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Hierarchical Word Sequences Structures for

Language Modeling∗

Xiaoyi Wu

Abstract

Language modeling is a fundamental research problem that has wide appli-

cation for many NLP tasks. The most important role of language modeling is

estimating the probabilities of sentences of natural language. For estimating prob-

abilities of natural language sentences, most research on language modeling use

n-gram based approaches to factor sentence probabilities. However, the assump-

tion under n-gram models is not robust enough to cope with the data sparseness

problem. Thus, even using large-scale corpus and high performance smoothing

methods such like MKN, 3-grams cannot be distinguished well, which affects the

final performance of language models.

In this dissertation, based on the basic idea of cognitive grammar structure,

we propose a hierarchical word sequence structure, where different assumptions

can be adopted to rearrange word sequences in a totally unsupervised fashion.

We present three different methods (assumption-based, NST-based, and neural

network-based) to construct the hierarchical word sequence structures. Unlike the

n-gram which factors sentence probability from left-to-right, our model factors

using a more flexible strategy.

For evaluation, we compare our rearranged word sequences to normal n-gram

word sequences. The intrinsic experiment proved that our methods can greatly
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and Technology, NAIST-IS-DD1361024, June 15, 2017.
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relieve the data sparseness problem, while the extrinsic experiments proved that

SMT tasks can benefit from our strategies. Both prove that our method can be

considered as a better alternative for n-gram language models.

Keywords:

language modeling, word sequence, sparseness problem, cognitive grammar, n-

gram model, hierarchical word sequence model, neural network language model
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階層的語序列構造に基づく言語モデリング ∗

呉 曉一

内容梗概

言語モデリングは自然言語処理の基礎研究であり幅広く多くの技術に応用さ

れている。言語モデルの最も重要な役割は自然言語の文の確率を推定することで

ある。文の確率を推定するため，ほとんどの言語モデリングに関する先行研究は

n-gramに基づく手法を用いている。しかし，n-gram言語モデルの仮説はロバスト

性が不足しており，データスパースネスの問題が深刻である。たとえ大規模コー

パスおよびMKNのような高性能なスムージング手法を用いても，3-gram に基

づいたものであっても，言語モデルの性能に大きな悪影響を与えている。

本論文では，認知文法 (Cognitive Grammar) 構造の基本概念に基づき，階層的

語序列 (Hierarchical Word Sequence, HWS) 構造を提案する。この構造に基づき，

色々な仮説を用い，特定の言語知識に依存せず，完全に教師なしで語序列を再配

列することが可能である。更に，この HWS構造を構築するため，「仮説指向」，

「NST指向」，「ニューラルネットワーク指向」の三つの異なる手法を提案する。

n-gram言語モデルが文の左側から右側へ確率を推定するのに比べて，HWSはよ

り柔軟的な策略を用いる。

評価として再配列した語序列と伝統的な n-gram 語序列を直接実験と間接実験

で比較した結果，提案モデルの方はより高い性能が得られ，データスパースネス

問題を軽減すると同時に，機械翻訳など自然言語処理応用にもさらなる精度をも

たらすことがわかった。これにより，HWSが n-gram 言語モデルの代用になるこ

とを示すことができた。

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, NAIST-IS-DD1361024, 2017年 6月
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1. Introduction

1.1 Background

Probabilistic Language Modeling is a fundamental research direction of Natural

Language Processing. It is widely used in various application such as machine

translation [7], spelling correction [21], speech recognition [25], word prediction

[4] and so on.

Theoretically, the more language model can reflect the real process of sentence

generation, the more NLP applications can benefit from it. That’s the reason

why language modeling plays an important role in all kinds of NLP applications.

The most widely used language model is n-gram language model [26], which

assumes that in one sentence, following words depends on their preceding words.

However, this assumption is to simple to reflect the true sentence generation

process, which causes a severe sparseness problem.

To relieve the sparseness problem caused by n-gram approach, many smoothing

methods, such as Katz back-off [15], Kneser-Ney [16], and modified Kneser-Ney

[9] has been developed. However, they all take the n-gram approach as a de-

fault setting for modeling word sequences in a sentence. Yet even with 30 years

worth of newswire text, more than one third of all trigrams are still unseen [1],

which cannot be distinguished accurately even using a high-performance smooth-

ing method such as modified Kneser-Ney (abbreviated as MKN).

An alternative solution is to factor the language model probabilities such that

the number of unseen sequences are reduced. It is necessary to extract them

in another way, instead of only using the information of left-to-right continuous

word order.

In [13], skip-gram [14]1 is proposed to overcome the data sparseness problem.

For each n-gram word sequence, the skip-gram model enumerates all possible

1The k-skip-n-grams for a sentence w1, ...wm is defined as the set {wi1 , wi2 , ...win |Σn
j=1ij −

ij−1 < k}.
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word combinations to increase valid sequences. This has truly helped to decrease

the unseen sequences, but we should not neglect the fact that it also brings a

greatly increase of processing time and redundant contexts.

There are also many structured language models, such as class-based language

model [6], structured language model [8], factored language model(FLM) [5] and

dependency tree language model [27] [10] have been developed. However, most

of structured language models depend on specific linguistic knowledge and the

precision of other NLP tasks, which also increases the computational complexity.

In [29], we propose a heuristic approach to convert any raw sentence into a

hierarchical word sequence (abbreviated as HWS) structure, by which much more

valid word sequences can be modeled while remaining the model size as small as

that of n-gram.

In [30] [31], instead of only using the information of word frequency, we also

use the information of direction and word association to construct higher quality

HWS structures.

In this dissertation, inspired by the view point of sentence generation pro-

cess from cognitive grammar, proposed by Langacker [17] [18] [19], we propose

a generalized hierarchical word sequence structure, by which various strategies

of rearranging word sequences can be used for language modeling. We present

three different methods to achieve this structure. We also use both intrinsic and

extrinsic experiments to verify the effectiveness of the three methods and these

strategies.

1.2 Contributions of This Research

The dissertation makes the following scientific contributions:

1) We present a generalized hierarchical word sequence structure, extending

our previous work on specific HWS methods, which makes proposed method

more potential for further improving.

2



Figure 1. Rearranged Word Sequences Compared to n-gram Word Sequences

2) We adopt the basic idea of cognitive grammar structure as the theoretical

linguistic basis of proposed structure, which makes proposed method linguistically

supported. Meanwhile, it can also be regarded as an approximate implement of

cognitive grammar structure for natural language processing.

3) Under this generalized structure, we present various strategies for rearrang-

ing word sequences and empirically verify their better performance in comparison

to n-grams in language modeling (Figure 1), which proves that proposed method

can be considered as a better alternative for n-gram method.

1.3 Dissertation Outlines

This disseration is organized as follows.

Chapter 2 Cognitive Grammar and Its Advantage First, as the linguistic

basis of our structure and methods, we introduce the basic idea of cognitive

grammar structure and its advantage in language modeling.

Chapter 3 Hierarchical Word Sequence Structure First, we give a com-

plete review of the original hierarchical word sequence language models, which

are inspired by the basic idea of Cognitive Grammar. Then we generalize those

models into one unified structure under a formal representation. To achieve this

structure, we present three different unsupervised methods in the following three

3



chapters.

Chapter 4 Method One: Assumption Based Construction of HWS

Structure The first method is using certain assumption to achieve HWS struc-

tures.

Chapter 5 Method Two: Node Selection Tree Based Construction of

HWS Structure The second one is training a Node Selection Tree (NST) from

the training data first, then use it to convert sentences into HWS structures.

Chapter 6 Method Three: Neural Network Based Construction of

HWS Structure The last one is training a neural network from the training

data first, then use it to convert sentences into HWS structures.

Chapter 7 Intrinsic Evaluation For intrinsic evaluation, we use various

experiments to verify that HWS-n-grams have advantage on reducing unseen

sequences and consequently relieve the data sparseness problem.

Chapter 8 Extrinsic Evaluation For extrinsic evaluation, we use sentence

reranking to verify that SMT tasks can also benefit more from HWS-n-grams

than conventional n-grams.

Chapter 9 Conclustion Finally, we summarize our findings and describe our

possible future directions.

4



2. Cognitive Grammar Structure and Its Advan-

tage

2.1 Cognitive Grammar Structure and CG-based Depen-

dency Structure

The structure of cognitive grammar is proposed by Langacker ([17] [18] [19]).

In cognitive grammar, it is presumed that complex expressions are formed from

schematic patterns, such as ‘Vs X in the Nb’
2 (e.x. hit him in the belly) and ‘a

N1+less N2’ (e.x. moonless), which are called ‘schemas’.

“They3 are not themselves full-fledged expressions but patterns ab-

stracted from them and potentially used in forming new ones. To this

extent they are grammar-like, since grammar by definition comprises

the patterns used in forming complex expressions.” ([19] p.20)

This quote not only means that schemas are the core units of cognitive gram-

mar, but also indicates that schemas are relative concepts. From a schema, a

more specific expression can be instantiated, while a more schematic expression

can also be abstracted.

An example is given in [19] (p.21) as ⟨Vs X in the Nb⟩→⟨kick X in the

shin⟩→⟨kick my pet giraffe in the shin⟩4. In this example, ⟨Vs X in the Nb⟩
is the schema with the highest schematicity, while the schema ⟨kick X in the

shin⟩ is a more specific one. The structure of cognitive grammar is shown in

Figure 2.

