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Improving Nearest Neighbor Methods
from the Perspective of Hubness Phenomenon∗

Yutaro Shigeto

Abstract

Recently, hubness phenomenon has attracted attention in machine learning. It states
that a small number of objects, called hubs, in the dataset, may occur as the nearest
neighbor of many objects. The presence of these hubs will diminish the utility of
nearest-neighbor methods, because the lists of nearest neighbors frequently contain the
same hub objects regardless of the query. Although researchers have studied hubness in
the ordinary setting in which the query and objects are represented in a feature space, it
is not certain whether hubs are harmful to the multi-domain setting in which the query
and objects are represented in different vector spaces.

In this thesis, we tackle the hubness phenomenon in multi-domain setting. Con-
cretely, we first investigate the influence of hubs in bilingual lexicon extraction, which
is a typical task of multi-domain matching. Our experiments show that the emergence
of hub words emerge in this task, and it deteriorates the performance of bilingual lexi-
con extraction. We then discuss why hubs emerge in such task. To understand this, we
introduce the degree of bias in the dataset, which causes hub formation. Based on this
analysis, we propose a method that alleviates the influence of hubs. We also empiri-
cally show that the proposed approach outperforms the baseline methods. Moreover
the presented analysis can apply to ordinary k-nearest neighbor classification problem,
and thus we can extend the proposed method to k-nearest neighbor classification. In
our experiments, we show that the proposed method surely reduces the emergence
of hubs, and thus improving the classification accuracies accordingly, In addition, its
training time is significantly faster than the existing distance metric learning methods.

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1461004, March 15, 2017.
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Chapter 1

Introduction

1.1 Background
Nearest neighbor methods are a fundamental technique in machine learning and data

mining [Dasarathy, 1991; Duda et al., 2000; Wu et al., 2008]. Given a query and a set
of objects, nearest neighbor search is to find a object in the set, which is closest to the
given query; nearest neighbor classification is to predict the class label of query by its
nearest neighbors.

Recently, Radovanović et al. [2010a] suggested that hubness phenomenon dimin-
ishes the utility of nearest neighbor methods. This phenomenon is concerned with
nearest neighbor methods in high-dimensional space, and states that a small number of
objects in the dataset, or hubs, may occur as the nearest neighbor of many objects. The
emergence of these hubs will diminish the utility of nearest neighbor methods, because
the list of nearest neighbors often contain the same hub objects regardless of the query
object for which the list is computed.

Guided by this motivation, a surge of recent research [Radovanović et al., 2010a;
Schnitzer et al., 2012; Suzuki et al., 2013] has tackled hubness phenomenon. Radovanović et al.
was the first to present the mechanism of hubness phenomenon, which explains why
hubs emerge. More recently, some researchers proposed the methods that reduce the
emergence of hubs, and empirically showed that their methods improved the perfor-
mance of nearest neighbor method [Schnitzer et al., 2012; Suzuki et al., 2013].

Although there have been increasing research activities in the ordinary setting in
which the query and objects are represented in a vector space, it is not certain whether
hubs are harmful to the multi-domain setting in which the query and objects are repre-
sented in different vector spaces.



1.2 Research Objective and Contributions
To investigate the behavior of hubs on multi-domain data, we first tackle bilingual

lexicon extraction: given a word in a source language and a set of words in a target
language, the goal of this task is to find the translation word in the target language
for the given source word. This task is a typical multi-domain matching problem. In
our experiments (Section 3.5), we observe the emergence of hubs in bilingual lexicon
extraction: i.e., there exist specific words in the target language that are often chosen
as the translation of many source words. This observation clearly shows that the emer-
gence of hub words deteriorates the performance of bilingual lexicon extraction. To
mitigate the effect of hubs, we extend the existing hubness reduction methods to bilin-
gual lexicon extraction. These methods indeed reduce hubs, and hence obtain better
results compared with baseline methods.

Next, we analyze why hubs emerge in the multi-domain setting. As mentioned ear-
lier, the mechanism of hubs in the ordinary setting, i.e., data being single domain, was
presented; on the other hand, the mechanism in the multi-domain setting is still unclear.
In this analysis, we present a degree of bias in the data, which causes hub formation, as
a function of the dimension of the space and the variance of object distribution, when
the feature values of query and object follow zero-mean Gaussian distributions with
different variances.

Based on our analysis, we develop a method, which can reduce hubs, and then eval-
uate it on the task of zero-shot learning. The zero-shot task is a type of classification
problem, and its goal is to predict the unseen label of test object, from a training dataset
which does not include objects related to unseen label. To predict unseen labels, zero-
shot learning assumes that labels are embedded in a vector space. In other words,
objects and labels are embedded in different vector spaces, and hence this task can be
casted as the multi-domain matching problem. Indeed, many multi-domain matching
tasks, including bilingual lexicon extraction, can be formulated as a task of zero-shot
learning. As shown in Section 4.6, our proposed method outperforms the existing zero-
shot learning method in an empirical evaluation using both synthetic and real data.

Although the above analysis assumes that the dataset is multi-domain, we can extend
the analysis to the ordinary classification problem. To extend our analysis, we need to
cast the problem as nearest neighbor search. Obviously, the procedure of k-nearest
neighbor classification meets this requirement: Because test (unlabeled) objects are
always queries, and labeled objects always plays the role of searched instances when
the task is viewed as that of nearest neighbor search. Therefore, our analysis and
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proposed method can be applied to nearest neighbor classification. In our experiments
(Section 5.5), we demonstrate empirically that the proposed method achieves better
k-NN classification accuracy than the metric learning methods on most document and
image datasets, and comparable on the rest.

1.3 Structure of the Thesis
The thesis is organized as follows.
First, we give a brief review of two prior works on hubness phenomenon, which

explain why hubs emerge in nearest neighbor search in Chapter 2.
Chapter 3 investigates the effect of hubness in bilingual lexicon extraction, which is

a task of zero-shot learning. In this chapter, we extend the existing hubness reduction
methods to bilingual lexicon extraction, and evaluate the methods empirically.

In Chapter 4, we present theoretical analysis for hubness phenomena in zero-shot
learning, and propose a method which can reduce hubs for zero-shot learning. This
method is also effective for k-nearest neighbor classification. We show this results in
Chapter 5.

Finally, we conclude this thesis in Chapter 6.
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Chapter 2

Hubness Phenomenon

2.1 Introduction
Recently, the hubness phenomenon [Radovanović et al., 2010a] is attracting atten-

tion as a new type of the “curse of dimensionality.” This phenomenon is concerned
with nearest neighbor methods in high-dimensional space, and states that a small num-
ber of objects in the dataset, or hubs, may occur as the nearest neighbor of many
objects. The utility of nearest neighbor search would be significantly reduced if the
same objects were to appear consistently as the search result, irrespective of the query.
Radovanović et al. showed that such objects, termed hubs, indeed occur in high-dimensional
space. Although this phenomenon may seem counter-intuitive, hubness is observed
in a variety of real datasets and distance/similarity measures used in combination;
[Radovanović et al., 2010a; Schnitzer et al., 2012; Suzuki et al., 2013].

Here, we briefly review prior research that explained the mechanism of hubness
phenomenon. We introduce Radovanović et al.’s theorem, which was the first to ex-
plain why hubs emerge and which objects tend to be hubs, when Euclidean distance
is used as the dissimilarity function of nearest neighbor method. We then show an
analysis given by Suzuki et al.. It is similar to the theorem of Radovanović et al., but
Suzuki et al. focused on the inner product (not Euclidean distance) as the similarity
function.



2.2 Radovanović et al.’s Theorem
To understand why hubs emerge in high-dimensional space, Radovanović et al. [2010a]

presented the following theorem. Let E[·] and Var[·] denote expectation and variance,
respectively.

Theorem 1 ([Radovanović et al., 2010a, Theorem 1]). Let ad and bd be two fixed
objects in d-dimensional space, Xd be a d-dimensional random variable whose
components independently follow the standard normal distribution.

Define the norm of fixed objects which are specified by the random variable:

∥ad∥= E[∥Xd∥]+ c1
√

Var[∥Xd∥],

∥bd∥= E[∥Xd∥]+ c2
√

Var[∥Xd∥],

and c2 < c1 ≤ 0; meaning ∥ad∥> ∥bd∥.
Consider the difference between the expected Euclidean distances

∆d = E[∥Xd −ad∥]−E[∥Xd −bd∥].

We have the following inequalities which hold for d > 2:

∆d =

√
π
2

Ld/2−1
1/2

(
−∥ad∥2

2

)
−
√

π
2

Ld/2−1
1/2

(
−∥bd∥2

2

)
> 0, (2.1)

where L is the generalized Laguerre function, and further

∆d+2 > ∆d. (2.2)

The ∆d can be interpreted as the degree of the bias present in the data, which causes
hub formation. Equation (2.1) shows that ∆d is always positive.

This implies that an object Xd , whose components independently follow the standard
normal distribution, is more likely to be closer to object bd than to ad; i.e., given query
object Xd , bd is more likely to become its nearest neighbor.

Because this reasoning applies to any pair of objects ad and bd in the dataset, it can
be concluded that the object, which is closer to the mean of the distribution (i.e., the
origin in this case), is closer, on average, to all other objects for any value of d. In other

6



words, the object closest to the data mean tends to be hub. This bias is called spatial
centrality [Radovanović et al., 2010a].

Moreover, Eq. (2.2) implies that ∆d increases with increasing d. In other words,
when the objects are in high-dimensional space, the degree of bias (spatial centrality)
becomes large: Hubs tend to emerge in high-dimensional space.

From the above analysis, Radovanović et al. concluded that the object that is closest
to the data mean tends to be hub in high-dimensional space.

2.3 Analysis Presented by Suzuki et al.
In the same vein as Radovanović et al. [2010a], when inner product is used as a

similarity measure, Suzuki et al. [2013] argued that the objects which are similar to
(i.e., have a high inner product value with) the data centroid tend to be hubs.

Given a dataset D, its centroid x̄ is

x̄ =
1
|D| ∑

x∈D
x.

Further, Suzuki et al. considered two fixed objects a and b, such that

⟨x̄,a⟩−⟨x̄,b⟩< 0. (2.3)

That is to say, b is more similar to the centroid x̄ than a.
In this situation, they are interested in which object, a or b, is more likely to be a

hub”.
To answer this question, Suzuki et al. considered the difference of the average of

inner products, ∆:

∆ =
1
|D| ∑

x∈D
⟨x,a⟩− 1

|D| ∑
x∈D

⟨x,b⟩

=

⟨
1
|D| ∑

x∈D
x,a

⟩
−

⟨
1
|D| ∑

x∈D
x,b

⟩
= ⟨x̄,a⟩−⟨x̄,b⟩

By combining the last equation with Eq. (2.3), we obtain the following inequality:

∆ =
1
|D| ∑

x∈D
⟨x,a⟩− 1

|D| ∑
x∈D

⟨x,b⟩< 0. (2.4)

7



Here, recall the first question: that is which object, a or b, is more likely to be a hub.
Equation (2.4) states that, on average, a is more similar to objects in the dataset than
b. In other words, the object, whose similarity to the centroid is higher, i.e., b in this
case, tends to be hub.

Because this tendency holds for any two objects which satisfy the condition (Eq. (2.3)),
Suzuki et al. concluded that there exists a bias, spatial centrality, in the dataset: the ob-
ject, which is most similar to the centroid, tends to be hub.

8
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Chapter 3

Reducing Hub Words Improves the
Accuracy of Bilingual Lexicon
Extraction

3.1 Introduction

3.1.1 Background

There exist well-established techniques to extract bilingual translation pairs from
parallel corpora in statistical machine translation. The problem is that parallel corpora
are costly to build, and only available for limited language pairs and domains. Many
researchers have hence pursued bilingual lexicon extraction without using parallel cor-
pora [Fung and Yee, 1998; Irvine and Callison-Burch, 2013; Koehn and Knight, 2002;
Rapp, 1999; Tamura et al., 2012; Vulić and Moens, 2013a]. Their focus is on how to
utilize monolingual (comparable) corpora in source and target languages for this task.

A dominant approach in this area is to make a common vector space for words
across two languages, and measure their similarity therein. If a sufficient number of
translation word pairs (seed lexicon) are available, such a vector space can be built by
taking the seed pairs for the bases of the space. To map a word—in either the source
or target language—onto this vector space, its similarity to each seed word (of the
same language as the word of interest) is calculated over a corpus; the corpus need
not be a parallel corpus since the similarity is computed within the language of the
word to map. These similarity scores are then used as the components of the feature
vector for the word, thus resulting in a vector of dimension equal to the number of



seed translations. Once words are mapped onto such a common vector space, the task
of bilingual lexicon extraction reduces to nearest-neighbor search; most similar cross-
language word pairs in this space (measured for example by cosine) are extracted as
likely translations.

In machine learning community, meanwhile, the hubness phenomenon [Radovanović et al.,
2010a] is attracting attention as a new form of the “curse of dimensionality.” This phe-
nomenon is concerned with nearest neighbor methods in a high dimensional space, and
states that a small number of objects in the data, or hubs, may occur in the k-nearest
neighbors of many objects; emergence of hubs will render nearest neighbor search less
useful, since nearest neighbor lists often contain the same hub objects regardless of the
query object for which the list is computed.

3.1.2 Research Objective and Contributions

This chapter investigates the effect of hubs on the common vector space methods for
bilingual lexicon extraction. The vector space has a dimension equal to the number of
seed translations, which typically is some hundreds, or thousands. While the number
is relatively small compared to the size of entire vocabulary, the resulting space is still
high-dimensional, and might be prone to hubness. Indeed, as we demonstrate later,
there appear a small number of hub translation candidates that are frequently deemed
as a possible translation of many source words. The objective of this research is to
investigate ways to suppress hubs, and to improve the accuracy of bilingual lexicon
extraction.

Our contributions in this chapter are as follows.

• We point out that the hubness phenomenon severely deteriorates the performance
of vector space approaches to bilingual lexicon extraction. In bilingual lexicon
extraction, hubs correspond to specific words in the target language that are cho-
sen frequently as a translation of many source words.

