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Data-Intensive Science of Relationships
Among Species, Volatile Organic
Compounds and Biological Activities!?

Azian Azamimi binti Abdullah
Abstract

Volatile organic compounds (VOCs) are small molecules with low molecular
weight that exhibit high vapor pressure under ambient conditions. In this study,
we have developed a VOC database of microorganisms, fungi, plants as well as
human being, which comprises the relation between emitting species, VOC, and
their biological activities. We have deposited the VOC data into KNApSAcK
Metabolite Ecology Database and this database is currently available online.
Accumulated data are divided into two types: (1) microorganisms species-VOC
relations, and (2) emitting species-VOC-biological activity relations. Initially, we
performed hierarchical clustering and graph clustering by DPClus algorithm to
extract clusters of microorganisms based on VOC similarity. Both clustering
results indicated that VOC based classification of microorganisms is consistent
with their classification based on pathogenicity. For the second data, we
performed heatmap clustering utilizing Tanimoto coefficient as the similarity
index between chemical structures to cluster all VOCs. We further accessed the
statistical significance of the clusters using hypergeometric p-values to
understand the relationships between chemical structures of VOCs and their
biological activities. Additionally, we also compared several types of hierarchical
clustering methods with DPClus clustering to classify VOCs using
fingerprint-based similarity measure between chemical structures. Our research
indicates that similar chemical structures of VOCs indicate possibilities of
exhibiting similar biological activities. We extended our findings by using
supervised machine learning methods to predict biological activities of VOCs
based on chemical structures. We have developed 72 classification models for the
prediction of biological activities of VOCs by 9 types of fingerprints and trained by
Deep Neural Network (DNN), Gradient Boosting Machine (GBM), Random Forest
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(RF) and Generalized Linear Model (GLM). Based on our computational results,
PubChem fingerprints trained with GBM method are suggested to be used as the
input for the prediction compared to other fingerprints and machine learning
methods. Generally, GBM method can outperform DNN in term of classifying
VOCs. GBM method has advantage in term of computational speed and requires
less parameter for optimization. Hence, we highly recommend using GBM method

for the prediction of biological activities of VOCs based on chemical structures.

Keywords: Volatile organic compounds, species, biological activity, clustering

1Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science and
Technology, NAIST-1S-DD1461205, March 16, 2017.
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Chapter 1

Introduction

This dissertation summarizes the author's research experience in developing a
novel volatile organic compound (VOC) database and analyzing the relationships
among species, volatile organic compounds and biological activities. This study
also attempts to predict the biological activity of volatile organic compound based
on their chemical structures by using various machine-learning methods. This
chapter describes the general background, the research problem, and research
objectives and also explains what are to be expected from the rest of the

dissertation.

1.1. Background

Metabolomics is the scientific study of quantification of low mass
compounds profiles and analysis of chemical processes involving metabolites in a
comprehensive fashion. In general, metabolites can be divided into two groups:
primary and secondary metabolites. Primary metabolites are directly involved in
the normal growth, development and reproduction. On the other hand, secondary
metabolites are not directly involved in these processes, but usually have
important ecological functions, such as inter- or intra-species communication,
antifungal, antimicrobial activities and also as a defense against pests and
pathogens (Agostini-costa et al. 2012). Secondary metabolites are often colored,
fragrant, or flavorful compounds and largely fall into three classes of compounds:
alkaloids, terpenoids and phenolics. Small proportions produced by these
secondary metabolites are volatile organic compounds (VOCs) that play important
roles in chemical ecology and human healthcare.

VOCs can be defined as small compounds ranging in between C5 to C20

carbon count with a molecular weight in the range of 50 to 200 Daltons (Rowan
1



2011). They comprise of a diverse chemical group of organic compounds with
various biological functions and have high vapor pressures under ambient
conditions. Their high vapor pressure results from a low boiling point, which
causes large numbers of molecules to evaporate from the liquid or solid form of the
compound and enter the surrounding air, a trait known as volatility. Living
organisms including human, animals, microorganisms and plants produce VOCs
naturally. The naturally produced VOCs play important roles in communication
between plants and they also serve as signaling molecules by passing information
between organisms. For human and other animals, VOCs are important as scents
and flavor of food. Recently, an increased number of researchers are utilizing
VOCs as a biomarker to identify various kinds of diseases. Here, we elaborate
further details of the importance of VOCs for living organisms specifically in

chemical ecology, agriculture and human healthcare.

(a) Chemical ecology

VOCs constitute only a small proportion of the total number of secondary
metabolites produced by living organisms, however, because of their important
roles in chemical ecology specifically in the biological interactions between
organisms and ecosystems, revealing and analyzing the roles of these VOCs is
essential for understanding the interdependence of organisms. The total amount
of VOCs emitted globally to the atmosphere is estimated to exceed 1 Pg per year,
and these VOCs include mainly plant-produced VOCs, isoprene, monoterpenes
and other oxygenated carbon compounds, such as herbivore-induced volatiles and
green leaf volatiles (Iijima 2014). Many studies have been performed that showed
the emission of VOCs from plants occur as significant cues, signals, or defense
responses to wounding, herbivore infestation, pathogen infection, and pollination.
The emitted VOCs are responsible for internal and external communication
between plants and herbivores, pathogens, pollinators, and parasitoids as shown

in Fig. 1.1. Plants emit VOCs from their roots, leaves, fruits and flowers and use
2



these compounds internally as defensive and signaling systems to induce levels of
systemic acquired resistance (SAR) to pests and diseases. Some VOCs, such as
methyl jasmonate a-pinene, camphene, and 1,8-cineol may inhibit the growth of
other plants. VOCs produced by plant organs such as fruits and flowers also can
act as external signaling molecules or semiochemicals by attracting pollinators
and seed dispersers (Delory et al. 2016). They also contribute to the attraction of
pest insects and beneficial insect predators in tritrophic interactions. Apart from
plants, VOCs also act as a major communication among insects and other
arthropods. Female insects use specific VOCs as sex pheromones to attract mates
(Reddy & Guerrero 2004). Insects also use VOCs to mark pathways between nest

and food and for defense (de Bruyne & Baker 2008).

pathogen
infection

herbivory

Botrytis canerea

Figure 1.1. Internal and external communication between plants,

herbivores, pathogens, pollinators, and parasitoids (Scala et al. 2013).



(b) Agriculture

Another important application field of VOCs is agriculture. Conventional
agricultural industry relies on a wide use of chemical pesticides and fertilizers.
However, increased demand for organic products shows that consumers prefer
reduced chemical use. Therefore, a novel sustainable agriculture needs to be
developed for crop protection and prevention from using harmful chemicals. VOCs
emitted by bacteria and fungi might have the potential as an alternative to the
use of chemical pesticides to protect plants from pests and pathogens
(Kanchiswamy et al. 2015a). It is because VOCs released by some plant
growth-promoting rhizobacteria (PGPR) can enhance plant growth as well as
inhibit the growth of other microorganisms, as shown in Fig. 1.2. For example,
acetoin and 2,3-butanediol released by rhizobacteria were found to promote the
growth of Arabidopsis thaliana seedlings (Kai et al. 2016). A number of frequently
emitted VOCs such as hexanal and 2-E-hexenal show antifungal activity and have
been developed as an alternative to synthetic chemicals (Ayseli & Ipek 2015).
Chemical ecologists also consider microbial VOCs as potential signaling molecules
or semiochemicals that function as attractants and repellents to insects and other
invertebrates. Pheromone traps are VOC based equipment for controlling pests
without using harmful pesticides (Beck & Vannette 2016). In this strategy, pest
insects may be diverted away from high-value crops using attractants, while
simultaneously being repelled from high-value crops with repellents.
Furthermore, natural enemies of insect pests, which are predators and
parasitoids, may be simultaneously attracted making the use of semiochemicals a
much more viable integrated management strategy than broad-spectrum chemical
insecticides. For agriculture scientists, microbial VOCs are seen as biocontrol
agents to control various phytopathogens and as biofertilizers for plant growth
promotion (Kanchiswamy et al. 2015b). Fig. 1.3 shows the combination of two
distinct approaches, which are the identification of very early biomarkers using a

knowledge base of translational genomic information on host and pathogen
4



responses and also the development of novel sensors that capture biomarkers for
disease detection (Dandekar et al. 2010; Cheung et al. 2015). The authors claimed
that it should be possible to identify and defend the crop by interdicting pathogen
spread prior to the rapid expansion phase of the disease. These examples indicate
that the VOCs might have a potential impact on crop welfare and sustainable

agriculture.

Beneficial insects Herbivores

Pollinators uh

Natural enemies
of herbivores q

feeders Growth promotion
Induced resistance

Phloem
feeders
Aboveground
EARH Beneficial microbes
Rhizobia Endophytic fungi
Nutrient allocation
PGPR PGPF Plant defenses
Root exudates

TRENDS in Plant Science

Figure 1.2. The beneficial microbes such as PGPR can enhance plant

growth and induce resistance in aerial plant tissues (Pineda et al. 2010).



Sensor Output Portable
Chemometrics Sensor System

2
<, feature 1 (6482)
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Tools V Tools
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Knowledge Network Integrating biomarkers
and metabolic pathways

Figure 1.3. Combination of portable sensor system and bioinformatics
knowledge for the management of vector-borne diseases of specialty crops

(Dandekar et al. 2010).

(c) Human healthcare

Recently, there are many research works in applying VOCs as human
disease biomarker. This is because the volatiles produced by humans reflect the
different metabolic phenotypes (metabotypes) of individuals and may be useful as
non-invasive biomarkers to evaluate and monitor disease or health status
(Holmes et al. 2008). Hundreds of volatiles are emitted through the human body
in breath, blood, skin, fecal and urine as shown in Fig. 1.4 (Shirasu & Touhara
2011; Buljubasic & Buchbauer 2015). A comprehensive review of breath analysis
in disease diagnosis using volatile profiles has been presented by (Lourenco &
Turner 2014). Breath analysis can be used as a biomarker to identify patients
related to breast cancer (Wang, Sun, et al. 2014; Phillips et al. 2010; Phillips et al.
2003), colorectal cancer (Altomare et al. 2013; Amal et al. 2016), pulmonary

tuberculosis (Syhre & Chambers 2008; Phillips et al. 2007), and lung cancer
6



(Hakim et al. 2012; Wang, Dong, et al. 2014; Capuano et al. 2015). Some recent
developments of electronic-nose (e-nose) technologies, particularly involving
breath analysis, with the potential for providing many new diagnostic
applications for the detection of specific human diseases associated with different
organs in the body has been summarized by (Wilson 2015). This is also supported
by (Fitzgerald et al. 2016), where they stated that the e-nose technology can
contribute to personalized medicine approach and have potential to develop
early detection for stress-related disorders through analysis of VOCs from exhaled
breath. Besides the exhaled breath, fecal and urine headspace VOCs also can be
used to diagnose gastrointestinal illness (Garner et al. 2007; Probert et al. 2009;

Arasaradnam et al. 2014; Chan et al. 2016).

Breath

Skin
Sweat

Affected area

Blood

Vaginal secretion
Urine
Feces

Figure 1.4. Hundreds of VOCs are emitted through the human body
(Shirasu & Touhara 2011).



Microbial volatiles are also widely used as biomarkers to detect human
diseases. This is because bacteria have a recognizable metabolism that produces
bacteria-specific VOCs, which might be used for non-invasive diagnostic purposes
(Bos et al. 2013). For example, an electronic nose has been used to determine the
causative bacteria responsible for diabetic foot infection by recognizing its
volatiles (Yusuf et al. 2015). Recently, some authors reported that skin microbiota
may play a major role in human attractiveness to blood-sucking insects (Verhulst
et al. 2010; Dormont et al. 2013). These insects are responsible for transmission of
widespread and sometimes deadly infectious diseases, including malaria (Wong et
al. 2012; De Moraes et al. 2014), dengue (Paixdo et al. 2014) and zika virus (Didier
Musso 2016). These examples indicate that disease-specific VOCs have potential
as diagnostic olfactory biomarkers of infectious diseases, metabolic diseases,

genetic disorders and other kinds of diseases.

1.2. Research Problem and Objectives

Advancements in analytical methods such as gas chromatography mass
spectrometry (GCMS), proton transfer reaction mass spectrometry (PTR-MS), and
selected ion flow tube mass spectrometry (SIFT-MS) have provided an opportunity
to identify the volatile metabolites of living organisms in research laboratories.
These analytical approaches generate a large amount of data and require
specialized mathematical, statistical and bioinformatics tool to analyze such data.
Despite the advances in sampling and detection by these analytical methods, only
few databases have been developed to handle these large and complex datasets.
For example, the Superscent database (Dunkel et al. 2009) only provides structure
information of flavors and scents, and the mVOC database (Lemfack et al. 2014)
provides information of microbial volatiles only. Flavornet (Arn & Acree 1998)
features compounds identified in experiments employing gas chromatography
olfactometry (GC-O) analysis, and Pherobase (El-Sayed 2014) is focused on insect

pheromones and semiochemicals. The vocBinBase (Skogerson et al. 2011) is a
8



mass spectral database for volatiles which can allow for tracking and
identification of volatile compounds in complex mixtures. None of these databases
provide information on biological activities of VOCs and species-species
interaction based on volatiles. Information on volatiles emission from
microorganisms, plants, and other organisms is scattered in the literature, but
there is no public and up-to-date database that accumulated comprehensive
information of volatiles and their biological activities. To meet this purpose, we
attempt to develop a novel VOC database that accumulates information of
emitting species, VOC and biological activities. The main objective of this study is
to explore and identify the diversity roles of volatile organic compounds emitted
by various species such as plants, microorganisms and human and also to develop
a novel database of VOCs extracted from the literature. Second objective is to
analyze the relationships between VOCs and microorganisms species based on
VOC similarity by using clustering methods. The third objective is to analyze the
relationships between other species, VOCs and biological activities based on
chemical structural similarity by using unsupervised and supervised machine

learning methods.

1.3. Dissertation outline

This dissertation outline is organized as follows. In Chapter 2, the
development of VOC database and information on accumulated data is explained.
We explain on how potential user can utilize this database for systematic studies
in metabolomics. Chapter 3 describes hierarchical clustering and network
clustering based on DPClus algorithm for classifying the microorganism species
based on VOC metabolites content similarity. In Chapter 4, we discussed on
heatmap clustering based on Tanimoto coefficient as the similarity index between
chemical structures to cluster all VOCs emitted by other biological species. The
resulted clusters were then further accessed by p-value based on hypergeometric

9



distribution to understand the relationships between chemical structures of VOCs
and their biological activities. Then, we also compared several different clustering
methods to determine the degree of cluster overlap and how well it classified
chemical structures of VOCs into clusters. Additionally, we extended our analysis
by implementing supervised machine learning methods such as Deep Neural
Network (DNN), Gradient Boosting Machine (GBM), Random Forest (RF) and
Generalized Linear Model (GLM) using different type of molecular fingerprints as
classification models for predicting the biological activities of VOCs based on their
chemical structures. Finally, Chapter 5 gives conclusing remarks of this

dissertation.

10



Chapter 2

Development of a VOC Database

2.1. Background

Recently big data has become an important topic that has significant roles
to play in versatile disciplines of scientific research. Big data biology is a
data-intensive science, which has emerged because of the rapidly increasing
volume of molecular biological data in omics fields such as genomics,
transcriptomics, proteomics and metabolomics (Hey et al. 2009; Kelling et al.
2009; Patterson et al. 2010). With the explosively growing data scale, the
development of biological databases incorporating different species has become a
very important theme in big data biology. To address this need, we have developed
KNApSAcK Family Databases (DBs), which have been utilized in a number of
studies in metabolomics. The KNApSAcK Family database systems previously
have been used to understand the medicinal usage of plants based on traditional
and modern knowledge (Afendi et al. 2012; Afendi et al. 2013; Wijaya et al. 2014).
A review of the KNApSAcK DB utilization in scientific work is presented by (Ikeda
et al. 2013). Data also has been accumulated in the KNApSAcK DB in order to
facilitate the comprehensive understanding of healthy cuisine ingredients, as well
as metabolomics (Katsuragi et al. 2013). To facilitate a comprehensive
understanding of the interactions between the metabolites of organisms and the
chemical-level contribution of metabolites to human health, a metabolite activity
DB known as the KNApSAcK Metabolite Activity DB has been constructed
(Nakamura et al. 2013; Nakamura et al. 2014) and a network-based approach has
been proposed to analyze the relationships between 3D structure and biological
activities of the metabolites (Ohtana et al. 2014).

In this study, we have developed a VOC database of microorganisms, fungi,

and plants as well as human being, which comprises the relation between
11



emitting species, VOC and their biological activities (Abdullah et al. 2015). We
have deposited the VOC data into KNApSAcK Metabolite Ecology Database, a
part of KNApSAcK family databases and this database is currently available at
http://kanaya.naist.jp/MetaboliteEcology/top.jsp. In this chapter, we describe
the development of a VOC database and explain how potential users can utilize

this database for metabolomics studies.

2.2. Methods

The data were collected by an extensive literature search on PubMed
(http://www.ncbi.nlm.nih.gov/pubmed) and Google Scholar. The PubMed search
provided more than 100 articles based on the keywords “volatile organic
compounds” and “metabolites”. The information on VOCs, emitting species,
target species and their biological activities were extracted and deposited into
KNApSAcK Metabolite Ecology Database. The KNApSAcK Metabolite Ecology is
also linked to the KNApSAcK Core and KNApSAcK Metabolite Activity databases
to provide further information on the metabolites and their biological activities.
Data were divided into two types: 1) Microorganisms species — VOC binary

relations, 2) Emitting species — VOC — biological activities triplet relations.

2.3. Results and Discussion

At present, we have accumulated 1088 VOCs emitted by 517 microorganisms
species and 341 VOCs emitted by other biological species including plants, fungi,
animals and human with their related biological activities. These VOC data have
been deposited into KNApSAcK Metabolite Ecology Database, which allows users
to search information on VOCs using the KNApSAcK compound ID and metabolite
name. The main window of KNApSAcK Family Databases is shown in Fig. 2.1 and
user can access the KNApSAcK Metabolite Ecology Database by clicking the
corresponding button.

12
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Figure 2.1. The main window of the KNApSAcK Family Databases.

(http://kanaya.naist.jp/KNApSAcK_Family/)

Figure 2.2 shows the main window of the KNApSAcK Metabolite Ecology

Database, which shows the search types and search conditions. For search type,

users can choose either partial or exact string matching searches by clicking the

corresponding button, i.e. Partial or Exact (Fig. 2.2A). Other check boxes can also

be selected to specify different search conditions (Fig. 12.2B) such as KNApSAcK

compound ID (C_ID), metabolite name, species name and ecological category or

localization. To search VOC data, users can input ‘VOC’ in the text box for the

Ecological category/Localization category, select the corresponding checkbox and

then click the List button (Fig. 2.2C).
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(i)Belong to certain ecological category (e.g. VOC)
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(ii)Avail at certain plant ization (e.g. Leaf, Root, Rhizomes)
Example : C_ID: C00001176/Metabolite name: Acetic Acid/ Plant localization :Rhizomes

Metabolite Ecology Keyword Search
Search Type (@ Partial |
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Decide search conditions by selecting the appropriate checkboxes (AND search).
c_ID (Exact only) '
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Ecological category/Localization VOC| - (C)

List Clear

Figure 2.2. The main window of the KNApSAcK Metabolite Ecology

Database.

Part of the result retrieved by entering ‘VOC’ in the text box is shown in Fig.
2.3. The attributes in the list are C_ID, which corresponds to the KNApSAcK
compound ID, metabolite name, species name (VOCs emitting species), ecological
category/localization (VOC) and references (the source of the VOC’s information),
from left to right. As an example, the metabolite known as alpha-Eudesmol (C_ID
C00000163) is emitted by Polygonum minus, generally known as ‘kesum’ in
Malaysia. This particular plant is among the most commonly used food additive,
flavoring agent and traditionally used to treat stomach and body aches
(Christapher et al. 2014; Vikram et al. 2014). Information related to the VOCs
that have KNApSAcK compound ID can be obtained by clicking the C_ID as in Fig.

2.3. Figure 2.4 shows the search results obtained by clicking the C_ID,
14



C00000163, which were retrieved from the KNApSAcK Core Database. Users can
retrieve further knowledge of this metabolite, such as molecular formula,
molecular weight, CAS RN, 3D structure, InChlKey and other species

information, which also produce the corresponding metabolite.

e .
gﬂg Metabolite Ecology @

INPUT WORD = [ Match Type : Partial , Ecological category/Localization : VOC ]

Ecological category/

Metabolite Name Species Name Localization Reference
00000100 Indole-3-Acetic acid (A) Pantoea agglomerans spp. voc ;j:;:?;hhﬁg ?;g:":“)”sl_zﬁg‘zgs
— Fiers M, Lognay G, Fauconnier M-L,
C00000136 1,8-Cinecle (A) Fusarium culmorum VvOC Jijakli MH (2013) PLoS ONE 8(6):
£RBRO5

C00000163 | alpha-Eudesmol (A) L Polygonum minus voc Molecules 2014, 19, 1922019242

A

A N\

. - o

Coot$o1 64 | Beta-Eudesmol (A) Stigmatella aurantiaca DW4/3-1 voc '&eer::(:hhﬁ 2 :#4"‘)“;';3 _‘;i'gs
C00000164 | Beta-Eudesmol () Stigmatella aurantiaca Sg a15 voc ;‘Z’:;:f‘;h”ﬁ 2 34’4"‘)”;'79‘13 _";‘jgs
€00000164 | Beta-Eudesmol (A) Stigmatella aurantiaca voc ;‘Z;";Z‘::h“ﬁg ?ég:g”;ﬁig‘:gs
cooacor?s | ewvere @ a2 ARy AT
comors | eoren ® o e
€00000175 | Ethylene (A) Tuber borchii ATCC 96540 voc ;z’:;:f‘c‘h"""g 2‘) g:x“"‘)”s';ﬁ _";‘jgs
C00000175 Ethylene @ Tuber melanosporum Bal1 voc l}ieer:ef:::(hwlg ‘z;g:ﬁ‘)”;?;ig‘:gs
€00000175 | Ethylene (A) Tuber melanosporum Rey._t voc ;Z’:efz‘;:h“ﬁ(; 2 g::”;'_:i_‘_\’igs
C00000175 Ethylene @ Pseudomonas solanacearum voC ;Z’:;:‘:sh“ig 2 g:":“)ug;&g‘zgs

Figure 2.3. The results retrieved for VOC’s search in the KNApSAcK
Metabolite Ecology Database.
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Plantae Annonaceae Guatteriopsis friesiana Ref.
Plantae Asteraceae Atractylis ovata Ref.
Plantae Cupressaceae Chamaecyparis formosensis Ref.
Plantae Labiatae Mentha arvensis L. Ref.
Plantae Myrtaceae Eucalyptus globulus Ref.
Plantae Myrtaceae Eucalyptus macathurii Ref.
Plantae Myrtaceae Eucalyptus spp. Ref.
Plantae Myrtaceae Leptospermum scoparium Ref.
Plantae Piperaceae Piper Ihotzkyanum Ref.
Plantae Polygonaceae Polygonum minus Ref.
Plantae Porellaceae Porella perrottetiana Ref.
- - Alphinia galanga Ref.

All rights reserved. © 2007 NARA INSTITUTE of SCIENCE and TECHNOLOGY

Figure 2.4. An example of the search results obtained by clicking the

C_ID, C00000163, which were retrieved from the KNApSAcK Core

Database. User can find out other organisms, which also emit this

particular metabolite.

To understand the relationships between VOCs and their biological

activities, we also integrate the KNApSAcK Metabolite Ecology Database with

KNApSAcK Metabolite Activity Database. Information on biological activities of

VOCs can be obtained by clicking the ‘A’ button in Fig. 2.3. Figure 2.5 shows the

search result of biological activities related to C_ID C00000163, which was

retrieved from the KNApSAcK Metabolite Activity Database. The attributes in the

list are C_ID, metabolite name, activity category, biological activity (function),

target species and references, from left to right. From the database, user can find

out that this particular VOC, known as alpha-Eudesmol has been emitted by
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Polygonum minus and have several biological activities such as

anticholinesterase, antimicrobial, antioxidant and allelopathic against target
species (Bacillus cereus, Enterococcus faecalis, Methilin-resistant Staphylococcus
aureus (MRSA), Salmonella entiriditis). This information might be useful for the
discovery of novel agriculture tools, as well as the development for market of

pharmaceutical agents in the future.

ﬁ Metabolite Activity

INPUT WORD = [ Match Type : Exact, C_ID : C00000163 ]

Metabolite Name Activity Category  Biological Activity (Function) Target Species Reference
C00000163 alpha-Eudesmol Anticholinesterase Acetylcholinesterase inhibitory Ahmad et al.,Molecules,19,
activities (2014),19220-19242
C00000163 alpha-Eudesmol Antimicrobial Antimicrobial activity towards the Bacillus cereus Ahmad et al.,Molecules,19,
tested microorganisms (2014),19220-19242
C00000163 alpha-Eudesmol Antimicrobial Antimicrobial activity towards the Enterococcus faecalis Ahmad et al.,Molecules,19,
tested microorganisms (2014),19220-19242
C00000163 alpha-Eudesmol Antimicrobial Antimicrobial activity towards the Methilin-resistant Staphylococcus Ahmad et al.,Molecules, 19,
tested microorganisms aureus (MRSA) (2014),19220-19242
C00000163 alpha-Eudesmol Antimicrobial Antimicrobial activity towards the Salmonella entiriditis Ahmad et al.,Molecules,19,
tested microorganisms (2014),19220-19242
C00000163 alpha-Eudesmol Antioxidant Leaf and stem have the highest Ahmad et al.,Molecules,19,
antioxidant activity (2014),19220-19242
C00000163 alpha-Eudesmol Allelopathic allelopathic activity
Number of matched data : DB match=7

page top

Figure 2.5. An example of the search result of biological activities related
to C_ID C00000163, which was retrieved from the KNApSAcK Metabolite

Activity Database.

