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Novel View Synthesis and Augmented Reality
for Assisting Human Action Learning∗

Fabian Lorenzo Dayrit

Abstract

When people wish to learn an action, such as in sports or in dance, for example,
the most common way to do so is by imitating someone else performing the action.
This can take one of two forms: either the learner observes a real, in-person
teacher, or the learner watches a recording of the teacher performing the action.
In-person observation allows the learner to view the action from any point of
view, but it requires the teacher to be there. The video may be watched separate
from the teacher, but it is limited to the original capturing point of view. We
want to combine the advantages of these two by creating a new way to view such
actions.
This study revolves around capturing human actions using depth cameras and

rendering the actions from a novel viewpoint, focusing on the motion of the
actions and not on the location or context. We call such novel views of actions,
reenactments. We wish to use reenactments to help users comprehend and learn
actions.
We explore practical ways of capturing and rendering reenactments that may

be done using consumer depth cameras at home. The challenge is in adequately
representing unseen areas and in defining consistent correspondences on the sub-
ject’s body across the motion sequence. This thesis proposes two methods to
represent reenactments: by a set of rigid body parts, and by a deformable statis-
tical body model. For both of these methods, we have implemented an application
and have conducted a user study to evaluate the reenactment quality, as well as
the application’s effectiveness, ease of use, and appeal.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1461015, March 16, 2017.
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The rigid body parts method relies on approximating the shape of the subject’s
body parts with a 3D mesh for each. This method is straightforward, but is im-
precise; we use view-dependent texture mapping to compensate for inaccuracies.
We have implemented a mobile action viewer application that displays the reen-
actment using augmented reality. During our evaluation, users found it easier to
comprehend ambiguous actions using our viewer than with the original video. It
was confirmed that they were also able to compare reenactments with the real
world more intuitively.
The deformable statistical body model method fits a model of the human body

to the depth maps of the motion sequence. This method is more accurate, but
requires plenty of training data. We have implemented a magic mirror action-
learning system which directly helps users to learn actions by displaying the
reenactment on top of a mirror of themselves. Using a skeleton tracker, the
system is able to display a view of the reenactment that matches the user’s body
orientation, facilitating intuitive comparisons.
The contributions of this thesis can be summarized as follows. First, we present

multiple methods of synthesizing novel views of an action using consumer RGB-D
cameras. We also propose and implement several applications of our reenactments
for the purpose of action learning. Finally, we demonstrate the value of reenact-
ments, the applications, and the use of augmented reality for learning in general,
by conducting user studies.

Keywords:

novel view synthesis, augmented reality, action learning, computer graphics, 3D
reconstruction
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1 Introduction

For physical activities such as dancing, sports, or martial arts, it is important for
practicioners to practice and learn the correct motions in order to perform them
properly. The best way to learn these motions is by copying a teacher who is
performing them, since it may be hard to describe and understand descriptions
of these kinds of motions accurately. The teacher may perform the motion in-
person, together with the learner, and this is how motion learning was originally
done. However, since the development of video, the teacher’s motions may be
recorded on camera and watched anytime, anywhere. This has become more
prevalent in recent years due to the rise of online video sharing, and now relevant
video demonstrations can be found quickly and easily.
However, these kinds of videos have a weakness in that they may only be

viewed from a single viewpoint: the original capturing viewpoint. This means
that if there are any ambiguous or hard-to-understand motions in the video, the
learner will not be able to clarify the motion by changing his or her perspective.
In person, it is much easier to view a different perspective, but this way is not as
easily accessible as viewing videos.
Now, rendering a scene from an arbitrary perspective is in the domain of com-

puter graphics. However, the information of the scene may not be readily avail-
able. Thus, this information must somehow be extracted.
Since we are capturing the performance of a human, we must do some sort

of human motion capture. There are several existing methods for human mo-
tion capture: mechanical armatures that measure the performer’s joint angles,
magnetic and optical marker-based methods, and computer vision-based meth-
ods [36]. These methods provide varying degrees of ease-of-use and accuracy. For
example, the motion capture systems exactly measure joint angles but heavily
restrict motion. Marker-based methods provide more freedom, as the performer
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only has to wear the considerably lighter markers, and these have a high degree
of accuracy [51,56]. Purely computer vision-based methods are the most natural,
as they allow capturing the scene “as-is,” but may have less accuracy.
However, we do have further considerations. For one, we must also reconstruct

the shape of our performer. Most systems do this by manually constructing a
model of the performer in an offline process, but certain computer vision-based
methods are able to do this using video and/or depth data. Another consideration
is that we place great importance on accessibility for the general user, who is
unable to build and complicated setups but may be able to purchase, for example,
a consumer Microsoft Kinect consumer RGB-D camera. Thus, for this work, we
limit ourselves to computer vision methods that utilize RGB-D data of human
performers. This use of computer vision for representing a real scene from an
arbitrary perspective is what we call novel view synthesis (NVS), the intersection
of computer graphics and computer vision [18].
NVS systems attempt to synthesize a view of a scene from a previously-

uncaptured viewpoint, making use of those viewpoints that were successfully
captured. Such systems have various requirements, using inputs such as different
views or depth images of the scene and so on. This thesis in particular focuses
on NVS of moving humans, since motion cannot be conveyed with a static scene.
Since this assumption is present, we consider that the most efficient method would
be to represent our teacher with a human body model. This leads us into the
fields of human motion capture and human shape reconstruction.
Human motion capture and human shape reconstruction, together, involve the

processes of representing the human body and estimating human motion. Several
representations of the human body exist. One of the more commonly used repre-
sentations is a graph of rigid body parts, each with a varying degree of freedom
as well as a number of connected body parts. On top of this, human statistical
body models are able to generate plausible human body meshes from a relatively
small set of attributes. Such models may be fit to the limited depth information
that a consumer RGB-D camera provides in order to fill in missing regions with
the most statistically probable shape. Due to limited view, we may not be able to
reconstruct the actual shape or texture of our teacher. Thanks to the statistical
methods, however, we may at least be able to generate plausible models that align
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with the learner’s imagination. In this case, the learner is able to comprehend
the motion as being performed by a plausible model of the teacher. We call such
generated motion sequences reenactments.
Reconstructing human motion and generating reenactments is only half of our

work. A practical application requires an intuitive, easy-to-use user interface.
Traditional mouse and keyboard input, for example, is well-suited to 2D applica-
tions, but is insufficient and unintuitive to use for 3D. For our own applications,
we implement augmented reality (AR) techniques in order to more naturally con-
vey motion.
An AR system presents a virtual object, such as our reenactments, in a real

world environment, with real world context, in real time [85]. A large part of AR
is interaction with the virtual object. For example, we consider a handheld AR
virtual object viewer. Such a viewer would include a camera, allowing the learner
to “see through” to the real world. The AR portion would render the virtual
on the image of the real world, modifying the perspective appropriately as the
viewer moves around, as if it were actually situated in the environment.
Finally, we propose the use of this technology to help users learn actions. One

definition of learning is a change, resulting from practice, in the learner’s capa-
bility to respond [74]. From the literature on motor learning, we adopt kinematic
knowledge of results (KR) as a way to facilitate learning of physical actions. One
way to present kinematic KR is by showing the user the pattern of his or her re-
sponse sequence, at the same time showing the ideal response sequence [1]. The
user can thus directly see the difference between the two and treat it as an error.
Towards this goal, we propose two AR applications. One is a handheld appli-

cation for viewing reenactments on top of the original capturing location. We
synchronize the capturing camera and the reenactment viewer’s camera in or-
der to do this, for the purpose of giving context to the reenactment. Using this
viewer, users are able to see the difference between a real person performing the
action, and a reenactment, which provides kinematic KR. The second AR applica-
tion concerns users more directly. We propose a “magic mirror” application that
overlays the reenactment’s motions on top of the user’s own body and presents
it in a mirror-like fashion. As the user turns his or her body, the reenactment
turns in the same way, thereby providing an easy method of comparison between

3



the user’s motions and the reenactment’s, fulfilling the need for kinematic KR.
For both of these methods, we perform a user study on the effectiveness of this
application-provided kinematic KR.
The rest of this thesis is organized as follows. Chapter 2 describes other works

related to NVS for moving humans and AR for learning, contrasted with the
contributions of this study. Chapter 3 and 4 describe our methodology: Chapter
3 describes our rigid body part-based reenactment method using view-dependent
texture mapping (VDTM) for texturing, while Chapter 4 describes our statistical,
nonrigid body model-based reenactment method. Finally, chapter 5 summarizes
this thesis.
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2 Related work

This work aims to generate arbitrary views of real human motion and display
it in an intuitive manner, with the eventual goal of facilitating motor learning.
We use novel view synthesis (NVS) techniques in order to capture human motion
and shape from a small number of cameras, allowing the motion sequence to
be rendered from an arbitrary point of view. In order to display the motion
intuitively, we use augmented reality (AR) techniques. These techniques aim
to replicate the natural motions of looking through a lens or using a mirror,
increasing the ease of use. Finally, we apply concepts from the theory of motor
learning in order to evaluate whether we can use such AR systems to help users
learn actions.

2.1 Novel view synthesis

NVS is a field of research that aims to generate novel views of a scene from
an arbitrary point of view, a combination of computer graphics and computer
vision. Since our focus for this work is on views of human motion in particular,
we introduce methods that are able to do this, from image-based NVS that can
handle general scenes, to works that assume a human subject in order to build a
model for reconstruction.