• We demonstrate that reducing hubness improves the accuracy of bilingual lex-
icon extraction. In this research, we extend the centering transformation and
mutual proximity to bilingual lexicon extraction. As shown in Section 3.5, both
methods outperform an existing method [Tamura et al., 2012]. Centering and
mutual proximity have recently been shown as an effective method for hub re-
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duction [Schnitzer et al., 2012; Suzuki et al., 2013], but for limited tasks. This
work is the first to report its effectiveness in bilingual lexicon extraction.

3.2 Related Work
Bilingual lexicon extraction has been an active research topic in cross-lingual natural

language processing. The goal of this task is to find words that are translations of each
other. To find translations, previous methods assumed that words that are translation of
each other have similar properties (e.g., context, frequency, spelling, and topic) across
languages. Similarity cannot be computed directly, since source language words and
target language words represent each language vector space.

To represent words in a common vector space, many researchers proposed various
effective methods.

These methods are broadly divided into two approaches: One approach uses the
existing bilingual dictionary, and another does not use the bilingual dictionary.

In the former, most of previous methods use context distribution that is expressed by
co-occurring words around the target word in each language. Since feature vectors in
different languages are in each language vector space, seed bilingual lexicon are used
by projecting context in the common feature space. This is usually done with the help
of seed lexicon, and this work also follows this approach.

Fung [1995] and Rapp [1999] were the first to use seed lexicon as the axes of
the common feature space over the source and target languages. Some researchers
[Andrade et al., 2011; Bouamor et al., 2013; Hazem and Morin, 2013; Morin and Prochasson,
2011] are more recent work along this line.

Tamura et al. [2012] presented a common space method based on graph-based semi-
supervised learning. In particular, they used a label propagation algorithm [Zhu et al.,
2003] to associate to each word a vector of higher-order distributional similarity with
seed words.

Some researchers compose a common vector space without using seed lexicon. The
method proposed by Fung [1995] used context heterogeneity, and Yu and Tsujii [2009]
used dependency heterogeneity to find probable translation pairs to use as the axes
of the vector space. Koehn and Knight [2002] proposed a bootstrap approach which
uses orthographically identical words as the initial seed lexicon, and then source and
target words with the highest similarity is added to the seeds in the subsequent tri-
als. Haghighi et al. [2008] proposed a generative model that projects source and tar-

11



get words into a common latent space of topics. Some researchers [Liu et al., 2013;
Mimno et al., 2009; Vulić and Moens, 2013a; Vulić et al., 2011] are approaches that
also make a common feature space using topic models.

Some recent methods [Aker et al., 2013; Irvine and Callison-Burch, 2013; Prochasson and Fung,
2011] did not make a common feature space, but treated bilingual lexicon extraction
as a pairwise binary classification problem; these methods directly predicted whether
a pair of source and target words is a translation or not.

More recently, some researchers [Dinu and Baroni, 2015; Mikolov et al., 2013b]
proposed the regression based approaches to construct the feature space where sim-
ilarity measure can be calculated. We will discuss these approaches in Section 4.

Although, their research objective, in most cases, were how to utilize the comparable
corpus for extraction, our objectives are to investigate the effect of hubness on bilingual
lexicon extraction, and how to mitigate the effect.

3.3 A Vector Space Approach to Bilingual Lexicon Ex-
traction

In this section, we describe a common vector space for words across languages, built
from seed lexicon. This vector space is used in our experiments (Section 3.5).

The vector representation of words, which we describe below, is basically the one
called similarity vectors in [Koehn and Knight, 2002, Chapter 3], except that we do
not convert the scores of distributional similarity into ranks; see also [Diab and Finch,
2000].

In this vector space, a word is represented by a vector holding the scores of mono-
lingual distributional similarity between the word and the individual seed words (of the
same language); the resulting vector is of dimension equal to the seed size, and each
seed translation pair corresponds to an axis of the space.

Let {(s(i), t(i)) | i = 1, . . . ,n} be a seed lexicon, where s(i) is a word in the source
language, and t(i) its translation in the target language.1 For an arbitrary word s (not
necessarily a seed word) in the source language, its feature vector s= [s1, . . . ,sn]

T ∈Rn

is such that the j-th component s j is given by the distributional similarity between s
and s( j), the source word in the j-th seed pair. Both words are in the same (source)

1 In this chapter, we use parenthesized superscripts to denote sample (seed) indices, and subscripts
to denote component indices within a feature vector.
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language, so the distributional similarity can be readily computed over a corpus of the
source language.

Specifically in this chapter, vector component s j holds the cosine of the context
vector of the word and that of the j-th seed word; i.e., if we let v(s) be the context (co-
occurrence) vector of the word s, whose components correspond to various context
patterns (usually words in a vicinity) around words in a corpus, and let v(s( j)) be the
context vector of a seed word s( j), then

s j =

⟨
v(s),v(s( j))

⟩
∥v(s)∥ · ∥v(s( j))∥

. (3.1)

Similar computation can be done for any word t in the target language. Its feature
vector t ∈ Rn holds as the j-th component the distributional similarity of words t and
the target word t( j) of the j-th seed pair, this time computed over a target language
corpus.

Once we obtain such a common vector representation of words, similarity of words
across two languages can be computed, for instance, by cosine similarity in this vector
space. Hence, given a source word s, or rather, its feature vector s, the task of finding
its most likely translations reduces to that of ranking candidate words in the target
language by the similarity between s and their feature vectors in this space.

3.4 Reducing the Effect of Hubness

3.4.1 Hubness Phenomenon in High-Dimensional Space

The hubness phenomenon [Radovanović et al., 2010a] states that in high-dimensional
space, a small number of objects in the data, or hubs, may occur in the nearest neigh-
bor of many objects; this means that the same objects may appear frequently in the
nearest neighbor list of many other objects, regardless of the object for which the list is
computed. Consequently, hubs will significantly reduce the utility of nearest neighbor
search.

The hubness phenomenon is relevant to bilingual lexicon extraction as well; as we
saw in Section 3.3, its task is basically a nearest-neighbor search in a high dimensional
space. The space is high-dimensional because the number of seed translation pairs
can typically exceed some hundreds or thousands, and this number determines the
dimension of the vector space in bilingual lexicon extraction.
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Below we present two approaches that we use to reduce hubs in bilingual lexicon
extraction: centering, and mutual proximity. Both methods as means to suppress hubs
were proposed, but in other limited application domains.

3.4.2 Centering: Reducing the Bias in the Dataset

Centering

Centering [Eriksson et al., 2006; Fisher and Lenz, 1996; Mardia et al., 1979] moves
the origin of the vector space to the centroid x̄ of the dataset. Given a dataset D, its
centroid x̄ is

x̄ =
1
|D| ∑

x∈D
x

After centering, each object x ∈ D is transformed to

xcent = x− x̄

and all subsequent evaluation of object similarity takes place in this centered space.
Centering is a classic method for removing bias in the data. Recently, it was re-

discovered as an effective way to mitigate the effect of hubness [Suzuki et al., 2013],
when the similarity is measured by inner product (which also subsumes cosine simi-
larity).

Centering moves the origin of the space to the data centroid, effectively reducing the
inner product between objects similar to the centroid in the original space and other
objects; i.e., these objects are less similar to other objects after centering. And accord-
ing to Radovanović et al. [2010a]; Suzuki et al. [2013], these objects most similar to
the centroid are the ones that tend to become hubs, as discussed in Chapter 2. It follows
that objects that were hubs in the original space are now less similar to other objects in
the data, which also reduces the chance for these objects to make hubs.

To understand the above analysis, we recall the discussion in Section 2.3. Further,
we define acent, bcent, and Dcent as a− x̄, b− x̄, and the centered dataset, respectively.
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After centering, the degree of bias, i.e., spatial centrality, can be rewritten as:

∆cent =
1

|Dcent| ∑
xcent∈Dcent

⟨xcent,acent⟩−
1

|Dcent| ∑
xcent∈Dcent

⟨xcent,bcent⟩

=

⟨
1

|Dcent| ∑
xcent∈Dcent

xcent,acent

⟩
−

⟨
1

|Dcent| ∑
xcent∈Dcent

xcent,bcent

⟩
= ⟨x̄cent,acent⟩−⟨x̄cent,bcent⟩ .

Since the centroid of centered dataset is at the origin of space: i.e., x̄cent = 0, we have

∆cent = ⟨x̄cent,acent⟩−⟨x̄cent,bcent⟩
= ⟨0,acent⟩−⟨0,bcent⟩
= 0．

This equality implies that the average of inner product of acent is equivalent to that
of bcent. Because this holds for any pair of objects a and b in this space, the object,
which is most similar to the centroid, does not exist. In other words, there is no bias
in the dataset. Suzuki et al. concluded that the bias is vanished after centering, thus
reducing hubs.

Centering for bilingual lexicon extraction

We expect that centering can reduce the emergence of hub words in bilingual lexicon
extraction, and thus the performance is improved. In this section, we explain how to
apply centering to bilingual lexicon extraction.

We first define two sets S and T : S is the set of source words (queries), and T is the
set of target words which are the targets (not queries) of nearest neighbor search. Given
a source word s ∈ S, a target word t ∈ T , and certain centroid x̄, centering transforms
them to new points:

scent = s− x̄ (3.2)

tcent = t− x̄. (3.3)

In fact, the procedure of centering for target word, Eq. (3.3) is not required, because
of the following reason. In bilingual lexicon extraction, system finds the most similar
target object for a given source object.
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For example, given two centered target words t(1)cent and t(1)cent, if we want to decide
which target word is more similar to a source word scent. To decide this, we first
compute inner product between them: ⟨scent, t

(1)
cent⟩ and ⟨scent, t

(2)
cent⟩. We then compare

these inner products:

⟨scent, t
(1)
cent⟩−⟨scent, t

(2)
cent⟩= ⟨scent, t

(1)
cent − t(2)cent⟩

= ⟨scent,(t(1)− x̄)− (t(2)− x̄)⟩

= ⟨scent, t(1)− t(2)⟩

= ⟨scent, t(1)⟩−⟨scent, t(2)⟩.

Thus, inner product needs to be measured only between the centered source word and
target words without centering.

In the nearest neighbor search phase, we first conduct centering only for source
words by Eq. (3.2). Then we carry out nearest neighbor search by regarding with
target words without centering.

Centroids in bilingual lexicon extraction

In previous work on hubness, there was only a single source of data, D. Thus,
data mean x̄ = 1/|D|∑x∈D x was used as the centroid. However, in bilingual lexicon
extraction, data mean can be computed in three ways:

• The average of source words:

s̄ =
1
|S| ∑

s∈S
s. (3.4)

• The average of target words:

t̄ =
1
|T | ∑

t∈T
t. (3.5)

• The average of source and target words:

c =
1

|S|+ |T |

(
∑
s∈S

s+ ∑
t∈T

t

)
. (3.6)
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In the context of nearest neighbor search, source word is always query, and target
word is always the searched instance. As mentioned in Section 3.4.2, hubs in nearest
neighbor search can be reduced by centering with query’s centroid. Thus, centering,
which moves the origin to s̄, can alleviate the emergence of hub target words. Indeed,
we observed that centering with s̄ reduced the hubs in our experiments (Section 3.5).

3.4.3 Mutual Proximity: Breaking the Asymmetric Neighbor Re-
lation

Mutual proximity

When hubs emerge in the dataset, hubs become the nearest neighbor of many ob-
jects.2 In contrast, the nearest neighbor of such hub object is a single object in the
dataset, and the others can not become the nearest neighbor. As a consequence, the
nearest neighbor relations might be asymmetric: hub object x is the nearest neighbors
of many objects but not vice versa.

Schnitzer et al. [2012] argued this observation causes the hubness phenomenon, and
thus, proposed the scaling method, called mutual proximity, which attempts to sym-
metrize nearest neighbor relations for alleviating the emergence of hubs. They defined
the mutual proximity between x and y, MP(x,y), as:

When an object z is sampled from a distribution, mutual proximity repre-
sents a joint probability, that is y is the closer than z from x, and x is the
closer than z from y.

Hence, mutual proximity can be represented by the following equation:

MP(x,y) = P((X > ∥x−y∥)∧ (Y > ∥x−y∥)) , (3.7)

where random variables X and Y depict the distances from z to x and y, ∥x− z∥ and
∥y− z∥, respectively.3

2 To simplify the discussion, we consider 1-nearest neighbor. However the same discussion applies
to k-nearest neighbor with k > 1.

3 We use the Euclidean distance as the distance measure. The original paper by Schnitzer et al.
[2012] provided a more general framework with arbitrary distance.
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To compute mutual proximity, Eq. (3.7) can be rewritten as:

MP(x,y) = P((X > ∥x−y∥)∧ (Y > ∥x−y∥))
= 1−P((X ≤ ∥x−y∥)∨ (Y ≤ ∥x−y∥))
= 1− [P(X ≤ ∥x−y∥)+P(Y ≤ ∥x−y∥)

−P((X ≤ ∥x−y∥)∧ (Y ≤ ∥x−y∥))] .

If we can assume that the distances ∥x− z∥ and ∥y− z∥ follow a certain probability
distribution, mutual proximity can be straightforwardly obtained from the cumulative
distribution function:

MP(x,y) = 1− [FX(∥x−y∥)+FY (∥x−y∥)−FX ,Y (∥x−y∥,∥x−y∥)] ,

where FX and FY represent the cumulative distribution function of the random variables
X and Y , and FX ,Y is the joint cumulative distribution function.

However, probability distribution is unknown in most cases. Schnitzer et al. there-
fore proposed an empirical way of computing mutual proximity: given a set of objects
D sampled from an unknown distribution, mutual proximity is estimated from the em-
pirical distribution on D. Thus empirical computation of mutual proximity is to count
the number of objects z whose distances to x and y are greater than the distance be-
tween x and y:

MP(x,y) =
|{z ∈ D | (∥x− z∥> ∥x−y∥)∧ (∥z−y∥> ∥x−y∥)}|

|D|
. (3.8)

This equation implies that mutual proximity reduces the emergence of hubs. When
either x or y is a hub, the object z, which satisfies the stated condition in Eq. (3.8),
may not appear frequently Since mutual proximity increases with the number of such
objects z, and vice versa, mutual proximity between hub and non hub objects tends to
be smaller. Therefore, the object that is a hub in the original metric, i.e., Euclidean
distance in this case, will not be nearest neighbor of many objects. In other words,
mutual proximity reduces the emergence of hub.

