
NAIST-IS-DD1461012

Doctoral Dissertation

Disaster Response Systems using Distributed
Computing across Delay-Tolerant Networks

Edgar Marko Trono

March 12, 2017

Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of Engineering

Edgar Marko Trono

Thesis Committee:
Professor Keiichi Yasumoto (Supervisor)
Professor Shoji Kasahara (Co-supervisor)
Associate Professor Yutaka Arakawa (Co-supervisor)
Assistant Professor Hirohiko Suwa (Co-supervisor)
Assistant Professor Manato Fujimoto (Co-supervisor)

Disaster Response Systems using Distributed
Computing across Delay-Tolerant Networks∗

Edgar Marko Trono

Abstract

Disaster response teams perform many tasks during their operations including
mapping the disaster area and Family Tracing and Reunification (FTR). Respon-
ders can perform tasks more efficiently by using systems that can automatically
generate digital maps and locate missing persons. However, disasters can damage
network infrastructure, leaving the affected area without access to the Internet
and Cloud-based computing resources. In this study, we present the designs,
implementation, and evaluations of systems that aid responders in disaster area
mapping and FTR. Realizing these systems is challenging because they must be
able to (1) send and receive without continuous, end-to-end networks and (2)
handle heavy computing loads without access to Cloud-based resources. We ad-
dress these challenges by (1) using Delay-Tolerant Networks and data ferries for
communication and (2) distributing computing tasks to the available devices in
the disaster area. We show how our mapping and FTR systems work, including
functions for data collection and delivery, computing load balancing, and output
delivery. We found that the improvement in processing latency from load balanc-
ing offsets the communication latency. Our mapping system with load balancing
decreases the time needed to generate and deliver pieces of disaster area maps
by approximately 2 hours in cases where large amounts of data have to be pro-
cessed. The 2-hour reduction is a large benefit for disaster operations where the
speed of generation and arrival of information are critical. Furthermore, initial
evaluations of our FTR system show that it can execute accurate face recognition
in 7 seconds, thus it is capable of quickly handling the computing requirements
of FTR.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1461012, March 12, 2017.

i

Keywords:

Disaster Response, Delay-Tolerant Networks, Distributed Computing

ii

Contents

List of Figures vi

List of Tables 1

1 Introduction 2
1.1 Background and Motivation . 2
1.2 Problem Statements . 3
1.3 Organization of Dissertation . 5

2 Related Literature 6
2.1 Digital Pedestrian Map Inference 6
2.2 Family Tracing and Reunification 6
2.3 Face Recognition for FTR . 7
2.4 Disaster Information Delivery using DTNs 7
2.5 Multi-hop Networks for Disaster Scenarios 8
2.6 Disaster Scenario Mobility Models 9
2.7 Distributed Computing in DTNs 9

3 Disaster Response Scenario 11
3.1 Post-Disaster Scenario . 11
3.2 Disaster Response Operations . 11
3.3 Equipment and Resources . 12

4 Disaster Area Mapping Using Spatially-Distributed Computing
Nodes Across a DTN 15
4.1 Introduction . 15
4.2 Assumptions . 16

iii

4.3 System for Disaster Area Mapping 18
4.3.1 Trace Data Collection . 18
4.3.2 Communication using DTN 18
4.3.3 Pedestrian Map Generation 19

4.4 Evaluations and Discussion . 23
4.5 Summary . 27

5 Disaster Area Mapping using Computing Nodes with Load Bal-
ancing 31
5.1 Introduction . 31
5.2 Assumptions . 32
5.3 System Components . 33

5.3.1 Sensor Nodes . 33
5.3.2 Computing Nodes . 33
5.3.3 Communication Network 33
5.3.4 Data Ferries . 34

5.4 Map Inference and the Required Output 35
5.5 System Workflow . 35

5.5.1 Trace Data Collection . 35
5.5.2 Trace Data Delivery to Computing Nodes 36
5.5.3 Pedestrian Map Inference 38
5.5.4 Subgraph Delivery . 39

5.6 The Subgraph Inference and Delivery Problem 40
5.7 Challenges . 41
5.8 Solutions . 41

5.8.1 Distributed Map Inference 41
5.8.2 Long-Range Communication 42
5.8.3 Load balancing . 44

5.9 Implementation . 46
5.9.1 Trace Data Collection with DTN MapEx 46
5.9.2 Computing Node Map Inference Application 47
5.9.3 DTN Module . 48

5.10 Evaluating the Load-Balancing Heuristic 48
5.10.1 Disaster Area . 49

iv

5.10.2 Simulation Model and Parameters 50
5.10.3 Cases . 54
5.10.4 Simulation Sets . 55

5.11 Results and Discussion . 57
5.11.1 Simulation Set I: Effect of Ferry Density 57
5.11.2 Simulation Set II: Effect of Trace Data File Size 58
5.11.3 Simulation Set III: Effect of Trace Data File Density . . . 60

5.12 Summary . 62

6 The Milk Carton FTR System 65
6.1 Introduction . 65
6.2 Assumptions . 66

6.2.1 Target Scenario . 66
6.2.2 Equipment . 67
6.2.3 Response Team Vehicles 67

6.3 Milk Carton Components . 68
6.4 System Workflow . 68

6.4.1 Record Creation . 68
6.4.2 Query Creation . 69
6.4.3 Query Forwarding . 69
6.4.4 Finding and Returning Matches 70

6.5 Evaluations . 70
6.6 Summary . 77

7 Conclusions and Future Work 78
7.1 Summary . 78
7.2 Future Work . 79

References 81

Publication List 89

v

List of Figures

3.1 The post-disaster scenario. (a) A disaster has struck and (b) re-
sponders have deployed. (c) The area has been divided into sub-
sections. (d) Responders have established their rally points. (e)
Responders move from their rally point to perform tasks. (f) Re-
sponse vehicles patrol the area (g) following their routes. (h) Re-
sponders return to their rally point after performing tasks. (i) The
Response Commander manages all operations. 14

4.1 The target area. The dashed blue lines mark the subsection bor-
ders, and the red crosses represent Rally Points. The BoO is in
the center subsection. 17

4.2 The Map Module of DTN MapEx. The output map is displayed as
a weighted, directed graph where the edges are the paths, nodes are
the corners and intersections, and weights are the average walking
speeds along the edges. A sample output map is overlaid on a map
tile. 21

4.3 Subsection map generation process. Data are collected by Sensor
Nodes and are opportunistically routed to the Computing Node
in the Rally Point. The Computing Node generates the subsec-
tion map from received data and routes it to Evacuee Node. In
this work, the system is currently only using GPS and velocity
traces. Future work will integrate PoI information collection and
photographic functions. 22

vi

4.4 The time sequence diagram of the wo case. (1) Sensor Nodes send
their collected GPS data files to an Evacuee via the DTN. (2) The
received data files enter the queue of the Evacuee’s smartphone.
(3) The smartphone executes the map inference algorithm. (4)
The evacuee receives the map after all data files are processed. . . 24

4.5 The time sequence diagram of the ws case. (1) Sensor Nodes send
their collected GPS data files to the Computing Node via the DTN.
(2) The received data files enter the Computing Node’s queue. (3)
The Computing Node executes the map inference algorithm. (4)
The generated map is sent to the Evacuee via the DTN. 25

4.6 Average Map Inference Algorithm execution speeds (in KB/s) of
the MacBook Pro Computing Node and the Samsung Galaxy 4, LG
Nexus 4, and LG Nexus 5 mobile devices. The Computing Node
executed the inference algorithm approximately 45 times faster
than the mobile devices. 28

4.7 DTN performance for i ∈ 10, 50, 100 nodes are shown in CDF a),
b), and c) respectively. The delivery latencies for 20, 100, and 500
KB bundle sizes were measured. DTN had c = 1, e = 1, and p = 2
nodes. Other parameters: s and e buffer size = 16 GB, c buffer
size = 500 GB; simulation time t = 24, 000 sec. 29

4.8 The mean Mapping Times T
ws
mp (top) and T

wo
mp (bottom). csp = 45

KB/s and esp = 1 KB/s. tlat
i and tlat

mp values were randomly picked
from the DTN performance simulation results, tgen

i = rand(1800, 3600),
and 9 scenarios (i.e. combinations of N ∈ {10, 50, 100} nodes and
di ∈ {20, 100, 500} KB) were executed 1000 times each. 30

5.1 The system workflow. In each subsection, responders collect trace
data while performing tasks (a). They send their collected trace
data to the Computing Node in their rally point via epidemic rout-
ing (b). The Computing Nodes infer maps from received data (c),
and outputs are forwarded to the RC by data ferries (d). 34

5.2 The DTN MapEx application’s GPS Trace Logger (left) and sam-
ple trace data overlaid on precached map tiles (right). 47

vii

5.3 The Computing Node Java application accepts .CSV files contain-
ing trace data sets and executes a map inference algorithm to gen-
erate subgraphs. 48

5.4 (a) Map tiles/background images. (b) Raw GPS trace data. (c)
Output map composed of subgraphs. The output subgraphs are
overlaid on the map tiles. Edges of the subgraphs are color-coded
based on their average walking speeds (i.e. cooler colors mean
slower speeds, warmer colors mean faster speeds). 49

5.5 The IBR-DTN daemon (left) and the DTN Module (right). 50
5.6 The disaster area in Marikina City, Philippines. The locations of

Rally Points and the IDs of their corresponding Computing Nodes
are shown. 51

5.7 The CN clustering for Decentralized + Load Balancing. 52
5.8 CDF curves showing the effect of ferry density on the subgraph

delivery times of the (a) Centralized and (b) Decentralized cases. . 57
5.9 CDF Comparison of the Centralized and Decentralized cases when

Dsz = 500 KB and Ferry Density = 10. 58
5.10 CDF curves showing the effect of trace data file size on the sub-

graph delivery times of the (a) Centralized and (b) Decentralized
cases. 59

5.11 CDF Comparison of the Centralized and Decentralized cases when
(a) Dsz = 750 KB and (b) Dsz = 1000 KB, while Ferry Density
= 10. 59

5.12 CDF curves showing the effect of trace data file density on the
subgraph delivery times of the (a) Centralized, (b) Decentralized,
and (c) Decentralized + Load Balancing cases. 63

5.13 CDF Comparison of Centralized, Decentralized, and Decentralized
+ Load Balancing for an extreme case when trace data file density
in Subsection 1 = 6,000, Dsz = 500 KB, and Ferry Density = 10. . 64

6.1 Milk Carton Application: (a) Query Creation (b) Record Creation
(c) Possible Matches . 66

6.2 Milk Carton Workflow Diagram 67
6.3 Samples from the Extended Yale Database B 72

viii

6.4 Samples from the UBI database 72
6.5 Mean execution time of the Eigenfaces face recognition algorithm

for 20 x 20 pixel image dimensions and different face database size 73
6.6 Mean execution time of the Eigenfaces face recognition algorithm

for 50 x 50 pixel image dimensions and different face database size 73
6.7 Mean execution time of the Eigenfaces face recognition algorithm

for 100 x 100 pixel image dimensions and different face database size 74
6.8 Milk Carton’s face recognition accuracy for the Extended Yale

Database B at photo resolutions of (a) 25 x 25, (b) 50 x 50, and (c)
100 x 100 pixels. The number of eigenfaces used and the number
of unique photos (i.e. samples) per person were varied. 75

6.9 Milk Carton’s face recognition accuracy for the Extended Yale
Database B at photo resolutions of (a) 25 x 25, (b) 50 x 50, and (c)
100 x 100 pixels. The number of eigenfaces used and the number
of unique photos (i.e. samples) per person were varied. 76

ix

List of Tables

5.1 Variable definitions . 36
5.2 Travel time (ΔTferry) in seconds between two rally points with the

corresponding IDs. 53
5.3 The simulation parameters used for evaluations. 55

6.1 Accuracy Evaluation Parameters 71

1

1 Introduction

1.1 Background and Motivation

In recent years, natural disasters have been occurring more frequently. In 2010,
a magnitude 7.0 earthquake struck Haiti, causing more than 200,000 fatalities
and causing 1.5 million people to move to evacuation camps at its peak. In 2013,
Typhoon Haiyan hit the Philippines, displacing approximately 600,000 people.
Most recently in 2016, a series of earthquakes struck the Kumamoto prefecture
of Japan, and more than 44,000 people had to be evacuated.

In the immediate aftermath of such disasters, local governments and civilian
volunteers commence disaster response operations, which include a variety of
tasks. One such task is disaster area mapping. After the disaster strikes, the
layout of the affected areas drastically change. Many roads and thoroughfares
become impassable because they are damaged or flooded. Buildings and infras-
tructure collapse and become unrecognizable. Because of the altered landscape,
generating maps of the affected areas becomes an integral step in response op-
erations. The generated maps aid in operations by guiding evacuees through
unfamiliar and hazardous terrain to safe refuges and by providing the response
team leaders with information that help in their decision-making.

However, disasters can interrupt or totally destroy communication infrastruc-
tures [42]. Commonly-used end-to-end communication networks (i.e. the Inter-
net) become unavailable, which renders the Cloud-based resources and services,
which are required by current mapping systems to store data and generate maps,
inaccessible. Because of this, response teams are limited to sketching and using
paper maps which are, unlike their digital counterparts, difficult to disseminate
and replicate. Also, paper maps cannot be used to calculate the fastest routes, for
instance, from a responder’s current location to a point-of-interest in the area.

2

Furthermore, digital maps can use a least-cost path algorithm (e.g. Dijkstra’s
algorithm) to calculate such paths.

Another task that disaster response teams perform is Family Tracing and Re-
unification (FTR). During response and evacuation operations, many families
become separated. Relatives end up in different shelters or get lost. FTR is the
process by which these separated families are reunited. During the FTR process,
separated persons are placed in the care of response teams, which then proactively
search for their families or guardians.

Similar to disaster area mapping, the FTR process is limited by the lack of
network infrastructures. Digital FTR systems require Cloud-based resources for
storing and processing large amounts of evacuee data [57]. These resources how-
ever, are inaccessible in disaster areas. Moreover, while traditional methods can
expedite the process, they rely on paper-based registries and notice boards, which
cannot be easily disseminated nor automatically match missing family member
queries with existing records. Also, FTR systems require personal information,
which some registrants, such as children, the elderly, or People with Disabilities
(PWDs), may be unable to provide [21].

While in recent years, smartphones have become more ubiquitous and have
improved in terms of computing power, they still may not be able to handle the
heavy computing load of disaster area mapping and FTR systems.

The aforementioned limitations to the current methods of mapping and FTR
during disaster response operations serve as motivation for this research. In this
work, we aim to realize digital applications that aid the disaster area map gen-
eration and FTR processes. We address various technical challenges to realizing
our applications and evaluate our proposed solutions using simulations and ex-
periments.

1.2 Problem Statements

The shortcomings of current methods of disaster area mapping and FTR moti-
vated us to answer the following problems in this thesis:

1. "How can we realize a digital mapping system that functions in a
disaster area without continuous, end-to-end communication in-

3

frastructures?" Our goal in answering this problem to satisfy the com-
puting and communication requirements of a digital mapping system. (1)
The system must have functionality that collects the required data to gen-
erate the map. (2) It must be able to handle the execution a map inference
algorithm to process large amounts of data to generate the map, without
access to Cloud-based computing resources. Finally (3), the system must
have a means of data propagation without requiring continuous, end-to-end
communication networks.

We solve this problem by presenting a system that enables responders in the
disaster area to collect data using their smartphones. Then, the system uses
the available computing devices in the area to process the collected data,
on-site, to generate the map. Finally, the system uses a Delay-Tolerant
Network (DTN) of smartphones and leverages response vehicles as data
ferries to communicate without network infrastructure.

2. The second research problem we ask is, "How can we realize a digital
FTR system that can be used in a disaster scenario?" Our goal
here, similar to that in problem 1, is to satisfy the requirements of a digital
FTR system. (1) First, the system must be able to handle the storage and
computing requirements of the FTR process. It must be able to store and
process large amounts of records from many evacuees and missing persons.
(2) Then, the system must also be able to disseminate data without the
Internet. (3) Finally, the system must also be able to find or match missing
persons without requiring text-based personal information.

