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Human Action Recognition-Based
Summarization of User-Generated Sports

Video∗

Antonio Tejero-de-Pablos

Abstract

Nowadays, a vast amount of videos are taken due to the exponential growth of
commercial devices capable of video recording. The main targets of such videos
include sports that users may record in, e.g., a public event or a professional
match. These videos are usually long, containing redundant and uninteresting
parts, and thus they are often stored and never reviewed again. The field of sports
video summarization allows to automatically extract the highlights of the original
video for a quick review. Existing work in this field leverages various knowledge
in application domains, e.g., structure of games and editing conventions, which
are commonly found in broadcast video. However, users’ self-recorded videos
normally lack any kind of editing conventions and the structure of the sport is
sometimes lost, and thus the existing work is ineffective.
This thesis approaches the challenge of summarizing self-recorded sports video

by resorting to the field of human action recognition (HAR). We hypothesize
that players’ actions can be recognized and used as a novel source of semantics to
elaborate summaries. The greatest difficulty in HAR is to deal with the variability
in the actors’ anthropometry and the camera viewpoint. This can be alleviated by
using depth information, obtainable by widely used commodity RGB-D sensors
(e.g., MS Kinect). The state-of-the-art works in HAR use classifiers that require
a large amount of training data, but in some cases we may not have such a big
dataset, e.g., when using a self-recorded one.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1461215, March 15, 2017.
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In this thesis, we first propose an HAR method with flexible learning that does
not require a large number of training instances to perform recognition. Unlike
other methods, ours successfully deals with the trade-off between accuracy and
flexibility. Then, we propose a novel user-generated sports video summarization
method that acquires higher level semantics of the video by applying the HAR
to RGB-D video sequences. We use the recognition results of the players’ actions
to model the interestingness of the lengthy original sequence and extract the
highlights of the game. We deal with the limited number of instances of our
self-recorded HAR dataset by using the aforementioned flexible HAR method.
We target sports that consist of a series of actions, such as tennis, boxing, and
martial arts. We took Kendo as an example sport to evaluate our method, and
investigated the accuracy and quality of the generated summaries objectively
and subjectively. We trained our novel highlights extraction model with the
subjective opinion of groups of users with different experience in the sport, and
studied the adequacy of our method to each group. We also studied the effect of
employing RGB and depth information together and separately when modeling
interestingness through the use of deep learning.

Keywords:

video summarization, human action recognition, sports video, user-generated
video, RGB-D camera
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1 Introduction

We live in an era where cameras and commercial devices capable of video record-
ing are widespread available in a variety of sizes and functionalities. This has lead
to an ever-growing enormous collection of unedited and unstructured video data
generated by users around the world [40,100]. Among them, sports video appeals
to large audiences, being one of the most popular themes. Nowadays users can
take sports video with their own devices at public events, professional matches,
etc. These user-generated videos are normally lengthy, with a lot of redundant
and uninteresting parts, and therefore they require summarization for an easier
review. Also, by reducing their size, we facilitate the distribution of the video
through different online platforms (e.g. social networks). Nevertheless, manually
extracting video highlights, i.e., the most interesting contents of the video, is a
very time-consuming task. In order to tackle this problem, the field of automatic
video summarization [102] studies techniques to automatically compact the con-
tent of a video to facilitate its storage, transmission, browsing, etc. Researchers
have studied sports video summarization for decades, and they have proposed sev-
eral methods for creating a summary with the interesting highlights of a sports
game [28,47,72]. Most of these methods are specific for broadcast video, since it
is edited following sport-specific conventions that are easily detected and can be
used to find the highlights of the game. For example, television programs, which
are recorded and edited by an expert, feature slow-motion replays, narration, su-
perimposed text, and fixed camera angles that imply a free kick in soccer or a
pitch in baseball [18]. Also, some sports like baseball and American football have
a certain structure in a game itself [47,72], which can be also used to extract the
moments of greatest interest in a game, and create a summary. For example, in
baseball, pitching and batting scenes intertwine in a way that is common to all
broadcasts.
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However, in contrast to broadcast video, normally user-generated sports video
does not follow any convention, and the structure of the sport is not always well
defined. The computer vision community has proposed several approaches to
understand the content of unstructured video and user-generated video (UGV).
These approaches range from the traditional clustering of video features that
eliminates redundancy, to the most recent works that use deep neural networks
to automatically learn features that allow modeling the interesting segments of the
video [49,116]. However, to the best of our knowledge the problem of summarizing
user-generated sports video has not been directly tackled to date. In order to
approach the problem of summarizing UGV of sports, we need to rely in a source
of features that should not depend on any editing convention and yet should be
present in every sports video. We, as a novel approach for video summarization,
propose to use the players as our source of features, more concretely, their actions.
The area of computer vision that studies how to model and classify human

actions from video is called human action recognition. Human action recognition
(HAR) attracts the attention of many researchers due to its numerous applica-
tions, such as video surveillance and human computer interaction [103]. How-
ever, providing a machine the ability to recognize human actions from an image
sequence is a challenging task due to their large variability in various factors [1].
In [88], the authors identify three main sources of variability in human actions:
viewpoint, execution rate/speed, and anthropometry.
While HAR has been traditionally applied to color images [8], the recent com-

modification of depth sensors provides a way to reduce the variability using depth
information [48, 77]. They provide 3D structure of scenes, which facilitates the
understanding of human actions under conditions in which 2D approaches may
be ineffective (e.g. motion perpendicular to the camera plane). Moreover, depth
sensors have opened a door for the development of novel techniques that have
been used in many computer vision-related research [31, 95]. A distinguished
technique, especially advantageous for HAR, is 3D articulated skeleton tracking
in real-time such as [89], which allows modeling human actions in terms of tra-
jectories of body joints. This method is more reliable than using other visual
features that are tied to the user’s appearance, such as silhouettes. Various tech-
niques have been proposed using depth sensors [107, 113], and more specifically,

2



human joint models. They use different types of classifiers such as hidden Markov
models (HMMs) and support vector machines (SVMs). Most of these recognition
methods rely on an expensive learning process with a large training dataset for
generalization performance. However, some applications may not count with a
large number of instances to be trained with or may need flexibility in learning
and classifying the user’s behavior (i.e. learning of new actions during runtime).
In this thesis, we hypothesize that using human action recognition techniques

we can obtain a representation of the players’ actions in a video by which we can
model the interesting highlights. For example, a boxing scene showing a parry
and an aggressive uppercut might be more interesting than a scene showing a feint
or a failed attack. With this idea in mind, we propose a first methodology for
which we recorded our own UGV of sports using a commercial RGB-D camera.
The 3D information provided us with accurate information on the movements of
players, but the dataset was not big enough to train current action classifiers. We
then came across with challenge of designing a flexible action recognition method
that could provide state of the art accuracy without requiring too many training
instances, as we mentioned above.
Once we overcame this challenge and proved our theory, another issue remained.

Although we believe that in the near future smartphones and other everyday de-
vices will be equipped with technology able to capture three dimensional infor-
mation, currently most UGV contain only color images (2D). We were pushed to
explore new methods for extracting players’ actions from UGV so that they allow
us to model highlights. Motivated by the outstanding results of convolutional
and recurrent neural networks, the latest fashion in image and video processing,
we propose another approach for user-generated sports video summarization in
order to surpass our previous method.
The remainder of this thesis is organized as follows. First, Chap. 2 reviews

the state of the art in sports video summarization, user-generated video summa-
rization and human action recognition. Then, Chap. 3 presents our approach for
flexible HAR using estimated 3D body joint positions that deals with the trade-off
between flexibility and accuracy. In Chap. 4 we use the HAR method presented in
Chap. 3 and present a novel approach for video summarization that aims to rec-
ognize players’ actions to model the highlights of a sports game. Continuing the

3



work in the previous chapter, Chap. 5 describes an improved methodology for mo-
tion feature extraction and highlights modeling for summarizing user-generated
sports video. Finally, Chap. 6 draws the main lessons learned from this thesis
and outlines several future work.
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2 Related work

The computer vision community has studied video processing tasks for a long
time. Tasks such as action recognition [111], abnormal detection [90], activ-
ity recognition [36] and video summarization [14] have a point in common, the
problem of feature representation of video. This section reviews the main state-
of-the-art works in the fields of sports video summarization, UGV summarization
and human action recognition, and states the contributions of our method.

2.1 User-generated sports video summarization

2.1.1 Sports video summarization

Summarization of sports video focuses on extracting the most interesting mo-
ments, or highlights, of a sports game/match. One of the major approaches
to analyze sports video for summarization is using editing conventions present in
broadcast programs, which are common to almost all videos of a specific sport [18].
In [28], the authors proposed summarizing broadcast soccer video based on edit-
ing conventions and detection of soccer field elements (e.g., goal) (Figure 2.1).
Leveraging editing conventions allows finding the highlights of a sports game eas-
ily [16,98]. For example, a slow-motion replay may indicate the presence of a key
point in the game [74], or certain pre-defined camera motion patterns can indicate
a shot in basketball and soccer [115] (Figure 2.2). Other methods use the “play”
structure of certain sports. In [47], authors use the “play” structure of Amer-
ican football, baseball and sumo wrestling for modeling their video highlights.
These “plays” are defined according to the rules of the sport (i.e., a touchdown
in american football), and can be detected based on the conventional patterns of
broadcast video (Figure 2.3). Other works leverage the metadata of sports videos
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Figure 2.1: Viewtypes in soccer: (a), (b) Long view, (c), (d) in-field medium view,
(e) close-up view, and (f) out of field view. Obtained from [28].

that use the MPEG-7 codec [26, 72], since it contains play information such as
the inning structure in a baseball game (Figure 2.4).
All the aforementioned summarization methods are based on domain dependent

heuristics, which makes them hard, if not impossible, to generalize to other sports.
This type of approaches represent the majority of sports video summarization
methods to date. However, they cannot be applied to UGV due to their lack of
structure and other conventions. Just very few methods have used motion as a
non-heuristic feature to generate the summary of a sports video. [60] uses a very

6



Figure 2.2: Key frame of clips for (a) horizontal motion, (b) vertical motion (c)
radial motion. Obtained from [115].

Figure 2.3: (a)-(c) A typical start of a regular play - a pitching scene. Other types
of starts include a base-stealing scene (d), which is also captured from
a fixed camera angle. Obtained from [47].

simple approach, taking the local minima of an optical flow function for keyframe
extraction in rugby videos. In a similar fashion, [12] calculates the direction of
the variations of the activity level in the color frames to represent how lively the
scene changes [25, 38, 44, 67], and then segment semantically relevant events in
broadcast games of soccer, basketball, and tennis. The results are acceptable
but do not allow to capture the most interesting highlights of a sports game. In
an attempt of performing a more precise semantic analysis of sports game, [121]
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Figure 2.4: Game tree of a (a) baseball video and (b) an American football video.
Obtained from [72].

Figure 2.5: Two typical frames derived from broadcast tennis video. (a) Close-
up, (b) Far-view, the zoomed picture is the player whose action is
recognized. Obtained from [121].

used action recognition on tennis players’ actions in combination with editing
conventions (Figure 2.5). However, due to the difficulty of recognizing actions
from the RGB video frames they were able to recognize only two action classes,
left swing and right swing.
In the next section we explain which methodologies are currently applied to

summarize UGV, which needs to be approached in a different way.

2.1.2 User-generated video summarization

Unlike conventional sports video, which is normally edited according to the con-
ventions of the sport (i.e. fixed camera angles, replays, etc.), user-generated video
(UGV) does not necessarily follow any particular convention, structure or image

8



Figure 2.6: From an input egocentric video, a storyboard summary of important
people and objects is calculated. Obtained from [46].

quality standards [38]. Summarization methods cannot rely on audio either, since
it is usually noisy. For this reason, instead of trying to understand the contents,
traditionally UGV summarization methods avoid any semantic interpretation of
the video with methods such as uniform frame sampling [62] and video feature
clustering [49]. This way, most of the work in UGV summarization try to convey
a brief but representative synopsis of a lengthy video, given priority to diversity
of the extracted segments. However, these segments do not always correspond to
the highlights, which depend heavily on the video domain.
Most highlight detection works focus on broadcasting sports video [35, 68, 83,

97, 109,114,117], but as we said in the previous section, we cannot use the same
techniques when dealing with UGV. For this reason, other types of features for
highlights modeling have been explored since then, such as interestingness [34,70],
important objects [46] (Figure 2.6) and attention [55]. Related to the latter, some
works model video highlights based on the viewers’ preferences, which can be ob-
tained explicitly from viewers or inferred from their reactions while watching the
video [76]. Recent work in [116] approaches highlight detection in UGV by learn-
ing which video segments contain semantics that are more interesting to the user
discarding those who are not (Figure 2.7). The authors try to avoid heuristic
rules (e.g. detecting the presence of the bride in a wedding video [17]) since they
do not generalize well to generic, unstructured videos. Instead, they leverage of
deep neural networks for unsupervised summarization. Recent advances in re-
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Figure 2.7: Highlight detection results in different video domains using RNN. The
red borders indicate snippets detected as highlights. Obtained from
[116].

current neural networks (RNN) allowed more sophisticated UGV captioning and
summarization approaches, including the generation of video titles and descrip-
tions. In [93] they automatically generate a highlight summary using the title of
the video as a reference, and viceversa in [118]. These works use LSTM [37], an
RNN that effectively models temporal relationships of the extracted features.
Video feature extraction have also been benefited from deep learning and, more

specifically, convolutional neural networks (CNN). The trend in recent UGV sum-
marization works is to leverage learned features obtained with a CNN that is pre-
trained with a large dataset. In [118], they use the well-known VGG network [92]
pre-trained with the also popular Imagenet [39] in order to extract features of user
generated videos (Figure 2.8). The problem with this network is that it lacks any
kind of motion modeling, focusing only in the appearance of the video frames.
However, in a genre such as sports video motion plays a very important role, so
motion and human actions should be also considered when extracting features to
model video highlights.
User-generated sports video summarization presents a new challenge that needs

to be approached taking into account the intricacies of summarizing sports video
and UGV. In the absence of any heuristics, user-generated sports video summa-
rization has been approached by extracting semantics from a different source, i.e.
the players’ actions. In [23], highlights are modeled by applying human action
recognition to the players’ actions and learning the sequences of moves and tech-
niques that the user considers interesting. Although some current methods for
highlight extraction of UGV use features based in motion (e.g., [116]), it is un-
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Figure 2.8: The highlights detection results are clearly based on the general ap-
pearance of the scene. Obtained from [118].

likely that these methods can differentiate between actions at a higher level (e.g.
different sequences of punches and defenses of both players in boxing). To the
best of our knowledge, ours [23] is the only work that approached user-generated
sports video summarization directly.
Next section reviews the state-of-the-art works in human action recognition,

and how we can make use of them to summarize UGV of sports.