For the purpose of applying this structure to language modeling, we use fol-

lowing processing to simplify and convert it into a special dependency structure.

2Vs represents ‘strike motion’, while Nb represents ‘body part’.
3Schemas.
4In this example, Langacker regards ‘my pet giraffe’ as one whole unit. In fact, it can also

be further abstracted as schema ‘my Npossession’ on the principle of cognitive grammar.

5



Figure 2. An example of structure of cognitive grammar

In the cognitive grammar structure, schemas are gradually specified from more

schematic patterns to less schematic ones. Locally, constituencies are hierar-

chically generated from certain positions of patterns. Taking Figure 2 as the

example, ‘shin’ depends on the category ‘Nb’, which is a part of schema ⟨Vs X in

the Nb⟩. Since Nb is always on the certain position of schema ⟨Vs X in the Nb⟩, if
we keep the word order information, then we can remove the category part from

this schema and simply assume that ‘shin’ depends on ‘in the’.

Further, in a categories-removed schema, such as ‘in the’ in above step, we

assume following words depends on their preceding words, then ‘the’ depends on

‘in’.

Applying above processing hierarchically, the cognitive grammar structure given

in the Figure 2 can be converted into a special dependency structure as shown

in Figure 3. We call such kind of dependency structure as CG-based dependency

structure in order to distinguish it from the conventional dependency grammar

structure and cognitive grammar structure.

2.2 The Advantages of CG-based Dependency Structure

in Language Modeling

Due to the generativity (also called productivity) of language, it is difficult to

calculate the probability of a whole sentence directly. A more practical way is

to divide the sentence into some sequences of words and to compute the joint

6



Figure 3. An example of CG-based dependency structure

probability using the Chain Rule. Thus, the performance of language models

depend largely on how to arrange those word sequences, more specifically, for

each word in one sentence, how to determine its context. Theoretically, the more

accurately we can determine the context for each word, the more those word

sequences can reflect the real process of sentence generation, consequently, the

higher performance the language models can achieve.

We take an example from WSJ corpus and convert it into different structures to

demonstrate the difference among n-grams, dependency grammar and CG-based

structure in arranging word sequences. In each structure of Figure 4, arrows

represent the sentence generation process (in n-gram model, generation process

is equivalent to word order), thus, the parent nodes could be considered as the

context of their child node, and word sequences can be arranged as (parent nodes,

child node).

As shown in Figure 4(a), n-gram language models adopt an utterance-oriented

way to determine word sequences, which assume that the preceding n-1 words

are the context of each word in the sentence. In the actual utterance, signals

are indeed generated one by one, however, for each word in a sentence, not all

its previous n-1 words actually take part in its generation. Words can also be

7



Figure 4. A demonstration of the difference among (a)n-gram, (b)dependency

Grammar and (c)CG-based structure on sentence generation process

generated from their following words or even long-distance words. Taking ‘as

important as’ in Figure 4 as an example, the second ‘as’ coexists with the first

‘as’ but not generated from ‘important’. Thus, relative to ‘as...as’, ‘important’

here is quite easy to be replaced by other words, such as ‘fast’, ‘high’, ‘much’

and so on. Consequently, even using 4-gram or 5-gram, sequences consisting of

‘important’ and its nearby words tend to be low-frequent because the connection

of ‘as...as’ is interrupted.

By contrast, dependency grammar adopt a predicate-oriented way to de-

termine word sequences, which assumes compliments and adjuncts depend on

predicate words, modifiers depend on modified words. The dependency relations

are discontinuous so that long distance information can be used for predicting and

generating the next word. However, the predicate-oriented assumption does not

8



work accurately in every case. For example, in the sentence ’the more you study

the more you know’, according to the dependency parsing result, all other words

depend on the word ’study’ because it’s the predicate of this sentence. However,

‘the more ... the more ...’ appears in almost every sentence which expresses that

two things vary together, while not all such kinds of sentences use ‘study’ as their

predicate word, which indicates that ‘the more ... the more ...’ is not actually

generated from predicate ‘study’. Similar dependency problem also happens on

coordinating conjunction ‘and’. Such kind of inaccuracy is inevitable as long as

predicate-oriented assumption is adopted.

At this point, CG-based dependency structure is based on pattern-oriented

assumption, which treats schematic patterns as grammatical units and assumes

that words are hierarchically generated from certain positions of them. As a

result, it can use long distance information to generate and predict words, and

words which do not actually take part in the generation can be filtered out from

contexts. As shown in Figure 4(c), ‘is as ... as’ is regarded as a pattern context

to generate ‘important’, which is closer to our linguistic intuition. Practically,

even ‘important’ is replaced by another word, the expression ‘is as...as’ won’t be

affected. Furthermore, even ‘is’ is replaced by other verbs, we can still hierar-

chically back-off to pattern ‘as ... as’, which make it more flexible to the data

sparseness problem.

The pattern-oriented assumption also brings another advantage. Different from

strictly-defined predicate words, a schematic pattern is a relative concept, which

makes it possible to be modeled in a supervised fashion. Thus, compared to

other structure-based language models, such as class-based language model [6],

structured language model [8], factored language model(FLM) [5] and dependency

tree language model [27] [10], the pattern-oriented language model does not use

any specific linguistic knowledge or any abstracted categories, which makes it

possible to be trained in a totally unsupervised fashion.

9



3. Hierarchical Word Sequence Structure

3.1 Hierarchical Word Sequence Language Model

As described in Section 2.1, cognitive grammar structure is a hierarchical pat-

tern structure, in which specific expressions are hierarchically generated from

more schematic patterns. Thus, in CG-based dependency structure, which is con-

verted from cognitive grammar structure, specific words hierarchically depend on

more schematic words. Since the more frequently a word is used, the more proba-

ble it becomes part of a pattern, heuristically, we can use the information of word

frequency and word order to approximately construct a CG-based dependency

structure.

Based on this idea, in [29], we constructed the HWS structure in an unsuper-

vised way as follows:

Step 1: Calculate word frequencies from training data and sort all these words

by frequency. Then we can get a frequency-sorted list V = {v1, v2, ..., vm}.
Step 2: According to V , for each sentence s = w1, w2, ..., wn, the most frequently

used word wi ∈ s(1 ≤ i ≤ n) is determined5. Then use wi to split s into two

substrings sl = w1, ..., wi−1 and sr = wi+1, ..., wn.

Step 3: Set s′ = sl and s′′ = sr, then repeat Step 2 separately. The most

frequently used words wj ∈ sl(1 ≤ j ≤ i−1) and wk ∈ sr(i+ 1 ≤ k ≤ n) can also

be determined, by which sl and sr are split into two smaller substrings separately.

Executing Step2 and Step3 recursively until all the substrings become empty

strings, then we can get a set of word nodes M = {wi, wj, wk, ...} and a set of

edges E = {(wi, wj), (wi, wk), ...}. Finally, a binary tree T = (M,E) can be

constructed, which is defined as an HWS structure.

In an HWS structure T , assuming that each node depends on its preceding

n-1 parent nodes, then special n-grams can be trained. Such kind of n-grams are

defined as HWS-n-grams.

5If wi appears multiple times in s, then select the first one.

10



Thus, the HWS language model [29] is essentially a special n-gram model with

a different assumption. A conventional n-gram model assumes that each word

depends on its preceding n-1 words, while an HWS model assumes that each

word depends on its n-1 nearby high-frequency words, which can be regarded as

an approximation of the pattern-oriented assumption.

Thus, the HWS language models can inherit the advantage of cognitive gram-

mar structure, which makes it gain more advantage than utterance-oriented struc-

ture and predicate-oriented structure, as we described in the previous chapter.

However, this frequency-based method is only based on a simple heuristic assump-

tion, for further improvement, in the next chapter, we propose a more generalized

structure.

3.2 Generalized Hierarchical Word Sequence Structure

Suppose we are given a sentence s = w1, w2, ..., wn and a schematicity permu-

tation function f : s 7→ s
′
, where s

′
= w

′
1, w

′
2, ..., w

′
n is a schematicity ordered

permutation of s. For each word index i(1 ≤ i ≤ n,wi ∈ s), there is a corre-

sponding reordered index j(1 ≤ j ≤ n,w
′
j ∈ s

′
, w

′
j = wi).

To make the degree of schematicity more clear, we create an n × n matrix

A. With the reordered index j, we fill each wi into cell Aj,i and fill ε into all

other blank cells. We call the matrix A the generalized hierarchical word

sequence structure (abbreviated as GHWSS) of the sentence s. An example

is shown in Figure 5.

Any GHWSS can be converted to a dependency structure6. In a GHWSS,

given any word Aj,i ̸=ε, the words in its higher rows are X = {Ak,m|k < j, 1 ≤
m ≤ n,w

′
k = wm}, in which the nearest two horizontal neighbor words of w are

l̂ = Akl,ml
and r̂ = Akr,mr respectively7. Then we assume that w depends on

ŵ = l̂ if kl > kr or ŵ = r̂ if kl < kr. For example, in Figure 5, given the word

6Not equivalent to dependency grammar structure.
7There is no l̂ when i = 1, while no r̂ when i = n.