We solve the problem by building on the architecture of the digital mapping
system. (1) Our system uses the available computing devices in the disaster
area to store and process evacuee records on-site. (2) To communicate
and disseminate queries for missing people, our system leverages response
vehicles as data ferries. (3) Finally, our system uses face recognition to find
missing persons when text-based information is unavailable.

4

1.3 Organization of Dissertation

The rest of this dissertation is organized as follows: we present a review of related
literature in Chapter 2. Then, we explain our target disaster scenario in Chapter
3. In Chapter 4, we present our initial designs and evaluations for a digital
mapping system that works for small subsections of a disaster area and delivers
maps to evacuees. In Chapter 5, we improve our disaster mapping system by
adding a load balancing algorithm to enable it to process larger amounts of data
from bigger disaster areas. We evaluate the system further using experiments
and simulations. In Chapter 6, we present the designs and evaluations of an FTR
system that uses concepts from the mapping system in Chapters 3 and 4. Finally,
we present our conclusions in Chapter 7.

5

2 Related Literature

In this chapter, we present a review of studies and discuss the concepts related
to our research.

2.1 Digital Pedestrian Map Inference

Many studies have proposed algorithms for converting raw GPS traces to digital
maps [44] [28] [61]. They require trace data to be collected for long durations
of time by a moving vehicle or pedestrian. However, time is a limited resource
in disaster response operations and a faster method of data collection is needed.
Blanke et al [8] proposed a crowd-sourced method of collecting trace data during
short-term, city-scale events such as festivals or disasters. Their system however,
requires that the collected trace data be uploaded to a server for processing. In
our study, we consider the scenario where such Cloud-based computing resources
are unavailable.

2.2 Family Tracing and Reunification

During disaster evacuation, some families get separated, with members ending up
in different evacuation centers. Response teams reunite families via the FTR pro-
cess outlined in [21]. Response teams first identify separated persons (e.g. found
in evacuation centers) who have not been claimed by any family or guardians.
When a separated person is identified, responders create a record containing per-
sonal information, such as the person’s name, guardians, present location, and
photo. Records are often created by filling out paper forms. Families looking
for separated relatives report their missing relative to response teams, and give a
query containing the separated person’s information and photos.

6

Next, the responders proactively search for the separated person’s family or
guardian. They compare records of separated persons with queries and look for
possible matches. Once a match is found and verified, the family is reunited.

To aid FTR, responders commonly use notice boards that show the photos and
personal information of separated people. However, paper-based documentation
and notice boards cannot efficiently be disseminated nor can they automatically
find matches. While digital FTR systems such as RapidFTR [57] exist, they
require the Internet and cloud-based resources. In this study, we propose methods
that do not rely on cloud resources because they may be unavailable during
disasters.

2.3 Face Recognition for FTR

There may be cases where separated persons cannot provide personal informa-
tion (e.g. very young children or the disabled). Thus, the system we propose
in this study uses face recognition to match queries for missing family members
with existing records. In our implementation, we use JavaFaces∗ implementa-
tion of the Eigenfaces method [55]. The implementation requires a face image
input and compares it with a database of face images (of the same dimensions).
The database image with the least distance from the input face (and within a
user-defined similarity threshold) is returned as a possible match. Eigenfaces is
often used as a baseline method. A characteristic of Eigenfaces is that it reduces
computation by representing faces with a small number of coefficients, which is
suitable in disaster scenarios where cloud-based computing resources are unavail-
able.

2.4 Disaster Information Delivery using DTNs

Information delivery is critical during disaster response [5]. However, disasters
can destroy network infrastructure, leaving the area without end-to-end commu-
nication networks. Because of this, many studies have proposed using Oppor-
tunistic and Delay-Tolerant Networks (DTNs) [17]. Pelussi et al [35] surveyed

∗https://code.google.com/archive/p/javafaces/

7

opportunistic networks that were deployed in actual scenarios and discuss dif-
ferent routing techniques. In [30], the performance during disaster situations of
opportunistic routing protocols were analyzed. DistressNet [19] [11] [10] is an ad
hoc wireless sensor network architecture that provides data collection services in
disaster scenarios. Fujihara and Miwa proposed an evacuation guidance service
using opportunistic networks [18]. In [1], Kikuchi and Shibata proposed a disas-
ter information system that could handle server group failures using mobile cloud
computing. Fajardo et al proposed an aggregation method to minimize delays
in data delivery [16]. These studies improve data collection in disaster sites by
reducing delivery latency. Our system differs because it considers scenarios where
not only fast delivery is required. Our study also considers how the computing
requirements of map inference and FTR can be satisfied without Cloud-based
computing resources.

2.5 Multi-hop Networks for Disaster Scenarios

In addition to the DTN-based systems in Section 2.4, many studies have lever-
aged multi-hop ad hoc networks for communication in disaster scenarios. Reina
et al conducted surveys on multihop networks that can be used for disaster re-
sponse [37] [38]. These infrastructureless networks define multi-hop routes be-
tween their nodes. They described ad hoc network paradigms, such as Mobile
Ad Hoc Networks (MANETs) and Vehicular Ad Hoc Networks (VANETs), and
reviewed the existing work under each. In [37], the authors noted that works on
MANET-based disaster communication mainly compare different routing proto-
cols. The studies in [40] and [39] evaluated well-known MANET routing methods
and found that the Ad hoc On-demand Distance Vector (AODV) protocol [36]
was the most suited for disaster scenarios. [13] presented a survey of existing
MANETS. The authors presented lessons learned from previous research success-
ful paradigms that evolved from MANETs. [26] and [23] presented the architec-
ture of a MANET-based communication system called P2Pnet that uses personal
computers to support large numbers of responders. The study in [50] proposed
a VANET-based system called RescueMe that aids in rescue operations and ad-
dresses the security and privacy issues of the network. Nishiyama et al presented a

8

prototype of relay-by-smartphone, a system that uses multihop, device-to-device
communication during disasters [32]. While most of existing multi-hop networks
for disasters focus on efficient message delivery, our study differs because we pro-
pose how to handle computing tasks (i.e. pedestrian map inference and FTR) in
a disaster scenario.

2.6 Disaster Scenario Mobility Models

Many studies have proposed mobility models that have been used to evaluate
DTN systems [46]. However, most models are random models, such as the Lévy
Walk [41] and the Random Waypoint Mobility model [24]. During disaster sce-
narios, humans move according to their purposes or objectives. Aschenbruck et al
proposed a mobility model that represents the behavior of humans in a realistic
disaster area [4]. Their study considers factors that influence the performance
of communication networks in disaster scenarios such as node movement across
different areas and obstacles. Nelson et al proposed a role-based disaster mobility
model and showed how it created a different network topology than the random
walk mobility model [31]. Similarly, Uddin et al. proposed the Post-Disaster
Mobility (PDM) model [56], which emulates the role-based behavior of humans
during disaster scenarios (i.e. responders move between targets and coordination
centers) and the effects of the disaster on the map topography. They compare
the PDM to the Random MapPoint Model and show the effects of the mobility
on DTN performance. In this study, we use movement patterns from the PDM
model in simulations to model the behavior of responders.

2.7 Distributed Computing in DTNs

The concept of opportunistic computing, where users leverage the available com-
puting resources in the environment has been presented in [14] and [15]. In our
study, we propose a system that uses available resources in a disaster area, and
uses a load-balancing heuristic to distribute computing tasks to these resources.
The study most related to ours is the Serendipity system [48] [47], in which nodes
distribute computing tasks to remote mobile-devices. Our system differs because

9

whereas the Serendipity uses random-walk mobility models (e.g. Lévy Walk and
Random Waypoint) and applications such as speech-to-text, our study considers
the elements of disaster response scenarios: the mobility patterns of responders
and vehicles, the equipment, and map inference and FTR applications for re-
sponse operations.

10

3 Disaster Response Scenario

In this chapter, we define the post-disaster scenario, response operations, and
available equipment and resources. Figure 3.1 shows a diagram of the scenario.

3.1 Post-Disaster Scenario

Our system targets the first 6 to 72 hours after a disaster strikes city (Figure
3.1a). Response teams have deployed and have started their emergency response
operations (e.g. search and rescue and initial assessment). Some paths in the
area have been rendered impassable (e.g. due to flooding or structural collapse).
Communication infrastructures such as cell sites have been damaged, leaving
the area without the Internet. These network infrastructures have not yet been
repaired.

Response teams (Figure 3.1b) have deployed to the disaster area. Based on
the guidelines in [22], the disaster area has been divided into subsections (Figure
3.1c), each with its assigned response team. Each response team has established
a rally point in its subsection (Figure 3.1d) where they setup equipment and
rendezvous for meetings. Rally points are structures such as school buildings or
local government offices, which are selected based on prior planning. The response
commander manages all operations from a rally point.

3.2 Disaster Response Operations

After establishing a rally point, responders start operations in their subsection.
They perform tasks such as exploring, searching for and rescuing victims, assess-
ing damages, and looking for resources (Figure 3.1e). They move, often on foot,
to perform tasks, and then return to their rally point and wait for new tasks.

11

This pattern is typical of response teams and has been modeled in the PDM
model [56].

Some responders patrol the area in vehicles (Figure 3.1f), following planned
routes and passing by rally points to relay information or share equipment be-
tween response teams. Routes are assigned by leaders, and are changed upon
receiving new orders (Figure 3.1g). We note that the routes shown in Figure 3.1
are an abstraction. In actual operations, passable roads are used.

The response teams create maps of their subsections. After performing a task,
responders return to their rally point and update their subsection’s map with
information collected during their task (Figure 3.1h). Maps show paths and
points-of-interest such as victim locations and collapsed structures. Maps are
shared with the response commander to aid in decision-making (Figure 3.1i).

3.3 Equipment and Resources

Response teams can access the following inventory:

1. Rally Points - Rally points have electricity, and in case power has been
cut, have backup fuel generators or solar panels. Response teams have
computer workstations (e.g. laptops) in the rally points. We assume these
workstations to have short-range wireless interfaces (e.g. Bluetooth or Wi-
Fi), a minimum storage capacity of 250 GB, and CPUs within the 2.0 GHz
to 3.0 GHz range.

2. Transportation - For short-range movements within their subsections, re-
sponse teams move on foot. For long-range movements across subsections,
they ride vehicles.

3. Responders - We assume, as part of their inventory, responders have smart-
phones that have short-range wireless interfaces (e.g. Bluetooth, Wi-Fi, and
Wi-Fi Direct) and sufficient storage capacities (i.e. 16 GB of free storage
at the minimum). Responders recharge their smartphone batteries while at
rally points or in response vehicles.

12

4. Communication - With the damaged network infrastructure, communica-
tion between the devices of response team members are limited to their
built-in short-range wireless interfaces (e.g. Wi-Fi or Wi-Fi Direct).

13

a.  Disaster area
b.  Responder
c.  Subsection
d.  Rally point

e.  Responder moving to task
f.  Response vehicle
g.  Vehicle route
h.  Reporting and mapping
i.  Response Commander

Figure 3.1: The post-disaster scenario. (a) A disaster has struck and (b) re-
sponders have deployed. (c) The area has been divided into subsections. (d)
Responders have established their rally points. (e) Responders move from their
rally point to perform tasks. (f) Response vehicles patrol the area (g) following
their routes. (h) Responders return to their rally point after performing tasks.
(i) The Response Commander manages all operations.

14

4 Disaster Area Mapping Using
Spatially-Distributed
Computing Nodes Across a
DTN

4.1 Introduction

In this chapter, we present the initial designs of a system that generates digital
disaster area pedestrian maps and delivers them to evacuees looking for a safe
refuge.

Current mapping methods include creating paper-based maps that are difficult
to replicate and share, and cannot calculate the fastest routes between locations.
Also, without the Internet, Cloud-based mapping services are inaccessible.

The main challenges to realizing a system that addresses these shortcomings
are (1) how the raw data required to generate the map are collected, (2) how
data are transmitted without continuous, end-to-end networks, and (3) how to
handle the heavy computing load of map generation without access to Cloud-
based computing resources or services.

To solve these challenges, (1) we implemented an Android application called
DTN MapEx that responders use to collect the required GPS traces to generate
the map. (2) The system establishes a DTN of smartphones that uses epidemic
routing to deliver data. (3) The collected raw trace data are sent to Computing
Nodes, which are workstations that are deployed in the area,to infer the map.

We evaluate our system using experiments and simulations and compare cases
when map inference is performed by smartphones against cases where stronger

15

computing devices that are available in the disaster area are used. We show that,
even though smartphones may be available in the area, using them to generate the
map is not efficient, and results to high latencies when large amounts of data have
to be processed. Additionally, we show that using stronger computing devices can
decrease the processing time of map inference enough to offset communication
delays.

In the rest of the chapter, we present the specific assumptions in the scenario
we are targeting, the design and workflow of our system, and our evaluations.

4.2 Assumptions

World Assumptions - Our target area is a 3 km x 3 km section of Marikina City,
Philippines. We assume that a typhoon disaster has hit the area. Our scenario
lasts for t = 24, 000 seconds. At the start of our scenario, the government agencies
in charge of disaster response have started operations. The target area has been
divided into n = 9 (1 km x 1 km) subsections. A Base of Operations (BoO)
has been established in the center subsection where the response team leader is
stationed. n Rally Points have been established, one in each subsection (the BoO
counts as a Rally Point). Rally Points are sites where response teams rendezvous
for coordination meetings and where evacuees take shelter (e.g. school buildings).
Figure 4.1 shows the target area.

Agent Assumptions - Agents in the scenario follow the mobility patterns de-
scribed in the PDM model [56]. At t = 0 seconds, the response teams divide
into sub-teams. Each sub-team is assigned to a subsection. The sub-teams move
to their respective Rally Points and perform tasks (e.g. exploring the subsec-
tion, assessing the area and responding to emergencies). After each task, the
sub-team members return to their Rally Point and wait for another task. The
response team also includes patrols: responders riding vehicles who move around
the target area, from subsection to subsection, and Rally Point to Rally Point. At
certain times, the team leader radios the sub-teams and patrols to return to the
BoO for a coordination meeting. After each coordination meeting, the sub-teams
return to their Rally Points and resume tasks.

We assume two types of civilians: volunteers and evacuees. Volunteers are

16

Figure 4.1: The target area. The dashed blue lines mark the subsection borders,
and the red crosses represent Rally Points. The BoO is in the center subsection.

people living in each subsection who are able to assist in response operations.
Volunteer mobility is similar to that of response sub-teams. Evacuees are people
living in the subsection who cannot help in response operations. They need a
map of their subsection to know where the Rally Point is so they can seek refuge.
Evacuees stay in their starting points (i.e. their homes) until they receive a map.

Equipment Assumptions - We assume that every response team member, vol-
unteer, evacuee, and patrol has a mobile device with storage, short-range wireless
connectivity (e.g. Bluetooth or Wi-Fi), and GPS location provider. There is no
continuous end-to-end wireless network in the target area. The power has been
cut, but each Rally Point has its power source (e.g. fuel-run generators or solar
cells). Each Rally Point also has commodity computing equipment that are more
powerful than mobile devices (e.g. the laptops of response teams). Finally, every
mobile device is assumed to have sufficient storage capacity for the data needed
to create the map (e.g. current devices are capable of storing up to 16 GB to 128

17

GB) and the computing devices in the Rally Point are assumed to have higher
storage capacity (e.g. 500 GB).

Output Requirements - The evacuees need a disaster map of their subsection
that shows a pedestrian path to follow to a Rally Point. The map must show
the network of roads and paths and the walking speeds along them, which can
be used to calculate a least-cost path to safe refuges.

4.3 System for Disaster Area Mapping

4.3.1 Trace Data Collection

The first step in map generation is collecting GPS trace data from the disaster
area. Our system achieves this by leveraging the mobility of humans described
in 4.2. In the system, all pedestrian response team members and volunteers in a
subsection comprise the set SN of i mobile Sensor Nodes. As each Sensor Node
walks around its subsection, its mobile device automatically collects GPS and
velocity traces. We implemented a prototype application called DTN MapEx [52]
for collecting trace data. DTN MapEx has a GPS module that logs the GPS and
velocity traces of the Sensor Nodes. We note that all roads in a disaster area
are not always covered. Some roads may be impassable and some areas may
not be critically damaged, so they are not prioritized for exploration. Disaster
response operations often prioritize the critically affected areas for assessment
and mapping. Our system can be used to map these priority areas first, and then
the other low-priority areas if required.