2.4. Summary

In this chapter, we described on the development of a VOC database and
explained how to utilize this database for metabolomics studies. Initially, data
were accumulated by an extensive literature search through PubMed and Google
Scholar. Information on VOCs, emitting species, target species and related
biological activity were identified and extracted into an excel format. The data

then, were deposited into KNApSAcK Metabolite Ecology Database. Until now, we
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have accumulated about 1088 VOCs emitted by microorganisms species and 341
VOCs by other biological species such as plants, insects as well as human with the
corresponding biological activities. Apart from VOC biological activities related to
human healthcare, more than half of the biological activities are associated with
chemical ecology. The KNApSAcK Metabolite Ecology Database may be useful for
the discovery of novel agricultural tools by focusing on the identification of plant
growth promoting rhizobacteria and also the discovery of signature volatiles of
plant pathogenic species. This database also can be utilized for the non-invasive
identification of biomarkers in the medical diagnostic field as well as a systematic
research in various omics fields, especially metabolomics integrated with

ecosystems.
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Chapter 3

Clustering of Microorganisms Species
Based on VOC Similarity

In previous chapter, we described the development of a novel VOC database,
which is known as KNApSAcK Metabolite Ecology Database. There were two
types of accumulated data: 1) Microorganisms species — VOC relations, 2)
Emitting species — VOC — biological activity relations. This chapter focuses on the
clustering analysis result of the first type of data, which are the relationships
between microorganism species and their emitting VOCs. Until now, we have
accumulated 1088 VOCs emitted by 517 microorganisms species (Abdullah et al.

2015).

3.1. Background

A microorganism or microbe is a microscopic living organism, which may be
single-celled (Madigan 2012) or multicellular. They are universal in the biosphere
and are often found in large quantities and diverse compositions (microbiome).
Microorganisms are very diverse and include all bacteria, archaea and most
protozoa. This group also contains some species of fungi, algae, and certain
microscopic animals, such as rotifers. Microorganisms are also exploited in
biotechnology, both in traditional food and beverage preparation, and in modern
technologies based on genetic engineering. A small proportion of microorganisms
are pathogenic, causing disease and even death in plants and animals (Alberts et

al. 2002).

It is well known that microbes produce a diversity of natural compounds, e.g.

antibiotics. Many of these small molecules (<300 Da) exhibit high-vapour
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pressures and low boiling points, and, together with a lipophilic character, these
features support volatility, which are known as VOCs. In the past decade, studies
on microbial volatile organic compounds (mVOC) attracted many researchers
(Korpi et al. 2009; Piechulla & Degenhardt 2014; Lemfack et al. 2014). The
aromas of wines, cheese and other milk product, which are usually recognized as
pleasant by human are resulted from volatiles produced by microorganisms. On
the other hand, microorganisms also produce the unpleasant malodorous smells
during the process of putrefaction such as amines, indole, sulphur compounds and
ammonia. The earthy and muddy smell of wet forest soils is due to the emission of
the volatile geosmin released by Streptomyces species (Gerber 1967; Cane et al.
2006). The human microbial flora at any given anatomical site is relatively
specifically accompanied by a typical volatile organic compound (VOC) profile
such as gases released by the gut, foot odour and sweat smell. The VOC mixture of
breath originates from more than one source within the respiratory system and
respiratory disorders can result in odorous gases being expelled into the air,
which can be wuseful for diagnostic purposes (Cheepsattayakorn &
Cheepsattayakorn 2013). For example, a compound known as methyl nicotine can
be a promising biomarker to be used as a non-invasive diagnostic tool for detection
of Mycobacterium tuberculosis (Syhre & Chambers 2008). The emission of
2-nonanone of Pseudomonas aeruginosa VOCs may be used as in vivo marker to
detect lung infections (Carroll et al. 2005). A group of researchers has
investigated the performance of electronic nose (e-nose) technique performing
direct measurement of static headspace with algorithm and data interpretations
which was validated by GC-MS, to determine the causative bacteria responsible
for diabetic foot infection based on their volatiles (Yusuf et al. 2015). Other than
diagnostic tool, some volatile compounds produced by microorganisms such as
higher alcohols (2-methyl-1-butanol, 3-methyl-1-butanol and isobutanol) can be
used as biofuels (Blombach & Eikmanns 2011). Metabolic engineering can be used

to improve the production of natural microbial alcohols for the bio renewable fuels
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(Ingram et al. 2010; Nozzi et al. 2014; Lee et al. 2015). More than 10 000 microbial
species are described and at least a million are expected to exist on earth, the
VOC profiles of a surprisingly small number of microorganisms were investigated
so far. Considering the importance and the central roles of VOCs in our biosphere,
our first objective was to accumulate the data related to VOCs and their emitting
microorganisms species. Using this accumulated data, we performed hierarchical
clustering and graph clustering for classifying the VOC emitting species based on

volatile metabolite content similarity.

3.2. Datasets

We used the first type of data, which are 1088 VOCs emitted by 517
microorganisms species, as mentioned in Chapter 2. The information of emitting
species and volatile compounds has been converted into a 517X1088 binary matrix
(“1” indicates presence while “0” indicates absence), where rows represent as
microorganism species and columns represent VOCs emitted by the corresponding
species as shown in Table 2.1. The binary matrix then, was used to calculate the

distance between species and to perform the clustering.

Table 2.1. Representation of microorganism species and volatile organic

compounds as a two-dimensional binary matrix.

VOCs
Species
VOC: VOCz VOC: VOCs ... VOCxw
S1 1 0 1 1 0
S 1 1 0 0 0
Ss 0 1 0 1 0
S~ 1 0 0 0 1
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3.3. Methods

Clustering is an unsupervised learning method, which is the task of
grouping a set of objects into groups (clusters) based on similarity or distance
measures (Jain et al. 1999). This technique is important for knowledge discovery
and has been applied in many applications such as machine learning, pattern
recognition, image analysis and bioinformatics (Thalamuthu et al. 2006; Diao et al.
2011; Clifford et al. 2011; Richard et al. 2013). The goal of clustering is to
determine the intrinsic grouping in a set of unlabeled data. There are many

clustering methods based on different algorithms. Typical cluster models include:

(1) Connectivity models: for example, hierarchical clustering builds models

based on distance connectivity.

(2) Centroid models: for example, the k-means algorithm represents each

cluster by a single mean vector.

(3) Distribution models: clusters are modeled using statistical distributions,
such as multivariate normal distributions used by the Expectation-maximization

algorithm.

(4) Density models: for example, DBSCAN and OPTICS defines clusters as

connected dense regions in the data space.

(5) Subspace models: in Biclustering, clusters are modeled with both cluster

members and relevant attributes.

(6) Group models: some algorithms do not provide a refined model for their

results and just provide the grouping information.

(7) Graph-based models: a subset of nodes in a graph such that every two
nodes in the subset are connected by an edge can be considered as a prototypical

form of cluster.
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In this study, we wutilized hierarchical clustering and graph clustering
methods for classifying the VOC emitting species. Both methods are discussed

separately in the following:

3.3.1. Hierarchical clustering

We used hierarchical agglomerative clustering method, which starts out by
putting each observation into its own separate cluster (Johnson 1967; Murtagh &
Contreras 2011; Murtagh & Contreras 2012). The result of clustering is usually
represented by a dendrogram. The reason why we choose hierarchical clustering is
that, it is easy to use and our objective is to find a specific group for
microorganism species. In our case, we used a Species vs. VOC matrix. Let this
matrix be called M and Mix=1 if the species iis related to the kin VOC or otherwise
Mix=0. Hierarchical methods require a distance matrix, and hence we determined
the Euclidean distances between species. Euclidean distance, d between species 1

and species j can be calculated as equation (3.1):

d(i,) = Xiey (Mg — Mj.)? (3.1)

Here, n is the number of VOCs, and there are 1088 VOCs in our data. Based on
Euclidean distance, we performed the Ward’s hierarchical clustering analysis

using R, an open-source programming language.

3.3.2.  Graph clustering based on DPClus
DPClus is a graph clustering software (Md. Altaf-Ul-Amin et al. 2006),
which has been developed based on a graph-clustering algorithm that can extract

densely connected nodes as a cluster (Md Altaf-Ul-Amin et al. 2006). Initially, the
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algorithm was purposely developed to detect and visualize clusters of proteins in
interaction networks which mostly represent molecular biological functional units.
We explore the possibility of this algorithm to other applications as well and here,
we apply the DPClus algorithm to find a cohesive group for our accumulated
microorganism data. This algorithm can be applied to an undirected simple graph
G = (N, E) that consists of a finite set of nodes N and a finite set of edges E. Two
important parameters are used in this algorithm: density dkx and cluster property
cpnk. Density dk of any cluster k is the ratio of the number of edges present in the
cluster (/E/) and the maximum possible number of edges in the cluster (/E/max).

Equation (3.2) represents the cluster property of node n with respect to cluster k:

CPnk = (3.2)

dg XNy

Nk is the number of nodes in cluster k. Eux is the total number of edges between
the node n and the nodes of cluster k. In this study, we applied the DPClus
algorithm to identify certain groups of microorganism species, based on VOC
similarity. A network was constructed where a node represents a microorganism
species, and an edge indicates high VOC similarity between the corresponding
species pair. We selected 5% of the organism pairs based on the lower Euclidean
distance between them. We used the non-overlapping mode with the following
DPClus settings: Cluster property cpak was set to 0.5, density value dkx was set to
value in between 0.6 and 0.9, and minimum cluster size was set to 2, as

recommended by (Md Altaf-Ul-Amin et al. 2006).
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3.4. Results and discussion

3.4.1. Hierarchical clustering result
Fig. 3.1 shows the log-log relation between the number of VOCs, M and the

frequency of species, N. The pattern roughly follows power-law (Jeong et al. 2001).

From this figure, we can see that there are 92 species that emit only one type of
VOC (Point x). Highest 50 types of VOCs are emitted by an individual species and

there are 14 such species in our present data (Point y). From this statistical

analysis, we can say that most microorganism species emit a few VOCs, which can

act as their odor fingerprint. The information of emitting species and compounds

has been converted into a 517x1088 binary matrix (“1” indicates presence while “0”
indicates absence). The binary matrix then, was used to calculate the Euclidean

distance between species. From the Euclidean distance, hierarchical clustering of
species was performed. Fig. 3.2 shows a hierarchical dendrogram plot of
microorganism species based on VOC presence. Here, we cut the dendrogram tree

to 50 clusters and the threshold height for this clustering is 7. We also enlarged

the clusters that consisting 100% pathogenic microorganisms species, which are

clusters 35, 40 and 47.
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Figure 3.1. The log-log relation between the number of VOCs and the number

of related microorganisms species.

Table 1 shows the species name with their corresponding clusters and the
pathogenicity of the microorganism species. Interestingly, 77 species from 517
species are known as pathogenic bacteria and are classified into six clusters,
which are clusters 6, 27, 35, 40, 47 and 48. Out of these six clusters, three clusters
i.e. clusters 35, 40 and 47 (Fig. 3.2) contain 100% pathogenic bacterial species
such as Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli.
The other three clusters contain both pathogenic and non-pathogenic species. For
example, cluster 6 consists of 11 (7.2%) pathogenic bacterial species while cluster
27 comprises of only one (7.7%) pathogen species. Cluster 48 contains 4 (16%)

pathogenic bacterial species. Out of all 50 clusters, the rest of 44 clusters contain
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non-pathogenic species. These results imply that VOCs emitted by some
pathogenic bacteria are different from those emitted by non-pathogenic bacteria.

These results show consistency between VOC and pathogenicity-based

classification of microorganisms.

J Cluster 40
Cluster 35 hr

v

Cluster 47

1)

S, 22)
aureus(s )

Figure 3.2. Hierarchical dendrogram plot of microorganism species based
on VOC similarity. Cluster 35, 40 and 47 contain 100% pathogenic species
and the detail description on each cluster with the related microorganisms

species is given in Table 3.1.
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Table 3.1. Microorganisms species name corresponding to the clusters and

their pathogenicity.

Species Cluster

No Species Name No Pathogenicity
1 | Chondromyces crocatus 1 | Non-pathogenic
2 | Nannocystis exedens 2 | Non-pathogenic
3 | Nannocystis exedens Na eB37 2 | Non-pathogenic
4 | Nannocystis exedens subsp. cinnabarina Na c29 2 | Non-pathogenic
5 | Tuber magnatum 3 | Non-pathogenic
6 | Phoma sp. 4 | Non-pathogenic
7 | Tuber melanosporum 5 | Non-pathogenic
8 | Penicillium roqueforti (IBT 16404) 6 | Non-pathogenic
9 | Nannocystis exedens Na e¢485 6 | Non-pathogenic
10 | Streptomyces citreus 6 | Non-pathogenic
Il | Acremonium furcatum BAFC 51375 6 | Non-pathogenic
12 | Bacillus strains 6 | Non-pathogenic
13 | Fistulina hepatica (Schaeffer: Fr.) Fr 6 | Non-pathogenic
14 | Octadecabacter sp. 6 | Non-pathogenic
15 | Octadecabacter sp. ARK10255b 6 | Non-pathogenic
16 | Halomonas venusta 6 | Non-pathogenic
17 | Planococcus citreus 6 | Non-pathogenic
18 | Enterobacter agglomerans 6 | Non-pathogenic
19 | Aspergillus versicolor 6 | Non-pathogenic
20 | Streptomyces griseus 6 | Non-pathogenic
21 | Escherichia sp. 6 | Non-pathogenic
22 | Bacillus pumilus (BSH-4) 6 | Non-pathogenic
23 | Burkholderia andropogonis LMG 2129 6 | Non-pathogenic
24 | Burkholderia sordidicola LMG 22029 6 | Non-pathogenic
25 | Limnobacter thiooxidans LMG 19593 6 | Non-pathogenic
26 | Stenotrophomonas rhizophilla epl0-p69 6 | Non-pathogenic
27 | Staphylococcus aureus (5) 6 | Pathogenic
28 | Agaricus bisporus 6 | Non-pathogenic
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29 | Aspergillus candidus Non-pathogenic
30 | Emericella nidulans Non-pathogenic
31 | Mycoleptodonoides aitchisonii TUFC10099 Non-pathogenic
32 | Pseudomonas aeruginosa(2) Pathogenic

33 | Pseudomonas fluorescens L13-6-12 Non-pathogenic
34 | Pseudomonas sp. Non-pathogenic
35 | Pseudomonas trivialis 3Re2-7 Non-pathogenic
36 | Shewanella spp. Non-pathogenic
37 | Muscodor fengyangensis (ZJLQ374) Non-pathogenic
38 | Penicillium expansum Non-pathogenic
39 | Muscodor fengyangensis (ZJLQO070) Non-pathogenic
40 | Muscodor fengyangensis (ZJLQ151) Non-pathogenic
41 | Muscodor albus I-41. 3s Non-pathogenic
42 | Bacillus pumilus (ZB13) Non-pathogenic
43 | Bacillus subtilis(BL02) Non-pathogenic
44 | Carnobacterium maltaromaticum Non-pathogenic
45 | Penicillium crustosum Non-pathogenic
46 | Escherichia coli(3) Pathogenic

47 | Mycobacterium tuberculosis Pathogenic

48 | Psedomonas taetroleus Non-pathogenic
49 | Penicillium cyclopium Non-pathogenic
50 | Paecilomyces variotii Non-pathogenic
51 | Jannaschia helgolandensis strain HEL-26 Non-pathogenic
52 | Klebsiella pneumoniae Pathogenic

53 | Tuber oligospermum Non-pathogenic
54 | Thermoactinomyces spp. Non-pathogenic
55 | Actinobacteria Non-pathogenic
56 | Oscillatoria chalybea Non-pathogenic
57 | Oscillatoria sp. Non-pathogenic
58 | Streptomyces lavendulae Non-pathogenic
59 | Cytophaga strains Non-pathogenic
60 | a marine Arctic bacterium Non-pathogenic
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61 | Burkholderia sordidicola LMG 22029 Non-pathogenic
62 | Roseobacter clade Non-pathogenic
63 | Serratia plymuthica 3Re4-18 Non-pathogenic
64 | Staphylococcus epidermidis 2P3-18 Non-pathogenic
65 | Stenotrophomonas rhizophila P69 Non-pathogenic
66 | Arthrobacter globiformis Non-pathogenic
67 | Streptomycete sp. Non-pathogenic
68 | Penicillium palitans (commune) (IBT 15899) Non-pathogenic
69 | Staphylococcus aureus (1) Pathogenic

70 | Agaricus campestris Non-pathogenic
71 | Trichoderma aureoviride IMI 91968 Non-pathogenic
72 | Aspergillus fumigatus Non-pathogenic
73 | Sulfitobacter sp. Bio-007 Non-pathogenic
74 | Cenococcum geophilum Non-pathogenic
75 | Wolinella curva CCUG 13146 (35224) Non-pathogenic
76 | aerobic Gram-negative bacteria Non-pathogenic
77 | Klebsiella pneumoniae (2) Pathogenic

78 | Staphylococcus aureus (2) Pathogenic

79 | Trichoderma pseudokoningii (T64) Non-pathogenic
80 | Streptomyces antibioticus CBS 659.68 Non-pathogenic
81 | psychrotrophic bacteria Non-pathogenic
82 | Trichoderma viride (T60) Non-pathogenic
83 | Thermomonospora fusca Non-pathogenic
84 | Alternaria Alternata Non-pathogenic
85 | Paenibacillus polymyxa (BMP-11) Non-pathogenic
86 | Puccinia graminis var. tritici Non-pathogenic
87 | Trichoderma sp. Non-pathogenic
88 | Escherichia coli(2) Pathogenic

89 | Bacillus amyloliquefaciens IN937a Non-pathogenic
90 | Bacillus subtilis GB03 Non-pathogenic
91 | Penicillium digitatum Non-pathogenic
92 | Bacillus spp. Non-pathogenic
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93 | Citrobacter freundii Non-pathogenic
94 | Micrococcus luteus Non-pathogenic
95 | Staphylococcus aureus Pathogenic

96 | Daedalea juniperina Non-pathogenic
97 | Muscodor fengyangensis (ZJLQO023) Non-pathogenic
98 | Muscodor fengyangensis (ZJLQO024) Non-pathogenic
99 | Oscillatoria perornata Non-pathogenic
100 | Spirulina platensis Non-pathogenic
101 | Penicillium clavigerum Non-pathogenic
102 | Xanthomonas campestris pv campestris Non-pathogenic
103 | Roseovarius spp. Non-pathogenic
104 | benthic cyanobacteria (Calothrix, Plectonema) Non-pathogenic
105 | Cyanobacterial biofilms Non-pathogenic
106 | Aerobasidium pullulans Non-pathogenic
107 | Escherichia coli(6) Pathogenic

108 | Dipodascus aggregatus Non-pathogenic
109 | Pseudomonas solanacearum Non-pathogenic
110 | Aspergillus clavatus Non-pathogenic
111 | Blastomyces dermatitidis Non-pathogenic
112 | Ceratocystis fimbriata Non-pathogenic
113 | Mucor hiemalis Non-pathogenic
114 | Tuber borchii 43BO Non-pathogenic
115 | Tuber borchii ATCC 96540 Non-pathogenic
116 | Tuber melanosporum Ball Non-pathogenic
117 | Tuber melanosporum Rey t Non-pathogenic
118 | Bifidobacterium adolescentis DPC6044 Non-pathogenic
119 | Lactobacillus brevis DPC6108 Non-pathogenic
120 | Anabaena Non-pathogenic
121 | Fossombronia pusilla Non-pathogenic
122 | Lyngbya Non-pathogenic
123 | Sigmatella aurantiaca Non-pathogenic
124 | Streptomyces sulfureus Non-pathogenic
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125

Streptomyces UC5319

Non-pathogenic

126

Pseudomonas fluorescens ANS5

Non-pathogenic

127

Fomes annosus

Non-pathogenic

128

Flavobacteria sp.

Non-pathogenic

129

Chromobacterium sp.

Non-pathogenic

Clitocybe geotropa

Non-pathogenic

Fomes scutellatus

Non-pathogenic

Marasmius oreacles

Non-pathogenic

Pholiota aureca

Non-pathogenic

Pantoea agglomerans spp.

Non-pathogenic

Pseudonocardia sp.

Non-pathogenic

Saccharomonospora sp.

Non-pathogenic

Thermomonospora sp.

Non-pathogenic

Lactobacillus fermentum

Non-pathogenic

Fomes pomaceus

Non-pathogenic

140

Alphaproteobacteria ( Rhizobium , Sphingomonas ,

Methylobacterium , Roseovarius)

Non-pathogenic

141

Betaproteobacteria (Variovorax , Zogloea)

Non-pathogenic

142

Deleya spp.

Non-pathogenic

143

Photobacterium spp.

Non-pathogenic

144

Plantibacter spp.

Non-pathogenic

145

Pseudoalteromonas spp.

Non-pathogenic

146

Rhizobium ssp.

Non-pathogenic

147

Rhodococcus spp.

Non-pathogenic

148

Sphingomonas spp.

Non-pathogenic

149

Variovorax spp.

Non-pathogenic

Vibrio spp.

Non-pathogenic

Zogloea ssp.

