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Voting: Using Blockchain-Based Technology to
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Jason Paul Miranda Cruz

Abstract

Bitcoin is the first decentralized global currency cryptosystem and a complete

digital money that has increased in value and popularity since 2009. It is a col-

lection of cryptographic protocols that allows secure online transactions between

users and is based on a peer-to-peer network powered by its users. In this study,

we investigate the use of Bitcoin and its underlying technologies as platform for

innovative systems. In particular, we use Bitcoin as an infrastructure to realize a

trans-organizational role-based access control (RBAC) system and an electronic

voting (e-voting) system.

The RBAC is a natural and versatile model of the access control principle. In

the real world, it is common that an organization provides a service to a user who

owns a certain role that was issued by a different organization. However, such a

trans-organizational RBAC is not common in a computer network because it is

difficult to establish both the security that prohibits malicious impersonation of

roles and the flexibility that allows small organizations and individual users to

fully control their own roles. Therefore, we propose a trans-organizational RBAC

mechanism that makes use of Bitcoin to represent the trust and endorsement

relationship that are essential in RBAC and a challenge-response authentication

protocol that verifies users’ ownership of roles.

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1461014, March 10, 2017.
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E-voting is a promising platform that aims to provide a secure, convenient,

and efficient voting environment over the Internet. Various cryptographic schemes

have been proposed to realize secure and efficient e-voting systems, but these sys-

tems are hardly used in practical voting. One of the technical reasons for this

unfortunate situation is that many e-voting systems require an anonymous com-

munication channel, which is difficult to implement over the Internet. Therefore,

we propose the use of Bitcoin and complement it with known protocols, such as

the blind signature protocol and digital signature protocol, to realize an e-voting

system that is secure, anonymous, and transparent. We discuss several important

properties of e-voting systems, including fairness, eligibility, anonymity, robust-

ness, and verifiability, and show that the use of the Bitcoin protocol provides

favorable features besides the anonymity of the communication.
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Chapter 1

Introduction

In the past decades, many different applications and systems have been cre-

ated and conceptualized to solve diverse problems through the Internet in a co-

operative and distributed manner. Some of the well-known community-driven

systems include anonymous and untraceable electronic communication [1], Hash-

Cash (proof-of-work algorithm) [2], BitTorrent (peer-to-peer file sharing) [3], and

Spotify (peer-to-peer music-on-demand streaming) [4], to name a few.

Soon after the inception and deployment of these applications, practical im-

plementations and improvements follow, with the exception of applications in the

field of digital currency or digital money. The early attempts on digital money

[5, 6] require a central entity or bank. Some systems, such as B-money [7], Bit

Gold [8], and RPOW - Reusable Proofs of Work [9], tried to remove the bank

as central authority by using cryptographic puzzles to mine the digital money.

However, these systems still require a central entity to maintain the validity of

ownership and transaction records.

In general, a central entity or bank is needed to detect and prevent double-

spending of the digital money. Double-spending is an inherent problem in digital

currency systems where a user issues two transactions containing the same digital

money in parallel, that is, a user makes a copy of the digital money and transfers

the copy and the original to different recipients (or the user can even keep the

original). To eliminate the central entity, the record of the ownership of the

digital money should also be distributed.
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In 2008, Bitcoin∗ has been conceptualized and its design and protocols pro-

vide a secure and decentralized digital payment system. The key innovation of

Bitcoin is the use of a distributed computation system, or a proof of work (PoW)

algorithm, to conduct a global update every 10 minutes to allow the decentralized

network to achieve a consensus about the state of the transactions. This PoW

algorithm provides a solution to the double-spending problem. The main purpose

of Bitcoin is to enable a payment system and complete digital money∗∗ that is

secure and decentralized; that is, it is a peer-to-peer (P2P) network powered by

its users and with no central authority. To achieve security and decentraliza-

tion, transactions are publicly announced and the participants agree on a single

history of these transactions. The transactions are grouped into blocks, given

timestamps, and then published. The hash of each block includes the hash of the

previous block to form a chain, making accepted blocks difficult to alter.

Bitcoin is a collection of technologies that work perfectly together to create

a digital money ecosystem. These technologies provide many features that open

possibilities for use aside from sending digital money from one user to another.

Some examples of the use of Bitcoin aside from transferring money include, but

not limited to, trading ownership, notarization, dispute mediation, user authen-

tication, voting, and crowdfunding.

Figure 1.1. The Bitcoin logo.

∗In this study, the term “Bitcoin” pertains to the entirety of the mechanism. Additional

terms will be included when referring to individual elements under Bitcoin, such as “Bitcoin

address” or “Bitcoin blockchain”.
∗∗The digital money used in Bitcoin will be referred to as “bitcoin/bitcoins” with “BTC” as

the unit of currency.

2



1.1. Research Motivation

Following the success of Bitcoin as a decentralized global currency cryptosys-

tem, we investigate its potential as a complementing infrastructure to realize

other secure, practical, and decentralized systems. In particular, we use Bitcoin

as platform to realize a trans-organizational role-based access control (RBAC)

system and a secure and practical electronic-voting (e-voting) system.

1.1.1 Bitcoin

Since its inception in 2008, Bitcoin has increased in value and popularity as a

revolutionary digital cryptocurrency system— the term cryptocurrency, which

was first described in 1998 by Wei Dai in the cypherpunks mailing list, suggests

the idea of a digital money that uses cryptography to control the creation of digital

coins and transactions [10]. The first Bitcoin specification and proof of concept

was introduced to the world by Satoshi Nakamoto, who published a paper entitled

“Bitcoin: A Peer-to-peer Electronic Cash System” [11] in The Cryptography

mailing list. The true identity of Satoshi Nakamoto remains unknown until today,

and the name is believed to be a pseudonym for a group of people or organizations.

As of March 2017, Bitcoin has a market capitalization of almost 20 billion

USD, market price per bitcoin of approximately 1,200 USD, and on average,

300,000 transactions daily [12]. Over the years, Bitcoin has been embraced by

the public and has a good track record in providing a secure digital payment

system. The Bitcoin network features many favorable properties, including easy

mobile payments, reliability, full control of one’s own money, high availability,

fast international payments, zero or low fees, protected identity, and privacy [13].

These properties make Bitcoin attractive for use to create technologies that can

be applied to provide solutions in different fields. Some examples of services and

solutions where Bitcoin technology can be used are as follows:

� Proof of Existence/Notarization - Every electronic file has a corre-

sponding hash, which is a string of characters that can be used as a digital

fingerprint to uniquely identify a file. If a user wants to prove the exis-

tence of a particular document at a particular time, then the hash of the

document can be converted to a Bitcoin address and a transaction to that
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address can be created so that it can be permanently recorded in the Bitcoin

blockchain with a timestamp.

� Dispute Mediation - Bitcoin’s multi-signature addresses can be used by

a third party to approve or reject transactions between the other parties

without having control of the money of the other parties.

� Authentication and Trading Ownership - Different items, such as tick-

ets, products, and subscriptions, can be linked to Bitcoin addresses and

recorded in the blockchain where only the rightful owner will be able to

prove ownership of such items.

The application of Bitcoin is virtually unlimited, and the most interesting

uses of Bitcoin may not have even been discovered yet.

1.1.2 Role-Based Access Control

Roles and titles are often used to distinguish the eligibility of people to access

certain services. Such mechanism is modeled as the role-based access control

(RBAC) [14] framework, which describes the access control relation among users

and services. In RBAC, users are associated with roles, and roles are associated

with services. This framework is compatible with the access control requirements

of real-world organizations and is employed in the computer systems of many

organizations and companies. For example, in a university, professors are given

access to certain files in computer servers while students are denied of such service,

as shown in Figure 1.2.

However, it must be noted that RBAC is a versatile framework, and roles

are often used in a trans-organizational manner. For example, students are often

allowed to purchase computer software at an academic-discounted price, as shown

in Figure 1.3. In this example, the “student” role that is issued by an organization

(University) is used by another organization (Computer Shop) to determine if a

guest is eligible to receive a certain service (Discounted Price). This kind of

trans-organizational use of roles is common in face-to-face communication, but it

is not obvious in computer networks. Even if a person has a certain role (student

role) that is issued by an organization (University), he/she has no systematic way

4



Figure 1.2. The RBAC framework.

of convincing a third-party organization (Computer Shop) that he/she really has

that role.

Figure 1.3. Trans-organizational RBAC framework.

To realize a trans-organizational RBAC mechanism in a computer network, a

mechanism that prevents malicious users from disguising their roles is necessary.

This requirement is naturally accomplished in real-world services with the use

of physical certificates, such as passports and ID-cards, which are expected to

be difficult to forge or alter. This problem, however, is not obvious in a com-

puter system. Digital certificates [15] can be utilized as an analogue of physical
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certificates, but the use of digital certificates is not favorable because it requires

considerable and continuous elaborations to maintain secure public-key infras-

tructures. Another less sophisticated approach to the security problem is to let

a service-providing organization (the Computer Shop in the above example) in-

quire a role-issuing organization (the University in the above example) about the

user-role assignment. This approach works in some cases [16], but a focal point of

this approach is the necessity for the agreed beneficial relationship among orga-

nizations. Consequently, a new organization will experience difficulties (or even

not be able) to join the partnership, severely restricting the trans-organizational

utilization of roles.

1.1.3 Electronic Voting

Electronic voting (e-voting) is a promising platform that aims to provide a se-

cure, convenient, and efficient voting environment over the Internet. However,

voting through the Internet introduces several concerns, such as fraud, anonymity,

and abuse, among others. Previous research have introduced different e-voting

systems and protocols with different encryption schemes of varying complexity

[5, 17, 18, 19, 20]. These systems make use of a combination of different protocols,

such as blind signatures, threshold blind signatures, discrete logarithmic encryp-

tion, untappable channels, and anonymous channels or public bulletin boards,

to satisfy the most properties that make e-voting systems secure. Even though

these systems are comprehensive theoretically, a complete solution that can be

implemented in the practical domain is yet to be found. One of the most critical

problems in the practical implementation of e-voting systems is the realization

of an anonymous communication channel, which is assumed in many theoretical

schemes and is considered to be one of the most important feature that can sat-

isfy a number of the properties of e-voting systems. An e-voting system can be

considered secure if it satisfies the following properties:

� Completeness: An eligible voter is always accepted by the administrator

and all valid votes are counted correctly.

� Robustness/Soundness: Dishonest voters and other participants cannot

disturb/disrupt an election.
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� Anonymity/Privacy: All votes must be secret; and neither voting au-

thorities nor anyone else can link a vote to the voter who has cast a vote.

� Unreusability: A voter cannot vote more than once.

� Fairness: Early results should not be obtained, as they could influence the

remaining voters.

� Eligibility: Only legitimate voters can vote.

� Individual verifiability: A voter can verify that his/her vote was really

counted.

� Universal verifiability: Anybody can verify that the published outcome

really is the sum of all votes.

In general, satisfying all properties is difficult to accomplish, and a particular

focus on some properties may compromise the other properties.

1.2. Research Contribution

1.2.1 Contribution to RBAC

In this study, we aim to develop a practical system that uses Bitcoin as an in-

frastructure to realize the trans-organizational utilization of roles. We investi-

gate a realization of a user-role assignment that is secure (users cannot disguise

roles), user-oriented (users can disclose their roles to any organization), and open

(anyone can verify if a user has a certain role that is managed and issued by

another organization). The key ideas are to define correspondence between the

roles issued by organizations and the users and to employ a challenge-response

authentication protocol that will be used for verifying if a user really has an

asserted role. Bitcoin’s protocol and cryptography make the proposed system

suitable for the trans-organizational utilization and authentication of roles, and

furthermore, allow flexible role management operations, such as the endorsement

and management of roles, with relatively small realization cost.

7



1.2.2 Contribution to E-voting

In this study, we investigate the idea of replacing the anonymous communication

channel, which is assumed and needed in many e-voting protocols, with the prop-

agation of Bitcoin transactions. Bitcoin transactions are communicated over a

P2P network, and with appropriate management, Bitcoin users (not the Bitcoin

addresses) cannot be identified and linked to transactions they create. This fea-

ture contributes to enabling anonymity in voting, which is a practical obstruction

in many existing e-voting systems.

Bitcoin’s protocol and cryptography make the proposed system suitable for an

efficient and practical e-voting system wherein the voters are protected and given

control over the important aspects of the voting process to protect their vote,

privacy, and anonymity, while minimizing the trust and power of other entities to

prevent them from performing malicious actions. For example, the administrator

cannot introduce dummy votes and the counter cannot falsify the results because

only the voters have access to the Bitcoin addresses that will be used for voting

and the transactions that contain the important details of the voting process are

recorded publicly in the blockchain.

We would like to note that it is not our intention to propose an e-voting scheme

that is superior to all other existing schemes. Through this study, we would like

to discuss what kind of problems in e-voting can be solved by using Bitcoin,

and what kind of problems remain unsolved. The discussion will contribute to

clarifying the potential of Bitcoin as a general infrastructure over which a secure

application is constructed.

1.3. Dissertation Layout

The rest of this dissertation is organized as follows:

Chapter 2 introduces the Bitcoin protocol, including detailed discussion about

Bitcoin addresses and wallets, transactions and transaction fees, blocks and the

blockchain, mining and proof-of-work, and attacks on the Bitcoin network. This

chapter also introduces how Bitcoin can be used as an infrastructure for RBAC

and e-voting systems. Chapter 3 discusses RBAC and the different models

associated with it. This section also presents the structure, procedures, and role
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management features of the proposed RBAC system. Chapter 4 discusses the

protocols used in existing e-voting systems, which are then analyzed to determine

their strengths and vulnerabilities. This section also presents the proposed e-

voting system and analyzes the security it provides based on the defined properties

of e-voting systems. Chapter 5 provides the conclusion and a discussion of the

future of Bitcoin, with a particular focus on blockchain technology.
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Chapter 2

The Bitcoin Protocol

In October 2008, Satoshi Nakamoto uploaded the first specification and proof

of concept of “a new electronic cash system that’s fully peer-to-peer, with no

trusted third party” [21] in The Cryptography Mailing List. The paper is entitled

“Bitcoin: A Peer-to-Peer Electronic Cash System” [11] and Nakamoto described

the system with the following main properties:

� Double-spending is prevented with a peer-to-peer network.

� No mint or other trusted parties.

� Participants can be anonymous.

� New coins are made from HashCash style proof-of-work.

� The proof-of-work for new coin generation also powers the network to pre-

vent double-spending.

In January 2009, the operation of Bitcoin commenced with the creation of the

first block (genesis block). Shortly thereafter, Bitcoin has attracted the attention

of many individuals worldwide and it continuously increases in value and popu-

larity. Since the genesis block, Bitcoin has never been attacked successfully and

has been operating continuously (i.e., no/zero downtime).

The main purpose of Bitcoin is to enable a payment system and complete

digital money that is secure and decentralized; that is, it is a P2P network pow-

ered by its users and with no central authority. To achieve this, transactions
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are publicly announced and the participants agree on a single history of these

transactions. The transactions are grouped into blocks, given timestamps, and

then published in some kind of public ledger. The hash of each block includes

the hash of the previous block to form a chain, making accepted blocks difficult

and almost impossible to alter.

Bitcoin is a collection of cryptographic protocols that allow secure online

transactions between users [22, 23]. Bitcoin users commonly use digital wallets

that handle the creation and storage of private keys and the corresponding public

Bitcoin addresses as well as the sending and receiving of bitcoins. Bitcoin is open-

source and is easily available for use on a wide range of computing devices, such

as computers, laptops, and smartphones.

A user can send a certain value or amount of bitcoins to another user by

creating a transaction with the sender’s Bitcoin address/es as input/s and the

receiver’s Bitcoin address/es as output/s. Users can acquire bitcoins in multiple

ways, including receiving bitcoins as payment for goods or services rendered,

purchasing bitcoins at Bitcoin exchanges, using Bitcoin automated teller machines

(ATMs), and earning bitcoins through competitive mining, as shown in Figures

2.1 and 2.2.

Transactions are validated by miners and then recorded in a global public

ledger called the blockchain. Unlike traditional currencies, bitcoins are completely

virtual and the ownership of bitcoins is referenced from the blockchain. The vali-

dation of transactions requires some amount of computation, and the miner who

succeeds in validating transactions is rewarded or compensated with bitcoins and

the transaction fees for his/her efforts. Validated transactions cannot be altered

unless an attacker has computation power that overwhelms the total computa-

tion powers possessed by all other miners. The codes and algorithms used for the

mining process are built-in in the Bitcoin protocol. The protocol also sets the

rate at which new bitcoins are created, which is halved every 210,000 blocks or

every 4 years, and limits the total number of bitcoins that will be created to a

fixed 21 million bitcoins.
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Figure 2.1. A list of some of the top Bitcoin exchanges [24].

2.1. Bitcoin Addresses and Wallets

In Bitcoin, a user proves ownership of bitcoins through digital key pair, Bitcoin

address, and digital signature. Bitcoin wallets are typically used for generating

the key pair and the Bitcoin address and for creating the digital signature.