4.3.2 Communication using DTN

Mobile Devices as DTN Nodes - The system uses mobile devices and their built-
in short-range wireless communication interfaces (i.e. Bluetooth or Wi-Fi) to
establish a DTN. The DTN is composed of the following nodes: N Sensor
Nodes SN = {s0, s1, ..., sN}; Patrol Nodes PN = {p0, p1, ...}, which function as
data mules [45] while they move from one area to another; Evacuee Nodes
EN = {e0, e1, ...}, which are the destination nodes of the generated maps; and
stationary Computing Nodes CN = {c0, c1, ...}, which will be discussed later.

18

Post-Disaster Mobility Model - All Sensor and Patrol Nodes follow the mobility
patterns in the PDM model. Sensor Nodes follow the Event-Driven pattern,
where they move from a Rally Point to a location in the subsection to make an
assessment or respond to an emergency. Patrol Nodes follow the Cyclic Route
and Center-to-Center patterns where they move from one Rally Point or one
subsection to another. They also follow the Converge-Move pattern where they
move towards the BoO for coordination meetings. Evacuee Nodes begin at an
initial location (i.e. their homes), where they remain until they receive a map. At
which point, they follow the map and move towards the Rally Point. Computing
Nodes are stationary nodes that are deployed in each Rally Point and remain
there until operations cease. Algorithm 1 shows the mobilities of Sensor and
Patrol Nodes.

Epidemic Routing - Nodes in the system share DTN bundles using Epidemic
Routing, a flooding protocol where bundles are replicated in all encountered nodes
[58]. The system uses Epidemic Routing because of its good delivery ratio when
node buffers are not congested [30]. In our initial evaluations, we use Epidemic
Routing as a baseline with the assumption that nodes have sufficient buffer size
to avoid flooding. In real disaster scenarios flooding is possible, thus we will
evaluate the performance of other routing protocols in future work.

Implementation with IBR-DTN - As a proof of concept, the DTN MapEx
application has a DTN Module, which uses the IBR-DTN implementation of the
Bundle Protocol on Android [43]. The DTN module uses the IBR-DTN daemon
to manage routing and neighbor discovery. The module shares data using Wi-Fi
and Wi-Fi Direct.

4.3.3 Pedestrian Map Generation

The final step in map generation is processing the collected data into a map.
Pedestrian Map Inference - To generate a map from the GPS and velocity

traces, we implemented a modified version of the map inference algorithm in [8].
This method was chosen because it was made for short-term, city-scale events
like festivals or disasters. We added velocity information by getting the average
velocity of the traces belonging to an edge. The output is a weighted, directed
graph where the edges represent pedestrian paths, the nodes are intersections and

19

Algorithm 1 Sensor and Patrol Node Mobility
if t = 0 seconds then

Response Team Sensor Nodes initialize in BoO
Volunteer Sensor Nodes initialize in Random Building
Sensor Nodes move to assigned Rally Point
Patrol Nodes initialize in BoO
Patrol Nodes move to random Rally Point or subsection
Wait rand(600, 1800) seconds for a task

end if
while t < 10000 or 10000 < t < 20000 seconds do

Sensor Nodes move to random location in subsection
Sensor Nodes perform task for rand(600, 1800) seconds
Sensor Nodes return to Rally Point and wait for next task
Patrol Nodes move to random Rally Point or subsection

end while
if t = 10000 seconds then

// Coordination Meeting is Called
Response Team Sensor Nodes return to BoO
Volunteer Sensor Nodes return to Rally Point
Patrol Nodes move to BoO
Wait rand(600, 1800) seconds to finish meeting

else {t = 20000 seconds}
// Return to Base
Response Team Sensor Nodes return to BoO
Volunteer Sensor Nodes return to assigned Rally Point
Patrol Nodes return to BoO
Wait until t = 24000 //End of operations

end if

corners, and the weights are the average speeds along the edges. DTN MapEx has
a Map Module that runs this algorithm. The edges of the output map are color-
coded, where warmer colors represent velocities v > 5 km/h and cooler colors
represent v � 5 km/h. Figure 4.2 shows a sample output of the Map Module of

20

Figure 4.2: The Map Module of DTN MapEx. The output map is displayed as
a weighted, directed graph where the edges are the paths, nodes are the corners
and intersections, and weights are the average walking speeds along the edges. A
sample output map is overlaid on a map tile.

DTN MapEx overlaid on the actual map tile.
Spatial Distribution of Computing Nodes - Although the computing capability

of mobile devices has been improving, a single mobile device may still not be
enough to efficiently (i.e. time-wise) perform map inference. As such, we in-
troduce Computing Nodes to our system, which are commodity computers with
more computing power than mobile devices (e.g. laptops). A Computing Node
is deployed in each Rally Point (e.g. the laptops of response teams). Each Com-
puting Node generates the map of its subsection. Sensor Nodes opportunistically
route their collected data to the Computing Node of their subsection. When a
Computing Node receives data, it executes the pedestrian map inference algo-
rithm, and aggregates it with previous data. The generated map is then routed
to Evacuee Nodes. Figure 4.6 shows how the system generates subsection maps.

21

Figure 4.3: Subsection map generation process. Data are collected by Sensor
Nodes and are opportunistically routed to the Computing Node in the Rally
Point. The Computing Node generates the subsection map from received data
and routes it to Evacuee Node. In this work, the system is currently only using
GPS and velocity traces. Future work will integrate PoI information collection
and photographic functions.

It must be noted that while Evacuee Nodes require the subsection maps, the re-
sponse teams may need maps with different types of information (e.g. PoIs and
assessment information), and team leaders may only need summary information
about the entire area. In future work, we will address how PoI information can
be added to the subsection maps and how these can be aggregated. We will also
study the effects of adding more Computing Nodes to generate maps with varying
information granularity (i.e. responders need more detailed maps).

22

4.4 Evaluations and Discussion

We evaluate our system using the Mapping Time (Tmp) metric, which we define
as the total time required to collect trace data, generate the subsection map, and
deliver it to an Evacuee Node in the subsection. We investigate two cases:

Without System (wo) - We measure T
wo
mp when the system is not used, and the

subsection map is generated locally in an Evacuee Node, e ∈ EN . In wo, each
Sensor Node si ∈ SN in a subsection generates a single GPS and velocity trace
data bundle di. We assume that the subsection map can be generated from the
set of di generated by si. We assume that each si has received a request from e,
asking for di. After an offset generation time tgen

i (i.e the time required for si to
generate data bundle di), si routes its di to the Evacuee Node e. When the di

arrive at e, they form a queue, and e executes the map inference algorithm on
each di in a first-in, first-out order. e receives the map when the last di has been
processed. We define the T

wo
mp model as:

T
wo
mp =

N∑

i=0

dsz
i

esp
+

N∑

i=0
f(Δte

i) (4.1)

where
Δte

i = tarr
i − tfin

i−1,

tarr
i = tgen

i + tlat
i

f(Δte
i) = max{Δte

i , 0},

dsz
i is the size of the data bundle (in KB) from si, esp is the speed at which e can

execute the inference algorithm in KB/s (i.e. how much data e can process per
second), and f(Δte

i) is the offset time caused by the processing queue of e. di

arrives in e at time tarr
i , which is tgen

i plus the delivery latency, tlat
i , of di from si to

e. Once in e, di waits until e finishes processing any preceding bundle di−1 in the
queue (tfin

i−1). If di arrives once or before di−1 is done (i.e. Δte
i � 0), e can process

di as soon as it finishes di−1, and f(Δte
i) = 0. If di arrives after di−1 is done (i.e.

Δte
i > 0), e has an offset time f(Δte

i) = Δte
i before it can start processing di. We

assume that i indicates the order of bundle arrival in e (i.e. d0 from s0 is first).
The time sequence diagram of the wo case is shown in Figure 4.4.

23

1. Send data (di) via DTN
2. GPS data (di) is queued

3. Execute map
inference algorithm
(first in, first out order)

4. Evacuee receives the
map after all data files
are processed

Figure 4.4: The time sequence diagram of the wo case. (1) Sensor Nodes send
their collected GPS data files to an Evacuee via the DTN. (2) The received data
files enter the queue of the Evacuee’s smartphone. (3) The smartphone executes
the map inference algorithm. (4) The evacuee receives the map after all data files
are processed.

With System (ws) - We measure T
ws
mp when the system is used, and the sub-

section map is generated in a Computing Node c. We define the T
ws
mp model

as:

T
ws
mp =

N∑

i=0

dsz
i

csp
+

N∑

i=0
f(Δtc

i) + tlat
mp (4.2)

where
Δtc

i = tarr
i − tfin

i−1,

f(Δtc
i) = max{Δtc

i , 0}.

In ws, si routes its di to the c assigned to their subsection. c queues the received
di and executes the inference algorithm. After all di have been processed, the
generated map is sent to e. csp is the speed at which c can execute the inference
algorithm (in KB/s), f(Δtc

i) is the offset time caused by the processing queue of

24

1. Send data (di) via DTN
2. GPS data (di) is queued

3. Execute map
inference algorithm
(first in, first out order)

4. Send output map via DTN

Figure 4.5: The time sequence diagram of the ws case. (1) Sensor Nodes send their
collected GPS data files to the Computing Node via the DTN. (2) The received
data files enter the Computing Node’s queue. (3) The Computing Node executes
the map inference algorithm. (4) The generated map is sent to the Evacuee via
the DTN.

c. tarr
i is the time di arrives in c and tfin

i−1 is the time c finishes processing di−1. We
assume that i is the order of bundle arrival in c. We assume that c has received
a request from e, asking for the map. After c finishes processing all di, it routes
a map bundle to e. tlat

mp is the delivery latency of the map bundle from c to e. We
assume that after executing the map inference algorithm, the output is a map
that is only a fraction of the total size of all di, and that map bundle has the
same size as a single di. The time sequence diagram of the ws case is shown in
Figure 4.5.

We began our evaluations by comparing the performance of mobile devices
and a commodity laptop, which represents a Computing Node, in executing the
map inference algorithm. We built a GPS and velocity trace data set by asking
participants use DTN MapEx. We executed the map inference algorithm on
the collected trace data using mobile devices (LG Nexus 4, LG Nexus 5, and
Samsung Galaxy 4) and a MacBook Pro, and measured how many KB of data
each can process per second. Figure 4.6 shows that the Computing Node was
approximately 45 times faster than the mobile devices. From these, we set csp =

25

45 KB/s and esp = 1 KB/s.
Next, we used the Scenargie network simulator [51] to evaluate the performance

of the DTN. We implemented the environment described in 4.2, used the mobility
patterns in Algorithm 1, and recorded tlat

i when si sent data bundles of different
sizes (20, 100, and 500 KB) to a Computing or Evacuee Node. These data
bundles represent .csv files containing raw map data, where 100 KB contains
approximately 1 Km of GPS trace data. We also recorded tlat

mp when Computing
Node sent different map bundle sizes dsz (20, 100, 500 KB) to an Evacuee Node.

We also tested the effects of varying the number of SN , where N ∈ {10, 50, 100}.
Figure 4.7 shows the resulting Cumulative Distribution Functions (CDFs) of tlat

i

and tlat
mp when N ∈ {10, 50, 100} and dsz ∈ {20, 100, 500} KB. Two Patrol Nodes

were used as data mules. The results show that as N increased, the tlat
i and tlat

mp

latencies shortened, which is typical DTN behavior.
We then used the csp and esp values obtained from the experiment and ran-

dom values from DTN performance result set as parameters in the T
ws
mp and T

wo
mp

models. We assumed that each si generates its data bundle between t = 1800
and t = 3600 (i.e. after exploring for 30 minutes to an hour, si has enough data
to send), and set tgen

i = rand(1800, 3600). We implemented the T
ws
mp and T

wo
mp

models in Java, and executed 9 scenarios with combinations of N ∈ {10, 50, 100}
nodes and dsz

i ∈ {20, 100, 500} KB. Figure 4.8 shows the mean T
ws
mp and T

wo
mp from

1000 iterations of each scenario.
The wo scenarios show that as N and dsz

i increase, Two
mp also increases. For the

scenario where N = 10 and dsz
i = 20 KB, the mean mapping times for ws and

wo were almost the same because the amount of data to be processed was low.
This is expected because the processing load is low in both cases (i.e. Ten data
files with a size of 20 KB). Therefore, the delay was mainly caused by the DTN
latency. Because the number of DTN nodes were the same for both scenarios
and the data files (i.e. the message bundle sizes) were small, their DTN latencies
were similar. With similar DTN performances and small processing latency, the
mean mapping times for both cases are similar as expected.

The N = 100 nodes and dsz
i = 500 KB scenario had the largest T

wo
mp (51,888

seconds). This is because as dsz
i or i increases, ∑N

i=0
dsz

i

esp (i.e. the time e needs to
process the di queue) becomes increasingly large due to the slow esp = 1 KB/s. In

26

a case where both N and dsz
i are large, the value of ∑N

i=0
dsz

i

esp accounts for a large
fraction of Two

mp. This shows that without the system, the bottleneck is caused by
the slow execution speed of the Evacuee Node.

The ws scenarios show that as dsz
i increases, the mean T

ws
mp only varies slightly.

This is because the faster csp = 45 KB/s keeps ∑N
i=0

dsz
i

csp relatively smaller than
∑N

i=0 f(Δtc
i) + tlat

mp. This shows that with the system, the delay is caused by the
bundle delivery latency in the DTN. Thus, if N is increased, the performance
of the DTN should improve (i.e. ∑N

i=0 f(Δtc
i) + tlat

mp will decrease), and reduce
the T

ws
mp. The results support this, and smallest mean T

ws
mp values were obtained

when N = 100 nodes (e.g. when N = 100 nodes and dsz
i = 500 KB, Tws

mp = 3, 923
seconds, 13x faster than T

wo
mp).

We also note that there was a small decrease of approximately 20 sec in the
mean mapping times when dsz

i = 100 KB and dsz
i = 500 KB for N = 10 nodes. We

attribute this to the fact that the Computing Node can process data relatively
quickly. Because of this, most of the delay for these cases are caused by the
DTN latencies. Given that both cases had the same number of nodes and the
computing load is not as heavy (i.e. processing ten 100-KB data files vs. ten
500-KB data files), such small discrepancies caused by the DTN performance are
to be expected. Overall however, T

ws
mp << T

wo
mp as N and dsz

i increase, which
shows the benefit of our system.

4.5 Summary

In this chapter, we presented the initial designs and evaluations of our disaster
area mapping system. We showed that our proposed approach of using a DTN
with Epidemic Routing to send collected raw data to a Computing Node generates
and delivers maps faster to evacuees in the disaster area.

27

Figure 4.6: Average Map Inference Algorithm execution speeds (in KB/s) of the
MacBook Pro Computing Node and the Samsung Galaxy 4, LG Nexus 4, and LG
Nexus 5 mobile devices. The Computing Node executed the inference algorithm
approximately 45 times faster than the mobile devices.

28

Figure 4.7: DTN performance for i ∈ 10, 50, 100 nodes are shown in CDF a), b),
and c) respectively. The delivery latencies for 20, 100, and 500 KB bundle sizes
were measured. DTN had c = 1, e = 1, and p = 2 nodes. Other parameters: s

and e buffer size = 16 GB, c buffer size = 500 GB; simulation time t = 24, 000
sec.

29

Figure 4.8: The mean Mapping Times T
ws
mp (top) and T

wo
mp (bottom). csp = 45

KB/s and esp = 1 KB/s. tlat
i and tlat

mp values were randomly picked from the
DTN performance simulation results, tgen

i = rand(1800, 3600), and 9 scenarios
(i.e. combinations of N ∈ {10, 50, 100} nodes and di ∈ {20, 100, 500} KB) were
executed 1000 times each.

