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Statistical waveform modification
for speaking and singing voice conversion *

Kazuhiro Kobayashi

Abstract

The variation of the voice characteristics, such as voice timbre and fundamental fre-
quency (Fy) patterns, produced by individual speakers/singers is always restricted by
their own physical constraints due to the speech production mechanism. In particular,
the voice timbre of speaking and singing voice significantly depends on the physical
constraints of the individual speakers/singers. If the speakers/singers freely produced
many varieties of the voice timbre beyond their own physical constraints, it would
break down the limitations of speaking and singing voice expressions and open up an
entirely new speaking/singing expression style. In this thesis, toward the realization
of a new speaking/singing expression style, we focus on two kinds of approaches for
a user (speaker and singer) as follows: 1) convert the individuality of the user’s voice
expression into that of a specific target speaker/signer, and 2) control the voice factor
of the source voice based on words expressing voice timbre as a perceptually under-
standable voice timbre definition.

Voice conversion (VC) is a potential technique for enabling us to produce speech
sounds beyond our own physical constraints. As one of the most popular statistical
VC methods, a regressian mixture model (GMM) was proposed. In this technique, the
individuality of a source speaker/singer is converted into that of a target speaker/singer
by altering several acoustic features such as Fj, aperiodicity, and spectral envelopes.
However, the VC based on the GMM method is not used in practice because the sound
quality of the converted voice is significantly degraded compared with that of a natural
speech waveform.

One of the major factors causing the quality degradation is the waveform genera-
tion process using a vocoder. In the waveform generation process, a converted voice is
generated by vocoding using transformed F,, converted aperiodicity, and spectral en-
velopes. In this process, various factors such as Fj extraction errors, unvoiced/voiced
decision errors, and spectral parameterization errors resulting from liftering usually
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cause the sound quality degradation of the converted voice. To address this issue, in
this thesis, we propose a statistical waveform modification technique for both VC and
voice factor control approaches using speaking and singing voices.

For VC, to alleviate the sound quality degradation caused by vocoding, we propose
a conversion technique without vocoding that directly modifies the signal in the wave-
form domain by estimating the difference between the spectra of the source and target
voices. To convert the voice timbre of the source speaker/singer into that of the target
speaker/singer, the spectral differential is estimated using a differential GMM (DIF-
FGMM), which was modeled by parameter transformation of the traditional GMM.
Then, the converted voice is generated by filtering the waveform signal of the source
voice with the estimated spectral differential. In this framework, it is possible to
avoid the waveform generation process using vocoding because source excitation of
the source voice is directly used as the excitation signal. The experimental results
demonstrate that intra/inter-gender statistical waveform modification techniques make
it possible to significantly improve the sound quality of the converted voice in VC and
singing VC (SVC).

For voice factor control, we focus on the singing voice because singers have more
opportunities to control their singing voice characteristics compared with speakers, be-
cause the singers often use vocal effectors. We focus on the perceived age, that is, the
age that a listener predicts the singer to be, of singing voices as one of the factors to
intuitively describe the singing voice. To fully understand the acoustic features that
contribute to the perceived age of singing voices, we first perform an investigation of
the acoustic features that play a part in the listener’s perception of the singer’s age.
Then, we propose voice timbre control techniques based on multiple-regression GMM
(MR-GMM), which converts the singer’s perceived age while retaining singer individ-
uality in SVC. The experimental results indicate that the proposed voice timbre control
based on the perceived age makes it possible to control voice timbre while retaining
singer identity.

Finally, we propose several techniques for implementing real-time VC and voice
timbre control systems based on statistical waveform modification. We describe overviews
and components of real-time VC and voice timbre control systems with statistical
waveform modification. The experimental results demonstrate that our proposed real-
time conversion systems make it possible to achieve higher sound quality than that
obtained with the conventional real-time conversion framework.

Keywords:

statistical waveform modification, voice conversion, voice timbre control, speaker and

singer individuality, Gaussian mixture model
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1. Introduction

1.1. General background

In speech communication, speakers can handle their speech production mechanism
subconsciously to transmit information. The variation of the voice characteristics,
such as voice timbre and fundamental frequency (F)) patterns, produced by individual
speakers is always restricted by their own physical constraints due to the speech pro-
duction mechanism. These constraints are helpful for making it possible to produce a
speech signal capable of simultaneously conveying not only linguistic information but
also nonlinguistic information such as speaker identity and emotions. However, the
physical constraints sometimes cause various limitations to the expansion of speech
expressions. In particular, voice timbre significantly depends on the physical con-
straints of an individual speaker. Figure 1.1 indicates the limitations of the voice tim-
bre expression in each speaker. For speaker A, although he can produce a speaking
voice consisting of various voice timbre expressions, such as joy, anger, and sadness,
within his expression range, restricted by his physical constraints, he cannot produce a
speaking voice with the voice timbre of the other speakers such as speakers B and C,
because the voice timbres of these speakers is beyond the range of speaker A.

Singers face similar limitations of voice timbre expression because singing voices
also rely on their speech production mechanism. To make singing voices more ex-
pressive, singers usually use various vocal effectors such as chorus, flangers, and pitch
correction. Although these effectors are effective for augmenting their vocal expres-
sions, it is difficult to understand the usage of vocal effectors intuitively because the
control knobs of these effectors are usually labeled with unpredictable cues such as
tone, mix, and depth. Moreover, these vocal effectors cannot enable voice timbre con-
trol beyond the singer’s individuality (e.g., changing the voice timbre of a user into that

of another specific singer). If individual speakers/singers could freely produce various
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Figure 1.1.: Limitations of speaking expression for individual speakers.

voice timbre expressions beyond their physical constraint, it would break down the
limitations and open up entirely new speech/singing expression styles.

To realize a new expression style, in this thesis, we focus on voice conversion and
voice factor control to generate an ideal speaking/singing voice. Figure 1.2 illustrates
our intended voice conversion and voice factor control systems. We assume that there
are two different approaches to creating a desirable voice as follows: 1) convert the
speaker/singer individuality of a user into that of another specific target speaker/signer,
and 2) control the speaking/singing voice of a user in accordance with a perceptually
understandable voice factor. The first approach is for the user to imitate the speak-
ing/singing style of an ideal speaker/singer by assuming the voice characteristics of
the ideal target speaker/singer. This can be achieved by converting the acoustic fea-
tures of the user’s speaking/singing voice into those of the ideal speaker/singer’s speak-
ing/singing voice using a voice conversion framework. In the latter approach, the user
creates a new speaking/singing expression demonstrating his/her own creativity, with-
out reference to a specific target speaking/singing voice. In this approach, to find an
ideal speaking/singing voice intuitively, perceptually understandable factors such as
voice timbre expression words (e.g., age, sweetness, and masculinity) are effective for
controlling the speaking/singing voice.

In addition to implementing the above two approaches, we consider the following

requisites for voice conversion and voice factor control systems to be important for
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Figure 1.2.: Approaches of voice conversion and voice factor control.

satisfying the expectations of the user.

e Similarity: how similar the converted speaking/singing voice is to the ideal

speaking/singing voice

e Controllability: how intuitively and correctly controllable the speaking/singing

voice factor is
e Sound quality: the amount of sound quality degradation after conversion/control

e Real-time availability: conversion/control without any delay after inputting orig-

inal speaking/singing voice.

When these requisites are satisfied, it is expected that the voice conversion and voice
factor control systems can be used in practical applications.

1.2. Definition of voice conversion

Figure 1.3 illustrates the definition of voice conversion (VC). VC research was origi-
nally started as a technique for converting the individuality of a source speaker into that
of a target speaker without changing the linguistic information of the source speech [1].
This conversion technique has been widely adapted into various research domains such

as speech disorder [2], speech to articulatory mapping [3, 4], speech to facial image
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Figure 1.3.: Definition of voice conversion.
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Figure 1.4.: Schematic image of voice conversion and voice factor control.

conversion [5], and speech enhancement [6]. Different from these domains, VC is
usually called a speaker/singer individuality conversion technique. On the other hand,
the applicability of VC is limited to speaker/singer individuality conversion and voice
factor control. In this thesis, we separately deal with VC research on two different
approaches, VC (i.e., speaker/singer individuality conversion) and voice factor con-
trol, because the main motivations behind these approaches are different. Figure 1.4
indicates a schematic image speaker/singer individuality conversion and voice factor
control.

For VC, the research aim is to implement an absolute individuality conversion tech-
nique of speakers/singers when target speaking/singing voice samples are supplied
to a system. In order to implement such a technique, all components of the source
speaker/singer, such as acoustic features and locutions, are converted into those of the

target speaker/singer. In other words, individuality conversion can be said to be a point



estimation from the source speaker/singer the target speaker/singer.

In contrast to VC, the main aim of a voice factor control is to convert a source
speaking/singing voice into an ideal speaking/singing voice without any specific target
speaking/singing voice samples. To generate the ideal speaking/singing voice without
the target, it is necessary to be capable of controlling the output voice because the
system cannot assume the ideal voice timbre of the user. Therefore, the voice factor
space, which takes on the controllability of voice timbre, should be not a point but a
space. Moreover, the controlled components are chosen from among all components of
the source speaking/singing voice because it is not necessary to control the components

that do not affect the voice factor.

1.3. Related works and problem definition

VC [1] is a potential technique enabling VC system users to produce speaking/singing
voices beyond their own physical constraints [7]. The mainstream in VC is a statisti-
cal approach to developing a conversion function using a parallel data set consisting
of utterance pairs of the source and target speakers/singers. One of the most pop-
ular statistical VC methods is a regression method using a Gaussian mixture model
(GMM) [8,9]. In this technique, acoustic features of the source speaker/singer are con-
verted into those of the target speaker/singer on the basis of a previously trained GMM.
The performance of the GMM-based VC method has been significantly improved by
incorporating a trajectory-based conversion algorithm, modeling additional features to
alleviate an oversmoothing effect of the converted speech parameters, such as global
variance (GV) [10] and a modulation spectrum (MS) [11], and implementing sophisti-
cated vocoding techniques such as STRAIGHT [12] with mixed excitation [13]. More-
over, the GMM-based VC method is capable of converting the voice timbre of an arbi-
trary source speaker/singer into that of an arbitrary target speaker/singer by the eigen-
voice technique [14, 15], and controlling the voice timbre of the source speaker on the
basis of perceptually understandable voice timbre expression words [16] such as age
and powerful [17, 18]. In addition to these novel techniques for the GMM-based VC
method, the most significant advantage compared with the other statistical conversion
models such as Gaussian process regression [19,20] and deep neural networks [21-23]

is that a small-delay conversion for a real-time VC system has been successfully im-



plemented [24,25].
Using the above novel techniques, among the four requisites defined in Section 1.1,
“Similarity” and “Real-time availability” are almost satisfied compared with the other

requisites, “Sound quality” and “Controllability”.

1.3.1. “‘Sound quality” problem

In VC based on GMM, its conversion process usually causes significant sound quality
degradation of a converted voice owing to various factors such as insufficient mod-
eling accuracies of the acoustic model and waveform generation. One of the major
causes of this sound quality degradation is the waveform generation process using
a vocoder [26]. For the vocoding process, the sound quality degradation is usually
caused by various factors such as F, extraction errors, unvoiced/voiced decision errors,
and spectral parameterization errors caused by liftering, which are indeed difficult to
solve even when using high-quality vocoding frameworks [12,27-29]. The waveform
generation based on vocoding is usually a lossy process even when using the acoustic
features extracted from an original waveform and without performing any modifica-
tion. Therefore, the sound quality degradation is unavoidable as long as the vocoding

framework is used.

1.3.2. “Controllability”’ problem

In VC for individuality conversion, it is not necessary to control the converted voice
because the target is explicitly given by the user. On the other hand, for voice factor
control, the controlling factor is defined on the basis of not an actual target but an
ideal speaking/singing voice, and is constructed in the user’s mind. Therefore, it is
difficult for a voice factor control system to estimate the control factor. In this thesis,
to estimate the control factor and meet the expectations of the user, we focus on voice
timbre expression words and their scores [17, 18]. Using the voice timbre expression
words and their scores, it is expected that the system can tract the virtual target of the
user.

As a technique of controlling the voice factor using voice timbre expression words,
the voice timbre control technique based on the MR-GMM has been proposed [16].
This technique makes it possible to control the voice factor related to voice timbre in



accordance with the voice timbre expression words. However, this technique can only
convert the voice timbre of the source voice into an average voice corresponding to the
voice timbre expression score input by the user. Therefore, it is impossible to maintain

speaker/singer individuality after conversion.

1.4. Thesis scope

In this thesis, we focus on speaker/singer individuality conversion (i.e., VC) and singing
voice factor control. At first, we describe a VC technique based on statistical wave-
form modification for a speaking/singing voice without the use of vocoding. Then, we
describe a voice factor control technique based on perceptually understandable voice
timbre expression words while retaining speaker/singer individuality. Finally, we de-
scribe our implemented real-time VC systems for both VC and voice factor control via

statistical waveform modification.

1.4.1. Voice conversion

In Chapter 3, in order to alleviate sound quality degradation caused by vocoding, we
deal with this issue in the order of intra-gender singing VC (SVC) and intra/inter-
gender VC. Note that we rephrase the individuality conversion as VC following the
convention in this research area.

Figure 1.5 illustrates the hypothesis of sound quality improvement without vocoding
in VC. In Section 1.3.1, we described the problem of sound quality degradation when
using the vocoding framework. For the conventional VC framework, it is impossible
to avoid the use of the vocoding framework to transform F;, and convert aperiodicity
and spectral envelopes. It is expected that a vocoderless VC technique will make it
possible to improve the sound quality of the converted voice.

Intra-gender SVC

First, we focus on intra-gender SVC. In contrast to VC for normal speech, in intra-
gender SVC, it is not necessary to transform F of the source singer into that of the
target singer because these singers often sing in the same key defined by a song or
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Figure 1.5.: Hypothesis of sound quality improvement without using vocoding.

score. Also, it is considered that the effect of the aperiodicity of intra-gender con-
version does not exceed that of inter-gender conversion. Therefore, we assume that
the conversion of spectral envelopes can achieve sufficient accuracy of the singer indi-
viduality conversion. On the basis of this idea, in intra-gender SVC, we propose the
spectral conversion technique without the vocoder.

In the conventional VC framework, the use of the vocoding framework to gen-
erate a waveform of the converted voice is unavoidable because the source singing
voice is fully decomposed into acoustic features to allow conversion into the target
singing voice. This vocoding process causes significant sound quality-degradation of
the converted voice. In Section 3.2, to avoid waveform generation using vocoding,
we propose a statistical waveform modification technique of using the spectral differ-
ential. The waveform of the source singing voice is directly modified with a digital
filter that uses the time-varying difference in the spectral envelope between the source

and target singers’ singing voices. Note that this spectrum differential is statistically



estimated from the spectral envelopes of the source singing voice using a differential
GMM (DIFFGMM). We propose several spectral differential generation techniques for
intra-gender SVC using direct waveform modification (DIFFSVC): 1) spectral differ-
ential estimation based on the DIFFGMM, 2) spectral differential estimation based on
the DIFFGMM considering GV, 3) spectral differential estimation based on the DIF-
FGMM considering MS, and 4) spectral differential estimation based on the trajectory

differential spectral feature.