2.1.1 Image-based novel view synthesis

Image-based NVS systems basically use multiple captured images of a scene in
order to generate a view of that scene from a viewpoint that is different from what
was captured. Among the first of these systems used the image-based visual hull
(IBVH) [59]. These build a 3D model of an object by capturing it from multiple
viewpoints, generating the model from the sillhouettes in each image. Using a

5



single camera, as described in the paper, will only let one generate a static 3D
model, as the camera must be moved around to cover different views and the
object must remain static while doing so. Würmlin et al. [92], however, set up
multiple cameras to capture a single subject, extending the technique to cover
moving objects.
Similar to these are the systems based on voxels and marching cubes [22, 55]:

Matsuyama and Takai [58] and Starck, Miller, and Hilton [80]. These systems
first generate, using multiple cameras, a voxel representation of the subject, and
then convert it into a 3D mesh using the marching cubes algorithm. The mesh is
colored using view dependent textures in [58], while [80] blends the RGB frames
from each camera into one integrated texture.
Another class of these systems interpolates captured views in order to generate

novel ones. Zitnick et al. [99] and Karsten et al. [64] segment frames into layers
and then blend the layers captured from two cameras in order to render an image
from a virtual viewpoint that is somewhere in between the two cameras.
Other systems use a combination of depth and RGB data in order to generate

free-viewpoint images. Dai and Yang [23] capture and render a subject in real
time, from an arbitrary viewpoint, using multiple RGB-D cameras. Each camera’s
foregound layer is merged to produce the final result. Alexiadis, Zarpalas, and
Daras [2] also capture a dynamic scene using multiple RGB-D sensors. Each
camera’s output is converted into 3D meshes and merged, taking care to remove
redundant polygons.
Tong et al. [83] propose a setup using 3 RGB-D cameras to scan one subject,

with two at the front and one in the back, in an arrangement such that they do
not interfere with each other. The subject is then rotated and the depth input
merged in order to generate a mesh.
Dou, Fuchs, and Frahm [26] use an RGB-D camera to reconstruct a moving

person by first merging multiple point clouds with nonrigid registration to create
a fused 3D model, then tracking that model.
Most recent methods of this type employ variants of the signed distance field

technique, which is basically a registration problem of multiple depth maps and
represents 3D shape using the zero-level iso-surface of the signed distance field.
This approach was originally designed for rigid scenes. One of the more well-
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Figure 2.1: Top: Zitnick et al. [99]’s capturing setup. Bottom: Waschbüsch et
al. [89]’s scene capture system using multiple cameras.

known examples is KinectFusion [45]. This approach was later extended to handle
non-rigid objects by describing the deformation of objects with transformations
of signed distance field [27, 28, 44, 66]. These methods can generate surprisingly
high quality 3D shapes, but may lack tracking stability with regards to, e.g.,
occlusions.
Depth data also can be converted into 3D point clouds. Point clouds from mul-

tiple viewpoints can be integrated to form a representation of the entire scene.
Waschbüsch et al. [89] capture an RGB-D stream from projector-camera com-
binations around the scene (Fig. 2.1 (bottom)), and then convert the color and
depth data into 3D points, which they then integrate. Kainz et al. [47] also make
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Figure 2.2: Detailed model and motion of a subject captured by De Aguiar et
al. [24]

use of multiple RGB-D streams. They use a combination of point cloud integra-
tion and IBVH. The point cloud method usually produces noisy edges and IBVH
does not detect concavities, but an intersection of the two produces a model with
clean edges and proper concavities.
Zollhöfer et al. [100] use an RGB-D camera and capture deformations in the

subject in real time. To do this, they first create a template mesh in an initial-
ization step by capturing the subject from different angles, i.e. with various rigid
transformations, then perform rigid and non-rigid fitting in real time.

2.1.2 Model-based human shape reconstruction

In contrast to the general approach, the model-based approach uses prior knowl-
edge on the object, i.e. the human teacher, to be captured to facilitate entire
object reconstruction, and most existing methods that take this approach are
designed for human body reconstruction.
One frequently used model is a 3D mesh with an underlying pose. The mesh is

created and fit to the pose using skinning. From there, this mesh-and-pose model
can be fit to the motion sequence. Fitting a 3D mesh to a monocular motion
sequence is difficult, so most works rely on multiple camera setups or depth
cameras. For example, Carranza et al. [18] first initialize a general 3D model to
the body shape of a subject (Fig. 2.3). Then, by capturing that subject using
multiple cameras, they are able to obtain sillhouettes from multiple viewpoints
over multiple frames. For each frame, they then find the pose of the 3D model
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Figure 2.3: Human pose estimation and free-viewpoint image generation system
by Carranza et al. [18] First column: general 3D model. Second
column: two frames of input. Third and fourth column: 3D model fit
to the input.

that fits to each sillhouette. De Aguiar et al. [24], in addition to using RGB
frames, also use a laser scanner to construct a 3D mesh model of the subject in
advance. They then capture the subject’s motion and use keypoints in each frame
to transform the model. In order to locate the 3D positions of the keypoints, they
capture from multiple cameras simultaneously. Using this method, they are able
to capture a detailed mesh with motion (Fig. 2.2). Hofmann and Gavrila [42]
propose a multicamera method to do this in complex, dynamic environments
by a combination of background modeling, volume carving, and finally culling
unsuitable voxel volumes. Similar other works [32, 86] use a visual hull of the
multiple cameras.
Ganapathi et al. [33] and Baak et al. [9] propose a real time mesh-and-pose-

based method of estimating human motion using a single depth camera. Cagniart,
Boyer, and Ilic [16, 17] forgo the pose parameters and simply deform the mesh
using correspondences from multiple cameras. These methods work well, but
having to use an initial mesh increases the burden on the user of the system.
Some may still work with a generic template mesh, but performance may suffer.
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Figure 2.4: Capturing two users with three handheld Kinects simultaneously [95].

Shotton et al. [79] also developed an algorithm that estimates human motion
in real time with a single depth camera, but requiring no initialization. This is
the algorithm that the first version of the Microsoft Kinect RGB-D camera uses.
In [95], three Kinects are used in order to generate free-viewpoint images of human
motion (Fig. 2.4). Each Kinect captures a point cloud of the scene, similar to the
systems above. In order to correctly integrate the point cloud, they use a number
of constraints, such as the extrinsic parameters of each Kinect, and the pose of
the subjects. Using this method, they are able to generate free-viewpoint image
sequences of up to two subjects. In [57], on the other hand, only a single Kinect
is used. They build a 3D model of a subject using voxels and apply the subject’s
motion to the model in order to generate a free-viewpoint image sequence. To
accomplish this, they capture the subject’s pose in each frame, and then assign
voxels to defined body parts.
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Stoll et al. [81] use a body model made up of sums of Gaussians that may
be computed in a preprocessing step before proceeding to estimate the pose of
the subject from multiple cameras. Liu et al. [54] and Rhodin et al. [72] use the
mesh-and-pose model mentioned above, but additionally deform their template
mesh to fit the visual hull from multiple cameras. Similar systems [96, 97] also
exist based on the output of single RGB-D cameras.
Other methods use a statistical parametric model of human body shape in

order to fit arbitrary body shapes, such as SCAPE [6], S-SCAPE [46], the work of
Wuhrer et al. [91], and TenBo [20]. These methods in particular describe plausible
body shapes using pose and shape parameters that control the human body’s
attributes like weight, height, etc. These parameters and the way they affect
the model are calculated statistically, from a mesh dataset such as [37]. Some
methods that adopt the model-based approach basically fit one of these models
to a point cloud of depth observations. For example, Weiss et al. [90] proposed a
reconstruction system using SCAPE, where the fitting process is initialized with
skeletal tracking results. Yang et al. [93] use S-SCAPE as an underlying model
to reconstruct subjects wearing loose or baggy clothing. Bogo et al. [14] use
SCAPE with several modifications including multi-resolution mesh fitting and
using displacement maps for finer details. Due to the modification of multiple
resolution meshes, their system no longer relies on skeletal tracking, which is
error-prone.

2.2 Augmented reality

Our system aims to display a virtual subject with AR. An AR system aims
to present a virtual object, e.g. some textual information or a rendering of a
real person, in a real world environment, in real time [7, 85]. AR has plenty of
applications in medicine, manufacturing, entertainment, etc., but it is especially
suited to learning [29], as well as specifically helping its users learn motions. AR
can be delivered through multiple kinds of media, such as head-worn displays,
handheld devices, or direct projection [8]. Here, we pay special attention to the
“glasses” metaphor of AR [75], in which a user views a lens in front of his or her
eyes, which may be further classified into head-mounted, handheld, and projected
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Figure 2.5: The Navicam system [70], one of the first handheld AR systems. It
consists of a display with a gyroscope and a camera for video see-
through.

AR. In particular, we focus on handheld AR, due to its portability and ease of use.
With this metaphor, the device simulates a lens through which the user views
the world, as seen for example in Fig. 2.5. The device in this case implements
an optical or see-through display using a camera on the back side, augmenting
the captured video stream in real time. AR systems implementing this metaphor
often use some sort of pose estimation to calculate how the user is holding the
device, which should have an effect on how the system renders its output. Thus,
users are allowed to intuitively control the viewpoint with the way they hold the
device. We also reference AR with the “mirror” metaphor [75], an AR metaphor
that aims to simulate an augmented mirror. With this metaphor, on the other
hand, the device simulates a mirror using a display and a camera, both facing
the user, for example as in Fig. 2.6. AR systems implementing this metaphor
will often detect the user and render objects in relation to the user. For example,
a virtual clothes try-on system might render clothes on top of users to let them
see how the clothes look on them. This metaphor is more suited to applications
where users want to view how something might affect themselves, and is intuitive
due to the similarity with a regular mirror.
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Figure 2.6: The mirracle system [13], a mirror AR system that helps users learn
about anatomy.

2.2.1 Learning through augmented reality

Learning is commonly defined as a change that results from practice or experience
in the capability of the learner to respond. In this thesis, we focus specifically on
motor learning, or the learning of physical actions. Knowledge of results (KR),
widely regarded as a critical step in learning, is defined by Salmoni et al. [74]
as verbal, terminal, augmented feedback. Verbal means able to be verbalized or
expressed in language. Terminal means that the feedback comes after the action,
as opposed to concurrently with the action. Augmented means that the feed-
back is explicit and direct. However, Adams [1] puts forth the idea of kinematic
knowledge of results, with 3 different ways of achieving this:

1. Showing the subject his or her motion sequence. Error is inferred.

2. Showing the subject his or her motion sequence, along with the target
motion sequence. Error is directly, implicitly shown.
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3. Giving the subject explicit error information for divisions of the motion
sequence.