2.2 Human action recognition

2.2.1 HAR in RGB video

Until recently, HAR has been performed exclusively on videos captured with
traditional cameras [8]. Some methods directly use captured images as spatio-
temporal volumes to represent motion [13, 61, 86]. In [9], Calderara et al. ex-
tracted trajectories from 2D images to represent how human motion varies in
time (Figure 2.9). However, finer action recognition requires to segment the hu-
man body and extract the pose information. Once the body model is obtained
from the video, different features related to the human pose can be extracted.
Fujiyoshi et al. [30] and Chen et al. [15] extract a primitive skeleton for modeling
human actions, in which the skeleton is simplified for reducing the computational
cost (Figure 2.10).
However, these methods suffer from some inaccuracies in the processing of RGB

images. According to [71], estimating human poses from 2D video is harsh due to
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Figure 2.9: 2D representation of human motion. Obtained from [9].

Figure 2.10: Simple skeleton representation obtained from 2D images for actions:
(a) Sidewalk and (b) Jump actions. Obtained from [15].

large variations in appearance. In addition, the segmentation of human figures in
order to estimate the pose in RGB images is very computationally expensive, due
to the high dimensionality of visual features [122]. In the same manner, since the
estimation of explicit positions of body parts in a continuous way is difficult, it is
also hard to create a general algorithm to learn the model parameters of human
actions. It should be noted that the main limitation of such 2D methods is that
poses are captured from a single point of view [81], and therefore, certain types
of actions can be highly ambiguous.

2.2.2 HAR in depth video

With the release of commodity depth sensors, HAR underwent a breakthrough
thanks to the application of additional 3D information [2]. The use of depth maps
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Figure 2.11: Examples of the sequences of depth maps for actions: (a) Draw tick
and (b) Tennis serve. Obtained from [48].

alleviates variations in human appearance to a great extent [7]; they can make
human segmentation in video far easier and almost immune to illumination, cam-
era blurring, and other factors that hinder HAR. Based on these premises, Li et
al. [48] used a depth sensor to obtain a depth map sequence, which is represented
as a bag-of-3D-points in order to model the actions (Figure 2.11). Although it out-
performed 2D methods, including other bag-of-words-based representations such
as [27], this method is still view-dependent because the sampling is performed
directly on the depth maps. Another technique involves applying histograms to
the 3D point cloud sequences captured by the sensor to calculate descriptors that
characterize human shape motion, such as histograms of 4D normals [73] and
principal components [80].
One of the advantages of using depth sensors for HAR is that it facilitates

the estimation of accurate 3D body joint positions from depth maps via skeleton
tracking (Figure 2.12). These 3D positions can be more direct cues for HAR,
providing robustness against variations in viewpoints. Such 3D body joint tra-
jectories used to be available only with expensive equipments such as motion
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Figure 2.12: (a) A depth image and (b) its corresponding estimated 3D body joint
positions. Obtained from [113].

capture devices (MoCap) [19], as in [54]. But currently they are obtainable with
commodity RGB-D sensors with built-in real-time 3D human tracking capabili-
ties (e.g. Microsoft Kinect), although the tracking is not exempt from errors [89].
For example, Xia et al. [113] proposed to use the body joints provided by Kinect
to perform HAR using HMMs.
Martínez-Zarzuela et al. [59] and Wang et al. [107] use the discrete Fourier

transform to represent the joint trajectories in the frequency domain and then feed
them into a classifier, Fuzzy ARTMAP [10] and support vector machines (SVMs)
[96] respectively. The discrete Fourier transform reduces the dimensionality of the
joint trajectories by assuming that the most crucial information is concentrated
in the lower frequency components. It also reduces noises due to tracking errors,
which is a problem inherent to joint estimation from depth maps.
Variations in execution rate of human actions have a negative impact in HAR

[104]. Many works have relied on DTW to gain robustness against these varia-
tions. Müller and Röder [66] used DTW to build semantically interpretable action
models by extracting relational features that encode temporal dynamics. These
relational features (e.g. the right hand is up or down) exclude a lot of detail of
the action, but retain view-invariant information about the overall configuration
of a pose for its classification. However, because of the loss of detail, this method
confuses actions when they are too similar or too short, and the accuracy is very
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dependent on the manually designed features. In [108], Wang and Wu dealt with
variations in execution rate by combining an SVM-based classification algorithm
with DTW. Alternatively to DTW, longest common subsequence (LCSS) is used
in [75] to make their action classifier invariant to temporal variations. In [4], the
authors find a representation of the body joint trajectories that is robust against
execution rate variations among subjects. They consider two HAR schemes, a
nearest neighbors (NN) classifier and an SVM classifier.

2.2.3 Flexible HAR applications

There are a range of HAR-based applications that require learning new actions in
runtime. Applications such as customizable gesture interfaces [52,63] and action
databases, either for indexing or retrieval [65,66], can benefit from such capability,
since they are expected to be able to recognize a new type of action right after
being input. This kind of applications also does not count with many learning
instances [78]. Hence in this thesis we consider the flexibility of approach by two
factors:

• Being able to learn a certain action class at runtime.

• Being able to recognize actions even with a very small number of training
instances.

We consider that a method is capable of runtime learning if it does not per-
form any optimization of the classifier when learning a new action instance. The
majority of the previously mentioned works rely on classifiers with a costly learn-
ing process that cannot be updated at runtime (e.g. SVM) and therefore are not
suitable for applications that require adaptive modification of the training model.
On the other hand, methods that are capable of runtime learning (e.g. NN) al-
low this, but to the best of our knowledge they have not proved state-of-the-art
accuracy yet.
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2.3 Action feature extracion from UGV of
sports using deep learning

To summarize the work exposed in Section 2.2, traditional works in human action
recognition (HAR) used hand-crafted features from color frames to model human
movement from RGB video [13,87]. With the commodification of depth cameras
(e.g., MS Kinect), the trend in HAR became leveraging three-dimensional infor-
mation in order to disambiguate movements parallel to the camera plane [5] and
gain robustness to occlusions, variability in lighting conditions, etc. [7]. These
works use either depth maps [48, 59, 73] or 3D joints estimated from the depth
maps [107,113] to obtain the highest accuracy in action datasets such as MSRAc-
tion3D and MSRDailyActivity3D.
However, with the exponential grow of UGV, the trend of deep learning also

influenced the field of HAR. The advantage of using CNN over methods that
use hand-designed local features, such as SIFT [53, 84], HOG [22, 43] or dense
trajectories [105], is that CNN learn directly from data and consequently the
extracted features are more generalizable to many domains. Contrary to what one
might think, this does not make CNN less accurate than hand-crafted features;
the state of the art shows how CNN-based methods trained using large-scale
action datasets are able to outperform them for several types of tasks (e.g., object
detection, action recognition, etc.) [101].
It is also known that 3D CNN are more suitable for spatiotemporal feature

learning compared to 2D CNN [101]. Whereas the CNN used to extract features
from images is two-dimensional, a three-dimensional CNN is an extension that
includes the temporal dimension, and it is used in the case of video. In [45], a
3D convolutional neural network along with used independent subspace analysis
(CNN-ISA) is used to recognize human actions from realistic video datasets.
Also in [101], authors introduce a CNN called C3D that they use to extract
features from action videos. C3D is generic on capturing appearance and motion
information from videos and it can be used for different tasks depending on the
dataset it is trained with (i.e., 1Msports for action recognition, YUPENN for
scene recognition).
The latest trend in CNN-based HAR methods is utilizing two types of streams,
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Figure 2.13: Example of a two-stream CNN that separately captures appearance
and motion. Obtained from [29].

a spacial appearance stream for representation of images, and a temporal motion
stream for representation of local motion features [29, 91] (Figure 2.13). First,
video is decomposed into spatial and temporal components by using RGB and op-
tical flow frames. These are fed into separate CNNs to learn spatial and temporal
information of the objects in the scene. Each stream performs video recognition
separately and softmax scores are combined for classification. This architecture
is supported by the two-stream hypothesis of neuroscience, in which the human
visual system would be composed of two different streams in the brain, the dorsal
stream (spatial awareness and guidance of actions) and the ventral stream (object
recognition and form representation) [32] (Figure 2.14).

2.4 Contributions of this thesis

In this thesis, we propose and evaluate a novel HAR approach focused on flexibil-
ity. Our method is based on the nearest neighbor (NN) approach [21] and uses the
joint trajectories estimated from the depth maps, referred to as action templates
(ATs), as a model for each action class. Unlike other state-of-the-art methods,
ours does not require a computationally expensive learning process; modification
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Figure 2.14: The human visual system is composed of the dorsal stream (green)
and the ventral stream (purple). The dorsal stream is responsible for
detection of location and motion. Obtained from Wikipedia: Motion
perception.

of the model can be done by just adding new labeled joint trajectories to the
set of ATs. For action classification of an unknown action sequence, our method
calculates the distance between that sequence and each AT via dynamic time
warping (DTW), which is widely used for analyzing time series data [79]. The
joint trajectories estimated from depth maps are generally noisy, which might hin-
der recognition accuracy. For this reason, we include in our ATs the confidence
values of each tracked joint along with their respective position, and modify the
DTW algorithm to calculate a distance between actions while avoiding erroneous
trajectory sections.
We also propose a novel method for user-generated sports video summarization

using a new source of semantics extraction, i.e., depth of scenes, which becomes
available and affordable due to the recent development of RGB-D sensors includ-
ing Microsoft (MS) Kinect. More specifically, some sports, such as tennis, boxing,
and martial arts, consist of a series of actions (e.g., uppercut, and jump-kick),
and our method automatically labels them by applying human action recognition
(HAR) to RGB-D video sequences. Unlike other state-of-the-art methods, ours
does not require We model the highlights of a game based on HAR results to ex-
tract them from a lengthy original RGB-D video. To the best of our knowledge,
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this is the first attempt to use this kind of analysis for video summarization. We
evaluate our method objectively and subjectively, surveying users with different
experience in the sport.
Finally, we describe an improved method for user-generated sports video sum-

marization. Inspired in the latest trends in deep learning for HAR, we propose
a two-stream architecture that uses detailed and coarse motion features. We
study a range of representations of actions from video, from human pose esti-
mation using depth maps to learning spatiotemporal features for videos using
convolutional networks trained on large-scale RGB video datasets. We model
the highlights of our videos by learning the temporal relationship of our features
through a recurrent neural network designed for this particular task. We surveyed
users with different levels of experience in the sport to investigate the adequacy
of our method to their particular preferences, and compared it to our previous
approach. Table 2.1 shows the comparison of our method with other sports video
summarization methods according to their requirements.

Table 2.1: Comparison of sports video summarization methods.

Method
Structure of
the sport

Post-editing
Predefined
camera angles

Player action
recognition

MPEG-7
metadata [72]

Yes Yes No No

“Play” detection [47] Yes No No No

Shot detection [115] No No Yes No

Narration/text [28] No Yes No No

Optical flow
variations [60]

No No Yes No

Our method [23] No No No Yes
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3 HAR for RGB-D video
datasets with a reduced
number of instances

3.1 Overview

As we introduced in Chap. 1, our first approach to sports video summarization
should be able to recognize players’ actions to model video highlights. However,
due to the lack of a user-generated benchmark of sports video, we decided to
create our own annotated dataset. As many other self-recorded datasets, ours
did not have a number of instances big enough to train a very sophisticated
method, although we still needed to recognize actions. This motivated the work
presented in this chapter. We introduce a novel action recognition aproach that
uses 3D joints estimated from depth maps in RGB-D video. The novelty of our
method lies in its flexibility to learn new instances and its capability of recognizing
actions even with a reduced number of learned instances. Several methods can
take advantage of these benefits, such as applications that need to learn new
actions in real-time, or like in our case, applications with a reduced number of
training instances. Besides, the use of 3D positions assures more accuracy when
recognizing actions, especially those perpendicular to the camera plane.
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3.2 Flexible HAR using masked 3D joint
trajectories

Fig. 3.1 depicts an overview of our method, which takes a nearest neighbor-based
approach to gain flexibility instead of learning a classifier for each action class.
We first estimate the 3D joint positions using skeleton tracking from a series of
depth map sequences using, e.g., [120], and store them with their action labels as
instances of a training dataset. One of the main issues that lead to failure in HAR
is concerned with the estimation errors in the skeleton tracking, as stated in [107].
Fortunately, the joint position estimation algorithm provides a confidence value
for each joint tracked in each frame. Our method uses it for both learning and
recognition stages to alleviate the problem of erroneous skeleton tracking. Then,
we prepare an AT for each given action class, which can be viewed as a model
of a specific action. Each AT consists of a set of joint trajectories of the action
instances belonging to that class along with the confidence values for each joint
positions.
At the recognition stage our method tracks the joint trajectories of an unknown

action instance in the same way as the learning process, and retrieves its closest
instance from the ATs in the database. Since different instances of the same action
can be subjected to temporal variations (especially different length and execution
speed), we employ a DTW-based distance measure for template matching during
the nearest neighbor-based classification.