30

5 Disaster Area Mapping using
Computing Nodes with Load
Balancing

5.1 Introduction

Here, we build upon our work in Chapter 4. We previously considered a system
that generates the pedestrian map of a subsection of the disaster area and delivers
the output to evacuees. Here, we consider how the system can generate pedestrian
maps of the entire disaster area that consists of many subsections. We also
consider how the generated maps can be delivered to the response commander.
With the bigger overall area, larger amounts of trace data have to be collected
and processed, and messages have to be transmitted across longer ranges.

To improve the system to address the larger scenario, we faced the following
challenges: (1) how to collect the raw data and infer maps from them, (2) how
to handle short-range communications between subsections and long-range com-
munications across subsections, and (3) how to distribute the computing load of
map inference and handle cases where some subsections have larger amounts of
raw data to process.

To face the challenges, (1) we use the same approach in Chapter 4 and lever-
age responders walking in the area to collect the required map traces and use
Computing Nodes to infer the map. For (2), we again use a DTN with Epidemic
Routing to deliver data across shorter ranges within a subsection. To commu-
nicate across longer ranges, we leverage response team vehicles as data ferries
to carry messages between subsections. Finally for (3), we add a load-balancing
heuristic that uses ferry timetables and statistical information about the load of

31

Computing Nodes to distribute computing tasks.
In this chapter, we present the design of the system with the added data ferries

and load balancing heuristic, and evaluate it using experiments and simulations.
We show that load balancing performs better than "naive" cases where comput-
ing load is not distributed among computing nodes in extreme cases where one
subsection is overloaded with raw trace data.

In the rest of the chapter, we present the specific assumptions in our target
scenario, we define the system components, the workflow, and present our imple-
mentations and evaluations.

5.2 Assumptions

We assume the post-disaster scenario described in Chapter 3. The response teams
are composed of on-foot responders, response vehicles, and the response team
commander. The performance of DTN systems are dependent on the target
scenario [2]. For a realistic representation, we assume that the mobility of on-
foot responders follows the event-driven pattern of the PDM model [56]. On-foot
responders start from their rally point and walk to a location in their subsection.
At the location, they stay for a time duration to perform tasks. After, they return
to their rally point and wait for new tasks.

The response commander (RC) is located at one of the rally points where he
manages the actions of all response teams. The RC requires a map of the disaster
area.

We assume that the response vehicles patrolling the area follow the PDM
model’s cyclic movement pattern. Response vehicles follow a route given by
team leaders, the waypoints of which are the rally points of subsections. They
stop at rally points to do their tasks, after which, they move to the next rally
point. At times, response vehicles are given new orders that change their route.

Each responder and response vehicle has a smartphone with wireless interfaces
(e.g. Wi-Fi or Wi-Fi Direct) and sufficient available storage (e.g. 16 GB). Also,
each rally point has a commodity workstation as described in Section 3.3.

As part of their preparations, response vehicles have a timetable containing
average travel times between any two rally points. The timetable is determined

32

during drills when responders test possible routes through the area. The smart-
phones of the response vehicles have an application that stores this timetable.
Drivers input their routes in the application, which calculates the travel time
between waypoints.

5.3 System Components

5.3.1 Sensor Nodes

To generate a digital pedestrian map, GPS trace data have to be collected. To do
so, the system follows the crowd-sourcing approach of [8], where many pedestrians
collect their GPS traces during short-term, city-scale events like festivals. Each
on-foot responder is equipped with a smartphone with a logging application that
collects trace data. Responder-smartphone pairs function as the system’s Sensor
Nodes (SNs).

5.3.2 Computing Nodes

In Chapter 4 and [53], we showed that without Cloud-based computing resources,
inferring the map may take a long time, especially if only smartphones are used.
To infer the pedestrian map from the collected data, the system uses Computing
Nodes (CNs) [53]. CNs are the commodity computing devices that are part of
the response team’s inventory, which are deployed at each rally point. CNs run
a map inference algorithm, using the trace data collected by SNs as input, to
generate maps.

5.3.3 Communication Network

Without continuous end-to-end communication networks, the system establishes
a DTN to share messages. The smartphones and CNs function as nodes of the
DTN. The built-in wireless interfaces (e.g. Wi-Fi or Wi-Fi Direct) of the devices
are used to establish contact.

The DTN has two stages of communication: short-range and long-range. Short-
range communication occurs within a subsection, between responders belonging

33

to the same response team. In this stage, SNs have to send their collected trace
data to their subsection’s CNs for processing. SNs use their smartphone to
establish contact with other nodes and forward collected data to the CN via
Epidemic Routing [58].

Long-range communication occurs across subsections, between the CNs at dif-
ferent rally points. To forward messages across longer distances, the system
leverages response team vehicles as data ferries [59].

5.3.4 Data Ferries

Response vehicles function as data ferries between CNs in different rally points,
carrying messages to CNs along their routes. The system uses a forwarding
heuristic based on the known route timetables, which is discussed in Section
5.8.2.

- Subsection

- Sensor Nodes
(Responder with
smartphone)

- Computing Node
in rally point

- Data ferry
(Response Vehicle)

- Epidemic Routing - Data ferry route

- Response Commander

Figure 5.1: The system workflow. In each subsection, responders collect trace
data while performing tasks (a). They send their collected trace data to the
Computing Node in their rally point via epidemic routing (b). The Computing
Nodes infer maps from received data (c), and outputs are forwarded to the RC

by data ferries (d).

34

5.4 Map Inference and the Required Output

Map inference is the extraction of a graph that represents a road network from
input raw GPS traces [6]. Our proposed system extracts a graph that shows the
pedestrian paths in a disaster area. To do so, it requires trace trajectory data
sets D to be collected from people while they walk in the area. D is a set of
points p consisting of a sequence of values {lat, lon, e, v, t}, where lat and lon are
the GPS-sourced location coordinates, e is the estimated positioning error, and
v is the velocity at time t.

After receiving the input, the system uses an algorithm based in [8] and outputs
a digital pedestrian map of the disaster area represented by a graph M(V, E). The
set of edges E represents the pedestrian paths and the set of vertices V represents
path intersections, corners, and terminal points. The edges in E have a weight
w that represents the average walking speed along the path. M is composed
of subgraphs m, each representing a piece of the map or a part of the disaster
area. With such a weighted graph, least-cost path algorithms (e.g. Dijkstra’s
Algorithm) can be used to find the fastest routes.

5.5 System Workflow

The system’s workflow is as follows: trace data collection, data delivery to Com-
puting Nodes, pedestrian map inference, and map delivery. The workflow is
shown in Figure 5.1 and all variable definitions are summarized in Table 5.1.

5.5.1 Trace Data Collection

The first step in the workflow is collecting trace data (Figure 5.1a). SNs (i.e.
responders) use a smartphone application called DTN MapEx [52] while walking
to record their GPS traces, estimated positioning error, movement speed, and
the current timestamp. These correspond to the required values {lat, lon, e, v, t}
of p as described in Chapter 5.4. The collected trace data are stored in the
smartphone’s local database and exported as .CSV files. Trace data can be split
to multiple .CSV files of uniform size. From basic testing of DTN MapEx, we
found that 100 KB of GPS data corresponds to a 1 Km path. To improve the

35

Variable Definition
D Trace Data File

M(V, E) Disaster area pedestrian map
m(V, E) Subgraph (i.e. a piece of the pedestrian map)

SN Sensor Node
CN Computing Node
RC Response Commander

CNRC RC’s Computing Node
i Number of trace data files in CN queue

p(D) Subgraph generation time function
Dsz Size of D (KB)

CNsp CN map inference execution speed (KB/s)
Tgen Generation time of D

ΔTDTN DTN delivery latency of D to CN

ΔTqueue Time spent at CN queue
ΔTferry Ferry delivery latency of m(V, E) to CNRC

ΔTtotal Total delivery time of subgraph m(V, E)
ΔTferryAlt Ferry travel time to the alternate CN

ΔTqueueAlt Time spent at alternate CN queue

Table 5.1: Variable definitions

quality of the output map, responders can continuously collect GPS data (i.e. do
multiple passes along the same roads over the duration of operations). Having
more recent data can show how the state of a path changes over time (e.g. how
congestion decreases or increases during operations).

5.5.2 Trace Data Delivery to Computing Nodes

In the next step of the workflow, SNs send their collected trace data files to the
CN in their subsection’s rally point for processing (Figure 5.1b). The delivery
latency of D, starting from the time it was generated (Tgen), from the SN to the
CN is denoted as ΔTDTN.

To perform short-range communication within a subsection (i.e. to send trace

36

data from SNs to CNs), SNs use their smartphones as DTN nodes. Because of
the movement of SNs, the topology of the network is constantly changing. To
send trace data from SNs to CNs, the system uses Epidemic Routing [58]. While
other DTN routing techniques such as PRoPHET [27] and MaxProp [9] exist, we
chose Epidemic Routing because it has a high delivery ratio given that nodes in
the network can handle the power consumption of high transmission rates and
buffer congestion [49].

We assume that the system can handle the power consumption overhead. Re-
cent smartphones can reach up to 13 hours battery life when their Wi-Fi interface
is in use [12], which is enough for a half-day’s response operations. Any smart-
phones that are running out of power can be recharged at rally points. However
in future works, a power-saving mechanism can be added to a system such as a
wake-sleep duty cycle.

We also assume that system can handle buffer congestion. Recent smartphones
have built-in storage ranging from 16 GB to 128 GB. Even if a SN has only 5
GB of buffer space left, it can still store approximately 50,000 Km of trace data
(e.g. a 100 KB .CSV contains approximately 1 Km of traces, sampled at 1 Hz).
From these, we assume that the SNs’ smartphones will have sufficient buffer size
to store their generated messages and any replicas created by Epidemic Routing.
However as a practical contingency, a purging mechanism (e.g. Time to Live) can
be used to remove old messages.

We also note that, based on the evaluations in [30], smaller message sizes im-
proves DTN performance. Thus, compressing the collected trace data into smaller
file sizes can be a practical solution to reducing the transmission overhead and
congestion in the DTN. As such, a trace file compression function can be added
to the SNs’ DTN MapEx application. The trace files can then be decompressed
when they reach a CN . However, such functions imply additional computing
load. Furthermore after decompression, the trace data still have to be processed
for map inference. Because the focus of our system is distributing the computing
load of map inference in a DTN paradigm, we leave compression as future work.

Node mobility significantly impacts a DTN’s performance [46]. As mentioned,
we use the PDM model’s event-driven movement pattern as the mobility of on-
foot responders. SN functions and mobility are described in Algorithm 2.

37

Algorithm 2 Sensor node functions
1: sensor.spawnAtRallyPoint
2: sensor.moveToTaskLocation
3: sensor.PerformTask
4: sensor.returnToRallyPoint
5: sensor.waitForNewTask
6: sensor.connectToNetwork
7: sensor.forwardMessages
8: Return to 2

5.5.3 Pedestrian Map Inference

The next step in the workflow is processing the collected trace data to infer a
digital map. CNs execute an inference algorithm, such as the one in [8], using the
collected trace data as input. Each CN has a processing queue, and it process
trace data file D in a first-in, first-out order. When a new trace data file is
received by a CN , it enters the tail-end of the CN ’s processing queue. The trace
data file waits until the CN finishes all other files in the queue before getting
processed.

When a trace data set D is processed, the output corresponds to a subgraph m

of M(V, E). In a real scenario, the subgraphs represent the parts of the disaster
area that were explored by the SN . The entire pedestrian map M is gradually
updated as more trace data sets are collected and processed into subgraphs.

After a trace data set D is processed, the CN outputs the subgraph m(V, E).
The total time spent by D in the queue (i.e. its queuing time plus processing
time), ΔTqueue, is obtained by:

ΔTqueue =
i∑

i=1
Δp(Di) (5.1)

where i is the number of trace data files in the queue (with D1 being first), and
Δp(D) is the function that outputs the estimated time required for a CN , which
has a map inference speed CNsp (i.e. the kilobytes of trace data the CN can
process per second), to process a trace data file D with size Dsz kilobytes:

38

Δp(D) = Dsz/CNsp (5.2)

Dsz can be set as a system parameter. For example, the data collecting appli-
cation of SNs will automatically generate a trace data .CSV file after it collects
Dsz kilobytes of data. CNsp values may vary depending on the CN specifications.
However, an estimate value can be obtained through repeated executions of the
map inference algorithm on test trace data files of varying sizes, as we obtained
in Chapter 4 and [53]. We also note that Δp(D1) may be shorter than Δp(D2)
onward because the first data file in the queue may already be in the middle of
processing when the latest data file arrives.

5.5.4 Subgraph Delivery

In Chapter 4 and in [53], we evaluated the delivery latency to evacuees in a subsec-
tion. In this study, as the next step in the workflow, the subgraphs are delivered
to the response commander, RC, who needs them for situation awareness. The
RC requires a map of the disaster area, which is composed of subgraphs from all
subsections.

The RC is stationed at one rally point. The Computing Node at this rally point,
CNRC, is the destination of all generated subgraphs. Each subgraph m(V, E) waits
in its source CN until it is picked-up and delivered to CNRC by a data ferry. The
total latency of m(V, E) delivery to CNRC (i.e. its waiting time plus ferry delivery
time) is denoted as ΔTferry.

When the subgraph m(V, E), reaches CNRC, it is marked as delivered. The
total delivery time of each subgraph (i.e. the Subgraph Delivery Time), from the
time its trace data file D was generated by its source SN and is processed by a
CN , until it is delivered to CNRC is denoted as ΔTtotal, and is given by:

ΔTtotal = ΔTDTN + ΔTqueue + ΔTferry (5.3)

39

5.6 The Subgraph Inference and Delivery
Problem

Because speed is critical in response operations, the pedestrian map has to be
created in minimal time. The entire map is gradually created as subgraphs (i.e.
the pieces of the map) are inferred and delivered to their destination. In this
study, the system aims to deliver subgraphs to the RC. Thus, the goal is to
minimize the time at which subgraphs are inferred and delivered to the RC,
which we define as the Subgraph Inference and Delivery (SID) problem below.

Given a set of trace data files D = {D1, D2, ..., Dn} collected from a subsection
and their corresponding set of generated subgraphs M = {m1, m2, ..., mn}, we
aim to:

Minimize
∑

m∈M

ΔTtotal(m) (5.4)

where ΔTtotal(m) of subgraph m, which includes the DTN latency, the time in
the processing queue, and the ferry latency to the CNRC, as defined in Equation
5.3.

Many studies have proposed methods for reducing DTN and data ferry message
delivery latency [49] [7] [60] [59]. We use Epidemic Routing as a baseline method
to obtain ΔTDTN. Ferry delivery time ΔTferry is dependent on the number of
ferries available in the system.

Because there are many existing methods to reduce the DTN latency and ferry
latency (i.e. ΔTDTN and ΔTferry), our system focuses on minimizing ΔTtotal by
reducing the delay in the processing queue, ΔTqueue. As defined in Equation
5.1, bottlenecks can occur if the amount of trace data to be processed is high. In
Chapter 4 and in [53], we focus on inferring maps of individual subsections. In this
study, we consider the requirements of mapping the entire disaster area. Thus,
instead of relying on a single computing device, the system spatially distributes
processing tasks to the CNs in each subsection. Furthermore in cases when the
amount of trace data generated within a single subsection is large, the system
uses load balancing to offload tasks from a CN with a long queue to other CNs.

40

5.7 Challenges

To realize a system that solves the SID problem, we addressed the following
challenges:

Given that the system relies on commodity workstations for map inference, the
first challenge is how to generate maps from large amounts of collected trace data
(e.g. when the disaster area and the distances covered by the SNs are large). The
system must leverage the available CNs in the area to process the trace data.

The second challenge is that data have to be shared throughout the system.
While short-range communication within a subsection can easily be solved using
Epidemic Routing, long-range communication across subsections is a different
challenge. As mentioned, the system uses data ferries for long-range communica-
tion. However, the data ferries follow routes that are not optimized for decreasing
message delivery latency. Response vehicles (i.e. the ferries) follow routes based
on orders given by response team leaders. While these routes further the goals
of the response team, they are not always the fastest for data delivery. The sys-
tem must have a forwarding method that works around this characteristic of the
ferries.