In this thesis, we are mostly interested in way 2. In our user studies, we use AR
to directly compare the motions of real humans with our target reenactments.
AR has many aspects that can be used to enhance learning. As an example,

commonly, teachers use props in order to demonstrate lessons or convey meanings.
By using AR, students can interact with tangible virtual objects in real world
contexts [12]. Several flashcard-like AR systems for memory tasks augment entries
with the corresponding 3D object for easy recall [87].
Kancherla et al. [48] describe a system that allows students to visualize the

underlying skeleton of a human body, e.g. the 3D position of a patient’s bones.
This demonstrates the power of AR to convey 3D information in context.
Caarls et al. [15] (Fig 2.7) use AR to enhance museum displays by allowing

users to interact with history, showcasing the interactive nature of AR. Using
these displays, they were able to attract and hold people’s attention, drawing
interest to the content.
Santos et al. [76] propose and evaluate a handheld AR system that aims to

allow users to visualize virtual objects in context. Their findings were that the
system conferred no radical advantages over simply viewing the virtual objects
in terms of realism, depth perception, and visibility. However, as AR offers a
form of experiential learning, or learning from experience [52], these results imply
that AR can become a valid alternative for teachers and students most suited to
experiential learning.
Another strength of AR is that it can have a large positive impact on users’

physical skills [98]. Tsuchida, Terada, and Tsukamoto [84] propose a learning
support system specifically for dancers in a formation. In the place of a missing
dancer, they used a self-propelled robot with a screen displaying the appearance
of the dancer (Fig. 2.8). The robot moves in space according to how the dancer
would have moved. Users who tried the system danced more accurately, i.e. closer
to the actual trajectory, with the robot than without.
The system proposed by Henderson and Feiner [39,40] shows the user instruc-

tions on how to do a specific procedure, by way of arrows and labels in 3D
space attached to key objects (Fig. 2.9). Users wore an optical see-through head-
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Figure 2.7: Visualizing history with AR [15].

mounted display, and the instructions were overlayed on top of their view. Users
who were surveyed preferred to use the proposed system over an instructional
video with similar content displayed on an LCD monitor.
Yang and Kim [94] developed a first-person motion-training system which made

use of the “ghost” metaphor. The ghost in the system is a semitransparent 3D
model which the user must imitate. Being able to perfectly follow the ghost
means that the user has performed the motion correctly, but we consider that
the first-person view means that the user may not be able to easily see the ghost’s
actions, especially if the user and the ghost are on the same spot. Nevertheless,
we make much use of the ghost metaphor in this thesis.

2.2.2 Handheld augmented reality

Handheld AR systems offer portability, comparative ease of use, and availability.
These, however, come at the cost of power, which may have a critical impact
on the performance and usability of the system. A secondary challenge that
all handheld AR systems face is that of tracking the pose of the device. Some
rely on non-visual data, such as from gyroscopic sensors. Many rely on color-
coded stickers, AR markers, and other fiducial objects. Others make use of visual
features of the environment itself.
Amselem’s work [3] makes use of a handheld display with a Polhemus tracker

to estimate the display’s position and orientation. Similarly, Rekimoto’s Transvi-
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Figure 2.8: Dancing with a robot [84]. The robot carries a screen that simulates
the appearance of a missing dancer.

sion [69] and Navicam [70] (Fig. 2.5) consist of a screen with an attached gyro-
scope, with a separate workstation. In these systems, the display itself does not
process information; instead, the appropriate output is streamed via a wired con-
nection based on the current tracking status. This limits these systems’ usable
environment. The mPARD system [68] relaxes this limitation somewhat, replac-
ing the wired connection with a wireless one. Aside from this, other works aim
to reduce the load of the workstation by splitting the processing ( [34, 67, 78]).
However, they still do not completely eliminate the reliance on an external work-
station.
With that said, these are comparatively early works. Due to the recent ad-

vances in smartphones and tablet PCs, several systems and frameworks have
managed to build working systems on purely mobile devices that provide ade-
quate performance ( [30,41,43]).
Fiducual markers are another option for tracking, taking the square marker

introduced in [71] as an example. Wagner and Schmalstieg [88] [77] developed a
framework for handheld AR applications by porting ARToolkit [49], one of the
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Figure 2.9: The AR instruction system proposed by Henderson and Feiner [40].
The AR arrows instruct the user on how to move in 3D space.

more widely distributed marker tracking systems for desktop PCs, to the Win-
dows CE mobile operating system. They demonstrated their framework’s prac-
tical value by implementing several educational games. Others developed their
own low-cost marker tracking system specifically for consumer cellphones [63,73].

2.2.3 Mirror augmented reality

The mirror metaphor presents a screen as a mirror reflection facing the user,
which is then augmented with virtual objects. This metaphor is well-suited to
applications which focus on the user’s own body and immediate environment,
which are reflected in the mirror. A common application of this metaphor is in
virtual try-on systems, applications that allow users to virtually try on clothes
without having to handle the physical objects ( [35, 38, 61]). Fiala developed a
framework for such systems that utilizes fiducial markers on users’ bodies [31]
(Fig. 2.10).
In order for users to visualize how their own muscles work, Murai et al. [65]

developed a system to display muscles on top of users of a mirror system, to make
it easier for users to observe which muscle was [65]. For educational purposes,
Blum et al. [13] developed a mirror AR system for learning anatomy (Fig. 2.6).
The user stands in front of the system and internal organs and skeletons appear
on top of the appropriate place on the user’s body. Meng et al. [60] developed
a similar system, with an emphasis on anatomical accuracy. Bauer et al. [10, 11]
contribute another such system, calibrating the skeleton bones and organs to
individual users and e.g. maintaining consistent bone lengths, for anatomical
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Figure 2.10: Fiala’s magic mirror system [31]. A user wearing AR markers is
reflected and augmented virtually by the mirror.

plausibility (Fig. 2.11).
Mercrier et al. [62] created a mirror system called Mind-Mirror, which super-

imposes a virtual brain onto the user’s head. This virtual brain displays the
user’s brain activity accurately by using EEG sensors and is placed in the correct
location thanks to skeleton tracking.
Kwon and Gross [53] developed a motion learning system that displayed the

motion on a screen, recorded the learner’s own motions, and compared them. The
system itself explicitly gave visual feedback based on the learner’s motions. We
consider, however, if the same sort of system were to be implemented as an AR
mirror, for example by overlaying the teacher onto the student. In this case, even
without the system giving explicit feedback, learners can find out by themselves
the exact region they are making mistakes, decreasing the risk of miscommuni-
cation. The YouMove system [4] is one such application. It first records and
tracks the motion of a teacher using an RGB-D camera. Afterwards, learners
stand in front of the augmented mirror, (Fig. 2.12) and the system overlays the
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Figure 2.11: Superimposing e.g. 3D skeletons, muscles, and internal organs on
top of learners’ bodies in order to facilitate anatomy education [10].

subject’s motions on their reflection. In this way, viewers can more easily copy
difficult motions. The system also provides a comparison between the subject
and a viewer using 3D stick figures, which the viewer can rotate in order to view
the motions from different directions.
Mixed-reality physical therapy systems are related to motion learning, as the

system is guiding a user’s motion [50]. Tang et al. [82] develop a system for
assisting physical therapy at home by demonstrating motions to users (Fig. 2.13).
Recommended motions are displayed as wedge-shaped overlays on top of a mirror
display, on the side of which a top view is included.

2.3 Contributions of this thesis

This thesis proposes multiple methods for capturing, synthesizing, and viewing
reenactments (see Table 2.1), as well as two applications of reenactments towards
action learning. Our main contributions are:

• We introduce the concept of reenactments, free-viewpoint images of se-
quences of human motion. Reenactments potentially have a wide range of
applications, including watching performances, recording sports, etc., but
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Figure 2.12: YouMove, AR system using the mirror metaphor [4]. The ideal mo-
tions are overlayed on top of a mirror image of the user, reflected on
a screen.

in this thesis we focus on learning motions. Our proposed systems imple-
ment reenactments with AR techniques, which lets users intuitively choose
the viewpoint, and displays the reenactments in a natural way in the same
location that the actor was captured. This kind of presentation through
AR is novel, when compared to the existing methods of NVS.

• We propose a novel method for NVS utilizing only a single RGB-D camera,
representing the human body as a set of rigid body parts. We shape each
body part using the depth images and exploit skeleton tracking in order
to represent the motion. We texture each body part individually using
VDTM, taking into account the pose of the person in each captured RGB
image as well as the camera positions.
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Figure 2.13: The Physio@Home system [82], a physical therapy system. Users
must follow the motion of the colored wedges, with the front view
on the right and the top view on the left.

• We propose a second novel method for NVS that uses a statistical nonrigid
body model to represent the human body. We fit the model’s parameters
to the entire set of depth images, which gives us the model’s shape and
motion. On the other hand, given particular shape and motion parameters,
the model generates an appropriately deforming mesh, which accounts for
missing regions in the observation. This method is flexible and may use one
or more RGB-D cameras.

• We implement a handheld AR reenactment system that allows users to
view reenactments on a handheld device. We quantitatively evaluate the
performance of our system in terms of its effectiveness in learning specific
poses. We show that by viewing the AR reenactments, users are more
easily able to comprehend ambiguous poses. We also subjectively survey
the visual quality of the synthesized reenactment. We found that while the
visual quality is not at the level of standard video, it is much improved, and
is enough to be easily comprehensible.

• We implement a mirror AR reenactment system that allows users to view
reenactments on a “magic mirror,” allowing them to easily imitate and
learn motions. We quantitatively evaluate the performance of our system
by comparing how well users learn actions on it as opposed to regular video.
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Table 2.1: Comparisons between reenactment systems. Our rough shape-based,
voxel carving-based, statistical body-based systems have desirable
characteristics.

Capturing equip-
ment

Shape reconstruc-
tion

Clothing handled

Rough shape
(Section 3.3)

1 RGB-D camera Scale pre-built
model

Pants, shirts

Voxel carving
(Section 3.4)

1 RGB-D camera Simultaneous Pants, shirts

Statistical body
(Section 4)

2 RGB-D cam-
eras

Simultaneous Pants, shirts

[18] 7 RGB cameras Scale pre-built
model

Skintight

[99] 8 RGB cameras No Any
[24] 8 RGB cameras Need laser scan Any
[95] 3 RGB-D cam-

eras
No Any

[14] 1 RGB-D camera Simultaneous Skintight
[93] 68 RGB cameras Simultaneous,

through clothing
Any

We show that users are more accurately and easily able to perform the
recorded actions by using our system.
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3 Rigid body part-based
reenactment with
view-dependent texture
mapping

3.1 Overview

One way to represent and render the human body is as a collection of rigid body
parts. The shape of each body part is determined beforehand, and is assigned
a transformation, i.e. rotation and translation, in each frame of the sequence.
Finally, in order to render a natural-looking human body, we make use of view-
dependent texture mapping [25] to texture each body part according to its trans-
formation. VDTM is a texturing method that uses a large amount of color images
to texture a virtual shape, by searching for the closest image to the virtual cam-
era, which would show the viewer the correct angle of the object. It was originally
proposed to render geometrically simple shapes that give the illusion of detail,
and we use it here in a similar way.
This chapter proposes two methods that use this representation. The first

method uses cylinders to approximate the shape of each body part. Cylinders do
not follow the shape of the human body exactly, but we made use of VDTM in
order to compensate for this.
The second method uses voxel volumes to represent each body part. We per-

form a voxel carving stage in order to fit each body part volume to the actual
body part, relying on the truncated signed depth field [45].
In order to evaluate this method of reenactment, we developed a mobile AR
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reenactment system and performed a user study. The system allowed users to
view the reenactments on a mobile device equipped with a camera, letting them
change the view of the reenactment by physically changing the device’s view. The
user study evaluated the quality of the reenactments, the power of the system to
let learners differentiate ambiguous motions, and the usefulness of the application.