11



Figure 5. An Example of Generative Hierarchical Word Sequence Structure

Figure 6. An Example of Conversion from GHWSS to dependency structure

‘soon’, the words in its higher rows are X = {as, as, possible, .}, in which the

nearest horizontal neighbors of ‘soon’ are l̂ = as and r̂ = as, since the second

‘as’ is closer to ‘soon’ vertically, we assume ‘soon’ depends the second ‘as’ in this

GHWSS. Finally, the GHWSS in Figure 5 can be converted to a dependency

structure as shown in Figure 6.

Since GHWSS is constructed by the degree of schematicity, which is consistent

with the pattern-oriented idea of cognitive grammar, the dependency structure

converted from GHWSS can be considered as CG-based dependency structure,

which we described in Chapter 2.1. We set symbol ‘⟨s⟩’ and ‘⟨/s⟩’ as the beginning
and ending of each dependency chain separately.

12



Figure 7. An Example of HWS Structure with Directional Information

For each word w = Aj,i, if we assume that it only depends on its previous

few words in its dependency chain, then we can achieve HWS-n-grams under

GHWSS. Taking Figure 6 as the example, we can extract hws-3-grams like {(⟨s⟩,
⟨s⟩, .), (⟨s⟩, ., as), (., as, as), (as, as, possible), (as, possible, ⟨/s⟩), (as, as, soon),
(as, soon, ⟨/s⟩)}.
Since the word order information is encoded in GHWSS, it is easy to attach di-

rectional information to hws-n-grams, so that the contextual constraint of natural

language can be reflected more accurately in proposed language model.

The example with directional information is shown in Figure 7. Then the

above hws-3-grams should be {(⟨s⟩, ⟨s⟩, .), (⟨s⟩, .-R, ⟨/s⟩), (⟨s⟩, .-L, as), (.-L,
as-L, ⟨/s⟩), (.-L, as-R, as), (as-R, as-L, soon), (as-L, soon-L, ⟨/s⟩), (as-L, soon-R,
⟨/s⟩), (as-R, as-R, possible), (as-R, possible-L, ⟨/s⟩), (as-R, possible-R, ⟨/s⟩)}
and the probability of the whole sentence ‘as soon as possible .’ can be estimated

by the product of conditional probabilities of all these word sequences.

In this example, (as-R, as-L, soon) indicates that ‘soon’ is located between two

‘as’s, while (as-R, as-R, possible) indicates that ‘possible’ is located on the right

side of the second ‘as’. Similarly, if we use 4-grams or higher order ones, the

relative position of each word will be more specific. In other words, for each word

(node), its position (relative to the whole sentence) can be strictly determined

by its preceding parent nodes. The bigger n is, the more syntactical information

HWS-n-grams can reflect.

13



Notice that once a schematicity permutation function f is implemented, the

GHWSS of any sentence can be determined and constructed. Thus, the per-

formance of HWS-based language models, which is converted from GHWSS, is

totally determined by how to implement the function f for reordering words in

schematicity.

In the following three chapters, we introduce three different methods (assumption-

based method, NST-based method and neural network based method) to imple-

ment the function f .

14



4. Method One: Assumption Based Construc-

tion of HWS Structure

The first method is converting raw sentences into the GHWSS under certain

assumption.

In Section 2.2, we introduced the advantages of pattern-oriented assumption

for rearranging word sequences. In this chapter, we propose various kinds of

strategies for implementing function f based on the pattern-oriented assumption.

4.1 Top Down Strategy: Word Frequency Based Method

Since patterns are frequently used expressions, patterns consisting of frequently

used words can be preferred.

Based on this idea, we propose a frequency-based method to achieve HWS

structures. We can regard this method as a special case of GHWSS, if the function

f is implemented as follows:

Step 1. Calculate word frequencies from training data and sort all words

by their frequency. Let C(vj) represents the frequency of vj, assume we get a

frequency-sorted list V = {v1, v2, ..., vm}, where C(vj) > C(vj+1), 1 ≤ j ≤ m− 1.

Step 2. According to V , for each sentence s = w1, w2, ..., wn, we permute it into

s
′
= w

′
1, w

′
2, ..., w

′
n(w

′
k = vx, w

′
k+1 = vy, 1 ≤ k ≤ n− 1, 1 ≤ x ≤ y ≤ m).

Then the GHWSS constructed by the permutation s
′
is equivalent to that of

frequency-based HWS method.

4.2 Top Down Strategy: Word Association Based Method

Since in schematic patterns, such as ‘too ... to’, ‘as ... as’, the words are always

coexist with each other, we can adopt the information of word association to

achieve higher quality hierarchical patterns.
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Based on this idea, instead of frequency-based method, we use the information

of word association to construct high quality HWS structures. We can regard this

method as a special case of GHWSS, if the function f is implemented as follows:

Step 1. For each sentence s in corpus D, we convert it into s
′
, in which we

remove the second and subsequent occurrence of the same word, so that each

word only appear once. Then we have a new corpus D′ = {s′
i|1 ≤ i ≤ |D|} and

only use it for word counting in Step 2. We call this process as unification on the

purpose of making words that truly appears in more sentences (such as ‘.’) be

located at relatively higher rows of GHWSS.

Step 2. After the unification preprocessing, for each word wi in the corpus

D′ = {s′
i|1 ≤ i ≤ |D|}, we count its frequency C(wi) and its cooccurrence with

another word C(wi, wj).

Step 3. For each original sentence s ∈ D, we initiate an empty list X and set

the beginning symbol ‘⟨s⟩’ as the initial context c 8.

Step 4. For each word w ∈ s, we calculate its word association score with

context c. In this dissertation, we use two different scores as the word association

measure:

Dice coefficient [11] is a measure used for comparing the similarity of two

samples, which is also widely used for collocation extraction. Dice coefficient only

uses the relation between c and w to measure their strength of association. The

Equation is shown as below.

scoreDice(c, w) =
2× C(c, w)

C(c) + C(w)
(1)

T-score is another useful measure, whose calculation is shown as below 9 .

scoreTB(c, w) = (C(c, w)− C(c)× C(w)

|V |
)÷

√
C(c, w) (2)

8Since ⟨s⟩ appears only once in each sentence, we set C(⟨s⟩) as the size of corpus.
9V stands for the total number of words in corpus.
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Then we add the i-th word ŵ with the maximum score to list X10 and use it

to split s into two substrings sl = w1, ..., wi−1 and sr = wi+1, ..., wn.

Step 5. We set ŵ as the new context c
′
. For each word in sl, we calculate its

word association score with c
′
and add the word with the maximum score to list

X11 and use it to divide sl into two smaller substrings. Then we apply the same

process to the substring sr.

Execute Step 4 and Step 5 recursively until anymore substrings cannot be

divided, then the original sentence s is permuted as list X, by which GHWSS of

s can be constructed.

4.3 Bottom up Strategy: Abstraction Based Method

“In CG, rules take the form of schemas: they are abstract tem-

plates obtained by reinforcing the commonality inherent in a set of

instances.” ([19] pp.23)

According to this idea of cognitive grammar, we can use a gradual abstraction

process to achieve pseudo ‘schemas’ in a bottom-up way.

Step 1. For each sentence s = w1, w2, ...wn in corpus D, we add w0 = ⟨s⟩ and
wn+1 = ⟨/s⟩ to its beginning and the end. For each word wi(1 ≤ i ≤ n), we count

its cooccurrence with each of its left-side words and right-side words separately12.

Step 2. For each sentence s ∈ D, we initiate an empty list X.

Step 3. For each word wi(1 ≤ i ≤ n) in the sentence s ∈ D, we calculate its

independence score with its nearby words. The independence score is defined as

Equation (3).

scoreindependence(wi) =
2× P (wi|wR

i−1)× P (wi|wL
i+1)

P (wi|wR
i−1) + P (wi|wL

i+1)
(3)

10If ŵ appears multiple times in s, then select the first one.
11If the context word c

′
also appears in sl, then we regard it as the word with the maximum

score and add it to X directly.
12which are not necessary to be continuous.
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Step 4. We remove the i-th word ŵ with the minimum independence score from

the sentence s and add ŵ to the list X. Then we set the remaining words as the

new sentence s
′
= ⟨s⟩, w1, w2, ...wi−1, wi+1...wn, ⟨/s⟩.

Repeat Step 3 and Step 4 recursively until s
′
becomes an empty string (⟨s⟩, ⟨/s⟩),

then the original sentence s is permuted as list X. Since X is constructed in a

bottom-up way, we need to reverse it for building GHWSS.

18



5. Method Two: Node Selection Tree Based Con-

struction of HWS Structure

5.1 Priority List for GHWSS

In this Chapter, we implement the permute function f from a new perspective

: priority list. Suppose we are given a priority list, which represents the degree of

schematicity of all words, then any sentence can be reordered according to this

list, as a result, the function f is implemented.

Taking frequency-based HWS method as an example, we take the frequency-

sorted vocabulary list V = {v1, v2, ..., vm} as a priority list for constructing HWS

structures. Given a sentence s, we first judge whether v1 ∈ s, if not, then we

check whether v2 ∈ s, until we find vi ∈ s(1 ≤ i ≤ m) and use it to divide s into

two substrings.

