
NAIST-IS-DD1461006

Doctoral Dissertation

Recurrent Neural Networks for
Natural Language and Biological Sequence

Masashi Tsubaki

March 16, 2017

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of SCIENCE

Masashi Tsubaki

Thesis Committee:

Professor Yuji Matsumoto (Supervisor)

Professor Kazushi Ikeda (Co-supervisor)

Associate Professor Masashi Shimbo (Co-supervisor)

Assistant Professor Hiroyuki Shindo (Co-supervisor)

Assistant Professor Hiroshi Noji (Co-supervisor)

Recurrent Neural Networks for
Natural Language and Biological Sequence∗

Masashi Tsubaki

Abstract

Recently, in various research areas such as computer vision, natural language pro-

cessing (NLP), and bioinformatics, machine learning is one of the most important tech-

niques. My research goal in this thesis is to develop machine learning methods that can

(i) capture the properties of data, in particular sequential data such as natural languages

and proteins, and (ii) solve the higher level problems in NLP and bioinformatics.

Very recently, deep neural networks have achieved excellent performance in solving

difficult problems such as speech recognition and machine translation. While various

architectures of deep neural networks have been proposed for solving various prob-

lems, in this thesis I use recurrent neural networks (RNNs). The RNN is a well-suited

neural network for the problems whose inputs are arbitrary length sequences such as

natural languages and proteins.

In this thesis, I focus on the problems in NLP and bioinformatics, in particular the

problems of semantic composition and protein structure prediction. In addition, I solve

these with various RNN-based architectures specified for each problem. I first use

RNNs with long short-term memory (LSTM) units, which can find long-term depen-

dencies in a sequence and store the information for a long period of time. I show that

LSTMs provide effective and general sequential representations for both natural lan-

guages and proteins. Then, on top of the LSTM, I combine other machine learning

techniques such as kernel method, convolutional neural network, and attention mecha-

nism to capture each property in natural languages and proteins. In my experiments, I

demonstrate the quantitative and qualitative effectiveness of my methods compared to

various existing methods.

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1461006, March 16, 2017.

i

Keywords:

Machine Learning, Deep Learning, Recurrent Neural Networks, Natural Language

Processing, Protein Structure Prediction

ii

iii

Acknowledgments

松本裕治教授には，研究全般についてご指導ご鞭撻いただき，本当にありがと
うございました．自由な環境で研究に専念できたことを，今後の研究者人生にお
ける大きな糧として，日々精進していきたいと思います．
池田和司教授には，私が修士 1年の時の研究室でお世話になり，その後研究室
を移動した後にも中間審査・公聴会・最終審査に至るまで助言をいただきました．
深く感謝致します．
新保仁准教授には，勉強会での進捗報告や論文紹介の際に多くの助言をいただ
きました．特に，論文執筆の指導において非常にお世話になり，良い文章を書く
ことの難しさと大切さを教えていただきました．本当にありがとうございました．
進藤裕之助教授と能地宏助教授には，短い間でしたがお世話になりました．特
に，能地宏助教授とは 1年という本当に短い間でしたが，日本酒を通じて様々な
お話ができたことが楽しい思い出として残っています．

Kevin Duh先生には，現在は Johns Hopkins大学に移られましたが，修士 2年か
ら博士 1年にかけて大変お世話になりました．特に，私の初めての国際会議での
プレゼンテーションの際に，ご指導いただきありがとうございました．
加えて，秘書の北川祐子さんには，国内や海外への学会出張の際や，その他研
究室生活全般について大変お世話になりました．そして友人，先輩，後輩の皆さ
んとは，研究室での雑談，食事会，そして飲み会など，研究室の内外で非常に楽
しい時間を過ごすことが出来ました．とても感謝しています．
最後に，ずっと私を支えてくれた家族に心から感謝します．

v

Contents

Acknowledgments iii

1 Introduction 1
1.1 Overview . 1

1.2 Contributions and Outline of This Thesis 5

2 Preliminaries 9
2.1 Feedforward Neural Networks . 9

2.2 Backpropagation . 11

2.3 Recurrent Neural Networks . 14

2.4 Long Short-Term Memory . 16

2.5 Optimization . 17

3 Semantic Textual Similarity 19
3.1 Introduction . 19

3.2 Background . 21

3.2.1 Word Representations . 21

3.2.2 Compositional Vector Semantics 24

3.2.3 Distance Metric and Similarity Learning 25

3.2.4 Neural Networks for Paired Data 25

3.3 Method . 26

3.3.1 Sentence Vector with LSTM 27

3.3.2 Non-linear Similarity Learning with Kernel Functions 28

3.3.3 Deep Multiple Kernel Learning 29

3.4 Related Work . 30

3.5 Experiments and Results . 31

3.5.1 Dataset . 31

3.5.2 Implementation . 32

3.5.3 Compared Methods . 33

3.5.4 Main Result . 34

3.5.5 Analysis . 35

3.6 Conclusion . 37

4 Protein Fold Recognition 39
4.1 Introduction . 39

4.2 Related Work . 42

4.3 Method . 44

4.3.1 Evolutionary and Physicochemical Features 44

4.3.2 Word Representation Learning in Proteins 45

4.3.3 Protein Fold Recognition with LSTMs 45

4.3.4 Training . 48

4.4 Experiments and Results . 48

4.4.1 Dataset . 48

4.4.2 Implementation . 49

4.4.3 Main Result . 49

4.4.4 Analysis . 52

4.5 Conclusion . 55

5 Residue-Residue Contact Prediction 57
5.1 Introduction . 57

5.2 Background and Related Work . 60

5.2.1 Task and Evaluation . 60

5.2.2 Physical Constraints, Indirect Interactions,

and Folding Process . 62

5.3 Method . 63

5.3.1 Features . 63

5.3.2 Baseline . 64

5.3.3 Multi-layer Stacked Bi-directional LSTM 65

5.3.4 Modeling Indirect Interactions with Convolution 67

5.3.5 Modeling Folding Process with Attention 68

5.4 Experiments and Results . 70

5.4.1 Dataset . 70

5.4.2 Implementation . 71

5.4.3 Main Result . 72

vi

5.4.4 Analysis . 73

5.5 Conclusion . 74

6 Conclusions 75

Bibliography 77

vii

ix

List of Figures

1.1 Vector spaces for natural language sentences and protein sequences . . 2

1.2 Overview of the protein residue-residue contact prediction 4

2.1 Architectures of RNN and LSTM 17

3.1 Non-linear similarly learning for semantic compositionality 20

3.2 Skip-gram (SG) and continuous bag-of-words (CBOW) of word2vec . 23

3.3 Deep multiple kernel learning . 29

3.4 Some examples in the STS dataset. 31

3.5 Data padding and batch processing in RNN 32

3.6 Pearson correlations with various word representations 35

3.7 Learning curve with various word representations 36

3.8 Learning curve with various kernel functions 37

4.1 Protein fold recognition . 40

4.2 Two LSTMs for protein fold recognition 42

4.3 Protein vectors with word representation learning 46

4.4 Learning curves of time vs. accuracy in protein fold recognition . . . 51

4.5 Learning curves of time vs. accuracy by various window sizes in pro-

tein fold recognition . 52

4.6 Learning curves of time vs. accuracy by various batch sizes in protein

fold recognition . 53

4.7 Learning curves of time vs. accuracy by various sequence lengths in

protein fold recognition . 54

4.8 The effect of word representations and the re-training in protein fold

recognition . 55

5.1 An input and output of the residue-residue contact prediction task . . . 58

5.2 The definition of a protein residue-residue contact map 60

5.3 The baseline model for protein residue-residue contact prediction . . . 64

5.4 The multi-layer stacked bi-directional LSTM 66

5.5 The convolutional architectures for residue-residue contact prediction . 67

5.6 The attention mdoel for residue-residue contact prediction 69

5.7 The effects of various components in my LSTMs. 73

x

xi

List of Tables

3.1 Correlation scores of semantic textual similarity task 33

3.2 Correlation scores of competitive models of semantic textual similarity

task . 34

4.1 Accuracy of protein fold recognition 50

5.1 Accuracy of residue-residue contact prediction 71

1

Chapter 1

Introduction

1.1 Overview
Recently, in various research areas such as computer vision, natural language pro-

cessing (NLP), and bioinformatics, machine learning is one of the most important tech-

niques. For example, machine learning allows computers to automatically recognize

the objects in an image (i.e., visual object recognition) [39], classify whether the sen-

tence is positive or negative (i.e., sentiment analysis) [69], and predict the 3D structure

of protein from its amino acid sequence [17] using the large data on the web and

maintained databases. My research goal in this thesis is to develop machine learning

methods that can (i) capture the properties of data, in particular sequential data such

as natural languages and proteins, and (ii) solve the higher level problems in NLP and

bioinformatics.

Very recently, deep neural networks have achieved excellent performance in solv-

ing difficult problems such as visual object recognition [39], speech recognition [31],

and machine translation [71]. While various deep architectures have been proposed

for solving various problems, in this thesis I use recurrent neural networks (RNNs).

The RNN is a well-suited neural network for the problems whose inputs are arbitrary

length sequences such as natural languages and proteins. The importance of devel-

oping machine learning methods, which can map arbitrary length sequences to fixed-

dimensional vector representations, is exemplified by a large number of tasks in NLP

and bioinformatics (Figure 1.1).

In this thesis, I focus on the problems in NLP and bioinformatics, in particular,

the problems of semantic composition and protein structure prediction. In addition, I

solve these using various RNN-based architectures specified for each problem. In each

I like cats.

Cats are my favorites.

The dog sat on the mat.

TWKEAT…VVK

VINTFD...KIR

QKAVIL…YEN

I like cats.

Cats are my favorites.

The dog sat on the mat.

Vector space of sentence meaningMapping sentences into
fixed-dimensional vectors

QKAVIL…YEN

TWKEAT…VVK

Vector space of protein structureMapping protein sequences into
fixed-dimensional vectors

VINTFD...KIR

Learning semantic textual similarity

Classifying protein structure labels

Figure 1.1: Natural languages and protein sequences have a lot in common as a se-

quential data. The problems in NLP and bioinformatics can be solved with similar

machine learning techniques (chapter 3 and chapter 4).

problem, my concern is as follows:

1. Semantic Composition in NLP: The notion of semantic similarity between text

data (e.g., words, sentences, and documents) plays an important role in NLP

applications such as information retrieval, classification, and extraction. Re-

cently, semantic vector space of words have become popular [15, 45, 52]. While

such vector representations are sufficient to compute the semantic similarity be-

tween words, it is not trivial to capture sentence meanings composed of individ-

ual words. This is called the problem of semantic composition [25, 46]. Very

recently, while RNN-based architectures are widely used for representing a sen-

tence with a fixed-dimensional vector considering the word order [73], there are

still some problems in semantic composition. In particular, I am concerned with

the following question: “How can I represent the meaning of sentences, which

cover richer meaning variations than that of words, in a vector space?” Presum-

2

ably, a sentence space must be of higher dimensionality than the word space,

since sentences contain more information than words. For example, a sentence

“Newton was inspired to formulate gravitation by watching the fall of an apple

from a tree.” should have a more complex representation than words “apple”,

“gravitation”, “formulate”, and “by” in the sentence.

2. Protein Structure Classification in Bioinformatics: Nature describes biologi-

cal information as sequences of nucleotides (DNA) or of amino acids (proteins),

in what is called the language of life [63]. In particular, a protein is an arbitrary

length sequence of 20 kinds of amino acids such as A (alanine) and E (glutamic

acid). Each protein has a unique 3D structure determined by the types and order

of amino acids in the sequence. Because the protein 3D structure determines the

biochemical functions, the structure information plays a key role in drug discov-

ery and design. Based on this observation, I first tackle the problem of protein
fold recognition. This is a classification task for protein structure labels, which

are pre-defined in protein databases such as SCOP [48] and CATH [49]. This

structure classification problem for proteins is used as an intermediate step for

predicting the 3D structures. Generally, the process of protein fold recognition is

divided into two steps: (1) extracting features and (2) learning classifiers. In ex-

isting methods, evolutionary features and support vector machine (SVM)-based

classifiers are mainly used [57, 43]. However, such machine learning methods

require a fixed-length feature vector as an input, whereas protein sequences have

arbitrary lengths. This problem remains a fundamental challenge in protein fold

recognition. In this problem, unlike natural language sentences, proteins have

a univariate direction from beginning to end and it is needed to be considered

both directions along the sequences. In addition, natural language sentences are

usually not so long compared to protein sequences, and this might allows RNN-

based architectures to work well. In this thesis, I examine whether RNN-based

architectures can also work well on very long protein sequences (e.g., over 300

amino acids). Furthermore, while evolutionary information [1] is widely used as

an input feature in bioinformatics, I explore whether word representation learn-

ing methods in NLP [45, 52] can also work well on biological sequences. Thus,

inspiration for my protein fold recognition method comes from combining ideas

from the fields of deep learning and NLP.

3

3.

Recovering the
complete 3D structure

(outside the scope of this thesis)

Predict the residue-residue
contact map with the vector pairs

Amino acid residue vectors in
the protein sequence with RNN

Protein 3D structure

GLSAAQRQVIAATWKDIAGA・・・・・SGALISGLQS

・・・・・・
G L S Q S

・・・ ・・・ ・・・ ・・・ ・・・

・・・ n-dimensional vector

Figure 1.2: The above contact map is provided from https://web.stanford.edu/
class/cs279/lectures/lecture2.pdf, and the above figure of protein 3D structure

is provided from https://nanohub.org/resources/contactmaps.

Protein 3D Structure Prediction in Bioinformatics: For describing protein

3D structures more detail than fold labels, protein data bank (PDB) files provide

information about 3D Cartesian coordinates of all atoms in proteins. Then we

generally say that two amino acid residues in a protein sequence are in contact
if the Euclidean distance between the residues is less than 8Å. The contact in-

formation is useful to understand the amino acid interactions, protein folding

structures, biophysical and biochemical properties of proteins. In bioinformat-

ics, it remains challenging to predict residue-residue contacts in a protein from

its amino acid sequence. This problem is called residue-residue contact pre-
diction (Figure 1.2) and assessed in the critical assessment of protein structure

prediction (CASP), which is a worldwide experiment taking place every two

years since 1994. However, this is a very difficult problem because it can always

occur that two residues far away from each other in a 1D sequence get close to

each other in a 3D structure due to the protein folding process. For modeling

residue-residue contact prediction with machine learning, there are three main

4

issues as follows: (1) Residue-residue contacts are spatially correlated and not

randomly distributed in native protein structures derived from the effect of evo-

lutionary and physical information over the protein sequence. (2) In protein 3D

structures, there are noises derived from the effect of indirect interaction among

residues. The indirect interaction effects where direct interaction between A–B

and B–C can result in observed correlations between A–C, even though no direct

interaction exists between A and C. (3) Proteins do not assume a 3D conforma-

tion instantaneously, but rather through a folding process that gradually refines

the 3D structure. However, most methods (1) independently consider the pair of

residue features and predict the contact element-by-element, (2) indirectly model

the indirect interaction (e.g., model with sparsity constraints in contact data), and

(3) attempt to learn contact probabilities at the local level in a single step.

The machine learning methods in this thesis address the above problems. For the all

problems in natural language sentences and protein sequences, I first use RNNs with

long short-term memory (LSTM) units [33], which can find long-term dependencies

in a sequence and store the information for a long period of time. I show that LSTMs

provide effective and general sequential representations for both natural languages and

proteins. The specific solutions for the problems and the results are described in the

following section as contributions and outline of this thesis.

1.2 Contributions and Outline of This Thesis
Chapter 2: Preliminaries: In this chapter, I provide fundamental knowledge about

deep neural networks.

Chapter 3: Semantic Textual Similarity: In this chapter, I propose a new method

of non-linear similarity learning for semantic compositionality. In this method, both

parameters in LSTM and word vector representations are learned through the semantic

similarity learning for compositional sentences. In particular, the similarity learning is

efficiently done in a high-dimensional space derived form various kernel functions. My

motivation of the kernelization in semantic compositionality is to obtain a good high-

dimensional space for representing richer meanings of sentences than words while

maintaining computational tractability. On the task of predicting the semantic related-

ness of two sentences in SemEval 2014 [44], the proposed method outperforms linear

5

baselines, feature engineering approaches, and recent other deep learning models.

Chapter 4: Protein Fold Recognition: In this chapter, I show that a simple appli-

cation of LSTM can learn to map a protein sequence of arbitrary length into a fixed-

dimensional vector representation, capture the long-term dependencies of amino acids

in the sequence, and then correctly classify the protein fold. In particular, I propose the

use of two LSTM architectures: concatenated and stacked bi-directional LSTMs for

considering both directions along the protein sequences. On a benchmark dataset of

EDD [20], compared to existing methods such as using 544 physicochemical attributes

and the state-of-the-art method with SVM, my LSTMs achieved higher accuracy de-

spite the use of a minimal set of features and little tuning of hyper-parameters in the

neural network. In addition, I provide analyses of the differences between the concate-

nated and stacked LSTM architectures, the impact of hyper-parameters, and the effect

of protein length. In particular, I show that the stacked architecture achieves excellent

performance and the LSTM does not suffer on very long sequences of proteins (e.g.,

over 300 amino acids).