Intra/inter-gender VC

To make it possible to expand the intra-gender DIFFSVC framework to other situations
such as inter-gender DIFFSVC or VC for normal speech, it is necessary to implement
an F, transformation without vocoding because the Fys of the source and target speak-
ers/singers are usually different in such situations. In particular, the VC for normal
speech is a more difficult problem compared with inter-gender SVC because it is nec-
essary to accept not double or half but various F, transformation ratios. In Section 3.3,
we propose several F transformation techniques for intra/inter-gender VC based on
direct waveform modification using the spectral differential (DIFFVC). The follow-
ing F transformation techniques with and without the vocoding process are proposed:
1) DIFFVC with F transformation using a STRAIGHT vocoder, 2) DIFFVC with F,
transformation based on the residual signal modification using time-scaling and resam-
pling, and 3) DIFFVC with F, transformation based on waveform modification using

time-scaling and resampling.

1.4.2. Voice factor control

In Chapter 4, we focus on the control of the singing voice timbre because the vocal
effectors for the singing voice are widely used in practice compared with those of the
speaking voice. Therefore, it is expected that a voice factor control system will be
familiar to the user of singing vocal effectors.

For the voice factor control, we focus on voice timbre expression words [17] as con-
trol cues of the voice factor space. There are a great many voice timbre expression
words such as sweet and powerful. It is considered that almost all voice timbre ex-

pression words will be effective in controlling the source voice if the user can use ideal
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voice timbre expression words. However, it is difficult to optimize the voice factor
space for all users because annotated scores of voice timbre expression words tend to
have no consistency with each user. Therefore, it is difficult to implement a generic
voice factor control system for all users if the system accepts arbitrary voice timbre
expression words.

In this thesis, to implement such a generic voice timbre control system for all users,
we focus on the perceived age, that is the age that a listener predicts the singer to be,
as one of the factors used to intuitively describe the singing voice. The age has several
good properties: e.g., age is a measurement on the ratio scale unlike measurements
on a nominal scale, such as gender; age is more understandable than other expressive
word pairs because it is observable; the age is widely distributed over people. The
perceived age is also expected to have some of these good properties and to be con-
veniently used as a control factor to continuously and intuitively modify singing voice
characteristics. On the basis of this idea, we consider that the perceived age is appro-
priate as a voice timbre expression word in the first step of implementing the voice
timbre control system.

In addition to implementing singing voice timbre control based on the perceived
age, we also focus on the singer individuality. In the conventional voice timbre control
based on the MR-GMM, the speaker individuality is one of the factors to be converted
from the user to the target. Therefore, regardless of the difference of the users, the
source voice individuality tends to be converted into another individuality. To address
this issue, we propose voice timbre control based on the perceived age while retaining
singer individuality.

In this thesis, first, we investigate the acoustic features affecting the perceived age
and singer individuality. Then, we propose the voice timbre control technique based
on the perceived age while retaining singer individuality.

Investigation of acoustic features affecting perceived age and singer individuality

There are several studies related to the age or the perceived age for normal speech. It
has been reported that there is a correlation between the actual age and the perceived
age [30]. As an investigation of the impact of aging on speech acoustics, it has been
found that the aperiodicity of excitation signals tends to increase with age [31] and the

perceived age for normal speech is varied by manipulating its F, variations, duration,
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and aperiodicity [32]. A method of classifying the speech of elderly and nonelderly
people using spectral and prosodic features has also been developed [33]. On the other
hand, the perceived age of singing voices has not been studied in detail yet. Therefore,
it is not obvious whether these findings will also be found in singing voices.

A full understanding of the acoustic features that contribute to the perceived age of
singing voices is essential to the development of VC techniques to modify a singer’s
perceived age. Therefore, in Section 4.2, we first perform an investigation of the acous-
tic features that play a part in the listener’s perception of the singer’s age. We conduct
several types of perceptual evaluations to investigate 1) how well the perceived age of
singing voices corresponds to the actual age of the singer, 2) whether or not SVC pro-
cessing causes adverse effects on the perceived age of singing voices, 3) which spectral
or prosodic features have a greater effect on the perceived age, and 4) which spectral

or prosodic features include the individuality of a singer.

Voice timbre control based on perceived age while retaining singer identity

In Section 4.4, we propose a voice timbre control technique based on the perceived
age while retaining singer individuality. Referring to the experimental results of the
investigation described in Section 4.2, we indicated that both prosodic features (e.g.,
F( pattern) and spectral features have an effect on perceived age, and prosodic features
more strongly affect the perceived age than spectral features but they also cause an
adverse effect on the perceived singer’s individuality. In the traditional SVC frame-
work [9, 15], only the spectral features, such as the mel-cepstrum, are converted. In
this section, we first apply VC based on MR-GMM [16] to SVC to achieve perceived
age control. The standard MR-GMM has difficulty in maintaining the individuality of
the source singer, because the subspace of the MR-GMM only expresses the average
voice timbre of training singers. To solve this problem, we propose a voice timbre
conversion technique with a modified MR-GMM to convert the singer’s peceived age
while retaining the singer’s individuality. Moreover, towards the development of a
better-controllability, higher quality, and more flexible framework than the voice tim-
bre control based on MR-GMM, we also propose; 1) a method using gender-dependent
MR-GMMs, 2) a method using direct waveform modification based on a spectrum dif-
ferential, and 3) a rapid unsupervised adaptation method based on maximum a poste-
riori (MAP) estimation [34-36] to easily develop the singer-dependent MR-GMM.
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Figure 1.6.: Thesis overview.

1.4.3. Real-time VC systems based on statistical waveform
modification

In Chapter 5, we describe our implemented real-time VC systems consisting of VC and

voice timbre control via statistical waveform modification. It is not possible to directly

apply a low-delay conversion algorithm [25] into a statistical waveform modification

framework. To address this issue, we propose 1) a parameter transformation technique

for the low-delay conversion algorithm, and 2) a frame-based GV postfilter for small-

delay statistical waveform modification.

1.5. Thesis overview

Figure 1.6 shows an overview of this thesis. This thesis is organized as follows. In

Chapter 2, vocoding and traditional VC frameworks are described as well as state-of-

the-art conversion methods of those VC frameworks. In Chapter 3, we address the
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sound quality degradation caused by vocoding in intra-gender SVC and intra/inter-
gender VC. First, in order to reduce the sound quality degradation of the converted
voice, we propose intra-gender SVC based on direct waveform modification using
the spectral differential (DIFFSVC). Then, to make it possible to apply intra-gender
DIFFSVC to intra/inter-gender VC based on direct waveform modification using the
spectral differential (DIFFVC), we propose several F, transformation techniques. The
effectiveness of intra-gender DIFFSVC and intra/inter-gender DIFFVC is demonstrated
by objective and subjective evaluations. In Chapter 4, we describe the voice tim-
bre control technique for the singing voice based on perceived age while retaining
singer identity. Lastly, we investigate acoustic features affecting the perceived age
and singer individuality. Then, we propose a voice timbre control technique using
the perceived age based on a modified representation of MR-GMM and differential
MR-GMM (DIFFMR-GMM). Moreover, to easily use voice timbre control based on
the modified DIFFMR-GMM, we propose an unsupervised adaptation technique of
an arbitrary source speaker. The effectiveness of the voice timbre control technique
based on the perceived age is confirmed by both objective and subjective evaluations.
In Chapter 5, we describe our implemented real-time VC and voice timbre control
systems and their components. The effectiveness of the real-time VC systems is con-
firmed by both objective and subjective evaluations. In Chapter 6, we summarize the

contributions of this thesis and suggest future work.
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2. Statistical voice conversion

2.1. Introduction

In this chapter, we describe following techniques related to statistical voice conversion
(VO): 1) source-filter model of the speech production based on vocoding, 2) VC based
on Gaussian mixture model (GMM), 3) many-to-many VC based on eigenvoice GMM
(EV-GMM), 4) voice timbre control based on multiple-regression GMM (MR-GMM),
and 5) a low-delay conversion algorithm for GMM-based VC.

This section is organized as follows: In Section 2.2, the source-filter model of speech
production mechanism based on vocoding is illustrated. In Section 2.3, the framework
of VC based on GMM is described. In Section 2.6, we explain many-to-many VC
based on EV-GMM. In Section 2.7, we introduce statistical voice timbre control based
on MR-GMM. In Section 2.8, we describe the low-delay conversion algorithm for
GMM-based VC. In Section 2.9, we explain the issues of conventional VC frame-

works. Finally, this chapter is summarized in Section 2.10.

2.2. Source-filter model of speech production based on
vocoder

Figure 2.1 indicates a source-filter model of the speech production mechanism. Speech
waveform has linguistic and non-linguistic information such as speaker/singer individ-
uality, voice timbre, gender, words, and so on. In the source-filter model, the speech
waveform is modeled as a combination of the source excitation signal and vocal tract
parameter based on speech production mechanism of the individual speaker/singer.
The source excitation signal is generated by vibrating vocal cord in regard to an ex-
haled breath from the lung. This source excitation signal plays an important role in

prosody. In addition to add voice timbre derived from vocal tract parameter, speakers
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Figure 2.1.: Source-filter model based on speech production mechanism [37].

are capable of controlling the linguistic information by manipulating their articulator.

Figure 2.2 describes the analysis/synthesis process of the speech waveform based on
vocoding. In the statistical parametric speech synthesis [38] including text-to-speech
synthesis (TTS) and VC, F), aperiodic components and mel-cepstrum are widely hired
as acoustic parameters in accordance with the source-filter model. For the analysis
process, an original speech waveform is decomposed into F, aperiodic components,
and mel-cepstrum based on STRAIGHT analysis [12]. For the synthesis process, at
first, the source excitation signal is generated by the use of F, and aperiodic compo-
nents in excitation generation. One-pitch signal is generated by selecting the phase-
manipulated pulse signal based on the F, consisting of weighted noise signal using
the aperiodic components, for voiced segments or white noise for an unvoiced seg-
ment. Then, pitch synchronous over-lap add (PSOLA) [39] is performed in order to
generate the excitation signal. Finally, the speech waveform is generated by filter-
ing the source excitation signal with the mel-cepstrum based on the mel log spectrum
approximation (MLSA) filter [40].
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2.3. VC based on GMM

VC based on GMM is a technique to convert voice timbre between a source speaker
and a target speaker. This technique consists of the training process and conversion

process. Figures 2.3 and 2.4 indicate the training and conversion process.
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Figure 2.3.: Training process of VC based on GMM.

2.3.1. Training process of GMM

For the training process, a joint probability density function of acoustic features of
the source and target speech samples is modeled with a GMM using a parallel data
set [9]. As the acoustic features such as mel-cepstrum and aperiodic components of the
source and target speakers, we employ 2D-dimensional joint static and dynamic feature
vectors X, = [x;,Ax/]" of the source and Y, = [y, Ay, ]" of the target consisting of
D-dimensional static feature vectors x; and y, and their dynamic feature vectors Ax,
and Ay, at frame ¢, respectively, where T denotes the transposition of the vector. Their
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joint probability density modeled by the GMM is given by

M (X) (XX) (XY)
X, Hon 2D Mok
P(X, Y1) = ; amN([ v ] ;[ i H - D 2.1)

where N (-; i, X) denotes the normal distribution with a mean vector p and a covariance
matrix X. The total number of mixture components is M. The mixture component
index is m. A is a GMM parameter set consisting of the mixture-component weight
@, the mean vector u,,, and the covariance matrix X, of the m-th mixture component.
A GMM is trained using joint vectors of X; and Y, in the parallel data set, which are

automatically aligned to each other by dynamic time warping.
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2.3.2. Conversion process

For the conversion process, the acoustic feature extracted from a source speech sample
is converted into target speaker based on maximum likelihood parameter generation
technique [10]. Time sequence vectors of the source features and the target features
are denoted as X = [X|, - ,X;]" and Y = [Y],---,Y]" where T is the number of

frames included in the time sequence of the given source feature vectors.

PYIX, Q) = Y PmiX,)P(Y|X,m,A)
allm
T M
= [ | D] Pemix., HP(YIX, m, D), 2.2)
=1 m=1
where m = [my,my,--- ,m,,--- ,my] indicate mixture component sequence. Maxi-

mum likelihood mixture component at frame ¢ P(m|X;, 1) and m-th conditional proba-
bility density function P(Y,|X,, m, 2) follow:

an N (X5 p, Z07)

Pm| X, ) = — (2.3)
D> N (X, 0, Z00),
n=1
P(Y,|X,m ) = N(Y,:E),. DY), 24)
where
-1
ED = u+ 20si0 (x, - ), 25)
DY — N _y0yX0~Iyxn (2.6)

Converted feature vector § that maximizes the likelihood function described in Eq. (4.7)

is estimated based on following equation.

y=argmaxP(Y | X, D) subjectto Y = Wy, 2.7)
y

where W is a transformation matrix to expand the static feature vector sequence into
the joint static and dynamic feature vector sequence [41].

To reduce computational costs of the parameter generation, we approximate the
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likelihood function of the converted feature vector described in Eq.(4.7) using sub-

optimum mixture component sequence m = [y, - - - , ] as follows:
PY| X, )=P(m|X, )P(Y|X, m, ), (2.8)
where the sub-optimum mixture component sequence m is given by

m=argmaxP(m| X, A). 2.9)
m

Using this sub-optimum mixture component sequence, the converted feature vector is

determined as follows:

y = argmaxP(m| X, H)P(Y | X, m, )
y
— _1 p—
_ (WTD(mY) 1W) WTDOTED, 2.10)
where
EQ = [EY L ED, - EY, - ED .| Q2.11)
DV = diag [Dg]rl’ D DI Dgg‘l], (2.12)

2.4. Parameter generation considering GV

In order to alleviate the sound quality degradation due to over-smoothing effect of the
converted feature trajectory, we incorporate probability density function of global vari-
ance (GV) [10] of static feature vector sequence as a constraint term of the likelihood

function. The GV of the static feature vector sequence is defined as follows:

o) = [v(1), v2), -+, 0(d), -+, (DT, (2.13)
1 T

od) = = ) ld) = g’ (2.14)
1 t;l

i) = = ) ydd), (2.15)
=1
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where y,(d) indicates d-th dimensional component of static feature vector of the target
speaker at frame ¢. The probability density function of the converted feature vector

considering GV is defined as follows:

P(Y|X, 2 A7)
subjectto Y

P(Y|X, P (o) | AV)
Wy, (2.16)

where e is a hyper-parameter that adjusts a balance between two likelihood functions
P(Y|X, Q) and P(v(y) | /l(”)). Probability density function of the GV is modeled by
Gaussian distribution A consisting of mean vector u® and covariance matrix £ as

follows:

Po@) 1 47) = N (v@): 1, =), (2.17)

The converted feature vector sequence considering GV 1is estimated by maximizing

following objective function,
L =log{P(Y | X, iie, ) P(v(y) | A”)}. (2.18)

The iterative parameter update using gradient descend is performed as bellow:

gern-th = g-th o AgO-ih (2.19)
. 0
Ayl-in = a;: , (2.20)
Y=y

where « is a step-size parameter. The first derivative of the objective function is given

by
oL _ T M1 T~ )
W - e(—W DY Wy + WD Em)
A AT AN Al I (2.21)
v, = [U)(1), V)2), -+, Vd), -+, Ui(D)]", (2.22)
2
v(d) = —717(”)(61)T (v(y)—ﬂ(”))(yz(d)—y(d)), (2.23)

oL ) ) -1
where p®“(d) indicates a d-th column vector of inverse matrix P = X"
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2.5. Post-filtering considering MS

In order to sophisticatedly model the converted feature trajectory compared to GV,
modulation spectral (MS) has been proposed [42]. The MS is represented as log-
scaled power spectral of the acoustic feature sequence of the target speaker, which is

calculated as follows:

s@) = [s()7,- L s@7, 8D, (2.24)
sd) = [540),-- ,54(f), 54D, (2.25)

where s,(f) is the f-th MS of the d-th dimension of the acoustic feature sequence
[y:1(d),--- ,y(d)]", f is a modulation frequency index, D, is one half number of the
discrete Fourier transform (DFT) length. The MS is calculated from an utterance that
is zero-padded to set its length to 2D.