Non-pathogenic

Bacillus popillae

Non-pathogenic

Penicillium chrysogenum (IBT 15921)

Non-pathogenic

Penicillium chrysogenum (IBT 15996)

Non-pathogenic

Azoarcus evansii

Non-pathogenic
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156 | Acinetobacter calcoaceticus 6 | Non-pathogenic
157 | Tilletia caries 6 | Non-pathogenic
158 | Tilletia controversa 6 | Non-pathogenic
159 | Tilletia foetida 6 | Non-pathogenic
160 | Bacillus thuringensis 6 | Non-pathogenic
161 | Chondromyces crocatus Cm c2 7 | Non-pathogenic
162 | Chondromyces crocatus Cm c¢5 7 | Non-pathogenic
163 | Myxobacterium spp. 8 | Non-pathogenic
164 | Myxococcus xanthus 8 | Non-pathogenic
165 | Stigmatella aurantiaca 9 | Non-pathogenic
166 | Stigmatella aurantiaca DW4/3-1 9 | Non-pathogenic
167 | Stigmatella aurantiaca Sg al5 9 | Non-pathogenic
168 | Streptomyces caviscabies 10 | Non-pathogenic
169 | Streptomyces sp. GWS-BW-HS. 10 | Non-pathogenic
170 | Streptomyces coelicolor 11 | Non-pathogenic
171 | Streptomyces albidoflavus 11 | Non-pathogenic
172 | Streptomyces albidoflavus AMI 246 11 | Non-pathogenic
173 | Streptomyces albus 11 | Non-pathogenic
174 | Streptomyces albus IFO 13014 11 | Non-pathogenic
175 | Streptomyces antibioticus 11 | Non-pathogenic
176 | Streptomyces antibioticus ETH 22014 11 | Non-pathogenic
177 | Streptomyces aureofaciens ETH 13387 11 | Non-pathogenic
178 | Streptomyces coelicolor ATCC 21666 11 | Non-pathogenic
179 | Streptomyces coelicolor DSM 40233 11 | Non-pathogenic
180 | Streptomyces diastatochromogenes IFO 13814 11 | Non-pathogenic
181 | Streptomyces griseus ATCC 23345 11 | Non-pathogenic
182 | Streptomyces griseus IFO 13849 11 | Non-pathogenic
183 | Streptomyces hirsutus ATCC 19773 11 | Non-pathogenic
184 | Streptomyces hirsutus ETH 1666 11 | Non-pathogenic
185 | Streptomyces hygroscopicus ATCC 27438 11 | Non-pathogenic
186 | Streptomyces murinus DSM 40091 11 | Non-pathogenic
187 | Streptomyces murinus NRRL 8171 11 | Non-pathogenic
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188 | Streptomyces olivaceus ETH 6445 11 | Non-pathogenic
189 | Streptomyces olivaceus ETH 7437 11 | Non-pathogenic
190 | Streptomyces rishiriensis AMI 224 11 | Non-pathogenic
191 | Streptomyces spp. AMI 240 11 | Non-pathogenic
192 | Streptomyces spp. AMI 243 11 | Non-pathogenic
193 | Streptomyces thermoviolaceus CBS 111.62 11 | Non-pathogenic
194 | Actinomycetes 11 | Non-pathogenic
195 | Streptomyces albus subsp. pathocidicus IFO 13812 11 | Non-pathogenic
196 | Streptomyces antibioticus CBS 659.68 11 | Non-pathogenic
197 | Streptomyces aureofaciens ETH 28832 11 | Non-pathogenic
198 | Streptomyces diastatochromogenes ETH 18822 11 | Non-pathogenic
199 | Streptomyces hygroscopicus IFO 13255 11 | Non-pathogenic
200 | Streptomyces thermoviolaceus IFO 12382 11 | Non-pathogenic
201 | Streptomyces spp. 12 | Non-pathogenic
202 | Bacillus 13 | Non-pathogenic
203 | Tuber borchii 14 | Non-pathogenic
204 | Tuber indicum 15 | Non-pathogenic
205 | marine Streptomycete (isolate B6007) 16 | Non-pathogenic
206 | Prevotella buccae ATCC 33574 16 | Non-pathogenic
207 | Prevotella buccae ES12-B 16 | Non-pathogenic
208 | Prevotella buccae ES17-1 16 | Non-pathogenic
209 | Prevotella buccae ES9-1 16 | Non-pathogenic
210 | Prevotella disiens DSM 20516 16 | Non-pathogenic
211 | Prevotella heparinolyticus ATCC 35895 16 | Non-pathogenic
212 | Prevotella oris ATCC 33573 16 | Non-pathogenic
213 | Prevotella oris ES14B-3A 16 | Non-pathogenic
214 | Prevotella oris ES9-3 16 | Non-pathogenic
215 | Prevotella oris RPG 16 | Non-pathogenic
216 | Prevotella veroralis ATCC 33779 16 | Non-pathogenic
217 | Porphyromonas endodontalis HG 181 (H 1la-e) 16 | Non-pathogenic
218 | Porphyromonas endodontalis HG 182 (BN 11la-f) 16 | Non-pathogenic
219 | Porphyromonas endodontalis HG 370 (ATCC 35406) 16 | Non-pathogenic
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220 | Porphyromonas endodontalis HG 412 16 | Non-pathogenic
221 | Prevotella oralis ES4-B 16 | Non-pathogenic
222 | Bacteroides fragilis 16 | Non-pathogenic
223 | Bacteroides fragilis ATCC 25285 16 | Non-pathogenic
224 | Prevotella oralis ES14B-3A 16 | Non-pathogenic
225 | Prevotella oralis ES15-2 16 | Non-pathogenic
226 | ARK10063 17 | Non-pathogenic
227 | Bjerkandera adusta 17 | Non-pathogenic
228 | Bjerkandera adusta CBS 595.78 17 | Non-pathogenic
229 | Armillaria mellea 18 | Non-pathogenic
230 | Pholiota squarrosa 18 | Non-pathogenic
231 | Stropharia rugosoannulata 18 | Non-pathogenic
232 | Verticillium longisporum 19 | Non-pathogenic
233 | Candida tropicalis 19 | Non-pathogenic
234 | Salmonella enterica 19 | Non-pathogenic
235 | Shigella flexneri 19 | Non-pathogenic
236 | Tuber panniferum 19 | Non-pathogenic
237 | Tuber excavatum 19 | Non-pathogenic
238 | Penicillium aurantiogriseum 19 | Non-pathogenic
239 | Ascocoryne sarcoides NRRL 50072 19 | Non-pathogenic
240 | Aspergillus ornatus 19 | Non-pathogenic
241 | Neurospora sitophila ATCC 46892 19 | Non-pathogenic
242 | Neurospora sp. 19 | Non-pathogenic
243 | Penicillium chrysogenum 19 | Non-pathogenic
244 | penicillium paneum (Conidia) 19 | Non-pathogenic
245 | Tuber uncinatum 19 | Non-pathogenic
246 | Ceratocystis sp. 19 | Non-pathogenic
247 | Thielaviopsis basicola 19 | Non-pathogenic
248 | Mycobacterium bovis 19 | Non-pathogenic
249 | Muscodor albus CZ-620 19 | Non-pathogenic
250 | Muscodor crispans 19 | Non-pathogenic
251 | Boletus variegatus 19 | Non-pathogenic
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252 | Fomes sp. 19 | Non-pathogenic
253 | Dinoroseobacter shibae 20 | Non-pathogenic
254 | Dinoroseobacter shibae strain DFL-27 20 | Non-pathogenic
255 | Loktanella sp. 20 | Non-pathogenic
256 | Loktanella sp. Bio-204 20 | Non-pathogenic
257 | Carnobacterium divergens 9P 21 | Non-pathogenic
258 | Dinoroseobacter sp. 22 | Non-pathogenic
259 | Stigmatella sp. 22 | Non-pathogenic
260 | Calothrix 23 | Non-pathogenic
261 | Phormidium sp. 23 | Non-pathogenic
262 | Plectonema 23 | Non-pathogenic
263 | Calothrix parietina 23 | Non-pathogenic
264 | Plectonema notatum 23 | Non-pathogenic
265 | Plectonema sp. 23 | Non-pathogenic
266 | Tolypothrix 23 | Non-pathogenic
267 | Tolypothrix distorta 23 | Non-pathogenic
268 | Calothrix sp. 23 | Non-pathogenic
269 | Burkholderia ambifaria LMG 19467 24 | Non-pathogenic
270 | Burkholderia ambifaria LMG 17828 24 | Non-pathogenic
271 | Burkholderia ambifaria LMG 19182 24 | Non-pathogenic
272 | Alcaligenes 25 | Non-pathogenic
273 | Alcaligenes faecalis 25 | Non-pathogenic
274 | Arthrobacter nitroguajacolius 25 | Non-pathogenic
275 | Lysobacter gummosus 25 | Non-pathogenic
276 | Sporosarcina ginsengisoli 25 | Non-pathogenic
277 | Stenotrophomonas maltophilia 26 | Non-pathogenic
278 | Serratia marcescens 26 | Non-pathogenic
279 | Bacillus simplex 26 | Non-pathogenic
280 | Bacillus subtilis 26 | Non-pathogenic
281 | Bacillus weihenstephanensis 26 | Non-pathogenic
282 | Microbacterium oxydans 26 | Non-pathogenic
283 | Streptomyces lateritius 26 | Non-pathogenic
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284 | Escherichia coli 27 | Pathogenic

285 | Burkholderia anthina LMG 20980 27 | Non-pathogenic
286 | Burkholderia gladioli LMG 2216 27 | Non-pathogenic
287 | Burkholderia glumae LMG 2196 27 | Non-pathogenic
288 | Burkholderia caledonica LMG 19076 27 | Non-pathogenic
289 | Burkholderia caribensis LMG 18531 27 | Non-pathogenic
290 | Burkholderia caryophylli LMG 2155 27 | Non-pathogenic
291 | Burkholderia fungorum LMG 16225 27 | Non-pathogenic
292 | Burkholderia glathei LMG 14190 27 | Non-pathogenic
293 | Burkholderia lata LMG 22485 27 | Non-pathogenic
294 | Serratia plymuthica IC14 27 | Non-pathogenic
295 | Burkholderia graminis LMG 18924 27 | Non-pathogenic
296 | Cellulomonas uda 27 | Non-pathogenic
297 | Paenibacillus polymyxa 28 | Non-pathogenic
298 | Paenibacillus polymyxa E681 28 | Non-pathogenic
299 | Trichoderma viride 29 | Non-pathogenic
300 | Tuber aestivum 30 | Non-pathogenic
301 | Tuber brumale 31 | Non-pathogenic
302 | Tuber mesentericum 31 | Non-pathogenic
303 | Tuber rufum 31 | Non-pathogenic
304 | Tuber simonea 31 | Non-pathogenic
305 | Pseudomonas fragi 25P 32 | Non-pathogenic
306 | Burkholderia lata LMG 6993 33 | Non-pathogenic
307 | Burkholderia phenazinium LMG 2247 33 | Non-pathogenic
308 | Burkholderia phytofirmans LMG 22487 33 | Non-pathogenic
309 | Burkholderia pyrrocinia LMG 21822 33 | Non-pathogenic
310 | Burkholderia terricola LMG 20594 33 | Non-pathogenic
311 | Chromobacterium violaceum 33 | Non-pathogenic
312 | Chromobacterium violaceum CVO0 33 | Non-pathogenic
313 | Pseudomonas putida 33 | Non-pathogenic
314 | Pseudomonas putida ISOf 33 | Non-pathogenic
315 | Serratia marcescens MG 33 | Non-pathogenic

37




316 | Serratia plymuthica HRO-C48 33 | Non-pathogenic
317 | Burkholderia sacchari LMG 19450 33 | Non-pathogenic
318 | Burkholderia thailandensis LMG 20219 33 | Non-pathogenic
319 | Pseudomonas fluorescens WCS 417r 33 | Non-pathogenic
320 | Serratia entomophilia AIMO2 33 | Non-pathogenic
321 | Serratia proteamaculans B5a 33 | Non-pathogenic
322 | Burkholderia tropica LMG 22274 34 | Non-pathogenic
323 | Burkholderia cepacia LMG 1222 358 34 | Non-pathogenic
324 | Burkholderia hospita LMG 20598 34 | Non-pathogenic
325 | Burkholderia kururiensis LMG 19447 34 | Non-pathogenic
326 | Burkholderia phenoliruptrix LMG 22037 34 | Non-pathogenic
327 | Burkholderia xenovorans LMG 21463 34 | Non-pathogenic
328 | Serratia sp. 34 | Non-pathogenic
329 | Pandoraea norimbergensis LMG 18379 34 | Non-pathogenic
330 | Escherichia coli(1) 35 | Pathogenic
331 | Escherichia coli(4) 35 | Pathogenic
332 | Klebsiella pneumoniae (1) 35 | Pathogenic
333 | Klebsiella pneumoniae (3) 35 | Pathogenic
334 | Escherichia coli(7) 35 | Pathogenic
335 | Escherichia coli(8) 35 | Pathogenic
336 | Escherichia coli(9) 35 | Pathogenic
337 | Escherichia coli(10) 35 | Pathogenic
338 | Escherichia coli(11) 35 | Pathogenic
339 | Escherichia coli(12) 35 | Pathogenic
340 | Escherichia coli(13) 35 | Pathogenic
341 | Escherichia coli(14) 35 | Pathogenic
342 | Escherichia coli(15) 35 | Pathogenic
343 | Escherichia coli(16) 35 | Pathogenic
344 | Escherichia coli(17) 35 | Pathogenic
345 | Escherichia coli(18) 35 | Pathogenic
346 | Escherichia coli(19) 35 | Pathogenic
347 | Escherichia coli(20) 35 | Pathogenic
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348 | Escherichia coli(21) 35 | Pathogenic
349 | Escherichia coli(22) 35 | Pathogenic
350 | Escherichia coli(23) 35 | Pathogenic
351 | Escherichia coli(24) 35 | Pathogenic
352 | Klebsiella pneumoniae (4) 35 | Pathogenic
353 | Klebsiella pneumoniae (5) 35 | Pathogenic
354 | Klebsiella pneumoniae (6) 35 | Pathogenic
355 | Klebsiella pneumoniae (7) 35 | Pathogenic
356 | Klebsiella pneumoniae (8) 35 | Pathogenic
357 | Klebsiella pneumoniae (9) 35 | Pathogenic
358 | Klebsiella pneumoniae (15) 35 | Pathogenic
359 | Klebsiella pneumoniae (16) 35 | Pathogenic
360 | Klebsiella pneumoniae (17) 35 | Pathogenic
361 | Klebsiella pneumoniae (18) 35 | Pathogenic
362 | Pseudomonas aeruginosa(l) 35 | Pathogenic
363 | Klebsiella pneumoniae (13) 35 | Pathogenic
364 | Klebsiella pneumoniae (14) 35 | Pathogenic
365 | Pseudomonas aurantiaca 36 | Non-pathogenic
366 | Pseudomonas chlororaphis 36 | Non-pathogenic
367 | Pseudomonas corrugate 36 | Non-pathogenic
368 | Pseudomonas fluorescens 36 | Non-pathogenic
369 | Cupriavidus necator LMG 1199 37 | Non-pathogenic
370 | Klebsiella sp. 37 | Non-pathogenic
371 | Pseudomonas aeruginosa PUPa3 37 | Non-pathogenic
372 | Citrobacter sp. 37 | Non-pathogenic
373 | Enterobacter spp. 37 | Non-pathogenic
374 | Lactobacillus brevis 37 | Non-pathogenic
375 | Lactobacillus hilgardii 37 | Non-pathogenic
376 | Oenococcus oeni 37 | Non-pathogenic
377 | Lactobacillus lactis 37 | Non-pathogenic
378 | Alpha proteobacteria 37 | Non-pathogenic
379 | Gamma proteobacteria 37 | Non-pathogenic
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380 | Klebsiella oxytoca 37 | Non-pathogenic
381 | Lactobacillus sp. 37 | Non-pathogenic
382 | Lactococcus sp. 37 | Non-pathogenic
383 | Schizophyllum commune 37 | Non-pathogenic
384 | Alphaproteobacteria (e.g. Roseobacter sp.) 37 | Non-pathogenic
385 | Betaproteobacteria (Alcaligenes faecalis) 37 | Non-pathogenic
386 | Desulfovibrio acrylicus 37 | Non-pathogenic
387 | Parasporobacterium paucivorans 37 | Non-pathogenic
388 | Treponema denticola 37 | Non-pathogenic
389 | Brevibacterium linens 37 | Non-pathogenic
390 | Aspergillus flavus 38 | Non-pathogenic
391 | Aspergillus flavus NRRL 18543 38 | Non-pathogenic
392 | Aspergillus flavus NRRL 25347 38 | Non-pathogenic
393 | Aspergillus niger 38 | Non-pathogenic
394 | Aspergillus niger NRRL 326 38 | Non-pathogenic
395 | Aspergillus parasiticus NRRL 5862 38 | Non-pathogenic
396 | Penicillium glabrum NRRL 766 38 | Non-pathogenic
397 | Rhizopus stolonifer 38 | Non-pathogenic
398 | Rhizopus stolonifer NRRL 54667 38 | Non-pathogenic
399 | Serratia proteamaculans 42M 39 | Non-pathogenic
400 | E. cloacae 40 | Pathogenic
401 | Staphylococcus aureus (3) 40 | Pathogenic
402 | Klebsiella pneumoniae (11) 40 | Pathogenic
403 | Staphylococcus aureus (6) 40 | Pathogenic
404 | Staphylococcus aureus (8) 40 | Pathogenic
405 | Staphylococcus aureus (10) 40 | Pathogenic
406 | Staphylococcus aureus (11) 40 | Pathogenic
407 | Staphylococcus aureus (13) 40 | Pathogenic
408 | Staphylococcus aureus (14) 40 | Pathogenic
409 | Staphylococcus aureus (17) 40 | Pathogenic
410 | Staphylococcus aureus (20) 40 | Pathogenic
411 | Klebsiella pneumoniae (10) 40 | Pathogenic
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412 | Klebsiella pneumoniae (12) 40 | Pathogenic
413 | Klebsiella pneumoniae (19) 40 | Pathogenic
414 | Klebsiella pneumoniae (20) 40 | Pathogenic
415 | Staphylococcus aureus (7) 40 | Pathogenic
416 | Staphylococcus aureus (9) 40 | Pathogenic
417 | Staphylococcus aureus (12) 40 | Pathogenic
418 | Staphylococcus aureus (15) 40 | Pathogenic
419 | Staphylococcus aureus (16) 40 | Pathogenic
420 | Staphylococcus aureus (18) 40 | Pathogenic
421 | Staphylococcus aureus (19) 40 | Pathogenic
422 | Staphylococcus aureus (21) 40 | Pathogenic
423 | Staphylococcus aureus (22) 40 | Pathogenic
424 | biofilms A (Rivularia sp./C. parietina community) 41 | Non-pathogenic
425 | C. parietina 41 | Non-pathogenic
426 | Cyanobacteria 41 | Non-pathogenic
427 | Rivularia sp. 41 | Non-pathogenic
428 | Laccaria bicolor 42 | Non-pathogenic
429 | Paxillus involutus MAJ 42 | Non-pathogenic
430 | Paxillus involutus NAU 42 | Non-pathogenic
431 | Penicillium sp. 43 | Non-pathogenic
432 | Desulfovibrio gigas 43 | Non-pathogenic
433 | Methanobacterium formicicum 43 | Non-pathogenic
434 | Methanobacterium thermoautotrophicum 43 | Non-pathogenic
435 | Methanosarcina barkeri 43 | Non-pathogenic
436 | Aeromonas veronii 43 | Non-pathogenic
437 | Geobacillus stearothermophilus 43 | Non-pathogenic
438 | Clostridium collagenovorans 43 | Non-pathogenic
439 | Desulfovibrio vulgaris 43 | Non-pathogenic
440 | Enterobacter cloacae 43 | Non-pathogenic
441 | Rhodobacter spaeroides 43 | Non-pathogenic
442 | Rhodocyclus tenuis 43 | Non-pathogenic
443 | Rhodospirillum rubrum 43 | Non-pathogenic
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444 | Aspergillus sp. 43 | Non-pathogenic
445 | Candida humicola 43 | Non-pathogenic
446 | Scopulariopsis brevicaulis 43 | Non-pathogenic
447 | Methanobacterium sp. 43 | Non-pathogenic
448 | Bacterium from CFB group 43 | Non-pathogenic
449 | Saccharomyces cerevisiae Y1001 44 | Non-pathogenic
450 | Serratia spp. B2675 44 | Non-pathogenic
451 | Serratia spp. B675 44 | Non-pathogenic
452 | Saccharomyces cerevisiae 44 | Non-pathogenic
453 | Xanthomonas campestris pv. vesicatoria 85-10 45 | Non-pathogenic
454 | Sulfitobacter pontiacus 46 | Non-pathogenic
455 | Sulfitobacter pontiacus BIO-007 46 | Non-pathogenic
456 | Sulfitobacter sp. 46 | Non-pathogenic
457 | Loktanella hongkongensis strain Bio-204 46 | Non-pathogenic
458 | Sulfitobacter dubius BIO-205 46 | Non-pathogenic
bacterial strains from the North Seca, the Arctic Ocean,

459 | or of terrestrial origin 46 | Non-pathogenic
460 | Oceanibulbus indolifex HEL-45 46 | Non-pathogenic
461 | Roseobacter gallaeciensis strain PIC-68 46 | Non-pathogenic
462 | Stappia marina strain DFL-11 46 | Non-pathogenic
463 | Sulfitobacter sp. PIC-70 46 | Non-pathogenic
464 | Escherichia coli(5) 47 | Pathogenic

465 | Staphylococcus aureus (4) 47 | Pathogenic

466 | Staphylococcus sp. 48 | Pathogenic

467 | Staphylococcus xylosus 48 | Pathogenic

468 | Clostridium sp. 48 | Pathogenic

469 | Bacteroides distasonis 48 | Non-pathogenic
470 | Bacteroides ovatus 48 | Non-pathogenic
471 | Bacteroides thetaiotamicron 48 | Non-pathogenic
472 | Bacteroides vulgatus 48 | Non-pathogenic
473 | Capnocytophaga ochracea ATCC 33596 48 | Non-pathogenic
474 | Clostridium bifermentans 48 | Non-pathogenic
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475 | Clostridium sporogenes 48 | Non-pathogenic
476 | Fusobacterium nucleatum 48 | Non-pathogenic
477 | Porphyromonas gingivalis 48 | Non-pathogenic
478 | Porphyromonas gingivalis FDC381 48 | Non-pathogenic
479 | Porphyromonas gingivalis W83 48 | Pathogenic

480 | Prevotella intermedia ATCC 25261 48 | Non-pathogenic
481 | Prevotella loescheii 48 | Non-pathogenic
482 | Prevotella loescheii ATCC 15930 48 | Non-pathogenic
483 | Veillonella spp. 48 | Non-pathogenic
484 | Actinobacillus actinomycetemcomitans Y4 48 | Non-pathogenic
485 | Bacteroides bivius 48 | Non-pathogenic
486 | Clostridium butyricum 48 | Non-pathogenic
487 | Clostridium cadaverum 48 | Non-pathogenic
488 | Clostridium fallax 48 | Non-pathogenic
489 | Clostridium histolyticum 48 | Non-pathogenic
490 | Clostridium tertium 48 | Non-pathogenic
491 | Lactobacillus casei NCIB 8010 49 | Non-pathogenic
492 | Lactobacillus plantarum 49 | Non-pathogenic
493 | Lactobacillus plantarum NCIB 6376 49 | Non-pathogenic
494 | Lactococcus lactis 49 | Non-pathogenic
495 | Lactococcus lactis DSM 20202 49 | Non-pathogenic
496 | Leuconostoc cremoris DSM 20346 49 | Non-pathogenic
497 | Leuconostoc dextranicum DSM 20484 49 | Non-pathogenic
498 | Leuconostoc mesenteroides DSM 20343 49 | Non-pathogenic
499 | Leuconostoc oenos 49 | Non-pathogenic
500 | Leuconostoc oenos B66 49 | Non-pathogenic
501 | Leuconostoc oenos 19 49 | Non-pathogenic
502 | Leuconostoc oenos 30 49 | Non-pathogenic
503 | Leuconostoc oenos 36 49 | Non-pathogenic
504 | Leuconostoc oenos 37D 49 | Non-pathogenic
505 | Leuconostoc oenos 7B 49 | Non-pathogenic
506 | Leuconostoc oenos DSM 20252 49 | Non-pathogenic
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507 | Leuconostoc oenos DSM 20255 49 | Non-pathogenic
508 | Leuconostoc oenos DSM 20257 49 | Non-pathogenic
509 | Leuconostoc oenos Lc5x 49 | Non-pathogenic
510 | Leuconostoc paramesenteroides DSM 20288 49 | Non-pathogenic
511 | Pediococcus damnosus DSM 20331 49 | Non-pathogenic
512 | Bacteroides gracilis CCUG 13143 (ATCC 33236) 50 | Non-pathogenic
513 | Bacteroides ureolyticus CCUG 7319 (ATCC 33387) 50 | Non-pathogenic
Campylobacter fetus subsp. venerealis CCUG 538
514 | (ATCC 19438) 50 | Non-pathogenic
515 | Wolinella recta FDC 371 (ATCC 33238) 50 | Non-pathogenic
516 | Wolinella succinogenes CCUG 12550 (ATCC 29543) 50 | Non-pathogenic
517 | Wolinella curva CCUG 13146 (ATCC 35224) 50 | Non-pathogenic

3.4.2. Graph-clustering based on DPClus result

In order to extract different and more information, we constructed a network by
inserting edges between species for which the Euclidean distance is less than a threshold.
The threshold was decided to include the lowest 5% distances as edges in the network.
We then determined the high-density clusters in that network by applying the
graph-clustering algorithm DPClus. Fig. 3.3 shows the overall network, which displays
all the generated clusters in such a way that intra cluster edges are green and inter cluster
edges are red. Fig. 3.4 (a) shows the hierarchical connected graph of the clustering result,
where the green nodes represent clusters of microorganism species and the red edges
represent the interaction between clusters. The radius of a green node in the hierarchical
graph in Fig. 3.4 is proportional to the logarithm of the number of nodes in the cluster it
represents. The width of a red edge in the hierarchical graph between a pair of clusters is
proportional to the number of edges between those clusters in the original graph. Nodes
enclosed by dotted rectangle are consisting of only pathogenic bacteria, the only node
enclosed by the dotted circle is consisting of both pathogenic and non-pathogenic
bacteria and the rest nodes are consisting of only non-pathogenic bacteria. Fig. 3.4 (b)

shows the independent nodes of the hierarchical graph, which indicates that these
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clusters do not interact with other clusters.

Overall, DPClus generated 50 clusters where 20 clusters are connected nodes to each
other while the rest 30 clusters are independent nodes. Only cluster 1 contains both
pathogenic and non-pathogenic microorganisms. Clusters 2, 7, 14, 21, 26 and 40 consist
of only pathogenic bacteria while the other clusters are consisting of only
non-pathogenic bacteria. These results imply that pathogenicity of microorganisms can
be linked to characteristic combinations of identical VOCs emitted by them. Some of the
pathogenic members of cluster 1 such as Klebsiella pneumoniae, Escherichia coli,
Staphylococcus aureus and Pseudomonas aeruginosa are very highly connected to other

pathogenic clusters e.g. cluster 2 and 7.
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Figure 3.4. Hierarchical graph of DPClus clustering result in case of cp;,=
0.5 and d;, = 0.6. (a) Connected nodes. (b) Independent nodes.

Fig. 3.4 (a) shows that cluster 2, 7, 14, 21, 26 and 40 are connected by red edges,
which reflect VOC similarity between pathogenic microorganisms. Also, there are VOC
based similarity between non-pathogenic species of cluster 1 and clusters 10, 13, 16, 18,
19, 23, 24, 33 and 36. The red edges between cluster 4 and 8 and between cluster 9 and
15 are also because of VOC similarity between non-pathogenic species of those clusters.
Here it is noteworthy that the rest of 30 clusters consisting of non-pathogenic species are
independent clusters, which implies that many non-pathogenic groups of species emit

quite unique types of VOCs as shown in Fig. 3.4 (b).
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Fig. 3.5 shows the microorganism species belong to cluster 1 (pathogenic and
non-pathogenic), cluster 7 (pathogenic only) and cluster 10 (non-pathogenic species
only), respectively. Here the internal nodes of a cluster are shown connected by green
edges and its neighboring clusters are shown connected by red edges. To evaluate the
stability of graph-clustering results by DPClus, we also clustered the networks generated
by several random samplings of 80% or more edges of the original network. We found
that DPClus can still cluster the microorganisms species based on pathogenicity.