Since the priorities of V are only arranged by word frequency, which is indepen-

dent, it is not sufficient to construct high-quality hierarchical pattern structures

because the words constitute a pattern, such as ‘... too ... to ...’, are always de-

pendent and word-order sensitive. If we take word association into consideration,

as we did in Chapter 4.2, then we have to use a tree structure to represent the

priority ‘list’.

5.2 Generalized Priority List: Node Selection Tree

Context c is defined as aD(D ∈ {L,R,N}), where a represents a word and L,R

represents the relative word-order direction (left or right) of the words generated

from it (which can be discontinuous). We also use a special tagN to represent that

a has no directional relations but only priority relations with its following words.

We define ROOTR as the default context where every word generated and ε as

an empty context where no more words generated. Obviously, each priority list

starts from ROOTR and ends with ε. Thus, in original HWS method, priority
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Figure 8. An Example of Node Selection Tree

list V = {v1, v2, ..., vm} is actually V̂ = {ROOTR, vN1 , vN2 , ..., vNm ,ε }, which is a

special case of this generalization.

Suppose word a1 is the highest priority word under ROOTR, then we have three

new contexts {aL1 , aR1 , aN1 }. Under each context, suppose the next highest priority

word is a2, a3 and a4 separately, then we have three branched priority lists start

from {ROOTR, aL1 , a2}, {ROOTR, aR1 , a3} and {ROOTR, aN1 , a4}. Hierarchically,
word a2, a3 and a4 can be treated as new contexts by adding {L,R,N} and the

priority lists are further branched until no more words generated. Then we can

get a multiset13 of word nodes M = {ROOT, a1, a2, a3, a4, ...} and a set of edges

E = {(ROOTR, a1), (a
L
1 , a2), (a

R
1 , a3), (a

N
1 , a4), ...}). Finally, a tree T = (M,E)

can be constructed, which is defined as a Node Selection Tree (abbreviated as

NST).

A mini NST is shown in Figure 8, given this NST and a substring between

‘as’ and ‘as’, which corresponds to contexts ‘{asR, asL}’, we first judge whether

‘soon’ is in this substring, if not, then we check ‘well’ in turn. Thus, NST is

13As the pattern ‘...as...as...’, the same word are allowed to repeat as different nodes.
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Figure 9. Generalized HWS Framework

essentially a decision tree to decide the word priority used for constructing the

HWS structures. In an NST, each branch represents the relative position to all

its parent nodes, the path from root to node represents hierarchical ‘priority list’.

With the generalized priority list NST, The HWS framework can be generalized

as following 4 steps (Figure 11):

Step 1: Construct an NST. Instead of frequency-sorted word list, we con-

struct an Node Selection Tree (NST) and use the whole tree structure as the

‘priority list’ V . We will discuss how to construct an NST from a raw corpus in

Section 5.3.

Step 2: Construct HWS structures via NST. Then we use the NST

constructed in Step 1 to construct HWS structures from raw sentences. We will

introduce how to convert raw sentences into HWS structures by an NST in Section

5.4.

Step 3: Convert HWS structures to HWS-n-grams. Then we can ex-

tract HWS-n-grams from both training data and test data via HWS structures,

as the same way we described in Chapter 3.2.

Step 4: Build HWS language model. Finally, instead of conventional

n-grams, we use HWS-n-grams to build language models.
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5.3 Construction of NST

Suppose we are given a set of sentences S for training, NST is constructed by

the following steps.

Step 1: Adding ‘⟨ROOT⟩’ (which corresponds to the ROOTR defined in Sec-

tion 5.2) to the beginning of each sentence and set it as the default context c

(also the root node of NST).

Step 2: For each word w ∈ Ω (where Ω is the vocabulary of S), we use a

function score(c, w) to decide the word priority under a context c.

For the purpose of constructing context-dependent hierarchical pattern struc-

ture as we described in Section 5.2, we adopt the same association scores we used

in Chapter 4.2 as the function score(c, w): Dice coefficient [11] (Equation (4))

and T-score (Equation (5)).

scoreDB(c, w) =
2× C(c, w)

C(c) + C(w)
(4)

scoreTB(c, w) = (C(c, w)− C(c)× C(w)

|V |
)÷

√
C(c, w) (5)

Step 3: According to these scores, we choose the word with maximum score ŵ

as the child node of the root node ‘⟨ROOT⟩’. For each sentence s ∈ S, if ŵ /∈ s,

then we put s under the ‘N’ arc of ŵ, otherwise, we use the first ŵ appeared in s

to split s into 2 substrings sl and sr, then put sl and sr under the ‘L’ arc and ‘R’

arc of ŵ separately. Finally, all strings (or substrings) of S are splitted by three

types of arcs of ŵ.

Step 4: Since each type of arc is branched by ‘L’, ‘R’ and ‘N’, which represents

the relative directions from ŵ, ŵ itself can be considered as the context ŵL, ŵR

and ŵN of each arc separately. Thus, for each arc, we set ŵ as new context c′, all

strings (or substrings) under this arc as a new corpus S ′. Repeating Step 2 and

Step 3 recursively, an NST is constructed.

This recursive process is shown in Algorithm 1.
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Algorithm 1 Constructing an NST from given corpus S

Input: Corpus S (a set of string s)

Output: Node Selection Tree T (a set of triple (parent node, arc, subtree))

function GetNode(c, S ′) ▷ return a word ŵ from strings S ′ under context c

initialize a set Ω as the vocabulary of S ′

ŵ = argmaxwi∈Ω(score(c, wi))

return ŵ

end function

function GetTree(c, S ′) ▷ return a tree T ′ from strings S ′ under context c

if S ′ = ∅ then return ∅
end if

ŵ = GetNode(c, S ′)

initialize an empty set L

initialize an empty set R

initialize an empty set N

for each si ∈ S ′ do

si = w1, w2, ..., wn ▷ split string si into words

if ŵ /∈ si then

N = N ∪ si ▷ add string si to set N

else

j = index of the first ŵ in si

l = w1, w2, ..., wj−1

r = wj+1, ..., wn

L = L ∪ l ▷ add substring l to set L

R = R ∪ r ▷ add substring r to set R

end if

end for

initialize a subtree T ′ ▷ T ′ is a set of triple (parent node, arc, subtree)

T ′ = T ′ ∪ (ŵ, ‘N’, GetTree(ŵ, N))

T ′ = T ′ ∪ (ŵ, ‘L’, GetTree(ŵ, L))

T ′ = T ′ ∪ (ŵ, ‘R’, GetTree(ŵ, R))

return T ′

end function

initialize a tree T ▷ T is a set of triple (parent node, arc, subtree)

T = T ∪ (‘ROOT’, ‘R’, GetTree(‘ROOT’, S)) ▷ recursion by ‘GetTree’

return T
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Figure 10. Conversion of raw sentences to HWS structure via NST

5.4 Conversion of Raw Sentences into HWS Structures by

Using a Constructed NST

With the NST constructed from a corpus, any sentence can be converted into

an HWS structure.

Suppose we use the NST shown in Figure 8 to convert the sentence ‘as soon

as possible’ into an HWS structure. Firstly, we start from the node ‘as’ and

check whether it exists in this sentence. Although two ‘as’s are observed in this

sentence, we use the first one to divide it and take the right substring ‘soon as

possible’ to the ‘R’ arc. Since the child node ‘as’ of ‘R’ arc can also be observed

in this substring, ‘soon’ and ‘possible’ are classified to its ‘L’ arc and ‘R’ arc

respectively. Finally, ‘as soon as possible’ is converted to the HWS structure as

shown in Figure 10. Similarly, sentence ‘as fast as possible’, ‘as well as me’ can

also be converted into HWS structures by this NST.

Notice that even a well-trained NST cannot cover all possible situations. For

instance, suppose we use the above NST to convert sentence ‘as far as I could

remember’, although ‘I could remember’ is correctly classified as ‘R’ arc of the

second ‘as’ node, it cannot be further analyzed because this NST doesn’t offer

more details in this arc. In this case, we use the original HWS approach (by word

frequency) to select nodes from substring ‘I could remember’ as a covering of this

24



method. This process is shown in Algorithm 2.
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Algorithm 2 Converting a sentence s into HWS structure using an NST T

Input: Node Selection Tree T and sentence s

Output: HWS tree (recursively expressed as (left subtree, node, right subtree))

function toHWS(T ′, s′)

if s′ = ∅ then return ∅
end if

if T ′ = ∅ then

return ConvertByFrequency(s′) ▷ frequency-based HWS subtree

end if

r = the root node of T ′

if r ∈ s′ then

j = index of the first r in s′

lStr = w1, w2, ..., wj−1

rStr = wj+1, ..., wn

lTree = T’[r][‘L’] ▷ the NST subtree under the ‘L’ arc of node r

rTree = T’[r][‘R’] ▷ the NST subtree under the ‘R’ arc of node r

return (toHWS(lTree, lStr), r, toHWS(rTree, rStr)) ▷ Core Structure

else

nTree = T’[r][‘N’] ▷ the NST subtree under the ‘N’ arc of node r

return toHWS(nTree, s’)

end if

end function

s = w1, w2, ..., wn ▷ split sentence s into words

hws = toHWS(T , s) ▷ recursion by ‘toHWS’

return hws
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6. Method Three: Neural Network Based Con-

struction of HWS Structure

6.1 Neural Network based HWS

In the previous chapters, we introduced two different methods. The two meth-

ods have in common that they both use HWS-n-grams instead of conventional

n-grams, then use conventional smoothing methods (such as MKN smoothing) to

estimate the probabilities. Thus, although both use discontinuous word sequences

for probability estimation, the methods are still essentially discrete.