Chapter 5: Residue-Residue Contact Prediction: In this chapter, for residue-

residue contact prediction, I design neural networks to capture the protein properties

such as indirect interactions and folding process. First, I combine the stacked bi-

directional LSTM (used in the chapter 4) and convolutional neural network (CNN)

on top of the hidden vectors obtained by the LSTM. LSTM allows the obtained hidden

vectors to consider evolutionary and physical information such as α-helix and β-strand

of all residues over the protein sequence. As a result, the model can automatically cap-

ture the all features between residues even if I simply use the residue pair as an input

for the contact classifier. In addition, I apply an CNN to the pairs of hidden vectors,

directly consider the effect of indirect interactions between residues, and then learn

the combined architecture of LSTM and CNN with end-to-end fashion. Furthermore,

I attempt to model the folding process of proteins in the training process of neural net-

works using attention mechanism [2, 60, 58]. The attention mechanism can find some

important features in the sequence for the target feature by using weights, which are

called attentions. I assume that the training process of attentions, in particular sparse

attentions, allows the neural network to simulate the protein folding process. On the

CASP dataset, the proposed methods outperformed all existing methods based on the

homology modeling and ab initio model with various machine learning techniques. In

6

particular, the stacked bi-directional LSTM with sparse attention mechanism achieved

the highest performance in my methods.

The next chapter will give the necessary background of deep neural networks.

7

9

Chapter 2

Preliminaries

This chapter provides the necessary background on neural networks that will make

this thesis self-contained.

Notation: Throughout this thesis, vectors are written with lowercase boldface letters

(e.g., v ∈ R
n), matrices are written with uppercase boldface letters (e.g., M ∈ R

m×n),

and scalars and discrete symbols such as words and sequence length are written with

non-bold letters (e.g., w and L). Note that xi is the i-th vector in the sequence of

vectors x1,x2, · · · ,xL and xi is the i-th element of the vector x.

2.1 Feedforward Neural Networks
In this section, I will give a basic introduction of feedforward neural networks. Let

the input vector be x ∈ R
n and the weight vector be w ∈ R

n, the output scalar y ∈ R

is computed as follows:

y = f(w�x+ b) = f

(
n∑

i=1

wixi + b

)
,

where b ∈ R is the bias unit and f is the non-linear activation function. One of the

widely used non-linear activation function is the sigmoid function as follows:

f(x) = sigmoid(x) =
1

1 + exp(−x) .

This sigmoid function maps any real number to the [0, 1] interval. This can be inter-

preted as the probability for the neural unit parameterized by the weight vector w and

the bias unit b. As another activation function, the hyperbolic tangent is also widely

used and its function is as follows:

f(x) = tanh(x) =
1− exp(−2x)
1 + exp(−2x) .

Despite the loss of a probabilistic interpretation such as sigmoid, tanh function is

often preferred in practice due to better empirical performance (possibly due to having

both negative and positive values inside the recursion unlike the sigmoid function). In

addition, rectified linear unit (ReLU) function

f(x) = ReLU(x) = max(0, x)

is also widely used in recent successful deep neural networks. ReLU does not suffer

from the vanishing gradient problem [62, 5].

A neural network can be stacked using single neurons vertically (i.e., on top of each

other) and is then followed by a final output layer. I will describe the computation with

stacked multiplication between the weight matrix and input vector, and the application

of non-linear activation function f as follows:

h = Wx+ b,

y = f(h),

where W ∈ R
m×n is the weight matrix, b ∈ R

m is the bias vector, and the activation

function f is applied element-wise as follows:

f(h) = f([h1, h2, · · · , hm]) = [f(h1), f(h2), · · · , f(hm)].

The output vector of a neural network can be seen as a transformation of the input

vector that captures various interactions of the elements with the weight matrix. Then

I stack more layers on top of the layer as follows:

h(1) = f(W(1)x+ b(1))

h(2) = f(W(2)h(1) + b(2))

· · ·
h(�) = f(W(�)h(�−1) + b(�)),

y = Wyh
(�) + by,

where � is the �-th layer of the deep neural network. The last layer is given to an output

vector y ∈ R
k on which an error function is minimized. Standard examples are a linear

10

output layer with a least squares error, or a softmax classifier (i.e., logistic regression)

and training with the cross-entropy error. For a regression problem, the loss function

with least squares error is as follows:

L(y, t) = 1

2
||t− y||2,

where t ∈ R
k is the target vector or scalar (when k = 1) to be minimized the distance.

For a classification problem, a softmax classifier is widely used as follows:

L(y, t) = exp(yt)∑k
i=1 exp(yt)

,

where t ∈ {1, · · · , k} is the index label of ouput classes. Given a set of the training

samples, the final objective Ltotal is the sum of the above loss for each data plus an

L2-regularization term as follows:

Ltotal =
N∑
i=1

L(yi, ti) +
λ

2
||Θ||22,

where Θ is the set of all weight matrices and bias vectors to learn in the neural net-

work, N is the total number of training samples, and λ is an L2 regularization hyper-

parameter.

2.2 Backpropagation
The backpropagation algorithm [59] is based on the inverse direction of the compu-

tation in a feedforward neural network, which is to obtain all the gradients of learning

parameters in the network. To illustrate this, I will give the backpropagation using a

concrete example, network network-based language model in NLP: neural language

model (NLM) [13, 14]. This is a good example to describe the training procedure of

neural network, in particular word representation learning idea.

Specifically, I first represent a word sequence as a vector x as follows:

x = [w1;w2; · · · ;wL],

where wi ∈ R
d is the vector representation (the initial value is random) assigned for

i-th word in the sequence, L is the window size to be considered as a hyper-parameter,

and x ∈ R
dL is the concatenation of all the word vectors. Following, I use x as the

11

input vector for the neural network. In the NLM, the score z ∈ R for the above word

sequence is computed with a neural network computation as follows:

y = Wx+ b,

a = f(y),

z = u�a,

where W ∈ R
h×dL is the weight matrix to learn (h is the size of hidden layer),

b ∈ R
h is the bias vector to learn, and u ∈ R

h is the weight vector to learn for

computing the score z with dot product. Then I also create a corrupted sequence

x′ = [w1;w2; · · · ;w′
L], where the word of w′

L is chosen randomly from the vocabu-

lary. The score z′ is computed for this implicit negative sequence with the same neural

network. Finally, we get the cost function to be minimized in NLM for the all training

sequence samples in a corpus as follows:

L(Θ) =
N∑
i=1

max(0, 1− zi + z′i), (2.1)

where N is the number of training samples and Θ = (u,W,b,xi). This cost function

aims the correct sequence score to be higher than corrupted sequence score. Note that

the set of training parameters Θ contains xi (i.e., input word vectors) in addition to

the standard learning parameters in the neural network such as weight matrix W. This

is called word representation learning in a neural network architecture. Following,

in practice I describe the backpropagation to compute the gradients of the above four

parameters u, W, b, and x.

For the condition 1− z + z′ > 0 in Eq. 2.1, I describe the derivative for the score z.

The first gradient, which is for the weight vector u, is simply computed as follows:

∂z

∂u
=

∂u�a
∂u

= a.

Next, the gradients for weight matrix W, which is main learning parameter in the

12

network, can be obtained with chain rule and computed as follows:

∂z

∂Wij

=
∂uiai
∂Wij

= ui
∂ai
∂Wij

= ui
∂ai
∂yi

∂yi
∂Wij

= ui
∂f(yi)

∂yi

∂yi
∂Wij

= uif
′(yi)

∂(w�
i x+ bi)

∂Wij

= uif
′(yi)xj = δixj,

where wi is the i-th column vector of W. The above

uif
′(yi) = uif

′(w�
i x+ bi) = δi

is called a delta message or error signal, and in summary I describe the above deriva-

tive as follows:

∂z

∂Wij

= δixj.

Note that since all combinations of i and j are needed to be considered, we use the

outer product of the vectors and represent the gradient of W as follows:

∂z

∂W
= δx�.

In addition, the derivative of the bias vector b is computed in a similar way and repre-

sented as follows:

∂z

∂b
= δ.

So far, I describe the backpropagation as the use of derivatives and chain rule for the

network parameters, i.e., u, W, and b. In addition, the final goal is to train the word

representations, i.e., input vector x for the neural network.

13

For the training of word representations as input vectors, I can also describe the

derivatives with the chain rule for the j-th element of the input vector x as follows:

∂z

∂xj

=
h∑

i=1

∂z

∂ai

∂ai
∂xj

=
h∑

i=1

ui
∂f(w�

i x+ bi)

∂xj

=
h∑

i=1

uif
′(w�

i x+ bi)
∂w�

i x

∂xj

=
h∑

i=1

δi
∂w�

i x

∂xj

=
h∑

i=1

δiWij

= δ�wj.

In summary, I describe the derivative as follows:

∂z

∂x
= W�δ.

Minimizing the objective function of Eq. 2.1 allows us to obtain low-dimensional word

vector representations in the training process of neural network, which can capture

syntactic and semantic similarities between words.

2.3 Recurrent Neural Networks
In this section, I describe a recurrent neural network (RNN), which the central object

of this thesis. RNNs have a recursive function on a hidden layer ht ∈ R
n, where t is

the time step. At each t, ht is computed from two vectors: the input vector xt ∈ R
n

and its previous hidden layer ht−1 (when the time step t = 1, h0 = 0). For these

vectors, RNNs use an affine transformation with non-linear functions f such as tanh

14

and output yt ∈ R
m as follows:

ut = Wh[xt;ht−1] + bh,

ht = f(ut),

yt = Wyht + by,

where Wh ∈ R
n×2n and Wy ∈ R

m×n are weight matrices to learn, bh ∈ R
m and

by ∈ R
m are bias vectors to learn, and m is the output dimensionality. Since RNN

has a recursive architecture, it is easy to follow the computation using pseudo code as

follows.

1: h0 = 0

2: for t from 1 to T do
3: ut = Wh[xt;ht−1] + bh

4: ht = f(ut)

5: yt = Wyht + by

6: end for

Thus an RNN can be recognized as a deep feedforward neural network that has a layer

for each time step, its weight parameters to learn are shared across time, and the depth

is equivalent to the sequence length. In addition, the loss function of the RNN is a sum

of per-timestep losses as follows:

Ltotal =
T∑
t=1

L(yt, tt),

where L(yt, tt) is the loss function between yt and tt such as mean squared error and

softmax cross-entropy as described in the previous section.

Indeed, RNNs are generally difficult to train due to the problems with long-range

temporal dependencies [62, 5]. For example, in learning of RNNs for long sequences,

a small change to an iterative process can grow after many iterations and then the

derivative of the loss function at one time can be large. On the other hand, RNNs

also suffer from the vanishing gradient problem, which the derivative can be vanished.

Thus, the loss function of RNNs is very sensitive and the vanishing and exploding gra-

dient problems make it difficult to train RNNs on sequences with long-range temporal

dependencies.

15

2.4 Long Short-Term Memory
To address the vanishing and the exploding gradient problems, Hochreiter and Schmid-

huber, 1997 [33] proposed an RNN with long short-term memory (LSTM) units. LSTMs

have memory cells in a hidden layer in which information can be stored for a long pe-

riod of time. LSTMs can find long-term dependencies in a sequence and store the

information thanks to the memory cells.

Specifically, the memory cells consist of three types of gates that control the flow of

information into and out of these cells: an input gate it ∈ R
n, a forget gate ft ∈ R

n,

and an output gate ot ∈ R
n. Given an input vector xt ∈ R

n, the previous cell layer

ct−1 ∈ R
n, and a hidden layer ht−1 ∈ R

n (when the time step t = 1, h0 = 0 and

c0 = 0), an LSTM computes the next ct and ht as follows:

ut = [xt;ht−1], (2.2)

it = σ(Wiut + bi), (2.3)

ft = σ(Wfut + bf), (2.4)

ot = σ(Wout + bo), (2.5)

ct = ft � ct−1 + it � tanh(Wcut + bc), (2.6)

ht = ot � tanh(ct), (2.7)

where Wt,Wf ,Wo,Wc ∈ R
n×2n are weight matrices to learn, bt,bf ,bo,bc ∈ R

n

are bias vectors to learn, σ is the element-wise sigmoid function, tanh is the element-

wise hyperbolic tangent function, and � is the element-wise multiplication of two

vectors. These parameters can be trained using a standard backpropagation technique.

In this paper, we represent a series of computation in Equations (2.2)–(2.7) by

〈ht, ct〉 = lstm(xt,ht−1, ct−1). (2.8)

The above parameters in an LSTM can be trained using a standard backpropagation

technique. Figure 2.1 shows the RNN and LSTM architectures. LSTM uses memory

cells located in a hidden layer of RNNs and can store information for a long period

of time. The gates allow the cells to store and access information over long periods

of time. When the input gate it is closed, the new input information is not affect the

previous cell state ct−1. Forget gate ft removes the historical information stored in the

cells. When the output gate ot is open, the network can access stored information in

the cells.

16

RNN

LSTM

y1 = Wyh1

x1

y2 = Wyh2

x2

yt = Wyht

xt

・・・

・・・
h1 = tanh(Wxx1 +Whh0) h2 = tanh(Wxx2 +Whh1) ht = tanh(Wxxt +Whht-1)

h2 = o2 tanh(c2)h1 = o1 tanh(c1)

y1 = Wyh1

x1

y2 = Wyh2

x2

ht = ot + tanh(ct)

yt = Wyht

xt

・・・

・・・

LSTM layer
Equations from (1) to (6)

LSTM layer
Equations from (1) to (6)

LSTM layer
Equations from (1) to (6)

Figure 2.1: Architectures of RNN and LSTM.

2.5 Optimization
Generally, deep neural networks are trained with stochastic gradient descent-based

optimization methods. In particular, Kingma and Ba [38] introduced ADAM, which

is an algorithm for first-order gradient descent-based optimization, based on adaptive

estimates of lower-order moments. ADAM is easy to implement, computationally

efficient, required little memory, and is well suited for problems that are large in terms

of data and parameters. In addition, the hyper-parameters in ADAM have intuitive

interpretations and typically require little tuning. The empirical results in KIgma and

Ba’s paper [38] show that ADAM works well in practice compared to other stochastic

optimization methods.

More precisely, let the gradient vector be gt ∈ R
n, where n is the number of param-

eters to train and t is the time step, each momentum mt ∈ R
n and vt ∈ R

n (when the

17

time step t = 0, m0 = 0 and v0 = 0) is computed as follows:

mt = β1mt−1 + (1− β1)gt,

vt = β2vt−1 + (1− β2)g
2
t ,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,

and then the learning parameter xt ∈ R
n (i.e., vectorized parameters of all weight

matrices in the neural network) is updated as follows:

xt+1 = xt − α√
v̂t + ε

m̂t,

where
√
v̂t denotes the element-wise square root. Note that the learning rate α =

0.001, first momentum coefficient β1 = 0.9, second momentum coefficient β2 = 0.999,

and ε = 10−8, which are the recommended configurations in [38].

18

19

Chapter 3

Semantic Textual Similarity

3.1 Introduction
The notion of semantic similarity between text data (e.g., words, phrases, sentences,

and documents) plays an important role in NLP applications such as information re-

trieval, classification, and extraction. Although the simplest similarity measurement is

based on word matchings (i.e., counting the same words in two documents) rather than

word meanings this suffers from lack of generalization.

Recently, semantic vector space of words has become popular [78, 14, 52]. While

such word vector representations are sufficient to compute the semantic similarity be-

tween words, it is not trivial to capture the meaning of phrases and sentences com-

posed of individual words. To overcome the weakness, modeling and learning seman-

tic compositionality have received a lot of attention [46]. The goal of this research

is to formulate how word vectors and operations are learned and modeled to properly

represent phrasal and sentential semantics. However, there are still some problems in

this compositional vector semantics. In particular, in this thesis I am concerned with

the following question: “How can we represent the meaning of sentences, which cover

richer meaning variations than that of words, in a vector space?”

To answer this question, I propose a new method of non-linear similarity learning
for semantic compositionality. My approach is to capture the sentence meanings in a

vector space different from that of words. Presumably, this space must be of higher

dimensionality than the word space, since a sentence contains far more information

than words. For example, a sentence “Newton was inspired to formulate gravitation

by watching the fall of an apple from a tree.” should have a more complex (there-

fore, higher-dimensional) representation than words “apple”, “gravitation”, “formu-

Word vector space Sentence vector space

x’ = f (w1,w3,w8)

x = f (w1,w2,w5, w7)

w1

w2

w3

w4

w5

w6

Φ(x)

Φ(x’)

Semantic similarity learning in a
high-dimensional space Φ via kernelsUpdate word

vector representations

Transformation f
in a low-dimensional space

Encoding meanings
and structures of sentences

w7

w8

w9

Space Φ has a higher representational
power than that of word

x

y y

x

x’

z’

y’

Figure 3.1: Non-linear similarly learning for semantic compositionality with kernel

functions, which can implicitly map to a high-dimensional semantic space.

late”, and “by”.

The proposed method is inspired by the previous work on distance metric and sim-

ilarity learning [3], and in particular leverages the non-linear capacity of kernel func-

tions [36]. My goal is to obtain word representations and compositional functions for

sentences through the similarity learning of sentential meaning in the kernel-induced

high-dimensional space. Figure 3.1 shows the geometric intuition of my model archi-

tecture. I can learn and obtain the parameters (i.e., word representations and parameters

in LSTM as a compositional function) inexpensively by using non-linear kernel func-

tions without explicit computation of sentence vectors in the high-dimensional space.