3.2.1 Action templates learning

To generate an AT, we manually select J = 15 different joints from the skeleton
tracked in an action instance, as illustrated in Fig. 3.2. Let p′fj = (xfj, yfj, zfj)>

denote the 3D position of joint j at frame f . Since these positions are in the
RGB-D sensor’s coordinate system, they can vary from one action instance to
another depending on the position of the actor relative to the sensor. For re-
ducing this variability, we transform the joint coordinates so that a certain joint
coincides with the origin to improve the robustness against viewpoint variations.
In this work we choose the torso as the origin, thus denoting the transformed
joint position as pfj = p′fj − p′

ftorso.
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Figure 3.1: Overview of our HAR method. The 3D joint positions (x,y,z) along
with the confidence value (c) are tracked from the video source to
build action templates for each action class. They are used to match
new actions and updated at runtime.

The joint trajectories of all the instances from a certain action class are then
aggregated to form an AT. Along with them, the associated confidence values
of the tracked positions offered by the joint estimation algorithm of the skeleton
tracker [120] are also included. Let mi be the action class label for the joint
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Figure 3.2: Human body joints used in our method. Numbering and names cor-
respond to the ones used in the skeleton tracker.

trajectories of the instance i in the training dataset (mi = running, for example),
Pi = {pi

fj|f = 1, . . . , Fi, j = 1, . . . , J} the corresponding joint trajectories, and
Ci = {ci

fj|f = 1, . . . , Fi, j = 1, . . . , J} their corresponding confidences, where Fi

is the number of frames for action instance i. The AT for action class M is then
a set of joint trajectories with their respective confidence values, i.e.,

AM = {(Pi, Ci)|i s.t. mi = M}. (3.1)

The learning process only requires the generation of ATs.

3.2.2 Action classification

Our recognition process calculates a distance measure to find in our ATs the
action instance that is the nearest neighbor of the given unknown instance. Due
to the variability in the execution of human actions, naive distance measures
are not applicable. For this reason, we employ the use of a DTW-based distance
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Figure 3.3: Similarity between two temporal signals via dynamic time warping.
Obtained from Wikipedia: Dynamic time warping.

measure, which does not require temporal alignment nor synchronization between
a pair of sequences in different sizes [79] (Figure 3.3).
Let U = {ufj|f = 1, . . . , FU, j = 1, . . . , J} be the joint trajectories of an

unknown action instance, with F and J as the total number of frames of the
action and the number of joints, respectively. Note that length FU of an unknown
action and length Fi of an action instance in an AT are generally different. The
local distance between the positions of joint j in frame f of U and frame f ′ in Pi

is defined as the Euclidean distance as follows:

e(ufj,pi
f ′j) = ‖ufj − pi

f ′j‖2. (3.2)

Then, using confidence value cfj generated during the tracking we apply a mask
to the trajectory of each joint j for each frame f . If this value is smaller than a
predefined threshold τ , we determine that that part of the trajectory is not useful
for classification. Therefore we assign a binary weight to each point of a joint
trajectory by

wfj =

 1 if cfj ≥ τ

0 otherwise
. (3.3)

This weighting is applied to the joint positions of both U and Pi. This means
only J ′ out of the J joints are used for frame f , where J ′ is the number of joints
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that are not masked (J ′ ≤ J). Thus, we define the masked distance between all
joint positions uf and pi

f ′ in frames f and f ′ as

d(uf ,pi
f ′) = 1

J ′

J∑
j=1

e(ufj,pi
f ′j)wfjwf ′j. (3.4)

Using this distance, the DTW-based distance measure between U and Pi is
defined as the minimum sum of the local distances over a warping path. Namely,
letting tn = (fn, f

′
n) be a pair of frames, f for the unknown action instance U

and f ′ for the one in an AT, and T = {tn|n = 1, . . . , N} a warping path over
which the sum is calculated, the DTW-based distance D is given by

D(U, Pi) = min
T

∑
(fn,f ′n)∈T

d(uf ,pi
f ′) (3.5)

subject to t1 = (1, 1) and tN = (FU, Fi)
f1 = 1 ≤ f2 ≤ · · · ≤ fN = FU

f ′1 = 1 ≤ f ′2 ≤ · · · ≤ f ′N = Fi

tn+1 − tn ∈ {(1, 0), (0, 1), (1, 1)}.

(3.6)

Eq.(3.5) can be minimized by dynamic programming.
Since the nearest neighbor-based approach needs to compare the distances

calculated for action instances of different length, a normalized version of this
distance is calculated. The normalizing factor in this case is the length of the
warping path T , that is

D′(U, Pi) = 1
N
D(U, Pi). (3.7)

The action class m∗ for the unknown action instance U is given as the one
whose AT includes an action instance that gives the minimum distance with U ,
i.e.,

m∗ = mi∗ where i∗ = arg min
i

D′(U, Pi). (3.8)

Algorithm 1 summarizes the action recognition process.
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Algorithm 1 Proposed recognition method for Action Templates
Input: Unknown action sequence U
Initialize D̄ =∞ and ī = 0
for each action instance Pi in all ATs do
Calculate D′(U, Pi)
if D′(U, Pi) < D̄ then
D̄ ← D′(U, Pi)
ī← i

end if
end for
Return: mī

Figure 3.4: Example image of the datasets used. Left: self-generated, center:
CMU MoCap, right: MSR-Action3D.

3.3 Experimental results

In order to evaluate our approach for generic HAR, we choose datasets containing
heterogeneous actions [11] involving the whole body. More specifically, we used
the CMU MoCap dataset, the MSR-Action3D dataset and our self-generated
dataset, and compared the results with other state-of-the-art methods. A sample
frame of each one is shown in Fig. 3.4.

3.3.1 Implementation details

The recognition algorithm was implemented in Matlab, running in Windows 8
(64 bit), installed in a PC with an Intel Core i7 processor and 16 GB RAM. In
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addition, for the experiments, we used an empirically determined threshold value
τ = 0.1.

3.3.2 Self-generated UGOKI3D dataset

The UGOKI3D dataset was generated using a Microsoft Kinect v1 for evaluating
our previous HAR method, which used the discrete Fourier transform and neural
networks [59]. It is comprised of 8 heterogeneous actions that involve all body
parts, and with different characteristics: periodic, aperiodic, static (the location
of the user in the scene does not vary) and non-static. The actions are performed
by 9 actors of different gender and appearances: (a) bending, (b) jumping-jacks,
(c) jumping-forward, (d) jumping, (e) side-galloping, (f) walking, (g) waving one
hand, (h) waving both hands. For the sake of comparability, we used the same
evaluation scheme, applying leave-one-out (LOO) cross validation, in which we
trained our model with sequences of 8 actors and evaluated our proposed method
with the sequences of the remaining 1 actor. The accuracy was averaged over all
9 iterations.
The average accuracy rate obtained in this experiment was 94.44%, which is

higher than the one achieved with our previous method (93.05%). The confusion
matrix for all actions is shown in Table 3.1, whose rows and columns indicate
the ground truth and recognition results respectively. As it can be observed,
the most common classification errors involved actions that present similar fast
position variations in the lower body, i.e. jumping-forward and walking. One of
the reasons of these inaccuracies is the occasional errors in the skeleton tracking.

3.3.3 CMU MoCap dataset

To show the potential performance of our proposed method when the skele-
ton tracking is almost perfect, we used the motion capture dataset provided by
Carnegie Mellon University, which contains actions captured at 120 fps [19]. This
dataset was not generated from sequences captured with depth sensors, but with
a motion capture technique using markers attached to the human body. This
dataset is composed by multiple actors performing heterogeneous actions divided
in categories such as locomotion and sports. However, not all the actors perform
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Table 3.1: Confusion matrix for the UGOKI3D dataset
(a) (b) (c) (d) (e) (f) (g) (h)

(a)
100%
(9\9)

(b)
88.89%
(8\9)

11.11%
(1\9)

(c)
88.89%
(8\9)

11.11%
(1\9)

(d)
100%
(9\9)

(e)
100%
(9\9)

(f)
11.11%
(1\9)

11.11%
(1\9)

77.78%
(7\9)

(g)
100%
(9\9)

(h)
100%
(9\9)

every action, and the number of instances of each action can vary largely. To
be consistent with the experiment in the previous section, a subset of 8 different
actions was selected, with a noticeable emphasis on the lower body, i.e. (a) run-
ning, (b) walking, (c) jumping forward, (d) jumping, (e) soccer kick, (f) boxing, (g)
jumping jacks, (h) hand signs. Also, although the dataset offers joint trajectories
in more than 20 body parts we use its subset that corresponds to the 15 joints
of our UGOKI3D dataset. In addition, since this skeleton tracking method does
not provide a confidence parameter, we did not use masking for this experiment
(wfj = 1).
Our method was evaluated applying LOO cross validation again, achieving the

accuracy of 97.22%. The accuracy for each action is summarized in the confusion
matrix of Table 3.2. Only the jumping jacks action is misclassified twice; in one
sequence the actor only performed half a repetition, and in the other the actor did
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not move the arms accordingly to the action. As expected, due to the accurate
joint estimates, the results of this experiments were highly accurate, regardless
of the types of actions. We also evaluated our previous method [59], resulting in
an inferior accuracy of 91.67%.

Table 3.2: Confusion matrix for the CMU MoCap dataset
(a) (b) (c) (d) (e) (f) (g) (h)

(a)
100%
(9\9)

(b)
100%
(9\9)

(c)
100%
(9\9)

(d)
100%
(9\9)

(e)
100%
(9\9)

(f)
100%
(9\9)

(g)
11.11%
(1\9)

77.78%
(7\9)

11.11%
(1\9)

(h)
100%
(9\9)

3.3.4 MSR-Action3D dataset

The MSR-Action3D dataset includes various challenging actions and has been
widely used to evaluate HAR methods. This dataset contains twenty different
static actions performed by up to 10 actors, and the same actor did the same
action from one to three times. The actions are: (a) high arm wave, (b) horizontal
arm wave, (c) hammer, (d) hand catch, (e) forward punch, (f) high throw, (g) draw
x, (h) draw tick, (i) draw circle, (j) hand clap, (k) two hand wave, (l) side-boxing,
(m) bend, (n) forward kick, (o) side kick, (p) jogging, (q) tennis swing, (r) tennis
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serve, (s) golf swing, (t) pickup & throw. The dataset was built using sequences
captured with depth sensors at 15 fps. It provides the 3D position and the
tracking confidence of 20 joints per frame, but we kept using 15 joints for our
proposed method since we considered the extra five (wrists, ankles, and center
hip) do not add much information to the model. Although some works highlight
its difficulty resides in the similarity of its actions, in our opinion, the dataset is
challenging due to the noise present in the skeleton tracking. Fig. 3.5 shows some
unrealistic poses included in the dataset.

Table 3.3: Action subdivision of the MSR-Action3D dataset used in the
experiments
Subset 1 (SS1) Subset 2 (SS2) Subset 3 (SS3)
Horizontal arm
wave

High arm wave High throw

Hammer Hand catch Forward kick
Forward punch Draw x Side kick
High throw Draw tick Jogging
Hand clap Draw circle Tennis swing
Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing
Pickup & throw Side boxing Pickup & throw

We followed the evaluation methodology employed in previous works [4, 48,
73, 107], and divided the 555 instances into three groups as shown in Table 3.3.
For each group, we conducted a cross-subject experiment in which the actions
performed by actors 1, 3, 5, 7, and 9 were used for training and the ones from
actors 2, 4, 6, 8, and 10 for testing. The overall recognition accuracy obtained in
the experiment was 84.09%. The individual accuracy rates for SS1, SS2, and SS3
are 80%, 78.57%, and 93.69% , respectively. The first two subgroups were more
erroneous than the third one. These results are shown in detail in Tables 3.4, 3.5,
and 3.6.
Table 3.7, obtained partially from [107], shows the generalization performance

of our method compared with other state-of-the-art methods that were evaluated
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Figure 3.5: Noise present in the MSR-3DAction dataset. Left: base position,
center and right: noisy samples.

against this dataset using the same configuration. The upper part of the table
lists the methods that are capable of runtime learning (e.g. NN), and the lower
part of the table lists the ones that are not (e.g. SVM). Our method’s accuracy
outperforms the other HAR methods that are capable of runtime learning by far,
and is very close to the state-of-the-art methods. Compared with the other two
datasets used, the MSR-Action3D has a larger presence of tracking noise. As
Müller and Röder remarked in [66], when performing HAR with noisy templates,
recognizing new actions becomes hard (see Table 3.5). However, when we apply
the confidence value of the skeleton tracker to avoid using the erroneous sections in
the AT, matching the recognition performance of our method improves noticeably,
as shown in Table 3.7.
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Table 3.4: Confusion matrix for the MSR-Action3D dataset (SS1)
(b) (c) (e) (f) (j) (m) (r) (t)

(b)
50%
(6\12)

8.33%
(1\12)

41.67%
(5\12)

(c)
75%
(9\12)

25%
(3\12)

(e)
100%
(11\11)

(f)
18.18%
(2\11)

9.09%
(1\11)

72.73%
(8\11)

(j)
100%
(15\15)

(m)
46.67%
(7\15)

53.33%
(8\15)

(r)
100%
(15\15)

(t)
7.14%
(1\14)

92.86%
(13\14)