3.2 RGB-D sensor pose estimation

Our first step is estimating the location of the actor within the world. We assume
that the videographer is using a single RGB-D camera, capturing a number of
frames consisting of one RGB and depth image each. For the n-th RGB image
of the captured stream, we first estimate the RGB-D sensor’s pose as extrinsic
camera parameters Cn with respect to the world coordinate system using the
RGB image with a simultaneous localization and mapping (SLAM) technique.
Figure 3.1 shows the coordinate systems in use. In the system, the world

coordinate system is defined as a unique base of the coordinate system for both
the capturing and reenactment stage, and is set as the camera pose in the first
frame in the capturing stage. The camera pose is treated as a transform from a
sensor coordinate system (i.e. RGB-D sensor or viewer’s camera) to the world
coordinate system.
Here, it should be noted that in practice, 3D points regained from the depth

sensor on the RGB-D sensor and those in the SLAM system’s map are usually in
different coordinate systems. Additionally, the depth sensor is distinct from the
RGB camera, and thus there may be some slight translation or rotation between
them. In order to correctly render our reenactment with the model, we must
calibrate the transformation parameters, i.e. rotation R, translation t and scale
s, among the coordinate systems.
Fortunately, PTAMM [19] tracks a number of map points, which are feature

points with estimated 3D coordinates in the world coordinate system. We can
project each map point into the depth image to get the corresponding pairs of
3D points, which then gives us the transformation parameters. Given M map
points, with pm as the position of them-th map point relative to the RGB camera
and qm as the corresponding point based on the depth image, we obtain the
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Figure 3.1: Relationship among RGB-D sensor coordinates, viewer’s camera co-
ordinates, and world coordinates.

transformation from the skeleton tracker coordinate system to the RGB camera
coordinate system as follows:

(R̄, t̄, s̄) = arg min
(R,t,s)

M∑
m=1
‖pm − (sRqm + t)‖2. (3.1)

This least squares problem can be solved by using singular value decomposition.
From this point on, all points based on the depth sensor are assumed to have
been transformed into the unique world coordinate system defined in the RGB
camera coordinate system, i.e. the camera pose estimated from SLAM.
The next sections detail the flow of rough shape-based reenactment, and then

voxel carving-based reenactment.
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3.3 Rough shape-based reenactment

3.3.1 Capturing stage

For the rough shape-based reenactment, we rely on a skeleton tracker to capture
the actor’s motion. The skeleton tracker assumes a model of the human body
consisting of a set of joints. Each joint has a 3D position which the skeleton
tracker estimates in each frame. After estimating the skeleton in a sequence of
frames, we then apply shape to the skeleton by defining a set of body parts from
the joint positions and assigning a cylinder to each body part.
Skeleton tracking
Figure 3.2(a) shows the NJ joints that compose a skeleton, where NBP vectors
identified by specific pairs of the joints are referred to as body parts. Each body
part can be viewed as a vector formed by the pair of the joints in a specific order.
The skeleton of the actor’s body in the n-th frame can be extracted and tracked
using an existing technique [79]. Assuming a single actor in the scene, we denote
the skeleton in the n-th frame by

Sn = {sn,i|i = 1, . . . , NJ}, (3.2)

where sn,i is the 3D position of the i-th joint of the skeleton in the RGB-D sensor’s
coordinate system shown in Fig. 3.1.
Using the inverse of Cn, which transforms the 3D coordinates in the world

coordinate system to the RGB-D sensor’s one, we transform the 3D joint positions
in Sn by s′n,i = C−1

n sn,i for all i in Sn and define the skeleton in the world
coordinate system as S′n = {s′n,i|i = 1, . . . , NJ}, so as to store the skeleton in the
world coordinate system.
We store the n-th video frame, i.e., skeleton Sn, the RGB image In, and depth

image Dn in the database.
Rough 3D model preparation
To render the reenactment of the actor, we prepare a 3D model for generating
a novel viewpoint image of the actor. We use a cylinder to represent each body
part. Since the heights of the cylinders are trivially determined from the length
of the body part vector, all we need to determine the cylinders are their radii. For
this, we first find the index of a single representative frame n̂ from the recorded
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Figure 3.2: (a) The skeleton representation. Circles are joints, and segments are
body parts. (b) Corresponding depth image with definitions of some
angles. (c) Rectangles fitted to each body part.

video stream and then fit rectangles to the actor’s region in the depth image of
the representative frame Dn̂, which can viewed as a projection of the cylinders
onto the image plane of the RGB-D sensor.
To obtain radii and heights of the cylinders based on the rectangles that are

their projection, the directions of their heights must be perpendicular to the
optical axis of the RGB-D sensor. This means that the representative frames
should contain the actor’s appearance that meet the following requirements: (i)
both arms should be away from the body, (ii) the line segments formed by the
joints corresponding to both hands should be parallel to the image plane as
possible, and (iii) the legs should be uncrossed. These requirements ensure that
the representative frame has body parts that are separate from each other as
shown in Fig. 3.2(a), making it easier to build an accurate model of the actor’s
body. Such a pose may be specifically requested of the actor, but it may also be
captured during the normal course of recording. We find such a pose by inspecting
the angles formed by the body parts.
As shown in Fig. 3.2(b), we denote the angles between the torso and the left

and right arms in S′n by θL
n and θR

n , respectively. We also define term g(φR
n , φ

L
n)
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that gives a positive value when legs are uncrossed as

g(φR
n , φ

L
n) =

1 if φR
n > φL

n

0 otherwise
, (3.3)

where φL
n and φR

n are the angles between [1 0 0]T and the vectors of the left leg and
right leg, respectively. This representative frame selection is done in the RGB-D
sensor’s coordinate system, assuming that the user who capture the video stream
does not rotate it very much. The above requirements can be empirically encoded
in the criterion

E(n) = θL
na

L
n + θR

n a
R
n + λg(φR

n , φ
L
n), (3.4)

where aL
n and aR

n are the x-components of the left and right arm vectors, whose
lengths are normalized to 1 and λ is an empirically-defined constant. The first
and second terms ensure that the arms are lifted away from the torso and that
they are parallel to the x-axis of the RGB-D sensor’s coordinate system. We
obtain the index of the most appropriate frame in sense of the above criterion by
maximizing E, i.e.,

n̂ = arg max
n

E(n). (3.5)

We then find the rectangle that fit to each body part in Dn̂, as in Fig. 3.2(c).
The radius r of the cylinder for the body part is then given as the length of the
line segments perpendicular to the body part segment. For compensating the
slight differences in the body part segment length from frame to frame, we store
in the database the radius rate given by r/l for each body part, where l is the
length of the body part segment.

3.3.2 Reenactment stage

Since our 3D model of the actor is rough and no color is assigned to it as in
Fig. 3.3 (a), we apply textures to our 3D model so as to improve its visual qual-
ity. For a static scene, view-dependent texture mapping proposed by Debevec et
al. [25] works well for this purpose by assigning as textures those images which
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were captured from the viewpoint close to that of the novel image to be synthe-
sized. However, we cannot adopt it naively because the proposed system captures
a moving actor and uses only a single RGB-D sensor and thus there are no video
frames that capture the same scene at the same time from different viewpoints.
Our idea for solving this problem is based on our observation that there still are
several video frames that capture a similar actor’s pose, which means that we
can select a frame such that the joint positions in the selected frame are close to
those in the novel image to be synthesized.
Applying camera pose
When reenacting the actor’s appearance from the skeleton currently being ren-
dered, S′, we first transform joint s′i in the world coordinate system into the
viewer camera’s coordinate system using CS, giving us S∗. We also transform S′n
for all n into its original RGB-D sensor’s coordinate system using Cn, giving us
Sn.
Appropriate texture search
Since the position of the actor in the world coordinate system varies frame by
frame, to make the selection translation invariant, the position of a specific joint
is subtracted from the all joint’s position so that the specific joint coincide the
origin. In this work, we choose the neck joint shown in Fig. 3.2(a) as the origin.
We select the appropriate video frame, of which associated skeleton Sn in the
original RGB-D sensor’s coordinate system is closest to the S∗ in the viewer
camera’s coordinate system. To summarize, we find the appropriate frame index
n̄ by

n̄ = arg min
n

NJ∑
i=1
‖(s∗i − s∗neck)− (sn,i − sn,neck)‖, (3.6)

where s∗neck and sn,neck are the neck joint positions of S∗ and Sn, respectively.
The limitation of this texture selection is its inability to preserve the facial

expression of the actor. However, we consider that it is sufficient to make the
actor’s motion comprehensible.
Applying textures
Although we selected the appropriate frame for coloring the cylinder, since the
poses represented by S∗ and Sn̄ are not exactly the same, naively projecting
the cylinder to the selected RGB frame can lead to inconsistency between the
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Figure 3.3: (a) The cylinder model. Cylinders are colored for visibility. (b) The
colored cylinders, without an individual mapping for each cylinder.
(c) The colored cylinders corrected to have an individual mapping for
each cylinder.

cylinders and the frame as shown in Fig. 3.3(b). We thus find a projection
individually for each cylinder that compensates the actor’s poses in S∗ and Sn̄,
and use the projection to determine the color on each 3D point on that cylinder
(Fig. 3.3(c)). Finally, we superimpose the reenactment on the real-time RGB
video frame from the viewer’s camera.

3.4 Voxel carving-based reenactment

3.4.1 Capturing stage

In this section, we detail the processes which estimate the camera’s and actor’s
pose in each frame and reconstruct the actor’s body model. As the input for the
processes, a user captures a sequence of RGB-D frames of an actor performing a
motion sequence, consisting of RGB images {In|n = 1, ..., N} and depth images
{Dn|n = 1, ..., N}.
RGB image segmentation
We segment the actor from the background of the RGB images in order to achieve
correct body part registration and correct texturing in the reenactment stage.
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Figure 3.4: Left: frames from the videos. Right: the same frames from a different
angle, reenacted by our system.