Note that my approach differs from that of recent deep learning models such as [67]

and [73]. These use intricate neural network architectures to model and learn sentence

representations only in a low-dimensional space, whereas my method integrates both

low- and high-dimensional space.

20

My contributions are two-fold:

1. To the best of my knowledge, my method is the first work that addresses compo-

sitionality by combining similarity learning in a kernel-induced high-dimensional

space, and structure embedding in a low-dimensional space.

2. My method is simple and effective. It outperforms linear baselines and feature

engineering approaches, and achieves competitive results with recent deep learn-

ing models on the task of predicting the semantic relatedness of two sentences.

3.2 Background
In NLP, learning methods of low-dimensional vector representations for words have

a long history [15]. One of the recent successful methods is based on neural network

language models [14]. In these models, all word representations are initialized with

random vectors and trained with a large corpus. The learned word representations

have been used as feature vectors in various NLP tasks [46, 76, 69].

3.2.1 Word Representations

Latent Semantic Analysis (LSA)

Let M be a matrix of co-occurrences between words and documents. The element

of M is #(w, c), which is the number of times that each word w appears in each doc-

ument c, and the dimensionality of M is W ×C where W is the number of words and

C is the number of documents. Each row of matrix M can be regarded as a vector

representation of a word, and each column a representation of a document. Since W

and C are huge and the number of words in a document and the number of documents

a word appears are both limited, these vectors are sparse and high-dimensional. Al-

though such vectors work well in some cases, there are advantages for efficiency to

use dense and low-dimensional representations. Such vectors can be obtained with a

dimensionality reduction technique such as latent semantic analysis (LSA) [15].

LSA uses singular value decomposition (SVD) to factorize the word-document co-

occurrence matrix M into the product of three matrices as follows:

M ≈ UdΣdV
�
d ,

21

where d 	 min(W,C) is the reduced dimensionality of data, Ud (W × d) and Vd

(C × d) are left and right singular orthonormal matrices, and Σ (d × d) is a diagonal

matrix of singular values in decreasing order. From (1), I obtain word representation

matrix W = UdΣd (W×d) and C = Vd, where I view the rows of W as word vectors

and the rows of C as document vectors. Since d is much smaller than W and C, they

are typically dense low-dimensional vectors.

Skip-Gram (SG) and Continuous Bag-Of-Words (CBOW) of Word2vec

The training objective of the skip-gram (SG) model of word2vec [45] is to learn d-

dimensional word representations that are useful for predicting surrounding words of a

target word in a sentence. Specifically, given a sequence of training words w1, w2, · · · , wL,

the objective function J to maximize is the average log probability as follows:

J =
1

L

L∑
t=1

∑
−�≤i≤�

log p(ct+i|wt), (3.1)

where wt is the center word, � is the window size of the context which is the number

of words to consider around of wt, and ci is the i-th context word in the window. In the

SG model, the probability in equation (3.1) is defined as follows:

p(ct+i|wt) =
exp(ct+i

�wt)∑V
j=1 exp(cj

�wt)
, (3.2)

where V is the number of words in the vocabulary, w ∈ R
d is the d-dimensional vector

representation of word w, and c ∈ R
d is the d-dimensional vector representation of

context word c. Note that wi ∈ R
d is the i-th row vector of W ∈ R

V×d and ci ∈ R
d is

the i-th column vector of C ∈ R
d×C , where C is the number of context words.

However, the above function is impractical because its computational cost is propor-

tional to V . To reduce the cost, the word2vec toolkit implements negative sampling.

Negative sampling approximates the probability in equation (3.2) by maximizing the

inner product of vectors for correct example pairs (w, c) that occur in the corpus, and

minimizing it for negative example pairs (w, c′) that do not occur in the corpus. With

negative sampling, the approximate probability of equation (3.2) is computed as fol-

lows:

p(ct+i|wt) ≈ σ(c�t+iwt)
K∏
k=1

σ(−c′�k wt),

22

Skip-gram

Continuous bag-of-words

sum of vectors

sat thecat mat

on

+

on

sat thecat mat

Figure 3.2: Models of skip-gram (SG) and continuous bag-of-words (CBOW) with a

sequence of training words “cat sat on the mat” as a example. The SG model pre-

dicts surrounding words (i.e., “cat”, “sat”, “the”, “mat”) given the current word (i.e.,

“on”). In contrast, the CBOW model predicts the center word based on the sum of the

surrounding word vectors.

where σ is the sigmoid function, c′ is the word vector of negative example, and K is

the number of negative sampling words.

In summary, the SG model predicts surrounding words given a center word. In con-

trast, continuous bag-of-words (CBOW) model, which is another implementation in

word2vec, predicts the center word based on the sum of the surrounding word vec-

tors. Thus, CBOW is the opposite of the skip-gram. Figure 3.2 illustrates these two

approaches.

Global Vectors (GloVe)

Global vectors (GloVe) [52] relies on a global log-bilinear regression model that

combines and leverages the advantages of two ideas: (i) a local context window such

23

as used in word2vec and (ii) a global co-occurrence statistics in a corpus.

Let wi be the i-th word, wi ∈ R
d be the d-dimensional vector for the word wi, cj be

the j-th context, and cj ∈ R
d be the d-dimensional vector of context cj . The objective

function J to minimize is defined as follows:

J =
V∑

i,j=1

f(#(wi, cj))(w
�
i cj + bi + bj − log(#(wi, cj))

2, (3.3)

where V is the number of words in the vocabulary, #(w, c) is the number of times that

word w occurs in context c, bi and bj are word/context-specific bias terms that are also

learning parameters in addition to w and c, and f(x) is a weighting function. In [52],

the authors use the weighting function

f(x) =

{
(x/xmax)

α x < xmax

1 otherwise,

where xmax = 100 in all experiments and report that α = 3/4 gives a modest improve-

ment over α = 1. From Equation (3.3), I see that GloVe is fit to minimize the weighted

least square loss giving more weight to frequent (w, c) with this weighting function

f(x).

We can also explicitly define GloVe as a factorization of a log-count matrix shifted

by the bias matrix as follows [15]:

M ≈WC� +B,

where M is the log-count matrix of which the (i, j)-element Mi,j = log(#(wi, cj)),

W and C� are factorized matrices consisting of word vectors and context vectors

respectively, and B is the matrix of bias terms of which the (i, j)-element Bi,j = bi+bj .

3.2.2 Compositional Vector Semantics

Despite their usefulness of word representations, the vectors do not capture semantic

compositionality. As a result, modeling and learning compositional semantics in the

word vector space have emerged as another important line of research [46]. For phrases

and sentences, many different models have been explored [69, 77].

In particular, recursive neural networks (RNNs) are used to represent a sentence

vector. RNNs use the following composition function to compute a phrase vector p

24

from two vectors wi ∈ R
d and wj ∈ R

d of words wi and wj:

p = f

(
W

[
wi

wj

]
+ b

)
,

where W ∈ R
d×2d is the weight matrix to learn, b ∈ R

d is the bias vector to learn, and

f is a non-linear function such as sigmoid. To obtain the sentence vector representa-

tion, I run a parser on the sentence, and apply RNNs recursively at each node of the

parse tree, using phrase vectors in place of wi, or wj whenever necessary.

3.2.3 Distance Metric and Similarity Learning

The notion of the metric plays an important role in machine learning [3]. There

exists a line of research on learning a measure of distance or similarity between data

that is suitable for problems at hand.

For example, the distance metric learning [82] is to optimize the Mahalanobis dis-

tance: DM(x,x′) = (x − x′)�M(x − x′), and the similarity learning [56] is to opti-

mize the inner product: KM(x,x′) = x�Mx′, where x ∈ R
d and x′ ∈ R

d are feature

vectors, and M ∈ R
n×n is a transformation matrix to learn. Here, by decomposing

positive semi-definite matrix M = W�W, I can reformulate the above equations as

follows:

DM(x,x′) = ||Wx−Wx′||2,
KM(x,x′) = (Wx)�(Wx′).

From this perspective, distance metric and similarity learning are equivalent to learn-

ing the linear projection W, which maps x and x′ into new representations. Fur-

thermore, these learning techniques can be extended with kernel methods [36]. The

theory describes that the kernel function K implicitly maps original input data set

X to a high-dimensional (possibly infinite) reproducing kernel Hilbert space (RHKS)

H through φ : X → H and computes the inner product therein; i.e., K(x,x′) =

φ(x)Tφ(x′), x,x′ ∈ X . The motivation of kernelization is to obtain a good high-

dimensional space for solving problems while maintaining computational tractability.

3.2.4 Neural Networks for Paired Data

Recently, there has been growing interest in applying neural networks to various

paired data. For example, [27] construct a neural network for machine translation with

25

parallel training data. This model represents a pair of source and target phrases in a

common low-dimensional space, and their translation score is computed and optimized

using the cosine similarity between the pair of vectors. [37] also construct a neural

network for multi-modal representations by integrating linguistic vectors with visual

concept vectors. These methods allow us to learn richer meaning representations by

optimizing the Euclidean distance and cosine similarity for paired data.

Note that, from the distance metric and similarity learning perspective as described

in the above, these methods are equivalent to learning a non-linear transformation func-

tion ||f(x)− f(x′)||2 and f(x)�f(x′), where f is a non-linear function, and x and x′

are feature vectors of paired data. Typically, these functions are optimized with neural

networks and this architecture is called deep metric or similarity learning [81].

3.3 Method
In this section, I introduce a method of non-linear similarity learning for semantic

compositionality and discuss the motivation behind it. Consider a training dataset that

contains N pairs of tuples {((Si, S
′
i), ti)}Ni=1, where (Si, S

′
i) is a sentence pair and

ti ∈ [0.0, 1.0] is the normalized similarity score of (Si, S
′
i). The goal of this task

is to predict the similarity scores for sentence pairs. My aim is to design a model,

which jointly learns low-dimensional word representations, compositional functions

based on neural networks, and the semantic similarity of the compositional sentence

representations in a high-dimensional space via kernels (Figure 3.1). My approach is

motivated by the following hypothesis:

For similarity computations that require composition (e.g., sentence simi-

larity), it is necessary to map the compositional representation to a space

with higher representational power than the original low-dimensional space

of the components (e.g., words).

Under this hypothesis, the goal of compositional semantics is to model how high-

dimensional sentence similarity is computed from low-dimensional word representa-

tions. This goal differs from that of the current neural network-based models, which

attempt to embed and measure the similarity of sentences in the same low-dimensional

space of words. My motivation for kernelization in compositionality is to obtain a good

high-dimensional space for representing richer meanings of sentences while maintain-

ing computational tractability.

26

3.3.1 Sentence Vector with LSTM

Given a sentence S = w1, w2, · · · , wL, where wi is the i-th word and L is the sen-

tence length, I transform the all words w to word vector representations x ∈ R
d such as

GloVe described in the previous section. I represent the obtained word vector sequence

as

x1,x2,x3, · · · ,xL−1,xL,

where xi is the i-th word vector in the sentence S. This is a input vector sequence of

my models.

Average model (BOWs): I first compute a vector representation s ∈ R
d of a sen-

tence S with the simplest model, i.e., average of the word vectors in the sentence as

follows:

s =
1

L

L∑
i=1

xi.

This is a bag-of-words (BOWs) approach in which the sequence and tree structure of

the sentence is not considered. While this is the simplest BOWs model, it is known

that it can achieve reasonable performance in some tasks [67].

LSTM: The proposed LSTM reads the above word vector sequence and compose

a sentence representation from the hidden vectors of words. Given a word vector se-

quence x1,x2, · · ·xL as an input, I apply the LSTM function given by Equation (2.8)

to obtain a hidden vector sequence h1,h2, · · ·hL, where hi ∈ R
d is the i-th hidden

vector of xi. The computation of the LSTM can be stated as follows:

〈hi, ci〉 = lstm(xi,hi−1, ci−1).

With the obtained hidden vector sequence h1,h2, · · ·hL, I compute an output vector,

i.e., sentence vector s ∈ R
d as follows:

s =
1

L

L∑
i=1

hi.

Note that, while I can consider the use of last hidden vector as a sentence represen-

tation, the performance was lower than this average model with LSTM in my experi-

ments.

27

3.3.2 Non-linear Similarity Learning with Kernel Functions

In this section, I present a non-linear similarity learning for sentence representations

with kernel functions. In the following, the normalized inner product, i.e., cosine sim-

ilarity, is employed as the most basic kernel function K, which is computed between

the sentence vectors s and s′ obtained by using average model or LSTM describe in

the previous section. I represent the cosine kernel function as follows:

Kcos(s, s
′) =

s�s′

||s|| ||s′|| .

Note that all kernel functions K, including the non-linear ones I introduce below, are

normalized for simplicity and preventing the kernel value from growing out of control

during learning process. When K is a non-linear kernel, the normalized kernel K̃ is

represented as follows:

K̃(s, s′) = K(s, s′)√K(s, s)√K(s′, s′) .
In addition, two non-linear kernels are employed in this section, normalized polyno-

mial kernel Kpoly and Gaussian kernel Krbf
1, defined as follows:

K̃poly(s, s
′) =

(
c+Kcos(s, s

′)
c+ 1

)p

,

K̃rbf (s, s
′) = exp

(Kcos(s, s
′)− 1

σ2

)
.

Now, the training objective is to minimize L(Θ) for training dataset {((Si, S
′
i), ti)}Ni=1

as follows:

L(Θ) =
1

2

N∑
i=1

{
ti − K̃(si, s′i)

}2

+
λ

2
||Θ||22,

where Θ is the set of all parameters: the weight matrices and bias vectors in LSTM,

all word vector representations, and parameters in kernel functions such as c in the

polynomial and σ in Gaussian kernel. Thus, I can obtain the non-linear similarity be-

tween two sentences, and the computation and learning are done inexpensively through

a kernel function in the implicit high-dimensional space.

1Note that Gaussian kernel based on Euclidean distance is Krbf (s, s
′) = exp

(−||s− s′||2/2σ2
)
.

Using ||s − s′||2 = s�s + s′�s′ − 2s�s′ and substituting Kcos(s, s
′) in place of the inner product, I

obtain ||s− s′||2 = 2− 2Kcos(s, s
′).

28

I like cats Cats are my favorites

・　・　・　・　・　・

・　・　・

Similarity score

K1(s, s’) K2(s, s’) K3(s, s’) Kn(s, s’)

s s’

Figure 3.3: Deep multiple kernel learning between two sentences.

3.3.3 Deep Multiple Kernel Learning

Since various similarity values with various kernel functions (i.e., multiple kernels

[86, 29, 70]) can be considered, I consider the various kernel values as a vector. I call

this multiple kernel vector and this is represented as follows:

k = [K1(s, s
′),K2(s, s

′), · · · ,Kn(s, s
′)],

where Ki is the i-th kernel function and n is the number of kernel functions to be

considered. Then I can use the multiple kernel vector k ∈ R
n as a input vector of a

deep neural network for the similarity learning as follows:

h(1) = f(W(1)k+ b(1))

h(2) = f(W(2)h(1) + b(2))

· · ·
y = f(W(�)h(�) + b(�)),

29

where f is the non-linear activation function such as ReLU. Note that the size of final

weight matrix is W(�) ∈ R
1×d and the objective function is as follows:

L(Θ) =
N∑
i=1

1

2
{ti − yi}2 + λ

2
||Θ||22.

Figure 3.3 shows the deep multiple kernel learning for semantic similarity between

sentences.

3.4 Related Work
Successful approaches for the semantic relatedness task in SemEval 2014 (describe

in next section as a evaluation task of my methods) combine several kinds of features

widely used in NLP tasks such as surface form overlap, lexical distance, and WordNet.

Some of the submitted systems show that purely compositional models reach perfor-

mance above Pearson correlation r about 0.70 and these scores are lower than the one

of the best purely non-compositional system which reaches r over 0.80 [44]. Note that

all top systems such as [85, 6, 34, 40] are heavily feature engineered and use external

resources.

The most common way to build a sentence representation from words is to simply

average the word vectors. While this bag-of-words (BOWs) model can yield reason-

able performance in some tasks, it cannot distinguish the word order (i.e., sequence)

and structure of the sentence. Unlike the BOWs model, recursive neural networks

[68] combine word vectors in constituency trees of sentences, which have potentially

many hidden vectors. While the sentence vectors work well on many tasks, they must

also take into account the syntactic structure of sentence in detail [66]. Unlike the

model with constituency trees, dependency tree-based models [67] naturally focus on

the action and agents in a sentence. They are better able to abstract from the details of

word order and syntactic expression using dependency relations. On the other hand,

in LSTM models [33], while the standard composes its hidden state from the input

at the current time step and the hidden state of the unit in the previous time step, the

constituency and dependency tree-LSTM [73] composes its state from an input vector

and the hidden states of arbitrarily many child units.

These deep learning and my approach have several important similarities and dif-

ferences in terms of non-linearity and high-dimensionality for modeling and learning

compositional semantics in a vector space. Previous models based on only neural

30

Sentence 1 Sentence 2 Sim

A man is making music
with a flute. A man is playing flute. 4.8

Many people are
skating in an ice park.

An ice skating rink placed
outdoors is full of people.

4.5

A man is playing a guitar. A man is opening a box
with a knife.