The key pair, which is created using public key cryptography, is composed of

a private key and a public key. The private key is generated first, and then the

public key is derived from the private key so that each private key corresponds

to only one public key. The public key can be broadcast to anyone and is used

to receive bitcoins, and the private key is used to sign transactions that allow

the transfer of bitcoins stored in the corresponding public key. There is a mathe-

matical relationship between the key pair that allows the private key to generate

signatures on transactions. The signature can be used to prove ownership of

the public key (hence the Bitcoin address) without revealing the private key. In

other words, during a transaction, the sender presents the public key and gen-

erates a signature from the private key (the signature, although generated from
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Figure 2.2. Bitcoin ATMs [25].
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the same private key, is different each time) so that anyone can verify and accept

the transaction as valid.

The private key is the most important part that is necessary for controlling

the bitcoins associated with the public key. Therefore, the private key should

always be kept secret and never revealed to anyone else (as that person would

have access to the bitcoins). Equivalently, the private key should not be lost or

forgotten because otherwise the bitcoins stored in the corresponding public key

would be lost forever as well.

2.1.1 Generating the key pair

The private key is an integer between 1 and n-1∗ and the public key is derived

from the private key using Elliptic Curve Digital Signature Algorithm (ECDSA)

[26], which is a one-way cryptographic function. The private key can be generated

in multiple ways, including manual generation by coin tosses or digital generation

by introducing a secure source of entropy or randomness, as the goal is to generate

the private key “as random as possible”.

2.1.2 Bitcoin Addresses

A Bitcoin address is 160-bit hash of the public key of an ECDSA key pair. The

public key undergoes several cryptographic processes to be converted into a valid

Bitcoin address. First, a Secure Hash Algorithm (SHA), specifically SHA-256

which produces an almost-unique and fixed size of 256-bit (32-byte) number∗∗,

is performed on the public key. Then, a RACE Integrity Primitives Evaluation

Message Digest (RIPEMD) hash, specifically RIPEMD160 which produces a 160-

bit (20-byte) number [27], is performed on the result of the SHA-256. Then, a

version is added in front of the RIPEMD160 hash as prefix (0x00 for the Main

Network and 0x6f or the Test Network).

Bitcoin addresses are always presented to users in Base58Check Encoding,

which includes a checksum to avoid ambiguity and errors. To implement this,

∗n is a constant that is slightly less than 2256 and is defined as the order of the elliptic curve

defined in the Bitcoin specification.
∗∗To further show that SHA-256 and hash algorithms, in general, are state-of-the-art algo-

rithms that provide security, another paper of the authors is presented in Appendix A.
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two rounds of SHA-256 hash operations are performed on the extended version

of the RIPEMD160 hash (with the prefix). The first 4 bytes of the result of the

double SHA-256 hash is the checksum for the Bitcoin address. This checksum

is appended at the end of the extended RIPEMD160 hash to obtain a 25-byte

binary Bitcoin address. Finally, the byte string is converted into a Base58 string

using Base58Check encoding to obtain the commonly used and distributed Bitcoin

address format. This format is composed of random number and letters, for

example 19zBWfkNicdLdTTweZe37XRj2aFoYmHEX6. A summary of the

conversion is shown in Figure 2.3.

2.1.3 Wallets

Bitcoin wallets are used by most Bitcoin users as containers to store their private

keys (and the corresponding public keys and Bitcoin addresses) and to perform

different functions, such as generating signatures, sending and receiving bitcoins,

and logging their transactions. Users can choose from different kinds of wallets

depending on how they want their key pairs, and therefore bitcoins, to be handled.

Some of the more frequently used wallets are discussed below.

Nondeterministic Wallets

Nondeterministic wallets generate random private keys as needed by the user.

Therefore, the user must keep copies of all generated private keys and perform a

backup of these keys as frequent as the keys are generated.

Deterministic Wallets

Deterministic wallets, also referred to as “seeded” wallets, contain private keys

that are all derived from a seed. These private keys are derived by using a one-

way hash function. The seed is a number that is usually generated at random and

then combined with other data, such as an index number, to derive the private

keys. In this kind of wallet, only the seed is necessary to generate and recover all

derived private keys. Therefore, only one backup is necessary, i.e., only the seed

is backed up one time.
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Figure 2.3. Conversion from the public key to Bitcoin Address [28].

16



Types of Wallets

Bitcoin users have several options for wallets to choose from [29].

� Software wallets are wallets that are installed in a device, such as desktop

or laptop, that the user has access to. Depending on the source of the

software wallet, users may be required to download the entire blockchain,

which is at least 90 GB in size and growing.

� Web wallets are wallets provided by third-party wallet service companies

and are only accessible through the Internet. Web wallets provide flexibil-

ity to users as users can access their web wallets anytime, anywhere, and

using any device as long as there is an Internet connection. The disadvan-

tages, however, are that users have no access to the wallet without Internet

connection and that the service provider is prone to attacks, which can

compromise the users’ bitcoins. An example of a web wallet accessed in an

Internet browser is shown in Figure 2.4.

� Cold wallets are wallets that are not connected to the Internet. These

cold wallets could be in the form of paper (users print out or write the

private keys in a piece of paper) or removable storage devices (e.g., USB

sticks and hard disks).

� Brain wallets are a kind of cold wallet that are stored in the memory of

users. Randomly computer-generated words or pass phrases only the user

would know are used to derive private keys and are not stored anywhere

Figure 2.4. A web wallet from Blockchain.info.
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Figure 2.5. A brainwallet with pass phrase of “jason paul cruz” from bitad-

dress.org.

else (only in the brain or memory of users). Figure 2.5 shows a brain wallet

generated from a pass phrase using an online Bitcoin address generator.

� Hardware wallets are wallets that can only be accessed with the presence

of the hardware device (typically a USB stick) where the wallets are stored.

A new ECDSA keypair is generated for each Bitcoin address, and thus, users

typically maintain multiple Bitcoin addresses for different transactions. In fact, it

is recommended by the Bitcoin community to use a Bitcoin address only once to

ensure anonymity and security. Users can create any number of Bitcoin addresses

easily and for free. There are 2160 total possible Bitcoin addresses that can be

created, and thus, a Bitcoin address is considered to be “unique” as it is extremely

unlikely for two users to independently generate the same Bitcoin address.

2.2. Transactions

Transactions are digitally signed data that represent the transfer of bitcoins from a

Bitcoin address/es to another. Transactions are broadcast to the Bitcoin network

and then included in a block in the blockchain. Transactions can be considered to

be the most important part of Bitcoin and the other parts and protocols are used
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Figure 2.6. Structure of a Bitcoin transaction [30].

to ensure that transactions are properly created, propagated to miners, validated,

timestamped, and finally included in the blockchain.

2.2.1 Transaction format

A transaction is basically an encoded data structure for the transfer of bitcoins

from the sender (input address/es) to the receiver (output address/es). A trans-

action contains different fields, as shown in Figure 2.6.

2.2.2 Transaction Inputs and Outputs

Inputs are generally references to outputs from previous transactions. An output

from a previous transaction is also called unspent transaction output (UTXO).

UTXOs are indivisible chunks of bitcoins that correspond to Bitcoin addresses

and are recorded in the blockchain. In other words, the bitcoins received by users

are recorded as UTXOs in the blockchain, making them easy to track and verify.

When a user wants to send bitcoins to another user, he/she creates a transaction

using UTXOs locked to his/her Bitcoin address/es as inputs. A transaction rep-

resents a transfer of the value of bitcoins from one Bitcoin address to another, and

thus the UTXOs used as inputs are still the same UTXOs but locked at a new

Bitcoin address. Technically, outputs come first because coinbase transactions

have no inputs and create outputs from “thin air”. A coinbase transaction [31] is

a special kind of transaction that is the first transaction added in a block. The

coinbase transaction contains the Bitcoin address of the miner where the reward

for mining the block will be sent to∗∗.

∗∗The genesis block famously contains the text “The Times 03/Jan/2009 Chancellor on brink

of second bailout for banks”, which is probably intended to be a proof that no bitcoins existed
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Outputs contain the instructions for the sending of bitcoins. Outputs are

composed of two parts:

� Amount of bitcoins, denominated in Satoshi (10−8), which is the smallest

unit of bitcoins. 1 BTC = 100,000,000 Satoshi.

� ScriptPubKey or a locking script, which “locks” the amount of bitcoins

with conditions that must be met to spend the UTXOs.

Multiple outputs can be specified as long as they amount to the total or

combined value of the inputs. For example, if the input (UTXO) is worth 10

BTC, and the user wants to send 6 BTC to another user, two outputs worth 6

BTC and 4 BTC are created— 6 BTC are sent to the receiving Bitcoin address

and 4 BTC will be sent back to one of the sender’s Bitcoin address (this is also

known as “change” that a sender sends back to him/herself). Any input bitcoins

that are not redeemed in the output will be considered as a transaction fee, which

is a reward to the miner who validates the transaction.

2.2.3 Transaction Fees

Transaction fees are included in most transactions and serve as compensation

to the miners who validate transactions and secure the Bitcoin network. Some

transactions can be processed without any transaction fee included if certain

conditions are met [32]. Transaction fees serve as incentives for miners to include

transactions in the next block. Transaction fees also serve as a disincentive against

“dust” transactions, which are transactions with outputs of less than 546 satoshi

or 0.00000546 BTC. Dust transactions require a transaction fee of 0.0001 BTC

to prevent spamming of transactions and any kind of abuse in the system.

The required transaction fees are calculated based on the size of the transac-

tion in kilobytes and not on the amount of bitcoins being transferred. Additional

transaction fees are voluntary on the part of the users creating bitcoin transaction,

that is, miners may prioritize transactions with higher transaction fees included

in them and even ignore transactions without any transaction fees. Therefore,

the lower transaction fees may be delayed and validated on a best-effort basis

before 2009.
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(transactions without transaction fees may even never get validated, at the worst

case).

In the future, when the total 21 million bitcoins have been created and dis-

tributed, the entire Bitcoin network will solely run on transaction fees as com-

pensation and incentive for miners to keep validating transactions and securing

the network.

2.2.4 Transaction Details

Bitcoin transactions contain the following information:

� Transaction ID is a unique ID used for identifying a transaction in the

blockchain.

� List of input addresses containing the UTXOs and outputs of previous

transactions from which bitcoins will be transferred.

� Output addresses containing the Bitcoin addresses that will receive bit-

coins.

� Amount of bitcoins being transferred.

� Timestamp of the blocks, which includes the time the transactions are

received in the network and the time they are validated and included in the

blockchain.

� Size of the transaction in bytes.

� Block number of the block where the transaction is included (other trans-

actions will be included in the same block).

� Script containing the conditions that need to be satisfied before the bitcoins

to be received can be spent, including the details about the coinbase.

Figure 2.7 shows an example of a transaction, as viewed from a blockchain

browser.

Transactions are duplicated and broadcast over the P2P network of Bitcoin

consisting of Bitcoin users (nodes). The Bitcoin network itself does not have the
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Figure 2.7. Example of a transaction viewed from a blockchain browser.

mechanism to conceal the IP addresses of the source of a transaction, and, in

theory, an IP address can happen to be connected to a Bitcoin address. However,

such a risk can be mitigated because full node clients relay transactions as if they

are the owner of transactions, and thus the source of a particular transaction can

be difficult to determine unless all communications logs of all nodes are analyzed

and traced. Furthermore, third-party services, such as The Onion Router (Tor)

[33], can be used to hide the IP address of a computer used in Bitcoin transactions.

Online mixing services, such as BitLaundry [34], can also be used, wherein users

send and receive bitcoins to and from such service using independent Bitcoin

addresses.

There is a risk that a Bitcoin user is identified if that user uses a Bitcoin ad-

dress in a naive manner. Bitcoin addresses look like random numbers and letters,

and the identity of the owner remains unknown unless the same Bitcoin address

is used in other transactions where information about the owner is revealed (e.g.,

buying a product that is delivered physically wherein the name and home address

of the owner are provided in the product’s shipping information). This issue can

be avoided if good practices are adopted by Bitcoin users [35]; simply, by using

a Bitcoin address only once. A user should not publish his/her Bitcoin addresses

in such a way that somebody can connect these addresses with other Bitcoin ad-

dresses that are intended for private use. For example, a user is not recommended
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to move funds from published Bitcoin addresses to another Bitcoin address that

he/she owns. This issue will be revisited later in the discussion about the security.

2.3. Blocks and the Blockchain

Transactions are grouped together in blocks and then included in the blockchain.

The blockchain is a data structure containing linked blocks of transactions, and it

can be stored as a simple database. Each block contains the hash of the previous

block to create a chain that connects the genesis block to the current block. Each

block is identified by the hash of its header, which is generated using SHA-256.

Figure 2.8 shows how three blocks are linked by references in the previous block

hash to form a chain.

Figure 2.8. Simplified representation of the Bitcoin blockchain.

2.4. Block structure

A block is a container data structure that collects transactions to be included in

the blockchain. A block is composed of a block size, block header, transaction

counter, and the transactions, as shown in Figure 2.9.
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Figure 2.9. Structure of a block [36].

The block header contains, among other things, a hash of the previous block,

a hash of the Merkle root of valid transactions to be included in this block, a

timestamp (creation time of the block), the current difficulty target for the block,

and a nonce (a unique solution used for the PoW algorithm). The structure of

the block header is shown in 2.10, and the details will be discussed in a latter

subsection.

Figure 2.10. Structure of a block header [37].

The blockchain goes all the way back to the genesis block, which was created

in 2009. Each block contains a summary of all transactions that it contains.

The transactions are combined using a Merkle tree, also known as a binary hash

tree. A Merkle tree is a data structure that efficiently summarizes and verifies

the integrity of large amounts of data. The term “tree” pertains to a computer

science term that describes a branching data structure, where the “root” (the

hashMerkleRoot field in the block header) is at the top and “leaves” are hashes

of pairs of transactions. Figure 2.11 shows how individual transactions form

a Merkle tree. Merkle trees are used in the Bitcoin protocol for its efficiency,

wherein an element in N data elements can be queried with at most 2∗log2(N )

calculations.

24



Figure 2.11. Example of how the Merkle tree of Bitcoin transactions is created

[38].

2.5. Mining and Proof-of-Work

Blocks are added to the blockchain through the process called mining, which

uses a proof-of-work system wherein miners participating in the Bitcoin network

use customized software and hardware to solve mathematical problems. Mining

also governs the issuance of new bitcoins into the bitcoins supply and secures the

Bitcoin network against fraudulent transactions, such as double-spending. The

miner who solves a block is awarded with newly “minted” bitcoins (currently at

12.5 BTC ≈ 16,000 USD) and the transaction fees of the transactions included

in the solved block. This process of mining incentivizes miners to keep mining

and approving transactions.

The amount of bitcoins being generated by a miner decreases every after

210,000 blocks (approximately every 4 years). This amount started at 50 BTC

per block when Bitcoin was deployed in January 2009, and then halved to 25 BTC

per block in November 2012, and then again halved to 12.5 BTC per block in

July 2016. The reward is estimated to half again some time in July 2020. Based

on this rate, the issuance of new bitcoins will stop in the year 2140, which is

when all 21 million bitcoins will have been generated. After 2140, the reward for

mining will solely come from the transactions fees included in the transactions.
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2.5.1 Transaction Verification

After a user creates a transaction, the transaction is forwarded to neighboring

nodes in the Bitcoin network until it is propagated across the entire Bitcoin net-

work. As per protocol, each node needs to verify the correctness of a transaction

before forwarding it to its neighbors, ensuring that only valid transactions are

propagated and included in a block (invalid transactions are discarded by a node

that encounters them). Each node verifies every transaction based on a checklist

of criteria as follows [38]:

� The transaction’s syntax and data structure must be correct.

� Neither list of inputs or outputs is empty.

� The transaction size in bytes is less than MAX BLOCK SIZE.

� Each output value, as well as the total, must be within the allowed range

of values (less than 21 million and more than 0 bitcoins).

� None of the inputs have hash=0, N=1 (coinbase transactions should not be

relayed).

� nLockTime is less than or equal to INT MAX.

� The transaction size in bytes is greater than or equal to 100.

� The number of signature operations contained in the transaction is less than

the signature operation limit.

� The unlocking script (scriptSig) can only push numbers on the stack, and

the locking script (scriptPubkey) must match isStandard forms (this rejects

“non standard” transactions).

� A matching transaction in the pool, or in a block in the main branch, must

exist.

� For each input, if the referenced output exists in any other transaction in

the pool, the transaction must be rejected.
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� For each input, look in the main branch and the transaction pool to find the

referenced output transaction. If the output transaction is missing for any

input, this will be an orphan transaction. Add to the orphan transactions

pool, if a matching transaction is not already in the pool.

� For each input, if the referenced output transaction is a coinbase output, it

must have at least COINBASE MATURITY (100) confirmations.

� For each input, the referenced output must exist and cannot already be

spent.

� Using the referenced output transactions to get input values, check that

each input value, as well as the sum, is in the allowed range of values (less

than 21 million and more than 0 bitcoins).

� Reject if the sum of input values is less than sum of output values.

� Reject if transaction fee would be too low to get into an empty block.

� The unlocking scripts for each input must validate against the corresponding

output locking scripts.