Here, we also examined different values of density, d;, to the clustering result. We
used cpi,= 0.5 and d;, = 0.6 for the experiments discussed in Fig. 3.4 and Fig. 3.5.
However the variation of density value, d;, can also affect the outcome of the clustering.
Fig. 3.6, Fig. 3.7 and Fig. 3.8 show the hierarchical graph of DPClus clustering for d;, =
0.7, d;, = 0.8 and d;, = 0.9, respectively. If high value is used for d;,, the generated
clusters are of high density but smaller in size and hence relatively more in number. 51
clusters were generated for d;, = 0.7, 52 clusters were generated for d;, = 0.8, and 55
clusters were generated for d;, = 0.9. However, many such clusters are consisting of only
two, three or four pathogenic microorganisms. The highest number of clusters containing
pathogenic clusters > 4 is obtained in case of ¢p;, = 0.5 and d;, = 0.6. Hence, the
classification results between pathogenic and non-pathogenic microorganism species are
best obtained in case of ¢p;, = 0.5 and d;, = 0.6. In general, from the periphery tracking
point of view, we consider that a reasonable and balanced value for ¢p;, is 0.5 and d;, =
0.6 because it is in the middle of the parameter space. However it can be said that the
larger the value of c¢p;, and d,;, the more spherical the structure of the generated

complexes (Md Altaf-Ul-Amin et al. 2006).
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classify the microorganism species according to their pathogenicity.
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0.5and d;, = 0.8.
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Figure 3.8. Hierarchical graph of DPClus clustering result in case of cp;,= 0.5
and d;, = 0.9.

3.5. Summary

The results of hierarchical clustering and graph clustering based on DPClus
algorithm are similar in the sense that both results indicated that VOC based
classification of microorganisms is consistent with their classification based on
pathogenicity. However, clustering by DPClus further revealed existence and
non-existence of relations between different pathogenic and non-pathogenic
groups of microorganisms. The variation of input density value, din can affect the
outcome of the clustering. It is important to choose the din value for DPClus
clustering. The classification results between pathogenic and non-pathogenic
microorganism species are best obtained in case of cpin = 0.5 and din = 0.6. It is

because the highest number of clusters containing pathogenic clusters (6 clusters
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consisting pathogenic species) is obtained in case of cpin = 0.5 and din = 0.6. The
classification achieved by DPClus is better in a sense it produced more clusters

with 100% membership of either pathogenic or non-pathogenic microorganisms.
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Chapter 4

Classification of VOCs Based On Chemical
Structural Similarity

In previous chapter, we described the clustering analysis methods to cluster
the microorganism species based on VOC metabolite contents similarity. In this
chapter, we focus on the second type of data that we have accumulated in our
database; VOCs emitted by other organisms such as plants, animals and humans
with their related biological activities. For the second data, we performed
heatmap clustering utilizing Tanimoto coefficient as the similarity index between
chemical structures to cluster all VOCs. We further accessed the statistical
significance of the clusters using hypergeometric p-values to understand the
relationships between chemical structures of VOCs and their biological activities.
We also compared several types of hierarchical clustering methods (single,
complete, average, centroid, median linkage and Ward’s method) with DPClus
algorithm to cluster the chemical structures of VOCs using Tanimoto coefficient
as a similarity measure. Additionally, we extended our analysis by implementing
supervised machine learning methods such as Deep Neural Network (DNN),
Gradient Boosting Machine (GBM), Random Forest (RF) and Generalized Linear
Model (GLM) as classification models for predicting the biological activities of

VOCs based on their chemical structures.

4.1. Background
Chemical similarity or molecular similarity refers to the similarity of
chemical elements, molecules or chemical compounds with respect to either

structural or functional qualities, i.e. the effect that the chemical compound has
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on reaction partners in inorganic or biological settings. Biological effects and thus
also similarity of effects are usually quantified using the biological activity of a
compound. In pharmacology, biological activity describes the beneficial or adverse
effects of a drug on living matter (Miller-Keane 1993). When a drug is a complex
chemical mixture, this activity is exerted by the substance's active ingredient or
pharmacophore but can be modified by the other constituents. Among the various
properties of chemical compounds, biological activity plays a crucial role since it
suggests uses of the compounds in the medical applications. However, chemical
compounds may show some adverse and toxic effects which may prevent their use
in medical practice. The notion of chemical similarity is one of the most important
concepts in chemoinformatics (Nikolova & Jaworska 2003; P. 2014; Maggiora et al.
2014; Cereto-Massagué et al. 2015). It plays an important role in modern
approaches to predict the properties of chemical compounds and also in
conducting drug design studies by screening large databases containing

structures of available chemicals.

The importance of structural similarity derives in large part from the
Similar Property Principle, which states that molecules that are structurally
similar are likely to have similar properties (Maggiora & Shanmugasundaram
2004). This relationship underlies a range of chemoinformatics techniques such as
similarity searching, molecular diversity analysis, clustering and a range of
quantitative structure activity relationships (QSAR) or quantitative structure—

property relationships (QSPR) methods.

A similarity measure has three components: the representation or
descriptor that is used to characterize the two molecules that are being compared;
the weighting scheme that is used to reflect the relative importance of different
parts of the representation; and the similarity coefficient that is used to quantify
the degree of resemblance between two appropriately weighted structural
representations. A comprehensive review by (Willett 2009) provides the detail
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explanations on the three components. The book by (Todeschini & Consonni 2000;
Todeschini et al. 2012; Consonni & Todeschini 2012) is the standard work on ways
of describing chemical structures. Many of the descriptors reported by these
authors have been used in studies of molecular similarity. They are commonly
divided into three classes: whole molecule or one-dimensional (1D) descriptors;
descriptors that can be calculated from two-dimensional (2D) representations of
molecules; and descriptors that can be calculated from three-dimensional (3D)
representations. The role of weighting schemes in similarity measures has
attracted much less attention to date than have the roles of the representation
and of the similarity coefficient. In a weighted fingerprint, each fragment has a
weight assigned to it reflecting its relative degree of importance, so that a
high-weighted fragment occurring in both the reference structure and a database
structure would make a greater contribution to the overall structural similarity
than would a low-weighted fragment. The most obvious form of weighting is the
number of times that a fragment occurs in a molecule, so that a fingerprint
encodes fragment occurrences, rather than the fragment incidences encoded in a
binary fingerprint. Similarity coefficients have been developed for use in many
different application domains, and there is hence a wide range available that can
be used for the measurement of structural similarity. For example, a recent study
by (Todeschini et al. 2012; Consonni & Todeschini 2012) discussed no less than 51
different coefficients that can be used to compute the similarity between binary
fingerprints, and there have hence been many comparative studies to identify the
most appropriate for chemical applications. One of the earliest such studies, (P.
Willett et al. 1998) showed that the Tanimoto coefficient, an example of the class
of coefficients known as association coefficients, provided an effective way of
comparing 2D fingerprints. The studies conducted by (Bajusz et al. 2015) also
proved that Tanimoto coefficient, along with Dice index, Cosine coefficient and
Soergel distance were identified to be the best metrics for similarity calculations.

This is one of the reasons why we choose Tanimoto coefficient as similarity
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measure to calculate similarity between two volatile organic compounds and

perform clustering.

Here, we investigate the relationships between chemical structures of VOCs
and biological activities by applying unsupervised (clustering) and supervised
machine learning methods (Deep Neural Network, Gradient Boosting Machine,
Random Forest and Generalized Linear Model) as classification models for

predicting the biological activities of VOCs based on their chemical structures.

4.2, Datasets

The second data type that we have accumulated until now are 1044
species-species interactions via 341 VOCs associated with 11 groups of biological
activities. The biological activities of VOCs are classified into two types: (1)
chemical ecology related activities, in which most VOCs involved in interaction
between species for survival of organisms such as defense and antimicrobial, (2)
human health care related activities, in which many VOCs are widely used as
disease biomarker and odor. From our accumulated data, 57.3% of the activities
belong to chemical ecology such as antifungal, antimicrobial, attractant, defense,
enhance plant growth, inhibit root growth and repellent activities and 42.7% are
human health related activities such as disease biomarker, odor,
anti-cholinesterase and antioxidant as shown in Fig. 4.1. The detail explanations

related to these 11 biological activities are described in Table 4.1.

Table 4.1. The description on each of biological activities.

Biological activities Description on biological activities

Antifungal Limits or prevents the growth of yeasts and other
fungal organisms.

Antimicrobial Kills or inhibits the growth of microorganisms.

Attractant A substance, known as pheromone that attracts
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Defense

Enhance plant growth
Inhibit root growth
Repellent

Anti-cholinesterase

Antioxidant

Biomarker

Odor

animals, such as insects.

Adaptation that promotes the survivability of an
organism by protecting it from its mnatural
enemies.

Increase or promote plant growth.

Decrease root growth of plants.

A substance that deters insects or other pests from
approaching or settling.

An agent that inhibits acetylcholinesterase, the
enzyme that breaks down acetylcholine at
junctions of cholinergic nerve endings and effector
organs or postsynaptic neurons.

A molecule that inhibits the oxidation of other
molecules.

A molecule, by which a particular pathological
process or disease can be identified.

The property of a substance that activates the

sense of smell.

There are many VOCs, which have several biological activities. Fig. 4.2

shows the relative frequencies of VOCs, which have several biological activities.

There are 239 VOCs (about 70%), which have only one specific biological activity.

28 VOCs have 2 biological activities, 52 VOCs have 3 biological activities, 17

VOCs have 4 biological activities, 3 VOCs have 5 biological activities and only 2

VOCs have 6 biological activities. For simplicity, we empirically select the most

relevant biological activity to each particular compound and the resultant

distribution of the compounds with refer to biological activities is shown in Fig.

4.3. It facilitates to investigate the relationships between VOCs and their

biological activities.

57



Frequency of VOCs

“ Odor
0% B Antifungal

9%

W Attractant

t
plant g Defense 3%
7% growth growth 5%
2%
2%

Figure 4.1. Pie chart showing the relative frequencies VOCs belonging to
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Figure 4.2. The relative frequencies of VOCs, which have several

biological activities.

58




200

180 173

160

140

120

100
80

60

40
21 21 20 20 16 20
20 9 4 4
[I— [— f— — — — — — —

Number of VOCs

Biological activities

Figure 4.3. The most relevant biological activity for each of VOCs.

4.3. Methods

4.3.1. Heatmap clustering and hypergeometric distribution

We performed classification of VOCs based on their chemical structure
similarity. In order to determine the similarity between two chemical compounds,
we used Tanimoto coefficient as similarity measure. The application of Tanimoto
coefficient in cheminformatics has been reported in (Butina 1999; Godden et al.
2000; Cha et al. 2009; Rojas-Cherto et al. 2012; Dimitrov et al. 2014). Recently,
(Liu et al. 2013) has used Tanimoto coefficient as a novel approach to classify
plants based on metabolite content similarity. The Tanimoto coefficient is defined

as equation (4.1), which is the proportion of the features shared between two
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compounds divided by their union (Peter Willett et al. 1998).

AB

yrryT (4.1)

Tanimotoy p =

The variable AB is the number of features (or on-bits in binary fingerprint)
common in both compounds, while A and B are the number of features that are
related to individual compounds respectively. The Tanimoto coefficient has a
range from O to 1 with higher values indicating greater similarity than lower ones.
Additionally, a Tanimoto coefficient value larger than 0.85 indicates that the
compared compounds may have similar biological activity (Patterson et al. 1996).
For the purpose of calculating Tanimoto coefficient, it is obligatory to assign
fingerprints to the compounds. ChemMine package in R was used to generate
binary fingerprints and calculation of Tanimoto coefficient (Cao et al. 2008; Cao et
al. 2014). 2-D compound structures in the generic structure definition file (SDF)
format were obtained from PubChem database (https://pubchem.ncbi.nlm.nih.gov)
and then, were imported into ChemmineR package in one batch file. The binary
PubChem fingerprints are calculated during the SDF import and stored in a
searchable descriptor database as a list object. The detail description of PubChem

fingerprint can be referred in Appendix A.

Based on Tanimoto similarity measure between chemical structures,
heatmap clustering was performed for classifying the VOCs. We also determined
the p-values of the clusters based on hypergeometric distribution using equation

(4.2).

VN\(N-V
p—value =1- §(=—01(i)(1€—i)
(c)
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Here N is the total number of VOCs, C is the size of a cluster and Vand K
respectively are the number of VOCs of a certain category in the whole data and in
the cluster. The hypergeometric distribution is used to calculate the statistical
significance of having drawn a specific K successes (out of N total draws) from the
whole population. The test is often used to identify which sub-populations are
over- or under-represented in a sample. The calculated p-value implies the
probability of getting K or more VOCs of a particular category in a cluster when
the cluster is formed by random selection. Lower p-value indicates that the

statistical significance is high.

Our purpose is to relate a structure group to a biological activity if and only
if the structure group is overrepresented by VOCs associated with that biological

activity.

4.3.2. Comparison of clustering methods

Based on Tanimoto similarity measure, we applied two different clustering
methods to classify the VOCs, which are DPClus clustering and hierarchical
clustering. Both methods were described in Chapter 3. The reason why we apply
both methods is that, we want to determine the degree of cluster overlap and how
well it classified chemical structures of VOCs into clusters. Additionally, we also

point out the advantages and limitations of both clustering methods.

A network of VOCs was constructed by selecting structurally highly similar
VOC pairs for applying the DPClus algorithm. In DPClus, a network is considered
as an undirected simple graph G = (N, E) that consists of node set N and edge set
E. Density dx of any cluster k is the ratio of the number of edges present in the
cluster (/E/) and the maximum possible number of edges in the cluster (/E/max).
The cluster property of node n with respect to cluster k is represented by cpak =

Enk / (dx x Ni), where Nk is the number of nodes in cluster k. E.x is the total
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number of edges between the node n and each of the nodes of cluster k.

Meanwhile, hierarchical clustering involves creating clusters that have a
predetermined ordering from top to bottom, or otherwise. Before any clustering is
performed, it is required to determine the proximity matrix containing the
distance between each point using a distance function. Then, the matrix is
updated to display the distance between each cluster. In this study, we use 6
different methods depending on how the distance between each cluster is

measured that is single, complete, average, centroid, median and Ward’s method.

4.3.3. Molecular fingerprints

To extend our findings, we also developed classification models to predict
biological activities of VOCs based on their chemical structures by several
machine learning methods such as Deep Neural Network (LeCun et al. 2015; Ma
et al. 2015; Chandra & Sharma 2016), Gradient Boosting Machine (Friedman
2001; Friedman 2002; Natekin & Knoll 2013; Chen & Guestrin 2016), Random
Forest (Breiman 2001) and Generalized Linear Model (Cook 1998). Eight types of

molecular fingerprints are used to represent the molecules, as following:
(1) PubChem (PubChem, 881 bits),
(2) CDK (CDK, 1024 bits),
(3) Extended CDK (Extended, 1024bits),
(4) MACCS (MACCS, 166 bits),
(5) Klekota-Roth (KR, 4860 bits) (Klekota & Roth 2008),
(6) Substructure (SubFP, 307 bits),
(7) Estate (Estate, 79 bits),

(8) Atom pairs (AP, 780 bits) (Carhart et al. 1985).
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The detail description on substructures and each fingerprint method can be
referred to this website (http://www.scbdd.com/chemdes/list-fingerprints/). We
also proposed a new type of fingerprint, by combining all features and
substructures obtained by these fingerprints (Combine, 9121 bits). The reason
why we use many types of fingerprints, is that we want to investigate which
fingerprint method can generate the best prediction model. We converted the SDF
files of all 341 VOCs into binary fingerprints using ChemDes software (Dong et al.
2015). After we obtained the binary matrix of fingerprints, we performed the
data-processing method by removing all columns that contain “0”. This is because
it might be not relevant for the classification of VOCs based on substructures. The
features or substructures displayed in binary matrix, was used as input to the
classification models. There are 11 classes of biological activities, which have been
used as outputs for the classification model. The VOC-Substructure-Biological
activities relations can be represented as a matrix, shown in Table 4.2 where rows
represent VOCs and columns represent substructures of molecular fingerprints.
We added one additional column to represent biological activities for each of

VOCs.

Table 4.2. Representation of VOCs, substructures and biological

activities as a two-dimensional matrix.

Substructures Biological
VOCs
S1 ISP Ss S4 Su Activities
VOC, 1 0 1 1 0 Antimicrobial
VOC: 1 1 0 0 0 Biomarker
VOCs 0 1 0 1 0 Defense
VOCnw 1 0 0 0 1 Odor
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Machine learning algorithms are generally developed in computer science or
adjacent disciplines and find their way into chemical modeling by a process of
diffusion. Recently, machine learning methods are popular in chemoinformatics
and quantitative structure—activity relationships (QSAR), which usually
predicting the unknown property values of a test set of molecules based on the
known values for a training set. An example of existing machine learning
algorithms is given in Fig. 4.4. We implemented four types of supervised machine
learning methods for predicting biological activities of VOCs, which are Deep
Neural Network (DNN), Gradient Boosting Machine (GBM), Random Forest (RF)
and Generalized Linear Model (GLM) using H20 package in R program

(Intelligence 2015; Anqi et al. 2015).
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Figure 4.4. Example of existing machine learning algorithms.
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4.3.4. Deep Neural Network (DNN)

A neural network is network composed of simulated “neurons”. Each neuron
has multiple inputs and one output. Each input arrow is associated with a weight,
wi. The neuron is also associated with a function, f(z), called the activation

function, and a default bias term b, as shown in Fig. 4.5.

X, W,
T . L fEwx+b)
X y

" b
+1

Figure 4.5. The basic unit of a neuron.

A row of neurons form a layer of the neural network, and a DNN is built

from several layers of neurons (Fig. 4.6).

Figure 4.6. The deep neural network model.

65



Normally, there are three types of layers in a DNN: (1) the input layer,
where the fingerprint of a molecule is entered (2) the output layer where
predictions are generated (3) the hidden (middle) layers; the word “deep” in deep
neural nets implies more than one hidden layer. In this study, we used 3 types of
activation functions in the hidden layers: (1) the tanh function, (2) the rectified
linear unit (ReLU) function (Maas et al. 2013), and (3) the maxout function
(Goodfellow et al. 2013; Zhang et al. 2014). The output layer can have one or more
neurons, and each output neuron generates prediction for biological activities.
The layout of a DNN, including the number of layers and the number of neurons in
each layer, needs to be defined, along with the choice of the activation function in
each neuron. Dropout is a method, which remove some of neurons in the input and
hidden layer to avoid over fitting (Srivastava et al. 2014; Baldi & Sadowski 2014).
Since there are a lot of parameters that can impact model accuracy, we
implemented hyper-parameter tuning for the network optimization.
Multi-dimensional hyper-parameter optimization (more than 4 parameters) can
be more efficient with random parameter search. For a random parameter search,
we did a loop over models with parameters drawn uniformly from a given range,

and then we chose the best parameter for our DNN network.

4.3.5. Gradient boosting machine (GBM)

Gradient boosting machines are a family of powerful machine-learning
techniques for regression and classification problems, which produces a prediction
model in the form of an ensemble of weak prediction models, typically decision
trees (Natekin & Knoll 2013). It builds the model in a stage-wise fashion like
other boosting methods do, and it generalizes them by allowing optimization of an
arbitrary differentiable loss function. Gradient boosting involve three elements;

(1) A loss function to be optimized, (2) A weak learner to make predictions and (3)
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An additive model to add weak learners to minimize the loss function. It is clear
that these elements would greatly affect the GBM model properties. The GBM

framework provides the practitioner with such design flexibility.

4.3.6. Random forest (RF)

RF is an ensemble method that consists of many decision trees (Breiman
2001) for classification and regression tasks. It operates by constructing a
multitude of decision trees at training time and outputting the class that is the
mode of the classes output by individual trees. For prediction a new sample is
pushed down the tree. It is assigned the label of the training sample in the
terminal node it ends up in. This procedure is iterated over all trees in the
ensemble and the mode vote of all trees is reported as the random forest

prediction.

4.3.7. Generalized linear model (GLM)

In statistics, the generalized linear model (GLM) is a flexible generalization
of ordinary linear regression that allows for response variables that have error
distribution models other than a normal distribution. The GLM generalizes linear
regression by allowing the linear model to be related to the response variable via a
link function and by allowing the magnitude of the variance of each measurement
to be a function of its predicted value. Generalized linear models were formulated
by (Nelder & Wedderburn 1972) as a way of unifying various other statistical
models, including linear regression, logistic regression and Poisson regression.
They proposed an iteratively reweighted least squares method for maximum
likelihood estimation of the model parameters. Maximum-likelihood estimation
remains popular and is the default method on many statistical computing

packages. Other approaches, including Bayesian approaches and least squares fits
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to variance stabilized responses, have been developed.

4.3.8. Evaluation of model performance

The performance of multi-classification models were measured by mean
squared error (MSE) value. We conducted two experiments; (1) Using all datasets
as training, (2) Using 10-fold cross-validation technique. In this technique, the
compounds were randomly divided into ten parts, where nine parts were used for
training and remaining part for testing. This process is carried out ten times in

such a way that each part was used once for testing.

4.4. Results and discussion

4.4.1. Heatmap clustering and hypergeometric distribution

Initially, we determined pairwise chemical structural similarity between
VOCs based on Tanimoto coefficient. 2-D compound structures in the generic
structure definition file (SDF) format of all 341 VOCs were obtained from
PubChem database (https://pubchem.ncbi.nlm.nih.gov) and then, were imported
into ChemmineR package (Cao et al. 2014) in one batch file. We calculated the
chemical structure similarity using Tanimoto coefficient. Then, we converted the
Tanimoto similarity matrix into distance matrix by subtracting each of the
similarity values from 1. Based on distance matrix, we performed heatmap
clustering and the result is shown in Fig. 4.7. White and red colors indicate the
extreme distance values of 0 and 1 respectively and the intermediate distance
values are indicated by the intensity of the red color. From the heatmap plot, we
tentatively outlined 11 clusters of VOCs. The count of VOCs belonging to each
activity group in each cluster is shown in Table 4.3. To assess the richness of
VOCs of similar activity in individual clusters, we determined their p-values
based on hypergeometric distribution which are also shown in Table 4.3. The

major types of chemical compounds belonging to each cluster and their
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corresponding biological activities are mentioned in Table 4.4. The chemical
structures of the VOCs belonging to all clusters (Cluster 1 to Cluster 11) are

shown in Appendix B.
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Figure 4.7. Heatmap clustering of VOCs based on chemical structure

similarity determined by Tanimoto coefficient.
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Table 4.3. The count of VOCs belonging to each activity group in each

cluster and their p-value based on hypergeometric distribution.

Cluster Cluster
Biological Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster Cluster 9 Cluster Cluster
1D 1
Activity (33) (41) (18) (21) (25) 47) 8 (15) (42) 10 (14) 11 (30)
(Count) (55)
5.28 1.274
Anti- p-value 4.849x10°¢ 0.6181 0.9109 0.9147 1 0.3596 0.9994 1 1
x10°7 x10°2
cholinesterase (Count) (15) (8) (2) (3) (0) (4) (2) (0) (0)
(26) (9)
p-value 0.9128 0.9115 0.5399 2.561x10°2 1 0.5176 0.6403 0.6571 0.3099 1 0.3291
Antifungal
(Count)  (2) (1) (3) (4) (0) (2) (3) (1) (4) (0) (3)
Antimicrobial p-value 2.10x10°¢ 9.696x10°¢ 0.6898 0.9281 1.871x10°2 0.8246 0.9999 0.4049 0.9997 1 1
(Count)  (26) (15) (8) (2) (9) (4) (1) (4) (2) (0) (0)
p-value 5.28x10°7 4.849x10¢ 0.6181 0.9109 1.274x10°2 0.9147 1 0.3596 0.9994 1 1
Antioxidant
(Count)  (26) (15) (8) (2) (9) (3) (0) (4) (2) (0) (0)
p-value 0.9708 0.8144 1 0.4831 1 0.1661 3.829x10°2 0.1356 1.983x10°2 1 1
Attractant
(Count)  (2) (2) (0) (2) (0) (4) (8) (3) (8) (0) (0)
p-value 1 0.9999 1.835x10°3 0.7944 1.444x10°2 0.9821 4.42x10°5 0.9948 6.071x10°2 1.036x10°2 1.963x10°3
Biomarker
(Count)  (8) (11) (34) (10) (18) (11) (41) (5) (31) (13) (26)
Defense p-value 3.35x10°9 9.258x10°2 0.9758 0.6764 0.7594 0.8418 0.9987 0.8668 0.9787 1 1
(Count)  (22) (7) (2) (2) (2) (2) (1) (1) (2) (0) (0)
Enhance Plant p-value 6.01x10°2 1 1 1 1 3.531x10°3 0.7778 1 1 1 0.6069
Growth  (Count) (4) (0) (0) (0) (0) (4) (1) (0) (0) (0) (1)
Inhibit Root p-value 0.1749 0.8632 0.9183 1 0.7111 4.111x10°2 0.7672 0.5847 0.7062 0.5591 0.8347
growth  (Count) (5) (1) (1) (0) (1) (4) (2) (1) (2) (1) (1)
Odor p-value 1 1 1 1 1 2.29x10°5 1 1 1 1 1
(Count)  (0) (0) (0) (0) (0) (4) (0) (0) (0) (0) (0)
7.551
Repellent p-value 1 1 1 1.871x10°3 1 1 1 1 1 1
x10°2
(Count)  (0) (0) (0) (3) (0) (0) (0) (0) (0) (0)
(2)
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Table 4.4. Summary of clustering result and its descriptions related to

chemical structures and biological activities.