Finally, in some scenarios, a large quantity of trace data may be generated
from a single subsection. This may be caused by the subsection’s response team
having significantly more tasks to perform than other response teams and results
in larger amounts of trace data collected in one subsection. With more trace data,
bottlenecks that may occur in the CNs of these subsections, which the system
has to handle.

5.8 Solutions

5.8.1 Distributed Map Inference

Without Cloud-based computing resources, the intuitive method of inferring the
pedestrian map would be to use a simple client-server architecture. SNs (i.e. the
clients) forward all collected trace data sets to a single, centralized workstation
(i.e. the server) in one rally point (e.g. the location of the RC) for processing.
This approach requires the least overhead in terms of equipment deployment.

41

However, it may not be able to process large amounts of trace data collected by
SNs.

To handle such cases, our system distributes map inference tasks among multi-
ple CNs. The system does this by leveraging the spatial distribution of response
teams that is consequently created by response operation protocols. During oper-
ations, each response team is assigned to cover a subsection of the disaster area,
and each response team establishes a rally point with a CN . Given this, the
system uses the following heuristic to distribute map inference tasks:

All trace data files collected by SNs belonging to the same response team are
forwarded to and processed by the CN in that response team’s rally point.

Typical distributed architectures require the current states of nodes to con-
trol task distribution. In a disaster scenario where end-to-end communication
networks are not available, fast status updates cannot be obtained. Using this
heuristic divides processing without communication overhead.

5.8.2 Long-Range Communication

Algorithm 3 Data ferry behavior and functions
1: ferry.spawnAtRallyPoint
2: ferry.receiveNewRoute
3: ferry.startMoving
4: if ferry.arrived then
5: ferry.stopMoving
6: end if
7: if ferry.hasNewOrders then
8: ferry.receiveNewRoute
9: end if

10: if rallyPoint.isLastStop then
11: ferry.receiveNewRoute
12: end if
13: ferry.startContact
14: ferry.stopContact
15: Return to 2

42

The system delivers data across long distances, between subsections (e.g. send
subgraphs to the CNRC) by leveraging response vehicles as data ferries. However,
unlike typical data ferries that have routes designed to reduce delivery latency
[7] [60], response vehicles routes are controlled by response team leaders. The
system requires a method that works around routes that are not optimized for
message delivery. To achieve this, the system uses a forwarding heuristic based
on information about the routes of response vehicles:

Given known ferry routes and timetables, the system forwards messages to the
fastest ferry to the destination.

The details of the forwarding heuristic are described in Algorithm 4 and are
discussed below:

1. When a ferry arrives at a rally point, it stops for a SERVICE_TIME duration.
SERVICE_TIME is an abstraction during which the ferry exchanges messages
with the rally point’s CN . In a real scenario, the response vehicle operators
execute their leader’s orders during SERVICE_TIME.

2. During SERVICE_TIME, if the ferry receives a new route, it updates the route
in its smartphone.

3. After the ferry updates its route, the ferry switches to the CONTACT state,
during which it purposefully establishes a connection with the rally point’s
CN .

4. When a new ferry joins the network, all nodes (i.e. other ferries and the CN)
in the network loop through their messages. Messages that are addressed
to the current CN are forwarded to it and marked as delivered.

5. For messages that are not addressed to the current CN , ferries compare
their route timetables. The undelivered messages are forwarded to the ferry
with the least travel time, ΔTtravel, to the destination. Ttravel is calculated
by:

ΔTtravel = SERVICE_TIME_LEFT

+(j − 1)(SERVICE_TIME) +
j∑

j=1
Δt(j)

43

where j is the number of rally points the ferry passes until the destination,
Δt(j) is the travel time from the current rally point to the next in its route,
and SERVICE_TIME_LEFT is the remaining service time at the current CN .
A SERVICE_TIME is added at each stop prior to the destination, hence j −1.

6. After the SERVICE_TIME_LEFT, the ferry ends the CONTACT state and switches
to the MOVING state, and drives to the next rally point in its route.

Algorithm 4 Message forwarding during contact
for ∀ node : network.getNodes do

for ∀ message : node.getMessages do
if message.isAtDestinationCN then

CN ← message
else

fastestferry=fastestFerryTo(message.destination)
fastestferry ← message

end if
end for
for ∀ message : node.getMessages do

if !node.pass(message.destination) then
CN ← message

end if
end for

end for

5.8.3 Load balancing

While the solution in Section 5.8.1 divides map inference tasks spatially, it is pos-
sible to encounter cases where SNs in one subsection generates significantly larger
amounts of trace data than those from other subsections. To handle such cases,
the system uses a load balancing heuristic based on the round-robin method. The
round-robin load balancing method was chosen because of its low complexity and
it does not require continuous communication between nodes [33] [25] [34]. In a

44

system that relies on DTN, node communication latency is significant, and load
balancing methods that require real-time node information are not feasible. Load
balancing is done as follows:

1. The CNs in the system are first divided into fixed clusters. As part of
its preparations prior to deployment, the response team gives the cluster
assignments (i.e. which CNs belong to the same cluster). The clusters can
be statically assigned because there is not a large quantity of CNs and all
of them are stationary.

2. Each CN maintains a table with three columns: (1) the IDs of all CNs, (2)
their corresponding average queue length, AVG_QUEUE, and (3) the TIMESTAMP
of the latest known value of (2). The values for the first column are input
prior to deployment (i.e. static clusters). The initial values of AVG_QUEUE
are set to 0. All AVG_QUEUE are rounded up, to the nearest integer.

Each CN constantly obtains and updates its own AVG_QUEUE value by count-
ing the number of trace data files it has queued at the current timestamp
and getting the mean of all counts it has done. After calculating the mean,
the CN updates its own AVG_QUEUE value and its corresponding TIMESTAMP.

Each data ferry also maintains the same three-column table. When a data
ferry enters the CONTACT state with a CN , they exchange AVG_QUEUE values
with more recent TIMESTAMPs.

3. Each CN also stores a round-robin table that contains all other CNs in
its cluster. This table is created prior to deployment, based on the fixed
cluster assignments.

4. When a trace data file D from an SN arrives at a CN , it enters the process-
ing queue of the CN but is also assigned an alternate CN . The alternate
CN is selected in round-robin order from the table in 3.

5. When a ferry enters CONTACT with a CN , it loops through the trace
data files in the CN ’s queue. If the ferry will pass a message’s alternate
CN , the system decides whether to forward the trace data file to the ferry
or not.

45

The decision is made by comparing the trace data file’s queuing time,
ΔTqueue at the current CN with ferry’s travel time ΔTferryAlt to the al-
ternate CN and the estimated queuing time at the alternate, ΔTqueueAlt.
ΔTqueueAlt is estimated by using the AVG_QUEUE value of the alternate CN

as the value of i in Equation 5.1.

ΔTqueue > ΔTferryAlt + ΔTqueueAlt (5.5)

If Equation 5.5 is true, then the trace data file is forwarded to the ferry,
otherwise it remains in the current CN ’s queue.

Whenever the AVG_QUEUE values are updated (i.e. when a new ferry with
more recent values enters contact), the system again checks Equation 5.5
for each message. If the result becomes false, the message is left at the CN .

6. When a trace data file arrives at its alternate CN , it enters the processing
queue and is given a new alternate, based on the CN ’s round-robin table.

5.9 Implementation

5.9.1 Trace Data Collection with DTN MapEx

We implemented a trace logging application for Android devices called DTN
MapEx [52]. Responders run DTN MapEx to record their GPS traces, estimated
positioning error (i.e. the location accuracy provided by the Location API [3]),
movement speed, and the current timestamp. DTN MapeEx writes the collected
trace data to .CSV files. Each trace data file contains a piece of the pedestrian
map (i.e. when processed, it outputs a subgraph. Figure 5.2 shows screenshots
of DTN MapEx.

Optimizing GPS trace logging (e.g. sampling frequency, compensating for in-
accuracies) has been addressed by many, including [28] and [61], and is out of
the scope of this study. The default sampling frequency of DTN MapEx is 1 Hz,
which is enough for 1.5 m/s walking speeds. For other map inference applica-
tions that require high density trace data (e.g. vehicular road map inference with

46

Figure 5.2: The DTN MapEx application’s GPS Trace Logger (left) and sample
trace data overlaid on precached map tiles (right).

fast-moving cars, high-accuracy mapping), smartphones with hardware capable of
high GPS sampling frequencies or interpolation can be used [44]. These however,
can result in larger trace data sizes. We also note that using GPS services quick-
ens battery drain. In such cases, smartphones with low battery can be charged
at a rally point. However, power is an important resource during disasters, and
in future works we will consider power-efficient GPS sampling.

5.9.2 Computing Node Map Inference Application

We developed a Java program that executes a map inference algorithm based
on the work of Blanke et al [8]. We modified the algorithm to add weights to
the edges of the output graph, which correspond to the average of the walking
speeds of all underlying points of the edge (i.e. the points used to infer the edge).
The program loads trace data .CSV files then runs the map inference algorithm
and generates a subgraph. The edges and vertices of the subgraph can then be
exported to .CSV files for sharing. The Java program is shown in Figure 5.3

47

Figure 5.3: The Computing Node Java application accepts .CSV files containing
trace data sets and executes a map inference algorithm to generate subgraphs.

and an example output map composed of subgraphs is shown in Figure 5.4. The
subgraphs are overlaid on offline map tiles and show the color-coded walking
speeds along the explored paths.

5.9.3 DTN Module

To establish a DTN and share trace data and generated map files between nodes,
we added a DTN module (shown in Figure 5.5) to DTN MapEx that uses the IBR-
DTN for Android [43] and a modified version of the ShareBox application [20].
The DTN Module uses either Wi-Fi Direct or Wi-Fi to establish contact.

5.10 Evaluating the Load-Balancing Heuristic

The goal of these evaluations is to compare the performance of the system’s load
balancing heuristic to the intuitive case of using only a single CN to handle all
subrgraph inference tasks and to a case where multiple CNs infer the subgraphs,
but do not use any load-balancing. We use the total subgraph delivery time

48

(b) (c) (a)

Figure 5.4: (a) Map tiles/background images. (b) Raw GPS trace data. (c)
Output map composed of subgraphs. The output subgraphs are overlaid on the
map tiles. Edges of the subgraphs are color-coded based on their average walking
speeds (i.e. cooler colors mean slower speeds, warmer colors mean faster speeds).

ΔTtotal as the performance metric to show how fast subgraphs are inferred and
delivered for each case.

5.10.1 Disaster Area

The target disaster area, shown in Figure 5.6, is a 3 Km x 3 Km area in Marikina
City in the Philippines, which is often hit by natural disasters. As prescribed by
the guidelines in [22], the area is divided into nine, 1 Km x 1 Km subsections. A
response team, consisting of 100 responders, is deployed at each subsection. Each
responder has a smartphone with 16 GB of storage space and has the DTN MapEx
application. The number of responders depends on the available manpower in
the disaster area. The Marikina City Disaster Coordination Council has a total
manpower of approximately 5,000 people. Approximately 2,700 of whom are
public order and safety personnel and volunteer responders [29]. The city has

49

Figure 5.5: The IBR-DTN daemon (left) and the DTN Module (right).

a total area of 22 Km2, making 100 moving responders per square-kilometer a
reasonable assumption. Each response team has a rally point in a school, medical
facility, or parish building in their subarea. Each rally point has a laptop that
functions as a CN . The CN has a processor speed of 2.6 GHz (with two cores),
8 GB of memory, and 256 GB of storage space. The rally points (and their
corresponding CNs) were given ID numbers from 1 to 9.

5.10.2 Simulation Model and Parameters

We modeled the disaster area as a complete graph A(V, E) with a set of vertices
V that represents the locations of rally points, and a set of edges E that rep-
resents the response vehicle path between rally points. Each edge has a weight
corresponding to the travel time ΔTferry between rally points.

The model requires the following: the DTN delivery latency of trace data
files ΔTDTN from SNs to CNs, which will model how fast trace data files enter
the queue of CNs; the edge weights ΔTferry, which will model how fast fer-
ries move between rally points; the map inference speed CNsp of CNs; and the

50

Computing Node ID Rally Point

3 K
m

Figure 5.6: The disaster area in Marikina City, Philippines. The locations of
Rally Points and the IDs of their corresponding Computing Nodes are shown.

SERVICE_TIME, which models the duration of ferries’ CONTACT state at rally points.
We used the Scenargie Simulator [51] and the subsections in Figure 5.6 to

generate end-to-end delivery latency traces of a DTN using Epidemic Routing
for short-range communication in a subsection. We assume a sufficiently large
storage buffer size of 16 GB for the SNs, thus the system can support Epidemic

51

Figure 5.7: The CN clustering for Decentralized + Load Balancing.

Routing without performance decrease due to congestion. The nodes of the DTN
represent SNs and they follow the mobility pattern described in Algorithm 2.
We set the wait duration of SNs in their rally points and in their task locations
to random values from 20 to 30 minutes. In a 1 Km x 1 Km subsection, 100 SNs
move at 1.5 m/s walking speed and send messages, representing .CSV data files,
to a CN . The output traces were used in the model as ΔTDTN.

We again used the Scenargie Simulator and the map in Figure 5.6 to obtain
the travel time ΔTferry (in seconds) of a vehicle moving at 60 Kph between every
rally point pair. The values represent the time a response vehicle needs to travel
between rally points. The ΔTferry values are shown in Table 5.2.

Getting an exact value of CNsp is difficult because of the uniqueness of comput-

52

ID 1 2 3 4 5 6 7 8 9
1 0 178 314 346 193 122 236 310 492
2 178 0 145 226 165 275 411 281 483
3 314 145 0 365 342 431 605 444 631
4 346 226 365 0 179 316 446 258 438
5 193 165 342 179 0 171 326 127 317
6 122 275 431 316 171 0 144 250 430
7 236 411 605 446 326 144 0 238 369
8 310 281 444 258 127 250 238 0 209
9 492 483 631 438 317 430 369 209 0

Table 5.2: Travel time (ΔTferry) in seconds between two rally points with the
corresponding IDs.

ing devices (e.g. specifications, resource usage of OS and background programs).
In Chapter 4 and [53], we approximated the map inference performance of a com-
modity laptop CN (2.6 GHz processor with two cores, 8 GB memory, and 256
GB of storage) through multiple executions of the inference algorithm using input
trace data files of different sizes. We measured CNsp ≈ 45 KB/s, which we use
in this study.

In the model, contact between a CN and ferries occurs at the vertices (i.e.
rally points) and lasts for a SERVICE_TIME duration, during which ferries pur-
posefully joins the CN ’s network. In [52], we experimentally evaluated how long
digital files of different sizes can be forwarded between different smartphones us-
ing the DTN MapEx application and the Wi-Fi Direct interface. We found that
it requires approximately 3 seconds to forward a 1-MB trace data file. We use
this experimental result in our model, and set SERVICE_TIME to 5 minutes (300
seconds), which allows forwarding of 300 MB (i.e. approximately 1000 Km-worth
of trace data, sampled at 1 Hz). This is ample for ferries to exchange messages.

To represent ferry mobility described in Section 5.8.2 in our simulation model,
the waypoints of ferry routes are generated randomly, and are non-repeating (i.e.
a ferry visits a rally point only once for every new route). Finding the actual
probability of a ferry receiving new routes at rally points is a difficult problem
and is out of the scope of this study. Thus, we assumed that ferries have a 2%

53

chance of receiving new routes at rally points.
We note that there are cases when a ferry ends CONTACT seconds before a new

ferry joins the network. In such cases, we assume that the leaving ferry can
extend its SERVICE_TIME for possible message exchange with the new ferry. The
extension only lasts a few seconds to a few minutes (i.e. < 5 minutes), thus we
consider it negligible.