3.3.5 Flexible HAR

We evaluate the performance of our proposed method’s capability of learning
new action instances in runtime. We assume a scenario of a customizable gesture
interface for a certain application system, in which a command for the system is
issued via the gesture interface whose backend is our HAR method. This scenario
supposes that the gesture interface has a predefined set of gestures, each of which
has a single instance of the corresponding gesture when initialized. The interface
learns at runtime; if the interface fails in correctly recognizing an input instance
of a gesture, the user specifies the correct label of the instance and the interface
includes it to the corresponding AT.
To demonstrate the performance under this scenario, we used the action classes

contained in each subset of the MSR-Action3D dataset instead of actual gestures
(8 different action classes per subset). We used 20 action instances of each action

32



Table 3.5: Confusion matrix for the MSR-Action3D dataset (SS2)
(a) (d) (g) (h) (i) (k) (l) (n)

(a)
83.33%
(10\12)

8.33%
(1\12)

8.33%
(1\12)

(d)
50%
(6\12)

16.67%
(2\12)

16.67%
(2\12)

16.67%
(2\12)

(g)
92.31%
(12\13)

7.69%
(1\13)

(h)
20%
(3\15)

80%
(12\15)

(i)
26.67%
(4\15)

13.33%
(2\15)

60%
(9\15)

(k)
100%
(15\15)

(l)
6.66%
(1\15)

86.68%
(13\15)

6.66%
(1\15)

(n)
100%
(15\15)

class in the subset, and divided it into two groups: 10 for learning and 10 for
testing. That is, for each subset we use a learning and testing groups of 80 action
instances each. At the start, we generate the ATs with a single instance for each
class, and then we feed the remaining instances in the learning group one by one
(72 instances in total). If our HAR method fails to recognize one instance, it adds
that instance to the corresponding AT. We evaluated the accuracy of the method
using the test set after an instance in the learning group is input. We repeat this
100 times, randomizing the instances in the learning and testing groups, and the
order of the input learning instances. The recognition accuracy is the average of
all repetitions. We also measured the time required for recognizing the instances
in the test set, which is also averaged over the 100 repetitions.
Figure 3.6 shows the runtime accuracy of our method for each instance in the

learning group evaluated against the test group. The final recognition accuracies
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Table 3.6: Confusion matrix for MSR-Action3D dataset (SS3)
(f) (n) (o) (p) (q) (r) (s) (t)

(f)
81.82%
(9\11)

18.18%
(2\11)

(n)
100%
(15\15)

(o)
90.91%
(10\11)

9.09%
(1\11)

(p)
100%
(15\15)

(q)
100%
(15\15)

(r)
100%
(15\15)

(s)
100%
(15\15)

(t)
28.57%
(4\14)

71.43%
(10\14)

achieved for subsets SS1, SS2, and SS3 are 75.12%, 79.06%, and 88% respectively,
with 37, 35, and 27 instances on average added to the ATs respectively (see
Figure 3.7). By comparing these results to the previous experiment, it can be
noticed that our method is able to provide a similar accuracy generating ATs in
runtime with less than half the action instances than the previous configuration.
It is also remarkable the fact that our method achieves accuracies around 50%
with just a single instance per action class. Figure 3.8 shows the time in seconds
spent in classifying one gesture using our implementation. It grows from 0.5 sec
to about 2 sec almost linearly as the number of learned instances in our ATs
grows.
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Table 3.7: Recognition accuracy comparison for the MSR-Action3D dataset
Method Accuracy Type
Proposed method 84.09% Skeleton
Proposed method (no noise masking) 79.31% Skeleton
Rate-invariant Analysis (NN) [4] 63% Skeleton
Dynamic Temporal Warping [66] 54% Skeleton
MMTW [108] 92.57% Skeleton
Joint Movement Similarities [75] 91.2% Skeleton
HOPC [80] 90.9% Depth
Rate-invariant Analysis (SVM) [4] 89% Skeleton
HON4D [73] 88.36% Depth
Mining Actionlet Ensemble [107] 88.2% Skeleton
Histograms of 3D joints [113] 78.97% Skeleton
Action Graph on Bag of 3D Points [48] 74.7% Depth
Hidden Markov Model [54] 63% Skeleton
Recurrent Neural Network [58] 42.5% Skeleton
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Figure 3.6: Recognition accuracy during runtime learning. Horizontal axis: input
instances, vertical axis: average recognition accuracy (percentage).

35



0

5

10

15

20

25

30

35

40

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

sTA eht ni secnatsni fo reb
mun latoT

Input instance

SS1

SS2

SS3

Figure 3.7: Total number of instances in the ATs during runtime learning. Hori-
zontal axis: input instances, vertical axis: average number of instances
in the ATs.

3.3.6 Discussion

Our experimental results have shown that our approach can be successfully ap-
plied for HAR at runtime in depth video sequences. In comparison with many
related works, we use raw 3D joint trajectories instead of other representations
[59,66,107] such as Fourier transform, joint mining, or boolean features, thereby
reducing the computational cost of learning. By applying DTW we gain robust-
ness against variations in execution rates, which heavily affect HAR. Although
this methodology is more sensitive to the noise present in the joint position esti-
mation, we manage to effectively alleviate this problem by using the confidence
values provided by the skeleton tracker itself. We achieved high recognition rates
for a wide variety of actions (periodic, static, etc.) and sensors (high frame rate,
low frame rate), and outperformed other methods that are capable of runtime
learning on the challenging MSR-Action3D dataset.
Compared to the state-of-the-art methods that are not capable of runtime

learning, our performance is slightly inferior. We consider the reason is that we
do not rely on an intricate training phase in order to reduce the cost of learning a
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Figure 3.8: Classification time for one instance during runtime learning. Hori-
zontal axis: input instances, vertical axis: average classification time
(seconds).

new action instance. Besides, our feature set consists of a small number of joint
positions tracked in real time, with no other RGB/depth information. Basically,
our method deals with a trade-off between flexibility and accuracy in order to
allow for runtime learning. For example, Wang and Wu [108] also deal with
variations in execution rate of actions using a human joint model. But contrary
to our proposed method, their maximum margin temporal warping (MMTW)
method relies on a costly SVM algorithm in order to extract the optimal template
for the training dataset. Therefore, it can be considered that MMTW is not
suitable for runtime learning of new action instances. Also, in their skeleton
approach, they use 1140 (20× 19× 3) features per frame which is the distance in
the three-dimensional space of each body joint offered by Kinect to the rest. In
order to maintain the computational efficiency, our method uses only 45 (15× 3)
features per frame. The same can be said for other works [4, 75,107].
Besides, we have proved experimentally that our method offers a great flexibil-

ity that would allow users to provide some feedback on wrong classifications or
even to add a new action category at runtime. Also, an AT can contain instances
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for several ways of performing the same action class (e.g. drinking with your
left hand or right hand, gesturing standing up or sitting, etc.), which provides
robustness against variations in the way actions are executed. To the best of
our knowledge, this feature is not present in the other methods that, in spite
of achieving a higher recognition rate in noisy conditions, suffer from a compu-
tationally expensive and intricate learning phase demanding a large amount of
training data. In our method, the computational complexity of learning one ac-
tion is O(f × j), where f is the number of frames the action lasts for and j is the
number of joints tracked. Table 3.8 contains the learning and classification times
of our method for each dataset, using a Matlab implementation and the computer
equipment described in Section 3.3.1. Another example of its flexibility is that,
in case of performing action recognition of a specific body part, the number of
trajectories used can be easily modified, generating customized ATs with just the
joints of interest (hands, legs, etc.). Also, the joint positions contained in an AT
itself can be used to reproduce the captured action, which is useful for animation
purposes.

Table 3.8: Learning and classification times for each dataset

Dataset
Learning time
(training set)

Average classification
time (1 action)

UGOKI3D: 8 actions
(64 frames, 9 actors)

0.24s 8.9s

CMU MoCap: 8 actions
(150∼800 frames, 9 actors)

0.56s 219.5s

MSR Action3D: 8 actions/subset
(50∼80 frames, 12∼15 actors)

0.64s 7.13s

This work also shows an effective way for applying DTW to action recognition.
To the best of our knowledge, the previous results of using exclusively DTW in a
3D joints-based HAR methods have not been convincing enough [85]. Although
intuitively DTW fits quite well a task such as analyzing action trajectories, it has
been criticized arguing that it is more sensitive to temporal scale changes than
HMM-based methods [54], and produces large temporal misalignments in case of
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periodic actions [107]. But rather than that, by looking at the actions used in
the experiments and the results obtained, we inferred that what most affects this
technique was the noise in the skeleton tracking process.
When the number of instances in our ATs increases, the time cost of our method

in order to classify one action can be high (Figure 3.8) due to the computational
cost of DTW, O(MN), where M and N are the lengths of the two compared
sequences [3]. However, implementing a real-time system would not be infeasible
due to the increasing speed of computers and acceleration techniques based on
parallel execution such as GPGPU, given the fact that in our algorithm distance
calculations can be executed completely in parallel. Our method has also the
advantage of not requiring a large number of action instances.

3.4 Summary

In this chapter, we have presented a flexible method for recognizing actions from
trajectories estimated from depth sequences based on the generation of action
templates using joint trajectories. To deal with inaccuracies in the joint position
estimation, our method integrates a mask for the noisy sections of the trajectories
during classification using the confidence values offered by the 3D joint position
estimation algorithm [120]. The proposed method deals with a trade-off between
flexibility and accuracy, achieving comparable results with the state-of-the-art
methods in a challenging dataset. We have also successfully demonstrated the
flexibility of our approach, which allows performing HAR with very few training
instances, while learning new actions at runtime. This is a very powerful feature
in applications such as action databases, video analysis, and customizable gesture
interfaces.
The contributions of this work are summarized as follows:

• We proposed a novel method for flexible HAR that allows updating the
action classifiers at runtime and classification with few training instances.

• We also proposed a modification of the classification algorithm to mask
noisy joint trajectories by using the confidence values from the skeleton
tracker.
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• We evaluated experimentally the performance of our method and its ad-
equacy for runtime learning of actions in depth sequences. The results
demonstrate the effectiveness and accuracy of our method along with its
flexibility.
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4 Summarization of
user-generated sports video
based on HAR results

4.1 Overview

In Chap. 3 we introduced an action recognition method based in template match-
ing of actions that can be applied to recognition problems that do not have a large
number of training instances. It works with body joints in 3D estimated from
the depth maps in RGB-D video. Our intention is to use the recognition results
of this method to model the interesting parts of a user-generated sports video.
As explained in 2.1.1, for UGV we cannot use the same methods as other works
in sports video summarization, so our novel idea is that the players, a constant
element in a sports video of any kind, can be used as a source of features for
summarization by recognizing their actions. In order to test our hypothesis, we
recorded our own dataset of an example sport (Kendo, or Japanese fencing) us-
ing and RGB-D camera. The reason we used depth information is to ensure the
actions of the players were properly recognized, so highlights can be modeled
better. This chapter explains the methodology of this approach in detail and the
first results ever in HAR-based summarization of user-generated sports video.
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4.2 Recognizing players’ actions for
summarization UGV of sports

Figure 4.1 depicts an overview of our method, which takes an RGB-D sports
video sequence and generates a summary containing the highlights of the game.
The sequence is firstly segmented into T uniform-length (i.e., 3 seconds) sub-
sequences. In order to exploit the inherent semantics of the video, we apply HAR
to each sub-sequence. In most sports, multiple players are involved in the game;
therefore, HAR is also applied to each player to calculate the dissimilarity between
the action of that player in each sub-sequence and each action instance in a
predefined set of action classes. We use this dissimilarity and an activity measure,
which quantifies the amount of motion in the sub-sequence, to model interesting
sub-sequences that are to be included in the resulting highlights summary with
a hidden Markov model with Gaussian mixture model emissions (GMM-HMM),
which is trained with labeled sub-sequences. Finally the summary is extracted
via skimming curve formulation [102] for a given time length L.

4.2.1 HAR via Action Templates

In order to calculate the dissimilarity between the action of players in the t-th
sub-sequence and each of the predefined actions, we apply HAR to each player
p. From the depth maps in a sub-sequence, we obtain the skeleton (i.e., a set of
3D joint positions) of each player using a skeleton tracker ( [120], for example) to
gain robustness to view variations with respect to both the camera locations and
subject appearances. We use a simple method for HAR [24], which calculates the
distance between the sequence of skeletons of player p in a sub-sequence and each
of the action templates (referred to as ATs) in an action dataset.
An AT is a set of action instances (sequences of skeletons) of a predefined

action class specialized for the sport. To generate an AT, we extract the skeleton
from a depth map sequence that contains one of the predefined actions. Skeleton
trackers can also provide a confidence value for each estimated joint position.
These positions are transformed to the player’s coordinate system, whose origin
is at one of the joints (e.g., torso). The sequence of transformed skeletons along
with the confidence values form the AT.
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Figure 4.1: Overview of our summarization method.

For the given t-th input sub-sequence, which may contain multiple players
in unknown action classes, we apply a similar process to extract the players’
skeletons and transform them into each player’s coordinate system. We then
calculate the distance between the sequence of skeletons for each player and each
of the ATs. Since the duration of an action varies from instance to instance, we
adopt dynamic time warping [79] to handle this. In this method, the confidence
values are used to filter the noisy sections of the trajectories. Let N denote the
number of the predefined actions classes and M the number of action instances
per action class. Our HAR method generates a vector dtp whose n-th element dn

tp

is given by dn
tp = minm d

nm
tp , where dnm

tp is the distance between player p’s action
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Figure 4.2: Activity measure along the course of a Kendo game.

in t-th sub-sequence and the m-th AT for the n-th action class (m = 1, . . . ,M
and n = 1, . . . , N).