1.2

Figure 3.4: Some examples, the sentence pair and similarity score that is determined

by annotators, in the STS dataset.

networks use a composition function and apply these recursively inside a parse tree to

compute a sentence vector. Note that this leads us to represent sentence vector in a low-

dimensional space (e.g., the same dimensionality as words). In contrast, my method

is not subjected to dimensional restraints, which come from modeling with only neu-

ral networks, and can flexibly represent and properly learn the sentence meaning with

kernels.

3.5 Experiments and Results

3.5.1 Dataset

I evaluate the proposed methods in the SemEval 2014 semantic relatedness task,

which uses the sentences involving compositional knowledge (SICK) dataset2 [44].

This task is to predict the relatedness (or similarity) of two sentences as judged by

human annotators on a continuous scale from 1.0 (indicating that the two sentences

are completely dissimilar) to 5.0 (indicating that the two sentences are very similar).

Figure 3.4 shows some examples in STS dataset. The dataset consists of 9927 sentence

pairs in a 4500/500/4927 train/development/test split. My proposed methods are eval-

uated by computing the Pearson’s r correlation, Spearman’s ρ correlation, and mean

squared error (MSE) between the gold similarity scores and scores predicted with the

models.

2http://alt.qcri.org/semeval2014/task1/

31

Padding Sequences of Feature Vectors

Max length data

Padding with zero vec

……

……

……

・
・
・

Sentence 1

Sentence 2

Sentence n

……

……

……

・
・
・

……

……

……

・
・
・

Padding with zero vec・・・ ……

……

・
・
・

……

・
・
・

・・・

・・・

……0 0 0

……0 0 0 ……0 0 0

Batch Processing of Padded Sequences in an RNN

X2

……
……

……

・
・
・

……
……

……・
・
・

H2

XL-1

……
……

・
・
・

……
……

……・
・
・

HL-1

・・・

XL

……

・
・
・

……
……

……・
・
・

HL

……0 0 0

……0 0 0……0 0 0

X1

……
……

……・
・
・

……
……

……・
・
・

H1

Batch size

X3

……
……

……・
・
・

……
……

……・
・
・

H3

Figure 3.5: Padding sequences of word vectors considering the max length data in a

dataset and batch processing of the padded sequences in an RNN architecture. This

is one of the most important techniques for efficient implementation of deep neural

networks. In this figure, Xi is the matrix that consists of the i-th input vectors (i.e.,

i-th word vectors of sentences in a batch), and Hi is the matrix that consists of the i-th

hidden vectors computed with an RNN.

3.5.2 Implementation

I used 50 or 300 dimensional word representations with several different initializa-

tions (i.e., pre-trained) as follows: (1) random initialization within (−0.1, 0.1), (2)

LSA [78], (3) NLM3, (4) word2vec4, and (5) GloVe5. In addition, I initialized the

parameters in kernels as c = 1.0 in polynomial and σ = 1.0 in RBF. For the multi-

ple kearnel vector, I create the set of kernels as follows: (1) Gaussian kernels with 13

different widths {2−6, 2－ 5, 2－ 4, · · · , 26} and (2) polynomial kernels of degree 1 to 7.

3http://ronan.collobert.com/senna/
4https://code.google.com/archive/p/word2vec/
5http://nlp.stanford.edu/projects/glove/

32

Method r ρ MSE

Cosine (BOWs) 0.7588 0.7391 0.4830

Polynomial kernel (BOWs) 0.8198 0.7710 0.3105

Gaussian kernel (BOWs) 0.8108 0.7699 0.3269

Cosine (LSTM) 0.7616 0.7723 0.4209

Polynomial kernel (LSTM) 0.8415 0.7800 0.3009

Gaussian kernel (LSTM) 0.8333 0.7801 0.2950

Deep multiple kernels (LSTM) 0.8501 0.8011 0.2786

Table 3.1: Correlation scores with various sentence representations and kernel func-

tions.

Thus, the dimensionality of the multiple kearnel vector is 20. The number of layer on

top of the multiple kearnel vector is 3-layers, which the dimensionality of the all layer

is the same as input layer.

I implemented my LSTMs using Chainer6 [75] and the optimization method was

ADAM [38], which is one of the most effective stochastic gradient descent (SGD)-

based algorithms for training deep neural networks. I set ADAM with a first momen-

tum coefficient of 0.9 and a second momentum coefficient of 0.999, which were the

recommended configurations in [38]. The LSTM training details are as follows:

• Batch size: 8, 16, 32, and 64.

• L2-regularization strength λ: 1e-6, 1e-7, 1e-8, and 1e-9.

These hyper-parameters were tuned on the development set. Note that my LSTM im-

plementation is based on a batch processing for padded sequential data. This technique

is important for efficient implementation when using an RNN architecture (Figure 3.5).

3.5.3 Compared Methods

I compare my methods against the top systems for the SemEval 2014 semantic relat-

edness task: ECNU, the meaning factory, UNAL-NLP, and Illinois-LH [85, 6, 34, 40],

6http://chainer.org/

33

Method r ρ MSE

Illinois-LH run1 [40] 0.7993 0.7538 0.3692

UNAL-NLP run1 [34] 0.8043 0.7458 0.3593

Meaning Factory run1 [6] 0.8268 0.7722 0.3224

ECNU run1 [85] 0.8280 0.7689 0.3250

DT-RNN [67] 0.7923 0.7319 0.3822

SDT-RNN [67] 0.7900 0.7304 0.3848

Constituency Tree LSTM [73] 0.8582 0.7966 0.2734
Dependency Tree LSTM [73] 0.8676 0.8083 0.2532

Deep multiple kernels (LSTM) 0.8501 0.8011 0.2786

Table 3.2: Comparison to competitive performers. Results are grouped as follows:

SemEval 2014 submissions, RNN models, sequential and structural LSTM and my

best model of deep multiple kernels. My best result outperforms the four of the top

systems submitted to SemEval and close to results of tree-LSTM moddels.

which use a various types of handicrafted features. I also compare with models based

on recursive neural networks and tree LSTM [67, 73], which use deep learning for

computing and learning sentence representations in only a low-dimensional space.

These are described in the previous section.

3.5.4 Main Result

Correlateion and MSE Scores: Table 3.1 shows r, ρ, and MSE for different sen-

tence representations and kernel functions. I found that both Pearson’s r and Spear-

man’s ρ are higher with two non-linear (polynomial and Gaussian) kernels than the

linear (cosine) kernel by a large margin. In particular, the model with LSTM and poly-

nomial kernel achieved the best result among single kernel models. In addition, the

deep multiple kernel model achieved the best performance in my proposed methods.

These results suggest that the similarity learning in a kernel-induced high-dimensional

space is effective, and the kernel space allows us to obtain new word vectors and com-

positional functions which are suitable for sentence representations.

While the LSTM achieved higher performance than BOWs model, the results of

34

0

0.2

0.4

0.6

0.8

1

LSA NLM SG GloVe

Pe
ar

so
n

co
rr

el
at

io
n

Figure 3.6: Pearson correlations with various word representations. The dimensional-

ity of all word representations is 50 the exception of word2vec of SG (300 dim).

BOWs model with non-linear kernels are also high even though the model ignores the

sequence structures. This suggests that the high-dimensional kernel space is sufficient

to capture sentence meanings without modeling the structures in details. In addition,

the result implies that the co-occurrence information of words in a sentence is impor-

tant to capture the meaning.

Comparison to Competitive Performers: Table 3.2 shows the comparison to com-

petitive performers. The result can be summarized as follow. First, my model out-

performed four of the top systems submitted to SICK in SemEval 2014. Note that

these four are heavily feature engineered systems, whereas our approach is mainly de-

pendent on learning of word representations, and does not require a large number of

features and external resources. Second, my correlation scores and MSE are lower than

DT-RNN and SDT-RNN [67] models. Third, in terms of the best correlation score, my

model is the competitive with tree-LSTM models. These tree-LSTM models also com-

pute a sentence representation in a low-dimensional space in the RNNs fashion. This

result also shows the effectiveness of my model.

3.5.5 Analysis

Initialization of Word Representations: I further analyze the influence of using

35

The number of iterations

C
or

re
la

tio
n

Figure 3.7: Learning curve with various word representations. The dimensionality of

all word representations is 50.

pre-trained word representations for initialization. Figures 3.6 and 3.7 show that all

word representations achieved similar results. In addition, I also obtain, after a suffi-

cient number of iterations, high performance with random initialization. This suggests

that the representation learning with kernels is still able to achieve comparable accu-

racy without the help of pre-training, and I need to re-train representations for solving

problems.

The Effect of Kernel Functions: In Table 3.8, although two non-linear kernels out-

performs cosine, the correlation score of Gaussian kernel is lower than cosine early in

the training process. However, the Gaussian kernel eventually achieves a higher corre-

lation score than cosine by increasing the training time. On the other hand, polynomial

kernel keeps the learning curve stable from early in the training process. This suggests

that the Gaussian kernel is sensitive to the hyper-parameter σ and require the careful

training of σ.

36

The number of iterations

C
or

re
la

tio
n

Figure 3.8: Learning curve with various kernel functions.

3.6 Conclusion
In this chapter, I have proposed a new method of non-linear similarity learning for

semantic compositionality. Instead of relying on only neural network-based operating

in a low-dimensional space, I train kernel functions that allows us to measure the se-

mantic similarity in a high-dimensional space. In the task of predicting the relatedness

of two sentences, my method have outperformed linear baselines, feature engineering

approaches, and achieved competitive results with recent deep learning models.

37

39

Chapter 4

Protein Fold Recognition

4.1 Introduction
Predicting the 3D structure of a protein from its amino acid sequence using compu-

tational methods is an important challenge in bioinformatics. However, it is difficult

to directly predict the 3D structure from the sequence. Therefore, classifying a protein

into one of the folds, which are pre-defined structural labels in protein databases such

as SCOPe1 and CATH2, is used as an intermediate step for predicting the 3D structure.

This classification task is called protein fold recognition (Figure 4.1). Although a pro-

tein fold can be accurately predicted when the homologous templates are identified, it

remains a challenging problem when the similarities between the sequence and tem-

plates are low. Even if two proteins have low sequence homology, they can have the

same fold.

The process of protein fold recognition is mainly divided into two steps: (1) ex-

tracting features and (2) learning classifiers. The features are generally extracted from

syntactical, physicochemical, and evolutionary information of proteins. Syntactical

features are based on the amino acid occurrence [72], the pairwise frequency of amino

acids separated by one or adjacent residues [28], and the combination of these [83].

Physicochemical features are based on attributes such as hydrophobicity, secondary

structure, polarity, polarizability, and van der Waals volume [21]. In addition to these,

various attributes have been used such as solvent accessibility [84], a strategy to se-

lect them has been explored [65], and their impact has been examined [16]. Evolu-

tionary features are based on sequence profiles, which are obtained by running PSI-

1http://scop.berkeley.edu/
2http://www.cathdb.info/

Input : GLSAAQRQVIAATWKDIAGA・・・・・SGALISGLQS

Output: fold label

Figure 4.1: An input and output of the protein fold recognition task. The above protein
figures are provided from https://nanohub.org/resources/contactmaps.

BLAST [1]. The sequence profile is the probability score of amino acid occurring at

a specific position in the sequence. This is also called position specific scoring ma-

trix (PSSM) and computed with multiple sequence alignment for all proteins in the

database. As a result, each amino acid feature is represented with a 20-dimensional

vector, in which the elements are the position specific scores of amino acid occurring

probability. Among these three features, evolutionary features have shown to be useful

for protein fold recognition and their use can improve its accuracy by a large margin

[64, 50, 42, 57, 43]. For the classifiers, several types have been used, such as hid-

den Markov models (HMMs) [8], support vector machines (SVMs) [20], and neural

networks (NNs) [10]. Among these classifiers, SVM-based methods have been widely

used and shown promising results [57, 43]. However, one major issue is that SVMs and

feed-forward NNs require a fixed-length feature vector as an input, whereas protein

sequences have arbitrary lengths. This problem remains a fundamental and difficult

challenge in protein fold recognition using machine learning methods.

Recently, deep neural networks have achieved excellent performance in solving dif-

ficult problems such as visual object recognition [39] and speech recognition [31]. In

particular, for sequential problems in NLP such as machine translation [71], RNNs

with LSTM units [33] have re-emerged as a popular architecture. This is mostly owing

to the capability of this architecture in learning to map a sequence of arbitrary length

into a fixed-dimensional vector representation and capturing long-term dependencies

in the sequence. Indeed, LSTMs have also been applied to problems in bioinformatics

such as homology detection [32].

In this thesis, I show that the LSTM architecture can (1) learn to map a protein

sequence of arbitrary length into a fixed-dimensional vector representation, (2) capture

the long-term dependencies of amino acids in the sequence, and then (3) correctly

40

classify the protein fold. The idea is to use an LSTM to read a sequence of feature

vectors of amino acids and output a fixed length vector to be used as an input to a

protein fold classifier. In more detail, the whole of my method is as follows:

1. For each amino acid in the protein sequence, I assign a feature vector that con-

sists of a sequence profile, secondary structure, and solvent accessibility by run-

ning PSI-BLAST [1], SSpro [54], and ACCpro [53] (chapter 4.3.1). As another

feature, I attempt to use the vector representations of amino acids obtained with

word representation learning methods in NLP [45, 52] (chapter 4.3.2).

2. To the feature vector sequence, I apply an RNN with LSTM units (chapter 4.3.3).

The LSTM (1) reads the feature vectors one by one, (2) computes the hidden

vectors, and (3) computes the sum of hidden vectors. This fixed-length vector is

then input to a softmax classifier (i.e., logistic regression) of protein folds.

3. However, since proteins have a univariate direction from beginning to end, in-

stead of vanilla LSTMs I use bi-directional LSTM architectures that can consider

both directions along the protein sequence. In particular, I propose the use of two

architectures: concatenated [30] and stacked [51] bi-directional LSTMs. Fig 4.2

shows the two bi-directional LSTM architectures for protein fold recognition.

My contributions are three-fold:

1. To the best of my knowledge, this is the first work that attempts to use LSTMs

for protein fold recognition with biological feature sequence as an input.

2. On the benchmark dataset called EDD [20], the proposed methods outperformed

existing methods with various features and machine learning techniques. In par-

ticular, compared to existing methods such as using a large number of (over 500)

physicochemical attributes in addition to syntactical and evolutionary features

[57] and the state-of-the-art method with SVM [43], my stacked bi-directional

LSTM achieved higher performance despite the use of a minimal set of features

and little tuning of hyper-parameters in the neural network.

3. I provided analyses of the differences between the concatenated and stacked

architectures, the impact of hyper-parameters, protein length, and word repre-

sentation learning. In particular, I showed that the stacked architecture achieved

excellent performance compared to the concatenated architecture. In addition,

the LSTMs did not suffer on very long protein sequences. LSTM is known to

41

Concatenated Bi-directional LSTM

sumconcat

・・・

・・・

S
……

……

…… ……

……

Y
……

……

…… ……

……

Q
……

……

…… ……

……

R
……

……

…… ……

……

A
……

……

…… ……

……

…… ……

softmax classifier

…… Feature vector of amino acid: sequence profile, secondary structure, and solvent accessibility (24 dim)

Stacked Bi-directional LSTM

stack

・・・

・・・
…… ……

……

……

……

……

……

……

……

……

……

……

……
sum

……

softmax classifier

S Y Q RA

……

……

Figure 4.2: The concatenated and stacked bi-directional LSTM architectures for pro-

tein fold recognition. Each amino acid feature vector in a protein sequence consists

of a sequence profile, secondary structure, and solvent accessibility. In this paper,

we propose the use of two architectures: concatenated and stacked bi-directional long

short-term memory. The concatenated architecture [30] computes two hidden layers,

one for each of direction, and then concatenates the hidden layers. On the other hand,

the stacked architecture assumes a hidden layer as an input of the next layer [51].

work well on sentences and other natural language sequences, but protein se-

quences are typically much longer. Despite this difference, our results show that

LSTMs work quite well on very long protein sequences.

4.2 Related Work
As described in chapter 4.1, features for protein fold recognition combine syntac-

tical, physicochemical, and evolutionary information of amino acids. Dubchak et al.

[21] suggested the combination of syntactical and physicochemical features that con-

42

sist of amino acid composition (AAC) as syntactical information (20 features) and the

following five physicochemical attributes: hydrophobicity (H), predicted secondary

structure based on the normalized frequency of α-helix (X), polarity (P), polarizability

(Z), and van der Waals volume (V). The set of these five attributes is represented as

“HXPZV,” which consists of 105 features, and is widely used as a basic physicochem-

ical feature set.

On the other hand, Taguchi and Gromiha [72] proposed features that are based on the

amino acid occurrence as a syntactical feature and argued that only syntactical features

should be considered because physicochemical features have no important information

for protein fold recognition. In addition, Ghanty and Pal [28] introduced features that

are based on the pairwise frequency of amino acids separated by one residue (called

PF1) and pairwise frequency of adjacent residues (called PF2). Furthermore, Yang et

al. [83] used PF, the concatenated feature of PF1 and PF2. Because PF1 and PF2

consist of 400 (20 × 20) features, PF consists of 800 features. While these syntactical

features have been shown to be useful, other physicochemical attributes have also been

proposed. A strategy to select 30 attributes has been explored [65] and the impact of

55 attributes has been examined [16].