Miners independently verify all transactions they receive before propagating

them to other nodes. Therefore, every miner builds a pool of valid transactions

as they come in. At the same time, verified transactions are added to a memory

pool, which is where transactions are stored and wait until miners include and

validate them into a block (mined block).

2.5.2 Transaction Priority and Fees

Nodes select transactions from the memory pool based on a priority criteria.

Transactions are prioritized based on the age of the UTXOs in the input, that is,

old and high-value UTXOs are prioritized over new and low-value UTXOs.

The priority of a transaction is calculated using the following formula:

Priority =
Sum(Value of input*Input age)

Transaction Size
(2.1)
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where the sum of the value and age of the inputs is divided by the total

transaction size. The value is measured in satoshi, the age is the number of

blocks that have elapsed since the UTXOs were recorded in the blockchain, and

the transaction size is measured in bytes. A transaction is considered “high

priority” if its priority is greater than 57,600,000, which corresponds to 1 BTC

(100 million satoshi), age of 144 blocks (1 day), and total transaction size of 250

bytes following Equation 2.1.

Any transaction not included in the current block will remain in the memory

pool until it is included in a succeeding block. This happens because miners can

choose to ignore transactions without transaction fees and therefore these kinds

of transactions are validated on a best-effort basis.

2.5.3 Proof-of-Work Algorithm

The process of mining uses a PoW algorithm that involves performing a SHA-

256 to the block header repeatedly, changing one parameter (the nonce), until the

resulting hash satisfies the difficulty target. Since SHA-256 is a one-way function,

the resulting block header hash cannot be determined in advance and no pattern

can be discerned as each hash is independent from each other. Therefore, the

solution requires “brute force” solution; that is, miners scan and test for a nonce

repeatedly, usually the nonce is incremented by one for each solution.

The SHA-256 algorithm takes an input of arbitrary length and outputs a data

of fixed length. The resulting hash of a specific input will always be the same,

and thus, it can be easily calculated and verified by anyone by using the same

hashing algorithm. On the other hand, it is almost impossible to retrieve the

input given a hashed output. Moreover, in a cryptographic hashing algorithm, it

is almost impossible to find two different inputs that result in the same output,

also known as a collision.

In SHA-256, the output is always 256-bits long. To show the randomness

of the output, Figure 2.12 shows the results of applying SHA-256 to the phrase

“Hello, world!” appended with different integer values [39]. In the mining process,

the appended integer is the nonce and is used to vary the resulting hash.

To make the hashing algorithm challenging, a target is set (e.g., the result-

ing hash in the example should start with at least three zeros). Looking at the
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Figure 2.12. Results of applying SHA256 to a phrase with different integers

appended to it.

example in Figure 2.12, 4,251 rounds of SHA-256 operations were performed to

find a nonce that when concatenated with “Hello, world!” produced an output

that starts with at least three zeros. In mining, the resulting hash is governed

by a parameter called the difficulty target, which is agreed upon by miners. The

difficulty target is expressed as the difficulty on creating the current block com-

pared to generating the genesis block and is determined as follows:

difficulty =
difficulty 1 target

current target
(2.2)

As of writing this manuscript, the difficulty is 460,769,358,091 (the probability

of each hash to be a valid solution is 5.053084359146814E-22) [12, 40, 41]. The

correct nonce should produce a hash value whose numerical interpretation is lower

than the difficulty target, or equivalently the hash should start with a certain

number of zeros. When a miner finds the correct nonce, it forwards the solved

block to the rest of the miners. After validating the solution for the block, miners

move on to determining the correct nonce for the next block. To compensate for

increasing hardware speeds, the difficulty target is adjusted every 2,016 blocks so

that it takes on average 10 minutes to find a valid nonce.

The security of Bitcoin relies on this PoW system, which inherently means

that a block cannot be modified without redoing the work spent on it, including
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the work spent on blocks chained after it. Given this design, as long as majority

of the overall computing power participating in the Bitcoin network is controlled

by honest miners, an attacker will be outpaced by the honest miners, making it

almost impossible to modify a published block.

2.6. Bitcoin as Infrastructure

Bitcoin, with blockchain technology as one of its most innovative solutions, has

established itself as an effective online payment system. Its security and decen-

tralized nature make it applicable for use other than a payment system.

2.6.1 RBAC

This study develops a practical RBAC system that uses Bitcoin technology to

realize the trans-organizational utilization of roles. We investigate a realization

of a user-role assignment that is secure (users cannot disguise roles), user-oriented

(users can disclose their roles to any organization), and open (anyone can verify if

a user has a certain role that is managed and issued by another organization). The

key ideas are to define correspondence between the roles issued by organizations

and the users and to employ a challenge-response authentication protocol that

will be used for verifying if a user really has an asserted role. The relationship

between the role issued by organizations and the users will be represented by

the transfer of bitcoins using the organizations’ Bitcoin address/es as input and

the users’ Bitcoin address/es as output. We want to show that the relation of

payment using bitcoins can translate or represent a relation of trust.

Bitcoin’s protocol and cryptography make the proposed system suitable for

the trans-organizational utilization and authentication of roles, and furthermore,

allow flexible role management operations, such as the endorsement and manage-

ment of roles, with relatively small realization cost.

2.6.2 E-Voting

This study investigates the use of the Bitcoin protocol as a substitute to a public

bulletin board to provide a secure, anonymous, and transparent e-voting system.
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In the proposed system, the voters are given the “power” and control over the

sensitive parts of the voting process and the trust to other authorities is mini-

mized. In this way, the voters have complete control over their respective votes,

and the administrator and counter cannot perform malicious operations because

the security of Bitcoin is intact and the transactions are published publicly. In

the ideal case, the proposed e-voting system assumes the following:

1. All entities are knowledgeable about Bitcoin, including the protocol and

creation of transactions.

2. All entities handle their private keys securely.

3. Voters have initial bitcoins to spend.

For the first assumption: this is currently difficult to imagine as Bitcoin tech-

nology is not easy to understand fully. However, just like any e-voting system,

the protocols and methods need to be taught to the voters in an effective manner,

similar to teaching Bitcoin. Bitcoin is continuously becoming more widespread

and it is currently being used for monetary transactions, proving that the general

public can learn the proposed system effectively. Furthermore, this issue can be

avoided if an excellent wrapper mechanism that hides the details of Bitcoin from

the view of users can be created (e.g., an application or digital wallet that can

be used solely for the voting process).

For the second assumption: in a general e-voting system, the voters would

need to handle keys (one for encrypting the vote and one used as the blinding

factor) privately, securely, and secretly. In the proposed system, the voters would

need to handle an additional key, the private key for the Bitcoin address that

will be used for voting. The Bitcoin community has provided many methods

for securing Bitcoin wallets, including performing backups of wallets (local and

online), encrypting the wallet by setting passwords, and creating off-line wallets

or cold storage [42]. A technology-savvy Bitcoin user can even create multi-

signature addresses, e.g., a 2-of-3 multi-signature address, wherein bitcoins can

be transferred using 2 out of 3 private keys used in the creation of the said address.

In this aspect, using Bitcoin is advantageous because it provides many security

tools that are immediately available.

For the third assumption: this is difficult to implement until Bitcoin becomes

a widely accepted currency. In general, users can obtain bitcoins through Bitcoin
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ATMs, online and off-line exchanges, accepting bitcoins as payment, by buying

from friends, and through mining. In the proposed system, it is ideal that the

administrator (or government) provides all necessary Bitcoin expenses, so that

the voters do not need to spend any money. However, a voter cannot reveal

the Bitcoin address that he/she will use for voting to any other entity without

compromising his/her anonymity and privacy. The most viable option is for the

administrator to provide Prepaid Bitcoin Cards (PBCs) [43] to all eligible voters.

PBCs are physical or virtual cards that are pre-loaded with bitcoins. A PBC

contains a public Bitcoin address with a pre-loaded amount of bitcoins and the

corresponding private key, which is covered and can be scratched off, as shown

in 2.13. The PBCs that will be used for the proposed e-voting system can be

created by a third-party or by the administrator itself.

2.7. Attacks on the Bitcoin Network

Some strategies, both theoretically and in practice, have been devised to attack

the security of the Bitcoin protocol and possibly put it in danger. Some attacks

have been designed for dishonest or rogue miners, i.e., those who do not follow the

Bitcoin protocol, to get rewards higher than their contribution to the network.

These strategies include the pool hopping attack [44], the mining cartel at-

tack [45], selfish mining [46], block withholding attack [47], and hardware attacks.

These attacks are designed to infiltrate factors outside the blockchain, targeting

the client side and stealing bitcoins from them (pool and wallet infiltrations).

These attacks mainly aim to steal bitcoins and/or gain higher rewards and not

to modify transactions or the blockchain. Therefore, Bitcoin’s security remains

intact and “backed by math”. For our purposes, the transactions between organi-

zations and users will remain secure and unmodifiable because they are recorded

in the blockchain.
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Figure 2.13. Example of a Prepaid Bitcoin card [43].
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Chapter 3

Role-Based Access Control

(RBAC)

Role-based access control (RBAC), also called role-based security, is a method

used in computer systems security to restrict system access based on user autho-

rization. RBAC is currently being employed by various enterprises and compa-

nies and it provides solutions to the security needs of commercial and government

organizations. RBAC can be deployed to facilitate and handle the security of sys-

tems in companies, even large-scale companies with hundreds or even thousands

of users and permissions. RBAC started to gain popularity in 1994, when various

IT vendors, including IBM, Sybase, and Siemens have developed products based

on the RBAC model. In 2000, the Ferraiolo-Kuhn model was integrated with the

framework of Sandhu et al. [14] to create a unified model for RBAC, published as

the NIST RBAC model [48] and adopted as an ANSI/INCITS standard in 2004

[49].

3.1. Models for RBAC

Among the many technical issues of the RBAC framework, this study mainly

focuses on the realization of the user-role assignment in a trans-organizational

scenario. Other issues of RBAC may be related to this study, but they are

excluded from the scope of our discussion. To clarify the position of our study

in the entire framework of RBAC, an abstract model of RBAC and its extension
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are discussed first.

In the simplest model of the RBAC [14], the access structure is defined by

three sets and two relations; the set U of users, the set R of roles, the set S of

services, a user-role assignment UA ⊂ U× R, and a role-service assignment SA

⊂ R × S. A user u is eligible to access a service s if and only if there is a role r

such that (u, r) ∈ UA and (r, s) ∈ SA. In real-world services, roles can be used in

a trans-organizational manner. A role that was issued by a role-providing entity

can be referred by a foreign service-providing entity to determine if a service

should be given to an unknown guest. An interesting point here is that the

role-providing entity is not always concerned about the service-providing entities.

This suggests that the service-providing entity is not always allowed access to

the user-role assignment, and thus, it needs to devise an alternative means to

confirm if an unknown guest has a certain role or not. To deal with this kind of

framework, we consider extending the basic model of RBAC by introducing a set

of organizations.

The trans-organizational RBAC is defined similarly to the usual RBAC, but

a set O of organizations is defined in addition to the sets of users, roles, and

services. Furthermore, the set R of roles is partitioned into several subsets, with

each subset of R associated with an element in O, that is, R = Ro1

⋃
. . .
⋃
Ron ,

where o1, . . . , on ∈ O and Roi

⋂
Roj = φ if i 6= j. To make the relation among

roles and organizations explicit, a role r in Ro1 is written as o1.r. Similarly, the

user-role assignment UA is partitioned into disjoint subsets; UA = UAo1

⋃
. . .
⋃

UAon , where UAoi ⊂ U × Roi . Obviously, o1.r ∈ Roi means that the role o1.r is

managed by the organization oi and the assignment of users to o1.r is controlled

by that organization oi. In the trans-organizational RBAC, a user u demands a

service s by asserting his/her role o1.r ∈ Roi that has been provided by a role-

providing entity (organization) o1. The service-providing organization provides

the service to the user if and only if (u, oi.r) ∈ UAoi and (oi.r, s) ∈ SA. Note that

the test of (oi.r, s) ∈ SA is easy for the service-providing organization because

the assignment SA is defined by the organization itself. On the other hand, the

test of (u, oi.r) ∈ UAoi , which is sometimes called an authentication, is not as

obvious as the test of (oi.r, s) ∈ SA because the assignment UAoi is defined by a

foreign service-providing organization.
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The trans-organizational RBAC will be realistic only if the authentication of

roles (u, oi.r) ∈ UAoi is accomplished. Physical certificates, such as passports

and ID-cards, have been widely used for many years to authenticate identities and

roles, but these certificates cannot be easily imported to the digitalized world over

a computer network. Digital certificates have been studied for the replacement

of physical certificates [15], but they are not widely accepted because of the cost

issues for acquiring these certificates, keeping related keys secure, and maintaining

a public-key infrastructure (PKI) [50, 51] that should be always available. A less

sophisticated but simpler approach is to arrange a mutual agreement between

role-providing organizations and service-providing organizations. However, such a

framework will be semi-closed and only include organizations that share identical

benefits.

3.1.1 Related System based on Hierarchical ID-Based En-

cryption

We have investigated another approach for realizing secure authentication of

roles by utilizing a special cryptography known as hierarchical ID-based en-

cryption [52]. In this previous study, a practical mechanism that realizes the

trans-organizational utilization of roles was developed. The crucial point of this

realization is to make use of hierarchical ID-based encryption (HIBE) [53, 54],

which allows an arbitrary string to be used as a public encryption key. The key

idea is to define correspondence between the roles and keys of HIBE and to em-

ploy a challenge-response authentication protocol that will be used for verifying

if a user really has an asserted role. The hierarchical nature of HIBE makes the

proposed scheme suitable for the trans-organizational utilization of roles, and fur-

thermore, allows flexible role management operations, such as the endorsement

and delegation of roles. A prototype system of the proposed trans-organizational

RBAC was also introduced. To make the trans-organizational RBAC system

practical, it is highly desirable for a user to be able to carry his/her roles all

the time. Therefore, the proposed system was implemented on Android-enabled

mobile devices to verify the practicality of the proposed scheme. The implemen-

tation contains the realization of cryptographic functions that are essential for
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handling cryptographic keys and the development of a scheme that allows two

devices to perform the challenge-response authentication by utilizing local and

closed communication. The prototype demonstrates that the proposed scheme is

simple, lightweight, and completely practical for realizing the trans-organizational

RBAC.

The proposed system offers some advantages over other existing approaches,

but it necessitates several users with the same role to have an identical secret key,

which is not favorable from a security viewpoint. Other comparable systems in-

clude decentralized multi-authority systems for attribute-based encryption (MA-

ABE) and attribute-based signatures (MA-ABS) [56, 57]. The MA-ABE in [56] is

decentralized but requires a trusted setup of common reference parameters. The

MA-ABS in [57] is also decentralized and does not necessitate a trusted setup,

but it requires the setting of a public parameter for a prime order bilinear group

and hash functions. Even though these schemes are decentralized, all users and

organizations must agree on the parameters first. Confusion and implementation

problems may arise if several communities use different parameters, and there-

fore, such systems must be initiated by somebody who has strong leadership,

grand design, and sufficient financial power for implementation. Consequently, a

scheme for a role authentication mechanism that is secure, practical, and easy to

set up has yet to be established.

A more comprehensive explanation of the previous study is presented in Ap-

pendix B.

3.2. Proposed RBAC System using the Bitcoin

Network

The proposed system is a non-conventional authentication mechanism that is

suitable for the trans-organizational utilization of roles. The idea is to provide

an irrefutable proof of the role of a user issued by an organization by verifying

the connection of the user to the organization through the Bitcoin blockchain.

Consider for example that A-university would like to manage a “student” role

for its students. First, it would perform a Bitcoin transaction using its own pub-

lic Bitcoin address/es as input/s and the corresponding students public Bitcoin
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address/es as output/s. Upon request for a service from an unknown user who

asserts that he/she possesses the student role of A-university, a service-providing

organization, for example a restaurant, will verify the Bitcoin transaction con-

taining the Bitcoin addresses of A-university and the student, which connects

the student role managed by A-university to the output address in the trans-

action. After establishing the connection, the restaurant can verify (through a

challenge-response protocol) if the unknown user has access to the output address

in the transaction, which finally connects the student role from A-university to

the unknown user.

Note that the restaurant does not have to know anything about the role be-

forehand, and does not have to make any contract or inquiry to A-university that

has assigned the role to the student because the details needed by the restau-

rant are published publicly and/or possessed by the user (details below). In the

proposed system, there is no essential difference between users and role-issuing

organizations because they both can be the sender and receiver in the Bitcoin

transactions (but for simplicity and explanatory purposes, the role-issuing orga-

nizations will be differentiated from the users).

3.2.1 Procedures

Figure 3.1 shows the overall structure of the proposed system. In this model, we

assume that the role-issuing organizations are Bitcoin users while the users and

service-providing organizations may or may not be Bitcoin users. Bitcoin user

means that the entity owns a Bitcoin wallet and performs Bitcoin transactions.