4.2.2 Activity measure

The HAR outputs may not reflect how sudden or prominent the actions are.
In [12], they hypothesize that interesting highlights in sports video are charac-
terized by certain patterns in the entropy of the intensities in RGB frames. For
each sub-sequence, we use the activity measure of each player’s motion based
on the entropy of the motion of each joint. For this, we divide the 3D space of
the player’s coordinate system into V volumes and calculate the ratio rv of the
number of frames in the subsequence in which the joint j of player p fall into
volume v. The entropy for joint j is given by

ej = −
V∑

v=1
rv log(rv). (4.1)

We define the activity measure of a player as a = ∑J
j=1 ej where J is the total

number of joints. Figure 4.2 shows the variation of a along time. The activity
measure rises as sudden actions are executed successively, and decreases with
repetitive motion (or lack of motion). Sections with zero activity are those where
players were not recognized.
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Figure 4.3: The probability of each segment being interesting (Pr) is calculated
using a GMM-HMM that models the temporal relationships between
the calculated features. We obtain the highlight summary by thresh-
olding Pr.

For sub-sequence t, we define a feature vector f>t = (d>t1, at1,d>t2, at2, . . . ,d>tP , atP ),
which is a concatenation of the HAR result dtp and activity measure atp for all
players, where P is the number of the players in the t-th sub-sequence and atp is
the activity measure for player p.

4.2.3 Highlight extraction

In order to create the summary from the original sequence, we calculate the
probability of each sub-sequence of being interesting/non-interesting based on the
features, assuming that the segments that are labeled as interesting by users are
the highlights of the game. We adopt a GMM-HMM [6] to model interesting/non-
interesting segments because adjacent sub-sequences are expected to be highly
correlated. Figure 4.3 shows an overview of the highlight extraction process.
In our method, we assume that the emission probability Pr(ft|e) of ft given e
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follows a Gaussian mixture model, where e = 1 indicates that the sub-sequence
belongs to an interesting segment and e = 0 otherwise. Specifically, the emission
probability is given by

Pr(ft|e) =
K∑

k=1
wekN (ft|µek,Σek), (4.2)

where wek, µek, and Σek are the mixture weight, the mean, and the covariance
matrix of the k-th mixture component for state e. Letting F = {ft|t = 1, . . . , T}
and e> = (e1, . . . , eT ), the probability Pr(FT , e) is given by

Pr(F, e) = Pr(e0)
T∏

t=1
Pr(et|et−1)

T∏
t=1

Pr(ft|et, φ), (4.3)

where Pr(e0) is the initial state probability. We can calculate the posterior prob-
ability Pr(et|F ) using the forward-backward algorithm. Since we have labeled
videos for training, the parameters for initial state probability Pr(e1) and the
transition probability Pr(et|et−1) can be easily determined by counting, and the
parameters for GMM (i.e., wek, µek, and Σek) can be estimated using the EM
algorithm [64].
Once the probabilities are obtained, we generate the summary using skimming

curve formulation [102]. Given a certain summary length L in seconds, we apply
thresholding to Pr(et|F ) by reducing the threshold until we find a set of segments
whose total length in seconds is the largest below L. We arrange the extracted
segments in temporal order to generate a video summary. Algorithm 2 shows this
process.

4.3 Experimental results

4.3.1 Implementation details

To evaluate our method, we chose Kendo as an example sport, which is a martial
art featuring two players and a set of recognizable actions. Using a Microsoft
Kinect v2 sensor, we recorded 10 RGB-D videos (90 minutes in total), which
contain 12 combats. The videos used in the experiments were taken close to the
players (2m–4m) for depth map acquisition. We used [120] for skeleton tracking.
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Algorithm 2 Highlight extraction by thresholding Pr(et|F )
Empty highlights H = ∅
For a given summary length L and subsequence length l
Initialize threshold = 1 and δ = 10−5

while L− l ≥ 0 do
for each subsequence t in T do
if L− l < 0 then
stop iterating T

else if Pr(et|F ) >= threshold then
H ∪ {t}
L = L− l

end if
end for
threshold = threshold− δ

end while
Sort H by t

Apart from these videos, we generated a dataset for HAR, which contains 200
action instances (10 action classes×4 actors×5 repetitions) of action classes (a)
men, (b) kote, (c) dou, (d) bougyo, (e) kamae, (f) tsubazeriai, (g) hikimen, (h)
sonkyo, (i) osametou, and (j) aruki. These actions consist of strikes in differ-
ent body parts and defense positions ∗ (Fig. 4.4). We evaluated the used HAR
method with this dataset in the leave-one-out (LOO) fashion. Table 4.1 shows
the recognition results for each action class. The high-speed of the actions and
players’ clothes hindered HAR, and similar actions were often mistaken. Its gen-
eralization performance is evaluated in [24] against the MSRAction3D dataset
with the configuration used in [48]. The used method has an accuracy of 84.1%,
surpassing [48] (74.7%), and other nearest neighbors-based methods [4] (63%).
However, this accuracy is a bit lower than that of methods with a more costly
training, such as support vector machines [107] (88.2%), [75] (91.2%) or convolu-
tional neural networks [110] (94.6%).
We asked 13 participants to evaluate our method. Since the interestingness of

∗A description can be found at https://en.wikipedia.org/wiki/Kendo
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Table 4.1: Confusion matrix of [24] over the kendo dataset (%).
Recognition results

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)
A
ct
io
n
cl
as
se
s

(a) 25 20 15 5 25 10
(b) 20 30 20 5 10 15
(c) 15 10 50 5 10 5 5
(d) 10 5 15 45 25
(e) 20 20 40 20
(f) 10 35 35 20
(g) 20 5 50 25
(h) 60 10 30
(i) 35 5 10 5 45
(j) 50 20 5 10 15

the extracted highlights can differ from one user to another, we grouped them
into experienced (E) and non-experienced (NE) in Kendo, which would affect
the results the most. Group E has 3 users and NE has 10. In order to train
the GMM-HMM for highlight extraction, 3 and 5 users from groups E and NE
were employed as annotators, and assigned interesting/non-interesting labels to
the sub-sequences in the 10 original videos. Each sub-sequence was judged to be
interesting if two or more annotators labeled it as interesting. Whereas group
E picked sub-sequences with very specific actions (e.g., very fast strikes, decisive
strikes, etc.), group NE picked a more general set of actions (e.g., non-decisive
strikes, feints, etc.), reaching about twice the number of sub-sequences than group
E. Again in the LOO fashion, we trained the GMM-HMM with the labels of 9
videos to generate the summary of the remaining.

4.3.2 GMM-HMM objective evaluation

We evaluated the performance of our trained GMM-HMM by thresholding Pr(et =
1|F ) > 0.5, and calculating precision (P), recall (R), and f-score (F) metrics for
the extracted sub-sequences. Due to the limitations of the capturing device, in
some parts of the original video, one or both players were not recognized. For this
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Figure 4.4: Actions used in the dataset.

reason, we evaluated the performance under these conditions: all sub-sequences
(A, B) and only the sub-sequences in which both players’ skeleton is tracked (C,
D). We also evaluated the difference in performance when the activity measure
is used (A, C) or not (B, D). Table 4.2 shows the results. The best results corre-
spond to the case where both players’ skeletons were tracked and activity measure
was used (C). The effect of including our activity measure is greater on group E ’s
results. Since group E ’s annotations included more specific actions, it seems the
activity measure helps to discern specific interesting actions among similar HAR
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results. When comparing groups E and NE, the latter’s performance is higher
since their annotations contain a broader set of actions.

Table 4.2: GMM-HMM performance.
Annot. E Annot. NE

P R F P R F
(A) 0.41 0.44 0.42 0.62 0.76 0.68
(B) 0.39 0.42 0.41 0.62 0.75 0.68
(C) 0.57 0.72 0.63 0.79 0.77 0.78
(D) 0.49 0.64 0.56 0.77 0.75 0.76

4.3.3 Video summary objective evaluation

Our generated summaries are composed of sub-sequences with their estimated
labels of interestingness. Human annotators expected that a set of consecutive
sub-sequences with interest labels (referred to as a highlights, hereinafter) contain
an event in a certain granularity. Therefore, even a single missed sub-sequence
in the set may distract viewers. For this, we objectively evaluated our method
by modifying the definitions of precision and recall to take into account the com-
pleteness of the extracted highlights. We define the completeness criterion for an
extracted highlight as the fraction of overlap with its associated highlight from the
ground truth annotated by our participants. Associating extracted and ground
truth highlights is not trivial, and we did this in a greedy manner, in which the to-
tal number of overlapping sub-sequences is maximized. We deemed an extracted
highlight as a true positive (TP) if it covers over C% of the sub-sequences in the
associated ground truth highlight. In this experiment, we thresholded Pr(et|FT )
in the range [0, 1] (instead of 0.5 as in section 4.1) to generate summaries of
different lengths.
Figure 4.5 shows the recall-precision curves produced for C = 50%, 70%, 90%.

Whereas almost all highlights with C = 70% reached also C = 90%, when reduc-
ing C to 50% the number of TP increases significantly. We attribute the presence
of incomplete segments to the transition probabilities of our GMM-HMM model,
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Figure 4.5: Recall-precision curves for groups E (left) and NE (right)

which are very low for the non-interesting to interesting transition and higher
for the interesting to non-interesting one. This makes highlights start later and
begin earlier than the annotated ground truth. When comparing groups E and
NE, the latter’s recall shows a higher and more constant number of TPs for dif-
ferent summary lengths, which is consistent with the results shown in section 4.1.
We conclude that our method is able to detect very well certain highlights, but
others remain incomplete.

4.3.4 Video summary subjective evaluation

We assessed the quality and usefulness of our video summaries from the users’
point of view by means of a survey. All 13 participants watched the video sum-
maries that, for C = 70%, gave the (a) maximum, (b) median, and (c) minimum
f-scores averaged for groups E and NE in the previous section, as well as their
corresponding original video. We also used different summary lengths L = 20,
30, and 40 s, to see how the length affects viewers’ perception. For compari-
son, besides the summaries created with groups E and NE annotations, we also
evaluated video summaries based on the k-means clustering algorithm as a base-
line, in which clustering was performed on our HAR features. As a result, every
participant watched 27 summaries.
We asked participants (Q1) if each summary showed an entire action from be-

ginning to end, (Q2) if each summary was interesting, (Q3) if the participant
got an insight on the original video by watching the summary, and (Q4) if the
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Table 4.3: Survey results according to the summary type. Each cell consists of
the mean ± standard deviation of the subjective scores.

Summary type
Annotations E Annotations NE Clustering

Q1
Group E 3.44±0.67 3.04±0.72 1.89±0.69
Group NE 3.63±0.5 3.63±0.49 2.26±0.78

Q2
Group E 3.33±0.58 3±0.33 1.37±0.35
Group NE 3.79±0.53 3.78±0.3 1.88±0.55

Q3
Group E 3.33±0.33 3.11±0.58 1.33±0.29
Group NE 3.57±0.54 3.68±0.39 1.92±0.49

Q4
Group E 4.41±0.57 4.67±0.33 2.22±0.58
Group NE 3.6±0.34 3.62±0.36 2.27±0.35

Table 4.4: Survey results according to the summary lenght. Each cell consists of
the mean ± standard deviation of the subjective scores.

Summary length
20 s 30 s 40 s

Q1
Group E 3±0.7 3.56±0.58 3.17±0.81
Group NE 3.58±0.46 3.75±0.43 3.57±0.61

Q2
Group E 2.89±0.62 3.33±0.21 3.28±0.49
Group NE 3.53±0.5 3.92±0.32 3.9±0.36

Q3
Group E 3.11±0.66 3.33±0.21 3.22±0.5
Group NE 3.38±0.48 3.77±0.38 3.72±0.49

Q4
Group E 4.44±0.69 4.61±0.44 4.56±0.27
Group NE 3.47±0.41 3.8±0.27 3.57±0.29

summary was not redundant. Tables 4.3, 4.4 and 4.5 show the results for each
question. Answers are averaged for group E and NE separately and grouped by
the summary type, length, and video. The latter two cover the answers for sum-
maries created with annotations E and NE together. By looking at the first row,
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Table 4.5: Survey results according to the f1score of the video. Each cell consists
of the mean ± standard deviation of the subjective scores.

Video f1score
Highest Median Lowest

Q1
Group E 3.61±0.88 3.11±0.58 3±0.56
Group NE 3.9±0.54 3.75±0.35 3.25±0.33

Q2
Group E 3.28±0.57 3.28±0.39 2.94±0.49
Group NE 4.1±0.29 3.8±0.24 3.45±0.45

Q3
Group E 3.33±0.67 3.22±0.46 3.11±0.27
Group NE 3.88±0.48 3.65±0.31 3.33±0.45

Q4
Group E 4.72±0.33 4.61±0.44 4.28±0.57
Group NE 3.88±0.32 3.52±0.25 3.43±0.3

the answers to Q1 show that users were satisfied with the completeness of our
summary. Q2 and Q3 also show the user’s satisfaction, although group E ’s rating
is slightly lower than group NE ’s. This is probably because the experienced par-
ticipants wanted to see all interesting highlights in the summary, but some were
missing. The inexperienced participants did not have such a firm predilection. In
Q4, group NE found the summaries more redundant than group E, in a way that
group NE preferred watching also non-active segments before the action starts
for a better understanding of the context.
When comparing summary types, it can be observed that the clustering-based

baseline has the lowest scores for all the questions. Overall, group E rated the
summaries created with their annotations higher, except in Q4. For group NE,
the difference between summaries generated with their annotations or with group
E ’s is not noticeable. Regarding length, 30 second summaries obtained the best
evaluation for all questions and user groups. We consider the reason is that 20
second summaries contained some incomplete highlights that were filled in the
30 second ones, but in the 40 second summary, newly added highlights were
incomplete. The summary for video (a) was ranked higher for all questions and
both groups, which is coherent since it has the highest f-score.
Some participants in group NE commented the usefulness of our method to
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extract highlights based on actions, and the time they can save by watching the
summary instead of the whole video. They stressed the importance of context to
understand what is happening in some of the highlights. Group E stated that
the reason they lowered the score of the videos is that in Kendo it is important
to observe the actions after hitting the opponent as well (even if they are not
interesting) in order to decide if it was a good hit. In many highlights, this part
was not extracted. However, when creating a summary for a given length, our
method gives priority to extracting new interesting highlights rather than adding
less interesting sub-sequences to the existing ones. All our participants preferred
watching longer highlights rather than a larger number of them.