Recently, evolutionary information based on a sequence profile (or called PSSM de-

scribe in the previous section) obtained by running PSI-BLAST [1] has been shown

to be useful for protein fold recognition. The simple use of the sequence profile can

improve its accuracy by a large margin compared to the above syntactical and physico-

chemical features. For example, Sharma et al. [64] used mono-gram and bi-gram fea-

tures extracted from the sequence profile. In addition, Paliwal et al. [50] used tri-gram

features and combined them with syntactical features. Furthermore, Lyons et al. [42]

used an alignment method using dynamic programming (DP) to extract evolutionary

features. Very recently, Raicar et al. [57] proposed a large feature set consisting of 544

physicochemical attributes in addition to existing syntactical and evolutionary infor-

mation, and Lyons et al. [43] applied HMM-HMM alignment of protein sequences to

extract the profile HMM (PHMM) matrix and computed the distance between respec-

tive PHMM matrices using DP (PHMM-DP). These two methods achieved over 90%

accuracy in the benchmark dataset called EDD [20]. In these methods, SVM-based

classifiers were mainly used.

43

4.3 Method
In this section, I first describe the evolutionary and physicochemical features of

amino acids in a protein sequence, which are used as inputs for protein fold recognition

system (chapter 4.3.1). Second, as another feature, I describe the definition of words in

protein sequences, creation of a large protein corpus for word representation learning,

and application of word2vec [45] and GloVe [52] to this corpus (chapter 4.3.2). Third,

I present the use of two LSTMs for protein fold recognition with concatenated and

stacked bi-directional architectures (chapter 4.3.3), followed by the explanation of the

training and re-training procedure of the LSTMs and pre-trained word representations

(chapter 4.3.4).

4.3.1 Evolutionary and Physicochemical Features

In this thesis, I simply use a minimal set of amino acid features that are commonly

used in protein structure prediction tasks such as [22, 17]. This feature set is also used

in the next chapter.

Each amino acid feature vector in a protein sequence includes three kinds of infor-

mation as follows:

1. PSI-BLAST sequence profile (20 real values: an amino acid is represented with

a 20-dimensional vector, in which the elements are the position specific scores

of amino acid occurring probability as described in chapter 4.1).

2. Secondary structures (three binary values: α-helix, β-strand, or coil).

3. Solvent accessibilities (two binary values: buried or exposed).

The sequence profile is obtained by running PSI-BLAST [1] with an E-value cutoff

equal to 0.001 and for four iterations against NCBI’s non-redundant version of the

protein sequence database NR filtered at 90% sequence identity. The secondary struc-

ture and solvent accessibility are predicted by running SSpro [54] and ACCpro [53]

from the SCRATCH suite [12]. In this thesis, I represent the feature vector of the i-th

amino acid in a protein sequence as xi ∈ R
d (in the above feature, d = 24).

44

4.3.2 Word Representation Learning in Proteins

As another feature, I introduce word representations in protein sequences. In or-

der to apply word representation learning methods such as SG, CBOW, and GloVe

described in the previous chapter to protein sequences, I define a word of proteins

as an n-gram of amino acid and split the sequences into overlapping of the n-gram

amino acids. Since there are 20 types of amino acids that make up proteins, the to-

tal number of possible n-grams is 20n. In this thesis, to keep the vocabulary size

tractable and to avoid low-frequency words in learning representations, I set a mod-

erate small n-gram length of n = 3. For example, I can split a sequence of pro-

tein into an overlapping 3-gram amino acid sequence as follows: GLSAA · · ·LQS →
“-GL”, “GLS”, “LSA”, · · · , “LQS”, “QS-”. With this word definition and splitting, I

create a large protein corpus from a large protein database. Then, to this corpus, I sim-

ply apply SG, CBOW, and GloVe (Figure 4.3). Note that the above word definition and

splitting for protein sequences are common approaches in bioinformatics and similar

to previous work such as [19, 26, 50].

Why word representations? In NLP, word representations can capture the mean-

ing and its similarity using the co-occurrence information of words in a corpus [15].

Similarly, it has been pointed out that the co-occurrence information of amino acids in

proteins is also important for capturing protein structures [72, 28, 83]. In addition, in

most existing methods for protein fold recognition, amino acid features typically in-

clude evolutionary and physicochemical information such as hydrophobicity, polarity,

and van der Waals volume. While these features are widely used, the feature vectors

themselves are fixed during learning process [18, 65, 16]. In contrast, above word

representations can be re-trained during learning process with deep neural networks

described in the following subsection.

4.3.3 Protein Fold Recognition with LSTMs

Input Vector Sequence: Given a protein sequence P = a1, a2, · · · , aL, where ai
is the i-th amino acid and L is the protein length, I transform the all amino acids to

45

ENIKLGFGLGQGSALAHGIANANIIKKEN
ADQRAAQYVIDEYNKLRL
ENIQYNFGNFGHHHQAEAARIQYHGI
・・・
HFGHHARWIGNFHVRTDSE
QARWNFGHHHQAEARWNARGNRN

Protein corpus

Skip-gram, CBOW,
[Mikolov+ 13]

GloVe
[Pennington+ 14]

＋

Word representation learning

n-gram
 amino acid vectors

Features with unsupervised representation learning

LRW

QGL

GQA

・
・
・

・
・
・

Figure 4.3: The application of word representation learning methods for the protein

corpus.

feature vectors3. Let the obtained feature vector sequence be

x1,x2,x3, · · · ,xL−1,xL.

Alternatively, I can also consider a vector sequence whose elements consist of concate-

nated feature vectors. For example, the vector sequence composed of the concatenation

of three contiguous feature vectors is as follows:

[0;x1;x2], [x1;x2;x3], · · · , [xL−2;xL−1;xL], [xL−1;xL;0], (4.1)

where 0 is the d-dimensional zero vector for padding and [xi;xj;xk] ∈ R
3d represents

the concatenation of xi, xj , and xk. This allows us to consider surrounding features

(e.g., x1 and x3) when processing the target feature (e.g., x2). In this thesis, I represent

the feature vector as xi:i+w−1 = [xi;xi+1; · · · ;xi+w−1] ∈ R
wd, where w is the window

size (in the above example, w = 3). Such a vector sequence is used as an input

sequence for an RNN as described in the following.

LSTMs: The proposed LSTMs read the above feature vector sequence of amino

acids (e.g., x1,x2, · · · ,xL) and learn the parameters (e.g., Wi and Wf) to classify the

protein folds. However, although protein sequences have a univariate direction from

beginning to end in contrast to natural language sentences, vanilla LSTMs use only the

past sequence and ignore the future sequence. To overcome this limitation, I use bi-

directional architectures that can consider both directions along the protein sequence.

The original bi-directional LSTM proposed by [30] computes two hidden vectors, one

for each direction, and then concatenates the hidden vectors (Figure 4.2). In addition

to this concatenated architecture, I attempt to improve the representational power of a

3Note that when using word representations, I represent P = w1, w2, · · · , wL as a word sequence

(i.e., an overlapping split sequence with n-gram amino acids), where wi is the i-th word.

46

bi-directional LSTM with stacked architectures (Figure 4.2), which assumes a hidden

vector as an input of the next layer [62, 23, 51]. In later experiments, I compare the

performance of the two architectures.

Concatenated Bi-directional LSTM: Given a feature vector sequence of amino

acids x1,x2, · · ·xL as an input, I apply two LSTM functions given by Equation (2.8)

to obtain a hidden vector sequence h1,h2, · · ·hL, where hi ∈ R
d is the hidden vec-

tor of xi. Let lstmf be a forward LSTM function and lstmb be a backward LSTM

function that are given by Equation (2.8). Note that I distinguish these two functions

by subscripts, f and b, because they do not share learning parameters (e.g., Wi and

Wf). Then, the forward and backward computations of the concatenated bi-directional

LSTM can be stated as follows:

〈−→ci ,−→hi〉 = lstmf (xi,
−−→
hi−1,

−−→ci−1),

〈←−ci ,←−hi〉 = lstmb(xi,
←−−
hi+1,

←−−ci+1),

hi = [
−→
hi ;
←−
hi],

where ci is the i-th cell layer and [
−→
hi ;
←−
hi] ∈ R

2d is the concatenation of
−→
hi and

←−
hi .

Thus, the dimensionality of the obtained hidden vector is 2d. With the hidden vector

sequence h1,h2, · · ·hL, I compute an output vector y ∈ R
k as follows:

y = Wy

L∑
i=1

hi + by, (4.2)

where Wy ∈ R
k×2d is the weight matrix to learn, by ∈ R

k is the bias vector to learn,

and k is the dimensionality of the output vector y (i.e., the number of protein folds to

classify). Figure 4.2 shows the architecture of the concatenated bi-directional LSTM.

Stacked Bi-directional LSTM: The stacked bi-directional LSTM, which assumes

a hidden vector as an input of the next layer, can be stated as follows:

〈−→ci ,−→hi〉 = lstmf (xi,
−−→
hi−1,

−−→ci−1),

〈ci,hi〉 = lstmb(
−→
hi ,
←−−
hi+1,

←−−ci+1).

Thus, the dimensionality of the obtained hidden vector with stacked architecture is n,

which is different from the concatenated architecture. With the hidden vector sequence

h1,h2, · · ·hL, I compute the output vector y with Equation (4.2), where Wy ∈ R
k×n.

Figure 4.2 shows the architecture of the stacked bi-directional LSTM.

47

4.3.4 Training

Finally, a softmax layer is added on the top of the output vector y for modeling

multi-class (i.e., k-class) probabilities as follows:

pt =
exp(yt)∑k
i=1 exp(yi)

,

where t = {1, · · · , k} is the index of protein fold label and yi is the i-th element

(i.e., scalar) in the output vector y. Given a training dataset {(Pi, ti)}Ni=1, where P is

the protein sequence, t is the index of correct protein fold, and N is the number of

training samples, our training objective is to minimize the loss function L, given as the

cross-entropy loss plus an L2-regularization term as follows:

L(Θ) = −
N∑
i=1

log pti +
λ

2
||Θ||22,

where Θ is the set of all weight matrices and bias vectors to learn in LSTMs described

in chapter 2.2, Wy, and Wb described in this section. pti is the probability of ti and λ

is an L2 regularization hyper-parameter. I use a standard backpropagation technique to

train Θ. Note that, when using word representations, I include the word representations

in Θ and re-train them as learning parameters.

4.4 Experiments and Results

4.4.1 Dataset

I used the EDD dataset [20], which is a benchmark for protein fold recognition. This

dataset consists of 3418 proteins, of which any two distinct proteins have less than 40%

of sequence identity. The number of protein folds is 27 and it includes labels such as

DNA/RNA-binding, immunoglobulin-like, TIM beta/alpha-barrel, and ferredoxin-like,

which are based on the major structural classes (i.e., α, β, α/β, and α+β) in the SCOPe

database4. I split the EDD dataset 8:1:1 and used these as train/development/test sets.

4http://scop.berkeley.edu/

48

4.4.2 Implementation

LSTMs: I implemented my LSTMs using Chainer5 [75], and the optimization

method was ADAM [38], which is one of the most effective stochastic gradient de-

scent (SGD)-based algorithms for training deep neural networks. I set ADAM with a

first momentum coefficient of 0.9 and a second momentum coefficient of 0.999, which

were the recommended configurations by [38]. I found that the LSTMs do not need

careful tuning of hyper-parameters and are easy to train in practice. The training details

are as follows:

• Window size w (described in chapter 4.3.3): 1, 3, 5, and 7.

• Batch size: 64, 128, 256, and 512.

• L2-regularization strength λ: 1e-6, 1e-7, 1e-8, and 1e-9.

In my experiments, I compared the results with various window sizes and batch sizes,

and examined the effect of these hyper-parameters for protein fold recognition. In par-

ticular, it is expected that a larger window size improves the accuracy because it allows

more surrounding features to be considered, but the increased input dimensionality

slows down training. In contrast, it is expected that a larger batch size improves the

training speed, but the accuracy is lower.

Word Representations: I set the word vector dimensionality d = 100, window size

� = 10, the number of iterations over a corpus is 10 in CBOW and 100 in SG and

GloVe, the number of negative sampling words K = 5 (in SG and CBOW), and other

hyper-parameters are set to default values in the toolkits of word2vec6 and GloVe7.

These word representations are used to initialize our LSTMs but not fixed, they are

later re-trained during learning process of LSTMs. I discuss the impact of pre-training

and re-training of word representations.

4.4.3 Main Result

Accuracy: Table 4.1 shows the accuracies of existing methods and my methods in

the EDD dataset. I observed that concatenated bi-directional LSTM achieved com-

petitive accuracy (92.3%) and stacked bi-directional LSTM outperformed all existing
5http://chainer.org/
6https://code.google.com/archive/p/word2vec/
7http://nlp.stanford.edu/projects/glove/

49

Existing methods Accuracy (%)

Syntactical features

Taguchi and Gromiha [72] (Occurrence) 46.9

Ghanty and Pal [28] (PF1) 50.8

Ghanty and Pal [28] (PF2) 49.9

Yang et al. [83] (PF1 and PF2) 55.6

Physicochemical features

Dubchak et al. [21] (HXPZV) 40.9

Sharma et al. [65] (15 attributes) 51.3

Sharma et al. [65] (30 attributes) 54.6

Dehzangi et al. [16] (55 attributes) 56.7

Evolutionary features

Sharma et al. [64] (Mono-gram) 76.9

Sharma et al. [64] (Bi-gram) 84.5

Paliwal et al. [50] (Tri-gram) 86.2

Lyons et al. [42] (Alignment method) 90.2

Raicar et al. [57] (+ 544 physicochemical attributes) 90.2

Lyons et al. [43] (PHMM-DP) 92.9

My methods Accuracy (%)

Concatenated bi-directional LSTM 92.3

Stacked bi-directional LSTM 93.2

Table 4.1: Accuracies of existing methods and my methods in the EDD dataset.

50

Figure 4.4: Learning curves of time (hour) vs. accuracy (%) for the best performing

concatenated and stacked LSTM architectures.

methods (93.2%). The settings of the best performing architectures are as follows:

Concat: window size, 5; batch size, 128; and L2-regularization λ, 1e-8; Stack: window

size, 7; batch size, 128; and L2-regularization λ, 1e-8. To the best of my knowledge,

this is the first result to show that a neural network-based method outperforms existing

SVM-based methods for protein fold recognition.

Learning Curves: Time vs. Accuracy: Figure 4.4 shows the learning curves of

time (hour) vs. accuracy (%) for the best performing concatenated and stacked LSTM

architectures. Note that, in my all experiments, I measured training time with a single

thread of the Intel Xeon CPU E5-2699 2.30GHz machine using only one core as a

baseline evaluation. Training speed can be significantly improved using all cores of

the machine and graphics processing unit (GPU) in practice.

In Figure 4.4, I observe that both LSTMs take about 7 hours to achieve over 90%

accuracy. In addition, neither LSTM keeps the learning curves stable early in the

training process. However, both eventually achieve high accuracies by increasing the

51

Figure 4.5: Learning curves of time (hour) vs. accuracy (%) by various window sizes.

The graph on the left shows the result of concatenated bi-directional LSTM, and that

on the right shows the result of stacked bi-directional LSTM. In these figures, the batch

size is 128.

training time. Subsequently, the learning curves remain stable later in the training

process. These unstable learning curves may be observed due to the great variability

of sequence lengths among proteins in the training dataset (discussed in chapter 4.4.4).

Given that it is generally more difficult to achieve high performance in neural net-

works without careful tuning of the hyper-parameters compared to existing SVM-

based methods, I examine the effect of various hyper-parameters of the LSTMs in

the following subsection.

4.4.4 Analysis

The Effect of Window Size: Figure 4.5 shows the learning curves of time (hour)

vs. accuracy (%) by various window sizes. In Figure 4.5, I observe that the learning

speed is slower when the window size is larger (particularly when the window size

is 7) because of the high dimensionality of the input vector for an LSTM. However,

both LSTMs achieve high accuracies after training time is increased. In the stacked

bi-directional LSTM, the influence of the window sizes (1, 3, and 5) vanishes as the

training time is increased, and they eventually achieves the same level of accuracy.

This suggests that the stacked LSTM is robust for the window size. In contrast, the

concatenated LSTM is a little sensitive to the window size.

Incorporating surrounding features did not lead to marked improvement in accuracy;

the best accuracy was achieved with the stacked architecture when the window size was

7, but smaller window sizes also achieved competitive accuracies (over 90%). On the

52

Figure 4.6: Learning curves of time (hour) vs. accuracy (%) by various batch sizes.

The graph on the left shows the result of concatenated bi-directional LSTM, and that on

the right shows the result of stacked bi-directional LSTM. In these figures, the window

size is 1.

basis of this observation, I found that the stacked architecture that reads each feature

vector of amino acid one by one in a protein sequence can be learned fast, robustly

facilitating high performance.

The Effect of Batch Size: Figure 4.6 shows the learning curves of time (hour) vs.

accuracy (%) by various batch sizes. The batch processing and batch size are important

for efficient implementation of RNNs.

In Figure 4.6, I observe that the batch size has an insignificant effect on the per-

formance in the concatenated LSTM, and all the accuracies with various batch sizes

nearly equal. This suggests that the concatenated LSTM is robust for different batch

sizes. However, in stacked LSTM, batch size 128 achieves the best accuracy, and

smaller or larger batch sizes degrade the performance. In particular, neither LSTM can

keep the learning curve stable when the batch size is small (e.g., 64).