The computational cost of counting z is expensive. To reduce computational cost,
Schnitzer et al. also proposed an approximation method of mutual proximity [Schnitzer et al.,
2012, Section 3.2.2].

Although, in general, two random variables X and Y are not independent, assuming
independence simplifies Eq. (3.7) as follows:

MPI(x,y) = P(X > ∥x−y∥)P(Y > ∥x−y∥).
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In the case of empirical distribution, mutual proximity can be computed by:

MPI(x,y) =
|{z ∈ D | ∥x− z∥> ∥x−y∥}|

|D|
× |{z ∈ D | ∥z−y∥> ∥x−y∥}|

|D|
. (3.9)

Mutual proximity for bilingual lexicon extraction

We extend the mutual proximity in Eq. (3.9) to bilingual lexicon extraction.
We recall the definition of two sets S and T : S is the set of source words (queries),

and T is the set of target words which are the targets (not queries) of nearest neighbor
search.

In this case, computation of mutual proximity is to substitute x and y in Eq. (3.9)
for s ∈ S and t ∈ T respectively. Since (dis)similarity, in bilingual lexicon extraction,
needs to be computed only between source and target words, z in the first term of
Eq. (3.9) is the word of the set of target words, and the other is in the source words.
Thus, mutual proximity for bilingual lexicon extraction can be computed by:

MPI(s, t) =
|{z ∈ T | ∥s− z∥> ∥s− t∥}|

|T |
× |{z ∈ S | ∥z− t∥> ∥s− t∥}|

|S|
. (3.10)

3.5 Experiments
The objective of this experiments is to investigate the effect of hubs on bilingual

lexicon extraction, and whether the proposed methods actually reduce hubs, or not.
Given a source word, the goal of bilingual lexicon extraction is to rank its gold

translation (the one listed in an existing bilingual lexicon as the translation of the source
word) higher than other non-translation words (decoys). In this experiment, English is
the source language, and Japanese is the target: The task is to find the Japanese words
which are the translations of given English words.

3.5.1 Experimental Setups

Datasets

We prepared two sets of English-Japanese lexicons and comparable corpora for eval-
uation. Lexicons are used to extract gold translations, which are then used as the seed
sets and test sets. As will be shown later, corpora are used only for computing mono-
lingual distributional similarity.
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Table 3.1: Corpus statistics. “#noun” indicates the number of words, which also exist
on the dictionary, in the corpus. “#pair” depicts the number of bilexicon that we used
in this experiments. “#unique” is the number of unique words in the bilexicon.

Corpus (language) dictionary #sentences #nouns #pairs #unique words

MEDLINE (En)
LSD

139,404 2633
1213

1213
PNE (Ja) 512,504 2579 1212

Wikipedia (En)
EDR

334,886 6916
2102

2086
Wikipedia (Ja) 162,138 5474 2012

• MEDLINE-PNE: The English corpus in this dataset is a portion of the MED-
LINE abstracts of the articles published in 2006.4 As the Japanese corpus,
we used the full text content of articles published from 1985 through 2006 in
Japanese bio-science journal PNE.5 The Life Science Dictionary is used as the
bilingual lexicon.6

• Wikipedia: We used interlinked Wikipedia articles, 5,000 each from English and
Japanese Wikipedia, as the corpora.7 The EDR Japanese-to-English dictionary
is used as the bilingual lexicon.8

Table 3.1 gives the summary of the data set.
We ran part-of-speech taggers on these corpora, and removed functional words. The

GENIA tagger9 and hunpos10 were used for assigning part-of-speech tags to MED-
LINE abstracts and English Wikipedia pages, respectively. For Japanese corpora, PNE
and Japanese Wikipedia, we used MeCab11, a Japanese morphological analyzer. When
two or more nouns appear consecutively in a Japanese sentence, we treated them as a
single compound noun.

From the Life Science Dictionary, we found 1213 translation pairs of which both
the English and Japanese words occur at least 10 times in MEDLINE and PNE, re-

4http://www.ncbi.nlm.nih.gov/pubmed
5http://lifesciencedb.jp/pne/
6http://lsd.pharm.kyoto-u.ac.jp/ja/index.html
7http://en.wikipedia.org
8http://www2.nict.go.jp/out-promotion/techtransfer/EDR/J_index.html
9http://www.nactem.ac.uk/GENIA/tagger/

10https://code.google.com/p/hunpos/
11http://taku910.github.io/mecab/
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spectively. From the EDR Lexicon, we found 2012 such translation pairs occurring in
Wikipedia. These translations make the gold translations used in our evaluation; these
translations are further split into the seed, test and development sets.

From the remaining Japanese words in each lexicon, we also extracted those which
occur in the Japanese corpus at least 10 times but its the English counterpart does not,
to use them as decoys (incorrect translation candidates).

The candidate translation set consists of all these decoys, plus all the Japanese words
in the gold test set. Hence in the evaluation, for each source (English) word chosen
from the gold test set, the system must rank its gold translation higher than all the
decoy translations as well as those in the gold test set that are not the translation of the
given source word (i.e., remaining translation pairs in the gold test set are also used as
additional decoys for this specific source word).

For our experiments, gold translation pairs must be split into seed, development, and
test sets. The development set is necessary because some of the compared methods
have parameters that need to be tuned; see Section 3.5.1 for detail. We retained 60%
of the entire data for the seed set, and 20% each for the development and test sets. We
made different splits at random four times, and report the averaged results over these
four trials.

In addition, to evaluate how much the performance depends on the number of seed
translation pairs, we report the results when the number of seeds is changed; we tested
with 20%, and 40% of the entire data as the seed set. The exact number of seed trans-
lation pairs for each seed size (20%, 40%, 60%) are 243, 486, and 727 in MEDLINE-
PNE, and 420, 840, and 1262 in Wikipedia, respectively.

Feature vector construction

We followed the feature vector construction described in Sections 3.3. To make
the context vector v(s) in Eq. (3.1), we counted the frequency of co-occurring content
words (not just nouns) in the 4-word window on each side in each corpus. The same
words occurring on the left or right of the term are counted as distinct features of
v(s), whereas they are treated as an identical feature if both occur on the same side
of the term (i.e., distance from the term is ignored as long as they are on the same
side). Following related works [Tamura et al., 2012; Vulić and Moens, 2013b], the
frequency is converted to the positive pointwise mutual information between the term
and the feature, which is then used as the component of the context vector v(s) of the
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term. Finally, we construct the distributional similarity vectors computed by Eq. (3.1).

Compared methods

We compared the following methods.

• cos: Cosine similarity of raw feature vectors. This was often used in bilingual
lexicon extraction as a baseline.

• ip: Inner product of raw feature vectors.

• centering: Inner product of centered feature vectors. This is the proposed ap-
proach which we discussed in Section 3.4.2. Following Suzuki et al. [2013], we
normalized feature vectors by ℓ2 norm before centering. For centering, we used
the centroid of source words (Eq. (3.4)).

• mp: Mutual proximity of raw feature vectors with cosine distance. As described
in Section 3.4.3, we used Eq. (3.10) as the similarity measurement.

• lp: Our reimplementation of label propagation-based method [Tamura et al.,
2012]. This method makes two graphs, one for the source language and the other
for the target language. Nodes of the graphs represent words, and edge weights
are determined by the monolingual distributional similarity between words. It
then runs a label propagation algorithm [Zhu et al., 2003] on these graphs, re-
garding seed words as labels. This results in a label distribution assigned to
words, which in effect can be taken as a feature vector (of dimension of the seed
size). The final similarity measurement is done with cosine of these feature vec-
tors. To construct graphs, we used k-nearest neighbor graph which retains only
the largest k edges in each node.

Parameters in lp (the number k of retained components in graph construction, and
the number of iterations t for label propagation) are optimized with the development
translation pairs. We computed the mean reciprocal rank over the development set for
the range of parameters k ∈ {1,10,50,100,200,300}, and chose the best one to apply
for the test data.
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Evaluation criteria

Since we formulate bilingual lexicon extraction as a task of ranking possible trans-
lation words, we use the mean reciprocal rank (MRR) as the main evaluation criterion.
MRR is one of the standard evaluation criteria for ranking methods, and is defined as

MRR =
1
|S| ∑

s∈S

1
rank(s)

,

where S is the set of source words (queries) in the test set. and rank(s) is the similarity
rank of the gold translation for the source word.

We also report the top j accuracies for j = 1 and 10. The top j accuracy represents
the frequency of gold translation words present in the top j candidates:

Acc j =
|{s ∈ S | rank(s)≤ j}|

|S|
．

As mentioned earlier, we report the average of these performance indices over four
different random splits of the gold translations.

We verify our claim that hubs in the data degrade the accuracy of bilingual lexicon
extraction. To this end, following the literature of hubness research [Radovanović et al.,
2010a; Suzuki et al., 2013], we used the skewness of the N j distribution as the indicator
of how much a method suffers from the hubness effect. The N j distribution is the em-
pirical distribution of the number N j(t) of times each target (Japanese) word t occurs
in the top j ranking over all source (English) words. Let T be the set of translation
candidates (target words in the test set), and N j(t) be the N j count of the translation
candidate t (target word). The skewness of N j distribution is defined as follows:

(N j skewness) =
1

σ3
∑t∈T

(
N j(t)−µ

)3

|T |
．

Here, µ and σ are respectively the (empirical) mean and standard deviation of N j

distribution. A high N j skewness indicates a strong bias in the frequency of objects
appearing in the j-nearest neighbors of other objects; i.e., emergence of hub words in
target language (Japanese). We compute the N j distribution of the translation candi-
dates in the test set in our data splits. Again, we report the average over four trials.
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Table 3.2: Experimental results. Mean reciprocal rank (MRR), top j accuracies (Acc j),
and N j skewness. The bold figure indicates the best performers in each of the perfor-
mance indices (the higher the better) and the N j skewness (the lower the better).

(a) MEDLINE-PNE

MRR Acc1 Acc10 N1 skewness N10 skewness

cos 0.179 0.119 0.286 10.89 5.82
ip 0.084 0.042 0.148 17.99 8.35
centering 0.291 0.199 0.459 4.34 2.16
mp 0.281 0.192 0.447 3.21 2.23
lp 0.266 0.182 0.417 4.74 3.80

(b) Wikipedia

MRR Acc1 Acc10 N1 skewness N10 skewness

cos 0.027 0.013 0.049 20.40 12.79
ip 0.010 0.001 0.021 44.35 14.41
centering 0.077 0.039 0.150 5.43 3.39
mp 0.080 0.043 0.148 4.05 2.73
lp 0.054 0.027 0.104 13.84 14.27

3.5.2 Experimental Results and Discussion

The effect of hubs

Table 3.2 shows the results of bilingual lexicon extraction. As the table shows,
centering performed best in terms of MRR on MEDLINE-PNE, and mutual proximity
(mp) came close second. On Wikipedia, mutual proximity performed best, followed by
centering. Label propagation (lp) comes third on both data sets. Centering and mutual
proximity also performed best in terms of top j accuracies.

In terms of N j skewness, baseline methods (cos and ip) had the relatively high value
on both datasets. That is, the hub target words are emerged, and hence, the methods
performed poorly. Centering and mutual proximity both reduced the N j skewness dra-
matically compared with baseline methods, meaning that they effectively suppressed
hub translation candidates. This results in improving MRR and accuracies.

24



●

●

●

0.10

0.15

0.20

0.25

0.30

243 486 727
シード対訳対の数

MR
R

● centering
cos

ip
lp

mp

seed size

●

●

●

0.02

0.04

0.06

0.08

420 840 1262
シード対訳対の数

MR
R

● centering
cos

ip
lp

mp

seed size

(a) MEDLINE-PNE (b) Wikipedia

Figure 3.1: Dependency on the number of seed translation pairs.

Robustness with the limited number of seeds

Next we reduced the size of the seed set, to see the robustness of the approaches
when the number of available seeds is limited. The results are shown in Figure 3.1.
Centering and mutual proximity performed better than other methods over all seed
sizes.

Robustness with word frequency

To investigate the effect of word frequency, following Tamura et al. [2012], we first
split test data to two sets: the set of high frequency words whose frequencies are more
than 50 (MEDLINE-PNE: 76.25 words, Wikipedia: 206.25 words), and the set of low
frequency words whose frequencies are less than or equal to 50 (MEDLINE-PNE:
166.75 words, Wikipedia: 213.75 words). And then, we individually evaluated two
sets.

Table 3.3 shows the results in this setting. In both datasets, centering and mutual
proximity reduced the emergence of hubs, and hence, obtained the better MRR and
accuracies compared with the others.
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Table 3.3: The effect of word frequency. High frequency words (freq. > 50) and low
frequency words (freq. ≤ 50).

(a) MEDLINE-PNE

Freq. > 50 Freq. ≤ 50

method MRR Acc1 Acc10 MRR Acc1 Acc10

cos 0.362 0.255 0.560 0.040 0.019 0.075
ip 0.141 0.064 0.281 0.015 0.001 0.035
centering 0.536 0.412 0.759 0.109 0.060 0.206
mp 0.506 0.382 0.722 0.107 0.060 0.189
lp 0.505 0.382 0.702 0.077 0.043 0.139

(b) Wikipedia

Freq. > 50 Freq. ≤ 50

method MRR Acc1 Acc10 MRR Acc1 Acc10

cos 0.097 0.059 0.164 0.014 0.007 0.025
ip 0.059 0.033 0.090 0.004 0.000 0.007
centering 0.182 0.105 0.325 0.046 0.019 0.095
mp 0.182 0.108 0.324 0.055 0.026 0.107
lp 0.161 0.095 0.291 0.031 0.011 0.069

Similarity between the centroid and hub words

Table 3.4 shows that hub words which were frequently extracted as the translation
words with cosine similarity (cos in Table 3.2). The table also shows the similarity
between hub words and the centroid and its ranking.