Here, we employ the “BodyIndexFrame” functionality from the Kinect SDK,
which tells us which depth pixels belong to our actor and which belong to the

31



background.
RGB-D sensor pose tracking and mapping
To obtain camera pose Cn for the n-th frame, we use PTAMM [19]. Cn can
also be interpreted as the transformation from the current camera coordinate
system to the world coordinate system. PTAMM also provides a map of the
environment that is constructed of 3D points gained during visual SLAM, as well
as their descriptors. This map is in the world coordinate system, which in our
system is equivalent to the camera pose in the first frame, i.e. C1 is the 4 × 4
identity matrix.
Body part registration
In order to build an accurate model of the actor’s body, we use Malleson et al.’s
method, described in [57]. They define a model of the actor’s body that consists of
body parts. In each frame n, each body part b has transform Tb,n, which defines
its pose, i.e., its rotation and translation, for that frame. Each body part also has
a voxel volume Vb, which defines its shape. Pose and shape are closely related,
because the accuracy of the reconstructed shape depends on the accuracy of the
estimated transforms: in order to correctly shape each body part, each volume
must be correctly aligned in each depth image, and this process is called body
part registration.
For body part registration, Malleson et al. use a combination of point-to-point

and point-to-plane ICP, with an additional constraint given by Kinect skeletal
pose estimation, in order to register each body part in each frame. ICP works
better with incremental transforms, and so given the previous frame’s transform
Tb,n−1, the current frame’s transform Tb,n is defined using a transform delta ∆T:

Tb,n = ∆TTb,n−1. (3.7)

∆T is calculated over a number of iterations, until convergence, by minimizing
the cost function:

Eb,n(∆T) = Ep
b,n(∆T) + woE

o
b,n(∆T) + wsE

s
b,n(∆T), (3.8)

where Ep
b,n(∆T) is the point-to-plane term, Eo

b,n(∆T) is the point-to-point term,
and Es

b,n(∆T) is the skeletal pose constraint term. Relative weighting coefficients
wo and ws are applied to the terms. For our system, wo is set to 1 and ws is set to
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half of the number of voxels in Vb. For the point-to-plane term and point-to-point
terms, we register the body part by attempting to fit the 3D points belonging to
the body part on frame n − 1 to the 3D points on frame n, taking into account
the difference in camera pose. The 3D points that belong to the body part are
obtained by calculating the 3D coordinate of each depth pixel in depth image
Dn−1 and taking those 3D points that are within the volume corresponding to
the body part. Each volume has predefined dimensions according to the body
part and takes the body part transform Tb,n−1. For the first frame, we set each
body part transform to the one estimated by the Kinect skeleton tracker.

Point-to-plane ICP term: The point-to-plane ICP term Ep
b,n(∆T) returns the

sum of squared distances between each 3D point belonging to body part b
on frame n− 1, which is regained from depth image Dn−1, and the tangent
plane on the corresponding point on the surface of frame n, which is a set
of 3D points regained from depth image Dn. The point correspondences for
point-to-plane ICP are defined as the point pairs having the same depth
pixel coordinates across Dn and Dn−1, taking into account the difference in
camera pose between Cn−1 and Cn and the body part transform delta ∆T.

Point-to-point ICP term: The point-to-point ICP term Eo
b,n(∆T) similarly

returns the sum of squared distances between each 3D point belonging to
body part b on frame n − 1, which is regained from depth image Dn−1,
and the corresponding point on the surface of frame n, which is a set of
3D points regained from depth image Dn, with the difference being that
the point correspondences are calculated using optical flow between color
images In−1 and In.

Skeleton constraint term: The skeleton constraint term Es
b,n(∆T) returns a

measure of distance between the calculated body part transform Tb,n and
the estimated body part transform T∗b,n acquired from the Kinect skeleton
tracker.

In order to be able to solve the cost function linearly the small rotation angle
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assumption is used to define the transform ∆T as:

∆T = [∆R|∆t] =


1 α −γ tx

−α 1 β ty

γ −β 1 tz

0 0 0 1

 . (3.9)

The derivative of Eb,n(∆T) can then be computed for each component (α, β, γ,
tx, ty, tz), obtaining a 6 × 6 symmetric linear system, which is solved as in [45].
∆T is composed onto Tb,n after each iteration.
Body part mesh reconstruction
After estimating transform Tb,n for body part b in frame n, the corresponding
depth imageDn is then used to reconstruct its 3D shape as a mesh model. For this
process, we basically follow the method [57], with a slight modification. Here, the
3D shape of each body part is reconstructed as a surface model using the voxel-
space signed distance function (SDF) [45] and the marching cubes algorithm [55].
Voxel volume Vb has predefined width Wb, height Hb, and depth Db and contains
Wb × Hb × Db voxels. For each voxel, scores can be calculated indicating the
average observed signed distance from the surface. Due to such uncertainties as
fluctuating depth measurements, each depth image’s contribution should be lim-
ited. Thus, the SDF is truncated to the range [−µ, µ]. In addition to this, signed
distances beneath the opposite side of the surface will usually be incorrect, as the
opposite side is unobserved; therefore, to make the truncated SDF calculation
more robust, each frame’s contribution that are less than −µ is ignored in order
to avoid interfering with any possible surfaces on the other side. More concretely,
the score is defined as follows:

F (v) =
N∑

n=1

FDn(v)
N∗(v) , (3.10)

FDn(v) =


µ : µ ≤ η(v)
η(v) : − µ ≤ η(v) < µ

0 : η(v) < −µ
, (3.11)

where η(v) is the signed distance from the surface to voxel v taking into account
the transform Tb,n, µ is a predefined constant to truncate the SDF, and N∗(v) is
the number of frames excluding those with η(v) < −µ.
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Figure 3.5: The generated body part meshes from different angles.

Finding the zero-crossings will thus give an estimate of surface locations. We
apply the marching cubes algorithm [55] in order to convert these voxels into a
mesh for each body part, as in Fig. 3.5.

3.4.2 Reenactment stage

This section details the process for reenacting the pose (i.e., the pose of each
body part b, Tb,n) in the n-th frame overlaid on the real-time image I∗.
Applying camera pose
We use the tracked camera pose C∗ in order to transform each body part to the
viewer camera coordinates:

T∗b = C∗C−1
n Tb,n, (3.12)

where b is the body part id and n is the frame.
Appropriate texture search
We then apply the appearance of the actor to the transformed body parts by
using view-dependent texture mapping. Most existing techniques for NVS use
multiple RGB/RGB-D cameras and sensors in order to reduce invisible regions
due to occlusion [99] [18] [24] [89]. Since our system captures from a single RGB-
D sensor, it instead uses appropriate RGB images over the course of the entire
recording. We find appropriate textures for each body part using the similarity
of the rotation components of their transforms as a metric. As in Fig. 3.6, we
want to find frame n with the rotation that is closest to the rotation computed
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Figure 3.6: The difference between captured body part rotation Rb,n and virtual
rotation R∗b is expressed as another rotation R∗bRT

b,n.

by equation (3.12):

n̄b = arg min
n

Φ(R∗bRT
b,n), (3.13)

where Φ(R) converts rotation matrix R into its axis-angle form and returns the
angle, i.e., the magnitude of the rotation.
Applying textures
We map all x∗, the 3D positions of all visible pixels on the surface of the body
parts, onto the corresponding transformed mesh as xn̄b

, which are then projected
onto the 2D image in order to get the color at the corresponding pixel of RGB
image In̄b

.

xn̄b
= Tb,n̄b

T∗−1
b x∗, (3.14)

x2D = ρ(xn̄b
), (3.15)

where ρ(x) transforms a point into pixel coordinates by multiplying by the camera
matrix and dividing by the z-coordinate.
Since the actor is reenacted from a viewpoint different from those at which the

textures were originally captured, it should be noted that xn̄b
can be occluded

by other body parts as shown in Fig. 3.7. Background pixels can be detected
by referring to the results of actor/background segmentation. In this case, we
consider it to be an extraneous part caused by the simplified geometry model,
and we show instead the corresponding pixel on the real-time image. To handle
occlusion, we take the following strategy. First, the system detects the occlusion
in In̄b

for body part b by projecting each body part in the appropriate pose for
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Figure 3.7: Left: checking for occlusions by projecting different body part volumes
onto a texture. Right: unoccluded regions for the chest body part.

Figure 3.8: Textured meshes for the surface model shown in Fig 3.5.

the n̄b-th frame, i.e. Tb,n̄b
onto the In̄b

, testing for depth map rendered for all
body parts(see Fig. 3.7). If the body part is not occluded, the projected body
part and the depth map coincide. Otherwise the body part lies farther than the
depth map and the system finds the next-best frame instead of In̄b

and repeats
the process until it finds one in which the corresponding pixel is not occluded.
The output is shown in Fig. 3.8.
Finally, we overlay the environment image with the synthesized reenactment,

as shown in Fig. 3.9.

3.5 User study

We implemented the proposed reenactment viewing system on a mobile device
and evaluated its effect on users’ comprehension of actor’s poses. In this exper-
iment, the effectiveness of the system is evaluated by checking the pose errors
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Figure 3.9: Environment image overlayed with reenactment.

defined between the true pose and the pose recognized by subjects from the sys-
tem’s output. We then confirm the quality and applicability of the proposed
reenactment systems.

3.5.1 Mobile reenactment viewer

We captured motion sequences of performances using a Microsoft Kinect 2. We
implemented our AR reenactment system on a Microsoft Surface Pro 2 with 4GB
RAM and 1.60GHz processor. For skeleton tracking as well as actor-background
segmentation, we relied on the implementation in the Kinect SDK [79]. Our
body model contains 15 body parts, seen in Fig. 3.10. With this configuration,
we achieved an interactive FPS ranging from 8 to 12 frames per second during
reenactment.

3.5.2 Evaluation

In order to evaluate the system, we experimentally tested users’ comprehension
of actor’s poses with the reenactment compared with their comprehension with
conventional 2D images and video using 21 subjects. The experiment consists of
two parts.
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Figure 3.10: 15 body parts used for body modeling.