4.4 Summary

In this chapter we have presented a novel method for generating video summaries
with highlights of user-generated sports video by using HAR, which is used to
train a highlights model based on viewers’ opinion on which sections of the original
video were interesting. Our experiments and the positive responses from the
survey showed that our method was able to successfully extract highlights using
HAR, despite our HAR was not perfect. We believe the reason is that our method
does not directly rely on HAR results, but on its intermediate outputs, which can
leverage the ambiguity among different action classes. Although we experimented
with only one type of sport, i.e., Kendo, our method is applicable to other similar
sports. The contributions of this work are summarized as follows:

• We proposed a novel method for summarizing user-generated sports video
based on HAR from a self-recorded RGB-D video sequence. To the best of
our knowledge, this is the first attempt to use this kind of analysis for video
summarization. Our method is suitable for sports that can be recorded at
a close distance.

• We evaluated the performance of our method both objectively and subjec-
tively to show its effectiveness and accuracy. We carried out a survey of
users with and without experience in the sport to investigate the adequacy
of our method to their particular preferences.
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5 Summarization of
user-generated sports video
using deep action features

5.1 Overview

User-generated sports video (UGSV) summarization basically inherits the intrica-
cies of user-generated video summarization. In the absence of editing conventions,
extracting high-level semantics is not trivial. However, given that the target is a
sport, we can leverage this domain knowledge to facilitate the extraction of high-
level semantics. As introduced in Chap. 4, our idea towards this direction is to
utilize players’ actions, which are the main constituents of a game. Our previous
work in Chap. 4 applies an action recognition technique to sports video to find
combinations of actions that interest viewers using a hidden Markov model with
Gaussian Mixture emissions.
To the best of our knowledge, our previous work in Chap. 4 is the only one

that tries UGSV summarization based on players’ actions. One major drawback
of this work is that it takes a classic approach: it uses handcrafted features
for action recognition and a conventional classifier. The recent trend of deep
neural networks has demonstrated the power of feature learning, in which a neural
network is trained in an end-to-end manner from its input to the top layers or
at least partially from one of its layers to the top. Another interesting direction
to extend our previous work is the use of different features. In Chap. 4, we only
use body joint positions as a cue for action recognition. They provide a rich
information on players’ action, but miss other potential cues for summarization
in the appearance of the scene. At least, appearance is useful when the joint
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position estimation (e.g. [121]) fails.
In this chapter, we extend our previous method in Chap. 4 by employing a

two-streams deep neural network [29, 91]. Our new method takes two different
types of inputs, i.e., RGB frames of video as well as body joint positions, each
of which is transformed through two separated neural networks (i.e., streams).
These two streams are then fused to form a single action representation for finding
the highlights. In the previous method, we separately train an action recognizer
for the target sport. In contrast, our new method no longer needs such an action
recognizer; our network is trained from a lower to the top layers using an extended
UGSV summarization dataset, which is three times bigger than the one presented
in 4.3.1.
Given our methodology, our target sports should meet the following conditions:

(1) a game consists of a series of recognizable actions performed by each player
and (2) players can be recorded from a close distance for joint position estimation.
We, however, believe that the idea of using action recognition-related features for
UGSV summarization is still valid for most types of sports.

5.2 Deep neural network for UGSV
summarization using two motion streams

In this work, we formulate UGSV summarization as a problem of classifying a
video segment in the original video into interesting (and thus included in the
summary) or uninteresting. We design a two-stream neural network for this
problem and train it in a supervised manner with ground truth labels provided
by multiple annotators.
Figure 5.1 shows an overview of our method. It first divides the input video

into video segments S = {st}, in which RGB frames may be accompanied by
their corresponding depth maps. A video segment st is then fed into our two-
stream network. The body joint-based feature stream takes RGB frames (and
depth maps) in st to obtain the body joint-based features xt, and the holistic
feature stream computes holistic features yt from RGB frames. The former stream
captures the players’ motion in detail by estimating their body joint positions
explicitly. The latter is to represent the entire frames in the video segment,
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Figure 5.1: An overview of our method for generating a summary of UGSV based
on the players’ actions. We use two types of features to represent
players’ actions, i.e. body joint-based and holistic, for extracting
highlights from the original video.

which can be helpful to encode, e.g., the relationship between the players. Our
features X = {xt} and Y = {yt} are then fed to the highlight classification
block to find the highlights of the input video. This block takes into account the
temporal dependencies among the video segments. Our highlight summaries are
a concatenation of the segments classified as interesting.
In both the body joint-based feature extraction and the highlight classification

blocks we use long short-term memory (LSTM) cells for modeling the temporal
relationship of our features. LSTM has been previously used for video summa-
rization [116, 119], and action recognition with both hand-crafted features [56]
and deep features from CNN [69,101]. First, we introduce this type of RNN.
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Figure 5.2: Architecture of a long short-term memory cell, obtained partially from
[33].

5.2.1 Long short-term memory

Long short term memory (LSTM) [37] is a type of recurrent neural network used
for modeling temporal sequences. An LSTM network takes the input sequence
X = (x1, x2, · · · , xT ), xt ∈ Rd, t ∈ [1, T ] and calculates a hidden vector sequence
H = (h1, h2, · · · , hT ), ht ∈ Rd′ , d′ < d such that it outputs a reconstructed se-
quence Y = (y1, y2, · · · , yT ). Unlike other recurrent networks, LSTM are more
effective at finding and modeling long-range context along a time-series, and they
have been previously used in video classification tasks [69]. Figure 5.2 shows
the typical operation of an LSTM cell, which uses learning gate functions to
determine whether an input is significant enough to remember or it should be
forgotten, and when it should be sent to the output.
The following equations describe how a layer of LSTM memory cells is updated

at every time-step t. The terminology used is:

• xt is the input to the memory cell at time t.

• i, f and o are the input, forget and output gates respectively.

• A and h have the same size, and denote the cell activation states and hidden
states respectively.
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• W , U and V are weight matrices for the input x, hidden state h, and
cell activation a respectively. For example, the Wf matrix represents the
connections between the input and the forget gate.

• bi, bf , ba and bo are bias vectors.

• σ is the logistic sigmoid function.

First, we compute the values for it (input gate) and Ãt (candidate value for
the states at time t):

it = σ(Wixt + Uiht−1 + bi) (5.1)

Ãt = tanh(Waxt + Uaht−1 + bf ) (5.2)

Second, we compute the value ft (activation of the forget gate at time t):

ft = σ(Wfxt + Ufht−1 + bf ) (5.3)

Then, we calculate At (new state at time t):

At = it ∗ Ãt + ft ∗ At−1 (5.4)

With the new state, we can calculate the value of the memory cell’s output gate
and then the output hidden state:

ot = σ(Woxt + Uoht−1 + VoAt + bo) (5.5)

ht = ot ∗ tanh(At) (5.6)

5.2.2 Video segmentation

Various methods have been proposed to segment a video based on, e.g., its con-
tent [12], but in our method we uniformly segment the original input video into
multiple segments st, i.e., S = {st|t = 1, . . . , T}, where T is the number of the
video segments in S and st is the video segment that contains frames from t−1 to
t+ τ − 1 second as shown in Figure 5.3. Since most actions last only a very short
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Figure 5.3: Video segmentation. Video segment st contains frames in-between
t − 1 and t + 2 seconds. Each video segment overlaps with adjacent
ones for two seconds.

period of time, we need short video segments for a finer labeling of highlights. We
choose τ = 3 seconds, so adjacent video segments overlap with each other by 2
seconds. Each segment st contains a different number of frames, especially when
the input video is captured with an RGB-D camera (e.g., Microsoft Kinect), due
to automatic exposure control.

5.2.3 Body joint-based feature stream

For this stream (Figure 5.4), in order to obtain a detailed representation of play-
ers’ actions, we use a sequence of position of the players’ body joints (e.g., head,
elbow, etc.) that represent the movement of the players regardless of their ap-
pearance. In this work, we employ two types of joint representations, i.e., 3D
positions from depth maps or 2D positions from RGB frames.
In the case of 3D body joint positions, we use a skeleton tracker (e.g., [120]) as

in Chap. 4, which estimates the 3D positions from depth maps. The 3D positions
are usually in the camera coordinate system, so they are view-dependent, which
introduces extra variations. Therefore, we transform the 3D positions from the
camera coordinate system to each player’s coordinate system, whose origin is at
one of the body joints (e.g. torso).
In the absence of depth maps, which is likely in current user-generated video,

we can still estimate 2D body joint positions from RGB frames. Recent methods
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Figure 5.4: We feed an LSTM with the body joint positions estimated from play-
ers on each frame xf

t to model their temporal dependencies and extract
a feature vector ht. We also use these body joint positions to calculate
an activity measure for all players at. Our body joint-based feature
vector is the concatenation xt.

in human pose estimation leverage 2D CNNs to learn the spatial relationships
among human body parts and estimate the 2D joint positions [112]. Such 2D
positions are not as robust against view variations as 3D positions, but they can
be extracted from RGB frames alone without using depth maps. Given the 2D
body joint positions, we also transform them to positions relative to the player’s
coordinate system to make them translation invariant.
The use of an activity measure works positively when extracting highlights

(Chap. 4). To calculate the activity measure a, we divide the volume (or plane
for the 2D case) around a player into regions and calculate the ratio rv of the
number of frames in the video segment in which the joint j falls into region v.
The activity measure a is defined as the entropy obtained based on rv. For each
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joint j, we compute

ej = −
∑

v

rv log(rv). (5.7)

The activity measure is calculated by

a =
J∑

j=1
ej. (5.8)

We calculate the activity measure for each player in a segment. More details on
the activity measure can be found in Chap. 4.
We represent joint j of player q in frame f using 3D or 2D relative body

joint positions uf
qj in R3 or R2 (a row vector). Then, uf

t = (uf
11 · · ·u

f
QJ)t is the

concatenation of the body joints of all players in frame f for the video segment
st, where Q and J are the numbers of players and joints. As shown in Figure 5.4
we pass vectors u1

t to uF
t through an LSTM to model the temporal dependencies

of the players’ body joint positions in st. After feeding the last vector xF
t , we take

the hidden state vector ht of the LSTM as a representation of {uf
t }. We reset the

state of the LSTM to all zeros before feeding the next video segment. We presume
that the number of players Q does not change. However, some players can be
out of the field-of-view of the camera. In that case, we pad the corresponding
elements in ut with zeros.
Our method represents a video segment st by concatenating the LSTM output

and the activity measure of all players in one vector

xt = (ht at), (5.9)

where at is the concatenation of (at1 · · · atQ) and atq is the activity measure of
player q in st.

5.2.4 Holistic feature stream

This stream encodes a video segment st in a spatio-temporal representation.
We rely on state-of-the-art three-dimensional convolutional neural networks (3D
CNN) over RGB frames. While in 2D CNN convolution and pooling operations
are performed only spatially, in 3D CNN are done also temporally. Figure 5.5
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Figure 5.5: A 2D convolution on an image results in an image (a). A 2D convolu-
tion on a video volume results in an image (b). A 3D convolution on
a video volume results in a volume, that is, the temporal information
is preserved (c).

(obtained from [101]) shows the difference. A 2D convolution on an image will
produce an image; a 2D convolution on multiple images will also produce an
image. This means that 2D CNN lose temporal information on each convolu-
tion, and thus they are not particularly sensitive to temporal modeling. On the
other hand, a 3D convolution on multiple images results in a volume, preserving
temporal information of the input signal.
This stream encodes a video segment st in a spatio-temporal representation.