The Effect of Protein Length: One of the most important concerns with LSTMs

for proteins is that it may not be able to work well on long sequences. In particular,

while LSTMs perform well in NLP, sentences are usually much shorter than protein

sequences, which often comprises over 300 amino acids. However, I were surprised to

discover that my LSTMs worked well on such long protein sequences, which is shown

quantitatively in Figure 4.7 using the learning curves of time (hour) vs. accuracy (%)

for various sequence lengths.

In Figure 4.7, I observe that concatenated and stacked LSTMs rapidly learn short

53

Figure 4.7: Learning curves of time (hour) vs. accuracy (%) by various sequence

lengths. The graph on the left shows the result of concatenated bi-directional LSTM,

and that on the right shows the result of stacked bi-directional LSTM. In these figures,

the window size is 1 and the batch size is 128.

sequences and achieve over 90% accuracy early in the training process. In addition,

both LSTMs slowly learn long sequences and achieve nearly 90% accuracy later in the

training process. However, the stacked LSTM shows degradation for short sequences

by increasing training time. In contrast, concatenated LSTM keeps the accuracy for

short sequences stable. These results suggest that the representational power of the

stacked architecture is higher and makes it easier to overfit for short sequences. To

address the limitation with regard to sequence length, curriculum learning strategies

considering data lengths might be needed to be applied [4]. This is another aspect of

LSTMs for proteins to be solved in future studies.

The Effect of Word Representations: In Figure 4.8, I found that the performance

does not depend on initialization of word representations such as SG, CBOW, and

GloVe. The reason is that these representations are similar in terms of having the co-

occurrence information of amino acids in proteins.

In Figure 4.8, I also found that re-training of word representations does not always

give an improvement. While stacked bi-directional LSTM shows the improved ac-

curacy with the help of re-training representations, any substantial improvement was

not observed when concatenated bi-directional LSTM is used. Interestingly, Figure

4.8 shows that even if I use random initialized vectors for word representations, I

achieve about 40 % accuracy when the representations are retrained with the stacked

bi-directional LSTM. This suggests that stacked architecture can achieve comparable

accuracy to existing methods that use basic five physicochemical features without the

54

0

10

20

30

40

50

SG CBOW GloVe

Concat LSTM Stacked LSTM

0

10

20

30

40

50

Concat LSTM Stacked LSTM

Not re-train (GloVe) Re-train (GloVe)
Re-train (Random)

A
cc

ur
ac

y
(%

)

Figure 4.8: The effect of word representations and the re-training.

help of pre-trained representations. This also suggests that obtained features, with

learning of long-term dependencies of amino acids in the protein sequence, can cover

the information of basic physicochemical attributes.

However, my all experiments in this chapter showed that evolutionary information

is eventually most effective feature for protein fold recognition.

4.5 Conclusion
In this chapter, I have shown LSTMs for protein fold recognition. Then I have

proposed the use of two LSTM architectures: concatenated and stacked bi-directional

LSTMs. On a benchmark dataset, my LSTMs have achieved high accuracy despite the

use of a minimal set of features and limited tuning of hyper-parameters. In addition,

throughout the analyses, I have found that the stacked architecture achieved excellent

performance and LSTM was not adversely affected by very long protein sequences.

Directions for future research include the following:

1. Exploration of further potential synergy of various other features between syn-

tactical, physicochemical, and evolutionary information.

2. Extension to deeper and more effective stacked architectures.

55

3. Experiments on other bioinformatics tasks with my LSTMs.

56

57

Chapter 5

Residue-Residue Contact Prediction

5.1 Introduction
As described in the previous chapter, each protein has a unique 3D structure deter-

mined by the types and order of amino acid residues in the sequence. For describing

such 3D structures in more detail than fold labels, protein data bank (PDB)1 files pro-

vide information about 3D Cartesian coordinates of all atoms in proteins. The coor-

dinate information is useful to understand the amino acid interactions, folding struc-

tures, biophysical and biochemical properties in proteins. However, since the protein

3D structure is invariant under translations and rotations, it is necessary to consider the

structural representations that do not depend on Cartesian coordinates in PDB files.

As one of the representations for describing protein 3D structures, we generally

say that two amino acid residues in a protein sequence are in contact if the Euclidean

distance between the residues is less than 8Å. Then we can describe the residue-residue

contact information as a binary L × L matrix, where L is the protein length. In this

matrix, an element with value 1 indicates the corresponding two residues are in contact,

otherwise they are not in contact and the value is 0. This symmetrical matrix is called

contact map (Figure 1.2 in chapter 1), each element of which shows whether the two

residues in a 1D sequence are close enough in a 3D space to interact or not.

In bioinformatics, protein 3D structure prediction from its amino acid sequence is

assessed in the critical assessment of protein structure prediction (CASP)2, which is

a worldwide experiment taking place every two years since 1994. In particular, it

remains challenging to predict residue-residue contacts in a protein from its amino

1http://www.rcsb.org/pdb/
2http://www.predictioncenter.org/.

Input sequence: G　L　S　A　A　・・・　R　Q　V　・・・　L　Q　S

Output: contact or not Output: contact or not

Figure 5.1: An input and output of the residue-residue contact prediction task. The

input is a pair of amino acid residues in a protein sequence (e.g., “L” and “R” or “Q”

and “S” in the above example) and the output is a label of contact or not.

acid sequence. This problem is called residue-residue contact prediction (Figure 5.1).

Although the residue-residue contact prediction may be considered as a sub-problem in

the protein 3D structure prediction problem, it is known that it is essentially equivalent

to the 3D structure prediction because 3D structure can be recovered from sufficiently

large number of true contacts [55, 61, 79].

However, residue-residue contact prediction is a very difficult problem because it

can always occur that two residues far away from each other in a 1D sequence get

close in a 3D structure due to the protein folding process. Such contacts between

sequentially distant residues are called long-range contacts. The long-range contact

information imposes strong spatial and physical constraints on the protein, which is

important for understanding the folding process and recovering the 3D structure com-

pletely. However, despite significant efforts in CASP experiments, the progress has

remained slow [24] and even the best methods have shown very low accuracies about

20% for long-range contacts [9]. In order to recover good 3D structures, simulations

suggest that the accuracy for long-range contacts ought to be increased to about 35%.

To date, successful methods for residue-residue contact prediction are based on ho-

mology modeling [47, 35]. In homology modeling, the methods use known sequences

and structures in databases, called templates, that are similar to unknown target pro-

tein. Since the methods require a large number (at least several hundreds) of templates

for the target protein, there is a fundamental problem as follows: When the sequence

similarities between the target sequence and sequences in databases are weak or good

templates do not exist in databases, the prediction does not work well in the first place.

This suggests that there is still room to consider the prediction from scratch (i.e., with-

out templates), which is called ab initio modeling [7] in contrast to homology model-

ing.

Reliable methods based on ab initio modeling use some form of machine learning

58

such as support vector machines (SVMs) [11] and neural networks (NNs) [74]. For

modeling residue-residue contact prediction with machine learning, there are three

main issues [80, 47, 17] to be considered as follows:

1. Residue-residue contacts are spatially correlated and not randomly distributed in

protein structures derived from the effect of evolutionary and physical informa-

tion over the long protein sequence.

2. In protein 3D structures, there are effects derived from indirect interactions

among residues. The indirect interaction where direct coupling of residues be-

tween A–B and B–C can result in observed correlations between A–C, even

though no direct interaction exists between A and C.

3. Proteins do not assume a 3D conformation instantaneously, but rather through a

folding process that gradually refines the structure.

While there are above issues, most methods (1) consider the pair of residue features in-

dependently and predict the contact element-by-element, (2) simply model the indirect

interactions with sparsity constraints in contact data, and (3) attempt to learn contact

probabilities at the local level in a single step.

To address these issues, in this thesis I model the above three properties in pro-

tein structures using deep neural networks. In particular, I combine the stacked bi-

directional LSTM (described in chapter 4) and convolutional architecture on top of

the hidden vectors obtained by the LSTM. Using the LSTM, I first obtain the hidden

vectors that encode evolutionary and physical features such as α-helix and β-strand of

amino acid residues over the protein sequence. As a result, I can automatically cap-

ture the all features between residues even I simply use the residue pair as an input

for the contact classifier. In addition, I apply a convolutional neural network (CNN)

to the pairs of hidden vectors, model the effect of indirect interactions in the forward

computation of neural network, and then learn the combined architecture of LSTM

and CNN in an end-to-end fashion. Furthermore, I apply the attention mechanism to

LSTM, [58], which is widely used in NLP tasks such as machine translation.

My contributions are three-fold:

1. To the best of my knowledge, this is the first work that attempts to use LSTMs

for protein residue-residue contact prediction and combine various architectures

for capturing physical constraints, indirect interactions, and folding process.

59

(1) We compute Euclidean distances between all amino acid residue pairs
 (between Cβ atoms, but Cα atoms for glycine) in the protein from the PDB file.

(2) If the distance is lower than 8Å, the two residues are defined as contact.

(3) Three classes of contacts are defined as follows:
 Long-range contact: with separation ≧ 24 residues
 Medium-range contact: separation between 12 and 23 residues
 Short-range contact: separation between 6 and 11 residues

5Å 23Å 8Å

G　L　S　A　A　・・・　R　Q　V　・・・　Q　S

Figure 5.2: The definition of a protein residue-residue contact map.

2. On the CASP dataset, the proposed methods outperformed existing methods

based on the homology modeling and ab initio model with various machine

learning techniques. In particular, the stacked bi-directional LSTM with sparse

attention mechanism for capturing protein folding process achieved the highest

performance in my methods.

3. I showed that LSTMs also can also work well on very long protein sequences in

residue-residue contact prediction. In addition, by comparing my various meth-

ods, I found that the simplest use of LSTM is enough to achieve high perfor-

mance in residue-residue contact prediction.

5.2 Background and Related Work
In this section, I describe the task and evaluation of the protein residue-residue con-

tact prediction (chapter 5.2.1). Then, I describe the protein properties to be considered

in the prediction model with machine learning (chapter 5.2.2).

5.2.1 Task and Evaluation

To create a protein residue-residue contact map, I first compute Euclidean distances

between all amino acid residue pairs from the PDB file of the protein. More pre-

cisely, the distance is computed with Cβ atoms in amino acids (Cα atoms in the case of

glycine). Next, if the distance is lower than 8Å, the pair of the two residues is defined

as contact. In addition, three classes of contacts are defined as follows:

60

1. Long-range contacts with separation � 24 residues.

2. Medium-range contacts with separation between 12 and 23 residues.

3. Short-range contacts with separation between 6 and 11 residues.

Finally, with these contact definitions, I create a binary L × L matrix, where L is

the protein length, and this is the residue-residue contact map 5.2. While short-range

contacts are easy to predict, long-range contacts are difficult to predict and important

information for understanding protein 3D structures. The goal of this task is to cor-

rectly predict the long-range contacts.

Since there are few contacts in a sequence (in particular the number of long-range

contacts is very few), the accuracy of contact prediction is evaluated with the precision

as follows:

Acc = TP/(TP + FP),

where TP and FP are the true positive and false positive predicted contacts. If the

above equation is 0/0 and contact pairs exist in the sequence, the Acc is 0 %. On the

other hand, if the above equation is 0/0 and contact pairs do not exist in the sequence,

the Acc is 100 %. Note that this Acc is computed for the sets of top L/5, L/10 and

5 predicted pairs, where L is the protein length. For example, the top L/5 predicted

pairs mean the top L/5 data, which have high contact probability scores computed with

trained predictor such as softmax classifier. The most widely used measure is Acc for

top L/5 pairs of long-range.

It appears that L/5 is too small because the total number of residue pairs is L(L −
1)/2. For example, while the total number of residue pairs is 4950 = (100 × 99)/2

when the protein length L = 100, only 100/5 = 20 residue pairs are evaluated. How-

ever, there are some reasons to rely on this measure as follows:

• For example, since even a few correct long-range contact information can be

useful to improve ab initio protein structure prediction, we do not need to know

all correct contacts. It has been shown that even very sparse true contact infor-

mation can also help to generate correct modeling at the fold level [55, 61, 79].

• In addition, since contact predictors are usually quite inaccurate, (e.g., the best

accuracy at CASP rarely exceeds 20% for long-range contacts), it is difficult to

distinguish a good predictor from a bad one if we consider all residue pairs.

61

• Furthermore, it is known that the number of contacts in a protein is linear in its

sequence length.

5.2.2 Physical Constraints, Indirect Interactions,
and Folding Process

In chapter 4, I showed that the LSTM with biological features achieved high per-

formance in the protein fold recognition. However, protein residue-residue contact

prediction is more difficult and complex task than fold recognition because the output

is more detailed 3D structure information about proteins. For residue-residue contact

prediction, previous work such as [35, 80, 41] mainly consider three properties of pro-

teins and model these with machine learning as follows:

(1) Physical constraints: One of the physical constraints is that the number of

contacts in a protein is only linear in its sequence length. This also means that the

number of contacts in a protein is small, i.e., a residue-residue contact map must be

sparse. Based on this observation, physical constraints are modeled through machine

learning methods such as sparse inverse covariance estimation [47, 35]. However,

the sparsity constraint-based methods ignore many concrete constraints derived from

secondary structures such as α-helix and β-strand over the protein sequence. On the

other hand, considering of the concrete constraints such as parallel, anti-parallel, and

bridge patterns in secondary structures leads to more heuristic processing [80]. To

overcome these weaknesses, I need a model to automatically capture the all physical

information over the arbitrary length of protein sequence .

(2) Indirect interactions: Indirect interactions between residues in a protein is

caused by the two direct contact pairs that share a common residue, which results in

the so-called transitive dependencies. For example, each residue pair, A-B and B-C, is

contact which induces the residue pair A–C is also contact. Such indirect interaction

among residues is widely observed, which restricts the performance of contact predic-

tion. Indeed, sometimes the interaction of the indirect residue pair is stronger even

than the direct residue pair, which is called transitive noise. This transitive noise can

also be removed through sparse inverse covariance estimation [35] as described in the

above. However, indirect interaction effect can be modeled more explicitly with ma-

chine learning rather than modeled implicitly with the sparsity constraint in a contact

62

map.

(3) Protein Folding: As described in section 5.1, while residue-residue contacts

are spatially correlated, most of the methods attempt to predict the contact probability

considering only the target residue pair and ignoring all other residues. In addition,

while proteins do not assume a 3D conformation instantaneously but rather through

a folding process that gradually refines the structure, most of the methods attempt

to learn the contact probability at the local level in a single step. This suggests that

machine learning models for residue-residue contact prediction ought to simulate the

protein folding process in the training process.

In this thesis, while I also focus on the above protein properties as the same as pre-

vious work mainly consider [35, 80, 41], I model these using deep neural architectures

described in the following section.

5.3 Method

5.3.1 Features

In protein residue-residue contact prediction, I use a minimal set of amino acid

residue features, which are used in protein fold recognition described in chapter 4.3.1.

More precisely, each residue feature vector in a protein sequence includes three kinds

of information as follows:

1. PSI-BLAST sequence profile (20-dimensional real value vector).

2. Secondary structures (three binary values: α-helix, β-strand, or coil).

3. Solvent accessibilities (two binary values: buried or exposed).

The sequence profile is obtained by running PSI-BLAST [1] with an E-value cutoff

equal to 0.001 and for four iterations against NCBI’s non-redundant version of the

protein sequence database NR filtered at 90% sequence identity. The secondary struc-

ture and solvent accessibility are predicted by running SSpro [54] and ACCpro [53]

from the SCRATCH suite [12]. In this chapter, I represent the feature vector of the

i-th residue in a protein sequence as xi ∈ R
d (in the above feature, d = 24), which is

the same representation used in the previous chapter. Then, given a protein sequence

63

xi xj

Contact classifier

・・・ ・・・ ・・・・・・
-GL GLS RQV QS-LQSIVA

h(i, j)

Figure 5.3: The baseline model for protein residue-residue contact prediction.

P , I transform the all residues to feature vectors and concatenate them based on the

window size as described in Equation (4.1). In the following section, I use a feature

vector sequence x1,x2, · · · ,xL as an input sequence for an RNN.

5.3.2 Baseline

In this subsection, I describe a baseline method for protein residue-residue contact

prediction with a neural network-based architecture. This baseline method uses the

pair of residue feature vectors as an input for the neural network and predict the contact

with a softmax classifier (Figure 5.3).

Forward Computation: More precisely, for the pair of xi ∈ R
d and xj ∈ R

d,

which are the i-th and j-th residue feature vectors in a protein sequence, I obtain the

hidden vector h(i,j) ∈ R
d using a neural network as follows:

h(i,j) = f

⎛
⎜⎝Wh

⎡
⎢⎣ xi

xj

|i− j|/L

⎤
⎥⎦+ bh

⎞
⎟⎠ ,

where Wh ∈ R
d×(2d+1) is the weight matrix to learn, bh ∈ R

d is the bias vector to

learn, and f is the non-linear activation function such as ReLU. Note that I consider

the position feature of i and j as a scalar value |i − j|/L. Then I obtain the output

vector y(i,j) ∈ R
2 (i.e., binary classification) as follows:

y(i,j) = Wyh(i,j) + by,

where Wy ∈ R
2×d is the weight matrix to learn and by ∈ R

2 is the bias vector to learn.