3.5.3 Experimental setup

Pose angle estimation
In the first part of experiments, users were tasked with estimating the angle of
the actor’s arm. The actor was asked to form four different poses with specific
angles between his arm and torso, and we captured these poses with both our
proposed system and a conventional camera, as shown in Fig. 3.11. Each pose was
captured from a different viewing angle, as illustrated in Fig. 3.12 and detailed in
Table 3.1, in order to test the effect of viewing direction on angle comprehension.
In order to aid our system in collecting textures, we also captured the actor from
different points of view, asking him to hold the pose as still as he could. For
each pose, we showed half of our users the conventional image, and the other half
were made to view the pose as an AR reenactment using our proposed system.
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(1-1) (1-2) (1-3) (1-4)

Figure 3.11: Conventional images depicting the poses which were shown to the
users for pose angle estimation. In each pose, the actor forms a
different angle with his arm. Each image is also taken from a different
viewing angle.

Table 3.1: Pose angle estimation results. For the users’ answers, the mean abso-
lute errors (MAE) for both the conventional images (conv.) and the
proposed system (prop.) were calculated.

Arm angle Viewing angle Conv. MAE Prop. MAE

Pose (1-1) 47◦ 0◦ 7.25◦ 7.62◦

Pose (1-2) 68◦ 26◦ 6.70◦ 9.01◦

Pose (1-3) 95◦ 46◦ 10.48◦ 3.11◦

Pose (1-4) 32◦ 57◦ 10.59◦ 4.90◦

Users alternately viewed either the conventional image or the AR reenactment
per pose. Specifically, users were divided into Group A and Group B. Users in
Group A were shown Pose (1-1) and (1-3) in conventional images and Pose (1-2)
and (1-4) using the proposed system, while those in Group B were shown the
opposite.
Users were asked to form the angle using a compass while viewing the pose.

We then calculated the mean absolute error (MAE) for all users for the viewers
of the conventional image and of the proposed system.
Table 3.1 also shows the results of the experiment. The proposed system’s

errors were generally lower than the conventional result. We can see that as the
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Camera

Viewing
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Figure 3.12: Viewing angle shown from the top. A value of 0◦ means that the
actor is facing the camera. Arm direction is always perpendicular to
the actor’s front.

viewing angle of the conventional image increases, the arm angle estimation error
also tends to increase. Because the proposed system allows users to view the
actor’s pose from wherever they want (see Fig. 3.13), they could choose to view
it from the viewpoint that allows for the easiest estimation, i.e. from directly in
front of the actor.
We also note that for the proposed system, the MAE is higher for Poses (1-1)

and (1-2) than for (1-3) and (1-4). We consider that this may be caused by the
order of poses which are shown to users: group A users are shown Pose (1-1) first,
then Pose (1-3), while group B users are shown Pose (1-2) first, then (1-4). This
means that it takes some time to get used to our system.
Pose matching
In the second part of experiments, users were tasked with discerning the actor’s
pose. We formed four poses with a small mannequin and had the actor perform
these poses, which we captured both with a conventional camera and our proposed
system (Figs. 3.14 and 3.15). Similarly to the angle estimation, we captured
the actor from different points of view in order to aid our texture selection,
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(1-3)

Figure 3.13: Poses (1-1)–(1-4) for pose angle estimation from the front (top row)
and side (bottom row), viewed using the AR reenactment system.
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Table 3.2: Pose matching results. Conventional and proposed system results refer
to the rate of correct answers.

Correct answer Conventional result Proposed system result

Pose (2-1) C 80% 82%
Pose (2-2) B 40% 73%
Pose (2-3) C 55% 100%
Pose (2-4) A 36% 80%

asking him to hold the pose as still as he could. For each of the four initial
poses, we also formed two similar poses with the mannequin, shown in Fig. 3.16,
making 12 poses in all. We alternately showed users the conventional image, and
the AR reenactment. Users in Group A viewed Pose (2-1) and (2-2) using the
conventional images and (2-3) and (2-4) using the proposed system, and users in
Group B viewed the opposite.
Users chose the closest pose from three mannequins’ poses (Fig. 3.16). We

decided to let the users choose between mannequin poses because these would
not contain cues, e.g. clothing folds, shadows, etc., that would relate them to the
conventional image. Users were encouraged to view the AR reenactment from
different viewpoints.
Table 3.2 shows the results for this experiment. Users scored higher with our

system than with conventional images for all poses. We consider that this is
because the poses are not very discriminative from the frontal views that were
shown to the users, while our system can provide side views.

3.5.4 Survey

We gave users a survey on the quality and applicability of the system, comparing
it to the quality and applicability of the rough shape model-based system. First,
users were shown the “Exercise” motion sequence rendered using rough shape-
based reenactment, as in Fig. 3.17 (left). Users were then asked to answer the
survey in Table 3.3. Next, users were shown the same sequence rendered using
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(2-1) (2-3)(2-2) (2-4)

Figure 3.14: Conventional images depicting the four poses that were shown to the
users for pose matching.

(2-1) (2-3)(2-2) (2-4)

Figure 3.15: Poses in Fig. 3.14 viewed from the side.

(2-1) (2-2)

(2-3) (2-4)

A AB C CB

A B C A B C

Figure 3.16: The mannequins to match the poses to. Correct answers are C for
1, B for 2, C for 3, and A for 4.
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Figure 3.17: Left: “Exercise” sequence viewed with the previous, cylinder-based
system. Right: The same frames viewed with the proposed system.
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Part 1. For each reenactment (rough shape-based, voxel carving-
based):

Q1 I am not bothered by holes and artifacts in the reenactment.

Q2 The reenactment’s motion is smooth.

Q3 The reenactment resembles the conventional video.

Part 2. For each reenactment (rough shape-based, voxel carving-
based): I would prefer to watch the reenactment over the conven-
tional video for...

Q4 ...performances.

Q5 ...training videos.

Q6 ...sports recordings.

Q7 ...videos of daily life.

Figure 3.18: Questions asked in our user study. Users answered from 1 (strongly
disagree) to 5 (strongly agree).

voxel carving-based reenactment, as in Fig. 3.17 (right) Users were then asked to
answer the same questions a second time.
The survey shows that while users were not entirely satisfied with the quality,

they were positive toward the reenactment. The answers to Q1 shows that enough
holes and artifacts exist in the rendering that they disturb the users’ experience
of the previous system. These holes are the result of the rough 3D modeling
of the target. The output quality has been improved for the proposed system
by employing the state of the art body modeling method [57]. Q2 shows that
most of the users thought that the motion was smooth enough, with the proposed
system scoring higher. Q3 asks whether the synthesized reenactment looks like
the original video. If viewed from the original capture point, it should strongly
resemble the video since it is using the same video frames as textures. If viewed
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Table 3.3: Users’ averaged answers for the survey in Fig. 3.18 for rough shape
model-based reenactment (A) and voxel carving-based reenactment
(B). Users answered from 1 (strongly disagree) to 5 (strongly agree).

A B
Q1 2.62± 0.86 3.86± 1.03
Q2 3.71± 1.00 4.29± 0.76
Q3 3.81± 1.11 4.24± 0.76
Q4 3.10± 1.40 3.62± 1.26
Q5 4.05± 1.00 4.57± 0.73
Q6 3.52± 1.30 4.05± 1.08
Q7 2.43± 1.52 3.29± 1.22

from elsewhere, however, it must be believable enough to look like it was captured
from that viewpoint, and as the answers to Q3 show, most users felt that it
accomplished this task, with the proposed system’s output being closer to the
conventional video due to having a more accurate body model. Reactions to
the listed applications were also positive. The highest-scoring application were
training videos and sports recordings. Users scored our proposed system higher in
all aspects compared to our previous system, which shows a marked improvement
in quality.

3.6 Summary

This section shows two methods to capture human motion as a reenactment, as
well as an application for viewing the reenactment in the form of a handheld AR
reenactment viewer. For both methods, the process of capturing only requires
a single RGB-D camera, which makes it easier for non-expert users. The reen-
actments are rendered by reconstructing the actor’s body parts using 3D mesh
models and texturing them using the RGB video sequence. The reenactment’s
virtual view is based on a map of feature points in the environment which we
generate using visual SLAM during capturing and reuse in order to render the
reenactment relative to its original capturing location. The reenactments are
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comprehensible by users and generally resemble the video they were based on.
Users of the system are able to more precisely estimate body angles at any view-
ing angle. For cases involving ambiguous poses, the proposed system benefits the
users by allowing them to view the pose from multiple angles.
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4 Statistical, nonrigid body
model-based reenactment

4.1 Overview

Our previous approach was able to generate views of a human in motion. How-
ever, this method had drawbacks. It does not perfectly represent the deformation
that a true human body undergoes when it moves. This is somewhat alleviated
by the view-dependent textures that we apply to the body parts, but these rely
heavily on the RGB images that are captured. If this kind of deformation has
not been captured, the result may be lacking.
Statistical body models are a way to handle this kind of deformation based

on motion. The human body deforms in many subtle ways that are impossi-
ble to manually specify, but a large amount of body scans are analyzed, these
deformations may be solved for.
One of the earlier examples of statistical body models is SCAPE [6]. SCAPE,

standing for shape completion and animation of people, describes human body
shape using two learned statistical models: pose deformation and body shape
variation. It is based off of the model that moving human bodies deform in the
same way for the same poses but also that each body part will roughly stay the
same shape. We based our work off of the tensor-based human body model, or
TenBo [20]. In contrast to SCAPE, which learns two separate statistical models,
TenBo integrates both models into one formula, giving greater reconstruction
accuracy as well as requiring less training data.
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learner teacher's 

reenactment

Figure 4.1: Our ReMagicMirror system. The learner is mirrored on the left in the
screen, and the reenactment of the teacher is shown on the right.

4.2 Capturing stage

In the capturing stage, our system records an action of the teacher using a pair of
RGB-D sensors facing each other. The relative pose between these two sensors is
calculated, and they are manually synchronized. Since we require the depth and
color pixels belonging to the teacher, separate from the background, we extract
the teacher’s region using such a method as [79]. After extracting the teacher’s
region, we regain the 3D position of each depth pixel to form a point cloud.
We merge the two point clouds from the pair of sensors using the relative pose
calculated above.
We denote the f -th frame point cloud with Nf points, by

Zf = {zfn|n = 1, . . . , Nf}, (4.1)

and the RGB images from first and second sensors as I1
f and I2

f , respectively.