We rely on state-of-the-art 3D CNN over RGB frames. Training a 3D CNN
from scratch requires thousands of videos [41], which are not available for our
task. Recent work on deep neural networks for computer vision [29, 101, 118]
show that the activations of an upper layer of a CNN can be used for other
related tasks without requiring fine-tuning. Thus, we can instead use 3D CNN
whose parameters are pre-trained with large-scale datasets to leverage a huge
amount of labeled training data [39]. For example, since we consider that our
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Figure 5.6: Independent subspace analysis network architecture with a subspace
size of 2: each pooling unit looks at 2 simple units (obtained from [45])

UGSV summarization task is related to action recognition, we can use a publicly
available dataset for action recognition, such as Sports-1M [41].
Since we hypothesized that players’ actions allow modeling the highlights of the

video, we consider two different 3D CNN for feature extraction that are successful
in capturing motion information in videos: Independent subspace analysis-based
CNN (CNN-ISA) [45] and Convolutional 3D (C3D) [101].
On the one hand, CNN-ISA learns features that are robust to local translation

while being selective to frequency, rotation and velocity. This allows discarding
background information and camera motion to focus on the actions performed by
the actors in the video. Figure 5.6 and 5.7 shows the architecture of the network.
It uses a representation based on spatiotemporal cuboids that describe the local
spatiotemporal video patch, that is flattened into a vector of input features. The
learned features are then convolved with a larger region of the input data, and the
outputs of this convolution step are inputs to the layer above. Finally, learning
is carried out by updating the network parameters with batch projected gradient
descent. The size of the input video blocks, ISA equations and other details of
the model can be found in the original paper [45]. CNN-ISA achieves state of the
art precision in well-known datasets for action recognition such as YouTube [51],
Hollywood2 [57] and UCF sports [82].
On the other hand, C3D learns features by focusing on appearance in the first

few frames and tracking the salient motion in the subsequent frames selectively.
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Figure 5.7: In the CNN-ISA, the ISA network in the second later is trained on
the combined activations of the first layer (obtained from [45])

Figure 5.8: Architecture of the C3D network (obtained from [101])

The architecture of this network is depicted in Figure 5.8; it has 8 convolution
layers, 5 pooling layers, followed by 2 fully connected layers and a softmax output
layer. The 3D convolution filters are 3 × 3 × 3 with stride 1 × 1 × 1. The 3D
pooling layers are 2 × 2 × 2 with stride 2 × 2 × 2 except for pool1 which has a
kernel size of 1 × 2 × 2 and stride 1 × 2 × 2 with the intention of preserving the
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Figure 5.9: Neural network architecture for highlight classification, which consists
of a single LSTM layer and several fully-connected layers. We feed the
body joint-based features xt and holistic features yt extracted from
video segment st to calculate its probability pt of being interesting.

temporal information in the early phase. These and more details can be found
in [101]. C3D pre-trained with the Sports-1M dataset achieves state of the art
precision for action recognition with the UCF101 dataset [94].
This stream represents video segment st using a holistic feature vector yt, which

is the output of one of the aforementioned 3D CNNs.

5.2.5 Highlight classification using LSTM

Figure 5.9 shows the network architecture designed to model highlights of UGSV
using our features xt and yt. We again use an LSTM in order to model the tempo-
ral dependencies among video segments, and the network outputs the probability
pt that the video segment st is interesting. We first concatenate the features to
form vector zt = (xt yt). Vector zt then goes through a fully-connected layer to
reduce its dimensionality.
We consider that video segments are temporally related to each other; e.g.,

a skillful boxer first feints a punch before hitting to generate an opening in the
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Figure 5.10: We generate a summary by concatenating segments whose proba-
bility pt of being highlight surpasses a certain threshold θ. The
threshold is chosen to fit the summary length.

defense. Existing work in video summarization uses LSTMs to extract video
highlights [116], since it allows to model temporal dependencies across longer
time periods than other methods [69]. We follow this idea and introduce a LSTM
layer to our network. The hidden state of the LSTM from each time step goes
through two fully-connected layers, resulting in a final softmax activation of two
units, which correspond to “interesting” and “uninteresting.”
Our method provides the control over the length L of the output summary.

Therefore, instead of hard decision, we deem the softmax activation of the unit
corresponding to “interesting” as the probability pt of the segment st being inter-
esting and apply skimming curve formulation [102] to the sequence of probabilities
by decreasing the threshold θ from 1 until it finds a set of segments whose total
length is largest below L as shown in Figure 5.10. The segments whose probabil-
ity exceeds θ are concatenated to generate the output summary in the temporal
order. In this way, a resulting summary may contain multiple consecutive inter-
esting segments.

5.2.6 Network training

We use pre-trained CNN in the holistic features stream (i.e. CNN-ISA or C3D),
whereas we train our LSTMs and fully-connected layers from scratch. That is,
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during training, the parameters in the holistic feature stream are fixed, and those
in the body joint-based feature stream (i.e., lstmJ ) and highlight classification
(i.e., fc1, lstmH , fc2, and fc3) are updated.
Our UGSV dataset contains video and ground truth labels lt ∈ {0, 1} for every

1 second, where lt = 1 means that the period from t to t+ 1 second of the video
is “interesting” and lt = 0 otherwise. We assign label lt to st, which covers the
frames in t − 1 to t + 2 since st captures the period from t to t1 second in its
center.
For training, we used cross-entropy loss ` defined as

` =
∑

lt log pt. (5.10)

5.3 Experiments

We evaluate our method objectively and subjectively. For the objective evalua-
tion, we compare the performance of our method when using different representa-
tion of the players’ actions. More concretely, we evaluate body joint features only
(3D or 2D), holistic motion features only (CNN-ISA or C3D), and the combina-
tion of both. Then, we study the completeness of the highlights of the generated
summaries. For the subjective evaluation, we surveyed users with and without
experience in the sport to study their opinion about our summaries.

5.3.1 Implementation details

For evaluation, we chose Kendo (Japanese fencing) as an example sport, which is a
martial art featuring two players and a set of recognizable actions (e.g., attacking
and parrying). We extended the UGSV Kendo dataset used in Chap. 4, which
contains 90 minutes of self-recorded Kendo matches divided in 10 RGB-D videos
taken with a Microsoft Kinect v2, by adding 18 more self-recorded RGB-D Kendo
videos. The total length of our videos is 246 minutes, with a framerate of around
20 fps.
Our body joint-based feature stream was configured for Q = 2 players, since

Kendo is a two-player sport. We used the tracker in [120] for estimating J = 15
3D body joint positions from depth maps, more specifically: head, neck, torso,
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right shoulder, right elbow, right wrist, left shoulder, left elbow, left wrist, right
hip, right knee, right ankle, left hip, left knee and left ankle. For estimating the
2D positions of the players’ joints from the RGB frames, we use the CNN-based
method proposed by Linna et al. [50]. We initialized the network’s parameters
with Linna et al.’s human pose estimation dataset and fine-tuned it with our
extended UGSV Kendo videos. This network provides J = 13 joints (same as the
3D case except neck and torso). Therefore, the size of vector uf

t is Q×J×3 = 90
in the case of 3D positions and Q× J × 2 = 52 in the case of 2D. Since we made
the size of lstmJ the same as the input, and the size of at is Q = 2, the feature
vector for this stream is xt ∈ R92 for 3D, or xt ∈ R54 for 2D.
For the holistic feature stream, we used either the CNN-ISA [45] or C3D [101]

network. Since our UGSV Kendo dataset is not big enough to train these CNNs
from scratch, we used networks pre-trained with an action recognition dataset.
CNN-ISA was trained in an unsupervised way with the Hollywood2 dataset con-
sisting of 2859 videos [57]. For this network, we followed the configuration in [106]
and used a vector quantization representation of the extracted features with a
codebook size of 400, resulting in a feature vector yt ∈ R400 for each segment st.
C3D was trained with the Sports-1M dataset [41], which consists of 1.1 million
videos of sports activities. We extracted C3D features as indicated in [101] by
uniformly sub-sampling 16 frames out of around 60 frames in st (the number
of frames in st may vary for different segments due to the variable framerate of
Microsoft Kinect v2) and then extracting the activations from layer fc6 (i.e.,
yt ∈ R4096).
Our method was implemented in Chainer [99]. The learning rate is calculated

by the adaptive moment estimation algorithm (Adam) [42] with α = 0.001. We
introduced sigmoid activation after our fully-connected layers. Tables 5.1, 5.2 and
5.3 summarize the number of learnable parameters for each layer, which varies
depending on the choice of features.

5.3.2 Results

We invited 15 participants to our experiment and divided them in two groups,
experienced (E, 5 people) and inexperienced (NE, 10 people), according to their
experience in the target sport (i.e., Kendo). We considered that the highlights
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Table 5.1: Size of the learnable parameters in our network (input× output) when
using only body joint-based features. Feature vector sizes are detailed
in Section 5.3.1)

Body joint-based features only
3D joints 2D joints Action recognition

lstmJ 90× 90 52× 52 —
fc1 92× 50 54× 50 402× 400

lstmH 50× 50 50× 50 400× 400
fc2 50× 20 50× 20 400× 100
fc3 20× 2 20×2 100× 2

Table 5.2: Size of the learnable parameters in our network (input× output) when
using only holistic features. Feature vector sizes are detailed in Section
5.3.1)

Holistic features only
CNN-ISA C3D

lstmJ — —
fc1 400× 400 4096× 400

lstmH 400× 400 400× 400
fc2 400× 100 400× 100
fc3 100× 2 100× 2

that E and NE groups prefer would vary greatly from each other, and we wanted
to evaluate how well our method adapts to their needs. Then, we asked them
to manually annotate the highlights of our 28 videos. We obtained the ground
truth labels of our videos for both E and NE groups separately, considering that
each one-second period in video is interesting if 40% of the participants agreed.
Due to group E ’s technical knowledge of Kendo, their highlights contain very
specific actions (e.g., decisive strikes, counterattacks). On the other hand, group
NE selected not only strikes but also more general actions (e.g., parries, feints),
so their labeled highlights are almost three times as long as group E ’s (see the
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Table 5.3: Size of the learnable elements of our network (input × output) when
using both body joint-based and holistic features. Feature vector sizes
are detailed in Section 5.3.1)

Body joint-based and holistic features
3D joints + CNN-ISA 2D joints + CNN-ISA

lstmJ 90× 90 52× 52
fc1 492× 400 454× 400

lstmH 400× 400 400× 400
fc2 400× 100 400× 100
fc3 100× 2 100× 2

Figure 5.11: Sample segments in a Kendo match that our method classified as
highlights when generating a summary.

durations in the Appendix).
We trained our network separately with each group’s ground truth labels in the

leave-one-out (LOO) fashion, i.e., we used 27 videos for training and generated a
summary of the remaining one for evaluation. The CNN for 2D pose estimation
was trained independently before each experiment, fine-tuning it with the same 27
videos and estimating the joints of the video used for evaluation. Repeating this
process for each video results in 28 experienced summaries and 28 inexperienced
summaries. We generated summaries with the same length as the ground truth.
Figure 5.11 illustrates some example frames of a video as well as highlight frames
extracted by our method (framed in red).
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Objective evaluation by segment f-score

We evaluate the ability of our method to extract highlights in terms of the f-score.
In our method, one-second period of video is:

• true positive (TP) if in the summary and lt = 1,

• false positive (FP) if in the summary but lt = 0,

• false negative (FN) if not in the summary but lt = 1, or

• true negative (TN) if not in the summary and lt = 0.

The f-score is then defined as

f-score = 2TP
2TP + FP + FN (5.11)

Tables 5.4 and 5.5 show the f-scores for the summaries generated with the
labels of both E and NE groups. Firstly, Table 5.4 compares the performance
of the feature combinations described in Section 5.3.1. The upper part of the
table presents the results of using body joint-based features only (with activity
measure). The second part presents the results of using holistic features only.
The third part shows the results of using the features from our previous work
in UGSV summarization (Chap. 4). We obtained the features by feeding a 3D
body joint representation of players’ actions to the action recognition method
in Chap. 3, and taking the action classification results. Lastly, the lower part
shows the results obtained from the combination of body joint-based and holistic
features.
Then, table 5.5 compares our proposed architecture with our previous method

(Chap. 4), which uses a Hidden Markov Model with Gaussian mixture emission
(GMM-HMM) over the action recognition results mentioned in the previous para-
graph, and k-means clustering. Such clustering-based method is widely accepted
as a baseline for user-generated video summarization [20]. For our k-means clus-
tering baseline, we cluster our video segments S based on the concatenation 3D
joints and CNN-ISA features and take each cluster centroid. We configured the
number of clusters for each video so that the resulting summary length is equal
to the ground truth’s.
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Table 5.4: F-score comparison of different combinations of features in our method.
Features Group E Group NE
3D joints 0.53 0.83
2D joints 0.45 0.77
CNN-ISA 0.5 0.79

C3D 0.27 0.60
Action recognition (Chap. 4) 0.48 0.76

3D joints + CNN-ISA 0.58 0.85
2D joints + CNN-ISA 0.57 0.81

Table 5.5: F-score comparison of out method (3D joints + CNN-ISA) with other
UGSV summarization methods.

Method Group E Group NE
Our method 0.58 0.85

GMM-HMM (Chap. 4) 0.44 0.79
k-means clustering 0.28 0.61

When using a single feature (i.e. 3D joins, 2D joints, CNN-ISA, C3D, or action
recognition), 3D joints obtain the best performance. Although C3D features
perform well in action recognition tasks [101], its results were significantly worse
than the other features in our summarization task. Since the dimensionality of
the C3D features is prominently large compared to others, we might not have
been able to train the network well with our dataset. Fine-tuning C3D over our
dataset might improve its performance. On the other hand, CNN-ISA, which
also uses RGB frames, obtains better results than C3D and even 2D joints. This
implies that we can also obtain from RGB frames features that allow us to model
UGSV highlights. The drop in performance found between 3D joints and 2D joints
may indicate that view variations in the same pose affects negatively our body
joint-based features stream. The action recognition feature had an intermediate
performance. One of the reason can be that the action recognition feature is
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based on a classic approach for classification and some useful cues in 3D body
joint positions degenerated in this process. From this result, the features that
performed better for highlight classification are CNN-ISA holistic features and
3D body joint-based features.
Several state-of-the-art methods in action recognition tasks enjoy a boost in

performance by combining handcrafted spatio-temporal features (e.g., dense tra-
jectories) and those learned via CNNs [29,101]. This is also true in our case, where
the combination of CNN-ISA with 3D joints achieves the best performance. The
combination of CNN-ISA with 2D joints also provides a considerable boost in
performance, especially for the experienced summaries. This confirms our hy-
pothesis that a two-streams architecture also provides better results for UGSV
summarization.
Finally, as shown in Table 5.5, our method outperformed both the previous

work and the clustering-based baseline. While clustering allows to show a wider
variety of scenes in the summary, this is not a good strategy for UGSV sum-
marization, which follows a different criterion on interestingness. Our proposed
method also outperforms the previous work, that used the classification results
of an action recognition method and fed them to a GMMHMM for highlight
modeling.
Thus, our method outperforms both the highlights model trained on action

recognition results and also the feature representation based on action recogni-
tion results (Table 5.4). We can conclude that it is not necessary to explicitly
recognize the players’ actions for UGSV summarization; it might actually degrade
the performance compared to directly using action recognition features.