We observed that hub words (i.e., objects with higher N10 value) entirely consisted
of words with higher cosine similarity to the centroid, as anticipated by the theory of
hubness [Radovanović et al., 2010a,b; Suzuki et al., 2013].

In MEDLINE-PNE, “細菌染色体 (bacterial chromosome)” was extracted 124 times.
That is, the word was decided as the translation of roughly half of the source words.
We also observed similar result in Wikipedia (see “多数 (acres)” in Table 3.4).

From these observations, we can conclude that the emergence of hub words affects
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the performance of bilingual lexicon extraction.

The effect of centroid

As already mentioned in Section 3.4.2, we can consider three centroids: the average
of source words s̄ in Eq. (3.4), the average of target words t̄ in Eq. (3.5), and the average
of target and source words c in Eq. (3.6).

Table 3.5 shows the effect of centering with three centroids. As expected, s̄ obtained
the most lowest N j skewness compared with the others: i.e., centering with s̄ reduced
the emergence of hubs effectively. In terms of MRR and Acc j, on MEDLINE-PNE, s̄
also obtained the better results. On the other hand, c had the best results on Wikipedia.
Note, however, that the difference of results was small, and s̄ obtained the better results
with respect to Acc10.

3.6 Summary
We have shown that the hubness phenomenon severely harms the performance of

vector space-based methods for bilingual lexicon extraction. To reduce the effect of
this phenomenon, we have used centering and mutual proximity to reduce hubs, and
shown that they consequently improved the performance.

In future work, we plan to investigate the influence of hubs in other methods, such
as those based on topic models [Liu et al., 2013; Mimno et al., 2009; Vulić and Moens,
2013a] and linear classifier [Aker et al., 2013; Irvine and Callison-Burch, 2013; Laws et al.,
2010].
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Table 3.4: The list of top 15 hub words. The hub words have the top 15 largest N10

value which represents the number of times each words is found in the nearest neigh-
bors. The “Sim.” indicates the similarity between hub word and data mean.

(a) MEDLINE-PNE

Ranking of N10 Hub word N10 Sim. Ranking of sim.

1 細菌染色体 (bacterial chromosome) 124 0.835 1
2 カルシウム (calcium) 114 0.816 2
3 肝細胞 (stem cell) 62 0.805 3
4 アデニル酸シクラーゼ (adenylate cyclase) 60 0.790 5
5 ガングリオシド (ganglioside) 52 0.789 6
6 腫瘍 (neoplasm) 50 0.768 26
7 造血幹細胞 (hematopoietic stem cell) 48 0.784 8
8 トランスフェリン (transferrin) 47 0.781 10
9 実験動物 (laboratory animal) 47 0.792 4

10 カスパーゼ (caspase) 41 0.781 11
11 ユビキチン (ubiquitin) 41 0.772 21
12 膜脂質 (membrane lipid) 41 0.776 15
13 転写制御因子 (transcription factor) 41 0.784 7
14 酸素 (oxygen) 40 0.739 70
15 オカダ酸 (okadaic acid) 39 0.759 38

(b) Wikipedia

Ranking of N10 Hub word N10 Sim. Ranking of sim.

1 多数 (acres) 296 0.775 1
2 場所 (ll) 235 0.770 2
3 以下 (below) 191 0.766 3
4 最近 (late) 184 0.765 4
5 仕事 (toil) 178 0.763 5
6 一部 (lith) 156 0.762 6
7 建物 (bigging) 133 0.759 7
8 デザイン (design) 131 0.759 8
9 将来 (fut.) 119 0.758 9

10 少数 (decimal) 95 0.753 10
11 従来 (erenow) 90 0.752 11
12 当初 (primitively) 72 0.752 12
13 過去 (past) 69 0.749 15
14 手 (leg-up) 65 0.750 14
15 意味 (circumstances) 60 0.746 19
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Table 3.5: The results with three data means.

(a) MEDLINE-PNE

centroid MRR Acc1 Acc10 N1 skew. N10 skewness

s̄ 0.291 0.199 0.459 4.34 2.16
t̄ 0.275 0.183 0.441 6.31 3.31
c 0.280 0.186 0.454 6.13 2.99

(b) Wikipedia

centroid MRR Acc1 Acc10 N1 skew. N10 skewness

s̄ 0.077 0.039 0.150 5.43 3.39
t̄ 0.076 0.041 0.143 11.99 6.39
c 0.078 0.043 0.146 11.25 5.54
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Chapter 4

Zero-Shot Learning with Hubness
Reduction

4.1 Introduction

4.1.1 Background

In recent years, zero-shot learning (ZSL) [Farhadi et al., 2009; Lampert et al., 2009;
Larochelle et al., 2008; Palatucci et al., 2009] has been an active research topic in ma-
chine learning, computer vision, and natural language processing. Many practical ap-
plications can be formulated as a ZSL task: drug discovery [Larochelle et al., 2008],
bilingual lexicon extraction [Dinu and Baroni, 2014, 2015; Mikolov et al., 2013b], and
image labeling [Akata et al., 2014; Frome et al., 2013; Norouzi et al., 2014; Palatucci et al.,
2009; Socher et al., 2013], to name a few. Cross-lingual information retrieval [Vinokourov et al.,
2002] can also be viewed as a ZSL task.

ZSL can be regarded as a type of (multi-class) classification problem, in the sense
that the classifier is given a set of known example-class label pairs (training set), with
the goal to predict the unknown labels of new examples (test set). However, ZSL
differs from the standard classification in that the labels for the test examples are not
present in the training set. In standard settings, the classifier chooses, for each test
example, a label among those observed in the training set, but this is not the case in
ZSL. Moreover, the number of class labels can be huge in ZSL; indeed, in bilingual
lexicon extraction, labels correspond to possible translation words, which can range
over entire vocabulary of the target language.

Obviously, the task would be intractable without further assumptions. Labels are



thus assumed to be embedded in a metric space (label space), and their distance (or
similarity) can be measured in this space1. Such a label space can be built with the help
of background knowledge or external resources; in image labeling tasks, for example,
labels correspond to annotation keywords, which can be readily represented as vectors
in a Euclidean space, either by using corpus statistics in a standard way, or by using
the more recent techniques for learning word representations, such as the continuous
bag-of-words or skip-gram models [Mikolov et al., 2013a].

After a label space is established, one natural approach would be to use a regression
technique on the training set to obtain a mapping function from the example space to
the label space. This function could then be used for mapping unlabeled examples into
the label space, where nearest neighbor search is carried out to find the label closest
to the mapped example. Finally, this label would be output as the prediction for the
example.

To find the mapping function, some researchers use the standard linear ridge re-
gression [Dinu and Baroni, 2014, 2015; Mikolov et al., 2013b; Palatucci et al., 2009],
whereas others use neural networks [Frome et al., 2013; Norouzi et al., 2014; Socher et al.,
2013].

In the machine learning community, meanwhile, the hubness phenomenon [Radovanović et al.,
2010a] is attracting attention as a new type of the “curse of dimensionality.” This phe-
nomenon is concerned with nearest neighbor methods in high-dimensional space, and
states that a small number of objects in the dataset, or hubs, may occur as the nearest
neighbor of many objects. The emergence of these hubs will diminish the utility of
nearest neighbor search, because the list of nearest neighbors often contain the same
hub objects regardless of the query object for which the list is computed.

4.1.2 Research Objective and Contributions

In this chapter, we show that the interaction between the regression step in ZSL
and the subsequent nearest neighbor step has a non-negligible effect on the prediction
accuracy.

In ZSL, examples and labels are represented as vectors in high-dimensional space, of
which the dimensionality is typically a few hundred. As demonstrated by Dinu and Baroni
[2015] (see also Section 4.6), when ZSL is formulated as a problem of ridge regression
from examples to labels, “hub” labels emerge, which are simultaneously the nearest

1 Throughout the chapter, we assume both the example and label spaces are Euclidean.
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neighbors of many mapped examples. This has the consequence of incurring bias in
the prediction, as these labels are output as the predicted labels for these examples.
The presence of hubs are not necessarily disadvantageous in standard classification
settings; there may be “good” hubs as well as “bad” hubs [Radovanović et al., 2010a].
However, in typical ZSL tasks in which the label set is fine-grained and huge, hubs are
nearly always harmful to the prediction accuracy.

Therefore, the objective of this study is to investigate ways to suppress hubs, and to
improve the ZSL accuracy. Our contributions can be summarized as follows.

1. We analyze the mechanism behind the emergence of hubs in ZSL, both with
ridge regression and ordinary least squares. It is established that hubness occurs
in ZSL not only because of high-dimensional space, but also because ridge re-
gression has conventionally been used in ZSL in a way that promotes hubness.
To be precise, the distributions of the mapped examples and the labels are differ-
ent such that hubs are likely to emerge.

2. Drawing on the above analysis, we propose using ridge regression to map labels
into the space of examples. This approach is contrary to that followed in existing
work on ZSL, in which examples are mapped into label space. Our proposal is
therefore to change the mapping direction.

As shown in Section 4.6, our proposed approach outperformed the existing ap-
proach in an empirical evaluation using both synthetic and real data.

3. In terms of contributions to the research on hubness, this research is the first to
provide in-depth analysis of the situation in which the query and data follow dif-
ferent distributions, and to show that the variance of the data distribution matters
to hubness. In particular, in Section 4.3, we provide a proposition in which the
degree of bias present in the data, which causes hub formation, is expressed as a
function of the data variance. In Section 4.4, this proposition serves as the main
tool for analyzing hubness in ZSL.

4.2 Zero-Shot Learning as a Regression Problem
Let X be a set of examples, and Y be a set of class labels. In ZSL, not only examples

but also labels are assumed to be vectors. For this reason, examples are sometimes
referred to as source objects, and labels as target objects. In the subsequent sections
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of this chapter, we mostly follow this terminology when referring to the members of X
and Y .

Let X ⊂ Rc and Y ⊂ Rd . These spaces, Rc and Rd , are called source space and
target space, respectively. Although X can be the entire space Rc, Y is usually a finite
set of points in Rd , even though its size may be enormous in some problems.

Let Xtrain = {xi | i = 1, . . . ,n} be the training examples (training source objects), and
Ytrain = {yi | i = 1, . . . ,n} be their labels (training target objects); i.e., the class label of
example xi is yi, for each i = 1, . . . ,n. In a standard classification setting, the labels
in the training set are equal to the entire set of labels; i.e., Ytrain = Y . In contrast, this
assumption is not made in ZSL, and Ytrain is a strict subset of Y . Moreover, it is assumed
that the true class labels of test examples do not belong to Ytrain; i.e., they belong to
Y\Ytrain.

In such a situation, it is difficult to find a function f that maps x ∈ X directly to a
label in Y . Therefore, a popular (and also natural) approach is to learn a projection m :
Rc → Rd , which can be done with a regression technique. With a projection function
m at hand, the label of a new source object x ∈ Rc is predicted to be the one closest to
the mapped point m(x) in the target space. The prediction function f is thus given by

f (x) = argmin
y∈Y

∥m(x)−y∥.

After a source object x is projected to m(x), the task is reduced to that of nearest
neighbor search in the target space.

4.3 Hubness Phenomenon and the Variance of Data
The utility of nearest neighbor search would be significantly reduced if the same

objects were to appear consistently as the search result, irrespective of the query.
Radovanović et al. [2010a] showed that such objects, termed hubs, indeed occur in
high-dimensional space. Although this phenomenon may seem counter-intuitive, hub-
ness is observed in a variety of real datasets and distance/similarity measures used in
combination [Radovanović et al., 2010a; Schnitzer et al., 2012; Suzuki et al., 2013].

The aim of this study is to analyze the hubness phenomenon in ZSL, which involves
nearest neighbor search in high-dimensional space as the last step. However, as a
tool for analyzing ZSL, the existing theory on hubness [Radovanović et al., 2010a] is
inadequate, as it was mainly developed for comparing the emergence of hubness in
spaces of different dimensionalities.
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In the analysis of ZSL in Section 4.4.2, we aim to compare two distributions in
the same space, but which differ in terms of variance. To this end, we first present a
proposition below, which is similar in spirit to the main theorem of Radovanović et al.
[2010a, Theorem 1], but which distinguishes the query and data distributions, and
also expresses the expected difference between the squared distances from queries to
database objects in terms of their variance.

The proposition is concerned with nearest neighbor search, in which s is a query,
and t1 and t2 are two objects in a dataset. In the context of ZSL as formulated in
Section 4.2, s represents the image of a source object in the target space (through the
learned regression function m), and t1 and t2 are target objects (labels) lying at different
distances from the origin. We are interested in which of t1 and t2 are more likely to be
closer to s, when s is sampled from a distribution S with zero mean.

Let EX [·] and VarX [·] respectively denote the expectation and variance under a dis-
tribution X , and let N (µ,Σ) be a multivariate normal distribution with mean µ and
covariance matrix Σ.

Proposition 1. Let t = [t1, . . . , td]T be a d-dimensional random vector, with com-
ponents ti (i = 1, . . . ,d) sampled i.i.d. from a normal distribution with zero mean
and variance σ2; i.e., t ∼ T , where T =N (0,s2I). Further let η =

√
VarT [∥t∥2]

be the standard deviation of the squared norm ∥t∥2.
Consider two fixed samples t1 and t2 of random vector t, such that the squared

norms of t1 and t2 are γη apart. In other words,

∥t2∥2 −∥t1∥2 = γη .