5.10.3 Cases

We used ΔTtotal as a metric to evaluate performance. As defined in the SID prob-
lem in Section 5.6, we aim to minimize the Subgraph Delivery Time (ΔTtotal).
Lower ΔTtotal values are better because they indicate that subgraphs are gener-
ated and delivered to the RC faster. We executed simulations to evaluate ΔTtotal

of the following cases:

1. Centralized: This models a case without the proposed system. We use this
case as a point of comparison because it represents the intuitive solution
of approach a single computing machine as a server that executes map
inference by itself. Instead of having a CN at each rally point, only a central
CN at the RC’s rally point executes the map inference algorithm and all
other rally points have a relay node. SNs forward their collected trace data
files D to the relay node in the rally point. Ferries pick up the trace data
files from relay nodes and deliver them to the CNRC for processing. We
evaluate this case to show the effects of not having a system that considers
the processing requirements of pedestrian map inference.

2. Decentralized: This models the case described in Section 5.8.1 where col-
lected trace data are spatially distributed. The rally point of each subsec-
tion has a CN that processes the trace data D collected by the SNs. Then,
subgraphs are forwarded by data ferries to the CNRC .

3. Decentralized + Load Balancing: This models a case with the system and
the load balancing heuristic in Section 5.8.3. Here, the response team of
one subsection collected significantly larger amounts of data than those in
other subsections.

54

5.10.4 Simulation Sets

(a) Common Parameters
Parameter Value(s)

Simulation Duration 10 hours
SERVICE_TIME 300 seconds

CNsp ≈ 45 KB/s
ΔTDTN Scenargie Simulator trace

ΔTferry See Table 5.2

(b) Scenargie Simulator Parameters
Parameter Value(s)

Subsection Area 1 Km x 1 Km
SN Density/Subsection 100

SN Walking Speed 1.5 m/s
SN Wireless Com. 802.11ac

SN Buffer Size 16 GB
Data Ferry Speed 60 Km/h

(c) Simulation Set I
Parameter Value(s)
Ferry density 5, 10, 15, 20, 25

Trace data file size 500 KB
Files generated per Subsection 300 to 400

CNRC CN 5
Simulation Runs 10 Runs

(d) Simulation Set II
Parameter Value(s)
Ferry density 10

Trace data file size 125, 250, 500, 750, 1000 KB
Files generated per Subsection 300 to 400

CNRC CN 5
Simulation Runs 10 Runs

(e) Simulation Set III
Parameter Value(s)
Ferry density 10

Trace data file size 500 KB
Files generated in Subsection 1 1,500, 3,000, 6,000

Files generated in other Subsections 300
CN Clusters {1,2,3}; {4,5,6}; {7,8,9}

CNRC CN 5
Simulation Runs 10 Runs

CN Avg. Queue Length Update 1 Hz

Table 5.3: The simulation parameters used for evaluations.

55

In our first set of simulations (Set I), we compared the performances of Cen-
tralized and Decentralized to show how the system decreases Subgraph Delivery
Time. In this set, we varied the ferry density. Because our system relies on fer-
ries to deliver messages across rally points, we simulated scenarios with 5, 10, 15,
20, and 25 ferries. In an actual disaster, these simulations show how our system
will perform if the response team has access to only a few or to many response
vehicles. We maintained the trace data file size at 500 KB, which approximately
contains 5 Km of traces. Each SN generates 3 to 4 files within the 10-hour sim-
ulation time, representing them walking approximately 15 to 20 Km throughout
the simulation duration of 10 hours. The data files arrive at the rally point after a
DTN delivery latency duration based on the traces generated using the Scenargie
simulator. 10 runs were executed for each ferry density value for the Centralized
and Decentralized cases.

In our second set of simulations (Set II), we compared the performances of
Centralized and Decentralized to show how the system handles increasing size of
trace data files. In this set, we vary the trace data size Dsz to evaluate how the
system performs when response teams have to cover more ground in the disaster
area or are collecting trace data at higher sampling rates. We simulated scenarios
with trace data file sizes of 125, 250, 500, 750, and 1000 KB. The smaller data
sizes represent scenarios where SNs either walk shorter distances or are using
devices with lower sampling frequencies, while the larger data sizes represent
scenarios where longer distances are walked or higher GPS sampling rates were
used. We maintained the number of data ferries to 10 (i.e. each of the 9 response
teams has one vehicle, plus one additional vehicle). Again, each SN generates 3
to 4 files within the 10-hour simulation time. The data files arrive at the rally
point after a DTN delivery latency duration based on the traces generated using
the Scenargie simulator. 10 simulation runs were executed for each Dsz value and
both Centralized and Decentralized cases.

In our third set of simulations (Set III), we compared the performances of Cen-
tralized, Decentralized, and Decentralized + Load Balancing to show how the
system, using the load balancing heuristic, handles the case where one subsection
is generating significantly more trace data files than others. This represents one
response team moving more frequently than others because there are more tasks

56

to be done in their subsection and/or are using high trace sampling frequencies.
In this set, we increase the amount of trace data files generated in a single sub-
section. Subsection 1 generates 1,500, 3,000, and 6,000 trace data files, while
other subsections were controlled to generate 300 trace data files each. We set
the number of data ferries to 10 and the trace data file size to 500 KB. 10 simula-
tion runs were executed for each trace data file density value and the Centralized,
Decentralized, and Decentralized + Load Balancing cases.

The parameters for simulations are listed in Table 5.3. In all simulations, we
assign CN number 5 (i.e. the center) as the CNRC . The CN clusters for the
Decentralized + Load Balancing case are shown in Figure 5.7 and listed in Table
5.3e.

5.11 Results and Discussion

5.11.1 Simulation Set I: Effect of Ferry Density

(a) Centralized Case (b) Decentralized Case

Figure 5.8: CDF curves showing the effect of ferry density on the subgraph de-
livery times of the (a) Centralized and (b) Decentralized cases.

Figures 5.8a and 5.8b show the subgraph delivery time (ΔTtotal) cumulative
distribution function (CDF) curves of the Centralized and Decentralized cases
for various data ferry densities, for Dsz = 500 KB. For both cases, as data ferry
density increases from 5 to 25, the ΔTtotal decreases. The CDFs also show ex-
pected diminishing returns in terms of ΔTtotal as ferry density increases (i.e. the
travel time between source and destination is the limit). The improvement from

57

5 ferries to 10 ferries is larger than that from 15 ferries to 25 ferries.

Figure 5.9: CDF Comparison of the Centralized and Decentralized cases when
Dsz = 500 KB and Ferry Density = 10.

Figure 5.9 shows the ΔTtotal CDF curves of the Centralized and the Decen-
tralized cases, while Dsz = 500 KB. In the Centralized case, 5,895 seconds (≈ 100
minutes) had elapsed before 80% of the subgraphs were delivered to the CNRC .
In the decentralized case, only 4,230 seconds (≈ 70 minutes) had elapsed before
80% of the subgraphs were delivered. Given a constant Dsz and the same ferry
density, the 30-minute improvement can be attributed to a reduced ΔTqueue in
the Decentralized case.

5.11.2 Simulation Set II: Effect of Trace Data File Size

The results in Section 5.11.1 are supported by the results of Simulation Set II.
Figures 5.10a and 5.10b show the ΔTtotal CDF curves of the Centralized and De-
centralized cases for various Dsz values, while data ferry density was maintained
at 10 ferries. Figure 5.10a shows that as Dsz increases, the ΔTtotal values of
the Centralized case increases. Given the constant ferry density, this indicates a
longer ΔTqueue duration at the CNRC .

In contrast, Figure 5.10b shows that the increase in Dsz had negligible effect
on the ΔTtotal values of the Decentralized case. This indicates that dividing the
processing tasks among the CNs reduces the effect of increasing Dsz. Because

58

(a) Centralized Case (b) Decentralized Case

Figure 5.10: CDF curves showing the effect of trace data file size on the subgraph
delivery times of the (a) Centralized and (b) Decentralized cases.

more CNs were processing the trace data files, the queuing time for each file was
shorter, even if its size was larger.

(a) Dsz = 750 KB (b) Dsz = 1000 KB

Figure 5.11: CDF Comparison of the Centralized and Decentralized cases when
(a) Dsz = 750 KB and (b) Dsz = 1000 KB, while Ferry Density = 10.

Figures 5.11a and 5.11b show the differences between the Centralized and De-
centralized cases for Dsz values of 750 KB and 1000 KB, respectively. These
simulations model a scenario in which SNs collect larger amounts of trace data
either by walking more or using higher GPS sampling rates. For Dsz = 750 KB,
10,956 seconds (≈ 180 minutes) had elapsed before 80% of the subgraphs were
delivered to the CNRC in the Centralized case, while only 4,103 seconds (≈ 70
minutes) had passed before 80% of the subgraphs were delivered in the Decen-
tralized case. For Dsz = 1000 KB, 15,591 seconds (≈ 260 minutes) had elapsed
before 80% of the subgraphs were delivered to the CNRC in the Centralized case,

59

while only 4,267 seconds (still ≈ 70 minutes) had passed before 80% of the sub-
graphs were delivered in the Decentralized case. The results show that when the
system is used (i.e. the Decentralized case), the reduction in ΔTtotal increases as
Dsz increases.

5.11.3 Simulation Set III: Effect of Trace Data File
Density

Here, we model a scenario where one response team generates more trace data
files than others. Figures 5.12a, 5.12b, and 5.12c show the ΔTtotal CDF curves
of the Centralized, Decentralized, and Decentralized + Load Balancing cases for
increasing trace data file densities in Subsection I, while data ferry density was
maintained at 10 ferries, Dsz was maintained at 500 KB, and the trace data file
density of other subsections was maintained at 300 files. Results show that as the
trace data file density increases, the ΔTtotal values of all three cases also increase.
This increase is caused by the ΔTqueue of the files in Subsection 1 (i.e. where file
density was increased).

Figure 5.13 shows that the Decentralized + Load Balancing case outperforms
the Decentralized and Centralized cases. In an extreme case when 6,000 files were
generated at Subsection 1, 20,513 seconds (≈ 340 minutes) had already elapsed
before 80% of the subgraphs were delivered to the CNRC in the Centralized case
and it took 14,481 seconds (≈ 240 minutes) to deliver 80% of the subgraphs in the
Decentralized case. In contrast, only 6,744 seconds (≈ 110 minutes) had elapsed
before 80% of the subgraphs were delivered to the CNRC in the Decentralized +
Load Balancing case. This is due to the trace data files being distributed from the
CN in Subsection 1 to the other CNs belonging to its cluster (i.e. in Subsections
2 and 3).

We note that our system uses a heuristic to balance computing load. While
results show that our system reduces the time required to generate and deliver
the output subgraphs, the load balancing is not perfectly "fair" (i.e. the queues
in all Computing Nodes are not always equal).

To achieve the optimal situation of realizing a perfectly fair system, two main
components are required: (1) a master node that fairly allocates tasks to machines

60

(i.e. Computing Nodes) in the system and (2) the real-time state of the whole
system (i.e. based on constant updates from the network nodes, Computing
Nodes) so that the master can decide where to allocate tasks.

However, realizing such an optimally fair system given our assumed disaster
scenario is very difficult because of the following reasons. First, even if a master
is available, it cannot have the real-time state of the system because there is a
large network latency (i.e. DTN delay). Second, the topology and state of the
DTN is highly variable. Ideally, the master should know when all contacts of all
DTN nodes will occur so that tasks can find the optimal route to the the optimal
Computing Node. The constantly-changing topology of DTNs (i.e. nodes are
mobile) make such accurate "prediction" impossible to realize. Finally, even if
the real-time state of the system is known, the delay in task delivery is also a
problem. Even if the master can decide allocation based on what it knows about
the system’s current state, the delay in task delivery means that the state has
likely changed by the time the task reaches its destination.

Additionally, the trade-offs entailed by trying to achieve the optimal system
should also be considered. In our evaluations, we show how our proposed system
can improve map generation by approximately two hours. Even if the optimal
system can further reduce the required time, it will most likely require additional
resources (e.g. more computing devices or a better network), which increase
implementation and power-consumption overhead. If the optimal system can
further reduce the required time by 20%, but requires 100% more resources, then
using our heuristic method may be a sufficient alternative.

It is possible to simulate the ideal scenario by first generating a trace of the
trajectories and contacts of the system’s DTN nodes. These traces will can then
be used by the master to "predict" the current and future states of the network.
Assuming that the real-time system states of all Computing Nodes are always
known by the master, whenever a new task enters the system, the master can
use a "brute force" approach to determine the optimal allocation of the task.
However, such a simulation is out of the scope of this study and is left for future
work.

61

5.12 Summary

In summary, our results in this chapter show that spatially distributing map infer-
ence tasks to CNs significantly decreases ΔTtotal compared to a scenario where
all trace data are processed by a centralized workstation (e.g. approximately a
three-hour improvement in the case of Figure 5.11b). Also, our load balancing
algorithm improves performance when individual CNs have a long queue of trace
data files to process (Figure 5.13). With the overall reduction of ΔTtotal, results
show that the system is capable of solving the SID problem.

62

(a) Centralized Case

(b) Decentralized Case

(c) Decentralized + Load Balancing Case

Figure 5.12: CDF curves showing the effect of trace data file density on the
subgraph delivery times of the (a) Centralized, (b) Decentralized, and (c) Decen-
tralized + Load Balancing cases.

63

Figure 5.13: CDF Comparison of Centralized, Decentralized, and Decentralized
+ Load Balancing for an extreme case when trace data file density in Subsection
1 = 6,000, Dsz = 500 KB, and Ferry Density = 10.

64

6 The Milk Carton FTR System

6.1 Introduction

In this chapter, we extend our work by considering FTR as another disaster
response application that can be implemented using the system architectures
presented in Chapters 4 and 5. Here, we face the problem of realizing a digital
FTR system that can be used in disaster scenarios.

While current FTR methods try to make the process more efficient, they still
have shortcomings. First, traditional methods use paper-based registries and
notice boards, which are difficult to replicate and share, and cannot automatically
find matches. Second, existing digital FTR systems require Cloud-servers for data
storage. Such resources may not be available in a disaster area without Internet
access. Finally, existing systems mainly rely on text-based personal information
to find missing persons. Some people (e.g. children, the elderly, and persons with
disabilities) however, may be unable to provide such information. The overcome
these shortcomings, we present Milk Carton: a digital FTR system that uses face
recognition.

To realize Milk Carton, we faced the following challenges: (1) how to query
for and find missing persons without requiring text-based information, (2) how
to the storage and computing requirements of the system without Cloud-based
resources and services, and (3) how to transmit data without continuous, end-to-
end networks.

For (1), for cases where text-based information are unavailable, our system
executes a face recognition algorithm to find possible matches to missing person
queries; for (2) we use a similar approach to those in Chapters 4 and 5 and
use spatially-distributed Computing Nodes to handle the storage and computing
requirements of the system; and for (3) we use response team vehicles to ferry

65

(a) (b) (c)

Figure 6.1: Milk Carton Application: (a) Query Creation (b) Record Creation (c)
Possible Matches

data across the system.
In this chapter, we present the designs of the system and perform initial ex-

perimental evaluations to see how fast a Computing Node can perform the face
recognition algorithm given different database sizes and photo resolutions. We
also evaluated our system’s face recognition accuracy.

The rest of this chapter shows the our assumptions about the target scenario,
the components and workflow of the system, and our evaluations.

6.2 Assumptions

6.2.1 Target Scenario

The target scenario is a city within the first 72 hours after a disaster has struck.
The disaster has caused people to evacuate. There are many evacuation centers
in the area, which are managed by response teams. During evacuations, some

66

(d) Computing
Node uses
Eigenfaces to find
possible match

(a) Evacuees create record using
Milk Carton app at evacuation center (b) Families create

queries for separated
relatives

(c) Ferries forward query to
other Computing Nodes

(e) Return possible match to query
source

Evacuation Center

Data Ferry

Computing Node

Separated Relative

Figure 6.2: Milk Carton Workflow Diagram

families are separated and end up at different evacuation centers. We assume
that the area’s network infrastructure was damaged and is not yet operational.

6.2.2 Equipment

At each evacuation center, the response team has set up its equipment, which in-
cludes a commodity computing device such as a laptop or mini PC (e.g. with a 2.5
to 3 GHz processor and 4 GB RAM). The device has a wireless network interface
(e.g. Wi-Fi) that is used to create a wireless local network, and sufficient storage
space (e.g. 256 to 512 GB available space). The team also has smartphones
with cameras, wireless network interfaces, and the Milk Carton application [54].
Smartphones and computing devices in the system have an implementation of
the bundle protocol (e.g. IBR-DTN [43]), and they use their wireless network
interfaces to establish local connections.