Objective evaluation by highlight completeness

A highlight may consist of consecutive video segments. This means that, while
missing one segment may not have much impact on the f-score, it affects the
continuity of the video, and thus, the comprehensibility and the user experience
of the summary. For this, we define a criterion to evaluate the completeness c of an
extracted highlights as the fraction of overlap between the extracted highlight and
its associated ground truth highlights (Figure 5.12). Associating extracted and
ground truth highlights is not trivial, and we did this using a greedy algorithm,
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Figure 5.12: Association of highlights by greedy algorithm. Each highlight in the
ground truth is uniquely associated to a highlight in the generated
summary (two summary highlights cannot share the same ground
truth highlight). The completeness of a summary highlight is the
percentage of overlap with the ground truth (0% if unassociated).

in which the total c of all highlights is maximized. We deemed an extracted
highlight is a TP if its completeness c is greater than a certain percentage C%,
and according to this we calculated precision and recall of our highlights as

precision = TP
TP + FP recall = TP

TP + FN . (5.12)

In this experiment, we moved the threshold θ from 0 to 1 over the probability pt

to generate the recall-precision curve of group E and NE.
Figure 5.13 shows the curves produced for C = 50%, 70%, and 90%. We observe

that reducing C to 50% increases the number of complete highlights significantly.
We attribute the presence of incomplete highlights to our highlight extraction;
first the high p segments are extracted, and then the highlight is completed with
low p segments as the threshold θ decreases (Figure 5.14). But before a highlight
is completed, high p segments from other highlights are extracted and, in some
cases, the low p segments are never extracted. In particular, the parts before and
after an interesting technique normally correspond to low p segments, since they
are not present in every ground truth highlight annotated by our participants.
Also, the reason there are more incomplete segments (less TP) in the NE sum-

maries is that the inexperienced group annotated a larger number of highlights.

Subjective evaluation

We asked the same participants who annotated the original videos to participate
in a survey, in order to assess their opinion on the ground truth and summaries
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Figure 5.13: Recall-precision curves for different completeness values (up: labels
E, down: labels NE). The gap between the completeness C = 50%
and C = 70% shows that a significant number of our highlights are
missing at most half of the interesting segments.

Figure 5.14: Recall-precision curves for different completeness values (left: labels
E, right: labels NE). The gap between the completeness C = 50%
and C = 70% shows that a significant number of our highlights are
missing at most half of the interesting segments.

we generated. We chose the three videos with the highest, median and lowest f-
scores (averaged over groups E and NE). For each video, we showed participants
our ground truth and the summaries generated with the best feature combination
(i.e., 3D joints + CNN-ISA) using both group E and NE labels. As a result, each
participant watched 12 videos (3 f-scores × 4 video types).
We asked the participants to (Q1) assign a score in a Likert scale from 1 (very

few highlights are interesting) to 5 (most highlights are interesting) according to
their satisfaction with the contents of each of the 12 videos. We also asked them
to (Q2) state their opinion on the videos and the criteria they followed when
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assigning a score. Tables 5.6 and 5.7 show the results of Q1 grouped by video
type and video f-score. The scores are averaged for group E and NE separately.

Table 5.6: Subjective evaluation results according to the video type. Each cell
consists of the mean ± standard deviation of the survey scores.

Video type
Ground truth E Ground truth NE Summary E Summary NE

Group E 3.2±0.99 3.07±1.04 2.6±1.23 2.73±0.87
Group NE 3.57±0.72 3.5±1.07 3.2±0.83 2.9±0.97

Table 5.7: Subjective evaluation results according to the video f-score. Each cell
consists of the mean ± standard deviation of the survey scores.

Video f-score
Highest Median Lowest

Group E 3.3±0.95 2.85±0.97 2.55±1.18
Group NE 3.48±0.83 3.03±0.91 3.38±0.95

Regarding Q1, in terms of the video type, both experienced and inexperi-
enced participants assigned a higher score to the ground truth videos than the
summaries, since some summaries contain uninteresting video segments and the
completeness of the highlights is worse. The reason why the ground truth did
not get a perfect score is mainly due to two factors: (1) The ground truth sum-
maries are created by combining labels from several participants via majority
voting, so the original labels of each participant is lost. (2) The ground truth
also contains incomplete highlights due to errors when the participants annotated
the videos. Also, experienced participants preferred the NE ground truth than
the E summaries; this may be because they do not find our extracted highlights
interesting when the context is missing. On the other hand, the inexperienced
participants tend to appreciate more the highlights from the experienced partic-
ipants’ than their own. We believe this is because they are briefer and contain
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certain techniques (e.g. counterattacks) that make summaries more interesting.
The Q1 results in terms of the f-score type demonstrated the high correlation

to f-score (a video with a higher f-score tends to receive a higher subjective score).
In Q2, participants gave their opinion on the summaries. Some experienced

participants found the highlights too short, even the complete ones in the ground
truth. This occurs because we only included in the ground truth the segments
labeled as highlights by at least 40% of the participants, and thus, some labeled
segments are left out. Inexperienced participants state the usefulness of our
method to extract highlights based on interesting actions, and the time they can
save by watching the highlights instead of the whole video. For them, incomplete
highlights make the summaries hard to follow.
From this evaluation we can conclude that the labels from experienced users

allow generating more interesting summaries, since they contain a better selec-
tion of techniques. Due to the negative impact of incomplete highlights on the
summaries, we need to consider extra temporal consistency in pt. We can also
say that, although combining the labels of several participants is convenient to
generate the ground truth, this process introduces incomplete highlights (Section
5.3.2) and alters personal preferences. We will consider instead creating person-
alized summaries with a higher quality ground truth, or including user profiles,
such as the one proposed in [72].

5.4 Summary

In this chapter, we proposed a two-stream highlights extraction method that
combines body joint-based and holistic features. The best combination among the
features we evaluated are 3D body joint positions with an LSTM, and invariant
spatiotemporal features (ISA) with a CNN. Users with different experience in
the target sport (i.e., kendo) participated in our evaluation, where our method
outperforms the previous work. Our results show that, unlike previous work, it is
not necessary to recognize the players’ actions explicitly to model highlights, but
we can use deep learning on different representations of the players’ movements.
For this, LSTM has proved to be useful to model the temporal relationships of
the players’ joint positions and of the motion features of each video segment. In
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order to successfully generate appealing summaries, features such as 3D body-
joint positions and activity measure allow classifying better highlights of sports
video. Generic features such as C3D and non-semantic methods such as clustering
did not proved helpful for this task.
Our main contributions can be summarized as follows:

• We proposed a novel method for summarizing UGV of sports that uses two
streams to extract features from the players’ actions.

• We compared different feature representations of human motion and study
their adequacy for modeling video highlights using a deep neural network.

• We provided an objective and subjective evaluation of our method. We
surveyed users with different levels of experience in the sport to investigate
the adequacy of our method to their particular preferences.
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6 Conclusion

This thesis described a novel approach to user-generated sports video summariza-
tion. Sports video summarization methods so far focused on leveraging editing
conventions of a specific target sport to detect the highlights of the game. These
heuristic methods are not applicable to user-generated video since it is mostly
unstructured and unedited. However, current UGV summarization methods are
quite general and do not really approach sports video directly, which makes them
inappropriate to extract sports video highlights (Chap. 2). We tackle the user-
generated sports video summarization problem by relying on a source of features
that is common to all UGV of sports, the players. We hypothesize that by using
the players’ actions as features we can generate a summary of a sports game. In a
first attempt to prove our hypothesis, we proposed a method that used the results
of applying human action recognition to the players’ motion to model highlights
using a GMM-HMM. 3D human motion representation, such as 3D joint positions
estimated using depth maps or MoCap sequences, offers the most accurate recog-
nition results. However, due to the lack of user-generated sport video datasets
using this representation, we recorded our own RGB-D sports dataset, which had
a limited number of actions. Faced with this problem, we designed a HAR method
for 3D joint trajectories that allows recognizing actions with a limited number
of training instances (Chap. 3), and used it in our summarization approach. We
evaluated the method using the annotations of people with and without expe-
rience in the sport. The objective results and the positive responses from the
survey showed that the players’ actions can actually be used to generate sum-
maries of UGV of sports, extracting different highlights depending on the person
who annotated the training videos (experienced or inexperienced) (Chap. 4). To
the best of our knowledge, this was the first time ever that user-generated sports
video summarization has been approached directly in this way, making this re-
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search a very novel work. One of the conclusions obtained was that we do not
need to recognize the actions perfectly in order to model the highlights. Thus,
we improved our original summarization method by considering not only the 3D
information of our videos, but also the motion cues present in the RGB frames.
We used convolutional neural networks to automatically extract those cues and,
instead of performing HAR, we fed them to a recurrent neural network to model
the interesting highlights (Chap. 5). The results show we surpassed our previous
method and the new extracted features opened a way for future research in the
UGV summarization field.
The main conclusions of this thesis are summarized as follows:

• Even in the case of not having a large action dataset, using 3D information
and template matching can provide good recognition results.

• The confidence value of a 3D joint position estimator can be used to filter
the noise of the capturing device.

• The player’s actions can be used as semantic features to model the highlights
in user-generated sports video.

• The activity measure feature rises the performance notable for highlight
modeling in all the cases we evaluated.

• Our method extracts different highlights depending on the level of experi-
ence in the sport of the user who annotated the training data.

• It is not necessary to recognize the players’ actions explicitly to generate a
highlights summary with our method.

• We obtained the best results using a two-stream highlights extraction that
combines coarse and detailed motion features. The best combination among
the features we evaluated are 3D body joint positions with an LSTM, and
invariant spatiotemporal features with a CNN.

• LSTM has proved to be useful to model the temporal relationships of the
players’ joint positions and of the motion features of each video segment.
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• In order to successfully generate appealing summaries (especially to expe-
rienced users), features such as detailed motion and activity measure allow
distinguishing skillful actions from poorly-executed actions. Generic fea-
tures such as C3D did not proved helpful for this task.

For the future work in our user-generated sports video summarization approach,
we will extend this method to a variety of sports (boxing, martial arts, etc.) and
other types of videos where people are protagonists, such as dance performances,
concerts, etc. We will investigate a way to include context into the extracted
highlights. Another research direction is to explore different motion features and
models for a better highlight extraction. We also plan to extend our dataset by
using videos in the wild, i.e., user-generated and publicly available. In the near
future next-generation devices will feature new sensors that will allow them to
capture 3D information. For example, the new iPhone7 Plus has two cameras,
which allows to generate depth maps for advanced image processing. This will
provide many opportunities to extract a variety of motion features from user-
generated video. As for the future work in our flexible HAR method, we plan to
optimize the generation of action templates by eliminating redundant information
(i.e. clustering similar instances or forgetting unused instances), and therefore
reducing classification times. We will also address the recognition of action classes
that only differ in their speed (e.g. touching and punching).
The proposed summarization method can be employed in several applications.

The most direct one is extracting the highlights of lengthy user videos of sports to
facilitate their review, transmission, etc. But also, the extracted features can be
used for video indexing according to which actions the players are doing. It could
be useful to look for certain patterns in the players’ actions and obtain statistics
about the game, and coaches could use this data to analyze the performance of
their players, etc. Our proposed flexible HAR method is very promising when
applied to customizable gesture interfaces, where a user could input, modify, and
delete actions in real-time without needing to retrain the system.
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Appendix: Self-generated UGV sports dataset

ID Original video Ground truth E Ground truth NE
#1 10 min 48 sec 1 min 11 sec 2 min 21 sec
#2 5 min 10 sec 49 sec 1 min 7 sec
#3 5 min 18 sec 1 min 9 sec 1 min 58 sec
#4 9 min 37 sec 1 min 37 sec 2 min 17 sec
#5 9 min 59 sec 2 min 33 sec 2 min 42 sec
#6 10 min 5 sec 1 min 28 sec 2 min 55 sec
#7 10 min 3 sec 48 sec 1 min 45 sec
#8 10 min 10 sec 45 sec 2 min 14 sec
#9 5 min 17 sec 32 sec 1 min 14 sec
#10 5 min 14 sec 22 sec 1 min 30 sec
#11 4 min 58 sec 53 sec 1 min 50 sec
#12 20 min 40 sec 1 min 24 sec 4 min 14 sec
#13 10 min 15 sec 53 sec 2 min 50 sec
#14 10 min 16 sec 58 sec 5 min 8 sec
#15 10 min 37 sec 47 sec 2 min 44 sec
#16 10 min 37 sec 34 sec 2 min 21 sec
#17 5 min 14 sec 16 sec 1 min 44 sec
#18 5 min 4 sec 32 sec 2 min 21 sec
#19 10 min 57 sec 38 sec 2 min 11 sec
#20 5 min 36 sec 27 sec 1 min 21 sec
#21 5 min 36 sec 33 sec 1 min 35 sec
#22 10 min 48 sec 58 sec 1 min 59 sec
#23 9 min 44 sec 1 min 11 sec 2 min 48 sec
#24 10 min 23 sec 54 sec 2 min 25 sec
#25 10 min 7 sec 28 sec 1 min 57 sec
#26 10 min 40 sec 49 sec 2 min 5 sec
#27 4 min 59 sec 33 sec 2 min 13 sec
#28 8 min 13 sec 47 sec 2 min 10 sec
Total 4 hours 6 min 11 sec 24 min 49 sec 1 hour 3 min 59 sec
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