Prerequisites

An organization (o1) generates n Bitcoin addresses, where n is the number of

roles that o1 wants to manage. The creation of these Bitcoin addresses (and the

corresponding private keys) can be accomplished using several options, including

Bitcoin wallets and online/offline Bitcoin address generators. After generating

the n key pairs, o1 keeps the private keys secret and secure, and publishes the list

of pairs of Bitcoin addresses and corresponding roles using chosen media (e.g.,

Website, database, etc.) to make them available to the public. We write o1.BPKi,
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Figure 3.1. Overview of the proposed RBAC using Bitcoin.
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o1.BAi, o1:ri for the private key, Bitcoin address, and the role that is associated

with the address o1.BAi, respectively, where 1 ≤ i ≤ n. The publication of these

Bitcoin addresses will serve as proof that o1 owns and manages the addresses

(it should be noted that o1 will not gain any benefit from publishing Bitcoin

addresses that it does not own, and thus, it is safe to assume that o1 will only

publish Bitcoin addresses it owns).

Similarly, a user (u) generates a pair of a private key u.BPK and a Bitcoin

address u.BA. Alternatively, o1 can generate the (u.BPK, u.BA) key pair and

send it to u through a secure communication channel. Note however, that it is

recommended by the Bitcoin community that only the one who created the key

pair should be in possession of the key pair because the private key is used for

accessing the bitcoins stored in the corresponding address.

Creating the role-issuer and user connection

The organization o1 creates a simple Bitcoin transaction using o1.BAi as input

address and u.BA as output address. In this transaction, o1 sends an arbitrary

amount of bitcoins to u. In the proposed system, the role-issuing organizations

are expected to transfer the minimum amount of bitcoins, which is equal to 1

satoshi or 0.00000001 BTC. This is a dust transaction and will incur a required

transaction fee of 0.0001 BTC. Therefore, the current minimum amount of BTC

that can be used for a transaction to be considered valid is 0.00010001 BTC.

Optionally, o1 can include a higher transaction fee or miners’ fee if it wants its

transaction to be prioritized in the current round of solving for the block (but

for our purposes, the time of confirmation is not vital and the minimum trans-

action fee is sufficient). After confirming the details of the transaction, o1 sends

the transaction to the Bitcoin network awaiting for confirmations from miners

that the transaction is permanently included in a block in the blockchain. Once

included in the blockchain, certain details will be publicly available, including

o1.BAi, u.BA, amount of bitcoins transferred, transaction ID, block number, re-

ceived time, and the time it was included in the block.
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Verifying a user-role assignment

Assume that user u visits a service-providing organization o2 and asserts that

he/she has the role of o1:ri that was issued by o1. The organization o2 inquires u

for the Bitcoin address, say u.BA, that was granted the asserted role of o1:ri from

o1. Then o2 will (i) determine the Bitcoin address o1.BAi that is associated with

the role o1:ri, (ii) confirm the existence of the transaction from o1.BAi to u.BA,

and (iii) verify if u is the genuine owner of u.BA. The Bitcoin address o1.BAi can

be found in the medium where o1 published the Bitcoin addresses it owns. The

confirmation of the transaction can be done by using a blockchain browser or a

program similar to that. Steps (i) and (ii) assure o2 that the role o1:ri and other

related information associated with o1.BAi are assigned by o1 to the owner of

u.BA. The ownership of u.BA is verified by a challenge-response protocol where

ECDSA keys that are associated with the Bitcoin address u.BA are utilized.

Challenge-Response Protocol

The organization o2 chooses an arbitrary data m and requests u to sign it, to-

gether with u.BA, using the private key u.BPK. The signature is defined by S

= Sign(u.BPK, u.BA, m), and thus a correct S will only be created if u has

u.BPK. User u then sends the signature back to o2 and o2 will verify using the

function ResponseVerify(u.BA, m, S ). Examples of signing/verifying a message

to prove ownership of a Bitcoin address are shown in 3.2.

Remark that o2 can confirm if u has access to the role o1:ri without querying

o1, and that u has little chance to disguise his/her role.

Comparison of Practicality and Costs

The proposed system provides flexibility for parties who want to join or leave

the system anytime (in this subsection, parties refer to role-issuing organizations,

service-providing organizations, and users, unless otherwise specified). New par-

ties only need to follow the Bitcoin protocol to participate in the system, while

role-issuing organizations who want to leave the system can simply retract or

disable the media where they published the Bitcoin addresses they own. The

MA-ABE [56] and MA-ABS [57] systems provide the same flexibility as the pro-
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Figure 3.2. The signing (top) and verifying (bottom) of a message features of a

Bitcoin wallet.
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posed scheme in terms of parties leaving or joining because they are decentralized,

but PKI-based and server-based systems are not as flexible because the issuance

and acquisition of certificates are not free of charge and because parties need

permission from the central authority to participate.

In the proposed, MA-ABE, and MA-ABS systems, the responsibility of the

authentication activities belongs to the parties, while in the PKI-based and server-

based systems, the responsibility belongs to the central, single authority. Decen-

tralized and centralized systems have different ways of handling their activities

and cannot be compared directly, although it can be argued that decentralized

systems are more flexible than centralized systems because centralized systems

break down completely if the central authority or server becomes corrupted.

The proposed system is relatively easy to implement given that it adopts the

Bitcoin network, which is completely online and is run by a P2P network. Bitcoin

has already established a currently secure, always available, and complete system

that uses common parameters that have been set and agreed upon by the Bitcoin

community based on significant amount of research. It is also noted that the setup

cost of the proposed system is reduced to a minimum because the Bitcoin network

has already been established and is currently functioning. The MA-ABE [56] and

MA-ABS [57] are relatively new technologies, and they can possibly be widely

accepted in the future. However, as of writing this manuscript, the practical

contribution of these techniques to existing network systems and the cost issues

of their deployment are yet to be discussed. PKI-based and server-based systems

are well-recognized frameworks and have been utilized in many systems. However,

it is often pointed out that, in these frameworks, the setup and service/labor costs

become more expensive as the number of users increases. For example, a 5,000-

user PKI infrastructure can cost approximately 200,000 USD annually, with the

initial setup cost amounting to 10,000 USD [58, 59]. These costs can also apply

for other systems that rely on a central authority, including Identity Providers

(IdPs) which authenticate users on the Internet by using security tokens.

To avoid confusion, we remark that the computational cost and the participa-

tion to the P2P Bitcoin network are not essential for the parties participating in

the proposed scheme. Heavy computations are only necessary during the process

of mining bitcoins, but the parties do not need to mine bitcoins to participate
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in the system. Parties only need to generate Bitcoin addresses, create Bitcoin

transactions for role issuance, and perform the challenge-response protocol, all of

which have reasonably small computational costs and thus can easily be applied

in today’s computer systems and devices.

3.3. Role Management

In the proposed framework, the relation between users and roles is represented by

the users’ possession of the private keys that prove they own the corresponding

Bitcoin addresses. This approach involves a possible security risks— the leakage,

theft, and loss of keys.

3.3.1 Personalization of roles

If a user leaks his/her private key, then the people who happen to know the key

can also prove ownership of the corresponding Bitcoin address (which in turn can

be used to prove that a role associated with the address was assigned to them),

as shown in Figure 3.3. Note that the intended user can still prove ownership of

the Bitcoin address even after leakage, although such an inappropriate usage of

keys can obstruct fair and reliable access control.

To deter such irresponsible behavior of users, the proposed system offers four

possible measures:

1. Given that the proposed system uses Bitcoin technology, it inherently has a

“traitor tracing” capability because the Bitcoin addresses are unique (thus,

they can be possibly mapped to users) and the transactions are published

publicly. Thus, if a user receives a leaked key and maliciously uses the role

associated to the corresponding Bitcoin address, a consequent investigation

can possibly lead to the original user associated with the Bitcoin address.

2. Role-issuing organizations can “personalize” roles by including some unique

identifiers (which can be encrypted as well) to the data it will publish pub-

licly. For example, A-university can publish “o1.BA1 issues a ‘student’ role

to student #123 with 6 months validity.”

44



Figure 3.3. A user leaking the private key to other users.

3. Role-issuing organizations can “personalize” roles by making use of the

OP RETURN part of the Bitcoin protocol. The OP RETURN script is

used to mark a transaction output as invalid, i.e., the bitcoins attached to

outputs with OP RETURN are unspendable [60]. Therefore, transactions

with modified OP RETURN are used for other purposes, such as notariza-

tion and proof-of-existence of documents, by attaching arbitrary data to it.

The OP RETURN can handle up to 80 bytes of user-defined data. The

OP RETURN script has been increased to 80 bytes from 40 bytes because

the Bitcoin blockchain is being used for other purposes that create a lot

of dust transaction, consequently bloating the blockchain. The developers

hope that the increase in the size of OP RETURN outputs can be used to

burn bitcoins and minimize the creation of dust transactions.

4. Role-issuing organizations can “personalize” roles by making use of a public

note that is included in the Bitcoin transaction, as shown in Figure 3.4 .

It should be noted that this public note is a relatively new feature offered

by an online wallet (blockchain.info) [61] and is not part of the Bitcoin
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Figure 3.4. A public note attached to a transaction.

protocol.

With these measures, a user will be more conscious of leaking/losing his/her

key to another person because he/she will have the risk of being identified and

subsequently punished for irresponsible behavior. The theft/loss of keys remains

a risk, but such risk also exists for ID-cards used in the real world.

3.3.2 Role Re-issuance

If the private keys are lost or forgotten, or if access to the digital wallet is lost

or forgotten, then control over the corresponding Bitcoin addresses is also lost.

The ownership of the Bitcoin addresses cannot be verified or proven without the

corresponding private keys.

In this case, the role-issuing organizations can easily re-issue the roles by cre-

ating another Bitcoin transaction to the new Bitcoin address of the compromised

user. The overhead of role re-issuance is relatively low for both the role-issuing

organizations and the user.

Moreover, to make sure that the compromised Bitcoin addresses will not be

used maliciously, a role-issuing organization can create a revocation list containing

these addresses in the media where it publishes the Bitcoin addresses it owns.

3.3.3 Additional Security Measures

Bitcoin wallets are the most common target of attacks, but of course, security

measures have been implemented and are recommended to minimize such cases.

In the proposed system, the purpose of the Bitcoin transaction is to connect

the user to an organization and to a role. If the user is a Bitcoin user, he/she
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is recommended to use other wallets or other addresses to store bitcoins. Ul-

timately, the user only needs to store the private key safely, and even keep it

offline. The challenge-response protocol can be performed offline. Moreover, an

attacker with no prior knowledge of the proposed system and the role associated

with the address will have no motives or incentives to steal the private key (even

if an attacker can steal the private keys, the addresses will not contain any large

amounts of bitcoins to steal).

3.3.4 Endorsement

The Bitcoin network provides a natural connection between Bitcoin addresses

published in the blockchain. This function can be used to realize some personal

activities that are not considered in the conventional RBAC approach. One

possible example is the endorsement of another person. In the real world, an

endorsement among individuals sometimes plays an important role. Semi-closed

organizations, such as academic societies and golf clubs, have the tradition or

policy that a newcomer must be endorsed or referred by a current member. This

mechanism can be realized by extending the proposed system.

Figure 3.5 shows an idea of the endorsement mechanism. Consider for example

that Alice (u) is an authorized member of XYZ golf club (o1). This relationship

is realized by the Bitcoin transaction from o1.BA, to u.BA. If Alice would like

to endorse Bob (u2) to o1, then she can similarly create a Bitcoin transaction

from u.BA to u2.BA, linking their addresses. Then, Bob can go to o1 and declare

u2.BA. The club can look up the blockchain and check that u2.BA was endorsed

by u.BA, which was originally endorsed by the club, as represented by o1.BA.

Once the connection is established, o1 can verify if u2 is the owner of u2.BA by

using the challenge-response protocol. By querying the blockchain and through

the challenge-response authentication, the club does not have to inquire Alice for

the verification of the endorsement.
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Figure 3.5. Example case where a user endorses another user.

3.3.5 Trusted Timestamping as Proof of Validity or Expi-

ration Dates

Trusted timestamping is the process of securely creating a proof, i.e., timestamp,

of the creation or modification time of a document. It is used for proving that

certain information or document existed at some point in time and has not been

tampered or modified since.

Traditional timestamping processes follow the RFC 3161 standard, wherein

the timestamp is issued by a trusted third party acting as a Time Stamping

Authority (TSA) [62].

The Bitcoin network features a timestamp server used in the blockchain to link

the blocks together in a chronological manner. This timestamp server has been

used, outside the main purpose of Bitcoin, as a trusted timestamping mechanism

for digital documents given that it is secure (extremely difficult to attack and

modify), robust (DoS resistant), and a trustworthy source of time (i.e., the time

a transaction is included in the blockchain) [63, 64]. Put simply, a hash of the

data that a user wants to timestamp is converted into a Bitcoin address. The

timestamping service (or the user him/herself) then creates a Bitcoin transaction

and makes a small payment to the converted Bitcoin address. This transaction

is then stored in the public blockchain. Anyone who wants to verify the point in

time a data (i.e., the hash of the data) existed can be connected to the time the

transaction concerning the corresponding converted Bitcoin address was included

in the blockchain.

This timestamping scheme is innovative and provides additional features as

compared to the traditional trusted timestamps issued by TSAs, which are prone
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to data corruption and tampering. This timestamping scheme is decentralized

and is not controlled by a single authority; it can easily be accessed over the

Internet and is always available; it is anonymous (one’s identity, the data being

given a timestamp, or even the fact that one wants something to be given a

timestamp are kept secret); it is relatively low cost; the timestamp is accurate;

and it is secure.

The timestamp server of Bitcoin provides a natural solution to the inclusion

of expiration dates or validity of the roles in the proposed system. A role-issuing

organization can include expiration dates or validity of the roles it manages in the

information it publishes publicly. In this way, a service-providing organization

can verify the validity of a role simply by investigating the timestamp of the block

where the transaction was included in the blockchain and comparing it with the

details published by the role-issuing organization.
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Chapter 4

E-Voting

In this section, we first discuss some widely recognized e-voting protocols, which

are the bases of other more complex secret voting schemes that have been pro-

posed by other researchers. Many e-voting systems are based on the blind signa-

ture scheme. In this kind of scheme, voters obtain a token or signature, which is

created by an authority “blindly” for a data (the vote) that is known only to the

voter. The blind signature scheme is simple to understand and is easily adaptable

in complicated schemes. However, a common problem with this kind of scheme is

its potential for single points of failure because the authorities involved are given

too much power, e.g., authorities can introduce dummy votes for voters who ab-

stained from voting. To address this problem, variations of the blind signature

have been created. For example, a threshold blind signature scheme (or simply

requiring blind signatures from multiple authorities) reduces the power of author-

ities by creating replicates of these authorities and keeps the protocol from failing

as long as a certain number of the replicates are honest. However, this kind of

threshold scheme is vulnerable to the problem of colluding voters. To solve the

problem of colluding voters, a public bulletin board, which is accessed through

anonymous channels, has been used on top of systems based on threshold blind

signature schemes to provide transparency in the voting process.
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4.1. Blind Signature Scheme

A blind signature, as presented by Chaum [5], is a cryptography that is a digital

version of using carbon paper-lined envelopes. In this analogy, the signature writ-

ten outside the envelope leaves a carbon copy of the signature on the document

inside the envelope, which the signer cannot see. In e-voting systems based on

the blind signature protocol, the signer (typically an authority) signs an unknown

message (blinded message) for a known requester (typically a voter). This blind-

ing process is necessary because the signer should not know the vote of the voter.

In this scheme, a data or message to be signed by a signer (authority) is disguised

(randomized) first by a provider (voter) using the following blinding function:

m′ = blinde(m, r),

where m′ is the blinded message, e is the public key of the signer, m is the

message, and r is a random number. In an RSA blind signature scheme, the

blinding function is defined as blinde(m, r) = mremod n, for example. The

provider sends m′ to the signer, then the signer signs m′ to generate the following:

s′ = signd(m
′)

where s′ is the blind signature and d is the private key of the signer. Then, the

signer returns s′ to the provider. The provider obtains the digital signature s for

m using a corresponding unblinding function given by:

s = unblind(s′, r).

In the RSA blind signature, s′ = (mre)d = mdr mod n, and unblind(s′, r) =

r−1s′ = md mod n, as shown in Figure 4.1.

4.2. Secret Voting for Large Scale Elections

Fujioka et al. [17] proposed a voting scheme for large scale elections. Their

model consists of three entity types: voters Vi (i = 1, 2, ..., n), an administrator

A, and a counter C. In this model, Vi and C are assumed to communicate

through an anonymous communication channel, which is a virtually assumed
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Figure 4.1. Representation of the blind signature protocol using RSA.

special channel where nobody can identify the sender of transmitted data. The

model also requires the bit-commitment, digital signature, and blind signatures

schemes. Voters Vi use their own digital signature scheme, A uses its own blind

signature scheme and is responsible for verifying the eligibility of voters, and C

only collects the ballots and publishes the results. An informal description of

their scheme is as follows:

In the Preparation stage, voter Vi selects a vote vi and completes the

commitment xi = enc(vi, k) using the bit-commitment scheme, where k is a

randomly chosen key. Then, Vi computes the blinded message xi
′ = blinde(xi, r),

where e is the public key of A and r is a random blinding factor. Then, Vi signs

xi
′ to generate si = signi(xi

′), where signi(xi
′) is Vi’s signature scheme (hence

signi is the signature of Vi itself for the blinded messages), and sends this si,

together with his/her identification and xi
′, to A.