For the training process, two probability density functions of the MS for the natural
feature sequence y and converted feature sequence § are modeled based on Gaussian
distribution 1Y) and A©), respectively. The parameter set A consists of mean vector
4 and covariance matrix £V, The probability density function of MS for the natural

feature sequence are given by

P(s@) | AY) = N(s@):p™, 2V, (2.26)
u = [l (2.27)
yv diag [(0'(1{\8)2 e (O'(DA’%N)Z] , (2.28)

2
where ,uEZNf) and (0'%3) is a mean and a variance of s,;(f). The probability density

function of MS for the converted feature sequence is also given by
P(s@129) = N(s@:u©. L) (2.29)

For the filtering process, the following filter is applied to the converted feature se-

quence # as follows:

(N)
s'a(f) = (1 = k)sa(f) +k %(sd(f)—uif})wif? : (2.30)
d.f
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where k is a post-filter emphasis parameter valued between O through 1.

2.6. Many-to-many VC based on EV-GMM

Many-to-many VC based on EV-GMM is a technique to convert voice timbre of an
arbitrary source speaker into that of an arbitrary target speaker [15,43]. Many-to-many
VC based on EV-GMM consists of the training process and conversion process.

2.6.1. Training process of EV-GMM

For the training of the EV-GMM, joint feature vectors of a single reference speaker
and several pre-stored target speakers are extracted using dynamic time warping in
advance in the same manner as VC based on GMM. Time sequence vectors of the
reference speaker and the pre-stored target speaker are denoted as X, = [x;,Ax/]T,
YW = [T, AyT]T where T is the number of frames included in the time sequence

of the given source feature vectors. The number of pre-stored target speakers is S.
Joint probability density function of the EV-GMM is given by

M X) (YY) (XY)
X 7] Y py
ONEV) L) — ! m m m
P(X, Y"1 e )_m§:1amN([ o [ @ | g0 wom D (2.31)

where the mean vector of s-th pre-stored target speaker follows:

Y (s) = Aye® + 1, (2.32)
where e = [e®(1),---,e®(J)]T is a J-dimensional eigen weight vector of s-th pre-

stored target speaker. A=Y is a EV-GMM parameter set consisting of basis vector
A, = lay,, - ,a,y] and bias vector 1, = [L,1,- -, 1, ] depending on the mixture
component in addition to the parameter set of the GMM.

The training process of the EV-GMM is composed of training processes of speaker-
independent GMM (SI-GMM) and speaker-dependent GMM (SD-GMM), principal
component analysis and speaker adaptive training (SAT). Figure 2.5 indicates the train-
ing process of the EV-GMM.

Stepl : Training process of SI-GMM
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Joint probability density function of the reference speaker and all pre-stored tar-

get speakers is given by

©

S T
A% = = argmaz [T] [rx. ¥, (2.33)

s=1 t=1

where T is the frame number of joint feature vector for the reference speaker
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and s-th pre-stored target speaker. A” indicates a parameter set of the S-GMM
consisting of the mixture-component weight «,,, the mean vector u,,, and the

covariance matrix X, of the m-th mixture component.

Step2 : Training process of SD-GMM
For the training process of the SD-GMM of s-the pre-stored target speaker, the
mean vector of the SI-GMM A is updated as follow:

)

T
A7 = argmax | | P(X,, Y140, (2.34)

t=1

where 1 is a parameter set of the SD-GMM of s-th pre-stored target speaker.

Let Y,(s) = [Y](s),AY](s)]" denote the joint static and delta feature vector
at frame ¢ of the pre-stored target speaker s to be adapted. The mean vector
set of the s-th pre-stored target speaker fi(s) = {ft,(s), - ,f1,,(s)} is given by

maximizing following likelihood function:

T

i(s) = P(X,, Y ()1, u(s)). 2.35)
acs) arlgliz;t)axl;[ ( s y7) s)) (

This update process is performed using the expectation-maximization (EM) al-

gorithm using following auxiliary function:

T M
Q) f(s) = D> P(mlX,, ¥i(5),4%, p,(5))
=1 m=1

log P (X, Y,(5), mA®, fu,,(s)). (2.36)

The maximum likelihood estimate of the m-th target mean vector f1,,(s) is calcu-
lated as follows:

M -1
i, (s) = {Z TP Y’}
m=1

M
{Z POV ,0(s) + P (X — rm/uﬁ,’?)} : (2.37)

m'=1
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where

P(mlX,, Y (5). A7, 1,,(5)), (2.38)
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Step3 : Principal component analysis
2DM-dimensional super vector SV = [,u(Y (ST, - ,,ug)(S)T]T is obtained
by concatenating M mean vectors in each pre-stored target speaker. The basis
vector A and bias vector [ are derived based on principal component analysis

using the super vector as bellow

SV(S) =~ [AT’ ) AL]Te(S) + [lT’ T IL]’ (242)
1 S
RS 2
s=1

Step4 : Speaker adaptive training
To improve the modeling accuracy of the EV-GMM, further optimization of the
EV-GMM using speaker adaptive training (SAT) [44,45] is performed [43]. The
EV-GMM is refined by maximizing following likelihood function using a paral-
lel data set in each pre-stored target speaker as follows:

S T
H P(X,, YY), ), (2.44)

1=

A(EV) A (S
{/l( ) Q( )} = argmax
/l(EV) Q(S)

”E

where Q©) = {e(l), e ,e(S)} is a set of eigen weight vectors of all pre-

stored target speakers. In the optimization process based on SAT, following
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objective function is maximized based on EM algorithm.

Ty

S M
Q({Q(EV)’Q(S)} {19, 09) ) Z Z ZP(lez, YO, AEY) )

s=1 t=1 m=1

log P(X;, Y, m|AEY), ). (2.45)

AEYV) e is estimated. Then, in

In the E-step, posterior probability P(m|X,, st),
the M-step, the EV-GMM parameter set depends on each pre-stored target speak-
ers is updated. In the M-step, the parameters are updated one-by-one because it

is difficult to update simultaneously.

At fast, eigen weight vector in each pre-stored target speaker is updated. Max-
imum likelihood estimate of the eigen weight vector of s-th pre-stored target

speaker is given by

A(S) (Z Iﬂm SA;;P’(;/Y)A )

-1

where

= Yk ZP(mm YOARE), 4D
t=1
—) &
X, = >, (2.48)
t=1
72) _ Zy'(’;)’Y(S) (2.49)
B P(XX) P(XY)
xn-l  _ m m
B = | g (2.50)

Next, mean vector of the EV-GMM is updated as follows:

S
0, = (Z FS) Z(XY) 1 A )[Z I-‘(v)W E(XY) IZ(Y)) (2.51)
s=1
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where

—(s —)T =TT

z) = X0 7, (2.52)
: A T

o = [0 a7 a2, ,amuf] , (2.53)

. (70 0 o0 --- 0

WS = (S) (‘) A(Y) . (2.54‘)
»0 1 él‘I ezl eJ‘I

Then, mixture component weights of the EV-GMM are updated as follows:

S
S
m
s=1

S5

m=1 s=1

Finally, covariance matrix of EV-GMM is updated as bellow:

S
B0 = SV AT - (a7, + 2, T ) 256
Z F (s) s=1
s=1
where
O & T
7 s T T
V., = v x5y [x v 2.57)
=1
AX)
"(X‘Y) — W ‘_/(S) _ R My 258
I‘lms s m Ame(;) + l ( )

2.6.2. Conversion process

Figure 2.6 indicates adaptation process of arbitrary source and target speakers and
conversion process based on the EV-GMM. In the conversion process, the joint prob-
ability density function of the acoustic feature between the source and target speakers
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is derived as

P (Yﬁ”, YOIUEY D), e("))

M
= > P(mA®") f P(Y1Xm, A5, e?)
m=1

P(Y1X,.m, A%, &) P(X,|m, A*") dX,

M Ygi) ﬂg)(l) E(YY) E(YXY)
m=1 m m m
RUXY) g5 X0~y (&), (2.60)

where Yﬁi) and Yﬁ”) indicate the source and target speakers’ static and dynamic fea-
ture vectors, respectively. Speaker-dependent models of the source and target speaker
y,(,f)(i) and ,uf,f)(o) are determined by Eq. (2.61) by the use of source and target speak-
ers’ eigen weight parameters e, ¢, respectively. Their eigen weight parameters ¢,

e are given by

(3
Il

argmax f P(X, Y“A1EY) e)dX
e

T
argmax | | f P(X,, Y“|A"Y) e)dX,
€ t=1

T
argmax ]—[ PYIIAEY) ¢), 2.61)
¢ o

where Y indicates feature vector sequence of the arbitrary speaker. Using this many-
to-many EV-GMM, the converted voice is estimated based on maximum likelihood

parameter generation in the same manner as described in Section 2.3.2.
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Figure 2.6.: Conversion process of many-to-many VC based on EV-GMM.

2.7. Voice timbre control based on MR-GMM

2.7.1. Training process of MR-GMM

Voice timbre control based on the MR-GMM is a technique to control voice timbre of
the source speaker using perceptually understandable voice timbre expression words.
VC based on the MR-GMM consists of the training process and conversion process.
The MR-GMM is also trained using multiple parallel data sets consisting of a single
reference’s singing voices and many pre-stored target speakers’ voices. The joint prob-
ability density of 2D-dimensional joint static and dynamic feature vectors modeled by
the MR-GMM is given by

M X) (XX) (XY)
X Jii Y x
() )(MB) _ (s)) _ 4 m m m
P (X, YRR, w®) = a/mN( o | s || o0 0w ] (2.62)
m=1 m m m

where X, = [x],Ax]]" and Y( S = [Y(S)T AY(S)T]T show static and delta feature vectors

of the source and s-th pre-stored target speaker. The mean vector of the s-th pre-stored
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Figure 2.7.: Training process of the MR-GMM.

speaker is given by

1 () = by w + @, (2.63)
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where b'" and ﬁﬁf) indicate the representative vector and bias vector respectively. w'®

indicates the s-th pre-stored target speaker’s perceived score, which is manually as-
signed in each pre-stored target speaker in advance.

In this training process, SD-GMM modeling is performed in the same manner as the
training process of EV-GMM described in Section. 2.6.1. Then, to model the repre-
sentative and bias vectors, the multiple-regression analysis is performed.

2.7.2. Conversion process

In the conversion process, voice timbre expression scores w are manually set to the
desired value to determine the target mean vector. Then, the converted feature vector

18 estimated in the same manner as described in Section 2.3.2.

2.8. Low-delay conversion algorithm in VC based on
GMM

2.8.1. Conversion process

In the maximum likelihood parameter generation described in Eq. 2.10, the converted
feature vector is estimated considering 1-st order derivation components based on the
static and dynamic transformation matrix W. Although this parameter generation tech-
nique makes it possible to estimate the converted feature vector smoothly, it is difficult
to directly apply it into a real-time conversion system because the converted feature
vector is estimated base on batch type conversion algorithm. In order to estimate the
converted feature vector based on the frame-by-frame manner, a low-delay conversion
algorithm has been proposed [24,25].
Equation 2.10 can be written as follows:

Ry = r, (2.64)
R = P'=wD""'w, (2.65)
r = WDVTED (2.66)

1X)
m

Using only diagonal components of the covariance matrix X", each dimensional

components of 7 is separately determined. A (L+ 1)-by-(L+ 1) state covariance matrix
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P;O) and a (L + 1)-dimensional state vector 1}510) are initialized as the zero matrix and

the zero vector, respectively. Then, they are recursively updated frame by frame as

follows:
PV = g PV + diag [0, Z07)] (2.67)
wi " = T+ ding [0 il (268)
P = (1-Kuw) Py 269
gy = 9,70 KD () -y ). (2.70)
2.71)

where the (L + 1)-dimensional vector k(d’) is calculated as
-1 (AylX) -1 -1
K = P Vwl (2000 4w PO Vw]) (2.72)

where the (L + 1)-dimensional row vector w; and the (L + 1)-by-(L + 1) matrix J, are

given by
w, = [0ixz-1),—1,1], (2.73)
Jo = [ 0 Lo ] (2.74)
0 01
respectively. The d-th dimensional static feature components, ,ufZ'IXJ and 2%2{), of the

1x)
m,t

variance matrix and the state vector as shown in Eqs 2.67 and 2.68. Their dynamic
(AylX)
med

in Eq. 2.72 and update the state covariance matrix and the state vector as shown in

mean vector u and the covariance matrix Ef,f'x) are used to predict the state co-

feature components, um,, t,d*’® and X are used to optimize the Kalman gain

Egs. 2.69 and 2.70. The first components of 1}3) is used as the d-th component of the

converted static feature vector at frame ¢t — L, §J,_; 4.

2.8.2. Frame-based GV post-filter for low delay conversion

In order to alleviate sound quality degradation caused by the over-smoothing effect
in the low-delay conversion, a frame-based GV post-filter technique has been pro-

posed [25]. The converted static feature vector is enhanced based on frame-based GV
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as follows:

1 1
~(GV 2AW0=3 o — -
yi,d '= “2})2:“(1 > Gra = §a) + Yas (2.75)
where ,Etﬁf) and j,; denote GV and mean vector of d-th dimensional converted static

feature vector without considering GV, which are previously calculated.

2.9. Issues of conventional VC frameworks

2.9.1. Sound quality degradation caused by vocoding

In the VC based on GMM, the vocoding process is necessary to perform to generate
a waveform signal of the converted voice. The generate waveform using the vocoding
usually causes sound quality degradation even when using original acoustic features
extracted from the original waveform because vocoding is a lossy process. Therefore,
the sound quality degradation is unavoidable in the conventional statistical VC frame-
works. To make it possible to improve the sound quality of the original waveform,
it is ineluctable to improve the vocoding framework or avoid the use of the vocoding

framework.

2.9.2. Difficulty to retain speaker/singer individuality in voice
timbre control based on the MR-GMM

In addition to the problem of the vocoding framework described in 2.9.1, in the voice
timbre control based on MR-GMM, it is difficult to retain a speaker/singer individuality
after conversion. This problem mainly comes from a representation of the target mean
vector of the MR-GMM. The target mean vector is represented by the averaged voice
timbre of the target voice timbre scores. Therefore, regardless of the source speaker,
the source voice is converted into an identical voice timbre unless changing the target

voice timbre score.

2.10. Summary

In this chapter, we describe conventional VC frameworks.
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Section 2.2: This section illustrates analysis/synthesis process of a speech waveform

based on vocoding.

Section 2.3: This section describes training process and conversion process of VC
based on GMM.

Section 2.6: In this section, we describe many-to-many VC based on EV-GMM and
adaptation techniques for an arbitrary source/target speaker.

Section 2.7: In this section, we described voice timbre control technique based on
MR-GMM.

Section 2.8: This section describes low-delay conversion algorithm for GMM-based
VC frameworks.