Let s be a point sampled from a distribution S with zero mean. Then, the expected
difference ∆ between the squared distances from t1 and t2 to s, i.e.,

∆ = ES
[
∥s− t2∥2]−ES

[
∥s− t1∥2] (4.1)

is given by
∆ =

√
2γd1/2σ2. (4.2)

Proof. For i = 1,2, the distance between a point s and ti is given by

∥s− ti∥2 = ∥s∥2 +∥ti∥2 −2sTti,
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and its expected value is

ES
[
∥s− ti∥2]= ES

[
∥s∥2]+∥ti∥2 −2ES [s]T ti = ES

[
∥s∥2]+∥ti∥2,

since ES [s] = 0 by assumption. Substituting this equality in Eq. (4.1) yields

∆ =

ES[∥s−t2∥2]︷ ︸︸ ︷(
ES
[
∥s∥2]+∥t2∥2)−

ES[∥s−t1∥2]︷ ︸︸ ︷(
ES [∥s∥2]+∥t1∥2)= ∥t2∥2 −∥t1∥2 = γη . (4.3)

Now, it is well known that if a d-dimensional random vector z follows the multivari-
ate standard normal distribution N (0,I), then its squared norm ∥z∥2 follows the chi-
squared distribution with d degrees of freedom, and its variance is 2d. Since t = σz,
the variance η2 of the squared norm ∥t∥2 is

η2 = VarT
[
∥t∥2]= VarZ

[
σ2∥z∥2]= σ4 VarZ

[
∥z∥2]= 2dσ4. (4.4)

From (4.3) and (4.4), we obtain ∆ = γσ2
√

2d.

Note that in Proposition 1, the standard deviation σ is used as a yardstick of mea-
surement to allow for comparison of “similarly” located object pairs across different
distributions; two object pairs in different distributions are regarded as similar if ob-
jects in each pair are γσ apart as measured by the σ for the respective distributions,
but has an equal factor γ . This technique is due to Radovanović et al. [2010a].

Now, ∆ represents the expected difference between the squared distances from s to t1

and t2. Equation (4.2) shows that ∆ increases with γ , the factor quantifying the amount
of difference ∥t2∥2 −∥t1∥2. This suggests that a query object sampled from S is more
likely to be closer to object t1 than to t2, if ∥t1∥2 < ∥t2∥2; i.e., t1 is closer to the origin
than t2 is. Because this holds for any pair of objects t1 and t2 in the dataset, we can
conclude that the objects closest to the origin in the dataset tend to be hubs.

Equation (4.2) also states the relationship between ∆ and the component variance
σ2 of distribution T , by which the following is implied: For a fixed query distribution
S , if we have two choices for distributions for t, T1 =N (0,σ2

1 I) and T2 =N (0,σ2
2 I)

with σ2
1 <σ2

2 , it is preferable to choose T1, i.e., the distribution with a smaller variance,
when attempting to reduce hubness. Indeed, assuming the independence of S and T ,
we can show that the influence of ∆ relative to the expected squared distance from s to
t (which is also subject to whether t ∼ T1 or T2), is weaker for T1 than for T2.
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Corollary 1. Let T1 =N (0,σ2
1 I) and T2 =N (0,σ2

2 I) with σ2
1 < σ2

2 , and let s, t1,
t2, and ∆ be as defined in Proposition 1. Then,

∆(γ ,d,σ1)

ES,T1 [∥s− t∥2]
<

∆(γ,d,σ2)

ES,T2 [∥s− t∥2]
,

where we wrote ∆ explicitly as a function of γ , d, and σ .

4.4 Hubness in Regression-Based Zero-Shot Learning
In this section, we analyze the emergence of hubs in the nearest neighbor step of

ZSL. Through the analysis, it is shown that hubs are promoted by the use of ridge
regression in the existing formulation of ZSL, i.e., mapping source objects (examples)
into the target (label) space.

As a solution, we propose using ridge regression in a direction opposite to that in
existing work. That is, we project target objects in the space of source objects, and
carry out nearest neighbor search in the source space. Our argument for this approach
consists of three steps.

1. We first show in Section 4.4.1 that, with ridge regression (and ordinary least
squares as well), mapped observation data tend to lie closer to the origin than
the target responses do. Because the existing work formulates ZSL as a regres-
sion problem that projects source objects into the target space, this means that
the norm of the projected source objects tends to be smaller than that of target
objects.

2. By combining the above result with the discussion in Section 4.3, we then argue
that placing source objects closer to the origin is not ideal from the perspective
of reducing hubness. On the contrary, placing target objects closer to the origin,
as attained with the proposed approach, is more desirable (Section 4.4.2).

3. In Section 4.4.3, we present a simple additional argument against placing source
objects closer to the origin; if the data is unimodal, such a configuration in-
creases the possibility of another target object falling closer to the source object.
This argument diverges from the discussion on hubness, but again justifies the
proposed approach.
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4.4.1 Shrinking the Projected Objects

We first prove that ridge regression tends to map observation data closer to the origin
of the space. This tendency may be easily observed in ridge regression, for which
the penalty term shrinks the estimated coefficients towards zero. However, the above
tendency is also inherent in ordinary least squares.

Let ∥ ·∥F and ∥ ·∥2 respectively denote the Frobenius norm and the 2-norm of matri-
ces.

Proposition 2. Let M ∈ Rd×c be the solution for ridge regression with an obser-
vation matrix A ∈ Rc×n and a response matrix B ∈ Rd×n; i.e.,

M = argmin
M

(
∥MA−B∥2

F +α∥M∥F
)
. (4.5)

where α ≥ 0 is a hyperparameter. Then, we have ∥MA∥2 ≤ ∥B∥2.

Sketch. It is well known that M = BAT (AAT +αI
)−1. Thus we have

∥MA∥2 = ∥BAT (AAT +αI
)−1A∥2 ≤ ∥B∥2 ∥AT (AAT +αI

)−1A∥2. (4.6)

Let λ be the largest singular value of A. It can be shown that

∥AT (AAT +αI
)−1A∥2 =

λ 2

λ 2 +α
≤ 1. (4.7)

Substituting this inequality in Eq. (4.6) establishes the proposition.

Recall that if the data is centered, the matrix 2-norm can be interpreted as an indica-
tor of the variance of data along its principal axis. Proposition 2 thus indicates that the
variance along the principal axis of the mapped observations MA tends to be smaller
than that of responses B.

Furthermore, this tendency even persists in the ordinary least squares with no penalty
term (i.e., α = 0), since ∥MA∥2 ≤∥B∥2 still holds in this case; note that AT (AAT)−1A
is an orthogonal projection and its 2-norm is 1, but the inequality in Eq. (4.6) holds
regardless. This tendency therefore cannot be completely eliminated by simply de-
creasing the ridge parameter α towards zero.

In existing work on ZSL, A represents the (training) source objects X = [x1 · · ·xn] ∈
Rc×n, to be mapped into the space of target objects (by projection matrix M); and B is
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the matrix of labels for the training objects, i.e., B = Y = [y1 · · ·yn] ∈ Rd×n. Although
Proposition 2 is thus only concerned with the training set, it suggests that the source
objects at the time of testing, which are not in X, are also likely to be mapped closer to
the origin of the target space than many of the target objects in Y.

4.4.2 Influence of Shrinking the Objects on Nearest Neighbor Search

We learned in Section 4.4.1 that ridge regression (and ordinary least squares) shrink
the mapped observation data towards the origin of the space, relative to the response.
Thus, in existing work on ZSL in which source objects X are projected to the space of
target objects Y , the norm of the mapped source objects is likely to be smaller than that
of the target objects.

The proposed approach, which was described in the beginning of Section 4.4, fol-
lows the opposite direction: target objects Y are projected to the space of source objects
X . Thus, in this case, the norm of the mapped target objects is expected to be smaller
than that of the source objects.

The question now is which of these configurations is preferable for the subsequent
nearest neighbor step, and we provide an answer under the following assumptions: (i)
The source space and the target space are of equal dimensions; (ii) the source and target
objects are isotropically normally distributed and independent; and (iii) the projected
data is also isotropically normally distributed, except that the variance has shrunk.

Let D1 = N (0,s2
1I) and D2 = N (0,s2

2I) be two multivariate normal distributions,
with s2

1 < s2
2. We compare two configurations of source object x and target objects y:

(a) the one in which x ∼D1 and y ∼D2, and (b) the one in which x′ ∼D2 and y′ ∼D1

on the other hand; here, the primes in (b) were added to distinguish variables in two
configurations.

These two configurations are intended to model situations in (a) existing work and
(b) our proposal. In configuration (a), x is shorter in expectation than y, and therefore
this approximates the situation that arises from existing work. Configuration (b) repre-
sents the opposite situation, and corresponds to our proposal in which y is the projected
vector and thus is shorter in expectation than x.

Now, we aim to verify whether the two configurations differ in terms of the likeliness
of hubs emerging, using Proposition 1. First, we scale the entire space of configuration
(b) by (s1/s2), or equivalently, we consider transformation of the variables by x′′ =
(s1/s2)x′ and y′′ = (s1/s2)y′. Note that because the two variables are scaled equally,
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Configuration (a): (x,y) Configuration (b): (x′,y′)(x,y) and (x′′,y′′)

Figure 4.1: Schematic illustration for Section 4.4.2 in two-dimensional space. The
left and the right panels depict configurations (a) and (b), respectively, with the center
panel showing both configuration (a) and the scaled version of configuration (b) in the
same space. A circle represents a distribution, with its radius indicating the standard
deviation. The radius of the circles for y (on the left panel) and x′ (right panel) is s1,
whereas that of the circles for x (left panel) and y′ (right panel) is s2, with s1 < s2.
Circles x′′ and y′′ are the scaled versions of x′ and y′ such that the standard deviation
(radius) of x′′ is equal to x, which makes the standard deviation of y′′ equal to s3 =

s2
1/s2.

this change of variables preserves the nearest neighbor relations among the samples.
See Fig. 4.1 for an illustration of the relationship among x, y, x′, y′, x′′, and y′′.

Let {x′i} and {y′i} be the components of x′ and y′, respectively, and let {x′′i } and {y′′i }
be those for x′′ and y′′. Then we have

Var[x′′i ] = Var
[

s1

s2
x′i

]
=

(
s1

s2

)2

Var[x′i] = s2
1,

Var[y′′i ] = Var
[

s1

s2
y′i

]
=

(
s1

s2

)2

Var[y′i] =
s4

1
s2

2
.

Thus, x′′ follows N (0,s2
1I), and y′′ follows N (0,(s4

1/s2
2)I). Since both x in configura-

tion (a) and x′′ above follow the same distribution, it now becomes possible to compare
the properties of y and y′′ in light of the discussion at the end of Section 4.3: In order
to reduce hubness, the distribution with a smaller variance is preferred to the one with
a larger variance, for a fixed distribution of source x (or equivalently, x′′).

It follows that y′′ is preferable to y, because the former has a smaller variance. As
mentioned above, the nearest neighbor relation between the scaled variables, y′′ against
x′′ (or equivalently x), is identical to y′ against x′ in configuration (b). Therefore, we
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conclude that configuration (b) is preferable to configuration (a), in the sense that the
former is more likely to suppress hubs.

Finally, recall that the preferred configuration (b) models the situation of our pro-
posed approach, which is to map target objects in the space of source objects.

4.4.3 Additional Argument for Placing Target Objects Closer to
the Origin

By assuming a unimodal data distribution of which the probability density function
(pdf) p(z) is decreasing in ∥z∥, we are able to present the following proposition which
also advocates placing the source objects outside the target objects, and not the other
way around.

Proposition 3 is concerned with the placement of a source object x at a fixed distance
r from its target object y, for which we have two alternatives x1 and x2, located at
different distances from the origin of the space.

Proposition 3. Consider a finite set Y of objects (i.e., points) in a Euclidean space,
sampled i.i.d. from a distribution whose pdf p(z) is a decreasing function of ∥z∥.
Let y ∈ Y be an object in the set, and let r > 0. Further let x1 and x2 be two
objects at a distance r apart from y. If ∥x1∥< ∥x2∥, then the probability that y is
the closest object in Y to x2 is greater than that of x1.

Sketch. For i = 1,2, if another object in Y appears within distance r of xi, then y is not
the nearest neighbor of xi. Thus, we aim to prove that this probability for x2 is smaller
than that for x1. Since objects in Y are sampled i.i.d, it suffices to prove∫

z∈V2

d p(z) ≤
∫

z∈V1

d p(z), (4.8)

where Vi (i = 1,2) denote the balls centered at xi with radius r. However, Eq. (4.8)
obviously holds because the balls V1 and V2 have the same radii, p(z) is a decreasing
function of ∥z∥, and ∥x1∥ ≤ ∥x2∥. See Figure 4.2 for an illustration with a bivariate
standard normal distribution in two-dimensional space.

In the context of existing work on ZSL, which uses ridge regression to map source
objects in the space of target objects, x can be regarded as a mapped source object, and
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x1

x2y

0
Figure 4.2: Illustration of the situation considered in Proposition 3. Here, it is assumed
that ∥x1∥ < ∥x2∥ and ∥y− x1∥ = ∥y− x2∥. The intensity of the background shading
represents the values of the pdf of a bivariate standard normal distribution, from which
y and other objects (not depicted in the figure) in set Y are sampled. The probability
mass inside the circle centered at x1 is greater than that centered at x2, as the intensity
of the shading inside the two circles shows.

y as its target object. Proposition 3 implies that if we want to make a source object
x the nearest neighbor of a target object y, it should rather be placed farther than y
from the origin, but this idea is not present in the objective function (Eq. (4.5)) for
ridge regression; the first term of the objective allocates the same amount of penalty
for x1 and x2, as they are equally distant from the target y. On the contrary, the ridge
regression actually promotes placement of the mapped source object x closer to the
origin, as stated in Proposition 2.

4.4.4 Summary of the Proposed Approach

Drawing on the analysis presented in Sections 4.4.1–4.4.3, we propose performing
regression that maps target objects in the space of source objects, and carry out nearest
neighbor search in the source space. This opposes the approach followed in existing
work on regression-based ZSL [Dinu and Baroni, 2014, 2015; Lazaridou et al., 2014;
Mikolov et al., 2013a; Palatucci et al., 2009], which maps source objects into the space
of target objects.

In the proposed approach, matrix B in Proposition 2 represents the source objects
X, and A represents the target objects Y. Therefore, ∥MA∥2 ≤ ∥B∥2 means ∥MY∥2 ≤
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∥X∥2, i.e., the mapped target objects tend to be placed closer than the corresponding
source objects to the origin.