Finally, a softmax layer is added on top of the output vector y(i,j) for modeling contact

64

probabilities as follows:

pt(i,j) =
exp(yt(i,j))∑2
k=1 exp(yk)

,

where t(i,j) ∈ {1, 2} is the label of contact or not between i-th and j-th residues, and

pt(i,j) is the probability of t(i,j).

Training: Given a set of the all residue pairs in a protein sequence, the training

objective is to minimize the loss function L, given as the cross-entropy loss as follows:

L(Θ) =
L−1∑
i=1

L∑
j=i+1

log pt(i,j) ,

where L is the protein length and Θ is the set of the all weight matrices and bias vectors

to learn in LSTMs and Wh, Wy, bh, and by described in this subsection. Note that

while the above equation considers the all residue pairs in a protein sequence, in prac-

tice I consider the residue pairs with separation � 6 and randomly select 20% of the

negative (i.e., not contact) examples while keeping all the positive (i.e., contact) exam-

ples because the contact data is unbalanced. In addition, the above loss is computed for

a protein sequence and I represent the loss for the n-th protein in the training dataset as

Ln(Θ). In the end, the final training objective is to minimize the loss function Ltotal,

given as the sum of cross-entropy losses for all proteins in the training dataset plus an

L2-regularization term as follows:

Ltotal(Θ) =
N∑

n=1

Ln(Θ) +
λ

2
||Θ||22,

where N is the total number of protein sequences in the training dataset and λ is an

L2 regularization hyper-parameter. Then I use a standard backpropagation technique

to train Θ.

5.3.3 Multi-layer Stacked Bi-directional LSTM

In this subsection, I apply a stacked bi-directional LSTM (described in the previous

chapter) to residue-residue contact prediction and then extend the LSTM to multi-layer

architecture (Figure 5.4).

More precisely, given a feature vector sequence of residues X = [x1,x2, · · · ,xL]

as an input, I apply a stacked bi-directional LSTM function to obtain a hidden vector

65

hi hj

Contact classifier

・・・

・・・

・・・

・・・

・・・・・・

・・・・・・

・・・ ・・・ ・・・・・・
-GL GLS RQV QS-LQSIVA

・・・

・・・

・・・

・・・

・・・・・・

・・・・・・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

・
・
・

h(i, j)

Figure 5.4: The multi-layer stacked bi-directional LSTM.

sequence H = [h1,h2, · · · ,hL], where hi ∈ R
d is the hidden vector of xi. This

stacked bi-directional LSTM function is represented as follows:

H = stack-bilstm(X). (5.1)

Then I use the obtained hidden vector sequence H as an input sequence of the next

layer and represent the �-th hidden vector sequence as H(�). I call this architecture

multi-layer stacked bi-directional LSTM and the stacked computation can be stated

with Equation (5.1) as follows:

H(1) = stack-bilstm(X),

H(2) = stack-bilstm(H(1)),

· · ·
H(�) = stack-bilstm(H(�−1)).

With the obtained �-th hidden vector sequence H(�) = [h
(�)
1 ,h

(�)
2 , · · · ,h(�)

L], the final

66

・・・・・・
RQV QS-IVA-GL

・・・・・・・・・・・・

Contact classifier

h(k, j)h(i, k)

hi
hk hj

h(i, j)

Figure 5.5: The convolutional architectures for capturing indirect interactions between

residues.

hidden vector h
(�)
(i,j) ∈ R

d for the pair of i-th and j-th residues is computed as follows:

h
(�)
(i,j) = f

⎛
⎜⎝Wh

⎡
⎢⎣ h

(�)
i

h
(�)
j

|i− j|/L

⎤
⎥⎦+ bh

⎞
⎟⎠ .

Thus, the processing by using the LSTMs allows all residue pairs to automatically

capture the evolutionary and physical information over the protein sequence even if

the residue pairs are independently extracted and inputed for the contact classifier such

as baseline.

5.3.4 Modeling Indirect Interactions with Convolution

In this subsection, I attempt to directly model the indirect interactions among residues

described in chapter 5.2.2 using convolutional architectures (Figure 5.5) on top of the

LSTM.

Given i-th and j-th hidden vectors of residues, which the distance of the pair is long-

range (i.e., |i−j| > 24), I use the hk, where k = �(i+j)/2
, for computing the hidden

67

vector of hi and hj as follows:

h(i,k) = f

⎛
⎜⎝Wh

⎡
⎢⎣ hi

hk

|i− k|/L

⎤
⎥⎦+ bh

⎞
⎟⎠ ,

h(k,j) = f

⎛
⎜⎝Wh

⎡
⎢⎣ hk

hj

|k − j|/L

⎤
⎥⎦+ bh

⎞
⎟⎠ ,

and then I obtain the hidden vector h(i,j) as follows:

h(i,j) = f

⎛
⎜⎝Wh

⎡
⎢⎣ h(i,k)

h(k,j)

|i− j|/L

⎤
⎥⎦+ bh

⎞
⎟⎠ .

This allows us to directly and naturally model the indirect interactions between the

residues in the neural network. In addition, the above architecture is easy to extend to

capture more indirect interactions (i.e., two-step and three-step indirect interactions).

In my experiments, the condition, i.e., the range and number of indirect interactions, is

as follows: for 48 ≤ |i− j| < 96: one-step; for 96 ≤ |i− j| < 144: two-step; and for

|i− j| ≥ 144: three-step.

5.3.5 Modeling Folding Process with Attention

In this subsection, I attempt to model the folding process of proteins in the training

process of neural networks. The idea is based on attention mechanism [58] that can

capture some important features in the sequence for the target feature by using weights,

which are called attentions. The attentions are computed and trained with neural net-

works. For the residue-residue contacts, I consider the use of attentions and extend

these to sparse because the sparsity constraint is an important property in contacts. In

addition, I also assume that the training process of sparse attentions allows the neural

network to simulate the protein folding process.

Given a hidden vector hi ∈ R
d, I obtain α(i,k) ∈ R, which is the attention (i.e.,

weight) for another k-th hidden vector hk ∈ R
d in the sequence, by using a bilinear

function as follows:

α(i,k) = h�
i Mhk,

68

・・・

・・・

・・・

sum

・・・

・・・

・・・

sum

Contact classifier

attention

hi hj

-GL GLS QS-LQS -GL GLS QS-LQS

h(i, j)

weighting weighting

attention

local featureglobal feature global featurelocal feature

hidden vector
of i-th residue

hidden vector
of j-th residue

Figure 5.6: The attention mdoel for residue-residue contact prediction.

where M ∈ R
d×d is the weight matrix to learn. Then I compute the all attentions over

the sequence and obtain the attention vector αi ∈ R
L as follows:

αi = [α(i,1), α(i,2), · · · , α(i,L)].

The element α(i,k) in the attention vector αi represents the effect or interaction between

the hidden vectors of i-th and k-th residues. To the attention vector αi, I apply the

softmax function parameterized with a temperature as follows:

α̃i = softmax
(αi

T

)
,

where T ∈ R is the temperature. T is a hyper-parameter and the initial value is very

high (e.g., 106). Then I gradually decrease the temperature according to the training

process and this allows the model to simulate the protein folding process (described in

the next paragraph). With the attention vector α̃i, I compute the weighted sum of the

all hidden vectors in the sequence and obtain the vector ri ∈ R
d as follows:

ri =
L∑

m=1

α̃(i,m)hm.

69

Then, I compute a new hidden vector si ∈ R
d from hi and ri as follows:

si = f

(
Ws

[
ri
hi

]
+ bs

)
.

In the same way, for another hidden vector hj , I compute the attention vector α̃j and

obtain sj . Finally, the hidden vector h(i,j) is computed as follows:

h(i,j) = f

⎛
⎜⎝Wh

⎡
⎢⎣ si

sj
|i− j|/L

⎤
⎥⎦+ bh

⎞
⎟⎠ .

Note that ri and rj are zero vectors early in the training process because the pro-

tein length is usually long (e.g., several hundreds), and all elements in such several

hundred-dimensional attention vector are very small positive values due to the soft-

max function. However, according to the training process, the attention vector can be

sparse due to the decreasing of the temperature T and gradually select more important

residues for the target residue xi or xj . This gradual weighting with attentions and the

sparsity, which have strong interactions for only the specific residues according to the

training process, allow the neural network to simulate the protein folding process. In

addition, sparsity of the attention is also important for residue-residue contacts [35].

Indeed, while the idea is similar to the [41], I efficiently consider the all residue fea-

tures over the sequence, model the residue-residue interactions as attention weights,

and learn the parameters with deep neural networks (Figure 5.6).

5.4 Experiments and Results

5.4.1 Dataset

For training, I use the DNcon dataset [22]. This dataset consists of 1492 proteins in

protein data bank of which any two proteins have less than 30% of sequence identity. I

split the DNcon dataset 9:1 and used these as train/development sets. As described in

chapter 5.3.2, since the contact data is unbalanced, I randomly select 20% of the nega-

tive (i.e., not contact) examples while keeping all the positive (i.e., contact) examples.

This setting is the same as previous work such as [22, 41]. For test, I used the CASP10

70

Compared Methods Accuracy (Long-range L/5)

SVMcon (Cheng and Baldi, 2007) 23.3

NNcon (Tegge et al., 2009) 18.8

Evfold (Morcos et al., 2011) 22.5

PSICOV (Jones et al., 2012) 22.5

DNcon (Eickholt et al., 2012) 29.1

CMAPro (Lena et al., 2012) 31.3

CoinCDA (Ma et al., 2015) 35.1

PhyCAMP (Wang and Xu, 2013) 37.3

My Methods Accuracy (Long-range L/5)

Baseline 23.4

Stack Bi-LSTM 35.6

Stack Bi-LSTM + CNN 36.9

Stack Bi-LSTM + Attention 37.5

Table 5.1: Long-range accuracies of compared methods and my methods in the

CASP10 dataset.

dataset3. This dataset consists of 124 proteins and all the training proteins in DNcon

are selected before CASP10 (started in May 2012).

Note that while the number of protein sequences in the training and development

dataset is 1426, the number of samples, i.e., the total number of amino acid residue

pairs is 5111528. The size of this training dataset is enough to train deep neural net-

works.

5.4.2 Implementation

I implemented my LSTMs using Chainer4 [75] and the optimization method was

ADAM [38], which is one of the most effective stochastic gradient descent (SGD)-

based algorithms for training deep neural networks. I set ADAM with a first momen-

tum coefficient of 0.9 and a second momentum coefficient of 0.999, which were the

3http://predictioncenter.org/casp10/index.cgi
4http://chainer.org/

71

recommended configurations in that study. I found that the LSTMs do not need careful

tuning of hyper-parameters and are easy to train in practice. The training details are as

follows:

• Window size w: 9 (the same as compared method such as [22, 41]).

• Batch size: the number of residue pairs in each protein.

• L2-regularization strength λ: 1e-6, 1e-7, 1e-8, and 1e-9.

Thus, while I tuned only L2-regularization strength λ as a hyper-parameter with the de-

velopment set, my LSTMs showed excellent performance as described in the following

section.

5.4.3 Main Result

Accuracy: Table 5.1 shows the accuracies of compared methods and my methods

in the CASP10 dataset. I observed that the stacked bi-directional LSTM with attention

mechanism outperformed all existing methods. To the best of my knowledge, this

is the first result to show that deep neural network-based method, in particular the

LSTM architecture outperformed existing methods in protein residue-residue contact

prediction task. Surprisingly, while the accuracy of my baseline method (chapter 5.2.2)

is lower than 25 % and NNcon are also similar accuracies), the simple use of the LSTM

can achieve the accuracy over 35 %. The improvement derived from the LSTM is over

10 %.

Comparison with Other Methods: In Table 5.1, I observed that the simple LSTM

outperformed all other deep learning models such as DNcon (Eickholt et al., 2012) [22]

and CMAPro (Lena et al., 2012) [41]. Interestingly, while the DNcon dataset consist

of only low sequence identity (less than 30%) proteins, my LSTMs can achieve high

accuracies and outperformed all existing homology modeling-based methods such as

Evfold (Morcos et al., 2011) [47] and PSICOV (Jones et al., 2012) [35]. On the other

hand, PhyCAMP (Wang and Xu, 2013) [80], which consider the concrete physical

constraints such as parallel, anti-parallel, and bridge patterns in secondary structures

over the protein sequence, achieved high performance and the accuracy is 37.3 %. In

the future, deep neural networks with more biological knowledge can be considered

for the improvement.

72

0

10

20

30

40

No position Position

35.6

31.1

0

10

20

30

40

1-layer 2-layer 3-layer

35.736.135.6

0

10

20

30

40

Attention Sparse attention

37.536.0

0

10

20

30

40

Concat Stack

35.6

30.7

Figure 5.7: The effects of various components in my LSTMs.

5.4.4 Analysis

The Effect of Multi-layers in LSTMs: Figure 5.7 shows the accuracies (long-range

L/5) of the various architectures. This suggests that the accuracy improvement is small

even if much of the multi-layer stacked bi-directional architectures are considered and

the number of learning parameters in LSTMs becomes large. On the basis of this

observation, I found that the 1-layer stacked architecture can be learned fast, robustly

facilitating high performance in residue-residue contact prediction.

The Effect of Stacked Architecture: While the effect of multi-layers in LSTM is

small for the accuracy improvement, Figure 5.7 shows that the accuracy of stacked

architecture is higher than concatenated architecture by a large margin. This differ-

ence and effect of the stacked architecture is larger than the result in fold recognition

described in chapter 4.4. On the basis of this observation, I found that the stacked

architecture is more effective for residue-residue contact prediction rather than fold

recognition.

73

The Effect of Position Features: Interestingly, the position feature gives an im-

provement by a large margin as shown in Figure 5.7 even if the feature is a simple

scalar value such as |i−j|/L. If the position feature is not considered, the accuracy de-

grades about 5 %. This suggests that it is important for the long-range residue-residue

to explicitly take into account the position in the sequence and input the feature for the

contact classifier.

The Effect Sparse Attention: In Figure 5.7, while the sparse attention achieved the

best accuracy in my proposed methods, the effect of sparsity in attention is relatively

small (improvement is 1.5 %) compared with the effect of stacked architecture and

position feature.

Throughout these analysis, I found that the effective components in the prediction

model of protein residue-residue contact is (1) LSTM, in particular the stacked archi-

tecture (not multi-layers) and (2) explicit position feature for the classifier.

5.5 Conclusion
In this chapter, I have modeled the various properties in protein structures with deep

neural networks. In particular, I have combined the LSTM and CNN, and then learned

the combined architecture with end-to-end fashion. In addition, I have applied the

sparse attention mechanism to the LSTM. To the best of my knowledge, this is the first

work that attempts to use LSTMs for protein residue-residue contact prediction and

combine various architectures for capturing physical constraints, indirect interactions,

and folding process.

74

75

Chapter 6

Conclusions

In this thesis, I have focused on the problems in NLP and bioinformatics, in particu-

lar the problems of semantic composition and protein structure prediction. In addition,

I have solved the problems with various RNN-based neural network architectures spec-

ified for each problem. I first used RNNs with long short-term memory (LSTM) units,

which can find long-term dependencies in a sequence and store the information for a

long period of time. Through my experiments, I have shown that LSTMs provide ef-

fective and general sequential representations for both natural languages and proteins.

Then, on top of the LSTM, I have combined other machine learning techniques such as

the kernel method, convolutional neural network, and attention mechanism to capture

each property in natural languages and proteins.

In chapter 3, I have proposed a new method of non-linear similarity learning for

semantic compositionality. Instead of relying on only neural network-based operating

in a low-dimensional space, I train kernel functions that allows us to measure the se-

mantic similarity in a high-dimensional space. In the task of predicting the relatedness

of two sentences, my method have outperformed linear baselines, feature engineering

approaches, and achieved competitive results with recent deep learning models.

In chapter 4, I have shown LSTMs for protein fold recognition. Then I have pro-

posed the use of two LSTM architectures: concatenated and stacked bi-directional

LSTMs. On a benchmark dataset, my LSTMs have achieved high accuracy despite the

use of a minimal set of features and limited tuning of hyper-parameters. In addition,

throughout the analyses, I have found that the stacked architecture achieved excellent

performance and LSTM was not adversely affected by very long protein sequences.

In chapter 5, I have modeled the various properties in protein structures with deep

neural networks. In particular, I have combined the LSTM and CNN, and then learned

the combined architecture with end-to-end fashion. In addition, I have applied the

sparse attention mechanism to the LSTM. To the best of my knowledge, this is the first

work that attempts to use LSTMs for protein residue-residue contact prediction and

combine various architectures for capturing physical constraints, indirect interactions,

and folding process.

76

77

Bibliography

[1] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and

D. J. Lipman. Gapped blast and psi-blast: a new generation of protein database

search programs. Nucleic acids research, 25(17):3389–3402, 1997.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[3] A. Bellet, A. Habrard, and M. Sebban. A survey on metric learning for feature

vectors and structured data. CoRR, abs/1306.6709, 2013.

[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In

International conference on machine learning, pp. 41–48, 2009.

[5] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. Neural Networks, 5(2):157–166, 1994.

[6] J. Bjerva, J. Bos, R. van der Goot, and M. Nissim. The meaning factory: Formal

semantics for recognizing textual entailment and determining semantic similarity.