4.3 Fitting stage

Figure 4.3 (a, top) shows examples of merged point clouds. Generally, even
though we capture the teacher from both his front and back, the point cloud can
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Figure 4.2: System overview.

be incomplete because of occlusion or difficult-to-capture regions such as hair. In
addition, some body parts can partially be out of the sensors’ field of view. To
reconstruct the complete shape of his body, we fit the TenBo model [20], which
is a state-of-the-art statistical human shape model, to each point cloud.

4.3.1 Mesh definition

Training a statistical human shape model, usually requires a large amount of
registered meshes of multiple subjects in various poses. We used the MPII dataset
[37], which contains over 500 registered meshes. For stable fitting, we selected a
mesh and reduced the number of vertices in it from 6,449 to 502 using the quadric
edge collapse decimation algorithm [21]. From here we treat the decimated mesh
as the reference.
This decimation is transferred to all other meshes in the dataset as they are

registered, i.e., we keep the same vertices in a mesh as the reference and use the
edges in the reference instead of the original ones. We refer to the reference as

MX = {X,E}, (4.2)

where X = {xj|j = 1, . . . , J}, xj being the j-th vertex, and E contains the
pairs of vertex indices that form the edges of the reference. The TenBo model
also requires segmenting the mesh into body parts so that each body part is not
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(a) (b)

Figure 4.3: (a) Top: Example input point clouds. Middle: Examples of fit meshes.
Bottom: Textured meshes. (b) Segmented reference mesh, front and
back. Each color in (b) represents one of the 13 body parts: head,
shoulders, upper arms, lower arms, torso, abdomen, upper legs, and
lower legs.

subjected to excessive deformation. Instead of using an automatic approach, such
as [5], we manually segmented the mesh as in Fig. 4.3 (b).
The TenBo model, like other parametric shape models such as [6], regresses a

deformation matrix of each triangle in the reference given the body part poses
Θ and shape parameter v, where Θ = {θl|l = 1, . . . , L} is a set of rotation
representations for all body parts. The body part rotation matrices R(θl) are
simply each θl in rotation matrix form. We derive the deformation matrices
Dk(Θ,v) from the TenBo model, with the idea being that deformation for each
triangle k is affected uniquely and individually by the shape and pose parameters.
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The deformed triangle k’s edges, which are called triangle vectors, 4yk1 and
4yk2 can thus be given by

4yk1 = R(θl)Dk(Θ,v)4xk1

4yk2 = R(θl)Dk(Θ,v)4xk2,

where 4xkm = xkm − xk0 and xkm (m = 0, 1, 2) is in X and forms a triangle of
the mesh. In the above equation, l is the body part that triangle k belongs to.
Here is the formulation for the deformation matrices:

dl = G ×1 vTAT ×2 θl ×3 B. (4.3)

G, A, and B are internal TenBo matrices, learned through training on a set of
meshes. dl gives all the values of each Dk, reshaped into a 1-column vector.

4.3.2 Optimization

The fitting algorithm tries to find the body part poses Θ and the shape parameter
v. We modify the fitting algorithm in [20] to take advantage of the temporal con-
tinuity of meshes in successive frames. More specifically, we apply an additional
smoothness term for the pose parameters that penalizes pose differences between
adjacent frames, as well as modifying the shape parameter fitting to simultane-
ously take multiple frames into account. The optimization involves three terms:
the model error term M, the point cloud error term P , and the temporal pose
smoothness term R.
Cost functions
The model error term penalizes the difference between the TenBo model-based
body shape prediction and the deformed mesh Yf in frame f . 4yfkt is triangle
vector t ∈ {1, 2} of triangle k in frame f , the term is given by

M(Yf ,Θf ,v) =
K∑

k=1

∑
t

‖R(θfl)Dk(Θf ,v)4xkt −4yfkt‖2. (4.4)

The point cloud error term P for frame f is the difference between the de-
formed mesh Yf and the point cloud Zf . As there are no explicit correspondences
between the deformed mesh and the point cloud, we first use the rigid iterative
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closest point (ICP) algorithm to bring the mesh into rough alignment, then assign
correspondences by nearest neighbor. Using ỹf (zfn) as the nearest vertex in Yf

to point cloud point zfn, the point cloud error term is

P(Yf ) =
∑

n

‖ỹf (zfn)− zfn‖2. (4.5)

The pose smoothness term R for frame f penalizes large differences in pose
between frames. Due to our assumption of fitting depth image sequences, we do
not want subsequent frames to vary wildly. This term increases fitting robustness.
The term is defined as the sum of squared Frobenius norms:

R(Θf ,Θf+1) =
∑

l

‖R(θfl)−R(θ(f+1)l)‖2
fro. (4.6)

The final meshes MY,f = {Yf , E} can be found by minimizing the following
objective with respect to Yf and Θf for f = 1, . . . , F as well as v:

F∑
f=1

[M(Yf ,Θf ,v) + wzP(Yf )] + wr

F−1∑
f=1
R(Θf ,Θ(f+1)). (4.7)

We cannot handle all frames at once because of memory requirements. We in-
stead use a sliding window of three frames at a time with the second and third
frames’ parameters being updated (frames 1 and 2 are independently minimized).
Figure 4.3 (a, middle) shows examples of fit meshes.
Implementation
In order to perform the optimization, we used coordinate descent, i.e. optimizing
one group of variables at a time and holding the rest constant. In this case, the
groups of variables to be optimized are:

1. The meshes, Yf ,

2. The TenBo body pose parameters, Θf ,

3. And the TenBo shape parameters, v.

To solve for the meshes, each point in each frame’s point cloud must have a
corresponding mesh vertex in that frame’s mesh, as the point cloud term min-
imizes the sum of these distances. We use a modified nearest neighbor term
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that additionally takes into account the similarity of the normals for increased
stability:

ỹf (zfn) = arg min
yf

(|yf − zfn|)(ε− ŷf • ˆzfn), (4.8)

where ŷf is the normal of mesh point yf , ˆzfn is the normal of point cloud point
zfn, which is calculated by using corresponding adjacent depth pixels in the depth
image, and ε is some value > 1 that controls the weight of normal similarity.
After determining correspondences, we can solve for the meshes using a least-

squares solver. In order to represent our optimization in the form of Ax = b,
we think of x as all mesh vertices in Y1...F , reshaped to 1 column. b will contain
elements from the TenBo formulation R(θfl)Dk(Θf ,v)4xkt as well as each point
in the point clouds that has a corresponding mesh vertex. A relates x to b, which
means that it depends on the configuration of faces, as well as the depth point
correspondences.
To solve for the rotations, we handle the rotation deltas using the small angle

assumption as in Eq. 3.9. We can then solve for the rotations linearly, using a
least-squares solver, similarly to how we solve for the meshes.
Finally, the TenBo shape parameters can be solved for by taking the derivative

of the cost function with regards to v and solving at 0.
We repeat these steps until convergence, updating all Dfk every time after

body part rotations or shape parameters get updated.

4.4 Texturing stage

We texture our mesh using values from the RGB images. Since we can now
project the mesh into each RGB image, we simply find the correspondences.
Our system extracts textures from RGB images I1

f and I2
f from the first and

second sensors using MY,f (f = 1, . . . , F ). For each triangle in frame f , we
project its vertices ykm to I1

f and I2
f . Since the image region corresponding to a

triangle may not necessarily be visible (e.g., an arm may be occluding the body),
we must detect and handle such regions.
To do this, we generate a depth map of MY,f for each sensor that captures

I1
f and I2

f , and project a vertex to them. If the depth component of one of the
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vertices in a triangle is inconsistent with the corresponding depth value by a
threshold T , we deem the triangle not visible. If the triangle is not visible from
both sensors, we use the averaged texture calculated over corresponding visible
triangles in the entire sequence. Figure 4.3 (a, bottom) shows some examples of
textured meshes.

4.5 Reenactment stage

In the reenactment stage, the system reenacts the captured action and presents
it to the learner through our interface with the mirror metaphor. This section
describes reenactment generation and the interface in detail.

4.5.1 Action learning through magic mirror

In order to help learners perform actions, we bring in the magic mirror metaphor.
As before, we are faced with a user interface problem: it is difficult to manipulate
the reenactment to find the desired 3D view. The mobile reenactment viewer
we previously designed lets learners intuitively find this view, but this required
the learners to use both hands, which does not let them perform the action at
the same time. According to the experiential learning model [52], people learn
best with real experience, which means that letting our learners actively copy
the actions themselves would be better than just having them passively watch a
motion sequence.
Thus, we implement our AR mirror system. For the display, used a large screen

and mounted a Microsoft Kinect v2 on top of it. It displays a mirror image of the
learner, like a real mirror, and it overlays the reenactment on top of the image
of the learner. To facilitate easy comparisons, we detect which way the learner is
facing, and rotate the reenactment in the same way, so that the reenactment and
the learner are facing the same way. In this way, learners will be able to directly
compare their own motions to the reenactments while they are performing the
action.
For this, we use a skeleton tracker (e.g., [79]) to obtain the learner’s shoulders’

position and compute the learner’s direction. After a fixed amount of time, the
system fixes the rotation of the teacher’s reenactment and starts playing the
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action. Once the action plays completely, it resets and the learner can adjust his
or her facing again.
Figure 4.1 shows the configuration of our system’s learning interface. The

interface has one RGB-D sensor to capture the learner and the environment as
well as a screen to present the captured live video stream from the sensor and the
reenactment of the teacher. The RGB image in the live video stream is flipped
before it is presented to the learner so that it appears like a mirror. Note that
the image is not a true mirror image as the RGB-D sensor is on top of the screen.
We however consider it similar enough to the learner’s mental model of a mirror.

4.6 User study

To implement our system, we used two Microsoft Kinect v2s as our RGB-D
sensors. We used Kinect v2 SDK for extracting the teacher’s region in depth
maps and for skeleton tracking. The fitting stage is implemented on a Windows
PC with 3.20GHz CPU and 32GB memory. Optimization process (Eq. (4.7))
takes around 5 minutes per frame. We use wz = 1, wr = 0.05, and T = 10
cm. For the reenactment stage, the screen is 165 × 97 cm. The system was
implemented on a Windows PC with 3.40GHz CPU and 8GB memory. It runs
at 20FPS.
We conducted an objective evaluation to demonstrate how well our system

helps users learn actions and a survey to subjectively evaluate our system in
terms of ease of use, effectiveness, graphics quality, and appeal.