In the Administration stage, administrator A verifies the eligibility of

Vi. If Vi is eligible to vote, then A signs xi
′ to generate a digital signature

di = signA(xi
′) for xi, where signA(xi

′) is A’s signature scheme. Then, A sends

di back to Vi. At the end of this stage, A publishes a list that contains the

identities, blinded message, and signed blinded message (i.e., IDi, xi
′, and di) of

the voters that received di.

In the Voting stage, voter Vi retrieves the signature yi = unblind(di, r) for

the commitment xi. Voter Vi verifies the correctness of yi, and if it succeeds,

sends xi and yi to the counter C through an anonymous channel.
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In the Collecting stage, counter C verifies that yi is the signature for xi.

If the test succeeds, C publishes a list of (l, xi, yi), where l is the entry number

of the corresponding xi and yi.

In the Opening stage, voter Vi checks that the number of ballots that C

published is equal to the number of voters that A published, and that his/her

vote is listed in the list that C published. If the check succeeds, Vi sends the key

k (that was used to make the commitment xi) with the corresponding number l

to C through an anonymous channel.

In the Counting stage, counter C opens the l-th ballot using the corre-

sponding k to retrieve the vote vi. Finally, C counts the votes and announces the

results.

As pointed out in [65], this scheme has the potential for a single point of

failure, wherein the authority can provide votes for the voters who did not cast

their votes.

4.3. Blind Multsignatures

Multisignature schemes are used to avoid single points of failure wherein any sub-

group of a group of players jointly sign a document to convince a verifier that each

member of the subgroup participated in signing [66]. A multisignature scheme

can be combined with a blind signature scheme to create a blind multisignature

scheme that can be applied to e-voting systems. In this kind of system, a user

runs the blind signature protocol with each signer (the signers are considered to

be a subgroup of a group of signers) to obtain signatures for a message, each

generated using the corresponding signer’s private key. An entity is replicated N

times and it assumed that at least t replicates are kept from failing even in the

most pessimistic scenarios. The number of t should be greater than 1 and less

than N . The value of t should be selected in such a way that it is unlikely for

N − t or more replicates to collude or fail simultaneously (i.e., it is likely that t

replicates stay safe and secure).

A general e-voting system based on blind mutisignatures consists of five entity

types: voters Vi (i = 1, 2, ..., n), an administrator A, registration authorities

Rj (j = 1, 2, ..., N), a key authority K, and a counter C. The stages are as
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follows:

In the Initialization stage, administrator A distributes the set of identities

of legitimate voters together with their corresponding public keys to concerned

entities, i.e., the registration authorities Rj with j = 1, 2, ..., N and key authority

K. In this scheme, K generates the private/public keypair that will be used

for the encryption process during the voting process. Note that K can also be

replicated to dissolve its power, but for simplicity, only one K is discussed here.

In the Preparation stage, voter Vi selects a vote vi and completes the

commitment xi = enc(vi, k), where k is the public key provided by K.

In the Administration/Registration stage, voter Vi randomly selects

t registration authorities. In this explanation, without loss of generality, let

R1, ..., Rt be the authorities selected by Vi. Then, Vi computes the blinded mes-

sage xi,j
′ = blindej(xi, r) for j = 1, ..., t, where r is a random blinding factor and

ej the public key of the corresponding Rj. Note that xi,j
′ is computed separately

for different Rj because it is generated with the ej of the corresponding Rj. Then,

Vi requests a signature for each xi,j
′ from R1, ..., Rt. Then, Rj verifies the eligi-

bility of Vi. If Vi is eligible, Rj signs xi,j
′ to generate di,j = signRj

xi,j
′. Then, Rj

sends di,j back to Vi. Then, Vi retrieves t signatures yi,j = unblind(di,j, r) for the

commitment xi. If Vi retrieves the required t signatures, then Vi is ready to vote.

In the Voting stage, voter Vi sends xi and the t signatures yi,j to C through

an anonymous channel, then C verifies that the required number of t signatures

has been satisfied.

In the Opening/Counting stage, key authority K opens the collected

commitment xi publicly using the private key. Then, C counts the votes and

announces the results.

In this kind of scheme, K holds the private key for the decryption of xi, and

thus, has the power to reveal the votes as soon as it receives xi; this can violate

the fairness property. Moreover, the different Rj are assumed to not collaborate

with each other and that they communicate with Vi independently. Therefore,

colluding eligible voters can introduce extra vote/s using the extra signatures

obtained beyond t.

As pointed out in [65], a colluding group of voters can introduce extra votes

as follows:
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extra votes =

⌊
N − t
t

Vcol

⌋
(4.1)

where Vcol is the number of colluding voters. Thus, given N = 4 registration

authorities and t = 3, three colluding voters, Vcol = 3, can generate 1 extra vote.

4.4. Public Registration Boards and E-Voting

Koenig et al. [65] pointed out that a public registration board is required to

avoid the problem of colluding voters in e-voting systems based on threshold

blind signatures. In this system, they use a public board as a knowledge base for

synchronization among the registration authorities. A public board is an append-

only broadcast channel with memory or storage device. Data published on the

board can be read but cannot be modified.

In their protocol, the voters need not communicate with the registration au-

thorities directly, and vice versa. Following the stages in the system discussed in

the previous section, they made changes in the Registration and Voting stages.

In the Registration stage, voters broadcast a blinded hash of the commitment

anonymously to the public registration board. Then, the Rj check the board

entries, get the blinded messages, sign the messages, and then broadcast the

corresponding blind signatures back to the board. In the Voting stage, voters

send the commitment, the hash of the commitment, and the signatures of the

Rj anonymously to the counter C. All other stages remain the same. Figure 4.2

shows an overview of an e-voting system that makes use of a public registration

board.

This kind of scheme solves the problems of colluding voters and single points of

failure. However, by introducing the public registration board, it can be prone to

some additional problems, such as denial of service attack and anonymity issues.

A natural improvement to this kind of scheme is to create a collective of public

boards or a distributed web bulletin board [67]. This collective is based on N

peers of identical public boards, which, ideally, have a synchronized history of the
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Figure 4.2. An e-voting scheme that uses a public bulletin board system.

entries. Furthermore, the anonymous nature of the bulletin board is still needed,

and this approach does not mitigate the practicality issue of previous schemes.

4.5. Using the Bitcoin Blockchain for secure, in-

dependently verifiable, electronic votes

Noizat [68] uploaded a whitepaper that describes a system that leverages the

Bitcoin blockchain as a secure transaction database for logging votes and auditing

results. He created a demo voting application which can be found in [69]. His

system revolves around a centralized voting application server, which is a point

of failure. Consequently, the privacy and anonymity of the voters are violated

because the application knows the votes of the voters. Moreover, the application

knows the results of the votes as the votes come in, and can know the pattern

and behavior of how voters are voting. The application is given almost all the

power, such that it handles all the private keys, and it could act maliciously and

dishonestly by introducing dummy votes and it can even change the votes.
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4.6. Proposed E-Voting Protocol

The proposed system is an unconventional e-voting system based on the Bitcoin

Protocol and Blind Signature Protocol. The idea is to use the Bitcoin blockchain

as an alternative to an anonymous bulletin board or public registration board

system, as shown in 4.3. The proposed system involves three entity types: voters

Vi (i = 1, ..., n), an administrator A, and a counter C.

4.6.1 Initialization and Preparation

Administrator A initiates the voting process by publishing empty ballots. Voter

Vi selects a vote vi, completes the ballot, and creates the commitment xi =

enc(vi, k), where k is a randomly chosen key. Then, Vi generates the blinded

message xi
′ = blinde(xi, r), where r is a random blinding factor and e is the

public key of A.

4.6.2 Administration

This stage is performed in face-to-face communication. Voter Vi requests a signa-

ture from A for xi
′. Administrator A checks and verifies if Vi is an eligible voter

and has the right to vote and if Vi has not yet requested for a signature. If both

conditions are met, A generates the signature di = signA(xi
′), where signA(xi

′)

is A’s signature scheme, and then A sends di back to Vi. At the end of this stage,

when all voters have requested the signature from A, A publishes a list that con-

tains the identities of all the voters who received the signature from A and their

corresponding commitment given by 〈IDi, xi
′〉.

Voter Vi, who now holds the signature di, will retrieve the signature yi =

unblind(di, r) for the commitment xi. Voter Vi verifies if yi is A’s signature for

the commitment xi. If the verification fails, Vi can claim the invalid signature by

showing that 〈xi, yi〉 is invalid.

If PBCs will be issued by A, then Vi is given one of these PBCs (which can

be put inside an envelope to ensure that it cannot be traced back to Vi). The

voter Vi can check the blockchain to ensure that the Bitcoin address included in

the PBC contains bitcoins.
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Figure 4.3. Overview of the proposed structure.

Then, privately, (i.e., at home or some secure place) Vi scratches off the covered

private key, allowing him/her to have access to the corresponding Bitcoin address

in the PBC. The voter Vi generates a pair of a private key Vi.BPK and a Bitcoin

address Vi.BA that will be used for voting. To ensure Vi’s privacy and anonymity,

Vi transfers the bitcoins from the Bitcoin address in the PBC to Vi.BA. This

transaction is performed solely by Vi, and thus, no one, aside from Vi, can link

the identity of the owner of Vi.BA to the Bitcoin address included in the PBC.

The use of PBCs also introduces an advantage to the security and reliability of

the voting process, wherein A publishes all Bitcoin addresses used in the PBCs,

and only the Bitcoin addresses that are linked to these PBCs can be used in the

voting process.

4.6.3 Bitcoin Address Registration

This stage is an extension of the Administration stage wherein the eligible voters

who received a signature from A will register the Bitcoin Addresses that they
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will use for anonymous e-voting. From the start of the process, A has generated

a pair of a private key A.BPK and a Bitcoin address A.BA. A.BA is published

publicly.

The voter Vi creates a simple Bitcoin transaction using Vi.BA as input address

and A.BA as output address. In this transaction, Vi includes 〈xi, yi〉 in the

OP RETURN part of the protocol as proof that Vi.BA is owned by a legitimate

voter, but the identity of the voter is not revealed. In this transaction, Vi sends

an arbitrary amount of bitcoins to A; currently the minimum amount that can

be used for a transaction to be considered valid is 0.00010001 BTC (1 satoshi =

0.00000001 BTC plus 0.0001 BTC required transaction fee). Optionally, Vi can

include a higher transaction fee or miners’ fee if he/she wants the transaction to

be prioritized in the current round of solving for the block (but for our purposes,

if the time of confirmation is not vital, the minimum transaction fee is sufficient).

After confirming the details of the transaction, Vi sends the transaction to the

Bitcoin network awaiting for confirmations from miners that it is permanently

included in a block in the blockchain.

Once included in the blockchain, certain details will be publicly available,

including Vi.BA, A.BA, the amount of bitcoins transferred, the commitment and

signature 〈xi, yi〉 in the OP RETURN, transaction ID, block number, received

time, and the time it was included in the block. Administrator A can verify if

the signature yi of the commitment xi is valid using its verification key. If the

validation is successful, A publishes a list that contains all of the Bitcoin addresses

that sent the correct signature yi of the commitment xi given by 〈Vi.BA, xi, yi〉.
At the end of this stage, the number of entries in the list that contains 〈IDi, xi

′〉
should be equal to the number of entries in the list that contains 〈Vi.BA, xi, yi〉.

4.6.4 Voting

Since xi contains the vote vi, C can just check and collect the list that contains

〈Vi.BA, xi, yi〉. Counter C can double-check and verify the content of the list by

looking up the transactions in the blockchain using a blockchain browser or a

program similar to that.
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4.6.5 Opening and Counting

Voter Vi creates a simple Bitcoin transaction using Vi.BA as input address and

C.BA as output address. In this transaction, Vi includes 〈k〉 in the OP RETURN.

Then, C opens the commitment xi using the key k to retrieve vi. Finally, C counts

the votes and announces the results by publishing a list 〈Vi.BA, vi〉.

4.7. Security Analysis

The security of the proposed system is analyzed based on the following properties

that make e-voting systems secure:

Completeness: If all entities are honest, the results of the voting can be

trusted.

Robustness/Soundness: The entities hold their own private keys, thus no

other entity can perform a function or transaction on their behalf. Possible cases

that can disrupt the voting process are as follows:

During the Initialization and Preparation stage, a voter Vi can keep sending

invalid ballots, either with an invalid vote vi or commitment xi. However, this

can be detected in the Counting stage, and the invalid vote will not be counted.

Moreover, Vi can receive only one signature yi from A for one commitment xi,

and xi (hence the contents of the ballot) cannot be changed.

During the Counting stage, if Vi sends an illegal key k that cannot open xi

and obtain vi, the fault can only come from a dishonest Vi because all Bitcoin

transactions are published publicly and only Vi has access to the Bitcoin address

used for the voting and only Vi possesses k that opens xi.

After the Bitcoin Address Registration stage, if Vi leaks the private key

Vi.BPK to others, a corrupt third-party cannot introduce a new vi because it

cannot change xi. If Vi loses Vi.BPK before sending k to C, then Vi can use

another Bitcoin address and state that he/she is the owner of the compromised

Bitcoin address by providing the correct k that opens xi to obtain vi (This can

be safely assumed to be valid because only the eligible voter possesses the correct

k and xi cannot be changed). If Vi loses Vi.BPK after sending k to C, then there

is no problem as the purpose of the Bitcoin address was already fulfilled; i.e., xi

has been cast and k that opens xi to obtain vi has already been sent.
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The Administrator A cannot introduce additional votes by using its own Bit-

coin addresses and creating dummy signatures because the entries in the list

〈Vi.BA, xi, yi〉 will overflow and it will not match the list 〈IDi, xi
′〉. A mismatch

or overflowing of the lists can only happen because of a corrupt A. Moreover, A

cannot dummy vote for a voter that did not cast a vote because it cannot repro-

duce the voter’s commitment xi and generate xi
′, which is published in 〈IDi, xi

′〉.
Anonymity/Privacy: The relation between Vi’s identity (IDi) and xi is

hidden by the blind signature scheme. The information that Vi sends through

Bitcoin transactions (xi and k) maintain Vi’s anonymity but can be considered

valid because of the signature yi, which can only be obtained by an eligible Vi.

The Bitcoin address used by Vi in the voting process, i.e., Vi.BA, cannot be linked

to the identity of Vi if proper management is taken and if Vi uses this Bitcoin

address solely for the voting process. Moreover, the vote vi remains secret until

the Opening and Counting stage when Vi sends the key k that opens xi.

Unreusability: It is assumed that the blind signature and cryptographic

schemes cannot be broken. Voter Vi can be given only one signature yi for one

commitment xi. Therefore, Vi can only register one valid Vi.BA in the Bitcoin

Address Registration stage. If Vi uses other Bitcoin address/es to send the same

pair of xi and yi, this redundancy can easily be detected because all Bitcoin

transactions are published publicly in the blockchain, and thus, Vi’s vote, which

is connected to only one Bitcoin address, can only be counted once.

Fairness: The Opening and Counting stage is performed after the Voting

stage; i.e., Vi sends k that opens xi to obtain vi only during the Counting stage.

Moreover, the votes are encrypted and disguised using the encryption scheme,

and thus, they cannot affect the voting during the Voting stage.

Eligibility: Assume that the digital signature scheme used by A cannot be

broken, and thus, Vi cannot generate a correct signature yi for xi on his/her own.

The verification of the eligibility of voters is performed in the Administration

stage.

Individual verifiability: Given that Bitcoin transactions are published pub-

licly, Vi can easily verify that vi should be included in the counting by checking

the blockchain using a blockchain browser. This also means that a corrupt A can-

not exclude a Bitcoin address that sent the pair of 〈xi, yi〉. A corrupt C cannot
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exclude vi because k is sent publicly and is easily verifiable. A corrupt C cannot

give a false tally of the results as all votes are publicly available.

Universal verifiability: The published outcome cannot be falsified because

all votes are public.
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Chapter 5

Conclusion and Future Work

In this study, the Bitcoin network was utilized as an infrastructure to realize a

trans-organizational RBAC system and an e-voting system.

The proposed RBAC system provides a secure mechanism for verifying the

user-role assignments of organizations in a trans-organizational manner. Com-

pared to other similar approaches, the proposed scheme provides more flexibility

and autonomy while maintaining security. Moreover, the proposed system allows

the realization of many collaborative right managements that are common in

physical communication but are difficult to implement over computer networks.

These role management features include personalization of roles, role re-issuance,

and endorsement of roles. Finally, the timestamping mechanism provided in the

Bitcoin protocol provides a natural solution to the inclusion of expiration dates

or validities in the created roles. Future research will focus on the realization

and quantitative analysis of a more comprehensive hierarchical, multi-authority,

and attribute-based system, which can offer additional role management features,

such as role transfer and access policies in terms of Boolean formulas, and on the

development of a prototype for easier use and interoperability.