Cluster ID (Count)

Description on chemical structures

Related biological activities

Cluster 1 (55 VOCs)

Cluster 2 (33 VOCs)

Cluster 3 (41 VOCs)

Cluster 4 (18 VOCs)

Cluster 5 (21 VOCs)

Cluster 6 (25 VOCs)

Cluster 7 (47 VOCs)

Cluster 8 (15 VOCs)
Cluster 9 (42 VOCs)

Cluster 10 (14 VOCs)

Cluster 11 (30 VOCs)

All  compounds are terpenoids. 15 VOCs are

monoterpenoids (10 carbon) and 40 VOCs are
sesquiterpenoids (15 carbon).

17 VOCs are alcohol, aldehyde, ketone, epoxide and
ester of terpenoids. The other VOCs are alcohol,

aldehyde, carboxylic acid, ester and ketone of
straight-chain alkenes.

Alkanes.

Alkenes.

Aldehyde, ester, carboxylic acid and ketone of C8-C18

alkanes.

21 VOCs are alcohol and ether of C3-C8 alkanes.

45 VOCs are ester, carboxylic acid, ketone and aldehyde
of non-cyclic C2-C9 alkanes.

VOCs consist of epoxide, ethers, esters and alcohols.

24 VOCs are aromatic alcohols, carboxylic acids, esters,
ketones, and ethers. 16 VOCs are aromatic compounds
consisting of C and H atoms. One VOC consists of C, H
and Br atoms. One VOC is an alkane ester.

Aromatic compounds. 12 VOCs are hetero-aromatic
compounds that consist of one or more sulfur, nitrogen
or oxygen atoms.

VOCs are quite diverse in chemical elements, C0-C6

small molecules.

Anti-cholinesterase,
antimicrobial, antioxidant,
defense.

Anti-cholinesterase,

antimicrobial, antioxidant.

Biomarker.

Antifungal.
Anti-cholinesterase,
antimicrobial, antioxidant,
biomarker, repellent.
Enhance plant growth,

inhibit root growth, odor.

Attractant, biomarker.

Attractant.

Biomarker.

Biomarker.
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From this result, we can see that there are 55 VOCs belong to Cluster 1 and
mainly involved with anti-cholinesterase, antimicrobial, antioxidant and defense
activities, for example beta-caryophyllene, isocaryophyllene and caryophyllene.
All compounds in Cluster 1 are terpenoids, of which 15 VOCs are monoterpenoids
(10 carbon units) and 40 VOCs are sesquiterpenoids (15 carbon units). There are
33 VOCs in Cluster 2 and the p-values corresponding to anti-cholinesterase,
antimicrobial and antioxidant are 4.849x104, 9.696x104 and 4.849x104
respectively. Some of the VOCs that are classified into Cluster 2 are
monoterpenoids and sesquiterpenoids such as beta-linalool, terpinen-4-ol,
p-menth-1-en-8-0l, drimenol and nerolidol. 17 VOCs are alcohol, aldehyde, ketone,
epoxide and ester of terpenoids. The other VOCs are alcohol, aldehyde, carboxylic

acid, ester and ketone of straight-chain alkenes.

For Cluster 3, there are 41 compounds and the main biological activities
involved is biomarker for various diseases such as colorectal cancer and asthma.
We obtained small p-value (1.835x10°3) for biomarker activity of Cluster 3. All
compounds are alkanes, of which most of them are emitted in human breath such
as octane, isobutane, 2-methylpentane, methylcyclohexane, hexane and

cyclohexane.

There are 18 compounds in Cluster 4 and all of them are alkenes such as
beta-farnesene, alpha-caryophyllene, ocimene and beta-ocimene. These
compounds are mainly associated with chemical ecology activity, which is
antifungal and the p-value for this activity is 2.561x102. For Cluster 5, there are
21 VOCs which are aldehyde, ester, carboxylic acid and ketone of C8-C18 alkanes.
Cluster 5 is significantly related with multiple biological activities, that are
anti-cholinesterase, antimicrobial, antioxidant, biomarker and repellent
activities. There are 25 VOCs in Cluster 6 and 21 of them are alcohol and ether of
C3-C8 alkanes. We also obtained small p-value for enhance plant growth activity
(3.531x103), inhibit root growth (4.111x102) and odor activity (2.29x10°) for
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cluster 6. An example of VOCs involved in enhance plant growth activity is
2,3-Butanediol and there are many reports that this compound released by soil
microorganisms had improved plant growth and increased pathogen resistance
(Ryu et al. 2003; D’Alessandro et al. 2014). For odor activity, compounds involved
are 1n  alcohol sulfanylalkanols chemical <class group such as
2-methyl-3-sulfanylbutan-1-ol and 3-methyl-3-sulfanylhexan-1-ol. These
compounds have a pungent sweat odor, also reminiscent of onions with some
fruity connotations which are transformed into the volatile substances by

bacterial enzymes present only in corynebacteria.

There are 47 VOCs in Cluster 7 and 45 of them are ester, carboxylic acid,
ketone and aldehyde of non-cyclic C2-C9 alkanes. Cluster 7 is significantly related
with multiple biological activities, which are attractant (p-value = 3.829x102) and
biomarker for various diseases (p-value = 4.42x10°5). Aldehydes belong to Cluster
7 such as acetaldehyde, propanal, hexanal, 2-methyl-butanal, pentanal, heptanal
and 3-methyl-butanal are mostly used as a biomarker for various diseases
including cancer and irritable bowel syndrome. In Cluster 8, there are 15 VOCs
belong to this cluster, which consist of epoxide, ethers, esters and alcohols. In
Cluster 9, there are 42 VOCs and the main biological activity is attractant
(p-value = 1.983x102). All VOCs belong to Cluster 9 are aromatic compounds, in
which 24 VOCs are aromatic alcohols, carboxylic acids, esters, ketones and ethers.
16 VOCs are aromatic compounds consisting of C and H atoms. One VOC consists
of C, H and Br atoms. One VOC is an alkane ester. Also, there are 14 VOCs in
Cluster 10 which are aromatic compounds. 12 VOCs are hetero-aromatic
compounds that consist of one or more sulfur, nitrogen or oxygen atoms. In
Cluster 11, which consists of 30 VOCs, but their VOCs are quite diverse in
chemical elements and have CO0-C6 small molecules, ranging from hydrogen
cyanide (27.02534 g/mol) to tetrachloroethyene (165.8334 g/mol). The main

biological activity for Cluster 10 and Cluster 11 are biomarker for various
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diseases. The p-values for biomarker activity for Cluster 10 and Cluster 11 are
1.036x102 and 1.963x10°3, respectively. The major VOCs involved in this activity
are isoxazole, 2,3-dimethyl-pyrazine, and 2-methyl-pyrazine which are mostly
produced in human urine and can be used as biomarker for autism spectrum

disorders (Cozzolino et al. 2014; Dieme et al. 2015).

The heatmap clustering shows that there are strong links between chemical
structure of VOCs and their biological activities. Comparative activity
relationships between chemical ecology and human health care activity will lead
to systematization of metabolomics combined with human and ecological

metabolic pathways.

4.4.2. Comparison of clustering methods

To extend our studies, we compared two different clustering methods
(DPClus and hierarchical clustering) to cluster all 341 VOCs that we accumulated
in our database. In case of DPClus algorithm, we used 0.6 as input density din and
0.5 as input cluster property cpin. DPClus generated 56 clusters. Figure 4.8 (a)
shows the interacted clusters while Fig. 4.8 (b) shows the independent clusters of

DPClus.
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Figure 4.8. (a) Interacted clusters of DPClus. (b) Independent clusters of
DPClus.

To be consistent, we extracted 50 clusters based on hierarchical clustering.
The size of the biggest cluster generated by DPClus is 18 while in case of
hierarchical clustering it is 98 (centroid’s method) as shown in Fig. 4.9. It is also
observed that in hierarchical clustering, there is some imbalance in the size of
generated clusters. On the other hand, the clusters generated by DPClus
algorithm are in balanced size (Abdullah et al. 2016).
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Figure 4.9. Distribution of cluster with refer to size generated by DPClus

and each linkage method of hierarchical clustering.

For comparison purpose, we also investigated how the generated clusters by
these two clustering methods match to each other. To calculate how effectively
DPClus generated clusters overlaps with hierarchical clusters, we use a matching

score measure, m as follow:

iZ

" axb

Here, a is the size of a cluster generated by DPClus, b is the size of a
clusters generated by hierarchical method and 1is the size of the intersection set
of a and b. The calculated matching score is ranged between 0 and 1, where value
of 1 shows the maximum overlapping score between two generated clusters. The
distribution of matching score between DPClus and each method of hierarchical

clustering is shown as Fig. 4.10.
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Figure 4.10. Distribution of clusters with refer to matching score for DPClus

and each linkage method of hierarchical clustering.

From this figure, we can observe that the Ward’s method of hierarchical
clustering has the most matching clusters with DPClus algorithm while median
has the least matching clusters with DPClus. Both DPClus and hierarchical
methods generated clusters of VOCs with high structural similarity and similar
biological activity. For example, cluster 1 generated by DPClus algorithm
contains 18 VOCs, which are terpenoids and their biological activities are
anti-cholinesterase, antimicrobial and defense activities. These results somehow
aligned with our previous results, where we have shown that structurally similar
group of VOCs generated by hierarchical clustering correspond to similar
biological functions by conducting statistical analysis involving hypergeometric

distribution based p-values (Abdullah et al. 2015).
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Another comparison measure is Rand index. The Rand index or Rand
measure, is a measure of the similarity between two data clustering methods

(Rand 1971). It is calculated by using the following equation,

a+d

Rand = ——
an a+b+c+d

where a is number of point pairs in the same cluster A and B, b is number of point
pairs in the same cluster A not B, ¢is number of point pairs in the same cluster B
not A and dis number of point pairs in different cluster A and B. Table 4.5 shows
the Rand index value for the comparison between DPClus and each hierarchical
clustering methods. From this table, we can see that the Complete method has
high similarity with Ward and Average method. DPClus has high similarity with
Average and Ward’s method, but has low similarity with Median method. This
result somehow is aligned with the result displayed in Fig. 4.10, where we have
shown that DPClus has lowest similarity with Median method. It seems that
DPClus clustering is quite different from each of hierarchical clustering method.
This is because the different nature of the clustering algorithm itself.
Hierarchical clustering builds models based on distance connectivity while
DPClus is a graph clustering method, based on a subset of nodes in a graph such
that every two nodes in the subset are connected by an edge which can be

considered as a prototypical form of clustering.

78



Table 4.5. Rand index value for comparison between two clustering

methods.

Ward Average | Centroid | Median | Single Complete | DPClus

Ward

Average 0.875

Centroid | 0.717 0.729

Median 0.714 0.707 0.710

Single 0.788 0.793 0.666 0.704

Complete | 0.883 0.884 0.718 0.727 0.799

DPClus 0.701 0.723 0.650 0.642 0.675 0.718

In this section, we discussed two different clustering methods, namely
DPClus graph clustering and hierarchical clustering to cluster the chemical
structures of volatile organic compounds (VOCs) using Tanimoto coefficient as
chemical similarity measure. Additionally, we compared the performances of
DPClus algorithm with 6 different methods of hierarchical clustering, which are
single, complete, average, centroid, median and Ward’s method. Based on
matching score, we found that Ward’s method has the most matching clusters with
DPClus while median has the least matching clusters. Using Rand index, we
found that Complete method has similarity with Average and Ward’s method.
Compared to hierarchical clustering, DPClus can give a better visualization of
how generated clusters are interacted with each other and we found that VOCs
belonging to the interacted clusters have similar chemical structure, which
indicates possibilities of exhibiting similar biological activities. In conclusion,
chemical similarity measure can be used to predict biological activities of a

compound and this can be applied in the medical and agrotechnology fields.
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4.4.3. Supervised machine-learning methods

In previous section, we compared the performance of two clustering methods;
DPClus graph clustering and hierarchical clustering to classify volatile organic
compounds (VOCs) using fingerprint-based similarity measure between chemical
structures. Using the same datasets as mentioned earlier, we extended the
studies by implementing supervised machine learning methods to classify the
VOCs based on chemical structures. The main difference between unsupervised
(clustering) method and supervised machine learning is that, supervised machine
learning methods need an output class variable. In supervised learning, each

example is a pair consisting of an input object and a desired output.

In this study, we have developed 72 classification models to predict biological
activities of VOCs by four types of supervised machine-learning methods, which
are DNN, GBM, RF and GLM. Eight types of molecular fingerprints are used to
represent the molecules, which are PubChem (PubChem, 881 bits), CDK (CDK,
1024 bits), Extended CDK (Extended, 1024bits), MACCS (MACCS, 166 bits),
Klekota-Roth (KR, 4860 bits), Substructure (Sub, 307 bits), Estate (Estate, 79
bits) and atom pairs (AP, 780 bits). We also proposed a new type of fingerprint,
called Combine (Combine, 9121 bits) by combining all features or substructures
obtained by these eight fingerprints. After removing all “0” columns from the
binary matrix, we input as classification models to the machine learning methods

for prediction of biological activities.

It is difficult and time-consuming to find the best parameters for DNN due to
the large number of adjustable parameters. Hence we took the approach by
choosing the best parameter by using the multi-dimensional hyper-parameter
optimization method. We selected the best parameter and then, compared with

the default parameter. Table 4.6 shows the DNN parameter used in this study.
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Table 4.6. List of DNN parameters used in this study.

Parameter list DNN 1 DNN 2 DNN 3 DNN 4 DNN 5
(default)

Activation Rectifier Tanh Maxout Rectifier with | Maxout

function Dropout

Input dropout 20%

ratio

Hidden dropout 20%, 20%, 20%,

ratio 20%, 20%

Hidden layer 1 200 200 200 200 200

Hidden layer 2 200 200 200 200 200

Hidden layer 3 200 200

Hidden layer 4 200 200

Hidden layer 5 200 200

Epoch 10 10 10 10000 10000

We used the default setting for DNN 1; Rectifier activation function, 200
neurons in both hidden layer 1 and hidden layer 2 and epochs was set to 10. We
varied the parameter for DNN 2 and DNN 3 by using the Tanh and Maxout
activation function. For DNN 4, we selected the best parameter based on
multi-dimensional hyper-parameter optimization method; Rectifier activation
function with dropout, 5 hidden layers, 200 neurons in every hidden layer, 20%
dropout rate in input layer and each of hidden layer and the epoch was set to
10000. For DNN 5, we used the Maxout activation function, 5 hidden layers, 200
neurons in every hidden layer and the epoch was set to 10000. Other than DNN,
we also compared the classification performance of GBM, RF and GLM methods.
Table 4.7 shows the list of classification models using different fingerprints and

machine learning methods.
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Table 4.7. List of 72 classification models using different fingerprints

and machine learning methods.

Model No Fingerprint + Machine Learning Method

1 | Combine + DNN1 (default)

2 | Combine + DNN2

3 | Combine + DNN3

4 | Combine + DNN4

5 | Combine + DNN5

6 | Combine + RF

7 | Combine + GBM

8 | Combine + GLM

9 | KR + DNN1 (default)

10 | KR + DNN2

11 | KR + DNN3

12 | KR + DNN4

13 | KR + DNN5

14 | KR + RF

15 | KR + GBM

16 | KR + GLM

17 | PubChem + DNN1 (default)

18 | PubChem + DNN2

19 | PubChem + DNN3

20 | PubChem + DNN4

21 | PubChem + DNN5

22 | PubChem + RF

23 | PubChem + GBM

24 | PubChem + GLM

25 | CDK + DNN1 (default)

26 | CDK + DNN2

27 | CDK + DNN3

28 | CDK + DNN4

29 | CDK + DNN5
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30 | CDK + RF

31 | CDK + GBM

32 | CDK + GLM

33 | Extended + DNN1
34 | Extended + DNN2
35 | Extended + DNN3
36 | Extended + DNN4
37 | Extended + DNN5
38 | Extended + RF
39 | Extended + GBM
40 | Extended + GLM
41 | AP + DNN1 (default)
42 | AP + DNN2

43 | AP + DNN3

44 | AP + DNN4

45 | AP + DNN5

46 | AP + RF

47 | AP + GBM

48 | AP + GLM

49 | Sub + DNN1 (default)
50 | Sub + DNN2

51 | Sub + DNN3

52 | Sub + DNN4

53 | Sub + DNN5

54 | Sub + RF

55 | Sub + GBM

56 | Sub + GLM

57 | Estate + DNN1 (default)
58 | Estate + DNN2
59 | Estate + DNN3
60 | Estate + DNN4
61 | Estate + DNN5

83




62 | Estate + RF

63 | Estate + GBM

64 | Estate + GLM

65 | MACCS + DNN1 (default)

66 | MACCS + DNN2

67 | MACCS + DNN3

68 | MACCS + DNN4

69 | MACCS + DNN5

70 | MACCS + RF

71 | MACCS + GBM

72 | MACCS + GLM

We conducted two types of experiments; (1) Using all datasets as training and
(2) Using 10-fold cross validation technique. A full list of classification results for
both experiments (in terms of MSE value and accuracy) is available in the

Appendix C.

For the first experiment, by using all datasets as training, the best
classification model was developed by Klekota-Roth fingerprint trained with Deep
Neural Network 4 (DNN 4) method, with MSE value 0.05420784. Second best
classification model was developed by PubChem fingerprint with MSE value
0.05871162, followed by MACCS fingerprint with MSE value 0.07807859. Both
fingerprints were also trained with Deep Neural Network 4 (DNN 4). The best
parameter for deep learning was obtained by using rectifier activation function
with dropout rate at 20%. Number of hidden layer was set to 5 and 200 neurons for
each of hidden layer. Estate and atom pair fingerprint did not perform well in the
classification model. This is because the length of the Estate fingerprint is only 79
bits, which is too short to characterize molecules. Too much information loss led to

the bad prediction.

For the second experiment, we adopted the 10-fold cross-validation technique
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to evaluate the performance of our models. The lowest MSE error was obtained by
using PubChem fingerprint trained by GBM method at 0.39318013, followed by
Combine fingerprint also trained by GBM method. The obtained MSE error was
0.39837325. MACCS fingerprint trained by GBM method also gave good MSE
value at 0.39979038 compared to other models. The worst performance was
obtained using Extended fingerprints trained with Deep Neural Network 4 (DNN
4) and Estate fingerprint trained with Deep Neural Network 3 (DNN 3).

Fig. 4.11 shows the performance of 72 classification models (MSE value) by
using all datasets as training and 10-fold cross validation technique. It seems that
all data are distributed randomly and there is no correlation between the
performance obtained by wusing all datasets as training and 10-fold cross

validation technique.
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Figure 4.11. Performance of 72 classification models by using all datasets as

training and 10-fold cross validation technique (MSE value).
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We observed that there are two types of models: 1) the left side is affected by
over-fitting problem, and 2) the right side is not changed for both experiments.
The left side points, which most of the combination of fingerprint types and DNN
methods suffered from over-fitting problems due to the many parameters of DNN.
The performance of DNN is good when using all datasets as training, however it
becomes worst when we used 10-fold cross validation technique, such as model No
12 (Klekota-Roth fingerprint trained with DNN4 method) and model No 36
(Extended fingerprint trained with DNN4 method). This might be caused by the
small number of our sample data and many parameters of DNN. DNN always
requires a large amount of data to be trained, usually more than 50,000 samples.
In our study, we only have 341 VOC data for the classification task. In theory,
over-fitting is a major problem for DNN and we have proved this experimentally.
Moreover, the Klekota-Roth and Extended fingerprints have many substructures
or features (more than 1000), which need to be trained and as a result, they are
suffering from over-fitting problems. The right side points did not change much
for both experiments. For example, the classification model No 43 (atom pair
fingerprint trained with DNN3 method) and model No 59 (Estate fingerprint
trained with DNN3 method) performed poorly in both experiments. From this
result, we can understand two things; 1) Atom pair and Estate fingerprint did not
perform well in model building, 2) DNN3 is the worst, compared to other DNN
models. Atom pair fingerprint are a structural descriptor type that is defined by
the shortest paths among the non-hydrogen atoms in a molecule. Each path is
described by the types of atoms in a pair, the length of their shortest bond path,
the number of their pi electrons and the non-hydrogen atoms bonded to them. The
number of atom pairs describing a molecule grows with its number of atoms. The
fingerprints provided by PubChem are a binary representation of the presence
and absence of a library of 881 substructure features. Compared to atom pairs, the
PubChem fingerprints are a knowledge-based system that stores less information
than the much more complex and unbiased atom pair concept. PubChem
fingerprints are also less sensitive than atom pair descriptors. The length of the
Estate fingerprint is only 79 bits, which is too short to characterize molecules and
some of the information might be loss, which cause the bad prediction. It is also

observed that hyper parameters of DNN can affect the overall performance. The
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reason why DNN3 performed poorly for both experiments, is because the Maxout
activation function and a small number of epochs. Rectifier activation function is
a better choice for this classification task.

Based on Fig. 4.10, we can observe that the classification model No 23
(PubChem fingerprint trained with GBM method) gives good results in both
experiments. This model obtained MSE value = 0.1214795 when using all datasets
as training and MSE value = 0.39318013 in case of 10-fold cross validation
technique. The results show that GBM method is good at predicting biological
activities of VOCs. GBM appears to be a very effective and efficient
machine-learning method. It is efficient because it achieves these results with
much less computational effort than either of those methods and produces much
smaller models. This is also supported by (Sheridan et al. 2016), where they
compared eXtreme Gradient Boosting (XGBoost) to random forest and single-task
deep neural nets on 30 in-house data sets and found that XGBoost can make
prediction better than those of random forest and almost as good as those of deep
neural nets. Overall, GBM results somehow are contrary with DNN results.

We also evaluated the performance of all 72 models in term of classification
accuracy. Classification accuracy is the ratio of correct predictions to total
predictions made and often presented as a percentage by multiplying the result by
100. Fig. 4.12 shows the performance of 72 classification models in term of
accuracy value (%) by using all datasets as training and 10-fold cross validation
technique. Also, it can be seen that all data are distributed randomly and there is
no correlation between the performance obtained by using all datasets as training
and 10-fold cross validation technique. Similarly to MSE result, we observed that
there are two types of models: 1) the right side is affected by over-fitting problem,
and 2) the left side is not changed for both experiments. The right side models,
such as model No 12 (Klekota-Roth fingerprint trained with DNN4 method), model
No 20 (PubChem fingerprint trained with DNN4 method) and model No 36
(Extended fingerprint trained with DNN4 method) give good classification result
when using all datasets as training, however it becomes worst when we used
10-fold cross validation technique. This might be caused by the small number of
our sample data, many parameters of DNN and large number of features need to

be trained, which we have explained previously.
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Figure 4.12. Performance of 72 classification models by using all datasets as

training and 10-fold cross validation technique (accuracy).

Contrarily, there are few models which performed poorly in both experiments.
The classification model No 43 (atom pair fingerprint trained with DNN3 method)
and model No 59 (Estate fingerprint trained with DNN3 method) performed poorly
in case of using all datasets as training and 10-fold cross validation technique.
This is due to the small number of substructures for Estate fingerprint, which is
too short to characterize molecules. The atom pair fingerprint is also known as a
very sensitive fingerprint and this is the reason why it performed poorly in both
experiments. Based on Fig. 4.11, we observed that the classification model No 7
(Combine fingerprint trained with GBM method) gives good results in both
experiments. This model obtained accuracy value of 94.4% when using all datasets

as training and 57.7% in case of 10-fold cross validation technique. The results
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show that GBM method is good at predicting biological activities of VOCs. This
result somehow is aligned with our previous result shown in Fig. 4.10, where we
proved that GBM appears to be a very effective and efficient algorithm, compared

to other machine learning methods.

4.4.4. Identification of important substructures

In the Section 4.4.3, we explained the performance of DNN, GBM, RF
and GLM machine learning methods to predict the biological activities of VOCs
based on chemical structures. The best classification model was built by using
GBM algorithm along with PubChem fingerprint. Hence, we identified the
important substructures for PubChem fingerprint using GBM algorithm for the
purpose of predicting biological activities. The H20 R package has implemented
the method of Gedeon (Gedeon 1997) in order to find the variable importance in
descending order of importance. GBM algorithm can automatically calculate
variable importance, which include the absolute and relative predictive strength
of each feature in the prediction task. The most important substructures (top 5)
during classification were PubChemFP430, PubChemFP2, PubChemFP334,
PubChemFP14 and PubChemFP839. The detail description for each of the

substructures are given below (refer to Appendix A for detail).
1) PubchemFP430: C(-C)(-C)(=C)
2) PubchemFP2: >=16 H
3) PubchemFP334: C(~C)(~C)(~C)(~C)
4) PubchemFP14: >=1N

5) PubchemFP839: (CC1CC(C)CC1

It was observed that PubChem fingerprint number 430 ranked the
highest in the context of classifying biological activities of VOCs. This fingerprint
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represents the detailed atom neighborhood. The second highest rank was
PubChem fingerprint number 2, which represents the presence of 16 hydrogen
atoms in a compound. Based on the frequency of these substructures presence in
each of VOC, we identified the most relevant biological activity for each compound.
For example, PubChem fingerprint number 430 has contributed most to the
attractant and biomarker activities. Most of VOCs, which have attractant and
biomarker activities consist only this particular fingerprint. PubChem fingerprint
number 2, which represents the presence of 16 hydrogen atoms contribute to
chemical ecology activities such as repellent, antimicrobial, antifungal and
defense. PubChem fingerprint number 334 has occurred in most of VOCs, which
have human healthcare activities such as anti-cholinesterase and antioxidant
activities. PubChem fingerprint number 14, which represents the presence of
one nitrogen atom in a compound contribute to biomarker and antifungal
activities. This makes sense because the VOCs released in human breath are
nitrogen containing such as dimethylamine and ammonia. Studies have shown
elevated levels of inflammatory and oxidative stress biomarkers such as nitrogen
oxides in patients with asthma, COPD, bronchiectasis and cystic fibrosis
(Montuschi 2007; N.M. & M. 2008). It is also known that organonitrogen
compounds containing an aliphatic nitrogen have significant antifungal
properties (Mullen et al. 1989) and azole (a class of five-membered heterocyclic
compounds containing a nitrogen atom and at least one other non-carbon atom as
part of the ring) antifungal drugs are the most widely employed antifungal agents
in clinical practice (Dodds-Ashley 2010). PubChem fingerprint number 839, which
indicates the presence of complex SMARTS patterns, contribute to enhance plant

growth and inhibit root growth.