In [3], neural network is used for training distributed representation of each

word, with these word embeddings, probabilities can be estimated in a continuous

way.

In [22] [23], recurrent neural network is used for language modeling, which

outperformed significantly and has been considered as the state-of-art language

model.

In this chapter, we present a neural network based HWS language model

(NNHWS), which not only takes the advantage of HWS structure, but also esti-

mates probabilities in a continuous way.

6.2 Training of NNHWS

Basically, we use the CBOW architecture as the framework of our NNHWS.

But for incorporating the basic idea of HWS, we make a slight change in the

original CBOW model.

First, for training data, instead of bag of words, we use sentence as the basic

training data unit. We also add border symbol ‘⟨s⟩’ ‘⟨/s⟩’ to each sentence so

that grammar constraints can be further enhanced. each line of training data is

a triple (left context L, right context R, generated word wt).
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Second, we use variable length words as the contexts L and R. We do this

because according to the basic idea of HWS, for each word wt, not all its previous

words are related to its generation process. We filter out these words from its

context so that the connection with its true context can be strengthened.

Our improved CBOW method is described as follows:

Step 1. Initiate the weight matrix W, bias matrix b and word embedding

matrix C.

Step 2. Given a sentence s = w1, w2, ...wm, we add border symbols to make it

become s
′
= ⟨s⟩, w1, w2, ...wm, ⟨/s⟩. For each 1 ≤ t ≤ m, we can get a training

data triple (wt−1
0 , wm+1

t+1 , wt), where wt−1
0 is considered as the left context of wt,

while wm+1
t+1 as its right context 14.

Step 3. For each word wk(1 ≤ k ≤ t− 1) in the left context (except the border

symbol w0 = ⟨s⟩), we first look up their corresponding word embeddings in C,

then use softmax method to estimate the conditional probability P (wk|⟨s⟩, wt).

We remove all the words whose probability ≤ 0.001 from left context because they

can be considered as unlikely words that play a part in the generation process of

wt. For all the remaining word embeddings in the left context, we calculate their

average value as a new vector and take it as the left context vector.

Step 4. Execute Step 3 to the right context to achieve the right context vector.

Step 5. we concatenate the two context vectors as one long vector u. Then we

use softmax to estimate P (wt|u) and update the word embeddings literately.

The architecture of NNHWS is shown in Figure 11.

6.3 Conversion into HWS structures by using NNHWS

After sufficient iterations, we can store the weight matrix W , bias matrix b and

word embedding matrix C as the parameters of our neural network.

With these parameters, any sentence can be converted into a GHWSS.

14For actual implement, we set the maximum size for both contexts
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Figure 11. The architecture of NNHWS

Given a sentence s = w1, w2, ...wm, we add border symbols to make it become

s
′
= ⟨s⟩, w1, w2, ...wm, ⟨/s⟩. For each word wt(1 ≤ t ≤ m) ∈ s

′
, we can calculate

its probability using these trained parameters. Then we can achieve a probability

list {P (wk|wk−1
0 , wm+1

k+1 )|1 ≤ k ≤ m}. We permute the sentence s by sorting this

probability list, then a GHWSS can be constructed as Figure 12.

6.4 Estimating probabilities of HWS structures by using

NNHWS

After the HWS structure are constructed, the generation process of each word

becomes clearer, which means we can filter out more unrelated words from con-

texts, and consequently, we can estimate probabilities more accurately.
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Figure 12. Conversion into HWS structures by using NNHWS

As shown in Figure 13, with the GHWSS constructed in previous section,

the probability of sentence ‘what we demand is much more .’ can be calcu-

lated as the product of {P (.|(⟨s⟩), (⟨/s⟩)), P (is|(⟨s⟩), (., ⟨/s⟩)), P (more|(⟨s⟩, is),
(., ⟨/s⟩)), P (what|(⟨s⟩), (is,more, ., ⟨/s⟩)), P (we|(⟨s⟩, what), (is,more, ., ⟨/s⟩)),
P (much|(⟨s⟩, what, we), (is,more, ., ⟨/s⟩)), P (demand|(⟨s⟩, what, we), (is,much,more, ., ⟨/s⟩))}
In conventional language models, it is difficult for smoothing method to esti-

mate those conditional probabilities, but in neural network based language mod-

els, those probabilities can be estimated smoothly and accurately.

NNHWS can take this advantage while retaining the merit of HWS structures.
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Figure 13. Estimating the probability of a GHWSS by using NNHWS

7. Intrinsic Evaluation

7.1 Settings

We use two different corpora: British National Corpus and English Gi-

gaword Corpus.

British National Corpus (BNC) 15 is a 100 million word collection of sam-

ples of written and spoken English from a wide range of sources. We use all the

6,052,202 sentences (100 million words, 629,881 different types) for the training

data.

English Gigaword Corpus 16 consists of over 1.7 billion words of English

newswire from 4 distinct international sources. We choose the wpb eng part

(162,099 sentences, 20 million words, 181,523 different types, OOV=78,854) for

the test data.

As preprocessing of the training data and the test data, we use the tokenizer of

NLTK (Natural Language Toolkit) 17 to split raw English sentences into words.

We also converted all words to lowercase.

We use coverage score to perform evaluation. The word sequences modeled

from training data are defined as TR, while that of test data as TE, then the

coverage score is calculated by Equation (6). Obviously, the higher coverage score

15http://www.natcorp.ox.ac.uk
16https://catalog.ldc.upenn.edu/LDC2011T07
17http://www.nltk.org

31



a language model can achieve, the more it can relieve the data sparseness problem

(reduce the unseen sequences).

scorecoverage =
|TR∩

TE|
|TE|

(6)

If we enumerate all possible word combinations as word sequences, then we

can achieve considerable coverage score. However, the processing efficiency of a

model become extremely low. Thus, we also use usage score (Equation (7)) to

estimate how much redundancy is contained in a model.

scoreusage =
|TR∩

TE|
|TR|

(7)

A balanced measure between coverage and usage is calculated by Equation (8).

F -Score =
2×coverage×usage

coverage+ usage
(8)

As intrinsic evaluation of language modeling, perplexity [20] is also a common

metric used for measuring the usefulness of a language model. In the following

section, we also use perplexity to compare our models with other models.

7.2 Results

We compare word sequences modeled under GHWSS framework with conven-

tional n-gram sequences.

The NST-based method is in common with assumption-based method that

they both extract HWS-n-grams from GHWSS and use conventional smoothing

method (such as MKN) for probability estimation. Although they have differ-

ent implementation for permutation function f , they are totally comparable for

experiments. Thus, we use the same experiment settings for the two kinds of

methods.
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First, we evaluate coverage and usage on unique word sequences, which means

we count each word sequence only once irrespective of the number of times it

really occurs. The result is shown in Table 1.

According to the results, the coverage and usage of HWS-bi-grams are nearly

the same as that of conventional bi-grams. But as for tri-grams, each HWS-based

method improves a lot on both coverage and usage. We can also find that NST-

based method have better performance on coverage, but much worse performance

on usage. Which means NST-based method brings more redundancy.

We also execute the same experiment on total word sequences and the result is

shown in Table 2. The coverage and usage of HWS-uni-grams are a little larger

than conventional unigrams because HWS-based methods are not continuous and

consequently has more ending symbol ‘⟨/s⟩’s. Different from unique sequence ex-

periment, even in bi-grams, HWS-based methods have much better performance

than the conventional bi-gram model. As for tri-grams, the HWS-based methods

can even improve around 25 percentage points.

We also use different portions of different sizes of BNC corpus. We gradually

increase the amount of training data to examine how it affects the F-scores of

word sequences. As shown in Figure 14, all strategies improve along with the

increasing of training data size. Also, all those methods increase at almost the

same rate. Even we increase the training data size to 100 million words, HWS-

based methods still have a great advantage over the conventional n-gram models.