4.6.1 Experimental setup

We compared the system against the process of learning by imitating a video. We
recorded four Taekwondo actions (A, B, C, and D) for this purpose, ranging from
4-12 seconds long. We divided the actions into two groups: Group 1, consisting of
actions A and B, where the teacher mainly faced forward, and group 2, consisting
of actions C and D, with no restriction. Users learned one action from each group
using the system, and the other with the video.
For this evaluation, we recruited 14 users with ages ranging from 20-30, with 3

female and 11 male users. The process of learning an action is as follows: First,
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Figure 4.4: Average error in degrees per joint, per frame, between the user and
the teacher, for action sequences A, B, C, and D.

we show a video of the action to the user. Next, we establish a baseline by having
the user perform the action and recording it, while the video plays again. After
that, the user learns the action by practicing it over and over. The practice is
accompanied either with a video of the action looping repeatedly, or with our
system looping the reenactment repeatedly. For our system, the user can freely
change the viewing direction before every repetition. Finally, we test the user’s
learning by playing the video or the reenactment one last time and recording,
comparing it to the baseline.
We measured the error by recording the users’ motion using a Kinect v2. Since

we play the video or the reenactment at the same time that the users perform the
action, we are able to match body pose frames up one to one and compare each
frame directly. We compare body part orientations, normalizing all orientations
relative to the spine.

4.6.2 Results

Figure 4.4 summarizes the results of our experiment. For the “easy” sequences A
and B, the average errors were lower in general compared to the “hard” sequences
C and D, consistent with our expectations.
For all sequences, those using our system were able to follow our teacher’s

motions more closely compared to the pre-test and those learning from a video.
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(a) (b) (c)

Figure 4.5: (a) Textured full mesh reenactment. (b) Untextured full mesh reen-
actment. (c) Teacher skeleton reenactment.

In fact, those learning from the video barely changed from the pre-test. We
consider that one factor could be the mirror self-correction factor. In the video,
the user is not able to see their mistakes. On the other hand, while our system
does not explicitly point out mistakes either, users are able to see the difference
themselves. This allows them to adjust their motions to better copy the teacher’s
by observing the teacher from desired directions.
Simply the fact that they are able to see themselves allows this. In the future,

we would like to see if the novel view synthesis truly has an effect on learning,
for example by adding a splitscreen mirror panel to the video playback.

4.6.3 Survey

We asked the same users to try out 2 other reenactment methods: the untextured
full mesh, and the skeleton of the teacher (Fig. 4.5). Finally, our users answered a
survey consisting of 8 questions with the goal of evaluating the system’s perceived
ease of use, effectiveness, quality, and appeal (Fig. 4.6).
Table 4.1 summarizes our users’ responses. Most users preferred the reenact-

ment with a fully textured mesh for all questions, even for the equivalent video
questions. This means that users found our system easy to use, effective at help-
ing them learn actions, having high output quality, and most would use a similar
system given the chance. Many users also appreciated the mirroring as it was
more difficult to tell left from right by watching the video.
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Part 1. For each reenactment (Full mesh with full textures, untex-
tured full mesh, skeletons only) and the video:

Q1 Was the reenactment/video comprehensible?

Q2 Was it easy to learn the motions using the system/video?

Part 2. For each reenactment (Full mesh with full textures, untex-
tured full mesh, skeletons only):

Q3 Did the reenactment have good quality?

Q4 Did the reenactment resemble the original video?

Q5 Was it easy to manipulate the viewpoint to your desired one?

Q6 Were the differences between yourself and the reenactment clear?

Q7 Did changing the viewpoint help you learn the action?

Q8 Would you use this system in the future?

Figure 4.6: Questions asked in our user study. Users answered from 1 (strongly
disagree) to 5 (strongly agree).

4.7 Summary

We have proposed and implemented an augmented reality system for helping
users learn actions. The actions are performed by a teacher, and the system
reconstructs the body and motion of the teacher using two RGB-D sensors. Using
the reconstruction, the system overlays reenactments, onto a screen which also
mirrors the learner. Learners are then are able to control the viewpoint intuitively
by moving their own body.
To evaluate our system, we conducted a user study and found that this system

allows for easy comparisons between learner and teacher, and users were able to
perform more accurate motions using the system than with video. They appreci-
ated the ability to intuitively control the point of view while comparing motions,
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Table 4.1: Users’ averaged answers for the survey in Fig. 4.6, for full mesh with
full textures (R1), untextured full mesh (R2), skeletons only (R3), and
video (V). Users answered from 1 (strongly disagree) to 5 (strongly
agree).

R1 R2 R3 V
Q1 4.11± 0.66 3.86± 0.77 2.29± 1.07 3.86± 0.77
Q2 4.29± 0.73 3.71± 0.91 2.29± 0.83 2.93± 0.83
Q3 4.00± 0.68 3.71± 0.99 2.64± 1.22 —
Q4 4.50± 0.65 3.64± 1.08 2.50± 1.16 —
Q5 3.93± 1.00 3.93± 1.00 3.14± 1.29 —
Q6 4.07± 1.21 3.50± 1.22 2.29± 1.33 —
Q7 4.00± 0.96 3.79± 0.89 2.93± 1.14 —
Q8 4.43± 0.85 3.57± 1.02 2.00± 1.11 —

which to our knowledge is unique to our system. Finally, in general our users
preferred learning using the system over watching a video.
Future work can go in many directions. Currently, the system is rudimentary,

requiring mouse input for all of its functions. With motion-based controls, the
system could become something that consumers would legitimately want to use.
We would also like to see the effect of different rendering methods of the teacher’s
reenactment. For example, instead of displacing the reenactment, what if it was
instead overlayed directly on top of the user? Or, what if it was semi-transparent?
Also, as we discussed in the results, we would like to see if the increase in

accuracy for our system came from being able to choose a novel viewpoint or
merely because of the existence of the mirror. The mirror is currently the only
way that the user can receive feedback from the system. The user study could
be conducted again, but this time also adding a mirror to the conventional video
portion.
Another feature that was often requested was direct feedback. During training,

the user’s body and the teacher’s body would be directly compared on the spot,
highlighting differences in a different color, for example. One other possibility
for training that we’d like to see the effect of is training in a different context,
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in a sort of “challenge mode”. In this mode, the system sets a view for the user
instead of the user choosing a view for him or herself. This forces the user to
adapt and hopefully remember the action better.
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5 Conclusion

In this thesis, we have put forward the idea of reenactments to aid in action
learning. Reenactments are motion sequences of a human performing an action
that may be viewed from arbitrary viewpoints for increased ease of comprehending
the action. Reenactments do not have to be perfectly true-to-life, but they must
be plausible and comprehensible.
We have proposed two novel methods of capturing and generating reenact-

ments. Both may be done using only a single RGB-D camera, for convenience
and ease for general users.
The first method exploits human skeleton tracking from depth images as well

as simultaneous localization and mapping systems in order to capture a motion
sequence that is located in the world. The motion sequence is represented as a
set of body parts over multiple frames. To render it, each body part is repre-
sented by a rigid shape, either a rough volume that approximates the body part’s
actual shape such as a cylinder, or by a more accurate voxel volume, acquired
through voxel carving. To texture each shape, we make use of VDTM [25], using
information over the entire RGB sequence.
We also implemented a mobile AR reenactment viewer that is able to display

the reenactment. Using the mobile device as an AR see-through display, the
learner is able to look through the display to see a “ghost” of the teacher. Since
we make use of the same environment that we captured in, the learner is then able
to intuitively move the device in order to be able to watch the motion sequence
from the desired viewpoint.
We evaluated the system by performing user studies. First, we quantitatively

evaluated the learners’ ability to estimate using the reenactment. The learners
scored higher with the system than with a perspective. Next, we qualitatively
evaluated the output quality. The learners gave low scores for our this reen-
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actment method’s output quality, and we aimed to address this with the next
method.
The second method is built upon the tensor-based human body model [20]

which is a statistical body model that parameterizes human body shape as well as
pose. When trained, the body model is able to output an appropriately deformed
mesh given shape and pose parameters, and in the other direction, is able to
output shape and pose parameters given a mesh. We are thus able to fit a model
to an observation which may be incomplete, such as from our RGB-D sensor.
We also implemented an AR mirror-based motion viewer that implements the

AR “mirror” metaphor to augment a mirror image of the learner with a view of
the reenactment, so that the learner can easily copy the motion sequence. The
reenactment view should mirror the learner’s own, since this way it is easiest to
compare pose. The learner is thus able to control the view by turning his or
her body in the desired direction, which is easy to grasp and make use of. The
system is based on the theory of motor learning, specifically kinematic knowledge
of results, of which one way is to show the learner their own motion, along with
the ideal motion. This is easily accomplished by overlaying the reenactment on
the mirror image of the learner.
We evaluated the system by performing user studies, quantitatively by mea-

suring motion accuracy and qualititatively by taking a survey. We measured
motion accuracy by comparing the leaners’ motions to the teacher’s motions af-
ter a short training period the motion sequence, meaning either the RGB only
video sequence or the reenactment. In all cases, learners who used the reenact-
ment followed the teacher’s motions more closely, demonstrating our system’s
usefulness. We then surveyed our system’s percieved effectiveness, ease-of-use,
and reenactment quality, with a generally favorable response.
We can conclude that AR-based reenactments are a worthwhile and effective

way of learning actions. From here, this research can go in a number of interesting
directions. One direction is in developing reenactment capture. Consumer RGB-
D cameras are easier to acquire and use than the past methods of NVS, but they
are still not as ubiquitous as, for example, conventional video capture devices,
which are a staple of smartphones. If a reenactment could be created from such
a video, it would be a large step towards mainstream use.
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Another direction is in improving the output quality of the reenactment. Cur-
rently, reenactments are comprehensible and plausible. However, if, for example,
movie-quality reenactments were available, it would widen the scope of reenact-
ments to not just motion training but also entertainment. Imagine watching a
movie from within the scene on your handheld reenactment viewer. Also, a wide
database or reenactment sharing site, similar to video-sharing social networks
such as YouTube, would be a boon to learners.
Other theories of learning can also be implemented and evaluated. For example,

how do the different ways of kinematic knowledge of results benefit learning? A
comparison can be done between different methods, e.g. showing just a mirror of
the user, versus showing a mirror of the user with a reenactment overlaid, versus
explicitly giving feedback on each step of the motion, whether automatically or
done by experts. Retention of the knowledge is also significant when measuring
learning; for this purpose, we may do longer-term experiments.
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