These substructures or features have significant relationships with
biological activities and are considered important for prediction of biological

activities of VOCs.
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4.4.5. Testing the recommended model on new datasets

It 1s important to show that the recommended fingerprint and machine
learning method will also apply to other new datasets that have been not been
part of the model building. Thus, 120 additional new VOC datasets were selected
from other sources, which some of them were obtained from KNApSAcK
Metabolite Activity DB and other VOC data were accumulated by literature
search. Table 4.8 shows the new VOC data and predicted result by using our
recommended model. We found that 73 VOC were predicted correctly, which give
about 60.8% accuracy. The confusion matrix between actual and predicted
biological activities is shown in Table 4.9. The low accuracy of prediction results is
because of small sample of our training datasets, which is not sufficient enough
for the model to learn and predict new data. Most of VOCs are predicted as
biomarker, maybe because the training data was dominated by biomarkers. Also,
12 of the 14 odor VOCs were predicted as biomarkers. It is maybe because odor
and biomarker VOCs are chemical structurally similar. It is recommended to
increase the quantity of sample datasets so that the data for each of activity are

well-balanced and this can increase the prediction accuracy.

Table 4.8. List of new VOC datasets and predicted results.

New VOC data Actual Biological Activity Predicted Activity
1,6-dioxacyclododecane-7,12-dione Biomarker Biomarker

Potassium lespedezate Enhance plant growth Enhance plant growth
Impericine Anticholinesterase Anticholinesterase
Aloe emodin;Rhabarberone Repellent Biomarker
Chrysophanol Antioxidant Biomarker
Annonalide Inhibit root growth Inhibit root growth
Limbatolide A Anticholinesterase Anticholinesterase
Limbatolide B Anticholinesterase Anticholinesterase
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Potassium chelidonate

Enhance plant growth

Enhance plant growth

Kompasinol A;Maackoline Antioxidant Biomarker
Capillin Antifungal Biomarker
Carvacrol Antifungal Biomarker
L-Lactic acid;(S)-(+)-Lactic acid Antioxidant Biomarker
Rishitin Defense Defense
N-Isobutyroylbuxahyrcanine Anticholinesterase Antioxidant

Grandinol

Inhibit root growth

Inhibit root growth

1, 10-(1-butenylidene) bis benzene Biomarker Biomarker
Neoeriocitrin Antimicrobial Antimicrobial
Lappaconitine Antioxidant Antioxidant
Brassinolide Enhance plant growth Enhance plant growth

Diallyl sulfide Odor Biomarker
Cyclotetrasiloxane Biomarker Biomarker
Gentianose Enhance plant growth Biomarker
Tridecane Biomarker Biomarker
Tetradecane Biomarker Biomarker
Glabranin Antimicrobial Anti-cholinesterase
5-Hydroxy-1,4-naphthoquinone Antifungal Biomarker
Menthol Defense Biomarker
Castasterone Enhance plant growth Anti-cholinesterase
Dimethylsilanediol Biomarker Biomarker
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Isouvaretin

Antimicrobial

Antimicrobial

Lunularic acid

Enhance plant growth

Biomarker

Momilactone A

Inhibit root growth

Inhibit root growth

Indole-3-butyric acid

Inhibit root growth

Inhibit root growth

Volicitin Defense Biomarker
Glucolimnanthin Odor Biomarker
(-)-N-Methylcytisine Repellent Biomarker

Potassium isolespedezate

Enhance plant growth

Enhance plant growth

Sinigrin

Attractant

Biomarker

Lepidimoide Enhance plant growth Enhance plant growth
Caffeine Defense Biomarker
(+)-Camphor;Camphor Repellent Anti-cholinesterase
(-)-Menthone Odor Biomarker

1,8-Cineole;Eucalyptol

Inhibit root growth

Inhibit root growth

Menthyl acetate

Odor

Biomarker

Tomatine

Repellent

Antioxidant

Momilactone B

Inhibit root growth

Inhibit root growth

4-heptanone Biomarker Biomarker
Myrcene Attractant Attractant
Emodin Antifungal Biomarker
Eugenol Antioxidant Biomarker
(+)-Marmesin;Marmesin Anticholinesterase Anticholinesterase
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Medicarpin Defense Biomarker
Salicylic acid Defense Attractant
Gossypol Defense Biomarker
cis-trans-Nepetalactone Repellent Biomarker
Kurramine-2'-beta-N-oxide Anticholinesterase Anticholinesterase
(R)-(-)-Carvone Odor Biomarker

Dihydrozeatin

Enhance plant growth

Enhance plant growth

(+)-Coniine Odor Biomarker
Chalcogran Attractant Attractant
Flindersiachromone Odor Biomarker
Agnuside;Buddlejoside A Attractant Attractant
Dolichodial Repellent Anti-cholinesterase
(+)-Iridodial Repellent Biomarker
Naringin Antimicrobial Antimicrobial
Narirutin Antimicrobial Antimicrobial
Carvone oxide Attractant Attractant
(+)-Pulegone Odor Odor
Demissine Repellent Biomarker
Styraxin Odor Odor

24-Epibrassinolide

Inhibit root growth

Inhibit root growth

trans-Cinnamic acid

Enhance plant growth

Enhance plant growth

trans-Zeatin

Enhance plant growth

Enhance plant growth
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Nordihydroguaiaretic acid Antimicrobial Biomarker
Luteolin Antioxidant Antioxidant
8R-Hydroxylinoleic acid Antifungal Antifungal

(-)-Jasmonic acid

Enhance plant growth

Enhance plant growth

trans-2-Hexenal Antifungal Antifungal
Myricetin Antioxidant Antioxidant
Integerrimine Attractant Attractant

Methyl jasmonate

Enhance plant growth

Enhance plant growth

2-hexyl-1-octanol

Biomarker

Biomarker

(+)-Ascorbic acid

Antioxidant

Antioxidant

28-Homocastasterone

Enhance plant growth

Enhance plant growth

4-pentadiene Biomarker Biomarker
Sucrose;(+)-Sucrose Antioxidant Antioxidant
Pyrethrins Defense Defense
Aniline Biomarker Biomarker

N6-Benzyladenine

Enhance plant growth

Enhance plant growth

Ethylene Defense Defense
Camalexin Defense Defense
p-Coumaric acid Antifungal Antifungal
Geraniol Attractant Attractant
Chlorophyll a Odor Biomarker

Gibberellin A1;GA1

Enhance plant growth

Enhance plant growth
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Allicin

Odor

Biomarker

Tomatidine

Repellent

Antioxidant

Protoanemonin;Protoanemonene

Enhance plant growth

Enhance plant growth

Skatole Odor Biomarker
Pinocembrin Antimicrobial Antimicrobial
Isopimpinellin Antifungal Biomarker
Seselin;Amyrolin;Seseline Antifungal Biomarker
Actinidine Attractant Attractant
Caffeic acid Antifungal Biomarker
Thymol Antifungal Biomarker

(-)-Epicatechin

Anticholinesterase

Anticholinesterase

Hesperetin Antimicrobial Antimicrobial
Lycorine;(-)-Lycorine Anticholinesterase Anticholinesterase
Uvaretin Antimicrobial Antimicrobial
Crinamine Anticholinesterase Anticholinesterase
Citronellal Repellent Anticholinesterase
N-Methylfuntumine Anticholinesterase Anticholinesterase
Piperonal Odor Biomarker
Isoeugenol Odor Biomarker

Shikimic acid 3-phosphate;S3P

Enhance plant growth

Enhance plant growth

(+)-Catechin

Antioxidant

Antioxidant

N6-(delta2-Isopentenyl)adenine;2iP

Enhance plant growth

Enhance plant growth
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Naringenin;(-)-Naringenin

Antimicrobial

Antimicrobial

Galanthamine

Anticholinesterase

Anticholinesterase

Table 4.9. Confusion matrix between actual and predicted biological

activities.
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Biomarker 10 10 0 0 0 0 0 0 0 0 0 0ol 0.00
Enhance plant growth 19 2 16 1 0 0 0 0 0 0 0 3] 2.50
Anticholinesterase 11 0 0 10 0 0 0 0 0 0 0 1 0.83
Repellent 10 5 0 3 0 0 0 0 0 0 0| 10| 8.33
Antioxidant 10 4 0 0 0 0 0 0 0 0 0 4/ 3.33
Inhibit root growth 7 0 0 0 0 7 0 0 0 0 0 0ol 0.00
Antifungal 11 8 0 0 0 0 3 0 0 0 0 8 6.67
Defense 10 5 0 0 0 0 0 4 0 0 1 6/ 5.00
Antimicrobial 10 1 0 1 0 0 0 0 8 0 0 2 1.67
Odor 14 12 0 0 0 0 0 0 0 2 0 12| 10.00
Attractant 8 1 0 0 0 0 0 0 0 0 7 1| 0.83
TOTAL 120 48 16 15 0 7 3 4 8 2 8| 47| 39.17
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4.5. Summary

In this chapter, we examined the classification of VOCs based on chemical
structural similarity. The main reason is to find the relationships between
chemical structures of VOCs and biological activities based on the Similar
Property Principle, which states that molecules that are structurally similar are
likely to have similar properties (Maggiora & Shanmugasundaram 2004). Based
on heatmap clustering and hypergeometric distribution result, we found that
there are strong links between chemical structure of VOCs and their biological
activities. Additionally, we also compared several types of hierarchical clustering
methods with DPClus clustering to classify VOCs using fingerprint-based
similarity measure between chemical structures. We extended our findings by
building models using supervised machine learning methods to predict biological
activities of VOCs based on chemical structures. We found that molecular
fingerprints can be used for predicting biological activities of volatile metabolites.
It is recommended to use PubChem and Combine fingerprint trained with
Gradient Boosting Machine (GBM) method in the context of classifying VOCs.
GBM method has advantage in term of computational speed and require less

parameters for optimization, compared to other machine learning methods.
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Chapter 5

Conclusions

In order to obtain a better understanding of the relationships among species,
VOC and biological activities, we utilized data-intensive science for discovering
and identifying natural diversity of VOCs. This study has been started by
accumulating VOC data from literature and also scientific reports. We found that
many VOCs are produced by plants, microorganisms, insects and also human.
Each of VOCs produced by different organisms are very unique and have its
specific function or biological activities. This study is conducted in order to
further investigate the relationships among organisms, emitting VOCs and their

corresponding biological activities.

In this dissertation, we have discussed a database of VOCs emitted by
various living organisms including microorganisms, fungi, plants, animals and
humans, which can be accessed at KNApSAcK Metabolite Ecology Database.
Apart from VOC biological activities related to human healthcare, more than half
of the biological activities are associated with chemical ecology. Hierarchical
clustering and graph clustering by DPClus algorithm were utilized to extract
specific clusters of microorganism species based on VOC similarity. We found
consistency between VOC and pathogenicity based classification of
microorganisms. Additionally, we also compared several types of hierarchical
clustering methods with DPClus clustering to classify VOCs wusing
fingerprint-based similarity measure between chemical structures. Our research
indicates that similar chemical structures of VOCs indicate possibilities of
exhibiting similar biological activities. We extended our findings by using

supervised machine learning methods to predict biological activities of VOCs
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based on chemical structures. We have developed 72 classification model for the
prediction of biological activities of VOCs by 9 types of fingerprints and trained by
Deep Neural Network, Gradient Boosting Machine, Random Forest and
Generalized Linear Model. Based on the computational results, PubChem
fingerprints was suggested to be used as the input for the prediction, compared to
other fingerprints. Gradient boosting machine (GBM) method can outperform
Deep Neural Network (DNN) in term of classifying VOCs. GBM method has
advantage in term of computational speed and require less parameters for
optimization. Hence, we highly recommend to use Gradient Boosting Machine for

the prediction of biological activities of VOCs based on chemical structures.

In future, more VOCs can be accumulated, and comprehensive analysis can
be performed in the context of human healthcare and chemical ecology. The
KNApSAcK Metabolite Ecology Database may be useful for the discovery of novel
agricultural tools and also for the non-invasive identification of biomarkers in the
medical diagnostic field as well as a systematic research in various omics fields,
especially metabolomics integrated with ecosystems. It is hoped that the
KNApSAcK Metabolite Ecology Database can be as a reference tool for the users
to find information on volatile metabolites with related biological activities for the

application in agriculture, ecosystems and healthcare industry.
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Appendix A

The description of PubChem fingerprint, as mentioned in Chapter 4.

Sit Bit Substructure
Position

0 >=4 H
1 >=8 H
2 >= 16 H
3 >= 32 H
4 >=1Li
5 >= 2 Li
6 >=18B
7 >=2B
8 >=4 B
9 >=2C
10 >=4 C
11 >=8C
12 >= 16 C
13 >= 32 C
14 >=1N
15 >=2 N
16 >=4 N
17 >=8 N
18 >=10
19 >=20
20 >=40
21 >=80
22 >=16 O
23 >=1F
24 >=2F
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25 >=4 F
26 >=1 Na
27 >= 2 Na
28 >=1 Si
29 >= 2 Si
30 >=1P
31 >= 2P
32 >=4 P
33 >=18
34 >=28S
35 >=4 S
36 >=8 S
37 >=1 Cl
38 >= 2 Cl
39 >= 4 Cl
40 >= 8 Cl
41 >=1K
42 >=2 K
43 >= 1 Br
44 >= 2 Br
45 >= 4 Br
46 >=11
47 >=21
48 >=41
49 >= 1 Be
50 >=1 Mg
51 >=1 Al
52 >=1 Ca
53 >=1 Sc
54 >=1Ti
55 >=1V

118




56 >=1 Cr
57 >=1 Mn
58 >=1 Fe
59 >=1 Co
60 >=1 Ni
61 >=1 Cu
62 >=1Zn
63 >=1 Ga
64 >=1 Ge
65 >=1 As
66 >=1 Se
67 >=1 Kr
68 >=1Rb
69 >=1 Sr
70 >=1Y

71 >=1 Zr
72 >= 1 Nb
73 >=1 Mo
74 >=1 Ru
75 >=1Rh
76 >=1 Pd
77 >=1Ag
78 >=1 Cd
79 >=11In
80 >=1 Sn
81 >=1 Sb
82 >=1 Te
83 >=1 Xe
84 >=1 Cs
85 >=1 Ba
86 >=1 Lu
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87 >= 1 Hf
88 >=1 Ta
89 >=1W
90 >=1 Re
91 >=1 Os
92 >=1Ir
93 >= 1Pt
94 >=1 Au
95 >=1 Hg
96 >=1T1
97 >=1Pb
98 >= 1 Bi
99 >=1 La
100 >=1 Ce
101 >=1 Pr
102 >=1 Nd
103 >=1Pm
104 >=1Sm
105 >=1 Eu
106 >=1 Gd
107 >=1Tb
108 >=1 Dy
109 >=1 Ho
110 >=1 Er
111 >=1Tm
112 >=1Yb
113 >=1 Te
114 >=10U
115 >= 1 any ring size 3
116 >= 1 saturated or aromatic carbon-only ring size 3
117 >= 1 saturated or aromatic nitrogen-containing ring size 3
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121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

saturated or aromatic heteroatom-containing ring size 3
unsaturated non-aromatic carbon-only ring size 3
unsaturated non-aromatic nitrogen-containing ring size 3
unsaturated non-aromatic heteroatom-containing ring size 3
any ring size 3

saturated or aromatic carbon-only ring size 3

saturated or aromatic nitrogen-containing ring size 3
saturated or aromatic heteroatom-containing ring size 3
unsaturated non-aromatic carbon-only ring size 3
unsaturated non-aromatic nitrogen-containing ring size 3
unsaturated non-aromatic heteroatom-containing ring size 3
any ring size 4

saturated or aromatic carbon-only ring size 4

saturated or aromatic nitrogen-containing ring size 4
saturated or aromatic heteroatom-containing ring size 4
unsaturated non-aromatic carbon-only ring size 4
unsaturated non-aromatic nitrogen-containing ring size 4
unsaturated non-aromatic heteroatom-containing ring size 4
any ring size 4

saturated or aromatic carbon-only ring size 4

saturated or aromatic nitrogen-containing ring size 4
saturated or aromatic heteroatom-containing ring size 4
unsaturated non-aromatic carbon-only ring size 4
unsaturated non-aromatic nitrogen-containing ring size 4
unsaturated non-aromatic heteroatom-containing ring size 4
any ring size 5

saturated or aromatic carbon-only ring size 5

saturated or aromatic nitrogen-containing ring size 5
saturated or aromatic heteroatom-containing ring size 5
unsaturated non-aromatic carbon-only ring size 5

unsaturated non-aromatic nitrogen-containing ring size 5
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unsaturated non-aromatic heteroatom-containing ring size 5
any ring size 5

saturated or aromatic carbon-only ring size 5

saturated or aromatic nitrogen-containing ring size 5
saturated or aromatic heteroatom-containing ring size 5
unsaturated non-aromatic carbon-only ring size 5
unsaturated non-aromatic nitrogen-containing ring size 5
unsaturated non-aromatic heteroatom-containing ring size 5
any ring size 5

saturated or aromatic carbon-only ring size 5

saturated or aromatic nitrogen-containing ring size 5
saturated or aromatic heteroatom-containing ring size 5
unsaturated non-aromatic carbon-only ring size 5
unsaturated non-aromatic nitrogen-containing ring size 5
unsaturated non-aromatic heteroatom-containing ring size 5
any ring size 5

saturated or aromatic carbon-only ring size 5

saturated or aromatic nitrogen-containing ring size 5
saturated or aromatic heteroatom-containing ring size 5
unsaturated non-aromatic carbon-only ring size 5
unsaturated non-aromatic nitrogen-containing ring size 5
unsaturated non-aromatic heteroatom-containing ring size 5
any ring size 5

saturated or aromatic carbon-only ring size 5

saturated or aromatic nitrogen-containing ring size 5
saturated or aromatic heteroatom-containing ring size 5
unsaturated non-aromatic carbon-only ring size 5
unsaturated non-aromatic nitrogen-containing ring size 5
unsaturated non-aromatic heteroatom-containing ring size 5
any ring size 6

saturated or aromatic carbon-only ring size 6
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180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

saturated or aromatic nitrogen-containing ring size 6
saturated or aromatic heteroatom-containing ring size 6
unsaturated non-aromatic carbon-only ring size 6
unsaturated non-aromatic nitrogen-containing ring size 6
unsaturated non-aromatic heteroatom-containing ring size 6
any ring size 6

saturated or aromatic carbon-only ring size 6

saturated or aromatic nitrogen-containing ring size 6
saturated or aromatic heteroatom-containing ring size 6
unsaturated non-aromatic carbon-only ring size 6
unsaturated non-aromatic nitrogen-containing ring size 6
unsaturated non-aromatic heteroatom-containing ring size 6
any ring size 6

saturated or aromatic carbon-only ring size 6

saturated or aromatic nitrogen-containing ring size 6
saturated or aromatic heteroatom-containing ring size 6
unsaturated non-aromatic carbon-only ring size 6
unsaturated non-aromatic nitrogen-containing ring size 6
unsaturated non-aromatic heteroatom-containing ring size 6
any ring size 6

saturated or aromatic carbon-only ring size 6

saturated or aromatic nitrogen-containing ring size 6
saturated or aromatic heteroatom-containing ring size 6
unsaturated non-aromatic carbon-only ring size 6
unsaturated non-aromatic nitrogen-containing ring size 6
unsaturated non-aromatic heteroatom-containing ring size 6
any ring size 6

saturated or aromatic carbon-only ring size 6

saturated or aromatic nitrogen-containing ring size 6
saturated or aromatic heteroatom-containing ring size 6

unsaturated non-aromatic carbon-only ring size 6
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212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

unsaturated non-aromatic nitrogen-containing ring size 6
unsaturated non-aromatic heteroatom-containing ring size 6
any ring size 7

saturated or aromatic carbon-only ring size 7

saturated or aromatic nitrogen-containing ring size 7
saturated or aromatic heteroatom-containing ring size 7
unsaturated non-aromatic carbon-only ring size 7
unsaturated non-aromatic nitrogen-containing ring size 7
unsaturated non-aromatic heteroatom-containing ring size 7
any ring size 7

saturated or aromatic carbon-only ring size 7

saturated or aromatic nitrogen-containing ring size 7
saturated or aromatic heteroatom-containing ring size 7
unsaturated non-aromatic carbon-only ring size 7
unsaturated non-aromatic nitrogen-containing ring size 7
unsaturated non-aromatic heteroatom-containing ring size 7
any ring size 8

saturated or aromatic carbon-only ring size 8

saturated or aromatic nitrogen-containing ring size 8
saturated or aromatic heteroatom-containing ring size 8
unsaturated non-aromatic carbon-only ring size 8
unsaturated non-aromatic nitrogen-containing ring size 8
unsaturated non-aromatic heteroatom-containing ring size 8
any ring size 8

saturated or aromatic carbon-only ring size 8

saturated or aromatic nitrogen-containing ring size 8
saturated or aromatic heteroatom-containing ring size 8
unsaturated non-aromatic carbon-only ring size 8
unsaturated non-aromatic nitrogen-containing ring size 8
unsaturated non-aromatic heteroatom-containing ring size 8

any ring size 9
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242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

>= 1 saturated or aromatic carbon-only ring size 9

>= 1 saturated or aromatic nitrogen-containing ring size 9

>= 1 saturated or aromatic heteroatom-containing ring size 9

>= 1 unsaturated non-aromatic carbon-only ring size 9

>= 1 unsaturated non-aromatic nitrogen-containing ring size 9
>= 1 unsaturated non-aromatic heteroatom-containing ring size 9
>= 1 any ring size 10

>= 1 saturated or aromatic carbon-only ring size 10

>= 1 saturated or aromatic nitrogen-containing ring size 10

>= 1 saturated or aromatic heteroatom-containing ring size 10
>= 1 unsaturated non-aromatic carbon-only ring size 10

>= 1 unsaturated non-aromatic nitrogen-containing ring size 10
>= 1 unsaturated non-aromatic heteroatom-containing ring size 10
>= 1 aromatic ring

>= 1 hetero-aromatic ring

>= 2 aromatic rings

>= 2 hetero-aromatic rings

>= 3 aromatic rings

>= 3 hetero-aromatic rings

>= 4 aromatic rings

>= 4 hetero-aromatic rings
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273 B-B
274 B-C
275 B-N
276 B-0
2717 B-F
278 B-Si
279 B-P
280 B-S
281 B-Cl
282 B-Br
283 C-H
284 c-C
285 C-N
286 c-0
287 C-F
288 C-Na
289 C-Mg
290 C-Al
291 C-Si
292 C-P
293 C-S
294 c-cl
295 C-As
296 C-Se
297 C-Br
298 c-1
299 N-H
300 N-N
301 N-0
302 N-F
303 N-Si
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304 N-P
305 N-S

306 N-Cl

307 N-Br

308 0-H

309 0-0

310 0-Mg

311 0-Na

312 0-Al

313 0-Si

314 0-P

315 0-K

316 F-P

317 F-S

318 Al-H

319 Al-Cl

320 Si-H

321 Si-Si

322 Si-Cl1

323 P-H

324 P-P

325 As-H

326 As-As

327 C(~Br)(~C)
328 C(~Br)(~C)(~C)
329 C(~Br)(~H)
330 C(~Br)(:C)
331 C(~Br)(:N)
332 C(~C)(~C)
333 C(~C)(~C)(~C)
334 C(~C)(~C)(~C)(~C)
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335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

C(~C)(~C)(~C)(~H)
C(~C)(~C)(~C)(~N)
C(~C)(~C)(~C)(~0)
C(~C)(~C)(~H)(~N)
C(~C)(~C)(~H)(~0)
C(~C)(~C)(~N)
C(~C)(~C)(~0)
C(~C)(~CD
C(~C)(~CD(~H)
C(~C)(~H)
C(~C)(~H)(~N)
C(~C)(~H)(~0)
C(~C)(~H)(~0)(~0)
C(~C)(~H)(~P)
C(~C)(~H)(~8)
C(~C)(~D)
C(~C)(~N)
C(~C)(~0)
C(~C)(~8)
C(~C)(~81)
C(~C)(:C)
c(~C):C)(:C)
C(~C):C)CN)
C(~C)(:N)
C(~C)CGN)(N)
C(~CD(~CD
C(~CD(~H)
C(~CD(:C)
C(~F)(~F)
C(~F)(:C)