In SemEval, 2014.

[7] R. Bonneau and D. Baker. Ab initio protein structure prediction: progress and

prospects. Annual review of biophysics and biomolecular structure, 30(1):173–

189, 2001.

[8] D. Bouchaffra and J. Tan. Protein fold recognition using a structural hidden

markov model. In International Conference on Pattern Recognition (ICPR),
2006.

[9] L. Burger and E. Van Nimwegen. Disentangling direct from indirect co-evolution

of residues in protein alignments. PLoS Comput Biol, 6(1):e1000633, 2010.

[10] Y. Chen, X. Zhang, M. Q. Yang, and J. Y. Yang. Ensemble of probabilistic neural

networks for protein fold recognition. In International Symposium on BioInfor-
matics and BioEngineering, 2007.

[11] J. Cheng and P. Baldi. Improved residue contact prediction using support vector

machines and a large feature set. BMC bioinformatics, 8(1):1, 2007.

[12] J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldi. Scratch: a protein struc-

ture and structural feature prediction server. Nucleic acids research, 33(suppl

2):W72–W76, 2005.

[13] R. Collobert and J. Weston. A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In Proceedings of the
Conference on International Conference on Machine Learning (ICML), 2008.

[14] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa.

Natural language processing (almost) from scratch. The Journal of Machine
Learning Research (JMLR), 2011.

[15] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-

man. Indexing by latent semantic analysis. JASIS, 1990.

[16] A. Dehzangi, A. Sharma, J. Lyons, K. K. Paliwal, and A. Sattar. A mixture of

physicochemical and evolutionary–based feature extraction approaches for pro-

tein fold recognition. International journal of data mining and bioinformatics,

11(1):115–138, 2014.

[17] P. Di Lena, K. Nagata, and P. Baldi. Deep architectures for protein contact map

prediction. Bioinformatics, 28(19):2449–2457, 2012.

[18] C. H. Ding and I. Dubchak. Multi-class protein fold recognition using support

vector machines and neural networks. Bioinformatics, 17(4):349–358, 2001.

[19] Q.-w. Dong, X.-l. Wang, and L. Lin. Application of latent semantic analysis to

protein remote homology detection. Bioinformatics, 22(3):285–290, 2006.

[20] Q. Dong, S. Zhou, and J. Guan. A new taxonomy-based protein fold recog-

nition approach based on autocross-covariance transformation. Bioinformatics,

25(20):2655–2662, 2009.

78

[21] I. Dubchak, I. B. Muchnik, and S.-H. Kim. Protein folding class predictor for

scop: approach based on global descriptors. In Ismb, 1997.

[22] J. Eickholt and J. Cheng. Predicting protein residue–residue contacts using deep

networks and boosting. Bioinformatics, 28(23):3066–3072, 2012.

[23] S. El Hihi and Y. Bengio. Hierarchical recurrent neural networks for long-term

dependencies. In Advances in neural information processing systems (NIPS), pp.

493–499, 1995.

[24] I. Ezkurdia, O. Grana, J. M. Izarzugaza, and M. L. Tress. Assessment of domain

boundary predictions and the prediction of intramolecular contacts in casp8. Pro-
teins: Structure, Function, and Bioinformatics, 77(S9):196–209, 2009.

[25] G. Frege. Über sinn und bedeutung. In Zeitschfrift für Philosophie und
philosophische Kritik, 100, 1892.

[26] M. Ganapathiraju, D. Weisser, R. Rosenfeld, J. Carbonell, R. Reddy, and J. Klein-

Seetharaman. Comparative n-gram analysis of whole-genome protein sequences.

In International Conference on Human Language Technology Research, 2002.

[27] J. Gao, X. He, W.-t. Yih, and L. Deng. Learning continuous phrase representa-

tions for translation modeling. In Proceedings of the Conference on Association
for Computational Linguistics (ACL), 2014.

[28] P. Ghanty and N. R. Pal. Prediction of protein folds: extraction of new features,

dimensionality reduction, and fusion of heterogeneous classifiers. NanoBio-
science, 8(1):100–110, 2009.

[29] M. Gönen and E. Alpaydın. Multiple kernel learning algorithms. Journal of
Machine Learning Research, 12(Jul):2211–2268, 2011.

[30] A. Graves, N. Jaitly, and A.-R. Mohamed. Hybrid speech recognition with deep

bidirectional lstm. In Automatic Speech Recognition and Understanding (ASRU),
2013.

[31] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural networks for acoustic

modeling in speech recognition: The shared views of four research groups. IEEE
Signal Processing Magazine, 29(6):82–97, 2012.

79

[32] S. Hochreiter, M. Heusel, and K. Obermayer. Fast model-based protein homology

detection without alignment. Bioinformatics, 23(14):1728–1736, 2007.

[33] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-
tion, 9(8):1735–1780, 1997.

[34] S. Jimenez, G. Duenas, J. Baquero, A. Gelbukh, A. J. D. Bátiz, and A. Men-

dizábal. Unal-nlp: Combining soft cardinality features for semantic textual simi-

larity, relatedness and entailment. In SemEval, 2014.

[35] D. T. Jones, D. W. Buchan, D. Cozzetto, and M. Pontil. Psicov: precise structural

contact prediction using sparse inverse covariance estimation on large multiple

sequence alignments. Bioinformatics, 28(2):184–190, 2012.

[36] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and K. Q. Weinberger. Non-linear

metric learning. In Proceedings of the Conference on Advances in Neural Infor-
mation Processing Systems (NIPS), 2012.

[37] D. Kiela and L. Bottou. Learning image embeddings using convolutional neural

networks for improved multi-modal semantics. In Proceedings of the Conference
on Empirical Methods on Natural Language Processing (EMNLP), 2014.

[38] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing
systems (NIPS), 2012.

[40] A. Lai and J. Hockenmaier. Illinois-lh: A denotational and distributional ap-

proach to semantics. In SemEval, 2014.

[41] P. D. Lena, K. Nagata, and P. F. Baldi. Deep spatio-temporal architectures and

learning for protein structure prediction. In Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 512–520, 2012.

[42] J. Lyons, N. Biswas, A. Sharma, A. Dehzangi, and K. K. Paliwal. Protein fold

recognition by alignment of amino acid residues using kernelized dynamic time

warping. Journal of theoretical biology, 354:137–145, 2014.

80

[43] J. Lyons, K. K. Paliwal, A. Dehzangi, R. Heffernan, T. Tsunoda, and A. Sharma.

Protein fold recognition using hmm–hmm alignment and dynamic programming.

Journal of theoretical biology, 393:67–74, 2016.

[44] M. Marelli, L. Bentivogli, M. Baroni, R. Bernardi, S. Menini, and R. Zampar-

elli. Semeval-2014 task 1: Evaluation of compositional distributional semantic

models on full sentences through semantic relatedness and textual entailment. In

SemEval, 2014.

[45] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[46] J. Mitchell and M. Lapata. Composition in distributional models of semantics.

Cognitive Science, 34(8):1388–1439, 2010.

[47] F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks, C. Sander,

R. Zecchina, J. N. Onuchic, T. Hwa, and M. Weigt. Direct-coupling analysis of

residue coevolution captures native contacts across many protein families. Pro-
ceedings of the National Academy of Sciences, 108(49):E1293–E1301, 2011.

[48] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: a structural clas-

sification of proteins database for the investigation of sequences and structures.

Journal of molecular biology, 247(4):536–540, 1995.

[49] C. A. Orengo, A. Michie, S. Jones, D. T. Jones, M. Swindells, and J. M. Thorn-

ton. Cath–a hierarchic classification of protein domain structures. Structure,

5(8):1093–1109, 1997.

[50] K. K. Paliwal, A. Sharma, J. Lyons, and A. Dehzangi. A tri-gram based feature

extraction technique using linear probabilities of position specific scoring matrix

for protein fold recognition. IEEE transactions on nanobioscience, 13(1):44–50,

2014.

[51] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to construct deep recurrent

neural networks. arXiv preprint arXiv:1312.6026, 2013.

[52] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word

representation. In Proceedings of the Conference on Empirical Methods on Nat-
ural Language Processing (EMNLP), 2014.

81

[53] G. Pollastri, P. Baldi, P. Fariselli, and R. Casadio. Prediction of coordination num-

ber and relative solvent accessibility in proteins. Proteins: Structure, Function,
and Bioinformatics, 47(2):142–153, 2002.

[54] G. Pollastri, D. Przybylski, B. Rost, and P. Baldi. Improving the prediction of pro-

tein secondary structure in three and eight classes using recurrent neural networks

and profiles. Proteins: Structure, Function, and Bioinformatics, 47(2):228–235,

2002.

[55] M. Porto, U. Bastolla, H. E. Roman, and M. Vendruscolo. Reconstruction

of protein structures from a vectorial representation. Physical review letters,

92(21):218101, 2004.

[56] A. M. Qamar, E. Gaussier, J.-P. Chevallet, and J. H. Lim. Similarity learning for

nearest neighbor classification. In Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, 2008.

[57] G. Raicar, H. Saini, A. Dehzangi, S. Lal, and A. Sharma. Improving protein

fold recognition and structural class prediction accuracies using physicochemical

properties of amino acids. Journal of theoretical biology, 402:117–128, 2016.

[58] T. Rocktäschel, E. Grefenstette, K. M. Hermann, T. Kočiskỳ, and P. Blun-

som. Reasoning about entailment with neural attention. arXiv preprint
arXiv:1509.06664, 2015.

[59] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by

back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[60] A. M. Rush, S. Chopra, and J. Weston. A neural attention model for abstractive

sentence summarization. arXiv preprint arXiv:1509.00685, 2015.

[61] R. Sathyapriya, J. M. Duarte, H. Stehr, I. Filippis, and M. Lappe. Defining an

essence of structure determining residue contacts in proteins. PLoS Comput Biol,
5(12):e1000584, 2009.

[62] J. Schmidhuber. Learning complex, extended sequences using the principle of

history compression. Neural Computation, 4(2):234–242, 1992.

[63] D. B. Searls. The language of genes. Nature, 420(6912):211–217, 2002.

82

[64] A. Sharma, J. Lyons, A. Dehzangi, and K. K. Paliwal. A feature extraction tech-

nique using bi-gram probabilities of position specific scoring matrix for protein

fold recognition. Journal of theoretical biology, 320:41–46, 2013.

[65] A. Sharma, K. K. Paliwal, A. Dehzangi, J. Lyons, S. Imoto, and S. Miyano. A

strategy to select suitable physicochemical attributes of amino acids for protein

fold recognition. BMC bioinformatics, 14(1):1, 2013.

[66] R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. Semantic compositionality

through recursive matrix-vector spaces. In EMNLP-CoNLL, 2012.

[67] R. Socher, Q. V. Le, C. D. Manning, and A. Y. Ng. Grounded compositional

semantics for finding and describing images with sentences. Transactions of the
Association for Computational Linguistics (TACL), 2014.

[68] R. Socher, C. C. Lin, C. Manning, and A. Y. Ng. Parsing natural scenes and natu-

ral language with recursive neural networks. In Proceedings of the International
Conference on Machine Learning (ICML), 2011.

[69] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and

C. Potts. Recursive deep models for semantic compositionality over a sentiment

treebank. In Proceedings of the Conference on Empirical Methods on Natural
Language Processing (EMNLP), 2013.

[70] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple

kernel learning. Journal of Machine Learning Research, 7(Jul):1531–1565, 2006.

[71] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural

networks. In Advances in neural information processing systems (NIPS), 2014.

[72] Y. Taguchi and M. M. Gromiha. Application of amino acid occurrence for dis-

criminating different folding types of globular proteins. BMC bioinformatics,

8(1):1, 2007.

[73] K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representa-

tions from tree-structured long short-term memory networks. arXiv preprint
arXiv:1503.00075, 2015.

83

[74] A. N. Tegge, Z. Wang, J. Eickholt, and J. Cheng. Nncon: improved protein con-

tact map prediction using 2d-recursive neural networks. Nucleic acids research,

37(suppl 2):W515–W518, 2009.

[75] S. Tokui, K. Oono, S. Hido, and J. Clayton. Chainer: a next-generation open

source framework for deep learning. In Workshop on Machine Learning Systems
(LearningSys) in Annual Conference on Neural Information Processing Systems
(NIPS), 2015.

[76] M. Tsubaki, K. Duh, M. Shimbo, and Y. Matsumoto. Modeling and learning

semantic co-compositionality through prototype projections and neural networks.

In Empirical Methods on Natural Language Processing (EMNLP), 2013.

[77] M. Tsubaki, K. Duh, M. Shimbo, and Y. Matsumoto. Modeling and learning

semantic co-compositionality through prototype projections and neural networks.

In Proceedings of the Conference on Empirical Methods on Natural Language
Processing (EMNLP), 2013.

[78] P. D. Turney. Domain and function: A dual-space model of semantic relations

and compositions. Journal of Artificial Intelligence Research (JAIR), 2012.

[79] M. Vassura, L. Margara, P. Di Lena, F. Medri, P. Fariselli, and R. Casadio.

Ft-comar: fault tolerant three-dimensional structure reconstruction from protein

contact maps. Bioinformatics, 24(10):1313–1315, 2008.

[80] Z. Wang and J. Xu. Predicting protein contact map using evolutionary and physi-

cal constraints by integer programming. Bioinformatics, 29(13):i266–i273, 2013.

[81] P. Wu, S. C. Hoi, H. Xia, P. Zhao, D. Wang, and C. Miao. Online multimodal

deep similarity learning with application to image retrieval. In Proceedings of the
ACM international conference on Multimedia, 2013.

[82] E. P. Xing, M. I. Jordan, S. Russell, and A. Y. Ng. Distance metric learning with

application to clustering with side-information. In Proceedings of the Conference
on Advances in Neural Information Processing Systems (NIPS), 2002.

[83] T. Yang, V. Kecman, L. Cao, C. Zhang, and J. Z. Huang. Margin-based en-

semble classifier for protein fold recognition. Expert Systems with Applications,

38(10):12348–12355, 2011.

84

[84] H. Zhang, T. Zhang, J. Gao, J. Ruan, S. Shen, and L. Kurgan. Determination of

protein folding kinetic types using sequence and predicted secondary structure

and solvent accessibility. Amino acids, 42(1):271–283, 2012.

[85] J. Zhao, T. T. Zhu, and M. Lan. Ecnu: One stone two birds: Ensemble of het-

erogenous measures for semantic relatedness and textual entailment. In SemEval,
2014.

[86] J. Zhuang, I. W. Tsang, and S. C. Hoi. Two-layer multiple kernel learning. In

AISTATS, pp. 909–917, 2011.

85

List of Publications

Journal Papers (refereed)

• Masashi Tsubaki, Masashi Shimbo, and Yuji Matsumoto, “Protein Fold Recog-

nition with Representation Learning and Long Short-Term Memory”, IPSJ Trans-

actions on Bioinformatics, Vol.10, pp.2-8, January 2017.

• 椿真史, 新保仁, 松本裕治, “意味構成のための非線形類似度学習”, 人工知
能学会論文誌, Vol.31, No.2, p.O-FA2 1-10, June 2016.

International Conferences (refereed)

• Masashi Tsubaki, Kevin Duh, Masashi Shimbo, and Yuji Matsumoto, “Non-

Linear Similarity Learning for Compositionality”, In Proceeding of the Thir-

tieth AAAI Conference on Artificial Intelligence (AAAI-16), pp. 2828-2834,

Phoenix, Arizona, USA, February 14, 2016.

• Masashi Tsubaki, Kevin Duh, Masashi Shimbo, and Yuji Matsumoto, “Modeling

and Learning Semantic Co-Compositionality through Prototype Projections and

Neural Networks” In Proceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp.130-140, October 2013.

Domestic Conferences (non-refereed)

• 椿真史，新保仁，松本裕治, “タンパク質構造予測のための表現学習”,情報
処理学会 第 44回バイオ情報学研究発表会, Vol.2015-BIO-44, No.2, pp.1-6,

December 2015.

• 椿真史, Kevin Duh, 新保仁, 松本裕治, “Deep Kernelを用いた高次元空間へ
の階層的な写像とその最適化” 人工知能学会全国大会 (JSAI2015)論文集,

3O1-13in, pp.1-4, June 1, 2015.

• 椿真史, Kevin Duh, 新保仁, 松本裕治, “意味と構造の統一的なカーネル埋
め込みによる非線形類似度学習”人工知能学会全国大会 (JSAI2015)論文集,

4K1-2, pp.1-4, June 2, 2015.

86

• 椿真史, Kevin Duh,新保仁,松本裕治, “一般二項定理による多項式カーネルの
拡張と学習”言語処理学会第21回年次大会発表論文集,京都大学, pp.676-679,

March 18 2015.

• 椿真史, Duh Kevin,新保仁,松本裕治, “意味と構造の構成演算と類似度学習
における非線形性” 情報処理学会 第 220回自然言語処理研究会, Vol.2015-

NL-220, No.10, pp.1-, January 2015.

• 椿 真史, Kevin Duh, 新保 仁, 松本 裕治, “生成語彙論における共構成のモ
デル化と意味の合成性を内在する単語ベクトルの教師なし学習” 情報処理
学会研究報告第 213回自然言語処理研究会, Vol.2013-NL-213, No.3, pp.1-9,

September 2013.

87