6.2.3 Response Team Vehicles

Response teams have vehicles patrolling the disaster area. Based on the cyclic
pattern described in the Post-Disaster Mobility (PDM) model [56], the vehicles
follow a route and visit evacuation centers along the route. Response vehicle

67

drivers have smartphones with wireless interfaces and sufficient storage space
(e.g. 16 to 32 GB).

Based on prior preparations and drills, the travel times of response vehicles
between any two evacuation centers have already been estimated. The smart-
phones of vehicle drivers have a route management application. Drivers input
their routes in the application, which automatically calculates the travel times
between evacuation centers.

6.3 Milk Carton Components

The Milk Carton system has the following components:

1. Milk Carton Application - the response teams that manage evacuation cen-
ters have smartphones with the Milk Carton application, which they use to
create evacuee records and queries for separated family members. Figure
6.1 shows screenshots of the application.

2. Computing Node - The computing device at each evacuation center func-
tions as a Computing Node. They are used to store records and queries.
Computing Nodes also execute the Eigenfaces algorithm to find records that
possibly match queries. To handle

3. Data Ferries - Without the Internet, the system leverages response team
vehicles as data ferries. Response vehicles deliver data across the system
using their smartphones.

6.4 System Workflow

Figure 6.2 shows the workflow of the Milk Carton system.

6.4.1 Record Creation

The first step in the workflow is record creation (Figure 6.2a). Responders use the
Milk Carton application to create records of people entering evacuation centers
(i.e. including separated people). Using the application, text-based personal

68

information of evacuees are recorded. To handle cases where personal information
is unobtainable, the application also captures photos of registrants. Photos are
added to the records along with a timestamp and the location or name of the
evacuation center. Records are transferred (e.g. via local wireless network) from
the smartphone to the evacuation center’s Computing Node.

The number of evacuees can be very large (e.g. 100,000 were evacuated during
the 2016 Kumamoto Earthquakes∗). A single computing device may not be able
to store and process that much data. To handle storage and the consequent
computing requirements of a large number of records, Computing Nodes only
store records created at the evacuation center where they are deployed. This
naturally divides the load to manageable amounts (e.g. an evacuation center in
Kumamoto can host approximately 1000 evacuees†).

6.4.2 Query Creation

The next step in the workflow is query creation (Figure 6.2b). In another evac-
uation center, families report separated relatives to the response team in that
evacuation center. The response team uses the Milk Carton application to create
a query. Responders input a photo (e.g. recent pictures provided by the family)
and personal information of the separated relative. Queries also include a times-
tamp and the location or name of the evacuation center. Queries are transferred
to the evacuation center’s Computing Node.

6.4.3 Query Forwarding

Next, queries are forwarded to other Computing Nodes in the area (Figure 6.2c).
Computing Nodes replicate their stored queries, and each replica’s destination is
a Computing Node in a different evacuation center. To forward queries without
the Internet, the system uses response team vehicles as data ferries. Whenever
a ferry visits an evacuation center, its smartphone establishes contact with the
evacuation center’s Computing Node. During contact, queries are forwarded to
the ferry that will reach the destination Computing Node the fastest, based on

∗http://www.asahi.com/ajw/articles/AJ201604190001.html
†http://mainichi.jp/english/articles/20160420/p2a/00m/0na/014000c

69

the known ferry routes (see Section 6.2.3).

6.4.4 Finding and Returning Matches

The final steps in the workflow are finding and returning possible matches to
queries (Figure 6.2d and 6.2e). When a Computing Node receives a query it first
searches for records with matching personal information (e.g. name, birthdate).
If no matches are found, it executes the Eigenfaces algorithm and compares the
query’s photo with the photos of the records in its database. If a photo with
the least distance and within a user-defined similarity threshold is found, the
photo’s corresponding record is returned as a match. The match is addressed to
the query’s source and is forwarded by data ferries.

6.5 Evaluations

In this study, we present initial evaluations of the system. Our goal is to (1) see
how a Computing Node performs, in terms of execution speed of the Eigenfaces
face recognition algorithm in an evacuation center setting, and (2) evaluate the
accuracy of the face recognition implementation.

The evaluation scenario is as follows: The Computing Node is deployed in an
evacuation center. It has a database of records containing the faces of the evacuees
in the center. It has received a query for a separated person and will search
its database for a possible match by executing the Eigenfaces face recognition
algorithm.

We evaluated how much time the Computing Node requires to execute the
matching task, given different database sizes of 250, 500, and 1000 evacuee records
(i.e. the center has a max capacity of 1000 evacuees) and different face image
dimensions of 20 x 20, 50 x 50, and 100 x 100 pixels.

To represent the Computing Node, we used an Intel NUC mini PC with a 2.7
GHz processor, 4 GB of memory. We used a database of faces from the Extended
Yale Face Database B‡. We used one image as the query photo and executed
the JavaFaces implementation of the Eigenfaces face recognition algorithm and

‡http://vision.ucsd.edu/ leekc/ExtYaleDatabase/ExtYaleB.html

70

measured the time from start to finish. We executed 100 query runs for each
database size and each face dimension. Figures 6.5, 6.6, and 6.7 show the mean
execution times of the query runs.

To evaluate the face recognition accuracy, we executed queries on the system
using different photo resolutions (i.e. 20 x 20, 50 x 50, and 100 x 100 pixels),
number of photos per unique person (5, 10, 20, and 50 photos per unique person),
and the number of eigenfaces used by the algorithm (i.e. 10, 20, 30, 40, 50, 60,
70, 80, and 90 eigenfaces). We used two photo databases: (1) the Extended Yale
Face Database B and (2) we took photos if 19 participants from different angles
with varying expressions and lighting conditions (the UBI database). We used
10 photos for each unique person as queries. We measured the accuracy as the
number of correctly recognized queries divided by the total number of queries.
The parameters for the experiment are listed in Table 6.1. Figure 6.3 shows
samples from the Yale Extended database. To preserve the privacy of of the
participants, samples from the UBI database are not shown in this dissertation.

Parameter Value
Photo Resolution 20 x 20, 50 x 50, 100 x 100 pixels
Photo Database Yale Extended B, UBI Database

Unique Persons (classes) in Yale DB 20 persons
Unique Persons (classes) in UBI DB 19 persons

Photos (samples) per Person 5, 10, 20, 50
Queries per Person 10

Eigenfaces 10, 20, 30, 40, 50, 60, 70, 80, 90

Table 6.1: Accuracy Evaluation Parameters

The results in Figures 6.5, 6.6, and 6.7 show an expected trend that the mean
execution time of the query runs increase as the face image dimensions and
database size increase. The results also show that the Intel NUC Computing
Node can execute the Eigenfaces algorithm in minimal time. Even for the case
with the largest image dimensions (i.e. 100 x 100 pixels) and a full evacuation
center (i.e. 1000 records), it only took approximately 7 seconds to complete a
query.

71

Figure 6.3: Samples from the Extended Yale Database B

Figure 6.4: Mean execution time of the Eigenfaces face recognition algorithm for
20 x 20 pixel image dimensions and different face database size

72

Figure 6.5: Mean execution time of the Eigenfaces face recognition algorithm for
50 x 50 pixel image dimensions and different face database size

Figure 6.6: Mean execution time of the Eigenfaces face recognition algorithm for
100 x 100 pixel image dimensions and different face database size

73

(a) 25 x 25 pixels

(b) 50 x 50 pixels

(c) 100 x 100 pixels

Figure 6.7: Milk Carton’s face recognition accuracy for the Extended Yale
Database B at photo resolutions of (a) 25 x 25, (b) 50 x 50, and (c) 100 x
100 pixels. The number of eigenfaces used and the number of unique photos (i.e.
samples) per person were varied.

Figures 6.8 (a), (b), and (c) show the accuracy of Milk Carton’s face recognition
for the Yale Extended Database B. The results are based on different numbers

74

(a) 25 x 25 pixels

(b) 50 x 50 pixels

(c) 100 x 100 pixels

Figure 6.8: Milk Carton’s face recognition accuracy for the UBI Database B at
photo resolutions of (a) 25 x 25, (b) 50 x 50, and (c) 100 x 100 pixels. The
number of eigenfaces used and the number of unique photos (i.e. samples) per
person were varied.

of eigenvalues used and different unique photos (i.e. samples) per person for
resolutions of 25 x 25, 50 x 50, and 100 x 100 pixels, respectively. From these

75

results we make the following observations. First, the accuracy of the system
increases if a higher number of unique photos or samples are available per person.
This implies that for implementation purposes, a mechanism or function that
can take multiple photos of an evacuee, from different angles is needed. This
can be done quickly by using the burst-capture mode of smartphone cameras, for
example.

Second, the resolution of the photos do not have a significant effect on the
accuracy. The accuracy values when the resolution was 25 x 25 pixels already
exceeded 90% when the number of unique samples per person was 50. Even
when the resolution increased to 100 x 100 pixels, the accuracy values were in the
same range. From this we learned that to reduce computation time and storage
requirements, low-resolution photos can be used, as long as the number of samples
is high.

Third, we observed that the accuracy increased the most when the number of
eigenfaces used changed from 10 to 20. The accuracy did not change significantly
as the number of eigenfaces increased from 30 to 90. The number of eigenfaces
used are often determined either heuristically or arbitrarily (i.e. a changeable
parameter). These results show that using more eigenfaces is not always the
most efficient option. If more eigenfaces are used, computation speed will be
slower (i.e. more calculations are needed). For practical implementation, it is
best to have a function that controls the eigenfaces, which allows users to start
by using less eigenfaces and increase it as needed.

Figures 6.9 (a), (b), and (c) show the accuracy of Milk Carton’s face recognition
for the UBI database. The results are based on different numbers of eigenvalues
used and different unique photos (i.e. samples) per person for resolutions of 25
x 25, 50 x 50, and 100 x 100 pixels, respectively. Accuracy results from using
the UBI database were very similar to the results from using the Yale Extended
Database B. We again observed that the resolution does not significantly affect the
accuracy, the greater the number of samples used yielded more accurate results,
and using higher numbers of eigenfaces does not always result in higher accuracy.

The main difference from using the two databases is that Milk Carton was more
accurate when using the Yale Extended Database B than when using the UBI
database. Milk Carton was able to exceed 90% accuracy for the Yale Extended

76

Database B. For the UBI database, Milk Carton only reached between 80% and
90%. This lower accuracy can be attributed to the higher variance in the photos of
the UBI database where the participants were asked to make different expressions
and poses. Even with the lower accuracy however, 80% is still a reasonable
performance in actual implementation. If more accurate results are required,
other face recognition libraries can be used, and can be evaluated in future work.

From these initial results, we conjecture that Milk Carton’s approach of using
multiple Computing Nodes in a disaster area can quickly and accurately run
face recognition because with this architecture, evacuee records are distributed
into manageable amounts (i.e. compared to another scenario where a only single
machine in the disaster area stores all records and processes all queries).

6.6 Summary

In this chapter, we present the designs and the results of the initial evaluations of
the Milk Carton FTR system. In our evaluations, we show how our approach of
using spartially-distributed computing nodes reduces the overall computing load
of face recognition because the size of each face database is limited to the capacity
of evacuation centers. We also show that our current implementation can achieve
reasonable face recognition accuracy values.

77

7 Conclusions and Future Work

7.1 Summary

In this dissertation, we presented disaster response applications that use dis-
tributed computing over a DTN. The motivation for our work was the need for
digital systems that aid disaster response operations such as disaster area map-
ping and FTR. These systems must function in disaster areas without continuous,
end-to-end communication networks and must be capable of handling computing
requirements without access to Cloud-based resources and services.

We presented two systems: DTN MapEx and Milk Carton. DTN MapEx gen-
erates disaster area pedestrian maps and delivers them to evacuees and response
commanders. The system uses a DTN of smartphones and leverages response
team vehicles as data ferries for communication. It handles the computing re-
quirements of pedestrian map inference by using Computing Nodes: commodity
workstations that are deployed in the disaster area. The Computing Nodes re-
ceive the collected raw data and infer the map. The system also uses a load
balancing heuristic to distribute computing tasks.

Milk Carton is a system that aids in FTR. Similar to DTN MapEx, Milk
Carton uses data ferries to deliver messages and Computing Nodes to handle the
computing requirements of face recognition that is needed to find missing people
during the FTR process.

We evaluated both systems using experiments and simulations and found that
by distributing computing load to Computing Nodes, the savings in processing
latency were enough to offset the communication latency caused by the DTN and
data ferries. Using our proposed load-balancing algorithm, the system was able
to reduce the time required to process and generate and deliver pedestrian maps
by approximately 2 hours, compared to an approach without load balancing.

78

7.2 Future Work

In future works, we aim to further evaluate our system via experiments during
response operation drills or during actual operations. Next, in cases where re-
sponse vehicles are unavailable, we aim to design and evaluate architectures that
use alternate data ferries, for instance drones. We also intend to improve the
DTN MapEx application by adding compression functionality to reduce message
size, and by including power and device storage management schemes.

Additionally for the Milk Carton System, we aim to further evaluate the system
using simulations and actual deployment. We also intend to evaluate the accuracy
of the Eigenfaces face recognition algorithm in terms of its accuracy in finding
matches.

79

Acknowledgements

This work would not have been possible without the support of many people.
First, I would like to thank my supervisor, Prof. Keiichi Yasumoto, who provided
valuable input and guided me, with extreme patience, throughout the duration
of my stay. I would also like to thank the present and past professors of the Ubiq-
uitous Computing Laboratory: Associate Prof. Yutaka Arakawa, Assistant Prof.
Hirohiko Suwa, Assistant Prof. Manato Fujimoto, and Dr. Morihiko Tamai, all
of whom gave valuable comments and contributed ideas for my research. I also
thank Prof. Shoji Kasahara for his valuable input and comments that helped
clarify and improve the study. I would also like to thank the laboratory’s sec-
retary, Mrs. Megumi Kanaoka, who handled the administrative matters during
conferences and who was always very gracious despite the language barrier. I
am also grateful to all the members of the Ubiquitous Computing Laboratory for
all the support and assistance they provided and for all the fun social gather-
ings. I would like to thank my own family for their support. In addition, I am
forever grateful to the Wakazono family for their kindness and treating me as
their own. This work is partly supported by the Japanese Government Monbuk-
agakusho: MEXT Scholarship and JSPS KAKENHI Grant Numbers 26220001
and 16H0291410.

80

References

[1] Mobile Cloud Computing for Distributed Disaster Information System in
Challenged Communication Environment, author=Kikuchi, Yosuke and Shi-
bata, Yoshitaka. In Advanced Information Networking and Applications
Workshops (WAINA), 2015 IEEE 29th International Conference on (2015),
IEEE, pp. 512–517.

[2] Agussalim, and Tsuru, M. Comparison of DTN Routing Protocols in
Realistic Scenario. In Intelligent Networking and Collaborative Systems (IN-
CoS), 2014 International Conference on (2014), IEEE, pp. 400–405.

[3] Android Developers. Location-Android Developers. https://
developer.android.com/reference/android/location/Location.html,
2012. Last Accessed: 2016-06-18.

[4] Aschenbruck, N., Gerhards-Padilla, E., and Martini, P. Modeling
mobility in disaster area scenarios. Performance Evaluation 66, 12 (2009),
773–790.

[5] Bharosa, N., Lee, J., and Janssen, M. Challenges and obstacles in
sharing and coordinating information during multi-agency disaster response:
Propositions from field exercises. Information Systems Frontiers 12, 1 (2010),
49–65.

[6] Biagioni, J., and Eriksson, J. Inferring Road Maps from Global Po-
sitioning System Traces. Transportation Research Record: Journal of the
Transportation Research Board 2291, 1 (2012), 61–71.

[7] Bin Tariq, M. M., Ammar, M., and Zegura, E. Message Ferry Route
Design for Sparse Ad Hoc Networks with Mobile Nodes. In Proceedings

81

of the 7th ACM international symposium on Mobile ad hoc networking and
computing (2006), ACM, pp. 37–48.