Section 2.9: In this section, we describe issues of the conventional VC techniques.
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3. Voice conversion via statistical
waveform modification

3.1. Introduction

This chapter presents a statistical voice conversion (VC) technique for both speaking
and singing voice with direct waveform modification based on the spectrum differen-
tial (DIFFVC) that can convert voice timbre of a source speaker/singer into that of
a target speaker/singer without waveform generation of the converted voice based on
vocoding. VC makes it possible to convert voice characteristics of an arbitrary source
speaker/singer into those of an arbitrary target speaker/singer by converting several
acoustic features such as Fj, aperiodicity, and spectral features based on statistical
conversion function. However, the sound quality of the converted voice is usually de-
graded compared with that of a natural voice due to various factors such as analysis and
modeling errors in the vocoding process and over-smoothing effect of converted fea-
ture trajectory. To alleviate the sound quality degradation, in this chapter, we propose
a statistical waveform modification technique that directly modifies the signal in the
waveform domain by estimating the difference in the spectra of the source and target
speaker/singers’ voices.

In singing VC (SVC) based on the Gaussian mixture model (GMM), F,, aperiod-
icity, and spectral envelopes are extracted from the source singer’s singing voice and
converted to those of the target singer. On the other hand, regarding intra-gender SVC
such as male-to-male and female-to-female singer individuality conversions, it is not
always necessary to transform F values of the source singer to those of the target
because both singers often sing on the same key. Moreover, the conversion of the
aperiodicity usually causes only a small impact on the converted singing voice within
intra-gender singer pairs. Therefore, it is expected that only spectral conversion is
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Figure 3.1.: The rest of Chapter 3. *Although STRAIGHT vocoder actually uses
vocoding framework, it is one kind of statistical waveform modification.

sufficient to achieve acceptable quality in intra-gender SVC. Based on this idea, in
the proposed SVC method, we only focus on converting the spectral envelopes. The
waveform of the source singer is directly modified with a digital filter that uses the
time-varying difference in the spectral envelope between the source and target singer’s
singing voices. Note that this spectrum differential is statistically estimated from the
spectral envelopes of the source singer. For the intra-gender SVC based on direct
waveform modification using spectral differential (DIFFSVC), we propose following
techniques: 1) derivation of a differential GMM (DIFFGMM), 2) parameter genera-
tion algorithm considering global variance (GV), 2) parameter generation algorithm
considering modulation spectral (MS), and 3) parameter generation algorithm based
on trajectory differential feature.

For inter-gender conversion such as male-to-female and female-to-male conver-
sions, we propose several F, transformation techniques for VC with direct waveform
modification with spectral differential (DIFFVC) for normal speech to make it possible
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to widely accept various F transformation ratios. It is not straightforward to apply the
intra-gender DIFFSVC method to intra/inter-gender VC because more complicated F
transformation is necessary for VC compared with SVC; e.g., even if using a simple F)
transformation method with a constant Fy transformation ratio [46], such a ratio widely
varies depending on a combination of the source and target speakers although it can be
fixed to double or half in inter-gender SVC which is corresponding to a single key. The
following F transformation techniques with or without using vocoding are proposed:
1) DIFFVC with F, transformation using STRAIGHT vocoder, 2) DIFFVC with F)
transformation based on the residual signal modification using time-scaling and resam-
pling, and 3) DIFFVC with F, transformation based on waveform modification using
time-scaling and resampling.

This chapter is organized as shown in Figure 3.1. Intra-gender DIFFSVC frame-
work including several parameter generation techniques is described in Section 3.2.
Intra/inter-gender DIFFVC framework with several F|, transformation techniques is
described in Section 3.3. The experimental evaluations of the proposed methods are
described in Section 3.4. The experimental results are briefly summarized in Sec-

tion 3.5. This chapter is summarized in Section 3.6.

3.2. Intra-gender DIFFSVC based on DIFFGMM

Figures 3.2 (a) and (b) show the conversion processes of the proposed DIFFSVC meth-
ods. In the conventional conversion process described in Figure 2.4, the sound quality
of the converted singing voice is usually degraded compared with that of the natu-
ral singing voice due to F extraction errors, unvoiced/voiced decision errors, spectral
parameterization errors caused by liftering, which are brought from analysis and syn-
thesis process of source singing voice. These errors are difficult to avoid even if using
high-quality vocoding frameworks. To avoid the sound quality degradation of the con-
verted voice caused by the vocoding in SVC, we propose a statistical waveform mod-
ification technique using time-variant spectral feature differential that can avoid using
vocoding. In the proposed conversion process, the difference of the spectral features
between the source and target singers is estimated from the source singer’s spectral
features using either a differential GMM (DIFFGMM) or intra/inter-singer GMMs.
Voice timbre of the source singer is converted into that of the target singer by directly
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Figure 3.2.: Conversion processes of DIFFSVC based on DIFFGMM and DIFFVC
based on trajectory differential.

filtering an input natural singing voice of the source singer with the converted spec-
tral feature differential. The proposed conversion process does not need any waveform
generation using vocoding because an original waveform of the source singing voice
is directly used as an excitation signal. Therefore, the converted singing voice is free
from various errors usually observed in the conventional SVC using waveform genera-

tion based on vocoding, such as Fy extraction errors, unvoiced/voiced decision errors,
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spectral parameterization errors caused by liftering on the mel-cepstrum, and so on.

In this section, we focus on intra-gender DIFFSVC. We describe following several
techniques: 1) derivation of a differential GMM (DIFFGMM), 2) parameter genera-
tion algorithm considering global variance (GV), 3) parameter generation algorithm
considering modulation spectral (MS), and 4) parameter generation algorithm based
on trajectory differential feature.

3.2.1. Training process of the DIFFGMM

For the training process of the DIFFGMM, a joint probability density function of
spectral features of the source singer and the differential between the source and tar-
get singers is modeled with DIFFGMM, which is directly derived from a traditional
GMM". Let D, = [d,T, Ad:]T denote the static and dynamic differential feature vec-
tor, where d;, = y, — x;. The 2D-dimensional joint static and dynamic feature vector
between the source and the differential features is given by

|: Xt ] X[ ] Xt
= =A , 3.D
Dt Yt _Xt Yt
I 0
A = [ 'y ], (3.2)

where A is a transformation matrix that transforms the joint feature vector between
the source and target features into that of the source and difference features. I denotes
the identity matrix. Applying the transformation matrix to the traditional GMM in
Equation (2.1), the joint probability density function of the DIFFGMM is derived as
follows:

M X) (XX) (XD)
X yu; )y )Y
(XD)\ _ t |, m m m
P(Xt9 Dl‘l/l ) — Z a’mN(|: Dt D) ”(D) ’ Z(DX) E(DD) )a (3.3)
m=1 m m m

*It is also possible to model the joint probability density function of the DIFFGMM based on expectation-
maximization (EM) algorithm using joint feature vector of source and differential.
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H(D) _ [J(Y)— ﬂ(X)’ (3.4)
Efr)lm) _ E,(nDX)T _ Eir)l(Y) _ foX)’ 3.5)
TP = TG+ TP - I - Y, 3:6)

3.2.2. Conversion process

For the conversion process, the converted differential feature vector is determined
based on the DIFFGMM in the same manner as maximum likelihood parameter gen-
eration described in Section 2.3.2. Figure 3.2 (a) indicates the conversion flow of the
DIFFSVC based on the DIFFGMM. Time sequence vectors of the source features and
the differential features are denoted as X = [X[,---,X;]" and D = [D{,---,D;]",

where T is the number of frames included in the time sequence of the given source fea-

ture vectors. A time sequence vector of the converted static features d = [tAllT, el El;]T
is determined as follows:
d = argmaxP(DIX,A*”) st. D = Wd, (3.7)
d

T M
P(DIX,2%P) = [ | > P(miX,, A%) P(D/m, X,, A%, (3.8)

t=1 m=1
P(Dm. X, %) = N(D;:EQ. VL), (3.9)
ED) = pP +xPOR0 (X, - p), (3.10)
2B YR YIS NETl YL (3.11)

Figure 3.3 indicates examples of the spectral envelopes of an original spectral fea-
ture, estimated spectral feature differential, and converted spectral feature. In the
DIFFSVC method, the original spectral feature is converted into the estimated spectral
feature differential feature based on the DIFFGMM. This estimated spectral feature
differential varies frame-by-frame. Therefore, time-variant filtering process defined by

the estimated spectral feature differential is performed into an original waveform.
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Figure 3.3.: Examples of spectral envelopes of the original spectral feature, estimated
spectral feature differential, and converted spectral feature.

Conversion considering GV

In order to alleviate sound quality degradation caused by over-smoothing effect of the
converted feature trajectory, we propose parameter generation technique considering
GV The converted spectral feature differential trajectory is determined by maximizing
a new objective function as follows:

d = argmax P(D|X,A*)" P (v(y)|A®) s.t. D = Wd, (3.12)
d

where ¥y’ = [x + d] and the constant w denotes a parameter for controlling a balance
between the two likelihood functions. The converted feature differential trajectory is

iteratively updated by using the steepest descent method as bellow:

—d"" v ad ", (3.13)

A (i+1)~th
d
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. . . ~@-th . .
where « is a step size parameter. The gradient vector Ad "7 i given by

o O
ago- = O£ : (3.14)
6d dzd(i)fth
% = w(-WVP 'wd + WV ED)
T A A AN Al (3.15)
E® = [Eanl),l’ e ’E,(qﬁ)n e ,EE'"DT),T:IT ’ (3.16)
VO = diag [V VDT v, (3.17)
v, = [v/(1), y;(2), -+, v (d), -+, V(D] (3.18)
2 Lo
vi(d) = =2p”d) (o) = 1) () = 7 (). (3.19)

where p®(d) indicates a d-th column vector of the inverse matrix of X*”. An initial
differential feature vector sequence for the iterative update is determined as follows:

Ho(d)
v(d)

d;(d) = () = 5(@)) + §(d) - x(d), (3.20)
where 7j,(d) indicates the converted differential feature vector at frame ¢ determined by
the DIFFSVC and §(d) indicates its average over a time sequence.

It has been reported that unvoiced consonants (e.g. /s/, /sh/) are less affected by
speaker individuality compared with voiced sounds (e.g. /ae/, /n/) in normal speech [47].
Based on this finding, in order to alleviate the over-smoothing effect as much as pos-
sible, we minimize the amount of conversion at unvoiced frames by smoothing the
converted feature differential at those frames. We implement this process on top of
the previously described DIFFSVC with GV by modifying Ef,?,) and VP '™ at unvoiced
frames as follows:

E) = [0 (forstatic & delta), (3.21)
_ 0 (for static)

yo-! ) 3.22

" VD) " (for delta), (3:22)
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.
where VAP

h shows delta components of the inverse matrix of the covariance matrix

in Equation (3.9). These parameter modifications make the converted spectral fea-
ture differential smoothly varies at unvoiced frames. Note that we avoid updating the

converted spectral feature differential at the unvoiced frames in Equation (3.13).

Post-filtering considering MS

Statistical modeling tends to deteriorate modulation components of the converted pa-
rameters even when considering GV, and keeping natural MSs is strongly effective for
improving the quality of the converted voice. An MS-based post-filter [11], which is
applied after parameter generation in traditional VC based on the GMM, modifies a
converted parameter sequence so that the sequence has the target singer’s natural MS.
Here, we propose an MS-based post-filtering process that modifies spectral differen-
tials, d, such that the finally synthesized has the target singer’s natural MS.

In training, we calculate MS statistics for target singer’s natural and converted pa-

rameters from the training data, y and § = [d + "] where x™*F) denotes smoothed

)} )
d.f d.f

the f-th MS of d-th dimension target parameter s, s (y) and MS of converted parameter

sa.r (), and let 0'% and 0'% be their variance. The d is generated by converting x5,

spectral feature sequence of source singing voice. Here, let i ;. and u; . be the mean of

For conversion process, x-*¥ is first added to the generated d. Then, the MS, s,/ (7)
is converted as follows:
(y)
’ ~ d’f ~ i
i @) = =2 (505 @) — 1)) + 1) (3.23)
Ty

The converted j is determined using the converted MS and the original phase compo-
nents. The MSPFed spectral differentials, Q(MSPF)

xPP) from the converted 7 *. Note that, in this thesis, we use mean-normalized MSs

can be determined by subtracting

and adopt a segment-level post-filtering process [11].

"Note that, because the MSPF process is non-linear to the parameter sequence, the sequence that x*")
is subtracted from the converted j is not equal to d.
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Conversion based on trajectory differential feature

In the DIFFSVC based on the DIFFGMM, the spectral feature differential is estimated
based on the joint probability density function of the DIFFGMM in joint static and
dynamic feature space described in Equation (3.3). Against this differential parame-
ter generation technique, we propose another parameter generation technique of the
spectral differential based on a probability density function in static feature trajectory
space obtained the knowledge of trajectory model [48] in statistical parametric speech
synthesis. Figure 3.2 (b) indicates the conversion process of the DIFFSVC based on
trajectory differential feature. In order to model the probability density function of the
spectral differential in static feature space, in this technique, two probability density
functions of the traditional GMM in Equation (2.1) and the intra-singer GMM in Equa-
tion (4.1) are modeled in advance. The traditional GMM converts the acoustic feature
of the source singer into that of the target singer, whereas the intra-singer GMM makes
it possible to convert the acoustic feature of the source singer into averaged acoustic
feature of the source singer.

For the traditional GMM, the probability density function of the static feature vector
is derived by approximating conditional probability density function P (YlX i, AX Y))
based on sub-optimum mixture component sequences it = [y, -+ ,my]. The proba-

bility density function is given by

P(ylX. i, ) = N @:; Pn) (3.24)
B = argmaxP(Y|X, i, A°) st.Y = Wy (3.25)
y

For the intra-singer GMM, the probability density function of the static feature vec-
tor is derived using intra-singer GMM in the same manner as the traditional GMM.

The probability density function is given by

P(x|X, i, A%) = N(¥':%.0,) (3.26)
X, = argmaxP(X'|X, m, /I(XYX)) s.t. X’ = Wx’ (3.27)
x/
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where A*"® denotes a parameter set of the intra-singer GMM.
The probability density function of the feature vector differential in static feature

space d = [y — x’] is given by
P(dIX, i, A7) = N(d:§;— 2w Pu+0Q,). (3.28)

where A°? denotes a parameter set of Gaussian distribution of the spectral feature
differential in static feature space. Consequently, the static spectral feature trajectory

is estimated as maximum likelihood estimate of the probability density function.
d = argmax P (d X, i, A% )

= [y — %], (3.29)

3.3. Intra/inter-gender DIFFVC using F)
transformation

We propose several F transformation techniques for intra/inter-gender DIFFVC to
make it possible to widely accept various F|, transformation ratios. In the VC for nor-
mal speech, the F transformation ratios vary depending on a combination of source
and target speakers although the F, transformation ratios of inter-gender singing VC
are usually twice or half. In order to apply the statistical waveform modification tech-
nique into not only singing voice but also normal speech, it is necessary to implement
VC with continuous F| transformation ratios. In this section, in order to achieve VC
with continuous F, transformation ratio, following F|, transformation techniques using
with or without the vocoding process are proposed: 1) DIFFVC with F, transformation
using STRAIGHT vocoder, 2) DIFFVC with F transformation based on the residual
signal modification using time-scaling and resampling, and 3) DIFFVC with F, trans-

formation based on waveform modification using time-scaling and resampling.

