), accepted, 2017.

[52] J. Poon, Y. Cui, J. Valls Miro, T. Matsubara, and K. Sugimoto, “Local
driving assistance from demonstration for mobility aids,” in IEEE inter-
national conference on robotics and automation (ICRA), pp. 5935–5941,
2017.

[53] Y. Cui, J. Poon, T. Matsubara, J. V. Miro, K. Sugimoto, and K. Yamazaki,
“Environment-adaptive interaction primitives for human-robot motor skill
learning,” in IEEE-RAS international conference on humanoid robots (Hu-
manoids), pp. 711–717, IEEE, 2016.

[54] R. Bellman, Dynamic Programming. Princeton University Press, 1957.

[55] M. L. Puterman, Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[56] D. P. Bertsekas, Dynamic programming and optimal control, vol. 2. Athena
Scientific Belmont, MA, 1995.

101

[57] R. A. Howard, Dynamic Programming and Markov Processes. The MIT
Press, Cambridge, Massachusetts, 1960.

[58] A. Farahmand, C. Szepesvári, and R. Munos, “Error propagation for ap-
proximate policy and value iteration,” in Neural information processing
systems (NIPS), pp. 568–576, 2010.

[59] M. G. Lagoudakis, R. Parr, et al., “Model-free least-squares policy itera-
tion,” in Neural information processing systems (NIPS), vol. 14, pp. 1547—
-1554, 2001.

[60] M. P. Deisenroth, G. Neumann, J. Peters, et al., “A survey on policy search
for robotics,” Foundations and trends in robotics, vol. 2, no. 1–2, pp. 1–142,
2013.

[61] S. Kullback, Information theory and statistics. Courier Corporation, 1997.

[62] J. M. Joyce, “Kullback-leibler divergence,” in International encyclopedia of
statistical science, pp. 720–722, Springer, 2011.

[63] E. Todorov, “Linearly-solvable markov decision problems,” in Neural infor-
mation processing systems (NIPS), pp. 1369–1376, 2006.

[64] D. J. MacKay, Information theory, inference and learning algorithms. Cam-
bridge university press, 2003.

[65] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for tem-
poral difference learning,” in Recent advances in reinforcement learning,
pp. 33–57, 1996.

[66] C. Thiery and B. Scherrer, “Least-squares λ policy iteration: Bias-variance
trade-off in control problems,” in International conference on machine
learning (ICML), 2010.

[67] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming. Athena
Scientific, 1st ed., 1996.

102

[68] E. Uchibe and K. Doya, “Inverse reinforcement learning using dynamic pol-
icy programming,” in International conference on development and learning
and on epigenetic robotics, pp. 222–228, 2014.

[69] Y. Shen, A. Ng, and M. Seeger, “Fast Gaussian process regression using
KD-trees,” in Neural information processing systems (NIPS), pp. 1225–
1232, 2006.

[70] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally weighted learning for
control,” Artificial intelligence review, vol. 11, no. 1-5, pp. 75–113, 1997.

[71] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching fixed
dimensions,” Journal of the ACM, vol. 45, no. 6, pp. 891–923, 1998.

[72] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, pp. 509–517, 1975.

[73] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Annual symposium on
computational geometry, pp. 253–262, 2004.

[74] K. E. Atkinson, An introduction to numerical analysis. John Wiley & Sons,
2008.

[75] L. Busoniu, D. Ernst, B. De Schutter, and R. Babuska, “Online least-
squares policy iteration for reinforcement learning control,” in American
control conference (ACC), pp. 486–491, 2010.

[76] L. Li, M. L. Littman, and C. R. Mansley, “Online exploration in least-
squares policy iteration,” in International conference on autonomous agents
and multiagent systems, pp. 733–739, 2009.

[77] V. Kumar, E. Todorov, and S. Levine, “Optimal control with learned local
models: Application to dexterous manipulation,” in IEEE international
conference on robotics and automation (ICRA), pp. 378–383, 2016.

103

[78] A. Gupta, C. Eppner, S. Levine, and P. Abbeel, “Learning dexter-
ous manipulation for a soft robotic hand from human demonstrations,”
in IEEE/RSJ international conference on intelligent robots and systems
(IROS), pp. 3786–3793, 2016.

[79] G. S. Sawicki, K. E. Gordon, and D. P. Ferris, “Powered lower limb orthoses:
applications in motor adaptation and rehabilitation,” in IEEE/RAS-EMBS
international conference on rehabilitation robotics (ICORR), pp. 206–211,
2005.