The proposed e-voting system provides secure, anonymous, and transparent

voting process. The Bitcoin protocol is complemented with well-known protocols

of existing e-voting systems to provide an alternative for public bulletin boards

and void the issue of anonymous communication channels that introduces prob-

lems in many existing schemes. Compared to other e-voting systems, the proposed

system provides power and control to the voters while minimizing the trust on
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other entities. Future research will focus on the development of a prototype that

can demonstrate possible scalability and to make the proposed system easier to

understand and use.

This thesis dissertation provides a couple of ways on how the Bitcoin network

can be used outside the main purpose of Bitcoin (i.e., to provide a digital cryp-

tocurrency platform where users can transfer bitcoins to each other) to create

innovative systems. Blockchain technology, which was pioneered by Bitcoin, is

a groundbreaking technology that has provided a solution to the centralization

issue in the digital money field. However, it should also be noted that blockchain

technology can also be used to provide solutions in other systems and applica-

tions that require security, decentralization, and anonymity, among others. It

is believed that decentralization will play a key role in the next generation of

the Internet world. The Bitcoin blockchain has been the inspiration of the con-

cept called blockchain 2.0, which the next-generation cryptoledger space (See

Appendix C for a detailed explanation of blockchain 2.0.). In blockchain 2.0,

blockchain technology can be used not only for transferring digital currency but

also for registering smart contracts and assets. Smart contracts are applications

that run exactly as programmed without any possibility of downtime, censorship,

fraud or third party interference. For example, this technology is being used by

Ethereum [70], which is a blockchain app platform that can run and execute pro-

grammable assets, also known as decentralized applications (dapps). Indeed the

future of blockchain technology is bright, and the best applications of blockchain

technology may not have been realized yet.
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A. Constant-Sum Fingerprinting for Winternitz

One-Time Signature

A fingerprinting function for hash-based Winternitz one-time signature is pro-

posed. A hash-based one-time signature is a light-weight and quantum-immune

alternative to digital signature schemes that typically make use of number the-

oretic problems. The Winternitz scheme, which is one of the most promising

hash-based one-time signatures, realizes the function of digital signatures by uti-

lizing several hash chains. In computing a signature, a fingerprinting function

is used to specify certain positions in the hash chains. This study proposes a

fingerprinting function that reduces the size of a signature and the operational

cost for the verification of a signature. The proposed fingerprinting function

can be combined with another improvement technique of the Winternitz scheme,

and contributes to the discussion that promotes practical use of the Winternitz

scheme.

A.1 Introduction

Commonly used digital signature schemes often make use of number theoretic

problems to achieve security. Such an approach, however, can introduce two

problems. The first and now arising problem is the complexity issue; digital

signature schemes require computation of quite large numbers. It is difficult, or

not favorable, to implement such schemes on small battery-operated devices for

which energy consumption is the greatest concern. The second and still tentative

problem is the threat of quantum computers; the security of conventional digital

signatures collapses if practical quantum computers are realized because they

can efficiently solve number theoretic problems, including the factoring and the

discrete logarithm [85].

A hash-based digital signature is a light-weight and quantum-immune alter-

native to conventional digital signature schemes. The functions of a hash-based

digital signature scheme are performed using cryptographic hash functions. The

scheme is lightweight because the computation of a hash function can be per-

formed with much less time and energy than the computation of modular expo-

nentiation. The scheme is regarded as quantum immune because a hash function
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involves tricky mechanisms which make the function mathematically disordered

and thus difficult to tackle even by quantum algorithms. Refer to [72] for the

contribution of hash functions in the security against quantum computers.

In a typical hash-based digital signature, the secret signing key is a set of

randomly selected hash values, and the public verification key is another set

of hash values that are derived from the signing key. A signature is a set of

intermediate hash values that are determined from the message to be signed. A

verifier confirms the integrity of a signature by checking if the verification key

that is reconstructed from the signature coincides with the verification key that

has been distributed in advance. In this framework, an issuance of a signature can

be regarded as a disclosure of secret, and a once used key should not be reused

to ensure security. For this reason, a hash-based digital signature is sometimes

called a one-time signature (OTS ) in literature, although there is a technique

that consolidates several verification keys into a single key [82].

The first hash-based OTS was proposed by Lamport [81]. Merkle improved

Lamport OTS, and reduced the signature size by about half [82]. As described in

[82], Merkle OTS can be generalized to Winternitz OTS that makes use of longer

hash chains than Merkle OTS. Several OTS have been proposed thereafter[74,

75, 79, 83, 84], but Winternitz OTS seems most promising because it is simple

and has the potential for improvements.

Modifications of Winternitz OTS are discussed in [77, 80], in which hash chains

are constructed by using a family of keyed hash functions rather than a single

specific hash function. These extensions of Winternitz OTS are employed in more

practical investigations [78, 73].

A possible problem of Winternitz scheme is the complexity of the signature

verification; the number of hash computations for signature verification can be

quite large.

As described previously, one major target of OTS is the use in a computer

network that consists of resource-restricted devices. In such a network, it is

typical that a centralized server and network clients have different capabilities

and different roles; signed messages are always constructed and issued by the

sever, and clients just receive and verify the signature. In this environment,

the complexity of verification is more substantial than the complexity of signing,
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because the verification is performed by resource-restricted clients.

To reduce the complexity of the signature verification in Winternitz OTS, we

consider to introduce a novel fingerprinting function that is called a constant-sum

fingerprinting. A constant-sum fingerprinting function contributes to control the

complexity of the signature verification, and thus makes Winternitz OTS more

favorable for resource-restricted devices.

The constant-sum fingerprinting can be used over arbitrarily constructed hash

chains, which means that our proposal can be combined with the investigations

in [77, 80].

A.2 Winternitz OTS

A hash-based OTS consists of three algorithms KeyGen, Sign, and Verify.

� KeyGen(1n) is a probabilistic algorithm that generates a secret signing key

SK and a public verification key VK for a security parameter n. The keys

must be constructed such that they allow 2n different signatures.

� Sign(SK,m) is a probabilistic or a deterministic algorithm that computes a

signature σ for a given message m using SK as a signing key.

� Verify(VK,m, σ) is a deterministic algorithm that checks if σ is a valid sig-

nature for m where VK is used as a verification key. The algorithm accepts

m and σ if and only if (SK,VK)← KeyGen(1n) and σ ← Sign(SK,m).

Winternitz OTS gives implementations of the above three algorithms by using

several hash chains that are constructed by a cryptographic hash function with

the one-way property. In constructing Winternitz OTS, we first determine a

fingerprinting function f that maps a message of an arbitrary length to a binary

sequence of length n, where n is the security parameter that is given to KeyGen

algorithm. We also determine a positive integer parameter l, and define w =

w1 + w2 with

w1 =

⌈
n

log2 l

⌉
, w2 =

⌊
log2(w1(l − 1))

log2 l

⌋
+ 1.

Notice that an n-bit binary sequence can be regarded as an integer that is 0

or greater and 2n − 1 or less, and hence is written with w1-digits in the base-l
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representation. Based on this observation, we say that (a1, . . . , aw1) with 0 ≤
ai ≤ l − 1, 1 ≤ i ≤ w1 is an l-ary fingerprint of a message m if

w1∑
i=1

ail
w1−i =

n∑
i=1

bi2
n−i,

for f(m) = b1 · · · bn. The check-sum of the l-ary fingerprint (a1, . . . , aw1) is defined

as an integer C = w1(l − 1) −
∑w1

i=1 ai, which is 0 or greater and w1(l − 1)

or less, and hence is written with w2-digits in the base-l representation. Let

(c1, . . . , cw2) be the base-l representation of the above check-sum C, and call

(a1, . . . , aw1 , c1, . . . , cw2) a check-summed fingerprint of the message m. Note that

there is a one-to-one correspondence between fingerprints in {0, 1}n and consistent

check-summed fingerprints, and f can be regarded as a function that directly

computes a check-summed fingerprint for a given message.

Besides the fingerprinting function f , Winternitz OTS uses a one-way hash

function which we denote by h. We assume that the domain and the co-domain

of h are both {0, 1}L.

The algorithms of Winternitz OTS are defined as follows.

� KeyGen(1n): The signing key SK is defined as SK = (s1, . . . , sw), where

si with 1 ≤ i ≤ w is uniformly selected from {0, 1}L at random. The

verification key VK is defined as VK = (hl−1(s1), . . . , h
l−1(sw)).

� Sign(SK,m): The signature for the messagem is defined as σ = (hf1(s1), . . . ,

f fw(sw)), where (f1, . . . , fw) is the check-summed fingerprint of m.

� Verify(VK,m, σ): The pair of the message m and the signature

σ = (σ1, . . . , σw) is accepted if and only if (hl−1−f1(σ1), . . . , h
l−1−fw(σw))

coincides with the verification key VK, where (f1, . . . , fw) is the check-

summed fingerprint of m.

The check-sum is essential in the security of Winternitz OTS: Without the

check-sum, an attacker who obtains a pair of a message and a signature is able

to forge a signature for other messages with the probability that is much higher

than the collision probability of the fingerprinting function.

The signing key, verification key, and signature for Winternitz OTS are all

wL-bits in size because they are tuples of w hash values having L-bits each.
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Table 5.1. Parameters, signature sizes and costs of Winternitz OTS

l w1 w2 w |σ| KeyGen Sign Verify

2 160 8 168 168L 168 ≤ 168 ≤ 168

3 101 5 106 106L 212 ≤ 212 ≤ 212

4 80 4 84 84L 252 ≤ 252 ≤ 252

5 69 4 73 73L 292 ≤ 292 ≤ 292

6 62 4 66 66L 330 ≤ 330 ≤ 330

7 57 3 60 60L 360 ≤ 360 ≤ 360

8 54 3 57 57L 399 ≤ 399 ≤ 399

16 40 3 43 43L 645 ≤ 645 ≤ 645

32 32 2 34 34L 1, 054 ≤ 1, 054 ≤ 1, 054

64 27 2 29 29L 1, 827 ≤ 1, 827 ≤ 1, 827

128 23 2 25 25L 3, 175 ≤ 3, 175 ≤ 3, 175

256 20 2 22 22L 5, 610 ≤ 5, 610 ≤ 5, 610

The cost of an operation is defined as the number of computations of the hash

function h. Therefore, the cost of KeyGen algorithm is always w(l − 1), and the

costs of Sign and Verify algorithms are both w(l − 1) at the maximum. Table

5.1 shows, for some values of l, corresponding values of w1, w2, w, the size of

the signature (denoted by |σ|), and the cost of each algorithm to accommodate a

fingerprint of 160 bits (i.e., n = 160). From the table, we can observe a trade-off

relation between the size of a signature and the costs of operations, although the

decrease in the size of a signature seems to “saturate” with the increase in l.

In an asymptotic order notation, the size of the signature is in O(1/ log l), and

the costs of the algorithms are in O(l/ log l). This suggests that having large l

noticeably increases the costs of operations, while the reduction of the signature

size is quite limited.
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Table 5.2. Relation among l, w and Nl,w = log2 |Tl,w|
w = 16 32 48 64

l = 100 61.06 99.80 129.08 152.93

300 83.76 144.74 194.55 237.50

500 94.59 166.68 227.19 280.44

700 101.77 181.34 249.12 309.47

900 107.16 192.35 265.66 331.43

A.3 Constant-Sum Fingerprinting

Specification of the Function

For positive integers l and w, define Tl,w = {(t1, . . . , tw) : ti ∈ {0, . . . , l}, t1 +

· · · + tw = l}, which is the set of tuples of w non-negative integers that sum to

l. An (l, w)-constant-sum fingerprinting is a fingerprinting function that maps

a message of an arbitrary length to a tuple in Tl,w. In this paper, an (l, w)-

constant-sum fingerprinting function is denoted by fl,w. The co-domain of fl,w

contains |Tl,w| = (l+w−1)!/(l!(w−1)!) tuples in total. To illustrate the relation

among the size of the co-domain and the parameters l and w, we define Nl,w =

log2 |Tl,w| = log2(l+w−1)!/(l!(w−1)!). Use Stirling’s formula x! ≈
√

2πx(x/e)x,

and Nl,w can be approximated as

Nl,w ≈
(
l + w − 1

2

)
log2(l + w − 1)

−
(
l +

1

2

)
log2 l −

(
w − 1

2

)
log2(w − 1)− 1

2
log2 2π.

Table 5.2 shows the approximations of Nl,w for various combinations of l and

w. We can see, for example, Nl,w = 61.06 for l = 100 and w = 16, and T100,16
contains 261.06 tuples. For the sake of security, the co-domain of fl,w should have

enough number of tuples, say, Nl,w ≥ 160 (equivalently |Tl,w| ≥ 2160). A numerical

computation determines the smallest value of l that makes Nl,w ≥ 160 for a given

w, and the results of the computation are shown in the first two columns of Table

5.3 (read the bottom line of the table, for example, as N56,128 ≤ 160 ≤ N57,128).

By selecting parameters l and w from this table, we can make the constant-sum

fingerprinting function to have a co-domain of size 2160 or greater.
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Table 5.3. Smallest l that makes Nl,w ≥ 160, and the efficiency of the scheme

w l |σ| KeyGen Sign Verify

16 10, 430 16L 166, 880 156, 450 10, 430

32 429 32L 13, 728 13, 299 429

48 171 48L 8, 208 8, 037 171

64 111 64L 7, 104 6, 993 111

80 86 80L 6, 880 6, 794 86

96 72 96L 6, 912 6, 840 72

112 63 112L 7, 056 6, 993 63

128 57 128L 7, 296 7, 329 57

Construction of the Function

A constant-sum fingerprinting fl,w can be constructed by combining an arbitrary

cryptographic fingerprinting function f and a mapping from integers to tuples

in Tl,w. The base fingerprinting function f must be selected in such a way that

its co-domain contains exactly |Tl,w| fingerprints. We do not discuss the specific

construction of f because there are several techniques to construct a fingerprinting

function with a specified size of co-domain. The fingerprint by the function f is

regarded as an integer, and we let Il,w = {0, . . . , |Tl,w| − 1} be the co-domain of

f without loss of generality.

A focal point in our construction is the mapping that translates an inte-

ger in Il,w to a tuple in Tl,w. We would like to construct a bijective function

Ml,w(i) : Il,w → Tl,w for given parameters l and w, and define the constant-sum

fingerprinting function fl,w as fl,w(m) = Ml,w(f(m)). In the rest of this section,

we show that the computation of Ml,w(i) can be done in a recursive manner.

Notice that the argument i is an integer in Il,w and Ml,w(i) results in a tuple

(t1, . . . , tw).

First, remark that

|Tl,w| = |T0,w−1|+ · · ·+ |Tl,w−1| .

This equation can be understood as Tl,w being partitioned into l + 1 subsets
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according to the value of the first component of the tuple, and |Tk,w−1| with

0 ≤ k ≤ l gives the number of tuples (l − k, t2, . . . , tw) in the k-th subset of

Tl,w. Based on this observation, we consider partitioning the domain Il,w of Ml,w

into l + 1 sections, where the k-th section with 0 ≤ k ≤ l contains |Tk,w−1|
integers. If the argument i of the mapping Ml,w belongs to the k-th section of the

domain, then the first component of the output is set to l − k. The remaining

w − 1 components should satisfy t2 + · · · + tw = k, and they can be selected

by Mk,w−1(i
′) where i′ is an integer that is obtained by “offsetting” the original

argument i.

To implement the above construction, we need to know |Tk,w−1| for all 0 ≤
k ≤ l. Notice that

|Tk,w−1| =
(k + w − 2)!

k!(w − 2)!
,

which derives a recursion

|T0,w−1| = 1, |Tk,w−1| =
k + w − 2

k
|Tk−1,w−1| (k > 0).

By using this recursion, we can compute all of |Tk,w−1| for 0 ≤ k ≤ l. These

values determine the “borderlines” of the sections of Il,w. Define

bk =
k−1∑
i=0

|Ti,w−1| (0 ≤ k ≤ l + 1).

Confirm that 0 = b0 < · · · < bl+1 = |Tl,w|, and the k-th section [bk, bk+1) =

{bk, . . . , bk+1 − 1} contains exactly |Tk,w−1| integers. Summarizing the discussion

above, an algorithm to compute the mapping Ml,w(i) is given as follows:

1. If w = 1, then terminate the procedure with (t1) = (l) as an output. If

w > 1, then continue to the next step;

2. k ← 0, a← 1, bL = 0, bR ← a; /* a = |Tk,w−1| */

3. while i /∈ [bL, bR) do

4. k ← k + 1, a← a(k + w − 2)/k, bL ← bR, bR ← bR + a;

5. t1 ← l − k; /* because i ∈ [bL, bR) = [bk, bk+1) */

84



6. (t2, . . . , tw)←Mk,w−1(i− bL);

7. Output (t1, . . . , tw);

We remark that the constant-sum fingerprinting function fl,w(m) = Ml,w(f(m))

has exactly the same statistical property as the base fingerprinting function f . If

f is collision-resistant, then so is fl,w, for example.

A.4 Winternitz OTS with Constant-Sum Fingerprinting

Description of the Scheme

The constant-sum fingerprinting function can be integrated with Winternitz OTS.

Assume that there are a collision-resistant constant-sum fingerprinting func-

tion fl,w and a hash function h : {0, 1}L → {0, 1}L with the one-way property.

Three algorithms of the OTS are given as follows.