Admittedly, the above argument for our proposal relies on strong assumptions on
data distributions (such as normality), which do not apply to real data. However, the
effectiveness of our proposal is verified empirically in Section 4.6 by using real data.

4.5 Related Work
The first use of ridge regression in ZSL can be found in the work of Palatucci et al.

[2009]. Ridge regression has since been one of the standard approaches to ZSL, es-
pecially for natural language processing tasks: phrase generation [Dinu and Baroni,
2014] and bilingual lexicon extraction [Dinu and Baroni, 2014, 2015; Mikolov et al.,
2013a]. More recently, neural networks have been used for learning non-linear map-
ping [Frome et al., 2013; Socher et al., 2013]. All of the regression-based methods
listed above, including those based on neural networks, map source objects into the
target space.

ZSL can also be formulated as a problem of canonical correlation analysis (CCA).
Hardoon et al. [2004] used CCA and kernelized CCA for image labeling. Lazaridou et al.
[2014] compared ridge regression, CCA, singular value decomposition, and neural net-
works in image labeling. In our experiments (Section 4.6), we use CCA as one of the
baseline methods for comparison.

Dinu and Baroni [2015] reported the hubness phenomenon in ZSL. They proposed
two reweighting techniques to reduce hubness in ZSL, which are applicable to cosine
similarity. Tomašev et al. [2013] proposed hubness-based instance weighting schemes
for CCA. These schemes were applied to classification problems in which multiple
instances (vectors) in the target space have the same class label. This setting is different
from the one assumed in this chapter (see Section 4.2), i.e., we assume that a class label
is represented by a single target vector.2

Structured output learning [Bakir et al., 2007] addresses a problem setting similar to
ZSL, except that the target objects typically have complex structure, and thus the cost
of embedding objects in a vector space is prohibitive. Kernel dependency estimation
[Weston et al., 2002] is an approach that uses kernel PCA and regression to avoid this

2 Perhaps because of this difference, the method in Tomašev et al. [2013] did not perform well in our
experiment, and we do not report its result in Section 4.6.
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issue. In this context, nearest neighbor search in the target space reduces to the pre-
image problem [Mika et al., 1998] in the implicit space induced by kernels.

4.6 Experiments
We evaluated the proposed approach with both synthetic and real datasets. In par-

ticular, it was applied to two real ZSL tasks: bilingual lexicon extraction and image
labeling.

The main objective of the following experiments is to verify whether our proposed
approach is capable of suppressing hub formation and outperforming the existing ap-
proach, as claimed in Section 4.4.

4.6.1 Experimental Setups

Compared methods

The following methods were compared.

• RidgeX→Y: Linear ridge regression mapping source objects X into the space of
target objects Y . This is how ridge regression was used in the existing work
on ZSL [Dinu and Baroni, 2014, 2015; Lazaridou et al., 2014; Mikolov et al.,
2013a; Palatucci et al., 2009].

• RidgeY→X: Linear ridge regression mapping target objects Y into the source
space. This is the proposed approach (Section 4.4.4).

• CCA: Canonical correlation analysis (CCA) for ZSL [Hardoon et al., 2004]. We
used the code available from http://www.davidroihardoon.com/Professional/

Code.html.

We calibrated the hyperparameters, i.e., the regularization parameter in ridge regres-
sion and the dimensionality of common feature space in CCA, by cross validation on
the training set.

After ridge regression or CCA is applied, both X and Y (or their images) are located
in the same space, wherein we find the closest target object for a given source object
as measured by the Euclidean distance. In addition to the Euclidean distance, we also
tested the non-iterative contextual dissimilarity measure (NICDM) [Jegou et al., 2007]
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in combination with RidgeX→Y and CCA. NICDM adjusts the Euclidean distance to
make the neighborhood relations more symmetrical, and is known to effectively reduce
hubness in non-ZSL context [Schnitzer et al., 2012].

All data were centered before application of regression and CCA, as usual with these
methods.

Evaluation criteria

The compared methods were evaluated in two respects: (i) the correctness of their
prediction, and (ii) the degree of hubness in nearest neighbor search.

Measures of Prediction Correctness. In all our experiments, ZSL was formulated
as a ranking task; given a source object, all the target objects were ranked by their
likelihood for the source object. As the main evaluation criterion, we used the mean
average precision (MAP) [Manning et al., 2008], which is one of the standard perfor-
mance metrics for ranking methods. Note that the synthetic and the image labeling
experiments are the single-label problems for which MAP is equal to the mean recip-
rocal rank [Manning et al., 2008]. We also report the top-k accuracy3 (Acck) for k = 1
and 10, which is the percentage of source objects for which the correct target objects
are present in their k nearest neighbors.

Measure of Hubness. To measure the degree of hubness, we used the skewness of
the (empirical) Nk distribution, following the approach in the literature [Radovanović et al.,
2010a; Schnitzer et al., 2012; Suzuki et al., 2013; Tomašev et al., 2013]. The Nk distri-
bution is the distribution of the number Nk(i) of times each target object i is found in
the top k of the ranking for source objects, and its skewness is defined as follows:

(Nk skewness) =
∑ℓ

i=1 (Nk(i)−E [Nk])
3 /ℓ

Var [Nk]
3
2

where ℓ is the total number of test objects in Y , Nk(i) is the number of times the ith
target object is in the top-k closest target objects of the source objects. A large Nk

skewness value indicates the existence of target objects that frequently appear in the
k-nearest neighbor lists of source objects; i.e., the emergence of hubs.

3 In image labeling (only), we report the top-1 accuracy (Acc1) macro-averaged over classes, to
allow direct comparison with published results. Note also that Acck with a larger k would not be an
informative metric for the image labeling task, which only has 10 test labels.

45



4.6.2 Task Descriptions and Datasets

We tested our method on the following ZSL tasks.

Synthetic task

To simulate a ZSL task, we need to generate object pairs across two spaces in a way
that the configuration of objects is to some extent preserved across the spaces, but is
not exactly identical. To this end, we first generated 3000-dimensional (column) vec-
tors zi ∈ R3000 for i = 1, . . . ,10000, whose coordinates were generated from an i.i.d.
univariate standard normal distribution. Vectors zi were treated as latent variables, in
the sense that they were not directly observable, but only their images xi and yi in two
different features spaces were. These images were obtained via different random pro-
jections, i.e., xi = RX zi and yi = RY zi, where RX ,RY ∈R300×3000 are random matrices
whose elements were sampled from the uniform distribution over [−1,1]. Because ran-
dom projections preserve the length and the angle of vectors in the original space with
high probability [Bingham and Mannila, 2001; Dasgupta, 2000], the configuration of
the projected objects is expected to be similar (but different) across the two spaces.

Finally, we randomly divided object pairs {(xi,yi)}10000
i=1 into the training set (8000

pairs) and the test set (remaining 2000 pairs).

Bilingual lexicon extraction

Our first real ZSL task is bilingual lexicon extraction [Dinu and Baroni, 2014, 2015;
Mikolov et al., 2013b], formulated as a ranking task: Given a word in the source lan-
guage, the goal is to rank its gold translation (the one listed in an existing bilingual
lexicon as the translation of the source word) higher than other non-translation candi-
date words.

In this experiment, we evaluated the performance in two settings. One is the tasks
of finding the English translations of words in the following source languages: Czech
(cs), German (de), French (fr), Russian (ru), Japanese (ja), and Hindi (hi). The other
setting is the finding the translations in six languages of English words.

Following related work [Dinu and Baroni, 2014, 2015; Mikolov et al., 2013a], we
trained a CBOW model [Mikolov et al., 2013a] on the pre-processed Wikipedia corpus
distributed by the Polyglot project4 (see [Al-Rfou et al., 2013] for corpus statistics),

4https://sites.google.com/site/rmyeid/projects/polyglot
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using the word2vec5 tool. The window size parameter of word2vec was set to 10, with
the dimensionality of feature vectors set to 500.

To learn the projection function and measure the accuracy in the test set, we used
the bilingual dictionaries6 of Ács et al. [2013] as the gold translation pairs. These gold
pairs were randomly split into the training set (80% of the whole pairs) and the test set
(20%). We repeated experiments on four different random splits, for which we report
the average performance.

Image labeling

The second real task is image labeling, i.e., the task of finding a suitable word label
for a given image. Thus, source objects X are the images and target objects Y are the
word labels.

We used the Animal with Attributes (AwA) dataset7, which consists of 30,475 im-
ages of 50 animal classes. For image representation, we used the DeCAF features
[Donahue et al., 2013], which are the 4096-dimensional vectors constructed with con-
volutional neural networks (CNNs). DeCAF is also available from the AwA website.
To save computational cost, we used random projection to reduce the dimensionality
of DeCAF features to 500.

As with the bilingual lexicon extraction experiment, label features (word representa-
tions) were constructed with word2vec, but this time they were trained on the English
version of Wikipedia (as of March 4, 2015) to cover all AwA labels. Except for the
corpus, we used the same word2vec parameters as with bilingual lexicon extraction.

We respected the standard zero-shot setup on AwA provided with the dataset; i.e.,
the training set contained 40 labels, and test set contained the other 10 labels.

4.6.3 Experimental Results

5https://code.google.com/p/word2vec/
6http://hlt.sztaki.hu/resources/dict/bylangpair/wiktionary_2013july/
7 http://attributes.kyb.tuebingen.mpg.de/
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Table 4.1: Synthetic data results: MAP is the mean average precision. Acck is the
accuracy of the k-nearest neighbor list. Nk is the skewness of the Nk distribution. A
high Nk skewness indicates the emergence of hubs (lower is better).

method MAP Acc1 Acc10 N1 N10

RidgeX→Y 21.5 13.8 36.3 24.19 12.75
RidgeX→Y + NICDM 58.2 47.6 78.4 13.71 7.94
RidgeY→X (proposed) 91.7 87.6 98.3 0.46 1.18
CCA 78.9 71.6 91.7 12.0 7.56
CCA + NICDM 87.6 82.3 96.5 0.96 2.58

Table 4.2: Mean-average precision on bilingual lexicon extraction.

(a) Source language to English (target language is English).

method cs de fr ru ja hi

RidgeX→Y 1.7 1.0 0.7 0.5 0.9 5.3
RidgeX→Y + NICDM 11.3 7.1 5.9 3.8 10.2 21.4
RidgeY→X (proposed) 40.8 30.3 46.5 31.1 42.0 40.6
CCA 24.0 18.1 33.7 21.2 27.3 11.8
CCA + NICDM 30.1 23.4 39.7 26.7 35.3 19.3

(b) English to target language (English is source language).

method cs de fr ru ja hi

RidgeX→Y 2.1 1.4 0.9 0.8 0.9 6.1
RidgeX→Y + NICDM 5.8 4.1 3.8 2.0 6.8 14.3
RidgeY→X (proposed) 42.5 32.9 44.1 33.5 46.4 45.3
CCA 18.2 13.4 32.9 19.6 28.6 7.3
CCA + NICDM 28.7 21.5 39.2 27.1 37.7 15.2
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Table 4.5: Image labeling results. MAP, Acck, and Nk skewness.

method MAP Acc1 N1

RidgeX→Y 46.0 22.6 2.61
RidgeX→Y + NICDM 54.2 34.5 2.17
RidgeY→X (proposed) 62.5 41.3 0.08
CCA 26.1 9.2 2.00
CCA + NICDM 26.9 9.3 2.42

Tables 4.1 and 4.5 show the synthetic and image labeling results, respectively. The
results of bilingual lexicon extraction are shown in Tables 4.2–4.4. The trends are fairly
clear: The proposed approach, RidgeY→X, outperformed other methods in both MAP
and Acck, over all tasks. RidgeX→Y and CCA combined with NICDM performed better
than those with Euclidean distances, although they still lagged behind the proposed
method RidgeY→X even with NICDM.

The Nk skewness achieved by RidgeY→X was lower (i.e., better) than that of com-
pared methods, meaning that it effectively suppressed the emergence of hub labels. In
contrast, RidgeX→Y produced a high skewness which was in line with its poor predic-
tion accuracy. These results support the expectation we expressed in the discussion in
Section 4.4.

The results presented in the tables show that the degree of hubness (Nk) for all
tested methods inversely correlates with the correctness of the output rankings, which
strongly suggests that hubness is one major factor affecting the prediction accuracy.

From Tables 4.2–4.4, in both retrieval direction; English as X and six languages
as Y , and English as X and six languages as Y , the trends are almost identical. The
proposed approach, RidgeY→X outperformed other methods. It also had the lowest
Nk skewness. This observation suggests that not the quality of feature space but the
proposed approach leads to the improvement.

For the AwA image dataset, Akata et al. [2014, the fourth row (CNN) and second
column (φw) of Table 2] reported a 39.7% Acc1 score, using image representations
trained with CNNs, and 100-dimensional word representations trained with word2vec.
For comparison, our proposed approach, RidgeY→X, was evaluated in a similar setting:
We used the DeCAF features (which were also trained with CNNs) without random
projection as the image representation, and 100-dimensional word2vec word vectors.
In this setup, RidgeY→X achieved a 40.0% Acc1 score. Although the experimental se-

51



tups are not exactly identical and thus the results are not directly comparable, this sug-
gests that even linear ridge regression can potentially perform as well as more recent
methods, such as Akata et al.’s, simply by exchanging the observation and response
variables.

4.6.4 Discussion

Shrinking property

Proposition 2 states that in ridge regression, the 2-norm of mapped input data matrix
(MA) is smaller than that of the response B. The result also holds with ordinary least
squares, i.e., when regularization parameter λ = 0.

On the basis of this proposition, we claimed that ridge regression has a tendency to
place mapped inputs MA closer than the response B, to the origin. However, it does
not say how much it actually shrinks the mapped input data relative to the response,
nor how much parameter λ influences the shrinkage.

Table 4.6a shows the average ratio of the norm of the mapped input to that of its
response: i.e., averaged over all training pairs of the mapped input Ma and its response
b. The table shows that the norm of the mapped inputs is, in most cases, less than half
that of the responses. Moreover, the trend is the same regardless of the values of λ .