3.3.1. F, transformation using STRAIGHT

Figure 3.4 describes the conversion process of the DIFFVC method with the F|, trans-

formation based on STRAIGHT vocoder. In this method, several acoustic features
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Figure 3.4.: Conversion process of DIFFVC w/ F transformation using STRAIGHT
vocoder.

such as Fy, aperiodicity, and spectral envelope are extracted from the source voice
using STRAIGHT analysis framework [49]. For the excitation conversion, Fj is trans-
formed based on global linear transformation in the same manner as the traditional
VC method. The aperiodic components at all frequency bins are shifted using band-
averaged aperiodic differentials between the extracted and converted ones as a global
bias term. Then, an F, transformed source voice is synthesized using a full repre-
sentation of STRAIGHT spectral envelope, the transformed F, and the transformed
aperiodic components. Finally, spectral envelope of the F, transformed source voice is
converted using the converted mel-cepstrum differentials with DIFFGMM in the same
manner as the DIFFSVC.

This method is capable of converting the excitation parameters including not only
F but also aperiodic components as accurately as in the conventional VC. Therefore,
it is expected that the conversion accuracy of speaker identity is almost equivalent to
that of the conventional VC. On the other hand, this method ruins the advantage of
the DIFFVC method, i.e., achievement of a high-quality converted voice by avoiding
the vocoding process. Consequently, this method significantly suffers from quality
degradation of the converted voice caused by F| extraction errors, unvoiced/voiced

decision errors, lack of natural phase components, and so on.
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modification.

3.3.2. F, transformation by residual signal modification

Figure 3.5 describes the conversion process of the DIFFVC method with F transfor-
mation based on residual signal modification. In this method, the F, transformation
is carried out by directly modifying the residual signal. For the excitation conversion,
the residual signal composed of harmonic and aperiodic components is extracted from
the source voice with inverse filtering based on the extracted mel-cepstrum. Then,
the time-scaling with waveform similarity based overlap-add (WSOLA) [50] and re-
sampling is performed on the residual signal in order to transform Fy. For instance,
if F is transformed to higher, the residual signal is expanded to make its duration
longer, followed by using down-sampling to restore the length of the residual signal.
If F is transformed to lower, the residual signal is shrunk to make its duration shorter,
followed by using up-sampling to restore its length. We further need to perform an ad-
ditional process when decreasing Fy, making high-frequency components of the trans-
formed residual signal vanish. To reconstruct these vanished frequency components,
they are generated using a noise excitation signal because the high-frequency com-
ponents of a speech signal tend to be less periodic and be well modeled with noise
components. The F|, transformed source voice is generated by filtering the resulting
residual signal again using the extracted mel-cepstrum. Finally, spectral envelope of
the F, transformed source voice is converted using the converted mel-cepstrum differ-
entials with DIFFGMM in the same manner as the DIFFSVC. Note that we set the F
transformation ratio to a constant value for each speaker pair.

In this technique, a part of natural phase components of the source voice is well
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Figure 3.6.: Conversion process of DIFFVC w/ F, transformation by waveform
modification.

preserved because the F, transformation is performed by directly modifying the resid-
ual signal without the vocoding process. Moreover, this technique makes it possible to
freely control the F transformation ratio without changing DIFFGMM for the spectral
differential conversion because the original spectral envelope is also preserved through
the Fy transformation. On the other hand, it is possible to cause speech quality degra-
dation of the converted voice due to some essentially difficult processes, e.g., the dif-
ficulty of extracting the residual signal by perfectly removing the effect of the spectral
envelope.

3.3.3. F\ transformation by waveform modification

Figure 3.6 illustrates the conversion process of the DIFFVC method with the F trans-
formation using waveform modification. In this method, the F, transformation using
WSOLA and resampling based on linear interpolation is directly applied to an original
waveform of the source voice. Because this direct waveform modification causes fre-
quency warping, the spectral envelope also changes according to the F transformation
ratio. Therefore, we need to use DIFFGMM capable of converting such a frequency
warped source voice. We train the joint GMM using the F, transformed source voices
and the natural target voices. For spectral conversion, the converted voice is generated
by filtering the F, transformed source voice with converted mel-cepstrum differen-
tial determined with DIFFGMM derived from the corresponding joint GMM. The F)
transformation ratio is set to a constant value for each speaker pair. Note that this
F, transformation doesn’t cause any problems even when decreasing F, because the

high-frequency components are generated with aliasing caused by the linear interpo-
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lation and the resulting spectral envelope is modeled with the joint GMM and also
DIFFGMM.

In this technique, there is no approximation error caused by the vocoding process
and the other processes, such as inverse filtering. Therefore, it is expected that this
method achieves high-quality of the converted voice. Moreover, this method is based
on quite simple processes, and therefore, it is easy to implement it to the real-time
VC system [25]. On the other hand, we need to separately train the joint GMM for
each different setting of the F transformation ratio because spectral envelope of the

F, transformed source voice depends on the F, transformation ratio.

3.4. Experimental evaluation

3.4.1. Evaluation of intra-gender DIFFSVC
Experimental condition

In this evaluation, we denoted several conventional SVC and proposed DIFFSVC tech-

niques as follow:

SVC (w/o GV)
The conventional SVC based on the GMM method w/o considering GV

SVC (w/ GV)
The conventional SVC based on the GMM method w/ considering GV

DIFFSVC (w/o GV)
The proposed DIFFSVC method based on the DIFFGMM w/o considering GV

DIFFSVC (w/ GV)
The proposed DIFFSVC method based on the DIFFGMM w/ considering GV

TrjDiff
The proposed DIFFSVC method based on trajectory differential spectral feature

We used singing voices of 21 Japanese traditional songs, which were divided into 152
phrases, where the duration of each phrase was approximately 8 seconds. Amateur

singers including 3 males and 3 females sang these phrases. The sampling frequency
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was set to 16 kHz. STRAIGHT [12] was used to extract spectral envelopes, which
were parameterized to the 1-24th, 1-32th, and 1-40th mel-cepstral coeflicients as spec-
tral features. As the source excitation features for the conventional SVC method, we
used F and aperiodic components in five frequency bands, i.e., 0-1, 1-2, 2-4, 4-6, and
6-8 kHz, which were also extracted by STRAIGHT [49]. The frame shift was 5 ms.
The mel log spectrum approximation (MLSA) filter [40] was used as the synthesis fil-
ter in both the conventional SVC and the proposed DIFFSVC methods. We used 80
phrases for the GMM training and the remaining 72 phrases were used for evaluation.
The speaker-dependent GMMs were separately trained for individual singer pairs de-
termined in a round-robin fashion within intra-gender singers. The number of mixture
components for the mel-cepstral coefficients was 128 and for the aperiodic components

was 64.

Objective evaluation

As an objective evaluation, we compared the mel-cepstral distortion of the converted
feature trajectories. The mel-cepstral distortion (Mel-CD) is calculated as

10 24
Mel-CD [dB] = —— Jz > (mc — meY, (3.30)
d=1

where mc;X) and mcEIY) represent the d”* dimensional component of the converted mel-

cepstrum and that of the target mel-cepstrum, respectively. The number of the order
of mel-cepstrum was set to 24. For the proposed DIFFSVC methods, converted mel-
cepstrum was extracted from the converted singing voice using STRAIGHT. In order
to evaluate the effectiveness of the DIFFGMM modeling technique based on directly
parameter transformation from the traditional GMM described in Section 3.2.1, we
also evaluated the Mel-CD of the DIFFGMM modeling technique using joint source
and differential feature vector as a reference. We denote DIFFSVC xdj (w/o GV) and
DIFFSVC xdj (w/ GV) to the DIFFSVC based on the DIFFGMM directly modeled
based on EM algorithm using joint feature vector of source and differential.

Table 3.1 indicates the experimental results of the Mel-CD between the mel-cepstrum
extracted from source singer’s natural singing voice and converted mel-cepstrum, and

between the mel-cepstrum extracted from target singer’s natural singing voice and con-
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Table 3.1.: Mel-cepstral distortions of several conversion methods.

Mel-CD [dB]

Method Source singer Target singer
SVC (w/o GV) 6.09 5.40
SVC (w/ GV) 6.70 6.01
DIFFSVC (w/o GV) 5.80 5.21
DIFFSVC xdj (w/o GV) 5.79 5.21
DIFFSVC (w/ GV) 6.20 5.73
DIFFSVC xdj (w/ GV) 6.23 5.77
TrjDiff 4.73 5.24

verted mel-cepstrum. We can see that there is a tendency to increase the Mel-CD when
considering GV in SVC, DIFFSVC, and DIFFSVC xdj methods. It is known that gain
of Mel-CD due to considering GV does not affect any sound quality degradation of
the converted voice in VC for normal speech [10]. The proposed DIFFSVC methods
tend to be achieved smaller Mel-CDs regard to the source singer compared with those
of the conventional SVC methods. Therefore, it is expected that the sound quality of
the proposed DIFFSVC methods is close to the natural singing voice of the source
singer compared with those of the conventional SVC methods. As for the Mel-CDs
regard to the target singer, there is a small difference between the proposed DIFFSVC
methods and the conventional SVC methods. This implies that the remaining compo-
nents of the source singer after conversion may increase the Mel-CD in the proposed
DIFFSVC methods. In terms of the TrjDiff method, it is considered that the converted
voice closes to not the target singer but the source singer because the Mel-CD for the
target singer is larger than the Mel-CD for the source singer. For the DIFFGMM mod-
eling technique, it is considered that the parameter transformation technique does not
have any bad effect on the sound quality because there are no significant differences
between the Mel-CDs of the DIFFSVC and DIFFSVC xdj methods.

From these results, we can say following things, 1) the use of the GV makes higher
Mel-CD for not only the conventional SVC methods but also the proposed DIFFSVC
methods, 2) there are small differences of the conversion accuracy between the SVC
and DIFFSVC methods, on the other hand, the DIFFSVC methods slightly remain

the components of the source mel-cepstrum compared with those of SVC methods,
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3) The TrjDiff method makes it possible to bet smaller Mel-CD regard to the target
singer compared with the other methods, but the Mel-CD regard to the source singer is
smaller, and 4) there is no significant difference between DIFFGMM modeling tech-

niques.

Subjective evaluation

We subjectively evaluated sound quality and singer identity of the converted singing
voices to compare the conventional SVC and the proposed DIFFSVC methods. In the
subjective evaluation, four preference tests were performed.

The first and second preference tests evaluated to compare the conventional SVC
(w/ GV) and proposed DIFFSVC (w/o GV) methods. The first preference test evalu-
ated sound quality of the converted singing voices of the SVC (w/ GV) and DIFFSVC
(w/o GV) methods. The converted singing voice samples of the SVC (w/ GV) and the
DIFFSVC (w/o GV) methods for the same phrase were presented to subjects in ran-
dom order. The subjects selected which sample had better sound quality. The second
preference test evaluated the conversion accuracy on singer identity of the converted
singing voices for SVC (w/ GV) and DIFFSVC (w/o GV) methods. A natural singing
voice sample of the target singer was presented to the subjects first as a reference.
Then, the converted singing voice samples of the SVC (w/ GV) and the DIFFSVC
(w/o GV) methods for the same phrase were presented in random order. The subjects
selected which sample was more similar to the reference natural singing voice in terms
of singer identity. We varied the order settings of the mel-cepstral coefficients to con-
firm the effects of higher order of mel-cepstral coefficients. The number of subjects
in the first and second evaluation was 8 and each listener evaluated 24 sample pairs
in each order setting of the mel-cepstral coefficients. All subjects don’t specialize in
audio. Subjects were allowed to replay each sample pair as many times as necessary.

Figure 3.7 indicates the results of the preference test between SVC (w/ GV) and
DIFFSVC (w/o GV) methods for the sound quality. The DIFFSVC (w/o GV) method
makes it possible to generate the converted speech with better sound quality than the
SVC (w/ GV) in any order setting of the mel-cepstral coefficients. This is assumed that
the DIFFSVC (w/o GV) is free from various errors caused by the waveform generation
based on the vocoding, such as F, extraction errors or spectral modeling errors caused

by liftering. And, we can see that the differential of the order setting of mel-cepstral
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Figure 3.7.: Evaluation of sound quality for SVC (w/ GV) and DIFFSVC (w/o GV)
methods.

coefficients has little effect.

Figure 3.8 indicates the results of the preference test between SVC (w/ GV) and
DIFFSVC (w/o GV) for the singer identity. The conversion accuracy of the singer
identity of the DIFFSVC (w/o GV) is not statistically significantly different from that
of the SVC (w/ GV) in any order setting of the mel-cepstral coefficients. This re-
sult suggests that the aperiodic components have little effect on the singer identity in
singing voices, and even if the DIFFSVC (w/o GV) cannot convert the excitation fea-
tures, the conversion accuracy of the singer identity still remains equivalent to that of
the SVC (w/ GV).

These two results demonstrate that the DIFFSVC (w/o GV) method is capable of
converting the voice timbre with higher sound quality while causing no degradation
in the conversion accuracy of singer identity compared with the conventional SVC.
From this result, we only set the order settings of the mel-cepstrum to 24 in following
evaluations.

The third and fourth preference tests evaluated the effectiveness several parameter
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Figure 3.8.: Evaluation of conversion accuracy on singer individuality for SVC (w/
GV) and DIFFSVC (w/o GV) methods.

generation techniques by comparing with DIFFSVC (w/o GV), DIFFSVC (w/ GV),
and TrjDiff methods. The third preference test evaluated sound quality of the converted
singing voices of DIFFSVC (w/o GV), DIFFSVC (w/ GV), and TrjDiff methods. The
two converted singing voice samples of the same phrase for comparisons were pre-
sented to subjects in random order. The subjects selected which sample had better in
terms of sound quality. The fourth preference test evaluated the singer identity con-
version accuracy for comparisons. A natural singing voice sample of the target singer
was presented to the subjects first as a reference. Then, the two converted singing
voice samples of the DIFFSVC (w/o GV), DIFFSVC (w/ GV), and TrjDiff methods
for the same phrase were presented to subjects in random order. The subjects selected
which sample was more similar in the same manner as the second preference test. The
number of subjects was 6 and each listener evaluated 54 sample pairs in the third and
forth preference tests. All subjects don’t specialize in audio. Subjects were allowed to
replay each sample pair as many times as necessary.

Figure 3.9 indicates the result of the preference test for the sound quality between
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and TrjDiff methods.

DIFFSVC (w/o GV), DIFFSVC (w/ GV), and TrjDiff methods. The DIFFSVC (w/
GV) and TrjDiff methods generate the converted speech with better sound quality than
the DIFFSVC (w/o GV) method. As for the experimental result between DIFFSVC
(w/o GV) and DIFFSVC (w/ GV) methods, we can see that the parameter generation
considering GV is effective on the sound quality not only in the conventional SVC
method [10] but also in the proposed DIFFSVC method. As for the experimental
results of the TrjDiff method, the TrjDiff method makes it possible to significantly
improve the sound quality compared with the other parameter generation methods.

Figure 3.10 indicates the result of the preference test for the singer identity between
DIFFSVC (w/o GV), DIFFSVC (w/ GV), and TrjDiff methods. The conversion accu-
racy on the singer identity of the DIFFSVC (w/ GV) method is not significantly differ-
ent from that of the DIFFSVC (w/o GV) method. Although the proposed DIFFSVC
(w/ GV) method avoids accurately converting spectral features at unvoiced frames,
it still yields conversion accuracy of singer individuality almost equal to that of the
DIFFSVC (w/o GV) method. On the other hand, the TrjDiff method has a degradation
of conversion accuracy compared with that of DIFFSVC (w/o GV).

These two results demonstrate that the DIFFSVC (w/ GV) method is capable of
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converting voice timbre with higher sound quality while causing no degradation in the
conversion accuracy of singer identity compared with the DIFFSVC (w/o GV) method.
And, although the conversion accuracy of singer individuality is slightly decreasing,
the TrjDiff method makes it possible to convert with the significantly higher sound

quality compared with the other parameter generation methods.