� KeyGen(1n): Choose parameters l and w so that Nl,w ≥ n, and select

an (l, w)-constant-sum fingerprinting function fl,w. The signing key SK

is defined as SK = (s1, . . . , sw), where si with 1 ≤ i ≤ w is uniformly

selected from {0, 1}L at random. The verification key VK is defined as

VK = (hl(s1), . . . , h
l(sw)).

� Sign(SK,m): The signature for the message m is defined as

σ = (hl−f1(s1), . . . , f
l−fw(sw)), where (f1, . . . , fw) = fl,w(m) is the constant-

sum fingerprint of m.

� Verify(VK,m, σ): The pair of the message m and the signature

σ = (σ1, . . . , σw) is accepted if and only if (hf1(σ1), . . . , h
fw(σw)) coincides

with the verification key VK, where (f1, . . . , fw) = fl,w(m) is the constant-

sum fingerprint of m.

Signature Size and Operation Costs

In the proposed scheme, the size of the signature is wL-bits because the signature

consists of w hash values of L-bits each. The cost of KeyGen, which is measured

by the number of computations of the hash function h, is always lw. The costs
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of Sign and Verify are lw − l and l, respectively, which are independent of the

message m and the signature σ.

The last four columns of Table 5.3 show the size of the signature and the

costs of the three operations of the modified Winternitz OTS. The size of the

signature is controllable by the parameter w, and it can be arbitrarily reduced

at the expense of the increase in operation costs. This is advantageous compared

to the original Winternitz OTS, in which there is difficulty in reducing the size

of a signature (see Table 5.1). The size of a signature is especially important

in a wireless communication over battery-operated devices because wireless com-

munication consumes much more energy than in-device computation, and the

reduction of data size (signature size) contributes more in saving energy than the

reduction of computational costs.

Notice also that the cost of Verify is extremely small in the proposed scheme.

Unfortunately, the costs of KeyGen and Sign are much larger than the cost of

Verify, and they can be larger than those costs of the original Winternitz OTS

with similar signature size. The large costs of KeyGen and Sign are certainly

not preferable, but they are not so problematic in some kinds of network ap-

plications. Consider for example a wireless sensor network that consists of a

centralized server and many sensor nodes. Typically, the server is powered and

equipped with sufficient computational resources so that it can manage a large

number of nodes and the data that are collected through those nodes. Sensor

nodes are, on the other hand, small battery-operated devices that are not given

enough computational resources. In this type of network systems, data commu-

nications are not equally significant. For example, directive messages from the

server are quite important and they should be authorized and thus signed by an

OTS scheme. On the other hand, upstream raw data from a node are less signifi-

cant and do not require signatures. In this case, KeyGen and Sign algorithms are

performed only by the server, which has sufficient computational power and thus

can perform thousands of hash computations easily. On the other hand, sensor

nodes only need to perform Verify algorithm, which is quite light-weight in the

proposed scheme.
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A.5 Conclusion

A modification of Winternitz OTS is proposed and shown to have provable secu-

rity. The modification increases the operation costs for generating a key and for

signing a message, but effectively reduces the operation cost of the verification

and the size of a signature. In certain environments including a wireless sensor

network, the downside of the proposed scheme is not so problematic while the

benefits are highly favorable. Our approach can be combined with the investi-

gations in [78, 80] to further improve Winternitz OTS. The authors conjecture

that the combined scheme is also provably secure in the sense of being strongly

existentially unforgeable under chosen-message attacks, but the details are yet to

be discussed.
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B. Trans-Organizational Role-Based Access Con-

trol in Android

B.1 Introduction

The role-based access control (RBAC) [14] is a widely accepted framework that

describes the access control relation among users and services. In RBAC, users

are associated with roles, and roles are associated with services. This framework

is compatible with the access control requirements of real-world organizations and

is employed in the computer systems of many organizations/companies. However,

it must be noted that RBAC is a versatile framework, and roles are often used

in a trans-organizational manner. For example, students are often allowed to

be admitted to a museum with discounted admission fee. In this example, the

“student” role that is issued by an organization (school) is used by another orga-

nization (museum) to determine if a guest is eligible to receive a certain service

(discounted admission). This kind of trans-organizational use of roles is, unfortu-

nately, not common in computer networks. Even if one has a certain role that is

issued by an organization, there is no way to convince a third-party organization

that he/she really has that role.

To realize a trans-organizational RBAC mechanism in a computer network,

two issues should be considered; the security and the flexibility. With regard to

security, the mechanism should prevent malicious users from disguising their roles.

This requirement is naturally accomplished in real-world services with the use of

physical certificates, such as passports and ID-cards, which are difficult to forge

or alter. This problem, however, is not obvious in a computer system. Digital

certificates [15] can be utilized as an analogue of physical certificates, but the use

of digital certificates is not favorable from the viewpoint of realization cost, which

can discourage small companies and non-profit organizations from participating in

the framework. Another less sophisticated approach to the security problem is to

let a service-providing organization (the museum in the above example) inquire a

role-issuing organization (school) about the user-role assignment. This approach

works fine in some cases [16], but a focal point of this approach is the necessity

for the agreed beneficial relationship among organizations. Consequently, it is
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difficult for a new organization to join the partnership, severely restricting the

trans-organizational utilization of roles.

This study aims to develop a practical mechanism that realizes the trans-

organizational utilization of roles. First, we extend the model of RBAC to rep-

resent the trans-organizational usage of roles. This simple extension clarifies

the components and requirements that are needed in the framework of trans-

organizational RBAC. Then, we investigate a realization of a user-role assignment

that is secure (users cannot disguise roles), user-oriented (users can disclose their

roles to any organization), and open (anyone can verify if a user has a certain role

that is managed and issued by another organization). The crucial point of this

realization is to make use of hierarchical ID-based encryption (HIBE) [53, 54],

which allows an arbitrary string to be used as a public encryption key. Our key

idea is to define correspondence between the roles and keys of HIBE and to em-

ploy a challenge-response authentication protocol that will be used for verifying

if a user really has an asserted role. The hierarchical nature of HIBE makes our

scheme suitable for the trans-organizational utilization of roles, and furthermore,

allows flexible role management operations, such as the endorsement and dele-

gation of roles. A prototype system of the proposed trans-organizational RBAC

will also be introduced. For the usability of the trans-organizational RBAC, it

is highly desirable for a user to be able to carry his/her roles all the time. To

verify the practicality of the proposed scheme, we implemented the proposed

system on Android-enabled mobile devices. The implementation contains the re-

alization of cryptographic functions that are essential for handling cryptographic

keys, and the development of a scheme that allows two devices to perform the

challenge-response authentication by utilizing local and closed communication.

The prototype demonstrates that the proposed scheme is simple, lightweight,

and completely practical for realizing the trans-organizational RBAC. The rest

of this paper is organized as follows. Section B.2 introduces the RBAC and

the different models associated with it. Section B.3 discusses the HIBE and its

functions. Section B.4 presents the structure, procedures, and features of the

proposed framework. Section B.5 discusses the realization and implementation

of the proposed system in Android-enabled devices. Section B.6 provides the

conclusion and future work.
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B.2 Models for the Role-Based Access Control

In the simplest model of the RBAC [14], the access structure is defined by three

sets and two relations; the set U of users, the set R of roles, the set S of services,

a user-role assignment, UA ⊂ U×R, and a role-service assignment SA ⊂ R× S.

A user u is eligible to access a service s if and only if there is a role r such that

(u, r) ∈ UA and (r, s) ∈ SA. The access control should be made in such a way that

services are provided to eligible users only. In general, the user-role assignment

UA is defined by an entity that issues roles in R, and the role-service assignment

SA is defined by an entity that provides the services in S. In this paper, the former

is called a role-issuing entity, and the latter is called a service-providing entity. If

RBAC is utilized in a single organization, then we can regard that the role-issuing

entity and the service-providing entity are the same identical organization, and

that the service-providing entity should have no difficulty referring to the user-

role assignment. In this case, the eligibility of a user u to a service s can be easily

determined.

On the other hand, in the real world, there are many cases wherein a service-

providing entity is a different organization from a role-issuing entity. As stated

in the previous section, a school issues the “student” role to its students, and

an external organization, such as a museum, provides services to users who hold

the “student” role. In this case, the service-providing organization (museum) is a

completely independent organization from the role-issuing organization (school),

and the service-providing organization is not expected to refer to the user-role

assignment that was defined by the role-issuing organization. To discuss such a

situation, we first consider an extended model of RBAC.

The trans-organizational RBAC is defined similarly to the usual RBAC, but

a set O of organizations is defined in addition to the sets of users, roles, and

services. Furthermore, the set R of roles is partitioned into several subsets, with

each subset of R associated with an element in O, that is, R = Ro1

⋃
. . .
⋃
Ron ,

where o1, . . . , on ∈ O and Roi

⋂
Roj = φ if i 6= j. To make the relation among

roles and organizations explicit, a role r in Ro1 is written as o1.r. Similarly, the

user-role assignment UA is partitioned into disjoint subsets; UA = UAo1

⋃
. . .
⋃

UAon , where UAoi ⊂ U × Roi . Obviously, o1.r ∈ Roi means that the role o1.r is

managed by the organization oi and the assignment of users to o1.r is controlled
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by that organization oi. In the trans-organizational RBAC, a user u demands a

service s by asserting his/her role o1.r ∈ Roi that has been provided by a role-

providing entity (organization) o1. The service-providing organization provides

the service to the user if and only if (u, oi.r) ∈ UAoi and (oi.r, s) ∈ SA. Note that

the test of (oi.r, s) ∈ SA is easy for the service-providing organization because

the assignment SA is defined by the organization itself. On the other hand, the

test of (u, oi.r) ∈ UAoi , which is sometimes called an authentication, is not as

obvious for the service-providing organization as in the single-organization case.

If the confirmation cannot be established, then a malicious user may try to access

a service by asserting a role that the user does not actually have.

It is essential in the trans-organizational RBAC to realize a secure authenti-

cation mechanism, and this problem can be solved using two approaches. The

first approach is to utilize digital certificates that are protected by the digital

signatures of the role-issuing entities. This kind of certificate is sometimes called

an attribute certificate [15] and is regarded as a digitalized version of physical cer-

tificates, such as ID-cards. The problem in this approach is the maintenance cost

of the public-key infrastructure (PKI) [50, 51]. Different from written signatures,

continuous efforts are essential to keep digital signatures secure and functional.

PKI is widely recognized as expensive, and this cost issue prevents small or-

ganizations from participating in a PKI-based framework. The second, rather

political, approach to the authentication problem is to arrange a mutual agree-

ment between role-issuing organizations and service-providing organizations. If

several organizations share an identical benefit, then they can set up a partner-

ship and mutually disclose their user-role assignments. A good example of this

approach can be found in the Shibboleth project [16], but we need to remark

that this framework is essentially a semi-closed one. An organization will not be

allowed to join the partnership if that organization cannot offer recognizable ben-

efits to the organizations involved, consequently limiting the trans-organizational

utilization of roles.

B.3 Hierarchical ID-Based Encryption

A public-key encryption is a cryptography that utilizes two different keys for

encryption and decryption. In a typical public-key encryption, such as RSA [55],
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a user sets up his/her key pair by himself/herself. One of the keys in the key pair

is called an encryption key and is disclosed to the public. The other key is called

a decryption key and is kept secretly by the user. In many cases, the keys are

constructed from randomly selected information, which means that the keys look

like random data. A separate mechanism, such as PKI, is needed to associate

public encryption keys with users. However, PKI makes the system complicated

and costly [50, 51].

An ID-based encryption [53] is a special public-key encryption. Different

from the usual public-key encryption, a user first chooses his/her encryption key.

An interesting point in the ID-based encryption is that, under an appropriate

setting, one’s identity, such as an e-mail address, can be used as an encryption

key. After choosing the encryption key, the user submits the encryption key to

a trusted authority which we call a key generator. The key generator examines

the eligibility of the user and then, upon confirmation of the user’s eligibility,

computes the decryption key that corresponds to the submitted encryption key.

Different from the usual public-key encryption, the correspondence between users

and encryption keys becomes obvious if the identities of users are chosen as the

encryption keys. Consequently, the costly mechanism of PKI is not needed in the

framework of ID-based encryptions [53].

The HIBE [54] is an extension of the ID-based encryption wherein identities

and functions of the key generator are realized in a hierarchical manner. In this

paper, we write a hierarchical identity (abbreviated simply as ID) by a sequence

of strings S = s1.s2. . . . sn, where n is a non-negative integer called a level of

S, and si with 1 ≤ i ≤ n is a string. If an ID S = s1.s2. . . . sn is a prefix of

S ′ = s′1.s
′
′. . . . s

′
n′ , then we say that S is a super-ID of S ′ and S ′ is a sub-ID of

S. In HIBE, an ID can be regarded as an encryption key by itself, although, it

is sometimes convenient to distinguish IDs from encryption keys explicitly. In

the following discussion, we write ekS and dkS for the encryption and decryption

keys that correspond to the identity S, respectively. In the original ID-based

encryption, all decryption keys are solely generated by a trusted key generator.

In HIBE, however, the generation of decryption keys is made in a hierarchical

manner; the key pair (ekS, dkS) for a level-one ID S = s1 is generated by a

designated key generator which we call a root key generator and is issued to an

92



appropriate user who is eligible to hold the key pair. A user who has a key

pair (ekS, dkS) for an ID S can generate a key pair (ekS′ , dkS′) for an ID S ′

that is a sub-ID of S. The functions used in HIBE are described below. There

is complicated mathematics behind these functions, but we omit them because

they are not the subject of this study. The main body of HIBE consists of the

following four procedures:

Initialize() is a procedure that is executed by the root key generator in the

initialization of the HIBE system. This procedure determines the public and

secret parameters used in the system. The secret parameter is kept secretly by

the root key generator, and the public parameter is disclosed to the public. The

value of the public parameter is used in the following three procedures, although

we do not write them explicitly in the notation for simplicity.

KeyGenerate(S, (ekS′, dkS′)) is a procedure that computes the decryption

key for the given ID S. More precisely, the procedure generates dkS if S is a

sub-ID of S ′ and dkS′ is a correct decryption key of S ′. If not, the procedure fails

to compute dkS. We remark that dkS cannot be computed if one does not know

a correct decryption key of a super-ID of S.

Encrypt(k, m) encrypts data m by using k as an encryption key.

Decrypt(k, c) decrypts data c by using k as a decryption key.

If (ekS, dkS) is a key pair that is correctly generated by KeyGenerate and c

= Encrypt(ekS, m) is an encryption of m constructed by using the encryption

key ekS, then Decrypt(dkS, c) returns m.

HIBE is useful when used in a challenge-response authentication protocol.

Consider a scenario that involves two people, a prover and a verifier. The prover

asserts himself/herself as a genuine user with an identity S, but the verifier is

not sure if this assertion is true or not. In this case, the verifier can determine if

the prover is genuine or not by executing the following steps. First, the verifier

chooses a random message m, and then encrypts m by using the encryption key

ekS for the asserted ID S. The obtained ciphertext c = Encrypt(ekS, m), which

is called a challenge, is passed to the prover. The prover is requested to decrypt c

by using the decryption key dkS that a genuine user should possess. If the prover

returns m as the result of the decryption, then he/she succeeds to make a correct

response and is authorized as a user with the identity S. If the response is wrong,
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then the prover is rejected. Through this challenge-response protocol, the verifier

is able to determine if the prover has the ID S. At this point, it should be noted

that the ID S is indeed a hierarchical identity; the fact that the prover possesses

the decryption key dkS means that somebody who had a certain super-ID of S

authorizes the prover to have the identity S. In other words, with the challenge-

response protocol, the prover confirms a “chain of trust” that originates from

the root key generator. This scenario is favorable in an open system with many

unspecified users.

B.4 Proposed Scheme

Overview

We now consider an authentication mechanism that is suitable for the trans-

organizational utilization of roles. Our idea is to represent roles by hierarchical

identities that work as encryption keys of HIBE. For example, if we would like to

define a “student” role of A-university, then a hierarchical identity, such as “A-

univ.student”, is introduced and used as an encryption key of HIBE. Decryption

keys are managed so that users with a role r possess the correct decryption key

dkr of r. A service-providing organization can verify if a user has the role r

by examining the user by using the challenge-response protocol with r used as

an encryption key of HIBE. Note that the service-providing organization does

not have to know anything about r beforehand and does not have to make any

contract or inquiry to the role-issuing organization that has assigned r to the

user because r itself is used as an encryption key. This feature makes it easy

to verify the user-role assignment of users even if the role is issued by another

organization. In the proposed framework, there is no essential difference between

users and role-issuing organizations because they both receive valid key pairs from

superordinate entities and they both have the ability to generate new roles and

corresponding key pairs by utilizing their keys in possession. However, for an easy

understanding of the proposed framework and for simplicity, we will distinguish

users from role-issuing organizations and introduce three component procedures

that are needed for defining a user-role assignment. In the following, we extend

the hierarchical notions of IDs to roles. If r1 is a super-ID of another ID r2, then
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Figure 5.1. Overview of the proposed RBAC using HIBE.

the role represented by r1 is a super-role of the role represented by r2. The term

sub-role is defined in the same way.