[80] N. G. Tsagarakis and D. G. Caldwell, “Development and control of a ‘soft-
actuated’ exoskeleton for use in physiotherapy and training,” Autonomous
robots, vol. 15, no. 1, pp. 21–33, 2003.

[81] C. Chou and B. Hannaford, “Measurement and modeling of mckibben pneu-
matic artificial muscles,” IEEE transactions on robotics and automation,
vol. 12, no. 1, pp. 90–102, 1996.

[82] F. Daerden and D. Lefeber, “Pneumatic artificial muscles: actuators for
robotics and automation,” European journal of mechanical and environ-
mental engineering, vol. 47, no. 1, pp. 11–21, 2002.

[83] K. Kogiso, K. Sawano, T. Itto, and K. Sugimoto, “Identification procedure
for mckibben pneumatic artificial muscle systems,” in 2012 IEEE/RSJ in-
ternational conference on intelligent robots and systems (IROS), pp. 3714–
3721, 2012.

[84] M. Fliess and C. Join, “Model-free control,” International journal of control,
vol. 86, no. 12, pp. 2228–2252, 2013.

[85] P.-A. Gédouin, E. Delaleau, J.-M. Bourgeot, C. Join, S. A. Chirani, and
S. Calloch, “Experimental comparison of classical pid and model-free con-
trol: position control of a shape memory alloy active spring,” Control en-
gineering practice, vol. 19, no. 5, pp. 433–441, 2011.

[86] L. dos Santos Coelho, M. W. Pessôa, R. R. Sumar, and A. A. R. Coelho,
“Model-free adaptive control design using evolutionary-neural compen-
sator,” Expert systems with applications, vol. 37, no. 1, pp. 499–508, 2010.

104

[87] V. Milanés, J. Villagrá, J. Pérez, and C. González, “Low-speed longitudinal
controllers for mass-produced cars: A comparative study,” IEEE transac-
tions on industrial electronics, vol. 59, no. 1, pp. 620–628, 2012.

[88] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Y. Ng, “ROS: an open-source robot operating system,” in ICRA
workshop on open source software, vol. 3, p. 5, Kobe, 2009.

[89] A. J. Smola and B. Schölkopf, Learning with kernels. GMD-
Forschungszentrum Informationstechnik, 1998.

[90] X. Xu, T. Xie, D. Hu, and X. Lu, “Kernel least-squares temporal difference
learning,” International journal of information technology, vol. 11, no. 9,
pp. 54–63, 2005.

[91] X. Xu, D. Hu, and X. Lu, “Kernel-based least squares policy iteration for
reinforcement learning,” IEEE transactions on neural networks, vol. 18,
no. 4, pp. 973–992, 2007.

[92] T. Jung and D. Polani, “Kernelizing LSPE (λ),” in IEEE international sym-
posium on approximate dynamic programming and reinforcement learning,
pp. 338–345, 2007.

[93] G. Taylor and R. Parr, “Kernelized value function approximation for rein-
forcement learning,” in Annual international conference on machine learn-
ing (ACM), pp. 1017–1024, 2009.

[94] J. Mercer, “Functions of positive and negative type, and their connection
with the theory of integral equations,” Philosophical transactions of the
royal society of London. Series A, containing papers of a mathematical or
physical character, vol. 209, pp. 415–446, 1909.

[95] V. Vovk, “Kernel ridge regression,” in Empirical inference, pp. 105–116,
Springer, 2013.

[96] L. Buşoniu, A. Lazaric, M. Ghavamzadeh, R. Munos, R. Babuška, and
B. De Schutter, “Least-squares methods for policy iteration,” in Reinforce-
ment learning, pp. 75–109, 2012.

105

[97] L. v. d. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
machine learning research (JMLR), vol. 9, no. Nov, pp. 2579–2605, 2008.

[98] L. Van Der Maaten, “Accelerating t-SNE using tree-based algorithms,”
Journal of machine learning research (JMLR), vol. 15, no. 1, pp. 3221–
3245, 2014.

[99] C. Daniel, G. Neumann, O. Kroemer, and J. Peters, “Hierarchical rela-
tive entropy policy search,” Journal of machine learning research (JMLR),
vol. 17, no. 1, pp. 3190–3239, 2016.

[100] S. Levine and V. Koltun, “Guided policy search,” in International confer-
ence on machine learning (ICML), pp. 1–9, 2013.

[101] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference on
machine learning (ICML), pp. 387–395, 2014.

[102] X. Xu, C. Liu, and D. Hu, “Continuous-action reinforcement learning with
fast policy search and adaptive basis function selection,” Soft computing-
A fusion of foundations, methodologies and applications, vol. 15, no. 6,
pp. 1055–1070, 2011.