Analysis of converted feature trajectories

To more deeply analyze what yields naturalness improvements in the proposed DIFFSVC
methods, we investigated the difference of the conventional SVC methods and the pro-
posed DIFFSVC methods. We denote several estimated and converted spectral feature
follows:

Source
mel-cepstral coefficients extracted from the source singer’s natural singing voice

Target
mel-cepstral coefficients extracted from the target singer’s natural singing voice
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DIFFSVC w/o GV (estimated)
differences of mel-cepstral coefficients estimated with the differential GMM in
the DIFFSVC method without considering GV

DIFFSVC w/o GV (converted)
mel-cepstral coeflicients extracted from the singing voice converted in the DIFFSVC
(w/o GV) method without considering GV

DIFFSVC w/ GV (estimated)
differences of mel-cepstral coefficients estimated with the differential GMM in
the DIFFSVC method w/ considering GV

DIFFSVC w/ GV (converted)
mel-cepstral coefficients extracted from the singing voice converted in the DIFFSVC

method w/ considering GV

TrjDiff (estimated)
differences of mel-cepstral coefficients estimated with the intra- and inter-GMMs
in the DIFFSVC method based on the trajectory differential feature

TrjDiff (converted)
mel-cepstral coefficients extracted from the singing voice converted in the DIFFSVC

method based on the trajectory differential feature

Figure 5.5 shows the GVs calculated from several trajectories of mel-cepstral coeffi-
cients. The GV in the DIFFSVC w/o GV (converted) significantly decreases compared
with that of Target singer. On the other hand, the GV in DIFFSVC w/ GV (converted)
and TrjDiff (converted) is very close to that of Target singer. As reported in the pre-
vious work [10], the GVs of the converted mel-cepstral coeflicients tend to be smaller
in SVC w/o GV and this tendency is clearly observed especially in higher-order mel-
cepstral coefficients. And, by considering GV in parameter generation of SVC, the
GV of the converted trajectories of SVC is almost equivalent to those of the target
Target singer. This GV restoration yields significant improvements in sound quality
of the converted singing voice. These tendencies are clearly observed in the converted
trajectories of the DIFFSVC (w/o GV) and DIFFSVC (w/ GV). Moreover, the GV of
the feature differential trajectories in DIFFSVC w/ GV (estimated) is still similar to
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Figure 3.11.: GVs of several mel-cepstral sequences.

those of DIFFSVC w/o GV (estimated). On the other hand, the GV of the feature
differential trajectories in TrjDiff (estimated) is quite smaller than the others because
the estimated trajectory of TrjDiff (estimated) is the difference between over-smoothed
(converted) target spectral by SVC and source spectral by intra-singer SVC. This re-
sult implies that the DIFFSVC based on the trajectory differential feature does not
restore the GV of converted feature trajectory but cleverly utilize the GV of the nat-
ural spectral feature trajectory. These results show the effectiveness of the proposed
DIFFSVC methods does not model the GV of the differential trajectory but the GV of
the converted trajectory.

Figure 3.12 shows trajectories of the mel-cepstral coeflicients and logarithmic Fj
trajectories in each sample. It can be observed from Source and Target that higher-
order mel-cepstral coeflicients tend to have rapidly varying fluctuations. It has been
reported in [42] that these fluctuations are well modeled by the modulation spectrum
and strongly affect the sound quality of the converted speech. In the DIFFSVC w/ GV

(estimated), the converted feature differential trajectory is smoothly connected from the
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end of voiced segments to the start of voiced frames thanks to the smoothing process
at unvoiced frames in Sect. 3.2.2. This yields a converted feature trajectory DIFFSVC
w/ GV (converted) maintaining natural fluctuations at unvoiced frames. On the other
hand, these fluctuations are obviously reduced in the DIFFSVC w/o GV (converted).
We can also see that the GV of the converted feature trajectory at higher-order mel-
cepstral coefficients is restored more effectively by the DIFFSVC w/ GV (converted)
compared with the DIFFSVC w/o GV (converted). Additionally, it can be seen that
the trajectory of the TrjDiff (estimated) is much smoother than the others and it affects
the converted trajectory in TrjDiff (converted) to maintain the modulation component
compared with the other converted feature trajectory. These results imply that the
proposed DIFFSVC methods effectively approximate the target spectral fluctuations by

using those of the source spectral trajectory and the GV of the target spectral trajectory.

3.4.2. Evaluation of intra/inter-gender DIFFVC

In this section, we evaluate performance of the following DIFFVC methods using F)

transformation techniques as follows:

e DIFFVC w/ STRAIGHT: The DIFFVC method with F transformation using
STRAIGHT vocoding described in Section 3.3.1,

e DIFFVC w/ RES: The DIFFVC method with F, transformation based on the

residual signal modification [51] described in Section 3.3.2,

e DIFFVC w/ WAV: The DIFFVC method with F, transformation based on the
waveform modification described in Section 3.3.3.

Experimental condition

We evaluated sound quality and speaker identity of the converted voices to compare
the performance of the different F transformation techniques in both intra-gender and
cross-gender conversions tasks. We used the English speech database used in the Voice
Conversion Challenge (VCC) 2016 [52]. The number of evaluation speakers was 10
consisting of 5 female and 5 male native English speakers, and the number of combi-
nations of source and target speakers was 90. The number of sentences uttered by each

speaker was 216. The sampling frequency was set to 16 kHz.
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Figure 3.13.: F, transformation ratios between source and target speakers.

STRAIGHT [12] was used to extract spectral envelope, which was parameterized
into the 1-24th mel-cepstral coefficients as the spectral feature. The frame shift was
5 ms. The mel log spectrum approximation (MLSA) filter [53] was used as the syn-
thesis filter. As the source excitation features, we used Fy and aperiodic components
extracted with STRAIGHT [49]. The aperiodic components were averaged over five
frequency bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz, to be modeled with the GMM.

We investigated F|, transformation ratios for all speaker possible pairs from 10 eval-
uation speakers (i.e., 45 speaker pairs in total) as shown in Figure 3.13, and selected
10 speaker pairs in each quantized F transformation ratio (0.5, 0.75, 1.0, 1.5, and
2.0) as the source and target speaker pairs. We used 162 sentences for training and
the remaining 54 sentences were used for evaluation. The speaker-dependent GMMs
were separately trained for the individual source and target speaker pairs. We per-
formed MS-based postfilter for the converted mel-cepstrum differential described in
Section 3.2.2. The number of mixture components for the mel-cepstral coefficients
was 128 and for the aperiodic components was 64. The number of subjects was 8 and

they were not native English speakers.
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Figure 3.14.: Evaluation of sound quality of converted voice for intra/inter-gender
DIFFVC.

Subjective evaluation

Two subjective evaluations were conducted. In the first test, we evaluated the sound
quality of the converted voices using a mean opinion score (MOS). The natural and
converted voice samples generated by three different DIFFVC methods were presented
to subjects in random order. The subjects rated the quality of the converted voice using
a S—point scale: “5” for excellent, “4” for good, “3” for fair, “2” for poor, and “1” for
bad. The number of evaluation sentences in each subject was 128.

In the second test, conversion accuracy in speaker identity was evaluated. In this
test, Fy transformation ratios were set to 0.5, 1.0, and 2.0. A natural voice sample of
the target speaker was presented to the subjects first as a reference. Then, the converted
voice samples generated by three different DIFFVC methods for the same sentences
were presented in random order. The subjects selected which sample was more similar
to the reference natural voice in terms of speaker identity. Each subject evaluated
90 sample pairs. They were allowed to replay each sample pair as many times as

necessary.
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Figure 3.14 indicates the results of the MOS test for sound quality. We can see a gen-
eral tendency that sound quality degradation is caused by setting the Fy transformation
ratio to higher/lower values in all methods. When the F transformation ratio is set to
around 1.0, DIFFVC w/ WAV can achieve the highest sound quality. The sound qual-
ity achieved by DIFFVC w/ WAV rapidly degrades when setting the Fy transformation
ratio to higher or lower values than 1.0. On the other hand, DIFFVC w/ STRAIGHT
and DIFFVC w/ RES tend to make such a quality degradation more gradually com-
pared with DIFFVC w/ WAV. Nevertheless, the sound quality achieved by DIFFVC
w/ WAV is still comparable to the other methods even if setting the F, transformation
ratio to around 0.5 or 2.0. As for a comparison between DIFFVC w/ STRAIGHT and
DIFFVC w/ RES, we can see that DIFFVC w/ STRAIGHT is slightly better than DIF-
FVC w/ RES when setting the F, transformation ratio to higher values (i.e., around 1.5
and 2.0). These results demonstrate that DIFFVC w/ WAV outperforms DIFFVC w/
STRAIGHT and DIFFVC w/ RES in terms of sound quality of the converted voices.

Figures 3.15 (a), (b) and (c) indicate the results of the preference test for speaker
identity. We can see a tendency similar to that observed in the previous test on the
converted sound quality; i.e., 1) DIFFVC w/ WAV yields better conversion accuracy
for speaker identity than the other methods when setting the F)y transformation ratio to
around 1.0; 2) DIFFVC w/ WAV is still comparable to the other methods even when
setting the F transformation ratio to around 0.5 and 2.0; and 3) as for a comparison be-
tween DIFFVC w/ STRAIGHT and DIFFVC w/ RES, DIFFVC w/ STRAIGHT yields
better conversion accuracy for speaker identity when setting the F transformation ra-
tio to around 0.5 and 2.0. Therefore, DIFFVC w/ WAV outperforms the other methods
in terms of conversion accuracy for speaker identity as well.

These results suggest that DIFFVC w/ WAV is the best approach to implementing
F transformation to the DIFFVC framework in terms of both converted sound quality
and conversion accuracy for speaker identity. Note that DIFFVC w/ WAV can also

significantly reduce a computational cost in conversion.

3.5. Summary of the experimental evaluations

Figure 3.16 indicates a reference summery of the experimental results performed in

Chapter 3. Although it is not possible to directly compare proposed techniques due
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Figure 3.15.: Evaluation of conversion accuracy on speaker identity for intra/inter-
gender DIFFVC.
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Figure 3.16.: A reference summery of the experimental evaluations in Chapter 3.

to various reasons such as different experimental conditions and evaluation methods,
it is expected that this figure can help to understand the relationship between conven-
tional and proposed techniques. In order to briefly compare the effectiveness of each
proposed technique, we give a reference summery estimated from the experimental re-
sults described in Chapter 3 and Appendix A. In figure A.1 described in Appendix A,
the NU-NAIST VC system achieved 3.1 opinion score and 74 % on conversion accu-
racy of the speaker individuality in Voice Conversion Challenge (VCC) 2016 where the
NU-NAIST VC system almost equals to DIFFVC w/ STRAIGHT and its performance
almost equals to conventional VC w/GV. Therefore, we can put a reference score to
the figure. In the experimental results of proposed intra-gender DIFFSVC, DIFFSVC
w/o GV and DIFFSVC w/ GV achieved higher sound quality and equivalent conver-
sion accuracy compared with conventional SVC w/ GV. Although TrjDIff is possible
to convert with higher sound quality, the conversion accuracy degrades significantly.
In the experimental results of intra/inter-gender DIFFVC, when the F, transformation
ratio is larger, DIFFVC w/ STRAIGHT and DIFFVC w/ WAV achieved better sound
quality and conversion accuracy compared with DIFFVC w/ RES. Moreover, when
the F)y transformation ratio is lower, DIFFVC w/ WAV has higher sound quality and
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conversion accuracy compared with DIFFVC w/ STRAIGHT.

3.6. Summary

In this chapter, in order to improve the sound quality of the converted voice in sta-
tistical VC for speaking and singing voice, we have proposed a statistical waveform
modification technique to convert voice timbre of a source speaker/singer into that of

a target speaker/singer without using waveform generation based on vocoding.

Section 3.2: This section has described intra-gender statistical waveform modifica-
tion technique based on spectral differential. At first, we have shown the tech-
nique to estimate the joint probability density function of the DIFFGMM using
previously trained GMM. Then, in order to alleviate the sound quality degrada-
tion caused by the over-smoothing effect of the converted feature trajectory, we
have proposed techniques to compensate the GV and MS of the converted fea-
ture trajectory. Moreover, we have proposed a differential parameter generation

technique based on trajectory differential using intra/inter-speaker GMMs.

Section 3.3: In this section, to make it possible to apply intra-gender DIFFSVC
framework into intra/inter-gender DIFFVC framework, we have proposed sev-
eral F transformation techniques. We proposed following F, transformation
techniques: 1) F transformation technique using the STRAIGHT vocoder, 2) F
transformation technique based on residual signala modification using WSOLA
and resampling, and 3) F), transformation technique based on waveform modifi-
cation using WSOLA and resampling.

Section 3.4: In this section, we have performed several experimental evaluations
for intra-gender DIFFSVC and intra/inter-gender DIFFVC techniques. For the
intra-gender DIFFSVC, the proposed techniques have achieved higher sound
quality with equivalent conversion accuracy compared with the conventional
SVC considering GV. For the intra/inter-gender DIFFVC, the proposed meth-
ods with or without using vocoding technique make it possible to apply intra-
gender DIFFSVC framework into intra/inter-gender DIFFVC framework. The
experimental results confirmed that the DIFFVC w/ WAV achieved higher sound

quality for inter-gender conversion and equivalent sound quality for intra-gender
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conversion. In conclusion, the overall summary illustrates that statistical wave-
form modification techniques make it possible to convert higher sound quality
and equivalent conversion accuracy on speaker/singer identity compared with
those of the conversion VC based on GMM.
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4. Voice timbre control via statistical
waveform modification

4.1. Introduction

The singing voice is one of the most expressive components in music. In addition
to pitch, dynamics, and rhythm, the linguistic information of the lyrics can be used by
singers to express more varieties of expression than other music instruments. Although
singers can also expressively control their voice characteristics such as voice timbre to
some degree, they usually have difficulty in changing their own voice characteristics
widely, (e.g. changing them into those of another singer’s singing voice) owing to
physical constraints in speech production. If it would be possible for singers to freely
control voice characteristics beyond these physical constraints, it will open up entirely
new ways for singers to express themselves.

Singing synthesis system [54-58] has been a growing interest in computer-based
music technology to generate an arbitrary singing voice. Entering notes and lyrics to
the singing synthesis engine, users (e.g., composers) can easily produce a synthesized
singing voice which has a specific singer’s voice characteristics, different from those
of the users. Previous work has proposed techniques to flexibly control the synthesized
singing voice as the users want by automatically [59, 60] adjusting parameters of the
singing synthesis system to generate more expressive synthesized singing voice. Al-
though these technologies are effective to produce the singing voices designed by the
users, it is essentially difficult to produce synthesized singing voices by controlling all
singing voice components including lyrics on the fly.

In previous research, a number of techniques have been proposed to change the
characteristics of singing voices. One typical method is singing voice conversion based
on speech morphing in the speech analysis/synthesis framework [61]. This method
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makes it possible to independently morph several acoustic parameters, such as spectral
envelope, Fy, and duration, between singing voices of different singers or different
singing styles. One of the limitations of this method is that the morphing can only be
applied to singing voice samples of the same song.