Procedures

Figure 5.1 shows the overall structure of the proposed model. In this model,

we assume the existence of a designated root key generator that is trusted by all

users and organizations. The root key generator executes Initialize() of HIBE and

determines the public and secret parameters. The public parameter is disclosed

to the public and should be accessible to all users and organizations. The root

key generator secures the secret parameter and uses it to generate key pairs for

level-one roles.

1) Setting up an organization

An organization o1 chooses its identity string, say So1 , and requests the root

key generator to approve that the organization uses So1 as its identity. If the

root key generator approves the request, it computes the decryption key dkSo1
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and sends this key to oo1 by using a secure communication channel. As a result,

o1 possesses a correct key pair (ekSo1
, dkSo1

) of its identity So1 . The organization

o1 then defines the set Ro1 of roles it should manage. All roles in Ro1 must be

sub-roles of So1 , where the identity So1 is regarded as a “role”. Note that o1 can

compute the decryption key of any role o1.r ∈ Ro1 by utilizing the function of

KeyGenerate(o1.r, (ekSo1
, dkSo1

)), because o1 knows the correct key pair (ekSo1
,

dkSo1
) and o1.r is a sub-ID of So1 .

On the other hand, organizations other than o1 cannot compute the decryption

key of the role o1.r because the trusty key generator does not disclose dkSo1
to

other organizations. Identities of roles in Ro1 can be open to the public, but the

corresponding decryption keys must be kept secret by organization o1.

2) Defining a user-role assignment

To assign a role o1.r to a user u, the organization o1 gives the key dko1.r to

user u by using a secure communication channel. User u records dko1.r as the

decryption key of the role o1.r, and keeps the key secure.

3) Verifying a user-role assignment

Assume that a user u visits a service-providing organization o2 and asserts

that he/she has the role o1.r that was assigned by the role-issuing organization

o1. Organization o2 needs to verify if the assertion of u is true or not. The

verification can be done by using the challenge-response protocol; o2 chooses a

random data m and requests u to decrypt c = Encrypt(eko1.r, m). Note that we

are using HIBE, and the encryption key eko1.r is the same as (or easily derived

from) the hierarchical identity o1.r of the asserted role. If u really has the role

o1.r, then he/she must possess the decryption key dko1.r that is provided by o1

and should be able to decrypt the challenge c. Remark that o2 can verify if u

holds the role o1.r without querying o1 and that u has little chance to disguise

his/her role.

Managing Roles

1) Personalization of roles

In the proposed framework, the relation between users and roles is represented

by the possession of cryptographic keys by users. This approach involves a possi-

ble security risk; a leakage of keys. If, for example, a role r is assigned to several
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users, then all those users have the same key dkr. If one of those users is uncon-

scious of security, then he/she may let other persons use the key dkr. Such an

inappropriate usage of keys can obstruct fair and reliable access control. To deter

such irresponsible behavior of users, a role-issuing organization can “personalize”

a role by appending an additional string to the identity of roles. Assume for

example that there are several students in A-university. In this case, instead of

using a general role, such as “A-univ.student”, the university can define person-

alized roles, such as A-univ.student.Alice and A-univ.student.Bob, and provide

decryption keys of these roles to Alice and Bob, respectively. With this kind of

personalization, a student will be more conscious of leaking/losing his/her key

to another person because he/she will have the risk of being identified and sub-

sequently punished for irresponsible behavior. The theft/loss of keys remains a

risk, but such risk also exists for ID-cards used in the real world. We cannot

say that the proposed framework is “more secure than” but we may say it is “as

secure as” the real-world role management.

2) Hierarchical issuance of roles

In the proposed scheme, there is no essential difference between organizations

and users. A user can compute decryption keys from the key that he/she already

has and issue a new sub-role of the role that he/she already has. This function

can be used to realize some personal activities that are not considered in the

conventional RBAC approach. One possible example is the endorsement of an-

other person. In the real world, an endorsement among individuals sometimes

plays an important role. Semi-closed organizations, such as academic societies

and golf clubs, have the tradition or policy that a newcomer must be endorsed or

referred by a current member. This mechanism can be realized using the proposed

scheme. Consider for example that Alice is an authorized member of XYZ golf

club and is given a personalized role “XYZ-golf.member.alice” and its correspond-

ing decryption key. If Alice would like to endorse Bob to the club, then she can

generate a new sub-role “XYZ-golf.member.alice.endorsed” and its corresponding

decryption key. By providing the decryption key to Bob, Bob can demonstrate

that he is really endorsed by Alice. Using the HIBE and the challenge-response

authentication, the club does not have to inquire Alice for the verification of the

endorsement. Besides personal endorsement, we conjecture that a broad range of
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personal relations can be implemented by utilizing the hierarchical roles.

B.5 Realization

The proposed scheme was implemented in Android-enabled mobile devices. In

the proposed scheme, the user-role assignments are represented by possession of

decryption keys by users. A role-issuing organization does not have to construct

and maintain large databases for recording the user-role assignments, and it does

not have to be bothered by inquiries of other organizations with regard to user-

role assignments. The created Android application implements all the functions

of the HIBE and the proposed scheme for ease of use and accessibility.

The prototype contains several functions, as shown in Figure 5.2. The func-

tions of the root key generator mainly consist of two operations: GenParams

and RKeyGenerateMaster. GenParams utilizes the Initialize() function of HIBE

and generates the public and secret parameters, where the public parameter is

disclosed to the public. An organization o1 that would like to participate in this

system chooses its identity, say So1 , and asks the root key generator to compute

the decryption key dkSo1
. The root key generator utilizes RKeyGenerateMaster

to compute dkSo1
, which needs the information of the secret parameter and hence

this function is accessible to the root key generator only. The generated key dkSo1

is transferred to the organization o1 through general communication means, such

as Wi-Fi, Bluetooth, Android Beam, and NFC. The role-issuing organization o1

now has the key pair (ekSo1
, dkSo1

) for the ID So1 . By using the function of

RKeyGenerate, this key pair, and the public parameter that has been disclosed,

the organization o1 can compute valid key pairs of sub-IDs of So1 . A user re-

ceives, possibly many, keys from organizations, each of which corresponds to a

role in an organization. The user safely stores these keys in his/her device and

accesses them for the RKeyGenerate and RoleResponse functions. RoleResponse

provides the function of the prover for the challenge-response authentication and

interacts with the RoleChallenge function that is invoked by a service-providing

organization.

The cryptographic operations used in these functions are performed using the

Java Pairing-Based Cryptography (JPBC) library [86], which is a collection of

classes and methods for handling underlying pairing-based cryptosystems. Over
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Figure 5.2. (a) RkeyGenerate, (b) Role Response, (c) Role Challenge, and (d)

QR Code functions of the application.
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JPBC, we implemented the HIBE that was proposed by Gentry [54].

The most complicated but important communication in the proposed scheme

is the challenge-response authentication between a user and a service-providing

organization. Several messages must be exchanged between two devices, and we

provide two different schemes to realize this communication, namely, the use of

near-field communication (NFC) and quick-response (QR) codes.

NFC is a contactless technology used to transmit small amounts of data across

short distance. NFC has three modes of operation, and this study tackles only

P2P mode. NFC messages in Android are handled using the NFC Exchange

Format (NDEF). In the proposed Android application, the Intent Filters that

listen to the intent action of NfcAdapter.ACTION NDEF DISCOVERED were

added to the RoleChallenge and RoleResponse activities to be able to receive NFC

data [87, 88]. Only the MIME type of text/plain was included in the application

as we are only concerned with passing and receiving data of type string. Given

that at least two activities have the same intent filter that responds to an NFC

tap, users are, by default, prompted to select which application in the mobile

device to use, making the application tedious to use. To solve this problem, the

foreground dispatch system was utilized. The foreground dispatch system is used

to make a particular activity have priority over other activities. This allows a

particular activity to become the default receiver when it is on the foreground.

QR Code is a type of 2D barcode that is capable of handling different types

of data [89]. This code can accommodate high capacity of data in a small area,

which is sufficient to include the challenge-response data in one code symbol. The

camera hardware of mobile phones can be used as scanners for QR codes generated

for the challenge/response actions. For this implementation, the camera hardware

of the device was programmed and the ZXing (“zebra crossing”) library, which

is an open-source library that supports the decoding and generation of barcodes,

was used to obtain the data [90]. This feature allows the interaction of two users

without NFC-capable devices and without the Internet.

Typically, the challenge-response authentication is carried out as follows:

1. A user, the prover, opens the application and goes to the “Role Response”

option. Then, the prover selects the base file that contains the public parameter

and the role file that contains the role he/she wants to use.
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2. A service-providing organization, the verifier, opens the application and

goes to the “Role Challenge” option. To start the verification process, the verifier

selects the same base file and either types the role indicated by the prover or

obtains the role automatically via NFC (first tap). Once the role is received, a

random challenge data is created.

3. The verifier then sends this challenge data to the prover via NFC (second

tap) or by generating a QR code for the prover to scan.

4. After receiving the challenge data via NFC or scanning of the Challenge

QR Code, a random response data is calculated and created in the prover’s device

based on the role file selected.

5. The prover then sends this response data to the verifier, again, via NFC

(third tap) or by generating a QR code for the verifier to scan.

6. After receiving the response data via NFC or scanning of the Response

QR Code, the Role Challenge indicates if the assumed role is verified or is a

mismatch.

Several screen shots of the prototype are shown in Figure 5.2. Another possi-

bility for the realization of the user-side system is through the use of smartcards

that are compatible with the NFC technology [91].

B.6 Conclusion and Future Work

A trans-organizational RBAC is considered and extended to represent the trans-

organizational usage of roles. The proposed scheme provides a secure mechanism

for verifying the user-role assignments of organizations. The proposed scheme

was developed on Android-enabled mobile devices for ease of use and accessibil-

ity. Compared to other similar approaches, the proposed scheme provides more

flexibility and autonomy while maintaining security. This mechanism allows the

realization of many collaborative right managements that are common in physical

communication but are difficult to implement over computer networks. Even with

the given advantages, the proposed scheme remains subject to the classical issue

of compromised secret keys; the proposed scheme is based on the assumption

that keys are managed appropriately and protected well. If dkS is compromised

for an unfortunate reason, the keys of the sub-roles of S should be redeployed.

This problem can be mitigated by utilizing the personalized and fixed-term roles,
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but it is encouraged in general to provide more protection for the keys of roles of

higher-level. Taking such issue into consideration, future research will focus on

the inclusion and integration of expiration dates on the roles. Moreover, the pro-

totype will be expanded to non-Android devices, such as iPhones and Windows

mobile devices, for interoperability.
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C. Blockchain 2.0

The Bitcoin blockchain has been successful in providing a decentralized mech-

anism by combining proven technologies. Since the successful deployment of

Bitcoin, many alternative blockchain-based systems (i.e., they use blockchain

technology but with modified properties and core uses) have followed suit. These

systems, with their own implementation of blockchain technology, have been de-

veloped to solve the challenges and limitations of the Bitcoin blockchain and

diversify the application of the powerful blockchain technology.

C.1 Problems with the Bitcoin blockchain

With the success and increasing use of the Bitcoin blockchain, certain issues and

problems have been recognized. Some of the issues that limit the full potential

of the Bitcoin blockchain are as follows:

� Bitcoin script. The Bitcoin script is a list of instructions recorded with

each transaction that describe the parameters or conditions that the next

user need to satisfy to be able to spend the bitcoins being transferred [92].

The Bitcoin script is purposefully not Turing complete∗, with no loops.

This property of the Bitcoin script allows it to be metered, ensuring that

every node follows executes the same format strictly. On the other hand,

this also restricts the Bitcoin script to be used in procedures that may need

loop processing.

� Confirmation Time. In Bitcoin, a block that contains transactions is

validated and confirmed every 10 minutes, on average. In general, Bitcoin

suggests that a block be confirmed by at least 60 minutes (i.e., six blocks

have been mined after it) to ensure finality. This particularly applies for

high-value transactions, while even 1 confirmation is enough for low-value

transactions. This confirmation time is not practical for many business ap-

plications that require promptness in their transactions or functions. More-

∗A system of data-manipulation rules, such as programming language or instruction set, is

considered to be Turing complete if it can be used to simulate any single-taped Turing machine

[93]. The concept is named after English mathematician Alan Turing.
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over, this confirmation time produces a variable in the timestamp of a

transaction because the timestamp affixed on the block (and therefore on

the transactions) pertains to the time when the block is mined and included

on the blockchain, not to the time when the transaction was created and

transmitted.

� P2P System. Each node participating in the Bitcoin network should keep

a copy of the entire blockchain, which includes all past transactions (as

of November 2016, the Bitcoin blockchain is approximately 90 GB in size)

[94]. This requirement limits the participation of smaller nodes with smaller

capacity, and therefore may not be applicable for Internet of Things (IoT)

systems. Moreover, the mining process in Bitcoin requires a significant

amount of computing power, where miners are professional businesses that

built structures and systems specifically for mining bitcoins. These min-

ing systems use considerable amount of resources, i.e., electricity, and may

become a problem in the future.

� Transaction Finality. Bitcoin is highly resistant to falsification, and

thus, transactions are almost impossible to rewrite or modify once they

are recorded in a block in the blockchain. Although this is favorable in a

security perspective, it is not favorable for applications that need to correct

transaction details retrospectively. In relation to this, transaction details in

the blockchain can be verified by anyone, and thus, confidential information

(unless encrypted) cannot be disclosed in the transactions.

C.2 Uses of Blockchain Technology

Wanting to solve specific or various problems associated with the Bitcoin blockchain,

various blockchain-based systems have been created to expand and diversify the

use of blockchain technology. Some of these systems are as follows:

� Altcoins. Bitcoin is open-source, and thus, many alternative virtual cur-

rency, also known as altcoins, have been created following the success of

Bitcoin. More than 600 altcoins are currently considered as virtual cur-

rency with actual market value [95].

104



� Transaction Record. Given the decentralized nature of blockchain tech-

nology, many systems use it for managing goods and services transactions.

This capability allows the managing of the transfer of assets and services,

such as real estate and sales (e.g., tickets and coupons).

� Proof of Rights. Given that transactions on the blockchain are recorded

indefinitely, blockchain technology provides a guarantee of authenticity,

which can be applied for proving the existence of documents or proving

the casting of votes.

� Automated Processes. Automated processes can be implemented using

blockchain technology by deploying programs that have expanded scripts

and that can handle future procedures and functions. One of the most

famous implementation of this idea is Ethereum, which is a blockchain app

platform that can run and execute programmable assets.

C.3 Ethereum

Ethereum is an open blockchain platform that can run decentralized applications

based on blockchain technology [96]. Similar to Bitcoin, Ethereum is open-source

and decentralized, i.e., no one entity controls Ethereum. Ethereum was designed

to be adaptable and flexible, which are properties Bitcoin was lacking. In 2014,

Ethereum conducted a presale of ether tokens (ETH), which is the currency unit

of Ethereum, to kickstart a large network of developers, miners, investors, and

other stakeholders. Beginning in July 2014, Ethereum was able to distribute

approximately 60 million ether, which is approximately 31,500 BTC worth 18.5

million USD, over a 42-day public ether sale. Ethereum has almost the same

functions as Bitcoin, but with the addition of being able to run and deploy smart

contracts.

Smart Contracts

In Ethereum, there are two kinds of accounts:

� Externally owned accounts (EOAs). These are accounts that have

an ether balance, can send transactions (either to transfer ether to other
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Figure 5.3. The Ethereum Logo.

accounts or trigger contract code), are controlled by private keys, and have

no associated code.

� Contract accounts. Contract accounts are created when smart contracts

are deployed. They contain an ether balance (which can also be empty)

and associated code.

The code in contract accounts is executed when triggered by transactions or

messages from EOAs. When executed, contract accounts perform operations of

varying complexity depending on the deployed code. The code is instructed by the

input parameters included in the transaction sent by the EOAs. In other words,

smart contracts act like “autonomous agents” embedded on the blockchain that

always execute a specific piece of code when prompted or “poked” by a message

or transaction.

How Smart Contracts Work

Figure 5.4 shows a snippet of a smart contract code to be deployed using the

Ethereum wallet. The wallet serves as the editor and the compiler for the

code written using the Solidity programming language [97], which is a contract-

oriented, high-level language designed for creating smart contracts in Ethereum.

If there are no errors, the smart contract is compiled and deployed onto the
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Figure 5.4. Example of a smart contract deployed using the Ethereum wallet.

Ethereum network, awaiting for miners to validate the transaction and convert it

into a contract account.

After the code has been validated and the contract account has been created,

the functions written on the code can now be executed by anyone through trans-

actions. Figure 5.5 shows an the different functions written in the sample code

that can be executed. Details of the codes that are successfully executed are

permanently recorded in the Ethereum blockchain, and they can be verified by

anyone using a blockchain browser.

Smart contracts allow systems that can be translated into code to be deployed

onto the Ethereum blockchain. Figure 5.6 shows some of the Dapps that have

been deployed using blockchain technology.
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Figure 5.5. Functions that pertain to specific pieces of the code in the smart

contract.

Figure 5.6. Some of the Dapps using blockchain technology [98].
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