C(~H)(~N)
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366

367

368

369

370

371

372

373

374

375

376

3717

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

C(~H)(~0)
C(~H)(~0)(~0)
C(~H)(~8)
C(~H)(~S1)
C(~H)(:C)
C(~H)(:C)(:C)
C(~H)(:C)(:N)
C(~H)(:N)
C(~H)(~H)(~H)
C(~N)(~N)
C(~N)(:C)
C(~N)(:C)(:C)
C~N)(C)(:N)
C(~N)(:N)
C(~0)(~0)
C(~0)(:0)
C(~0)(:C)(:0C)
C(~8)(:0C)
CGCIC0)
CtO)GO)EC)
CGC)CGCIEN)
CCGCICN)
CGCICGN)CGN)
CCGN)CGN)
N(~C)(~C)
N(~C)(~C)(~C)
N(~C)(~C)(~H)
N(~C)(~H)
N(~C)(~H)(~N)
N(~C)(~0)

N(~C)(:C)
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397 N(~C)(:C)(:C)
398 N(~H)(~N)
399 N(~H)(:C)
400 N(~H)(:C)(:C)
401 N(~0)(~0)
402 N(~0)(:0)
403 N(:C)(:0C)
404 NGEC)(GC)(G0)
405 0(~C)(~0)
406 0(~C)(~H)
407 0(~C)(~P)
408 O(~H)(~8)
409 o¢:C):C)
410 P(~C)(~C)
411 P(~0)(~0)
412 S(~C)(~C)
413 S(~C)(~H)
414 S(~C)(~0)
415 Si(~C)(~C)
416 c=C

417 C#C

418 C=N

419 C#N

420 Cc=0

421 Cc=Ss

422 N=N

423 N=0

424 N=P

425 P=0

426 P=pP

427 C#C)(-C)
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428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

C#C)(-H)
C#HN)(-C)
C(-C)(-C)(=C)
C(-C)(-C)(=N)
C(-C)(-C)(=0)
C(-C)(-CD(=0)
C(-C)(-H)(=C)
C(-C)(-H)(=N)
C(-C)(-H)(=0)
C(-C)(-N)(=0)
C(-C)(-N)(=N)
C(-C)(-N)(=0)
C(-C)(-0)(=0)
C(-C)(=0)
C(-C)(=N)
C(-C)(=0)
C(-CD(=0)
C(-H)(-N)(=C)
C(-H)(=C)
C(-H)(=N)
C(-H)(=0)
C(-N)(=0)
C(-N)(=N)
C(-N)(=0)
C(-0)(=0)
N(-C)(=C)
N(-C)(=0)
N(-0)(=0)
P(-0)(=0)
S(-C)(=0)

S(-0)(=0)
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459 S5(=0)(=0)
460 C-C-C#C
461 0-C-C=N
462 0-C-C=0
463 N:C-S-[#1]
464 N-C-C=C
465 0=S-C-C
466 N#C-C=C
467 C=N-N-C
468 0=S-C-N
469 S-8-C:C
470 Cc:C-C=C
471 S:C:C:C
472 C:N:C-C
473 S-C:N:C
474 S:C:C:N
475 S-C=N-C
476 C-0-C=C
4717 N-N-C:C
478 S-C=N-[#1]
479 S-C-8-C
480 C:s:C-C
481 0-S-C:C
482 C:N-C:C
483 N-S-C:C
484 N-C:N:C
485 N:C:C:N
486 N-C:N:N
487 N-C=N-C
488 N-C=N-[#1]
489 N-C-S-C
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490 C-C-C=C
491 C-N:C-[#1]
492 N-C:0:C
493 0=C-C:C
494 0=C-C:N
495 C-N-C:C
496 N:N-C-[#1]
497 0-C:C:N
498 0-C=C-C
499 N-C:C:N
500 Cc-s-c:C
501 Ccl-c:C-C
502 N-C=C-[#1]
503 Cl-C:C-[#1]
504 N:C:N-C
505 C1-C:C-0
506 C-C:N:C
507 C-C-S-C
508 S=C-N-C
509 Br-C:C-C
510 [#1]-N-N-[#1]
511 S=C-N-[#1]
512 C-[As]-O-[#1]
513 S:C:C-[#1]
514 0-N-C-C
515 N-N-C-C
516 [#1]-C=C-[#1]
517 N-N-C-N
518 0=C-N-N
519 N=C-N-C
520 C=C-C:C
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521 C:N-C-[#1]
522 C-N-N-[#1]
523 N:C:C-C
524 C-C=C-C
525 [As]-C:C-[#1]
526 Cl-C:C-Cl
527 C:C:N-[#1]
528 [#1]-N-C-[#1]
529 Cl-C-C-Cl
530 N:C-C:C
531 S-c:C-C
532 S-C:C-[#1]
533 S-C:C-N
534 S-C:C-0
535 0=C-C-C
536 0=C-C-N
537 0=C-C-0
538 N=C-C-C
539 N=C-C-[#1]
540 C-N-C-[#1]
541 0-C:C-C
542 0-C:C-[#1]
543 0-C:C-N
544 0-C:C-0
545 N-C:C-C
546 N-C:C-[#1]
547 N-C:C-N
548 0-C-C:C
549 N-C-C:C
550 cl-c-c-C
551 Cl-C-C-0
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552 C:C-C:C
553 0=C-C=C
554 Br-C-C-C
555 N=C-C=C
556 C=C-C-C
557 N:C-0O-[#1]
558 0=N-C:C
559 0-C-N-[#1]
560 N-C-N-C
561 Cl-C-C=0
562 Br-C-C=0
563 0-C-0-C
564 C=C-C=C
565 C:C-0-C
566 0-C-C-N
567 0-C-C-0
568 N#C-C-C
569 N-C-C-N
570 c:c-c-C
571 [#1]-C-O-[#1]
572 N:C:N:C
573 0-C-Cc=C
574 0-C-C:C-C
575 0-C-C:C-0
576 N=C-C:C-[#1]
577 C:C-N-C:C
578 c-c:c-c:C
579 0=C-C-C-C
580 0=C-C-C-N
581 0=C-C-C-0
582 c-c-Cc-c-C
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583 C1-C:C-0-C
584 C:C-C=C-C
585 C-C:C-N-C
586 C-S-C-C-C
587 N-C:C-O-[#1]
588 0=C-C-C=0
589 Cc-C:C-0-C
590 C-C:C-0O-[#1]
591 Ccl-c-c-c-C
592 N-C-C-C-C
593 N-C-C-C-N
594 C-0-C-C=C
595 C:C-C-C-C
596 N=C-N-C-C
597 0=C-C-C:C
598 Cl-C:C:C-C
599 [#1]-C-C=C-[#1]
600 N-C:C:C-C
601 N-C:C:C-N
602 0=C-C-N-C
603 c-c:c:Cc-C
604 Cc-0-C-C:C
605 0=C-C-0-C
606 0-C:C-C-C
607 N-C-C-C:C
608 C-C-C-C:C
609 Cl-C-C-N-C
610 C-0-C-0-C
611 N-C-C-N-C
612 N-C-0-C-C
613 C-N-C-C-C
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614 C-C-0-C-C
615 N-C-C-0-C
616 C:C:N:N:C
617 C-C-C-0-[#1]
618 c:c-c-c:C
619 0-C-C=C-C
620 Cc:C-0-C-C
621 N-C:C:C:N
622 0=C-0-C:C
623 0=C-C:C-C
624 0=C-C:C-N
625 0=C-C:C-0
626 C-0-C:C-C
627 0=[As]-C:C:C
628 C-N-C-C:C
629 S-C:C:C-N
630 0-C:C-0-C
631 0-C:C-0-[#1]
632 C-C-0-C:C
633 N-C-C:C-C
634 C-C-C:C-C
635 N-N-C-N-[#1]
636 C-N-C-N-C
637 0-C-C-C-C
638 0-C-C-C-N
639 0-C-C-C-0
640 C=C-C-C-C
641 0-C-C-C=C
642 0-C-C-C=0
643 [#1]-C-C-N-[#1]
644 C-C=N-N-C
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645 0=C-N-C-C
646 0=C-N-C-[#1]
647 0=C-N-C-N
648 0=N-C:C-N
649 0=N-C:C-0
650 0=C-N-C=0
651 0-C:C:C-C
652 0-C:C:C-N
653 0-C:C:C-0
654 N-C-N-C-C
655 0-C-C-C:C
656 C-C-N-C-C
657 C-N-C:C-C
658 C-C-S-C-C
659 0-C-C-N-C
660 Cc-C=C-C-C
661 0-C-0-C-C
662 0-C-C-0-C
663 0-C-C-0-[#1]
664 C-C=C-C=C
665 N-C:C-C-C
666 C=C-C-0-C
667 C=C-C-0-[#1]
668 Cc-C:C-C-C
669 C1-C:C-C=0
670 Br-C:C:C-C
671 0=C-C=C-C
672 0=C-C=C-[#1]
673 0=C-C=C-N
674 N-C-N-C:C
675 Br-C-C-C:C
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676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

N#C-C-C-C
C-C=C-C:C
C-C-C=C-C
C-C-C-C-C-C
0-C-C-C-C-C
0-C-C-C-C-0
0-C-C-C-C-N
N-C-C-C-C-C
0=C-C-C-C-C
0=C-C-C-C-N
0=C-C-C-C-0
0=C-C-C-C=0
C-C-C-C-C-C-C
0-C-C-C-C-C-C
0-C-C-C-C-C-0
0-C-C-C-C-C-N
0=C-C-C-C-C-C
0=C-C-C-C-C-0
0=C-C-C-C-C=0
0=C-C-C-C-C-N
C-C-C-C-C-C-C-C
C-C-C-C-C-c(C)-C
0-C-C-C-C-C-C-C
0-C-C-C-C-Cc(0)-C
0-C-C-C-C-C-0-C
0-C-C-C-C-C(0)-C
0-C-C-C-C-C-N-C
0-C-C-C-C-C(N)-C
0=C-C-C-C-C-C-C
0=C-C-C-C-C(0)-C

0=C-C-C-C-C(=0)-C
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707

708

709

710

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

0=C-C-C-C-C(N)-C

c-c(c)-c-C
c-c(c)-c-c-C
C-C-Cc(C)-Cc-C
Cc-c(c)(C)-c-C
C-c(C)-c(C)-C
Cclcce(C)ecl
Cclccc(O)ccel
Cclcce(S)ecl
Cclcee(N)ecel
Cclcee(Clecel
Cclcee(Br)ecl
Oclcce(O)ccl
Oclcce(S)ecel
Oclccc(N)cel
Oclccc(Cl)ccl
Oclccc(Br)ecl
Sclcee(S)ecl
Sclcee(N)eel
Sclecee(Clecl
Sclcee(Br)ecl
Neclcee(N)ecel
Nclcee(Cleel
Nclcee(Br)ecl
Clclcce(Cl)ecl
Clclcce(Br)ecl
Brelcee(Br)eel
Cclce(Ceecl
Cclce(O)cecl
Cclce(S)cecl

Cclce(N)ceel
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738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

Cclce(Cleeel
Cclcc(Br)cecl
Oclcc(O)ceel
Oclcc(S)cecl
Oclce(N)ceel
Oclce(Clcecl
Oclce(Br)ceel
Sclce(S)cecl
Sclce(N)ceel
Sclce(Clcecl
Sclcc(Br)ccel
Nclce(N)eeel
Neclce(Cleceel
Nclce(Br)eecl
Clclce(Cl)cecl
Clclce(Br)cecl
Brelcee(Br)eeel
Cclc(C)ccecl
Cclc(O)ccecl
Cclc(S)ccecl
Cclc(N)cceel
Cclc(Cleceel
Cclc(Br)ccecl
Oclc(O)cceel
Oclc(S)ceecl
Oc1c(N)cceel
Oclc(Cl)ccecl
Oclc(Br)cceel
Sclc(S)cceel
Sclc(N)ceecl

Sclce(Clecceel
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769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

Sclc(Br)cceel
Nclc(N)ceeel
Nclc(CDeceel
Nclc(Br)cceel
Clcle(Cl)ceecl
Clclc(Br)ccecl
Brele(Br)cceel
cciccece(e)cc
cciccce(o)ect
cciccce(s)ccl
CC1CCC(N)CC1
cciccece(cncect
CC1CCC(Br)CC1
ociccc(o)ccee
ociccce(s)ccen
ociccc(N)ccel
ociccce(encece
0C1CCC(Br)CC1
Sc1Cccc(s)ccel
SC1CCC(N)CC1
sciccce(cncect
SC1CCC(Br)CC1
NC1CCC(N)CC1
Nciccce(cnecet
NC1CCC(Br)CC1
ciciccce(cncec
C1C1CCC(Br)CC1
BrC1CCC(Br)CC1
ccicce(e)ccec
ccicc(o)ccect

ccicc(s)cecel
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800

801

802

803

804

805

806

807

808

809

810

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

ccicc(N)ccecel
ccicce(cnecces
CC1CC(Br)CCC1
ocicc(o)cceccel
ocicce(s)ccecel
0Cc1CC(N)CCC1
ocicce(cnecces
0C1CC(Br)CCC1
scicc(s)ccect
SC1CC(N)CCC1
scicc(cnccect
SC1CC(Br)CCC1
NC1CC(N)CCC1
Nc1cc(cnccecel
NC1CC(Br)CCC1
cicicce(cneccel
ClC1CC(Br)CCC1
BrC1CC(Br)CCC1
ccic(e)cecect
ccic(o)ccecect
ccic(s)cccect
CC1C(N)CCcCC1
ccic(cncececect
CC1C(Br)CCCC1
ocic(o)cccecel
ocic(s)cececel
ocic(N)cccecl
ocic(cncecccect
0C1C(Br)CCCC1
Scic(s)cccect

SC1C(N)CCCC1
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831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

sci1c(cnccecect
SC1C(Br)CCCC1
NC1C(N)CCCC1
Nci1c(c1ncceect
NC1C(Br)CCCC1
cicic(cncecceccecet
CIC1C(Br)CCCC1
BrC1C(Br)CCCC1
ccicce(e)cet
ccicc(o)ccel
ccicce(s)cel
CC1CC(N)CC1
ccicce(cncec
CC1CC(Br)CC1
ocicc(o)ccen
oci1cc(s)ccel
0C1CC(N)CC1
ocicc(cncect
0C1CC(Br)CC1
scicc(s)ccl
SC1CC(N)CC1
scicc(cncect
SC1CC(Br)CC1
NC1CC(N)CC1
Ncicc(chcecel
NC1CC(Br)CC1
clicicce(cncec
ClC1CC(Br)CC1
BrC1CC(Br)CC1
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Appendix B

Chemical structures of the VOCs belonging to all clusters (Cluster 1 to Cluster 11),

as mentioned in Chapter 4.
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Cluster 5 (21 VOCs)
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Cluster 6 (25 VOCs)
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Appendix C

The performance of all classifiers using all datasets as training and 10-fold cross

validation technique, which were mentioned in Chapter 4.

Table 1. The performance of classifiers (mse) using all datasets as training.

Model
No Fingerprint + Machine Learning Method MSE

1 | Combine + DNNI1 (default) 0.1052596
2 | Combine + DNN2 0.107273

3 | Combine + DNN3 0.2447039
4 | Combine + DNN4 0.5051482
5 | Combine + DNNS5 0.1619378
6 | Combine + RF 0.4212882
7 | Combine + GBM 0.3952804
8 | Combine + GLM 0.4319557
9 | KR + DNN1 (default) 0.1582859
10 | KR + DNN2 0.141156

11 | KR + DNN3 0.1656269
12 | KR + DNN4 0.05420784
13 | KR + DNNS5 0.08050456
14 | KR + RF 0.4104758
15 | KR + GBM 0.1267871
16 | KR + GLM 0.3484839
17 | PubChem + DNN1 (default) 0.1775599
18 | PubChem + DNN2 0.1265089
19 | PubChem + DNN3 0.1768494
20 | PubChem + DNN4 0.05871162
21 | PubChem + DNNS5 0.08168069
22 | PubChem + RF 0.4074268
23 | PubChem + GBM 0.1214795
24 | PubChem + GLM 0.3679084
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25 | CDK + DNNI1 (default) .2230534
26 | CDK + DNN2 .220504
27 | CDK + DNN3 .2025835
28 | CDK + DNN4 .1089344
29 | CDK + DNNS5 1698504
30 | CDK + RF .4555405
31 | CDK + GBM .1498589
32 | CDK + GLM .3724793
33 | Extended + DNN1 .2230534
34 | Extended + DNN2 .220504
35 | Extended + DNN3 .2025835
36 | Extended + DNN4 .1089344
37 | Extended + DNNS5 505119
38 | Extended + RF .4555405
39 | Extended + GBM .1498589
40 | Extended + GLM .3724793
41 | AP + DNN1 (default) .4246078
42 | AP + DNN2 .4150098
43 | AP + DNN3 4606583
44 | AP + DNN4 .3413434
45 | AP + DNNS 3742727
46 | AP + RF 494816
47 | AP + GBM .3831628
48 | AP + GLM 4787031
49 | Sub + DNN1 (default) 3793974
50 | Sub + DNN2 .3491443
51 | Sub + DNN3 3132125
52 | Sub + DNN4 .2179004
53 | Sub + DNNS5 .2655871
54 | Sub + RF .4480489
55 | Sub + GBM 4497772
56 | Sub + GLM .450233
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57 | Estate + DNN1 (default) 0.3621

58 | Estate + DNN2 0.3775214
59 | Estate + DNN3 0.4585305
60 | Estate + DNN4 0.2531738
61 | Estate + DNNS5 0.3149532
62 | Estate + RF 0.4561216
63 | Estate + GBM 0.2974358
64 | Estate + GLM 0.4667689
65 | MACCS + DNN1 (default) 0.2418533
66 | MACCS + DNN2 0.235304
67 | MACCS + DNN3 0.1849032
68 | MACCS + DNN4 0.07807859
69 | MACCS + DNNS 0.5128929
70 | MACCS + RF 0.4293163
71 | MACCS + GBM 0.39979038
72 | MACCS + GLM 0.3989986

*red color indicates the best result
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Table 2. The performance of classifiers (mse) using 10-fold cross-validation

technique.

Model

No Fingerprint + Machine Learning Method MSE
1 | Combine + DNNI1 (default) 0.48404413
2 | Combine + DNN2 0.49436516
3 | Combine + DNN3 0.5023598
4 | Combine + DNN4 0.50643396
5 | Combine + DNNS5 0.4514478
6 | Combine + RF 0.42321494
7 | Combine + GBM 0.39837325
8 | Combine + GLM 0.4323252
9 | KR + DNN1 (default) 0.48404413
10 | KR + DNN2 0.48621503
11 | KR + DNN3 0.46792474
12 | KR + DNN4 0.5382593
13 | KR + DNNS5 0.50003135
14 | KR + RF 0.4173862
15 | KR + GBM 0.4144334
16 | KR + GLM 0.43971023
17 | PubChem + DNN1 (default) 0.4472546
18 | PubChem + DNN2 0.52192795
19 | PubChem + DNN3 0.46042094
20 | PubChem + DNN4 0.5767418
21 | PubChem + DNNS5 0.4764082
22 | PubChem + RF 0.40837318
23 | PubChem + GBM 0.39318013
24 | PubChem + GLM 0.4595151
25 | CDK + DNN1 (default) 0.49185374
26 | CDK + DNN2 0.54940474
27 | CDK + DNN3 0.49814865

180



28 | CDK + DNN4 5754862
29 | CDK + DNNS5 509189

30 | CDK + RF 4635254
31 | CDK + GBM .43289793
32 | CDK + GLM 4731141
33 | Extended + DNNI1 4707817
34 | Extended + DNN2 51699466
35 | Extended + DNN3 51963675
36 | Extended + DNN4 .64318633
37 | Extended + DNNS5 49146965
38 | Extended + RF 4361141
39 | Extended + GBM 41715953
40 | Extended + GLM .4461066
41 | AP + DNN1 (default) .5482254
42 | AP + DNN2 5460825
43 | AP + DNN3 57297605
44 | AP + DNN4 5734207
45 | AP + DNNS 52786994
46 | AP + RF 4963377
47 | AP + GBM 49641743
48 | AP + GLM 510474

49 | Sub + DNN1 (default) .54112405
50 | Sub + DNN2 .49989194
51 | Sub + DNN3 5515154
52 | Sub + DNN4 .53961086
53 | Sub + DNNS5 50628924
54 | Sub + RF 4541103
55 | Sub + GBM .4492355
56 | Sub + GLM 48457363
57 | Estate + DNN1 (default) .52493817
58 | Estate + DNN2 4919421
59 | Estate + DNN3 .58307207
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60 | Estate + DNN4 .5230969
61 | Estate + DNNS5 47620323
62 | Estate + RF .45589486
63 | Estate + GBM 45273414
64 | Estate + GLM 49563873
65 | MACCS + DNN1 (default) 5004864
66 | MACCS + DNN2 .485334

67 | MACCS + DNN3 501069

68 | MACCS + DNN4 5599283
69 | MACCS + DNNS 510386

70 | MACCS + RF .43273932
71 | MACCS + GBM .39979038
72 | MACCS + GLM 47322118

*red color indicates the best result
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Table 3. The performance of classifiers (accuracy) using all datasets as training.

Model

No Fingerprint + Machine Learning Method Accuracy (%)
1 | Combine + DNNI1 (default) 87.39002933
2 | Combine + DNN2 87.68328446
3 | Combine + DNN3 74.78005865
4 | Combine + DNN4 91.49560117
5 | Combine + DNNS5 83.28445748
6 | Combine + RF 57.771261
7 | Combine + GBM 94.42815249
8 | Combine + GLM 76.83284457
9 | KR + DNN1 (default) 80.64516129
10 | KR + DNN2 81.81818182
11 | KR + DNN3 81.81818182
12 | KR + DNN4 92.08211144
13 | KR + DNNS5 91.20234604
14 | KR + RF 54.25219941
15 | KR + GBM 88.56304985
16 | KR + GLM 70.08797654
17 | PubChem + DNN1 (default) 80.93841642
18 | PubChem + DNN2 81.81818182
19 | PubChem + DNN3 79.76539589
20 | PubChem + DNN4 91.20234604
21 | PubChem + DNNS5 90.32258065
22 | PubChem + RF 55.42521994
23 | PubChem + GBM 88.85630499
24 | PubChem + GLM 65.98240469
25 | CDK + DNN1 (default) 74.19354839
26 | CDK + DNN2 71.84750733
27 | CDK + DNN3 76.83284457
28 | CDK + DNN4 85.04398827
29 | CDK + DNNS5 90.32258065
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30 | CDK + RF 57.771261

31 | CDK + GBM 83.87096774
32 | CDK + GLM 66.27565982
33 | Extended + DNNI1 81.52492669
34 | Extended + DNN2 74.48680352
35 | Extended + DNN3 70.96774194
36 | Extended + DNN4 86.51026393
37 | Extended + DNNS5 83.28445748
38 | Extended + RF 52.78592375
39 | Extended + GBM 86.2170088
40 | Extended + GLM 68.62170088
41 | AP + DNN1 (default) 52.19941349
42 | AP + DNN2 53.07917889
43 | AP + DNN3 50.14662757
44 | AP + DNN4 59.53079179
45 | AP + DNNS 56.8914956
46 | AP + RF 49.5601173
47 | AP + GBM 59.53079179
48 | AP + GLM 52.78592375
49 | Sub + DNN1 (default) 60.11730205
50 | Sub + DNN2 61.58357771
51 | Sub + DNN3 65.39589443
52 | Sub + DNN4 73.90029326
53 | Sub + DNNS5 68.32844575
54 | Sub + RF 51.61290323
55 | Sub + GBM 68.32844575
56 | Sub + GLM 58.94428152
57 | Estate + DNN1 (default) 58.65102639
58 | Estate + DNN2 58.94428152
59 | Estate + DNN3 46.33431085
60 | Estate + DNN4 68.32844575
61 | Estate + DNNS5 65.1026393
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62 | Estate + RF 53.07917889
63 | Estate + GBM 66.86217009
64 | Estate + GLM 55.13196481
65 | MACCS + DNN1 (default) 71.84750733
66 | MACCS + DNN2 73.31378299
67 | MACCS + DNN3 77.12609971
68 | MACCS + DNN4 88.56304985
69 | MACCS + DNNS 87.39002933
70 | MACCS + RF 53.07917889
71 | MACCS + GBM 87.09677419
72 | MACCS + GLM 60.70381232

*red color indicates the best result
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Table 4. The performance of classifiers (accuracy) using 10-fold cross-validation

technique.