We also compare HWS to other models. For the purpose of comparing it

with gold standard dependency grammar, we use the English part of CoNLL2007

shared task for the data set 18. Dependency Grammar structure is compatible

with HWS except it allows one-to-many dependency relations. Thus, given a

English dependency structure shown in Figure 15, we can convert it into 3-gram

word sequences with directional information as {(has-L, date-L, a), (date-L, a-
L, ⟨/s⟩), (date-L, a-R, ⟨/s⟩), (has-L, date-L, record), (date-L, record-L, ⟨/s⟩),

18The types of words of training data is 26600, while that of test data is 1373. OOV = 107.
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Table 1. Coverage and Usage on Unique Word Sequences

Models Coverage(%) Usage(%) F-score(%)

conventional uni-gram 56.560 16.300 25.307

frequency-based HWS-uni-gram 56.560 16.300 25.307

dice-based HWS-uni-gram 56.560 16.300 25.307

dice-based HWS-uni-gram(NST) 56.560 16.300 25.307

tscore-based HWS-uni-gram 56.560 16.300 25.307

tscore-based HWS-uni-gram(NST) 56.560 16.300 25.307

abstraction-based HWS-uni-gram 56.560 16.300 25.307

conventional bi-gram 46.471 12.015 19.093

frequency-based HWS-bi-gram 46.066 12.019 19.064

dice-based HWS-bi-gram 45.995 11.894 18.900

dice-based HWS-bi-gram(NST) 46.136 9.273 15.442

tscore-based HWS-bi-gram 45.709 11.872 18.848

tscore-based HWS-bi-gram(NST) 46.435 11.387 18.288

abstraction-based HWS-bi-gram 46.015 12.007 19.045

conventional tri-gram 27.164 5.626 9.321

frequency-based HWS-tri-gram 36.512 8.546 13.85

dice-based HWS-tri-gram 35.994 8.359 13.567

dice-based HWS-tri-gram(NST) 36.100 7.068 11.821

tscore-based HWS-tri-gram 36.473 8.501 13.788

tscore-based HWS-tri-gram(NST) 36.820 8.031 13.186

abstraction-based HWS-tri-gram 36.885 8.659 14.026
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Table 2. Coverage and Usage on Total Word Sequences

Models Coverage(%) Usage(%) F-score(%)

conventional uni-gram 97.264 96.261 96.760

frequency-based HWS-uni-gram 98.577 98.039 98.307

dice-based HWS-uni-gram 98.577 98.039 98.307

dice-based HWS-uni-gram(NST) 98.577 98.039 98.307

tscore-based HWS-uni-gram 98.577 98.039 98.307

tscore-based HWS-uni-gram(NST) 98.577 98.039 98.307

abstraction-based HWS-uni-gram 98.577 98.039 98.307

conventional bi-gram 83.121 76.336 79.584

frequency-based HWS-bi-gram 89.730 86.937 88.312

dice-based HWS-bi-gram 86.854 87.139 86.997

dice-based HWS-bi-gram(NST) 89.939 85.296 87.556

tscore-based HWS-bi-gram 89.949 87.252 88.580

tscore-based HWS-bi-gram(NST) 89.969 86.617 88.261

abstraction-based HWS-bi-gram 90.056 86.836 88.417

conventional tri-gram 51.151 40.191 45.013

frequency-based HWS-tri-gram 72.432 67.221 69.729

dice-based HWS-tri-gram 64.456 65.625 65.035

dice-based HWS-tri-gram(NST) 72.118 61.613 66.453

tscore-based HWS-tri-gram 72.926 67.382 70.045

tscore-based HWS-tri-gram(NST) 72.548 65.403 68.790

abstraction-based HWS-tri-gram 72.283 65.335 68.633
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Figure 14. F-scores on Total Word Sequences with different Training Data Sizes

(date-L, record-R, ⟨/s⟩), (⟨s⟩, has-L date), (has-L, date-R, ⟨/s⟩), (⟨s⟩, has), (⟨s⟩,
has-R n’t), (has-R n’t-L, ⟨/s⟩), (has-R n’t-R, ⟨/s⟩), (⟨s⟩, has-R, been), (has-R,
been-L, ⟨/s⟩), (has-R, been-R, set), (been-R, set-L, ⟨/s⟩), (been-R, set-R, ⟨/s⟩),
(⟨s⟩, has-R, .), (has-R, .-L, ⟨/s⟩), (has-R, .-R, ⟨/s⟩)}. The results of coverage and
usage are shown in Table 3. For unique grams, our bi-gram model outperforms

dependency grammar based bi-gram model, while its trigram model outperforms

ours. For total grams, the results swap. We can also find that skip-gram models

do improve coverage at the sacrifice of usage, but even we skip 3 words, proposed

models still outperform skip-n-gram models on coverage.

Besides the coverage and usage, we also compare our model by evaluating other

measures, such like occupied memory, processing time and perplexity. The results

are summarized in Table 4.

Occupied memory: Compared to conventional trigram model, the size of skip-
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Table 3. Coverage and Usage on English CoNLL2007 Shared Task Data Set

(Unique / Total)

Models Coverage(%) Usage(%) F-score(%)

conventional bi-gram 63.260 / 71.574 1.309 / 22.899 2.566 / 34.697

1skip-bi-gram 67.585 / 74.890 0.683 / 14.567 1.353 / 24.390

2skip-bi-gram 69.439 / 76.327 0.481 / 11.680 0.956 / 20.260

3skip-bi-gram 71.087 / 77.688 0.385 / 10.514 0.766 / 18.522

dice-based HWS-bi-gram(NST) 72.348 / 83.591 1.737 / 43.091 3.393 / 56.867

dependency-bi-gram 69.124 / 84.195 1.645 / 46.722 3.213 / 60.096

conventional trigram 29.805 / 32.960 0.416 / 3.968 0.820 / 7.083

1skip-tri-gram 31.372 / 34.459 0.217 / 2.213 0.432 / 4.159

2skip-tri-gram 32.388 / 35.419 0.152 / 1.605 0.303 / 3.071

3skip-tri-gram 33.235 / 36.238 0.120 / 1.311 0.240 / 2.531

dice-based HWS-tri-gram(NST) 43.024 / 52.658 0.659 / 17.580 1.298 / 26.360

dependency-tri-gram 43.599 / 52.159 0.708 / 12.738 1.394 / 20.476
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Figure 15. An example of English dependency structure (from CoNLL2007 shared

task)

3-gram models grow fast along with the increase of skip words. Since proposed

model and dependency-based model adopt the directional information, which

means almost each word w are treated as two words w-L and w-R, their sizes are

nearly the same as that of 1skip-3-gram model. But for proposed method, we

have to use an extra memory to store the NST tree.

Processing time: We use a 3GHz Intel Core i7, 16 GB 1600 MHz DDR3 com-

puter to perform the experiment. For the time of conversion raw sentences into

sequences, conventional n-gram is the fastest method, only costs 2730ms. Also,

due to its smallest model size, its training time (MKN smoothing) only costs

10101ms too. Compared to skip-3-gram, proposed model performs much faster

either on sequence conversion or smoothing, but additionally, it needs an extra

step to train the NST from the training data, which is time-consuming.

Perplexity: Compare to conventional 3-gram model and skip-3-gram model,

proposed model can reduce the perplexity largely. The dependency grammar

based model outperforms our model slightly, but we use gold standard parsing

results for the dependency grammar based model while using a totally unsuper-

vised method for ours.

To clarify this, we compare our model to the generative dependency n-gram

language model, which is proposed by [12]. In this paper, they propose an un-
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Table 4. Other Performance on English CoNLL2007 Shared Task Data Set

Models Memory(mb) Training+Evaluation Time(ms) Perplexity

conventional trigram 39.6 2730 + 10101 208.171

1skip-tri-gram 68.5 5866 + 18668 185.490

2skip-tri-gram 95.3 7251 + 26033 178.078

3skip-tri-gram 119.5 9649 + 36874 86.120

db HWS-tri-gram(NST) 4.6 + 67.7 14754 + 3287 + 16351 57.761

dependency-tri-gram 71.4 dependency parsing + 17828 36.227

Table 5. The Perplexities of HWS Model and Generative Dependency N-gram

Language Model

Models en de es

conventional tri-gram 86 139 86

generative dependency tri-gram 156 261 158

dice based-HWS-trigram(NST) 40.885 54.325 46.464

supervised method to construct dependency structures (generative dependency

n-gram language model), by which parameters are estimated. For the datasets

and the performance of their model, we use exactly the same as they described in

their paper. The comparison results of perplexities are shown in Table 5. Same

as unsupervised methods, our model greatly outperforms the generative depen-

dency n-gram language model. It is also verified that our model performs well on

multiple languages.
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8. Extrinsic Evaluation

For the purpose of examining how our models work in the real world applica-

tion, we also performed extrinsic experiments to evaluate our method. In this

dissertation, we use the reranking of n-best translation candidates to examining

how language models work in a statistical machine translation task.

8.1 Settings

For training language models, we set English as the target language. As for

statistical machine translation toolkit, we useMoses system19 to train the trans-

lation model and output 50-best translation candidates for each sentence of the

test data. Then we use all English sentences to train language models. With these

models, 50-best translation candidates are reranked. According to these rerank-

ing results, the performance of machine translation system is evaluated, which

also means, the language models are evaluated indirectly. In this dissertation, we

use the following measures for evaluating reranking results.

BLEU [24]: BLEU score measures how many words overlap in a given candi-

date translation when compared to a reference translation, which provides some

insight into how good the fluency of the output from an engine will be.

METEOR [2]: METEOR score computes a one-to-one alignment between

matching words in a candidate translation and a reference.

TER [28]: TER score measures the number of edits required to change a

system output into one of the references, which gives an indication as to how

much post-editing will be required on the translated output of an engine.

We use open source tool multeval 20 to perform the evaluation.