[103] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[104] K. Fukumizu, A. Gretton, G. R. Lanckriet, B. Schölkopf, and B. K. Sripe-
rumbudur, “Kernel choice and classifiability for RKHS embeddings of prob-
ability distributions,” in Neural information processing systems (NIPS),
pp. 1750–1758, 2009.

[105] L. Song, K. Fukumizu, and A. Gretton, “Kernel embeddings of conditional
distributions: A unified kernel framework for nonparametric inference in
graphical models,” IEEE signal processing magazine, vol. 30, no. 4, pp. 98–
111, 2013.

[106] G. Lever, J. Shawe-Taylor, R. Stafford, and C. Szepesvári, “Compressed
conditional mean embeddings for model-based reinforcement learning.,” in

106

Association for the advancement of artificial intelligence (AAAI), pp. 1779–
1787, 2016.

[107] B. Dai, N. He, Y. Pan, B. Boots, and L. Song, “Learning from conditional
distributions via dual embeddings,” in Artificial intelligence and statistics
(AISTATS), pp. 1458–1467, 2017.

[108] M. P. Deisenroth, P. Englert, J. Peters, and D. Fox, “Multi-task policy
search for robotics,” in IEEE international conference on robotics and au-
tomation (ICRA), pp. 3876–3881, 2014.

[109] C. Alessandro, I. Delis, F. Nori, S. Panzeri, and B. Berret, “Muscle synergies
in neuroscience and robotics: from input-space to task-space perspectives,”
Frontiers in computational neuroscience, vol. 7, p. 43, 2013.

[110] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters, “In-
teraction primitives for human-robot cooperation tasks,” in IEEE inter-
national conference on robotics and automation (ICRA), pp. 2831–2837,
2014.

[111] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE transactions on acoustics, speech, and
signal processing, vol. 26, no. 1, pp. 43–49, 1978.

[112] T. Matsubara, S.-H. Hyon, and J. Morimoto, “Learning parametric dy-
namic movement primitives from multiple demonstrations,” Neural net-
works, vol. 24, no. 5, pp. 493–500, 2011.

107

Publication List

Journal

[1] Yunduan Cui, Takamitsu Matsubara and Kenji Sugimoto, “Pneumatic ar-
tificial muscle-driven robot control using local update reinforcement learning,”
Advanced Robotics, vol. 31, No. 8, pp. 397-412, 2017.

[2] Yunduan Cui, Takamitsu Matsubara and Kenji Sugimoto, “Kernel Dynamic
Policy Programming: Applicable Reinforcement Learning on Robot Systems with
High Dimensional States,” Neural Networks, vol. 94, pp. 13–23, 2017.

International Conference

[1] Yunduan Cui, Takamitsu Matsubara and Kenji Sugimoto, “An Empirical
Comparison of Approximate Dynamic Policy Programming and LSPI for Sim-
ple Robot Motor Control Problems,” SICE Annual Conference, pp. 798-803,
China, 2015.

[2] Yunduan Cui, Takamitsu Matsubara and Kenji Sugimoto, “Local Update
Dynamic Policy Programming in reinforcement learning of pneumatic artificial
muscle-driven humanoid hand control,” IEEE-RAS International Conference on
Humanoid Robots (Humanoids), pp. 1083-1089, Korea, 2015.

[3] Yunduan Cui, Takamitsu Matsubara and Kenji Sugimoto, “Kernel Dynamic
Policy Programming: Practical Reinforcement Learning for High-dimensional
Robots,” IEEE-RAS International Conference on Humanoid Robots (Humanoids),
pp. 662-667, Mexico, 2016. [Best Oral Paper Award]

[4] Yunduan Cui, James Poon, Takamitsu Matsubara, Jaime Valls Miro, Kenji
Sugimoto and Kimitoshi Yamazaki, “Environment-adaptive Interaction Primi-
tives for Human-Robot Motor Skill Learning,” 2016 IEEE-RAS International
Conference on Humanoid Robots (Humanoids),pp. 711-717, Mexico, 2016.

[5] James Poon, Yunduan Cui, Jaime Valls Miro, Takamitsu Matsubara and Kenji
Sugimoto, “Local Driving Assistance from Demonstration for Mobility Aids,”

108

IEEE International Conference on Robotics and Automation (ICRA), pp. 5935-
5941, Singapore, 2017.

[6] Yoshihisa Tsurumine, Yunduan Cui, Eiji Uchibe and Takamitsu Matsub-
ara, “Deep Dynamic Policy Programming for Robot Control with Raw Images,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2017. (accepted)

109