Model

No Fingerprint + Machine Learning Method Accuracy (%)
1 | Combine + DNNI1 (default) 48.920146
2 | Combine + DNN2 46.910718
3 | Combine + DNN3 47.205934
4 | Combine + DNN4 44.44432
5 | Combine + DNNS5 53.690916
6 | Combine + RF 57.95232
7 | Combine + GBM 57.67722
8 | Combine + GLM 58.666307
9 | KR + DNN1 (default) 52.468336
10 | KR + DNN2 47.317985
11 | KR + DNN3 50.685245
12 | KR + DNN4 40.425983
13 | KR + DNNS5 48.402813
14 | KR + RF 56.734097
15 | KR + GBM 53.760934
16 | KR + GLM 58.08204
17 | PubChem + DNN1 (default) 51.247895
18 | PubChem + DNN2 43.821302
19 | PubChem + DNN3 52.581054
20 | PubChem + DNN4 35.308698
21 | PubChem + DNNS5 49.682412
22 | PubChem + RF 57.811296
23 | PubChem + GBM 55.39983
24 | PubChem + GLM 56.47231
25 | CDK + DNN1 (default) 46.061528
26 | CDK + DNN2 40.97237
27 | CDK + DNN3 46.9928
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28 | CDK + DNN4 35.53523
29 | CDK + DNNS5 44.373882
30 | CDK + RF 52.278584
31 | CDK + GBM 51.450676
32 | CDK + GLM 51.86358
33 | Extended + DNNI1 46.061528
34 | Extended + DNN2 40.97237
35 | Extended + DNN3 46.9928
36 | Extended + DNN4 35.53523
37 | Extended + DNNS5 44.373882
38 | Extended + RF 52.278584
39 | Extended + GBM 51.450676
40 | Extended + GLM 51.86358
41 | AP + DNN1 (default) 39.69568
42 | AP + DNN2 39.742348
43 | AP + DNN3 40.6057
44 | AP + DNN4 41.487348
45 | AP + DNNS 42.50953
46 | AP + RF 50.130326
47 | AP + GBM 49.249876
48 | AP + GLM 51.675236
49 | Sub + DNN1 (default) 42.447615
50 | Sub + DNN2 44.32884
51 | Sub + DNN3 40.49191
52 | Sub + DNN4 39.712846
53 | Sub + DNNS5 44.513887
54 | Sub + RF 51.382804
55 | Sub + GBM 50.69634
56 | Sub + GLM 55.37688
57 | Estate + DNN1 (default) 43.221298
58 | Estate + DNN2 47.891808
59 | Estate + DNN3 37.531152
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60 | Estate + DNN4 42.794597
61 | Estate + DNNS5 48.037446
62 | Estate + RF 52.78824
63 | Estate + GBM 51.56761
64 | Estate + GLM 51.391643
65 | MACCS + DNN1 (default) 46.25236
66 | MACCS + DNN2 45.327207
67 | MACCS + DNN3 45.650625
68 | MACCS + DNN4 41.63565
69 | MACCS + DNNS 45.148638
70 | MACCS + RF 52.279365
71 | MACCS + GBM 56.29321
72 | MACCS + GLM 55.346507

*red color indicates the best result
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Appendix D

The source codes below were used to generate heatmap plot in Chapter 4.

R package : ChemmineR
source ("http://bioconductor.org/biocLite.R") # Sources the biocLite.R installation
script.

biocLite ("ChemmineR") # Installs the package.
library ("ChemmineR") # Loads the package
#setwd(".")

mywd <-=-"."

setwd (mywd)

library(gplots)
library(gclus) # for order.hclust
library (RColorBrewer)

options (expressions=10000)

par.margin <- function (margin="smart") {
if (margin=="smart") {

par (cex=0.8, mgp=c(2,1,0), xaxs="i",yaxs="1i", mar=c(3,3,2,1)+0.1)

if (margin=="narrow") {

par (cex=0.8, mgp=c(2,0.5,0), xaxs="i",yaxs="1i", mar=c(3,3,2,1)+0.1)
}
if (margin=="none") {

par (cex=0.8, mgp=c(0,0,0), xaxs="i",yaxs="i", mar=c(0,0,0,0))
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if (margin=="sqgrt") {

par (cex=0.8, mgp=c(0,0,0), =xaxs="i",yaxs="i", mar=c(3,3,3,3)+0.1)

optMatrix <-
function (ofname=FALSE,matl=mat,mysep=",",bcnames=TRUE, brnames=TRUE, brreverse=FAL
SE) {
fout <- file(ofname,"w")
if (bcnames==TRUE) {
if (brnames==TRUE) {
cnames <- "LABEL"
lelse{

cnames <- c ()

cnames <- c( cnames,dimnames (matl) [[2]] )
writeLines (paste(cnames), fout , sep=mysep)

writeLines ("", fout)

if (brreverse==FALSE) {
for(i in l:dim(matl) [1]) {
if (brnames==TRUE) {
rnames <- dimnames (matl) [[1]]

writelLines (paste(rnames[i]), fout, sep=mysep)

z <- matl[i,]

writeLines (paste(z), fout, sep=mysep)
writeLines ("", fout)
}
lelse/{

for(i in rev(l:dim(matl) [1])) {

if (brnames==TRUE) {
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rnames <- dimnames (matl) [[1]]

writeLines (paste(rnames[i]), fout, sep=mysep)

z <- matl[i,]
writeLines (paste(z), fout, sep=mysep)

writeLines ("", fout)

close (fout)

optHeatmap.2 <- function(ofname="test.csv",mat,hv=hv,mysep=mysep, ...){

res <- hvS$carpet

optMatrix (ofname=ofname,matl=t (res),mysep=mysep,bcnames=TRUE, brnames=TRUE, brreve

rse=TRUE)

return (res)

colorList <- function(r0=0,g0=1,b0=0,r1=0,g1=0,b1=0,num) {
1lst <= c{()
red =r0+(rl-r0)* (0:num)/num
green=g0+ (gl-g0) * (0:num) /num

blue =b0+ (bl-b0)* (0:num)/num

lst <- rgb(red=red,green=green, blue=blue)

return (lst)
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myColor <- function(mat,colmat,num=1000) {
if (FALSE) {
num <- 1000
mat <- matrix((-19:20)/20,nrow=4)
colmat <- matrix(0,ncol=8,nrow=4)
colmat([l,] <= ¢( O, 9, 9, 9, 0, 0, 1, 0)
colmat(2,] <- ¢(-1.2, 0, O, 1, O, 1, 1, 1)
colmat([(3,] <- ¢( O, 1, 1, 1, 1.2, 1, 0, 0)

colmat(4,] <= ¢( O, O, O, O, O, 9, 9, 9

ncolor <- dim(colmat) [1]
xmin <- min (mat,na.rm=TRUE)
xmax <- max (mat,na.rm=TRUE)

mattmp <-c ()

cat (xmin)

cat (xmax)

if (xmin<=colmat[2,1] && colmat[ncolor-1,5]<=xmax) {
mattmp <- matrix(0,ncol=8+1,nrow=ncolor)
al=xmin
al=colmat([2,1]
seg=floor (num* (al-a0) / (xmax-xmin) )
mattmp[l,] <- c( a0, colmat[l,6:8], al, colmat[l,6:8], seqg)
for(i in seqg(2,ncolor-1)) {
al=colmat([i,1]
al=colmat([i,5]
seg=floor (num* (al-a0) / (xmax-xmin) )
mattmp[i, ]=c(colmat[i, ], seq)
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a0=colmat[ncolor-1,5]
al=xmax
seg=floor (num* (al-a0) / (xmax-xmin) )
mattmp[ncolor,] <-c (a0, colmat[ncolor,2:4], al, colmat[ncolor,2:4],
segq)
#fprint ("col:casel™)
telse if (colmat[2,1]<=xmin && colmat[ncolor-1,5]<=xmax) {
mattmp <- matrix(0,ncol=8+1,nrow=ncolor-1)
for(i in seqg(2,ncolor-1)) {
al=colmat([i, 1]
al=colmat([i,5]
seg=floor (num* (al-a0)/ (xmax-colmat[2,1]))

mattmp[i-1, ]=c(colmat([i, ], seq)

a0=colmat[ncolor-1,5]
al=xmax
seg=floor (num* (al-a0)/ (xmax-colmat[2,1]))
mattmp[ncolor-1,] <- c( a0, colmat[ncolor,2:4], al,
colmat[ncolor,2:4], seqg)
#fprint ("col:case2™)
telse if (xmin<=colmat[2,1] && xmax<=colmat[ncolor-1,5]) {
mattmp <- matrix(0,ncol=8+1,nrow=ncolor-1)
al=xmin
al=colmat[2,1]
seg=floor (num* (al-a0)/ (colmat[ncolor-1,5]-xmin))
mattmp[l,] <- c( a0, colmat[l,6:8], al, colmat[l,6:8], seqg)
for(i in seqg(2,ncolor-1)) {
al=colmat([i, 1]
al=colmat([i,5]
seg=floor (num* (al-a0)/ (colmat[ncolor-1,5]-xmin))

mattmp[i, ]=c(colmat[i, ], seq)
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#fprint ("col:case3")
telse if(colmat[2,1]<=xmin && xmax<=colmat[ncolor-1,5]) {
mattmp <- matrix(0,ncol=8+1,nrow=ncolor-2)
for(i in seqg(2,ncolor-1)) {
al=colmat([i,1]
al=colmat([i,5]
seg=floor (num* (al-a0)/ (colmat[ncolor-1,5]-colmat([2,1]))

mattmp[i-1, ]=c(colmat([i, ], seq)

#fprint ("col:cased™)
lelse{

#fprint ("col:caseb")

#browser ()

numlist<-c ()

#numlist <- c(numlist,0)

for(i in seqg(l,dim(mattmp) [1],1)) {

if ((mattmp[i, 9])>0){
numlist<-c(numlist,colorList (

rO=mattmp([i, 2],
gO0=mattmp[i, 3],
bO=mattmp[i, 4],
rl=mattmp([i, 6],
gl=mattmpli, 7],
bl=mattmp[i, 8],

num=mattmp[i, 9]

#numlist

return (numlist)
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plotFigure <-
function(plotfunction,height=35/2.5,width=35/2.5,directory=".",filename="plotl",
dev="x11",openfile=TRUE,closefile=TRUE, mymargin="sqrt",...) {
if (openfile==TRUE) {
if (dev=="pdf") {
filename=paste (filename, " .pdf",sep="")

cat (filename, "\n")

# if(.Platform$0S.type =="windows") {

pdf (file=file.path(directory, filename),bg="white",height=height,width=wi

dth)

# par (family = "JapanlGothicBBB")
# }else if (capabilities("aqua")) {

#

quartz (file=file.path(directory, filename), type="pdf",
height=height,width=width) # ?P??2?2F?2C??2?°

# par (family="HiraKakuProN-W3")

pdf (file=file.path(directory, filename),bg="white",height=height,width=wi
dth)

par (family = "JapanlGothicBBB")

if (dev %in% c("jpeg","jpg")) {
filename=paste (filename,".jpg", sep="")
cat (filename, "\n")

jpeg(file=file.path(directory, filename))
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if (dev=="png") {
filename=paste (filename, ".png", sep="")
cat (filename, "\n")

png(file=file.path(directory, filename))

par.margin (margin=mymargin)

plotfunction(...)

if(closefile==TRUE) {
if(dev!="x11") {

dev.off ()

readMat <- function(directory=".",ifname="test.txt") {

## Read names at first to aboid converting the white space into the dot automatically

data <- read.delim(ifname,
header=F, sep="\t", row.names=1,as.is=c (TRUE, TRUE),strip.white=FALSE)
mat <- as.matrix (data)
colname <- mat[1l,]
mat <- mat[-c(1l),]

rowname <- rownames (mat)

## Read contents
data <- read.delim(ifname, header=T,sep="\t",row.names=1)
mat <- as.matrix (data)

colnames (mat) <- colname
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rownames (mat) <- rowname

cat (colnames (mat))

cat (rownames (mat) )

return (mat)

selectMat <-
function (threshl=FALSE, thresh2=FALSE, thresh4=FALSE, boptcsv=TRUE, ifname=NULL) {
if (threshl!=FALSE) {

matlimit <- c ()

vecrange <- apply(mat, 1, function(x) (max(x) - min(x)) )
idxVecUpper <- c()

idxVecUpper <- (l:length(vecrange)) [vecrange > threshl]

if (length (idxVecUpper)==0) {
mat <- mat

lelse{
matlimit <- mat[idxVecUpper, ]

mat <- matlimit

if (thresh2!=FALSE) {
vecrange2 <- apply(mat, 2, function(x) (max(x) - min(x)) )
idxVecUpper <- c()

idxVecUpper <- (l:length(vecrange2)) [vecrange2 > thresh2]

if (length (idxVecUpper)==0) {
mat <- mat

lelse{
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matlimit <- mat[,idxVecUpper]

mat <- c ()

mat <- matlimit

if (thresh4!=FALSE) {
vecrange4 <- apply(mat, 2, sum )
idxVecUpper <- c()
idxVecUpper <- (l:length(vecranged)) [vecranged4 > threshd]
if (length (idxVecUpper)==0) {
mat <- mat
lelse{
matlimit <- mat|[,idxVecUpper]

mat <- c ()

mat <- matlimit

output the matrix data of the target

if (boptcsv==TRUE) {
if (ifname==NULL) {
ofname<-"debug mat.txt"
lelse{
ofname <- ifname
ofname <- sub(".dat","",ofname)

ofname <-

sprintf ("%$s% _thresh04i %04i.tsv",ofname,floor (threshl), floor (thresh2))

}

optMatrix (ofname=ofname2,matl=mat,bcnames=TRUE,brnames=TRUE)

return (mat)
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myTitle <- function(ifname="test.txt",threshl=FALSE,thresh2=FALSE,thresh4=FALSE) {
#f-——mm set the title for the plot
if (threshl==FALSE) {
if (thresh2==FALSE) {
mytitle <- sprintf("%$s\n",ifname)
lelse{

mytitle <- sprintf("%$s: thresh2=%i\n",ifname, thresh2)

lelse{
if (thresh2==FALSE) {
mytitle <- sprintf("%$s: threshl=%i\n",ifname,threshl)
lelse{

mytitle <- sprintf("%$s: threshl=%i, thresh2=%i\n",ifname,threshl,thresh2)

return (mytitle)

heatmapPlot <- function (mat=mat,mycol=heat.colors(n=12),mytitle=NULL,
bboxplot=FALSE,bhist=FALSE, bopttsv=FALSE,boptheatmap=FALSE,
boptgroups=FALSE,
bsortRow=TRUE, bsortCol=TRUE, bnum=TRUE,
bdendRow=FALSE, bdendCol=FALSE,bAttachGroup=TRUE,
distmethod="manhattan", hclustmethod="ward.D2",
ncolhr=5,ncolhc=5,bshift=TRUE,

10=10,1i1=100,i2=20, ...

Fh——— attach the # of the degree to the names
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suml <- apply(mat,l,sum,na.rm=TRUE)
sum2 <- apply(mat,2,sum,na.rm=TRUE)

if (bnum==TRUE) {

dimnames (mat) [[1]]=paste(suml, dimnames (mat) [[1]])
dimnames (mat) [[2] ]=paste (sum2, dimnames (mat) [[2]])
}

Fh——— sort within the dendrogram by the degree

if (bsortRow==TRUE) {

mat <- mat[order (suml), ]

if (bsortCol==TRUE) {

mat <- mat/|[ ,order (sum2) ]

d _row<-dist( mat ,method=distmethod)
d col<-dist(t(mat),method=distmethod)

print (head(d_col))

Ff-——mm store original names of mat
rownamesorg <- rownames (mat)

colnamesorg <- colnames (mat)

mycolhc="white"
mycolhr="white"
dend="none"
Ff——m hclust
if (bdendRow==TRUE) {
hc _row<-hclust (d_row”2, method=hclustmethod)

e group row
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if (bAttachGroup==TRUE) {
1l <- seqg(i0,1il,by=1i2)
groups_row <- cutree (hc_row, k=1)
for(i in l:length(1l)) {
clr <- cutree(hc_row,k=1[1i])

hc rowS$labels <- paste(hc _row$labels,clr,sep="=")

F-——m set new names with clustering results
rownames (mat) <- hc_row$labels
F-——m sort within the dendrogram by the degree
if (bsortRow==TRUE) {

dd_row <- as.dendrogram(hc_row)

dd_row.reorder <- reorder (dd_row,order (suml))

iii <- order.dendrogram(dd_row.reorder)
jjj <- seqg(l,length(iii),2)
kkk <- iii[333]
if (bshift==TRUE) {
rownames (mat) [kkk] <-

paste (paste(rep(("-"),18),collapse=""),rownames (mat) [kkk])

rowv=dd_row.reorder
dend="row"
lelse{

rowv=NULL

## - set colors for the heatmap color bar
colorl<-colorRampPalette (brewer.pal (12,"Set3")) (ncolhr)

mycolhr <- colorl
mycolhr <- mycolhr[as.vector (cutree (hc_row, k=ncolhr))]
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lelse{
rowv=1l: (dim (mat) [2])

mycolhr=rep ("white",dim(mat) [1])

if (bdendCol==TRUE) {

print(d_col[is.na(d_col)])
hc _col<-hclust(d_col”2, method=hclustmethod)
F-——m group col
if (bAttachGroup==TRUE) {

1l <- seqg(i0,1il,by=1i2)

groups_col <- cutree(hc_col, k=1)

for(i in l:length(1l)) {

clc <- cutree(hc_col,k=1[1i])

hc colS$labels <- paste(hc col$labels,clc,sep="=")

F-——mm = set new names with clustering results

colnames (mat) <- hc_colslabels

F-——m sort within the dendrogram by the degree

if (bsortCol==TRUE) {
dd_col <- as.dendrogram(hc_col)

dd_col.reorder <- reorder (dd _col,order (sum2))

iii <- order.dendrogram(dd_col.reorder)
jjj <- seqg(l,length(iii),2)
kkk <- iii[333]
if (bshift==TRUE) {
colnames (mat) [kkk] <-

paste (colnames (mat) [kkk],paste(rep(("-"),20),collapse=""))
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colv=dd_col.reorder
dend="column"
lelse{

colv<-1:(dim(mat) [1]

## - set colors for the heatmap color bar

color2<-colorRampPalette (brewer.pal (12,"Set3")) (ncolhc)

mycolhc <- color?2

mycolhc <- mycolhc[as.vector (cutree (hc_col, k=ncolhc))]
lelse{

colv=NULL

mycolhc=rep ("white", length(d col))

if (bdendCol==TRUE && bdendRow==TRUE) {

dend="both"

# cat (head(mat[,1:5]))

# print("device=")

# dev.cur ()

# print("desu")
#fprint ("mycol=")
#print (summary (mycolhc))
#print (summary (mycolhr))

#fprint ("desu")

#h ——mm draw a heatmap

hv <- heatmap.2(mat, col=mycol,scale='none',
trace="'none',keysize=1.0,
density.info="none", key=TRUE,
dendrogram=dend,
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Colv=colv,Rowv=rowv,
ColSideColors=mycolhc, RowSideColors=mycolhr,
margin=c(12,12),cexCol=0.22,cexRow=0.22,

# add.expr = c(abline (h=seq(0.5,1000, 1),
v=seq(0.5,1000, 1),1lty=1,1lwd=0.1,col="'gray'),
# abline (h=seg(0.5,1000, 5),
v=seq(0.5,1000, 5),1lty=1,1wd=0.2,col="'black' ),
# abline (h=seq(0.5,1000,10),

v=seq(0.5,1000,10),1lty=1,1wd=0.5,col="black') ),

# add.expr = abline (h=seq(0.5,1000, 1), v=seq(0.5,1000,
1),1lty=1,1wd=0.05,col="gray"'),

#

## mat : matrix for clustering

## margin : the margins (see par (mar= *)) for column
and row names

## cexCol, cexRow: used as cex.axis in for the row
or column axis labeling.

## add.expr=abline() : horizontal and virtical

lines

#h ——mm output the data of heatmap
if (bopttsv==TRUE) {

optHeatmapToTsv (hv=hv, ifname=ifname, threshl=threshl, thresh2=thresh?2)

#h ——mm output the group data for heatmap
if (boptgroups==TRUE) {

# row

ofname <- ifname

ofname <- sub(".dat","",ofname)
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ofname <- sprintf ("%s_reac groups.tsv",ofname)

clr <= c()
for(i in l:length (1)) {
tmp <- cutree(hc _row,k=1[1i])

clr <- rbind(clr, tmp)

rownames (clr) <- 1

colnames (clr) <- rownamesorg

res <- optMatrix (ofname=ofname,matl=t (clr),mysep="\t",
bcnames=TRUE, brnames=TRUE, brreverse=TRUE)

# col

ofname <- ifname

ofname <- sub(".dat","",ofname)

ofname <- sprintf ("%s_comp groups.tsv",ofname)

clc <= c()
for(i in l:length (1)) {
tmp <- cutree(hc col,k=1[1i])

clc <- rbind(clc, tmp)

rownames (clc) <- 1

colnames (clc) <- colnamesorg

res <- optMatrix(ofname=ofname,matl=t (clc),mysep="\t",

bcnames=TRUE, brnames=TRUE, brreverse=TRUE)

optHeatmapToTsv <-
function (hv=hv, ifname=ifname, threshl=threshl, thresh2=thresh2,boptheatmap=TRUE) {
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if (boptheatmap==TRUE) {
ofname <- ifname
ofname <- sub(".dat","",ofname)
if (threshl==FALSE) {
if (thresh2==FALSE) {
ofname <- sprintf ("%s_heatmap.tsv",ofname)
lelse{

ofname <- sprintf ("%s_heatmap threshl %04i.tsv",ofname, floor (threshl))

lelse{
if (thresh2==FALSE) {
ofname <- sprintf ("%s_heatmap thresh2 %04i.tsv",ofname, floor (thresh2))
lelse/{
ofname <-
sprintf ("%$s_heatmap threshl %04i 2 %04i.tsv",ofname, floor (threshl), floor (thresh2

))

optHeatmap.2 (ofname=ofname, mat=mat, hv=hv,mysep="\t",brreverse=TRUE)

ofname <- "curry2"
threshl=FALSE
thresh2=FALSE
thresh4=FALSE

bhist=TRUE

Fh——— setting the color matrix for heatmap
colmat <- matrix(0,ncol=8,nrow=3)
colmat([1l,] <- c( 0, 9, 9, 9, o, 1, 1, 1)

colmat([2,] <- c( 0, 1, 1, 1, 1, 1, 0, 0)



colmat([3,] <- c( 0, i, 0, O, o, 9, 9, 9

ifname="curry2"

vocset <- read.SDFset ("voc_set.sdf")

view (vocset)

length (vocset)

#apvoc <- sdf2ap(vocset)

#sapply(cid(apvoc), function(x) cmp.similarity(apvoc[l], apvoc[x])) ## Run

cmp.similarity in loop as custom similarity search function

fpvoc <- fp2bit(vocset) # Convert base 64 encoded fingerprints to binary matrix

fpma <- as.matrix (fpvoc) # Converting a fingerprint database to a matrix

write.csv(fpma, "binarymatrix.csv", row.names=TRUE)
#fpSim(fpvoc[l], fpvoc[2]) # Pairwise compound structure comparisons
fpSim(fpvoc([1l], fpvoc, method="Tanimoto") #Similarity searching and returning

Tanimoto, Dice, Cosine, Tversky similarity coefficients:

#fpSim(fpvoc[l], fpvoc, method="Tversky", cutoff=0.4, top=4, alpha=0.5, beta=1l) #
Under method one can choose from several predefined similarity measures including
Tanimoto (default), Euclidean, Tversky or Dice

#fpSim(fpvoc[l], fpvoc, method="Tversky", alpha=0.7, beta=0.7)

#cosine <- function(a, b, ¢, d) c/sgrt(a*b) #Example for using a custom similarity
function:

#fpSim(fpvoc[l], fpvoc, method=cosine)

simMAT <- sapply(cid(fpvoc), function(x) fpSim(fpvoc([x], fpvoc, method="Tanimoto",
sorted=FALSE)) # Compute similarity matrix

write.csv (simMAT, "tanimotomatrix.csv", row.names=TRUE)

mat <- 1-simMAT

mycol <- myColor (mat,colmat)
mycol<-rev (heat.colors(12))
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if (threshl==FALSE && thresh2==FALSE && thresh4==FALSE) {
lelse{

mat <-

selectMat (threshl=FALSE, thresh2=FALSE, thresh4=FALSE,boptcsv=TRUE, ifname=1ifname)

Fh——— output the histgram of the mat

if (bhist==TRUE) hist (mat,nclass=100)

ifname="heat mapl"
ofname <- "heat mapl"

plotFigure (heatmapPlot,height=21/2.5,width=21/2.5,

mat=mat, filename=ofname,directory=mywd,dev="pdf",openfile=TRUE,closefile=TRUE,
xlab="",ylab="",main="",mycol=mycol,
bsortRow=TRUE, bsortCol=TRUE,
bdendRow=TRUE, bdendCol=TRUE, bAttachGroup=TRUE,

bopttsv=TRUE, mymargin="sqgrt",
bboxplot=FALSE,bhist=FALSE, boptheatmap=TRUE,10=11,11=11,12=5, bnum=TRUE,
ncolhr=50,ncolhc=50,bshift=TRUE,

distmethod="euclidean")

ifname="heat map2"
ofname <- "heat map2"

plotFigure (heatmapPlot,height=34/2.5,width=34/2.5,

mat=mat, filename=ofname,directory=mywd,dev="pdf",openfile=TRUE,closefile=TRUE,
xlab="",ylab="",main="",mycol=mycol,
bsortRow=TRUE, bsortCol=TRUE,
bdendRow=TRUE, bdendCol=TRUE,bAttachGroup=FALSE,

bopttsv=TRUE, mymargin="sqgrt",
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bboxplot=FALSE,bhist=FALSE,boptheatmap=TRUE,10=11,11=11,1i2=5,bnum=FALSE,
ncolhr=50,ncolhc=50,bshift=FALSE,

distmethod="euclidean")

# heatmapPlot (xlab="",ylab="",main="",mycol=mycol,
# bsortRow=TRUE,bsortCol=TRUE,

# bdendRow=TRUE, bdendCol=TRUE,

#

bboxplot=FALSE,bhist=FALSE,boptheatmap=TRUE, k_cutree=20,10=5,11=15,12=5,bnum=TRU
El

# distmethod="euclidean")
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