We compare our models with SRILM 21 and RNNLM 22. For SRILM, we use

19http://www.statmt.org/moses/
20https://github.com/jhclark/multeval
21http://www.speech.sri.com/projects/srilm/download.html
22http://www.fit.vutbr.cz/ imikolov/rnnlm/
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Kneser-Ney as the smoothing method 23 and defaults for other settings. For

RNNLM, we use 30 hidden layers and 100 classes. We set -bptt as 4 and -direct-

order as 3.

For NNHWS, we use Tensor Flow framework 24 for the implementation. We

set the maximum words of left and right contexts as 3 separately, vocabulary

as 50000 and embedding dimensions as 128. For loss function, we use Sampled

Softmax Loss, and for optimizer, we use Adagrad algorithm. We perform our

algorithm 1000 iterations and for each iteration, we use 128 random batches.

8.2 Results

We first use the French-English part of TED talk parallel corpus for the exper-

iment dataset. The training data contains 139,761 sentence pairs, while the test

data contains 1,617 sentence pairs.

We use various word rearranging strategies to perform experiments and com-

pared them to the conventional n-gram strategy. For estimating the probabilities

of translation candidates, we use the modified Kneser-Ney smoothing (MKN) as

the smoothing method of all strategies. As shown in Table 8, HWS based strate-

gies outperform that of n-gram on each score, and NST-based method generally

outperforms their counterparts of assumption-based method.

To examine our methods on other languages, we also perform the same ex-

periment on Spanish-English, Japanese-English and Chinese-English dataset. As

shown in Table 7, for each language pair, HWS based strategies still outperform n-

gram strategy on all the three measures, especially with an obvious improvement

on TER score.

The NST-based methods perform better because NST trees encode much more

syntactical information inside, which makes the GHWSS constructed by NST

trees have more grammatical constraints than that of assumption-based methods.

23-interpolate kndiscount.
24https://www.tensorflow.org
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Table 6. Performance on French-English SMT Task Using Various Word Arrang-

ing Strategies

Models BLEU METEOR TER

conventional tri-gram(SRILM) 31.3 33.4 49.0

frequency-based HWS-tri-gram 31.7 33.6 48.6

dice-based HWS-tri-gram 31.5 33.5 48.5

dice-based HWS-tri-gram(NST) 31.8 33.6 48.3

tscore-based HWS-tri-gram 31.7 33.5 48.5

tscore-based HWS-tri-gram(NST) 31.7 33.6 48.4

abstraction-based HWS-tri-gram 31.5 33.5 48.6

But on the other hand, we should not also neglect that NST-based methods

are not as efficient as assumption-based methods. the NST trees require enor-

mous space to store it and make much redundancy as seen from the result of

the intrinsic experiment in this chapter. Building NST trees also increases the

computational complexity. The NST-based method is both time-consuming and

space-consuming.

Thus, it can be a tradeoff between the two methods, either should be selected

according with the demands of specific task.

We also use the baseline system described in Moses25 to evaluate NNHWS.

Equally, we use news-commentary-v8 and newstest2011 as training data and test

data separately 26.

The results is shown in Table 8, we can find that HWS-based strategies out-

perform conventional n-grams on BLEU and METEOR, and NST-based methods

perform better than their counterparts of assumption-based methods.

We also compare those models to RNNLM, which is considered as the state-

25http://www.statmt.org/moses/?n=Moses.Baseline
26Which can be downloaded at http://www.statmt.org/wmt13/training-parallel-nc-v8.tgz
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Table 7. Performance on Spanish-English, Japanese-English and Chinese-English

SMT Task Using Various Word Arranging Strategies

Spanish-English

Models BLEU METEOR TER

conventional tri-gram(SRILM) 31.9 34.9 48.8

frequency-based-tri-gram 32.0 34.9 48.5

dice-based HWS-tri-gram 32.0 34.9 48.2

dice-based HWS-tri-gram(NST) 32.1 34.9 48.2

tscore-based HWS-tri-gram 32.2 34.9 48.2

tscore-based HWS-tri-gram(NST) 32.3 34.9 48.1

abstraction-based HWS-tri-gram 31.9 34.9 48.4

Japanese-English

Models BLEU METEOR TER

conventional tri-gram(SRILM) 7.5 19.2 87.4

frequency-based-tri-gram 7.6 19.2 86.4

dice-based HWS-tri-gram 7.6 19.1 86.2

dice-based HWS-tri-gram(NST) 7.6 19.2 86.1

tscore-based HWS-tri-gram 7.6 19.1 86.4

tscore-based HWS-tri-gram(NST) 7.8 19.2 86.0

abstraction-based HWS-tri-gram 7.7 19.1 86.1

Chinese-English

Models BLEU METEOR TER

conventional tri-gram(SRILM) 12.5 22.1 76.7

frequency-based-tri-gram 12.6 22.2 76.2

dice-based HWS-tri-gram 12.5 22.1 76.0

dice-based HWS-tri-gram(NST) 12.5 22.1 76.0

tscore-based HWS-tri-gram 12.6 22.1 76.0

tscore-based HWS-tri-gram(NST) 12.6 22.1 76.0

abstraction-based HWS-tri-gram 12.6 22.2 75.9
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Table 8. Performance on French-English SMT Task Using Various Word Arrang-

ing Strategies

Models BLEU METEOR TER

conventional tri-gram(SRILM) 20.6 28.4 60.1

frequency-based HWS-trigram 20.6 28.5 60.4

dice-based HWS-tri-gram 20.7 28.6 60.3

dice-based HWS-tri-gram(NST) 20.7 28.6 60.2

tscore-based HWS-tri-gram 20.7 28.6 60.2

tscore-based HWS-tri-gram(NST) 20.7 28.6 60.1

Abstraction-based HWS-trigram 20.7 28.5 60.3

RNNLM 21.4 28.7 58.9

NNHWS 21.5 28.8 58.7

of-art language model. with the power of neural network, RNNLM gains an

obvious advantage on all measures, but when we apply neural network on HWS

structure, even better performance can be achieved, which proves the effectiveness

of proposed structure.

8.3 Analysis

For the purpose of clarifying the effect of the proposed model, we take below

example to reveal how reranking task benefits from HWS.

The best candidate outputted by n-gram model is “and he has around 70 ’s

.”, while the result given by HWS model is “and there are about 70 of them .”,

which is a better translation.

The reason why n-gram model select “and he has around 70 ’s .” is that

‘70’ is an OOV and n-gram estimate sentence probabilities in a continuous way.

Consequently, even ‘there are about ⟨NUMBER⟩ of them’ is quite a common
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expression, its probability is still assigned much smaller.

On the other hand, HWS estimates the probability of this sentence by the

following sequences.

{(⟨s⟩, .), (⟨s⟩, .-L ,are), (.-L ,are-L, there), (are-L, there-L, and), (there-L, and-

L, ⟨/s⟩), (there-L ,and-R ,⟨/s⟩), (are-L, there-R, ⟨/s⟩), (.-L ,are-R, of), (are-R

,of-L, about), (of-L, about-L ,⟨/s⟩), (of-L ,about-R, 70), (about-R ,70-L, ⟨/s⟩),
(about-R ,70-R, ⟨/s⟩), (are-R ,of-R, them), (of-R ,them-L, ⟨/s⟩), (of-R, them-R

,⟨/s⟩), (⟨s⟩, .-R, ⟨/s⟩)}
Among these sequences, patterns such like “... there are ... .” “... are ...

of ... .” (correspond to ‘(.-L ,are-L, there)’ and ‘(.-L ,are-R, of)’ respectively),

which repeatedly appear in the training data, are assigned bigger possibilities.

And sequences including OOV ‘70’, such like (of-L ,about-R, 70), are actually

calculated as how likely an unknown word generated from pattern “about ... of”.

Also, unlike n-gram models, this OOV won’t affect ‘them’ at all because ‘them’

is generated from patten “are ... of ...”.

Compare to conventional n-gram models, HWS models make it possible to take

advantage of repeated patterns (including long distance ones) for word predic-

tion and probability estimation. As a result, HWS models select more natural

translation candidate as the output.
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9. Conclusion

9.1 Summary

In this paper, based on the basic idea and structure of cognitive grammar, we

proposed a generalized hierarchical word sequence structure for language mod-

eling. Under this structure, we presented three different kinds of unsupervised

strategies for rearranging word sequences.

For evaluation, we compared our rearranged word sequences to conventional

n-gram word sequences and performed intrinsic and extrinsic experiments. The

intrinsic experiment proved that our methods can greatly relieve the data sparse-

ness problem, while the extrinsic experiments proved that SMT tasks can benefit

from our strategies. Both verified that language modeling can achieve better per-

formance by using our word sequences rearranging strategies, which also proves

that our strategies can be used as better alternatives for n-gram language models.

But on the other hand, compare to conventional n-gram language models,

our models relatively need more processing time, especially for the NST-based

method, which also needs an extra space for storing the tree structure. Also, since

HWS structure has to be constructed after reading the whole sentence, it is not

appropriate to apply it in some instant applications, such like speech recognition.

Despite these two disadvantages, we recommend to replace conventional n-grams

with HWS-n-grams under all kinds of NLP applications.

9.2 Future Work

9.2.1 Supervised HWS

For future work, we also plan to train HWS models in a supervise fashion.