Preposition 2 is concerned only with the training set, but we claimed that the same
tendency is also likely for the test set; that is, the input data in the test set should also
be mapped closer to the origin than their corresponding responses.

The empirical results shown in Table 4.6b support this claim. This table shows the
average ratio of the norm of mapped inputs to that of the corresponding response,
which is the same as Table 4.6a, except that the ratios are computed for the test set.
By comparing the two tables, we see that the amount of shrinkage occurs at a nearly
identical level across the training and test sets.
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The actual radius in Proposition 3

In Proposition 3, points x (to be precise, x1 and x2) and y signify a pair of a mapped
input (xi) and its response (y), so it appears that, as a result of regression, these points
must be quite close. i.e., the distance r between x and y must be small. If this is
the case, the volume of a ball with radius r should be small, and there should not be
much difference in the probability mass in the balls around x1 and x2 discussed in the
propositions.

In reality, r is not at all small—so the difference in probability mass can be large
between the respective balls.

Table 4.7 shows the ratios of the average distance between corresponding pairs in
the dataset to the distance between all possible pairs of x and y, majority of which are
non-corresponding pairs.

In this table, all the ratios are in the range of 0.7 to 1.00, which implies that the
distance between corresponding pairs is not substantially smaller than the distance
between randomly chosen pairs. Therefore, r, which signifies the distance between the
corresponding pairs in Proposition 3, can in fact be quite large.
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4.7 Summary
This chapter has presented our formulation of ZSL as a regression problem of finding

a mapping from the target space to the source space, which opposes the way in which
regression has been applied to ZSL to date. Assuming a simple model in which data
follows a multivariate normal distribution, we provided an explanation as to why the
proposed direction is preferable, in terms of the emergence of hubs in the subsequent
nearest neighbor search step. The experimental results showed that the proposed ap-
proach outperforms the existing regression-based and CCA-based approaches to ZSL.

Future research topics include: (i) extending the analysis of Section 4.4 to cover
multi-modal data distributions, or other similarity/distance measures such as cosine;
(ii) investigating the influence of mapping directions in other regression-based ZSL
methods, including neural networks; and (iii) investigating the emergence of hubs in
CCA.
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Chapter 5

Reducing Hubness for k-Nearest
Neighbor Classification

5.1 Introduction
k-nearest neighbor (k-NN) classifiers predict the class label of an unknown object by

its nearest neighbors. Given an unlabeled (test) object x and a set of labeled (training)
objects D = {(xi,yi)}n

i=1 where x,xi ∈X are the feature vectors and yi ∈ Y is the class
label of xi, the classifier first computes the distance between x and each labeled object
xi. Then it predicts the class label ŷ of x by the majority among its k nearest labeled
objects. When k = 1, the decision rule of the k-NN (1-NN) classifier is simply:

ŷ = argmin
yi:(xi,yi)∈D

f (x,xi), (5.1)

where function f : X ×X → R is some distance/dissimilarity function.
Obviously, the choice of function f affects the accuracy of k-NN classification.

Therefore, many researchers [Davis et al., 2007; Weinberger and Saul, 2009; Xing et al.,
2002; Ying and Li, 2012] have tackled metric learning, which is the task of learning a
suitable distance function from data.

For Euclidean object space X =Rd , metric learning is usually formulated as the task
of finding Mahalanobis distance. In this formulation, the squared distance between two
objects x,z ∈ Rd is defined by

f (x,z) = (x− z)TM(x− z), (5.2)



with some positive (semi)definite matrix M. By defining matrix L by M = LTL, we
can write the squared Mahalanobis distance in Eq. (5.2) as

f (x,z) = ∥Lx−Lz∥2. (5.3)

This equation shows that learning Mahalanobis distance is equivalent to learning a
suitable linear transformation L.

In the context of k-NN classification, distance needs to be measured only between
unlabeled (test) objects and labeled (training) objects, as can be seen from Eq. (5.1);
when distance f (x,z) is computed, the first object x is always an unlabeled object, and
the second object z is always a labeled object xi. Moreover, function f need not be
metric and can be any measure of dissimilarity; for instance, f being noncommutative
is perfectly acceptable.

In this chapter, we learn one such dissimilarity function. The idea is to compute a
transformation of labeled objects to new points while test objects are kept at their origi-
nal points. Thus, our objective is to find a suitable matrix W that defines a dissimilarity
function

f (x,z) = ∥x−Wz∥2, (5.4)

where x is a test object, and z is a labeled object.
Because the coordinates of test data are fixed, our formulation might appear less

flexible than Mahalanobis distance learning (Eq. (5.3)). However, as shown in a subse-
quent section, it gives a better k-NN classification accuracy than Mahalanobis distance
learning methods on many datasets that feature high-dimensional space. Moreover,
optimizing W in Eq. (5.4) is much easier and substantially (often more than two orders
of magnitude) faster.

The effectiveness of the proposed approach has a theoretical foundation in terms of
reduction of hubness in data [Radovanović et al., 2010a]. Recent studies have shown
that the presence of hubs, which are a few objects that appear in the k-NNs of many
objects, is an obstacle that can harm the performance of many vector space methods
[Radovanović et al., 2010a; Schnitzer et al., 2012; Suzuki et al., 2013]. We show that
metric learning is no exception, and transformation of labeled objects suppresses the
emergence of hubs, as justified by our results in Chapter 4, which used regression to
reduce hubness in zero-shot problems. In Chapter 4, the problem was cast as a task of
cross-domain matching, whereas in this chapter, we are concerned with improving the
accuracy of k-NN classification in a single space.
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Another notable feature of the proposed method is that it does away with optimiza-
tion over “negative” object pairs, i.e., objects belonging to difference classes. In other
words, our method optimizes only over “positive” object pairs, i.e., object of the same
classes that should be made closer after transformation, and does not have any con-
straints or terms in the objective function that attempt to keep negative object pairs
apart from each other. Such constraints are indispensable in Mahalanobis metric learn-
ing to prevent trivial solutions M = O or L = O in Eqs. (5.2) or (5.3), and metric
learning typically optimizes over a large number of negative object pairs. Moreover,
incorporating negative pairs results in a non-convex optimization problem with respect
to matrix L. Existing metric learning methods [Davis et al., 2007; Jain et al., 2012;
Weinberger and Saul, 2009; Xing et al., 2002; Ying and Li, 2012] hence resorts to op-
timizing M = LTL using computationally intensive methods such as semi-definite pro-
gramming. By contrast, since we only transforms labeled objects, we need not worry
about W = O being the solution (see Eq. (5.4)), thus eliminating the need of negative
pairs. This makes the solution easily obtained with ridge regression, which contributes
to reduced computation time.

5.2 Related Work
We briefly review some of the metric learning methods, mostly those used in the

experiments in Section 5.5. For comprehensive survey of the field, see [Bellet et al.,
2014; Kulis, 2013].

A majority of the metric learning methods adopt Mahalanobis distance (Eq. (5.3))
as the distance function, and minimize the training loss under various constraints. As
mentioned earlier, these methods do not make distinction between test (unlabeled) ob-
jects and training (labeled) objects, in the sense that their coordinates are transformed
by the same matrix, L in Equation (5.3). Our approach differs from these methods in
that it projects only the labeled objects to new coordinates.

There are various strategies for learning Mahalanobis distance. Xing et al. [2002]
formulated metric learning as a convex optimization problem, and demonstrated its
effectiveness in clustering tasks. The large-margin nearest neighbor (LMNN) method
[Weinberger and Saul, 2009] is probably the most popular of all metric learning meth-
ods. Its objective is to minimize distances between objects with the same label, and
to penalize objects with different labels when they are closer than a certain distance.
Hence objects from different classes are separated by a large margin. To make the
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problem convex, in Xing et al.’s method and LMNN, optimization is done over not L
but M=LTL, with semidefinite programming. Ying and Li [2012] presented an eigen-
value optimization framework for learning Mahalanobis distance. Davis et al. [2007]
proposed information-theoretic metric learning (ITML). ITML minimizes the LogDet
divergence subject to linear constraints. It thus requires no eigenvalue computation or
semi-definite programming.

Although it has been shown that these methods work well in many applications,
learning Mahalanobis distance typically incurs high computational cost. Indeed, as we
show in an experiment (Section 5.5), these methods spend substantial time in optimiz-
ing M, when applied to large datasets.

5.3 Proposed Method
In this section, we present our approach for improving the k-NN classification accu-

racy.
In nearly all metric learning methods, the objective function to be optimized involves

a term that encourages objects of the same class to be placed closer. In the same vein,
our method also optimizes the transformation matrix W in Eq. (5.4) by minimizing the
distance between objects of the same class. However, in our formulation, the learned
transformation W is only applied to labeled objects.

Our training procedure consists of two steps. We first make training object pairs for
which the distance should be minimized. To this end, we follow Weinberger and Saul
[2009]: for each labeled object xi ∈Rd in the training set, we define its “target” objects
Ti to be the k objects in the training set that belong to the same class as xi and are closest
to xi as measured by the original Euclidean distance (i.e., the one before training).
We then find a matrix W ∈ Rd×d that moves objects in Ti towards xi, by solving the
following optimization problem:

min
W

n

∑
i=1

∑
z∈Ti

∥xi −Wz∥2 +λ∥W∥2
F, (5.5)

where λ ≥ 0 is a hyperparameter for regularization and ∥ · ∥F represents the Frobenius
norm. Equation (5.5) is a familiar objective function of ridge regression, and we have
the closed-form solution:

W = XJXT(XXT +λ I)−1, (5.6)
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where X = [x1, . . . ,xn] ∈ Rd×n, and J ∈ {0,1}n×n is an indicator matrix such that
[J]i, j = 1 if x j ∈ Ti and 0 otherwise.

In the test phase, we first compute the image x′i = Wxi of every labeled object xi

by the learned matrix W. We then carry out k-NN classification by regarding D′ =

{(x′i,yi)} as the labeled objects in place of the original one, D = {(xi,yi)}. In the case
of 1-NN classification, for example, this amounts to using the dissimilarity function f
given by Eq. (5.4) in the decision rule of Eq. (5.1), i.e.,

ŷ = argmin
yi:(x′i,yi)∈D′

∥x−x′i∥2 = argmin
yi:(xi,yi)∈D

∥x−Wxi∥2. (5.7)

5.4 Proposed Method Reduces Hubness
In this section, we argue that the proposed method is by design less susceptible to

producing hubs [Radovanović et al., 2010a] in the transformed labeled objects. This
property is desirable, as hubs have been recognized as one of the major factors that
harm the performance of nearest neighbor methods.

5.4.1 Hubness and the Proposed Method

Ridge regression reduces the variance of mapped feature values (observables) rela-
tive to that of target (response) variables; see Proposition 2 in Section 4.4.1. Thus, in
our model of Eq. (5.5), the variance of the components of the mapped objects Wz tends
to be smaller than that of x. From the discussion on hubness in Section 4.3, reducing
the variance of data objects (which correspond to the image Wz of the labeled objects z
in the proposed method) relative to the query (test object x) can reduce the spatial cen-
trality. By combining these arguments, we expect that the proposed approach should
alleviate the emergence of hubs, and, consequently, improve the accuracy of k-NN
classification.

Note that we could think of a different regression problem in which test object x, not
labeled object z, is mapped to new coordinates:

min
W

n

∑
i=1

∑
z∈Ti

∥Wxi − z∥2 +λ∥W∥2
F. (5.8)

This would result in function f as follows:

f (x,z) = ∥Wx− z∥2. (5.9)
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However, this dissimilarity function is useless as it actually promotes hubness. The
variance of the transformed test objects shrinks as a result of regression. Thus, in this
model, the variance of the labeled objects is made larger than the transformed test
objects, but this is not a desirable situation according to Proposition 1. We also verify
this in one of the experiments in Section 5.5.

5.5 Experiments
We evaluate the proposed approach on various classification tasks. The objective of

these experiments is to investigate whether the proposed approach can reduce the emer-
gence of hubs, and improve the performance of k-NN classification. The performance
is measured against several popular metric learning methods.

5.5.1 Experimental Setups

Dataset description

Three types of datasets were used for our evaluation: UCI, document, and image
datasets.

From the UCI machine learning datasets,1 we chose balance-scale, glass, iono-
sphere, iris, and wine, as they are frequently used for evaluation in metric learning lit-
erature [Davis et al., 2007; Jain et al., 2012; Weinberger and Saul, 2009; Ying and Li,
2012]. However, they are mostly toy problems, and their small feature dimensions,
the numbers of labels and objects do not necessarily reflect real-world problems. We
therefore used document and image datasets also for our evaluation.

For document and image classification, support vector machines are known to pro-
vide state-of-the-art accuracy. Notice, however, that our goal is not to design a state-
of-the-art classifier. Rather, the main objective of this experiments is to evaluate the
performances of the proposed method in comparison with metric learning methods,
and to show its usefulness for k-NN classification.

For document classification tasks, we used four publicly available document datasets:
RCV1-v2 (RCV), 20 newsgroups (News), Reuters21578 (Reuters), and TDT2 (TDT).2

1http://archive.ics.uci.edu/ml/
2Datasets were downloaded from http://www.cad.zju.edu.cn/home/dengcai/Data/

TextData.html
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Table 5.1: Dataset statistics. In document and image datasets, “original dim.” indicates
the number of raw dimensions before applying PCA.

(a) UCI datasets.

dataset ionoshpere balance-scale iris wine glass

#objects 351 625 150 178 214
#classes 2 3 3 3 6
dimension 34 4 4 13 9

(b) Document datasets.

dataset RCV News Reuters TDT

#objects 9625 18846 8213 10021
#classes 4 20 41 56
dimension 300 300 300 300
original dim. 29992 26214 18933 36771

(c) Image datasets.

dataset AwA CUB SUN aPY

#objects 30475 11788 14340 15339
#classes 50 200 717 32
dimension 300 300 300 300
original dim. 4096 4096 4096 4096

In Reuters21578 and TDT2, we removed minority classes that hold less than 10 ob-
jects in the dataset. After this removal, Reuters21578 and TDT2 had 56 and 41 classes,
respectively.