To make it possible to more flexibly change singing voice characteristics, a singing
VC (SVC) technique enable us to convert the source singer’s singing voice into another
target singer’s singing voice [9, 62]. Moreover, SVC based on eigenvoice Gaussian
mixture model (EV-GMM) have been proposed as a technique to convert an arbitrary
source singer into an arbitrary target signer [15,63]. Although this technique is also
capable of flexibly changing singing voice timbre by manipulating the adaptation pa-
rameters even if no target singing voice sample is available, it is difficult to find the
ideal singing voice timbre, because it is hard to predict the change of singing char-
acteristics caused by the manipulation of each adaptation parameter. In the area of
statistical parametric speech synthesis [38], there have been several attempts at de-
veloping techniques for manually controlling voice characteristics of synthetic speech
by manipulating intuitively controllable parameters [64—66]. A similar method has
also been proposed in statistical VC [16] with multiple-regression GMM (MR-GMM).
Although these methods have only been applied to voice characteristics control for
normal speech, it is expected that they would also be effective for controlling singing
voice characteristics.

In order to implement intuitive voice timbre control framework using perceptually
understandable cues, we focus on the perceived age or the age that a listener predicts
the singer to be, of singing voices as one of the factors to intuitively describe the
singing voice. However, the perceived age of singing voices has not yet been studied
deeply. As fully understanding the acoustic features that contribute to the perceived
age of singing voices is essential to the development of VC techniques to modify a
singer’s perceived age,

In this chapter, we first perform an investigation of the acoustic features that play a
part in the listener’s perception of the singer’s age at first. We conduct several types
of perceptual evaluation to investigate 1) how well the perceived age of singing voices
corresponds to the actual age of the singer, 2) whether or not singing VC processing
causes adverse effects on the perceived age of singing voices, 3) which spectral or

prosodic features have a larger effect on the perceived age, and 4) which spectral or
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Figure 4.1.: The rest of Chapter 4.

prosodic features have an individuality of a singer. Then, we propose a novel voice
timbre conversion method that converts the singer’s perceived age while maintain-
ing individuality in SVC. We propose a technique to control the perceived age while
retaining singer individuality. Moreover, towards the development of a better control-
lable, higher-quality, and more flexible framework, we also propose the following three
methods for the perceived age control technique; 1) a method using gender-dependent
MR-GMMs, 2) a method using direct waveform modification based on spectrum dif-
ferential, and 3) a rapid unsupervised adaptation method.

The rest of this chapter is shown in Figure 4.1. In Section 4.2, we investigate acous-
tic features affecting on the perceived age of the singer. We investigate following
the effects 1) effects of analysis/synthesis, 2) effects of aperiodic components, 3) ef-
fects of aperiodic components, 4) effects of conversion errors using intra-singer SVC,
and 5) effects of prosodic and segmental features. In Section 4.4, we propose several
techniques to control voice timbre based on the perceived age while retaining singer
individuality. At fast, in order to control voice timbre while retaining the singer iden-
tity, we propose a voice timbre control technique based on the Modified MR-GMM.
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Then, in order to improve perceived age controllability and sound quality, we propose
a voice timbre control technique based on a gender-dependent Modified differential
MR-GMM (DIFFMR-GMM). Finally, we propose an unsupervised adaptation tech-
nique to easily develop the Modified DIFFMR-GMM for an arbitrary source signer.
In Section 4.5, we evaluate the effectiveness of the voice timbre control techniques
proposed in this chapter. In Section 4.6, we summarize this chapter.

4.2. Investigation of the acoustic features affecting
perceived age

In the traditional SVC [9, 15], only the spectral features such as mel-cepstrum are
converted. It is also straightforward to convert the aperiodic components (ACs) [49],
which capture noise strength on each frequency band of the excitation signal, as in the
traditional VC for natural voices [13]. If the perceived age of singing voices is captured
well by these acoustic features, it will make it possible to develop a real-time SVC sys-
tem capable of controlling the perceived age of singing voices by combining SVC with
MR-GMM (described in Section 4.4.1) and real-time statistical VC techniques [24,25].
On the other hand, if the perceived age of singing voices is not captured at all by these
acoustic features, which mainly represent segmental features, the conversion of other
acoustic features, such as prosodic features (e.g., Fy pattern), will also be necessary. In
such a case, the voice characteristics control framework of HMM-based speech syn-
thesis [64,66] can be used in the SVC system to control the perceived age of singing
voices, although it is not straightforward to develop a real-time SVC system in this
framework. In this section, we compare the perceived age of natural singing voices
with that of several types of synthesized singing voices by modifying acoustic features
as shown in Table 4.1 for the purpose of investigating acoustic features affecting the
perceived age in singing voices to clarify which types of techniques can be imple-

mented for the SVC system.

4.2.1. Effects of analysis/synthesis

In the analysis/synthesis framework, a voice is first converted into parameters of a
source-filter model, then simply re-synthesized into a waveform using these parameters
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Table 4.1.: Acoustic features of several types of synthesized singing voices.

Features Power, F), duration Mel-cepstrum Aperiodic components
Analysis/synthesis (w/ ACs) Source singer Source singer Source singer
Analysis/synthesis (w/o ACs) Source singer Source singer Removed
Intra-singer SVC (source) Source singer Converted to source singer | Converted to source singer
Intra-singer SVC (target) Target singer Converted to target singer | Converted to target singer
SVC Source singer Converted to target singer | Converted to target singer

without change. We define this re-synthesized singing voice as analysis/synthesis (w/
ACs). As analysis and synthesis are necessary steps in converting acoustic features
of singing voices, we investigate the effects of distortion caused by analysis/synthesis
on the perceived age of singing voices. We use STRAIGHT [12] as a widely used
high-quality analysis/synthesis method to extract acoustic features consisting of the
spectral envelope, Fy, and ACs. The spectral envelope is further parameterized with

mel-cepstrum.

4.2.2. Effects of aperiodic components

As mentioned above, previous research [31] has shown that ACs tend to change with
aging in normal speech as mentioned above. We investigate the effects of ACs on
the perceived age of singing voices. Analysis/synthesized singing voice samples are
reconstructed from mel-cepstrum and F extracted with STRAIGHT. In synthesis, only
a pulse train with phase manipulation [12] instead of STRAIGHT mixed excitation [13]
is used to generate voiced excitation signals. We define this re-synthesized singing

voice as analysis/synthesis (w/o ACs).

4.2.3. Effects of conversion errors

In SVC, conversion errors are inevitable. For example, some detailed structures of
acoustic features not well modeled by the GMM of the joint probability density and of-
ten disappear through the statistical conversion process. Therefore, the acoustic space
on which the converted acoustic features are distributed tends to be smaller than the
acoustic space that of the natural acoustic features. We investigate the effect of the con-
version errors caused by this acoustic space reduction on the perceived age of singing
voices by converting one singer’s singing voice into the same singer’s singing voice.
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This SVC process is called intra-singer SVC (source/target).

To achieve intra-singer SVC (source/target) for a specific singer, we must create a
GMM to model the joint probability density of the same singer’s acoustic features,
i.e., P(X;, X}|A) where X, and X, respectively show the source and target acoustic fea-
tures of the same singer. It is impossible to train such a GMM by simply using the
source feature vector of the source singer X, as the target feature vector Y, because
this duplication causes the rank deficiency of the covariance matrix. Namely, the fol-
lowing conditions need to hold; X, is different from X’; they depend on each other,
and both are identically distributed. This GMM can be trained using a parallel data set
consisting of the song pairs sung by the source singer but the source singer needs to
sing the same songs twice to develop such a parallel data set. As a more convenient
way to develop the GMM for intra-singer SVC (source/target), we use the framework
of many-to-many EVC. The GMM is analytically derived from the GMM of the joint
probability density of the acoustic features of the same singer and another reference
singer, i.e., P(X;, Y,|d) where X, and Y, respectively show the source feature vector
of the same singer and that of the reference singer, by marginalizing out the acoustic
features of the reference singer in the same manner as used in the many-to-many EVC

as follows:

M
P(X,,X;m):ZP(mm) f P(X,|Y,,m, Q)
m=1

P(X|Y,,m,A) P (Y |m, 1) dY,

M X | [ wX || zoo
= Z anN x |’ a0 || oo g | f 1)
m=1 ! " " "
ZI(;(YX) — Z’(i(Y)ZSnYY)_IZEMYX)- (4.2)

Using this GMM, intra-singer SVC (source/target) is performed in the same manner
as described in Section 2.3.2. The converted singing voice sample essentially has the
same singing voice characteristics as those before the conversion although they suffer
from conversion errors. We define this converted singing voice as intra-singer SVC

(source/target).
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4.2.4. Effects of prosodic and segmental features

To investigate which acoustic features have a larger effect on the perceived age of
singing voices, segmental features or prosodic features, we use the SVC for converting
only segmental features, such as mel-cepstrum and ACs, of a source singer into those
of a different target singer. The converted singing voice samples essentially have the
segmental features of the target singer and the prosodic features, such as F, patterns,

power patterns, and duration, of the source singer.

4.3. Experimental evaluation for investigation

4.3.1. Experimental condition

In our experiments, we first investigated the correspondence between the perceived age
and the actual age of the singer. We used the AIST humming database [67] consisting
of singing voices of 25 songs with Japanese lyrics sung by Japanese male and female
amateur singers in their 20s, 30s, 40s, and 50s. The total number of singers in the
database was 75. The length of each song was approximately 20 seconds. For evalua-
tion, only one Japanese song (No. 39) was used. Eight Japanese male subjects in their
20s were asked to guess the age of each singer by listening to his/her singing voices.

In the second experiment, we investigated the acoustic features that affect the per-
ceived age of singing voices. We did so by comparing the perceived age of natural
singing voices with that of each type of synthesized singing voice as shown in Ta-
ble 4.1. Eight Japanese male subjects in his 20s assigned the perceived age to each
synthesized singing voice. We selected 16 singers consisting of four singers (two male
singers and two female singers) from each age group, i.e., their 20s, 30s, 40s, or 50s as
evaluation singers. The singers were also separated into two groups, A and B, so that
one group always included one male singer and one female singer in each age group.
The subjects in each group evaluated only singing voices of the corresponding singer
group.

In the third experiment, we investigated which acoustic features more affected the
singer’s individuality of singing voices. We divided the 16 evaluation singers into four
groups, M1, M2, F1 and F2, so that each group included four male or female singers
from all age groups. The subjects were also randomly separated into four groups. Con-
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verted singing voices with SVC were created in every combination of source and target
singer pairs in each group (i.e., 12 combinations) as evaluation samples. Converted
singing voices with intra-singer SVC (source/target) were also created for individual
singers (four male or female singers) in each group as reference samples. The subjects
were asked to separate the evaluation samples into four classes in accordance with the
reference samples on the basis of similarity of singer’s individuality. The subjects were
allowed to listen to the evaluation and reference samples as many times as they wanted.
We gave instructions to the subjects to evaluate the singer’s individuality considering
a possibility of changes of singing voice characteristics caused by aging.

The sampling frequency was set to 16 kHz. The 1st through 24th mel-cepstral coef-
ficients extracted by STRAIGHT analysis were used as spectral features. As the source
excitation features, we used F and ACs in five frequency bands, i.e., 01, 1-2, 2-4,
4-6, and 6-8 kHz, which were also extracted by STRAIGHT analysis. The frame shift
was 5 ms.

As training data for the GMMs used in intra-singer SVC (source/target) and SVC,
we used 18 songs including the evaluation song (No. 39). In the intra-singer SVC
(source/target), GMMs for converting the mel-cepstrum and ACs were trained for each
of the selected 16 singers. Another singer not included in these 16 singers was used as
the reference singer to create each parallel data set for the GMM training. In the SVC,
the GMMs for converting mel-cepstrum and ACs were trained for all combinations
of the source and target singer pairs in each singer group. The numbers of mixture

components of each GMM were optimized experimentally.

4.3.2. Experimental result
Comparison between perceived age and actual age

Figure 4.2 indicates the correlation between the perceived age of natural singing voices
and the actual age of the singer. Each point indicates the perceived age of each singer
averaged over all subjects. The standard deviation of the perceived age in each singer
over all subjects is 6.17. The correlation coefficient between the perceived age and the
actual age in this figure is 0.81. These results show a quite high correlation between
the perceived age and the actual age.
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Figure 4.2.: Correlation between singer’s actual age and perceived age.

Table 4.2.: Differences of the perceived age between natural singing voices and each
type of the synthesized singing voices.

Methods Average

Standard deviation

Correlation coefficient

Analysis/synthesis (w/ ACs) 0.77
Analysis/synthesis (w/o ACs) 0.44
Intra-singer SVC -0.50

3.57
3.58
7.25

0.96
0.96
0.85

Acoustic features affecting perceived age

Table 4.2 indicates average values and standard deviations of differences between

the perceived age of natural singing voices and each type of intra-singer synthesized
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singing voice: analysis/synthesis (w/ ACs), analysis/synthesis (w/o ACs) and the intra-
singer SVC (source/target). The table also indicates correlation coefficients between
the perceived age of natural and synthesized voices. From the results, we can see that
in analysis/synthesis (w/ ACs), the perceived age difference is small and the correla-
tion coefficient is very high. Therefore, distortion caused by analysis/synthesis pro-
cessing does not affect the perceived age. It can be observed from analysis/synthesis
(w/o ACs) that this result does not change even if not using ACs. Therefore, ACs do
not affect the perceived age of singing voices. On the other hand, intra-singer SVC
(source/target) causes slightly larger differences between natural singing voices and
the synthesized singing voices. Therefore, some acoustic cues to the perceived age are
removed through the statistical conversion processing. Nevertheless, the perceived age
differences are relatively small, and therefore, it is likely that important acoustic cues
to the perceived age are still kept in the converted acoustic features.

Figures 4.3 and 4.4 indicate a comparison between the perceived age of singing
voices generated by SVC and intra-singer SVC (source/target). In each figure, the ver-
tical axis indicates the perceived age of converted singing voices by SVC (prosodic
features: source singer, segmental features: target singer). The horizontal axis in Fig-
ure 4.3 indicates the perceived age of singing voices generated by intra-singer SVC
(source) and that in Figure 4.4 indicates the perceived age of singing voices generated
by intra-singer SVC (target). Therefore, if the prosodic features more strongly affect
the perceived age than the segmental features, a higher correlation will be observed in
Figure 4.3. If the segmental features more strongly affect the perceived age than the
prosodic features, a higher correlation will be observed in Figure 4.4 than in Figure 4.3.
These figures demonstrate that 1) the segmental features affect the perceived age but
the effects are limited as shown in positive but weak correlation in Figure 4.4 and 2) the
prosodic features have a larger effect on the perceived age than the segmental features.

Acoustic features affecting singer individuality

In this experiment, we investigated which prosodic and segmental features have a
larger impact on singer’s individuality. Table 4.3 indicates the ratios judged by subjects
based on similarity of between the converted singing voice from the source singer into
the target singer with SVC and the source, target, or other singers’ reference singing

voices that were generated by intra-singer SVC (source/target). If the prosodic features
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Table 4.3.: Evaluation of singer identification in SVC.
Acoustic features | Ratio
Prosodic features | 52.08
Segmental features | 35.42
Disagreement 12.50

more strongly have the individuality of singer than segmental features, then singing
voice converted with SVC is classified into intra-singer SVC (source). On the other
hand, if the segmental features more strongly have the individuality of singer than
prosodic features, then the singing voice converted with SVC is classified into intra-
singer SVC (target). If the singing voice converted with SVC is classified to the other
singers’ reference singing voices, it was counted as a disagreement sample. This ta-
ble demonstrates that individuality of a singer is distinguished from prosodic features
rather than segmental features. This result has a similar tendency on Figures 4.3 and
4.4. Namely, there is a correlation between singer’s individuality and perceived age.
These results suggest that if it is necessary to make large changes in the perceived age,
then prosodic features are the most suitable acoustic features. However, it will also
cause changes of singer’s individuality. In contrast, if it is required to change only
the perceived age while remaining singer’s individuality, segmental features are more

appropriate features although a range of changes of the perceived age is limited.