According to the principles of Cognitive Grammar structure, we can build an

annotated corpus by converting sentences into CG-based dependency structures,

then use it for ‘parsing’ sentences into HWS structures. In this supervised fashion,
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the ‘parsing’ of CG-based dependency structure can be actually converted as the

classification of schemas. It is expected that the HWS models trained in this way

can achieve better performance than the unsupervised methods presented in this

thesis.

9.2.2 Pattern Embeddings

For the improvement of NNHWS, we also plan to treat patterns (or schemas

in CG) as an whole unit to train pattern embeddings, just as what we do to the

words in all kinds of neural network language models. As proposed structure is

constructed by hierarchical patterns, instead of using word embeddings, pattern

embeddings may reflect the mechanism of nature language more precisely.

9.2.3 Function-driven NLP

Once the goals described in Section 9.2.1 and Section 9.2.2 are completed, it

becomes possible to perform classical natural language processing applications in

a new function-driven fashion.

With those hierarchical pattern embeddings, the language comprehension pro-

cess can be considered as recognizing schemas from raw sentences hierarchically.

After mapping each schema to its corresponding function, the meaning of the

sentence can be hierarchically comprehended, which can be considered as the

process of semantic analysis.

On the other hand, the language generation process can be considered as speci-

fying certain function hierarchically. After mapping each specified function to its

corresponding schema, a CG grammar structure can be established. Combining

all the schema hierarchies into one line, a sentence can be generated.

With these two basic ideas, we have new solutions for some NLP applications.

For example, in the machine translation task, since we treat the whole pattern

as a unit and assign it with an embedding, after the training process, a pattern
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embedding space can be established . Furthermore, just as word embeddings,

for two different languages, the patterns sharing the similar functions may have

similar geometric arrangements in both language embeddings space too, which

makes it possible to perform function-driven machine translation. Given a sen-

tence of source language, we first hierarchically recognize the schemas and convert

it into the hierarchical pattern structure, then for each pattern in this structure,

we map it to the embedding space of the target language. Finally, we combine

the mapped hierarchical structure into one line, then the target translation can

be generated.

It is also possible to apply it into conversation system, given a sentence, we

first convert it into the hierarchical pattern structure, since a pattern with the

highest schematicity in this structure always represents the main function of this

sentence (e.x. ‘the more ... the more ...’, ’... would rather ... than ...’), the main

purpose of this sentence can be estimated. Then we treat the specific parts of this

pattern as the details of the sentence, processing with the knowledge database,

we can choose the most appropriate answer function. Then we map this function

to its corresponding schema, and hierarchically specify it, the appropriate reply

to the input sentence can be finally generated.

In summary, the function-driven method provides new solutions to many clas-

sical NLP tasks, which is a promising direction in Natural Language processing.

48



Acknowledgements

First I want to thank my mentor Professor Yuji Matsumoto. He has always

been very kind to every student. Since I majored in linguistics, I knew few things

about natural language processing before I came to Japan. Even so, he still

accepted me as his student and taught me from the basic. He taught me how

to write computer science paper and how to do research. He taught me how to

write code and how to use latex. Professor Matsumoto totally changed my life,

and I shall never forgot his kindness and endless support.

I am also grateful to Associate Professor Mamoru Komachi, Kevin Duh and

Hiroyuki Shindo, they all gave me many help and precious ideas.

I would also like to thank the staff in International Student Affairs and Ms.

Yuko Kitagawa. They all helped me too much in my private life these years. I

also want to thank the MEXT for providing me scholarship to complete my Ph.D

course.

Finally I want to thank my parents and my fiancee, they always support me

unconditionally, and give me courage when I encounter difficulties. Thanks for

their accompany. I dedicate this thesis to them.

49



References

[1] B. Allison, D. Guthrie, L. Guthrie, W. Liu, and Y Wilks. Quantifying the

Likelihood of Unseen Events: A further look at the data Sparsity problem.

Awaiting publication, 2005.

[2] S. Banerjee and A. Lavie. Meteor: An automatic metric for mt evaluation

with improved correlation with human judgments. In Proceedings of the

acl workshop on intrinsic and extrinsic evaluation measures for machine

translation and/or summarization, pages 65–72, 2005.

[3] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic

language model. In Journal of machine learning research, volume 3, pages

1137–1155, 2003.

[4] S. Bickel, P. Haider, and T. Scheffer. Predicting sentences using n-gram

language models. In Proceedings of the conference on Human Language

Technology and Empirical Methods in Natural Language Processing, pages

193–200, 2005.

[5] J. A. Bilmes and K. Kirchhoff. Factored language models and generalized

parallel backoff. In Proceedings of the 2003 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics on Human

Language Technology, volume 2, pages 4–6, 2003.

[6] P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D. Pietra, and J. C. La.

Class-based n-gram models of natural language. Computational linguistics,

18(4):467–479, 1992.

[7] P.F Brown, J Cocke, S.A Pietra, V.J Pietra, F Jelinek, J.D Lafferty, R.L

Mercer, and P.S Roossin. A statistical approach to machine translation.

Computational linguistics, 16(2):79–85, 1990.

50



[8] C. Chelba. A structured language model. In Proceedings of ACL-EACL,

pages 498–500, 1997.

[9] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for

language modeling. Computer Speech and Language, 13(4):359–393, 1999.

[10] W. Chen, M. Zhang, and H Li. Utilizing dependency language models for

graph-based dependency parsing models. In Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics, volume 1, pages

213–222, 2012.

[11] L. R. Dice. Measures of the amount of ecologic association between species.

In Ecology, volume 26, pages 297–302, 1945.

[12] C. Ding and M. Yamamoto. An unsupervised parameter estimation algo-

rithm for a generative dependency n-gram language model. In IJCNLP,

pages 516–524, 2013.

[13] D. Guthrie, B. Allison, W. Liu, and L. Guthrie. A closer look at skip-gram

modeling. In Proceedings of the 5th international Conference on Language

Resources and Evaluation, pages 1–4, 2006.

[14] X. Huang, F. Alleva, H.W. Hon, M.Y. Hwang, and K. F. Lee. The sphinx-ii

speech recognition system: an overview. 7(2):137–148, 1993.

[15] S. Katz. Estimation of probabilities from sparse data for the language model

component of a speech recognizer. Acoustics, Speech and Signal Processing,

35(3):400–401, 1987.

[16] R. Kneser and H. Ney. Improved backing-off for m-gram language modeling.

Acoustics, Speech, and Signal Processing, 1:181–184, 1995.

[17] R.W. Langacker. An introduction to cognitive grammar. 10:1–40, 1986.

51



[18] R.W. Langacker. Grammar and Conceptualization. Mouton de Gruyter, DE,

1999.

[19] R.W. Langacker. cognitive grammar - A Basic Introduction. Oxford, 2008.

[20] C. D. Manning and H. Schütze. Foundations of statistical natural language

processing. MIT Press, 1999.

[21] E. Mays, F. J. Damerau, and R. L. Mercer. Context based spelling correction.

Information Processing and Management, 27(5):517–522, 1990.

[22] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. Recur-
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Appendix

A. Modified Kneser-Ney Smoothing

The state-of-the-art method for smoothing is modified Kneser-Ney smoothing

proposed in [9]. Based on normal Kneser-Ney smoothing, MKN uses different

discount parameters for non-zero counts, whose calculation is shown as Equation

(9).

PMKN(wi|wi−1
i−n+1) =

max{C(wi
i−n+1)−D(C(wi

i−n+1)), 0}
C(wi−1

i−n+1)

+γhigh(w
i−1
i−n+1)P̂MKN(wi|wi−1

i−n+2)

(9)

The discount value D is a discount value calculate by Equation (10).27

D(c) =



0 if c = 0

D1 = 1− 2 n1

n1+n2

n2

n1
if c = 1

D2 = 2− 3 n1

n1+n2

n3

n2
if c = 2

D3+ = 3− 4 n1

n1+n2

n4

n3
if c > 2

(10)

And γhigh(w
i−1
i−n+1) is defined as Equation (11).28

γhigh(w
i−1
i−n+1) =

D1N1(w
i−1
i−n+1•) +D2N2(w

i−1
i−n+1•) +D3+N3+(w

i−1
i−n+1•)

C(wi−1
i−n+1)

(11)

The lower order models P̂MKN(wi|wi−1
i−n+1) are interpolated recursively as below.

27ni is the total number of n-grams which appear exactly i times in the training data.
28N1(w

i−1
i−n+1•) = |{wi : C(wi

i−n+1) = 1}|, and N2(w
i−1
i−n+1•) N3+(w

i−1
i−n+1•) are counted in a

similar way.
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P̂MKN(wi|wi−1
i−n+1)

=
max{N1+(•wi

i−n+1)−D(C(wi
i−n+1)), 0}

N1+(•wi−1
i−n+1•)

+γmid(w
i−1
i−n+1)P̂MKN(wi|wi−1

i−n+2)

(12)

where γmid(w
i−1
i−n+1) is defined as Equation (13).

γmid(w
i−1
i−n+1) =

D1N1(w
i−1
i−n+1•) +D2N2(w

i−1
i−n+1•) +D3+N3+(w

i−1
i−n+1•)

N1+(•wi−1
i−n+1•)

(13)
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