[8] Blanke, U., Guldener, R., Feese, S., and Tröster, G. Crowd-
sourced Pedestrian Map Construction for Short-term City-scale Events. In
Proceedings of the First International Conference on IoT in Urban Space
(2014), ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), pp. 25–31.

[9] Burgess, J., Gallagher, B., Jensen, D., and Levine, B. N. Max-
Prop: Routing for Vehicle-Based Disruption-Tolerant Networks. In INFO-
COM (2006), vol. 6, pp. 1–11.

[10] Chenji, H., Zhang, W., Stoleru, R., and Arnett, C. DistressNet: A
disaster response system providing constant availability cloud-like services.
Ad Hoc Networks 11, 8 (2013), 2440–2460.

[11] Chenji, H., Zhang, W., Won, M., Stoleru, R., and Arnett, C. A
wireless system for reducing response time in Urban Search & Rescue. In
Performance Computing and Communications Conference (IPCCC), 2012
IEEE 31st International (2012), IEEE, pp. 215–224.

[12] Chester, B. Battery Life and Charge Time - The Moto E (2015) Review.
http://www.anandtech.com/show/9129/the-moto-e-2015-review/7,
2015. Last Accessed: 2016-06-17.

[13] Conti, M., and Giordano, S. Mobile ad hoc networking: milestones,
challenges, and new research directions. IEEE Communications Magazine
52, 1 (2014), 85–96.

[14] Conti, M., Giordano, S., May, M., and Passarella, A. From op-
portunistic networks to opportunistic computing. IEEE Communications
Magazine 48, 9 (2010), 126–139.

[15] Conti, M., Kumar, M., et al. Opportunities in opportunistic comput-
ing. Computer 43, 1 (2010), 42–50.

82

[16] Fajardo, J. T. B., Yasumoto, K., Shibata, N., Sun, W., and Ito,

M. Disaster Information Collection with Opportunistic Communication and
Message Aggregation. Journal of information processing 22, 2 (2014), 106–
117.

[17] Fall, K. A Delay-tolerant Network Architecture for Challenged Internets.
In Proceedings of the 2003 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications (2003), ACM, pp. 27–
34.

[18] Fujihara, A., and Miwa, H. Disaster Evacuation Guidance Using Op-
portunistic Communication: The Potential for Opportunity-Based Service.
In Big Data and Internet of Things: A Roadmap for Smart Environments.
Springer, 2014, pp. 425–446.

[19] George, S. M., Zhou, W., Chenji, H., Won, M., Lee, Y. O., Pazar-

loglou, A., Stoleru, R., and Barooah, P. DistressNet: a wireless ad
hoc and sensor network architecture for situation management in disaster
response. Communications Magazine, IEEE 48, 3 (2010), 128–136.

[20] IBR TU Braunschweig. GitHub-ibrdtn/android-sharebox: Share-
Box - Delay-Tolerant File Sharing. https://github.com/ibrdtn/
android-sharebox, 2015. Last Accessed: 2016-06-15.

[21] International Committee of the Red Cross. Interagency Guiding
Principles on Unaccompanied and Separated Children. https://www.icrc.
org/eng/assets/files/other/icrc_002_1011.pdf, 2004. Last Accessed:
2016-08-24.

[22] International Search and Rescue Advisory Group. International
search and rescue advisory group guidelines and methodology. http://www.
ifrc.org/docs/idrl/I927EN.pdf, 2012. Last Accessed: 2016-06-17.

[23] Jang, H.-C., Lien, Y.-N., and Tsai, T.-C. Rescue Information Sys-
tem for Earthquake Disasters Based on MANET Emergency Communication
Platform. In Proceedings of the 2009 International Conference on Wireless

83

Communications and Mobile Computing: Connecting the World Wirelessly
(2009), ACM, pp. 623–627.

[24] Johnson, D. B., and Maltz, D. A. Dynamic Source Routing in Ad Hoc
Wireless Networks. Springer US, Boston, MA, 1996, pp. 153–181.

[25] Kaur, J., and Kinger, S. A Survey on Load Balancing Techniques in
Cloud Computing. International Journal of Engineering Research and Tech-
nology 2, 8 (2013), 800–804.

[26] Lien, Y.-N., Jang, H.-C., and Tsai, T.-C. A MANET Based Emer-
gency Communication and Information System for Catastrophic Natural Dis-
asters. In Distributed Computing Systems Workshops, 2009. ICDCS Work-
shops’ 09. 29th IEEE International Conference on (2009), IEEE, pp. 412–
417.

[27] Lindgren, A., Doria, A., and Schelén, O. Probabilistic Routing in
Intermittently Connected Networks. SIGMOBILE Mob. Comput. Commun.
Rev. 7, 3 (2003), 19–20.

[28] Liu, X., Biagioni, J., Eriksson, J., Wang, Y., Forman, G., and

Zhu, Y. Mining Large-scale, Sparse GPS Traces for Map Inference: Com-
parison of Approaches. In Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (2012), ACM,
pp. 669–677.

[29] Marikina City Disaster Coordinating Council. Marik-
ina City Disaster Coordinating Council Preparedness Program.
http://alliance-healthycities.com/PDF/WHO20Awards/Marikina_
WHOAward2004_Emergency2020Preparedness.pdf, 2004. Last Accessed:
2016-07-28.

[30] Martín-Campillo, A., Crowcroft, J., Yoneki, E., and Martí, R.

Evaluating opportunistic networks in disaster scenarios. Journal of Network
and Computer Applications 36, 2 (2013), 870–880.

84

[31] Nelson, S. C., Harris, III, A. F., and Kravets, R. Event-driven,
Role-based Mobility in Disaster Recovery Networks. In Proceedings of the
Second ACM Workshop on Challenged Networks (New York, NY, USA,
2007), CHANTS ’07, ACM, pp. 27–34.

[32] Nishiyama, H., Ito, M., and Kato, N. Relay-by-smartphone: realizing
multihop device-to-device communications. IEEE Communications Maga-
zine 52, 4 (2014), 56–65.

[33] Nuaimi, K. A., Mohamed, N., Nuaimi, M. A., and Al-Jaroodi, J. A
Survey of Load Balancing in Cloud Computing: Challenges and Algorithms.
In Network Cloud Computing and Applications (NCCA), 2012 Second Sym-
posium on (2012), IEEE, pp. 137–142.

[34] Patel, N., and Chauhan, S. A survey on load balancing and scheduling
in cloud computing. International Journal for Innovative Research in Science
and Technology 1, 7 (2015), 185–189.

[35] Pelusi, L., Passarella, A., and Conti, M. Opportunistic networking:
data forwarding in disconnected mobile ad hoc networks. IEEE Communi-
cations Magazine 44, 11 (2006), 134–141.

[36] Perkins, C., Belding-Royer, E., and Das, S. Ad hoc on-demand
distance vector (aodv) routing. Tech. Rep. IETF RFC 3561, 2003.

[37] Reina, D., Askalani, M., Toral, S., Barrero, F., Asimakopoulou,

E., and Bessis, N. A Survey on Multihop Ad Hoc Networks for Disaster
Response Scenarios. International Journal of Distributed Sensor Networks
2015 (2015), 3.

[38] Reina, D., Coca, J. M. L., Askalani, M., Toral, S., Barrero,

F., Asimakopoulou, E., Sotiriadis, S., and Bessis, N. A Survey
on Ad Hoc Networks for Disaster Scenarios. In Intelligent Networking and
Collaborative Systems (INCoS), 2014 International Conference on (2014),
IEEE, pp. 433–438.

85

[39] Reina, D., Toral, S., Barrero, F., Bessis, N., and Asi-

makopoulou, E. Modelling and assessing ad hoc networks in disaster
scenarios. Journal of Ambient Intelligence and Humanized Computing 4, 5
(2013), 571–579.

[40] Reina, D., Toral, S. L., Barrero, F., Bessis, N., and Asi-

makopoulou, E. Evaluation of Ad Hoc Networks in Disaster Scenarios.
In Intelligent Networking and Collaborative Systems (INCoS), 2011 Third
International Conference on (2011), IEEE, pp. 759–764.

[41] Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S. J., and Chong, S.

On the Levy-walk Nature of Human Mobility. IEEE/ACM transactions on
networking (TON) 19, 3 (2011), 630–643.

[42] Richards, C. When Communications Infrastructure Fails Dur-
ing a Disaster. http://www.drj.com/articles/online-exclusive/
when-communications-infrastructure-fails-during-a-disaster.
html, 2015. Last Accessed: 2016-06-18.

[43] Schildt, S., Morgenroth, J., Pöttner, W.-B., and Wolf, L. IBR-
DTN: A lightweight, modular and highly portable bundle protocol imple-
mentation. Electronic Communications of the EASST 37 (2011), 1–11.

[44] Schroedl, S., Wagstaff, K., Rogers, S., Langley, P., and Wil-

son, C. Mining GPS traces for map refinement. Data mining and knowledge
Discovery 9, 1 (2004), 59–87.

[45] Shah, R. C., Roy, S., Jain, S., and Brunette, W. Data mules:
Modeling and analysis of a three-tier architecture for sparse sensor networks.
Ad Hoc Networks 1, 2 (2003), 215–233.

[46] Shahzamal, M., Parvez, M., Zaman, M., and Hossain, M. Mobil-
ity models for delay tolerant network: A survey. International Journal of
Wireless & Mobile Networks 6, 4 (2014), 121.

[47] Shi, C., Ammar, M. H., Zegura, E. W., and Naik, M. Computing in
Cirrus Clouds: The Challenge of Intermittent Connectivity. In Proceedings

86

of the first edition of the MCC workshop on Mobile cloud computing (2012),
ACM, pp. 23–28.

[48] Shi, C., Lakafosis, V., Ammar, M. H., and Zegura, E. W. Serendip-
ity: Enabling Remote Computing Among Intermittently Connected Mobile
Devices. In Proceedings of the thirteenth ACM international symposium on
Mobile Ad Hoc Networking and Computing (2012), ACM, pp. 145–154.

[49] Song, L., and Kotz, D. F. Evaluating Opportunistic Routing Protocols
with Large Realistic Contact Traces. In Proceedings of the second ACM
workshop on Challenged networks (2007), ACM, pp. 35–42.

[50] Sun, J., Zhu, X., Zhang, C., and Fang, Y. RescueMe: Location-Based
Secure and Dependable VANETs for Disaster Rescue. IEEE Journal on
Selected Areas in Communications 29, 3 (2011), 659–669.

[51] Takai, M., Owada, Y., and Seki, K. A Comparative Study on Network
Simulators for ITS Simulation IEEE802. 11 Medium Access Control (MAC)
Models. In 16th ITS World Congress and Exhibition on Intelligent Transport
Systems and Services (2009).

[52] Trono, E. M., Arakawa, Y., Tamai, M., and Yasumoto, K. DTN
MapEx: Disaster area mapping through distributed computing over a De-
lay Tolerant Network. In Mobile Computing and Ubiquitous Networking
(ICMU), 2015 Eighth International Conference on (2015), IEEE, pp. 179–
184.

[53] Trono, E. M., Fujimoto, M., Suwa, H., Arakawa, Y., Takai, M.,

and Yasumoto, K. Disaster area mapping using spatially-distributed com-
puting nodes across a DTN. In 2016 IEEE International Conference on
Pervasive Computing and Communication Workshops (PerCom Workshops)
(2016), IEEE, pp. 1–6.

[54] Trono, E. M., Fujimoto, M., Suwa, H., Arakawa, Y., and Ya-

sumoto, K. Milk carton: A face recognition-based ftr system using oppor-
tunistic clustered computing. In 2016 IEEE 36th International Conference
on Distributed Computing Systems (ICDCS) (2016), IEEE, pp. 759–760.

87

[55] Turk, M. A., and Pentland, A. P. Face Recognition using Eigenfaces.
In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91.,
IEEE Computer Society Conference on (1991), IEEE, pp. 586–591.

[56] Uddin, M. Y. S., Nicol, D. M., Abdelzaher, T. F., and Kravets,

R. H. A post-disaster mobility model for delay tolerant networking. In Win-
ter Simulation Conference (2009), WSC ’09, Winter Simulation Conference,
pp. 2785–2796.

[57] UNICEF. RapidFTR Homepage. http://http://www.rapidftr.com/,
2010. Last Accessed: 2016-08-24.

[58] Vahdat, A., Becker, D., et al. Epidemic routing for partially connected
ad hoc networks. Tech. Rep. CS-200006, 2000.

[59] Zhao, W., Ammar, M., and Zegura, E. A Message Ferrying Approach
for Data Delivery in Sparse Mobile Ad Hoc Networks. In Proceedings of
the 5th ACM International Symposium on Mobile Ad Hoc Networking and
Computing (2004), MobiHoc ’04, ACM, pp. 187–198.

[60] Zhao, W., Ammar, M., and Zegura, E. Controlling the mobility of
multiple data transport ferries in a delay-tolerant network. In Proceedings
IEEE 24th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (2005), vol. 2, IEEE, pp. 1407–1418.

[61] Zheng, K., Zheng, Y., Xie, X., and Zhou, X. Reducing Uncertainty
of Low-Sampling-Rate Trajectories. In 2012 IEEE 28th International Con-
ference on Data Engineering (2012), IEEE, pp. 1144–1155.

88

Publication List

Major Publications

1. Edgar Marko Trono, Morihiko Tamai, Yutaka Arakawa, and Keiichi Ya-
sumoto. "DTN MapEx: Disaster area mapping through distributed com-
puting over a Delay Tolerant Network." Mobile Computing and Ubiquitous
Networking (ICMU), 2015 Eighth International Conference on. IEEE, 2015.

2. Edgar Marko Trono, Manato Fujimoto, Hirohiko Suwa, Yutaka Arakawa,
and Keiichi Yasumoto. "Disaster area mapping using spatially-distributed
computing nodes across a DTN." 2016 IEEE International Conference on
Pervasive Computing and Communication Workshops (PerCom Workshops).
IEEE, 2016.

3. Edgar Marko Trono, Manato Fujimoto, Hirohiko Suwa, Yutaka Arakawa,
and Keiichi Yasumoto. "Milk Carton: A Face Recognition-Based FTR Sys-
tem Using Opportunistic Clustered Computing." Distributed Computing
Systems (ICDCS), 2016 IEEE 36th International Conference on. IEEE,
2016.

4. Edgar Marko Trono, Manato Fujimoto, Hirohiko Suwa, Yutaka Arakawa,
and Keiichi Yasumoto. "Milk Carton: Family Tracing and Reunification
System using Face Recognition over a DTN with Deployed Computing
Nodes." International Workshop on Information Flow of Things (MOBIQ-
UITOUS Workshops). ACM, 2016.

5. Accepted for Publication: Edgar Marko Trono, Manato Fujimoto, Hirohiko
Suwa, Yutaka Arakawa, and Keiichi Yasumoto. "Generating pedestrian
maps of disaster areas through ad-hoc deployment of computing resources
across a DTN." Computer Communications Journal. Elsevier.

89

Other Publications

1. Edgar Marko Trono, Yuka Kume, Yutaka Arakawa, Keiichi Yasumoto, and
Masayuki Ariyoshi. "Implementation of a mountainside sensor network with
an ambient air pressure-based routing scheme." Technical report of the In-
stitute of Electronics, Information and Communication. MoNA, Mobile
Networks and Applications 114.417 (2015): 81-83.

2. Yuka Kume, Edgar Marko Trono, Yutaka Arakawa, Keiichi Yasumoto, and
Masayuki Ariyoshi. "A Mountain Slope Monitoring System by Using Used
Smartphones and Pressure-Based Routing Method." Technical report of the
Institute of Electronics, Information and Communication. MoNA, Mobile
Networks and Applications 114.417 (2015): 25-30.

3. Seigi Matsumoto, Edgar Marko Trono, Yutaka Arakawa, and Keiichi Ya-
sumoto. "RecureShare—Internet-less application distribution mechanism
for internet-less emergency communication systems." Pervasive Computing
and Communication Workshops (PerCom Workshops), 2015 IEEE Interna-
tional Conference on. IEEE, 2015.

90