For image classification, we used the following image datasets: aPascal & aYahoo
(aPY), Animals with Attributes (AwA), Caltech-UCSD Birds-200-2011 (CUB), and
SUN Attribute.3

The computational cost of metric learning methods is heavily dependent on the di-
mension of the feature space. In our preliminary experiment, training of the metric

3We used the publicly available features from https://zimingzhang.files.wordpress.com/

2014/10/cnn-features1.key
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learning methods (LMNN, ITML, and DML-eig; see below) did not complete in a
reasonable time on document and image datasets. We therefore had to use principal
component analysis to reduce the dimensionality of features to 300 for these datasets.

The dataset statistics are summarized in Table 5.1.
All data (set of feature vectors) were centered before training. For the wine dataset,

we further converted the features to z-scores, following the remark on the UCI website
that a k-NN classifier achieved a high accuracy with this standardization.

Each dataset was randomly split into training (70%) and test (30%) sets. Experi-
ments were repeated on four different random splits, for which we report the average
performance.

Compared methods

We trained distance/dissimilarity functions using the following methods, and carried
out k-NN classification on the above datasets.

• original metric: Euclidean distance in the original object space, without any
training. This is the baseline.

• LMNN: Large margin nearest neighbor classification [Weinberger and Saul, 2009].
This method was often used in distance metric learning experiments as a base-
line.

• ITML: Information theoretic metric learning [Davis et al., 2007].

• DML-eig: Distance metric learning with eigenvalue optimization [Ying and Li,
2012].

• proposed method: This is the proposed approach that optimizes Eq. (5.5), and
then predicts the label with Eq. (5.7).

LMNN, ITML, and DML-eig learn a Mahalanobis distance. For these methods,
we used the publicly available MATLAB implementations provided by the respective
authors4. We implemented the proposed method also in MATLAB5, for fair evaluation
of running time.

4LMNN: https://bitbucket.org/mlcircus/lmnn/downloads,
ITML: http://www.cs.utexas.edu/~pjain/itml/,
DML-eig: http://www.albany.edu/~yy298919/software.html

5This code will be made available at our homepage.
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To discuss the behavior of hubness, we also evaluated the following method:

• map-test: Mapping test objects. This is the method mentioned in Section 5.4.1
that optimizes Eq. (5.8). Then, the resulting dissimilarity function of Eq. (5.9) is
used for k-NN classification.

Notice again that this method was tested only to verify the claim made in Section 5.4.1,
i.e., although both the proposed method and map-test are based on ridge regression, the
proposed method is expected to perform well by reducing hubness, whereas map-test
is expected to do the contrary.

For LMNN, the proposed method, and map-test, the number of target objects for
each training object was set to 1; i.e., for each object xi in the training set, we made a
training pair (xi,z) whose distance should be minimized, where z is the object nearest
to xi among those with the same class label as xi in the training set, with the dis-
tance measured by the original Euclidean metric. For the parameters of ITML on UCI
datasets, we used the default values in the authors’ implementation, and for document
and image datasets, we followed Jain et al. [2012]. For DML-eig, we used the default
setting in the authors’ code to obtain pairwise constraints. We calibrated the parameter
k of k-NN classification to be used at the test time and all other parameters (γ in ITML,
µ in DML-eig, and λ in the proposed method and test-map) by cross validation on the
training set.

Evaluation criteria

The methods were evaluated in three respects: (i) the accuracy of k-NN classification
using the distance/dissimilarity measure learned by each method, (ii) training time, and
(iii) the degree of hubness in the data with respect to the learned distance/dissimilarity.

Following the literature [Hara et al., 2015; Radovanović et al., 2010a; Schnitzer et al.,
2012; Suzuki et al., 2013], we used the skewness of N10 distribution as the measure of
hubness in the data. The N10 distribution is the empirical distribution of the number
N10(i) of times each labeled object i is found in the 10-nearest neighbors of test objects,
and its skewness is defined as follows:

(N10 skewness) =
∑n

i=1 (N10(i)−E [N10])
3 /n

Var [N10]
3
2

where n is the total number of labeled objects, and E[N10] and Var[N10] are respectively
the empirical mean and variance of N10(i) over n labeled objects. A large N10 skewness
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value indicates the existence of labeled objects that frequently appear in the 10-nearest
neighbor lists of test objects, i.e., hubs.

5.5.2 Experimental Results and Discussion

Skewness

Table 5.2 shows the skewness of N10 distribution. For all datasets, we observe that
the proposed approach reduced N10 skewness considerably compared with the origi-
nal Euclidean distance, meaning that it effectively suppressed the emergence of hub
objects. N10 skewness was reduced by metric learning methods (LMNN, ITML, and
DML-eig) on many datasets, most notably by DML-eig. Also, as expected from the
discussion of Section 5.4.1, mapping test objects (map-test in the tables) increased N10

skewness except for the iris dataset.

Accuracy

Tables 5.3 shows the classification accuracy. In most datasets, both the metric learn-
ing methods and the proposed method outperformed the original distance metric. The
proposed method is comparable with, or slightly better than, the metric learning meth-
ods. Although map-test optimized the minimizing distance between objects in same
class (our proposed method also optimized such distance), the method obtained poor
results even compared with the original Euclidean metric except for the iris datasets.

Note that, in UCI datasets, we observed that the proposed method did not work
well, and even map-test were competitive with others. This is an expected result,
because the UCI datasets did not have much hubness even with the original metric
(see Table 5.2a). Hubs tend to be emerge in high dimensional space [Hara et al., 2015;
Radovanović et al., 2010a; Schnitzer et al., 2012], but all the UCI datasets have a small
dimensionality (see Table 5.1a). Consequently, hub reduction/promotion methods did
not affect the result significantly.

Training time

To investigate the computational cost, we measured the elapsed real time needed to
train the proposed method and the metric learning methods.
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Table 5.4 shows the average training time in document and image datasets. We ob-
serve that the proposed approach has a clear advantage in terms of training cost. It was
faster than any metric learning methods compared. Indeed, on all datasets except RCV,
it was more than two orders of magnitude faster than the fastest metric learning meth-
ods. This can be explained by the fact that the metric learning methods take burden
of optimizing over Mahalanobis metric. To enforce the constraint that the matrix M in
Eq. (5.2) should remain positive semi-definite, these methods pay high computational
cost, e.g., to check the non-negativity of eigenvalues, at every training iteration. In
contrast, the proposed approach has a closed-form solution, and hence it depends on
computing matrix inverse, but this computation needs to be done only once.

5.6 Summary
In this chapter, we have proposed a simple regression-based technique to improve

k-NN classification accuracy.
The results of our work can be summarized as follows:

• To improve the accuracy of k-NN classification, we proposed learning a trans-
formation of labeled objects only, without altering the coordinates of test (unla-
beled) objects (Section 5.3). This approach optimizes the transformation such
that the distance between objects that belong to the same class is minimized.

At first sight, not moving test objects might seem loss of flexibility and expres-
siveness of the learned transformation. However, this approach is justified from
the perspective of reducing hubness in the labeled objects. Because our method
is inherently designed to suppress hubness, it need not consider pairs of objects
from different classes during training. The number of such object pairs can be
huge and their use also renders the optimization problem non-convex, which is
thus a major obstacle to the scalability of metric learning methods.

• In our experiments (Section 5.5), we demonstrated empirically that after the la-
beled objects were transformed with the proposed approach, k-NN classifica-
tion accuracy was improved. Specifically, our approach reduced the emergence
of hubs, and improved the classification accuracy accordingly. The proposed
method showed better k-NN classification accuracy than the metric learning
methods on most document and image datasets, and comparable on the rest. We
also evaluated the proposed method on the UCI datasets which are frequently
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used as the benchmark for metric learning. Because of the low dimensionality
of the datasets, the hubness effect was not evident. As a result, the effectiveness
of the proposed method was not observed on these datasets.

• The experiments showed that our approach was substantially faster than the com-
pared metric learning methods. For large document and image datasets, the
speed-up was more than two orders of magnitude over the fastest metric learning
methods, although the classification accuracy was better or comparable.

We have focused on multi-class classification problems in this chapter, but hubness
is known to be harmful in other situations, such as clustering and semi-supervised
classification in high-dimensional space [Radovanović et al., 2010a]. We plan to ex-
tend our approach to deal with such situations. We will also extend our method to learn
nonlinear metrics.

Another direction of future work is to investigate the effect of our approach on kernel
machines. Metric learning has been shown to be an effective preprocessing for kernel
machines [Dhillon et al., 2010; Weinberger and Tesauro, 2007; Xu et al., 2013], and
we will pursue a similar line using our approach.
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Table 5.2: Skewness of N10 distribution: A high skewness indicates the emergence of
hubs (smaller is better). The bold figure indicates the best performer.

(a) UCI datasets.

method ionosphere balance-scale iris wine glass

original metric 1.65 0.93 0.40 0.71 0.77
LMNN 1.05 0.63 0.39 0.61 0.74
ITML 0.96 0.79 0.10 0.43 0.70
DML-eig 0.78 0.66 0.41 0.38 0.59
proposed method 1.04 0.56 0.32 0.55 0.59

map-test 1.67 1.13 0.32 0.89 1.18

(b) Document datasets.

method RCV News Reuters TDT

original metric 13.35 21.93 7.61 4.89
LMNN 3.86 14.74 7.63 4.01
ITML 4.27 19.65 7.30 2.39
DML-eig 1.71 1.45 3.05 1.34
proposed method 1.14 2.88 4.53 1.44

map-test 21.57 33.36 17.49 6.71

(c) Image datasets.

method AwA CUB SUN aPY

original metric 2.49 2.38 2.52 2.80
LMNN 3.10 2.96 2.80 3.94
ITML 2.42 2.27 2.37 2.69
DML-eig 1.90 1.77 2.39 2.17
proposed method 1.24 0.97 1.02 1.23

map-test 7.81 7.83 7.48 11.65
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Table 5.3: Classification accuracy [%]: Bold figures indicate the best performers for
each dataset.

(a) UCI datasets.

method ionosphere balance-scale iris wine glass

original metric 86.8 89.5 97.2 98.1 68.1
LMNN 90.3 90.0 96.7 98.1 67.7
ITML 87.7 89.5 97.8 99.1 65.0
DML-eig 87.7 91.2 96.7 98.6 66.5
proposed method 89.6 89.5 97.2 98.6 70.8

map-test 79.7 89.4 97.2 96.3 62.3

(b) Document datasets.

method RCV News Reuters TDT

original metric 92.1 76.9 89.5 96.1
LMNN 94.7 79.9 91.5 96.6
ITML 93.2 77.0 90.8 96.5
DML-eig 94.5 73.3 85.9 95.7
proposed method 94.4 81.6 91.6 96.7

map-test 89.1 70.0 85.9 95.4

(c) Image datasets.

method AwA CUB SUN aPY

original metric 83.2 51.6 26.2 82.2
LMNN 83.0 54.7 24.4 81.8
ITML 83.1 51.3 26.0 82.4
DML-eig 82.0 53.5 22.4 81.6
proposed method 84.1 52.4 28.3 83.4

map-test 79.2 43.3 14.6 78.7
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Table 5.4: Training time [sec]: Bold figures indicate the best performer for each
dataset.

(a) Document datasets.

method RCV News Reuters TDT

LMNN 1713.0 1164.7 676.2 886.1
ITML 35.5 1512.5 124.1 169.0
DML-eig 762.2 6145.9 2710.4 2350.6
proposed 6.0 7.0 4.6 16.1

(b) Image datasets.

method AwA CUB SUN aPY

LMNN 1525.5 1098.2 15704.3 317.3
ITML 1536.3 577.6 1126.4 9211.2
MDL-eig 2048.0 2084.7 2006.1 1787.1
proposed 9.5 1.5 4.1 6.4
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Chapter 6

Conclusion

6.1 Summary
In Chapter 3, we have investigated the effect of hubness phenomenon on bilingual

lexicon extraction, and indeed observed the emergence of hubs, which indicated the
words in target language were frequently extracted as the translation words for given
source words. It has suggested that the emergence of hub words were harmful to
bilingual lexicon extraction. In addition to this results, we have extended the exist-
ing hubness reduction methods, centering and mutual proximity, to bilingual lexicon
extraction. Theses methods have reduced the emergence of hub words, and thus im-
proving the extraction accuracy accordingly.

In Chapter 4, we have first presented the theoretical analysis which explains why
hubs emerge in zero-shot problem. Guided by this analysis, we have proposed a simple
and straightforward method for reducing hubs. The proposed approach has efficiently
reduced the hubs, and achieved better results compared with baseline on synthetic and
real datasets.

In Chapter 5, we have casted suggested that k-nearest neighbor classifications can
be regarded as zero-shot problem. From this point of view, we have extended the
method proposed in Chapter 4 to ordinary classification problem. In our experiments,
the method has surely reduced the emergence of hub, and showed better k-NN clas-
sification accuracies than the metric learning methods on most document and image
datasets, and comparable on the rest. In addition, the proposed method was substan-
tially faster in terms of training speed.



6.2 Future Directions
Future research topics include: (i) extending the analysis of Section 4.4 to cover

multi-modal data distributions, or other similarity/distance measures such as cosine;
(ii) investigating the influence of mapping directions in other regression-based ZSL
methods, including neural networks; and (iii) investigating the emergence of hubs in
CCA.

We have focused on multi-class classification problems in Chapter 5, but hubness is
known to be harmful in other situations, such as clustering and semi-supervised clas-
sification in high-dimensional space [Radovanović et al., 2010a]. We plan to extend
our approach to deal with such situations. We will also extend our method to learn
nonlinear metrics.

Another direction of future work is to investigate the effect of our approach on kernel
machines. Metric learning has been shown to be an effective preprocessing for kernel
machines [Dhillon et al., 2010; Weinberger and Tesauro, 2007; Xu et al., 2013], and
we will pursue a similar line using our approach.
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