4.4. Voice timbre control based on perceived age while
retaining singer identity

In the last section, we indicated that segmental features are suitable to control the
perceived age to retain singer individuality. In this section, we develop a perceived age
controllable SVC technique for a specific singer. At first, VC based on the MR-GMM
is applied to SVC to convert segmental features by manipulating the perceived age.
Moreover, we propose a modified MR-GMM to maintain the singer’s individuality.
To improve controllability of the perceived age, sound quality of the converted
voice, and flexibility of the model development in the conventional voice timbre con-

trol method, we further implement three techniques, 1) gender-dependent MR-GMMs
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for more accurately capturing spectral variations depending on the perceived age, 2)
direct waveform modification based on spectral differential, and 3) a rapid unsuper-
vised adaptation method based on maximum a posteriori (MAP) estimation to easily
develop the singer-dependent MR-GMM.

4.4.1. Modified MR-GMM implementation based on
many-to-many SVC

SVC with MR-GMM also consists of a training process and a conversion process. The
MR-GMM is trained using multiple parallel data sets consisting of the source singer’s
singing voices and many pre-stored target singers’ singing voices. The joint probability
density of 2D-dimensional joint static and dynamic feature vectors modeled by the
MR-GMM is given by

P( . YES)M(MR)’ w(S))
:i“ N[ X, o R0 3D ) @3)
S e e om0 )

where X, = [x], Ax]T and Y\ = [Y"", AY'”"]T show static and delta feature vectors
of the source and s-th pre-stored target singer. The mean vector of the s-th pre-stored

target singer is given by
1) = b + 1), (44)

where b'" and ﬁfp indicate the representative vector and bias vector respectively. w'®
indicates the s-th pre-stored target singer’s perceived age score, which is manually
assigned for each pre-stored target singer.

In the conversion process, the perceived age score is manually set to the desired
value. Then, the converted feature vector is determined in the same manner as de-
scribed in 2.3.2.

To make it easier to develop the MR-GMMs for individual source singers (i.e.,

users), we apply the framework of many-to-many SVC [15] to SVC based on MR-
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GMM. The joint probability density of many-to-many MR-GMM follows:

P (Yﬁ”, Y OAMR w(”))

M
= P (mia™®) f P(YP1X, m, A0 @)
m=1

P(Y1X,m, A% w(@) P (X,|m, A¥®) dX,

M Ygi) ﬂg)(l) Z(YY) E(YXY)
m=1 m m m
£ _ R (030001 g0 (4.6)

where w® and w' indicate the perceived age score of the source singer and that of the
target singers, respectively. Source and target mean vectors are given by Eq. (4.4).

It is possible to use Eq. (4.4) to describe the input mean vectors ,ug)(i) based on the
perceived age score of the source singer. However, an ccuracy of acoustic modeling by
the MR-GMM tends to decrease since the acoustic characteristics of the source singer
are not always modeled well on a subspace spanned by the basis vector. To develop a
better MR-GMM for the source singer, we assume an ideal condition that singing voice
samples of the source singer in accordance with those of the reference singer that are
used in the MR-GMM training are available. Namely, we suppose that it is possible
to prepare a parallel data set of each user and the reference singer. This condition is
still practical in the development of the user-dependent SVC system. Using a parallel
data of the source singer’s singing voice and the reference singer’s singing voice, the
input mean vector of the MR-GMM is updated in the sense of a maximum likelihood

criterion. Consequently, the input mean vector is given by

w0 = ), 4.7

where ﬁfj) 1s its maximum likelihood estimate. Note that it is also possible to train all
parameters of the MR-GMM using the parallel data sets of the user and all pre-stored
target singers without using the many-to-many SVC framework. However, the training
method presented here is still useful to effectively reduce computational cost to develop
the MR-GMM because it is necessary to update only input mean vectors as shown in
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Eq. (4.7). Moreover, there is a possibility to reduce the amount of singing voice data
of the user used for training or implement an unsupervised training approach without
the parallel data set based on model adaptation techniques.

In SVC with many-to-many MR-GMM, it is possible to convert voice timbre of
the source singer into desired voice timbre in accordance with an output perceived
age score. However, the output mean vector given by Eq. (4.4) only expresses average
voice characteristics of several pre-stored target singers. Therefore, a converted singing
voice doesn’t express voice timbre of the source singer.

For the purpose of developing SVC based on perceived age while retaining the
source singer’s individuality, we change the representative form of the output mean

vector as follows:

Y Y —(Y
o) = bVuw + 'l

= bW + Aw) + )
= bV + @ + bV Aw

A" + bV Aw 4.8)

1R

where the perceived age score of the output singing voice w' is represented by that of
the input singing voice w” and a difference perceived age score Aw between them. In
the modified representative form, the output mean vector is represented by the input

mean vector 1)) and the additional vector in accordance with a difference perceived

age score Aw. As the input mean vector 1" is directly used instead of its projection

@) rite)
m

on the subspace b, w"” + p,”, it is expected that acoustic characteristics of the source

singer’s singing voice are well preserved in this modified representative form.

4.4.2. Perceived age control via statistical waveform modification

As an SVC framework without using vocoder-based waveform generation, we have
proposed a statistical waveform modification technique based on direct waveform mod-
ification using spectral differential in Chapter 3. In this section, this method is applied
to the voice timbre control framework using the MR-GMM.

Figure 4.5 (b) shows proposed conversion processes based on Modified DIFFMR-
GMM. In the direct waveform modification based on spectral differential, the spectral

feature differential between the source singing voice and the converted singing voice
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Figure 4.5.: Conversion processes of perceived age control based on Modified MR-
GMM and Modified DIFFMR-GMM.

is directly estimated from the source singer’s spectral features using the DIFFMR-
GMM (DIFFMR-GMM) modeling the joint probability density function of the source
singer’s spectral features and the spectral feature differential caused by the given per-
ceived age differential. This differential model can be analytically derived from the
conventional singer-dependent MR-GMM by applying a simple linear transform to the
conventional model. The source singer’s spectral feature is converted into the spectral
feature differential using the DIFFMR-GMM.

Then, a waveform of the source singing voice is directly filtered with a time se-
quence of the estimated the spectral feature differentials. In this conversion process,
the converted singing voice is free from various errors usually observed in the con-
ventional waveform generation process with vocoder, such as F; extraction errors,
unvoiced/voiced decision errors, spectral parameterization errors caused by liftering
on the mel-cepstrum, and so on.

The DIFFMR-GMM is analytically derived from the singer-dependent MR-GMM
as follows. Let D, = [d,T, Ad:]T denote the joint static and delta differential feature
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vector, where d, = y,(0)—y,(i). The 2D-dimensional joint static and delta feature vector
between the source and the differential features is represented as a linear transformation

of the original joint feature vectors as follows:

[Y,@]:[ Y.(0) ]:[ I 0”&@} @9
D, Y,(0) - Y.(i) -1 1]| Y]
where I denotes the identity matrix. Applying this linear transform to the singer-
dependent MR-GMM, the DIFFMR-GMM is derived as follows:

P (YD), DJAPTMO, ju(v), Aw)

_i N Y,(i) || A IS e (4.10)

"2 o [ eaw | oz ) |
YD) yXY) _ () (4.11)
xPD) = (g _ g XDy (4.12)

In the conversion process, the converted differential feature vector is determined in the

same manner as described in Section 2.3.2.

4.4.3. Gender-dependent modeling

Multiple parallel data sets used in the conventional training method of the MR-GMM
consist of singing voice pairs of both male and female singers. To improve model-
ing accuracy of the MR-GMM on the voice timbre variations, we propose the gender-
dependent modeling, inspired by the previous work showing that the voice timbre vari-
ations of normal voices caused by aging significantly depend on the gender [68, 69].
Two gender-dependent MR-GMMs are trained separately using the parallel data sets
consisting of only male singers or female singers. And then, the singer-dependent
MR-GMM for the specific singer is developed by adapting the corresponding gender-
dependent MR-GMM to the singer in the same manner as described in Section 2.6.1.
Note that not only the representative vectors but also the other parameters, such as the
covariance matrices, are different between these two gender-dependent MR-GMMs.
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Figure 4.6.: Adaptation process of perceived age control based on singer-dependent
MR-GMM.

4.4.4. Unsupervised adaptation technique for an arbitrary singer

To make it possible to reduce the amount of singing voices and also accept arbitrary
phrases used as the adaptation data to develop the singer-dependent MR-GMM, we
propose an unsupervised adaptation technique based on the MAP estimation. Fig-
ure 4.6 shows the conventional and proposed methods for developing the singer-dependent
MR-GMM.

As the prior distribution for the MAP adaptation, the following Gaussian distribution
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is employed:

M
/l|/l(p”) 1—1 N T ”(prl) E(P”)) (4.13)
m=1
where 17" is a model parameter set consisting of the mean vectors u"" = {y(lp Do /155”)}

and the covariance matrices X" = {E(lp M ... ,25{4’”)}. This model parameter set is
trained in advance using a set of the singer-dependent target mean vectors of all pre-

stored target singers as follows:

S
A7 = argmax [ | P(u®()277), (4.14)

Apri) s=1

where u"(s) = {u(ly )(s), -, ug)(s)}. For the given adaptation data, Y(k) = [Y] (k), -+, Y7(k)]",
which denotes a time sequence of the feature vector of the singer k, the MAP adapta-
tion of the MR-GMM is conducted as follows:

k) = arlglmaxP(u(k)lxl(pri))T f P(X, Y)Y, p(k)) dX
(k)
T

argmax P (a0l ) | | [P (X Y0024, ) ax,

H&) t=1
T

= argmaxP(y(k)l/l(’”i)) P(Y, (01D, u(k)). (4.15)
M) =1

where 7 is a hyper-parameter controlling the balance between the prior distribution of
mean vectors and the marginalized distribution P (Y(k)l/l(MR), ﬂ(k)). The MAP estimate
is determined using the EM algorithm by maximizing the following auxiliary function:

M
O(u(k), f1k) = T ) log P (1, (k) A"™)

m=1

T M
£ 3 P . )

t=1 m=1

log P (Y, (k), mA™"®. f1,,(k)). (4.16)
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The MAP estimate is given by

- _1 -1
) = {rze e,z
ez e+ 20, () (4.17)

4.5. Experimental evaluation for voice timbre control

4.5.1. Evaluation of Modified MR-GMM
Experimental condition

In the first experiment, we evaluated the variation of perceived age achieved by the
modified MR-GMM. Eight male subjects in their 20s were divided into two groups,
and the 16 evaluation singers were divided into two groups so that one group always
included one male singer and one female singer in each age group. We changed the
perceived age score in Eq. (4.8) into -60, -40, -20, 0, 20, 40 and 60. Subjects were
asked to guess the age of each converted singing voice by listening to it in random
order.

In the second experiment, we conducted an XAB test on the singer individuality of
both the conventional and modified MR-GMMs. Subjects and evaluation singers were
separated into two groups in the same manner as the first experiment. We changed the
perceived age score in Eq. (4.8) into -60, -30, 30 and 60 in the modified MR-GMM. In
the conventional MR-GMM, the perceived age score in Eq. (4.4) was varied +30, 60
from the perceived age of each evaluation singer, which was determined by listening
to samples of the intra-singer SVC (source/target) in the previous experiment. A pair
of songs generated by the modified and conventional MR-GMM of the same singer
and variation of the perceived age scores was presented to subjects after presenting the
intra-singer SVC (source) as a reference. Then, they were asked which voice sounded
more similar to the reference in terms of the singer individuality.

In the final experiment, we evaluated the naturalness of the converted singing voice
using a mean opinion score (MOS). Subjects and evaluation singers were the same
as in the first experiment. The perceived age score was the same as for the second
evaluation. Subjects rated the naturalness of the converted singing voices using a 5-
point scale: “5” for excellent, “4” for good, “3” for fair, “2” for poor, and “1” for
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bad.

In the training of the MR-GMM, we prepared parallel data sets of a single female
reference singer in her 20s and 27 male and 27 female singers in their 20s, 30s, 40s
and 50s as pre-stored target singers not included in the 16 evaluation singers. The
number of training singing voices was 25 in each singer. We used parallel data sets
of the reference singer and 16 evaluation singers to update the input mean vectors by
Eq. (4.7) for each evaluation singer. The perceived age score for each singer was
determined as an average score over 25 singing voices of the singer rated by one male
subject in his 20s. The number of mixture components of the MR-GMM was 128
for the spectral envelope and 32 for ACs. The other experimental conditions were the
same as Section 4.3.1.

Experimental results

Figure 4.7 indicates the varieties of perceived age in the modified MR-GMM. To
change the perceived age score from -60 to 60, the perceived age of the singer was
almost linearly varied. In particular, we can see the same tendency as observed in the
investigation of segmental features shown in Fig 4.4. The result in Fig 4.4 indicates
that the change of observed perceived age from 20 to 60 years old in the horizontal

line is about 5 years. This means that modified MR-GMM can appropriately control
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Figure 4.9.: Mean opinion score of conventional MR-GMM and modified MR-GMM.

the perceived age of singing voices.

Figure 4.13 indicates the result of the XAB test for the singer individuality. We can
see that as we make larger changes in the perceived age, the preference score of the
modified MR-GMM tends to decrease. However, the modified MR-GMM has a higher
preference score than the conventional MR-GMM for each setting.

Figure 4.12 indicates the results of MOS test for the naturalness. This figure has
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Table 4.4.: Experimental conditions of evaluation of gender-dependent Modified

DIFFMR-GMM.

Singing voice database AIST humming database
Sampling frequency 16 [kHz]
Duration of one phrase about 20 [s]

The number of training singers 28 males, 28 females
The number of evaluation singers 8 males, 8 females
The number of training data 23 phrases
The number of subjects 8

the same tendency as displayed in Figure 4.13. The modified MR-GMM has a higher
MOS than the conventional MR-GMM for each setting. The bias vectors of the modi-
fied MR-GMM (41" in Eq. (4.8)) model singing voice characteristics of a single singer
(i.e., the source singer). On the other hand, those of the conventional MR-GMM (ﬁqu)
in Eq. (4.8)) model voice characteristics of multiple pre-stored target singers. There-
fore, over-smoothing effects of the conventional MR-GMM tend to be larger than those
of the modified MR-GMM. Consequently, the naturalness of the singing voices is also
improved by using the modified MR-GMM.

These results suggest that 1) the modified MR-GMM enables to control the per-
ceived age of singing voices relatively well, 2) the modified MR-GMM enables to
retain the singer individuality better than the conventional MR-GMM during the per-
ceived age control, and 3) the modified MR-GMM also generates better quality of
converted singing voices compared with the conventional MR-GMM.

4.5.2. Evaluation of gender-dependent Modified DIFFMR-GMM
Experimental condition

Table 4.4 indicates a simple description of the experimental conditions. We used the
AIST humming database [67] consisting of phrases of songs with Japanese lyrics sung
by Japanese male and female amateur singers in their 20s, 30s, 40s, and 50s. The
sampling frequency was set to 16 kHz. The 1st through 24th mel-cepstral coefficients
extracted by STRAIGHT analysis [12] were used as spectral features. As the source

excitation features, we used Fy and aperiodic components in five frequency bands, i.e.,
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Figure 4.10.: Method for dividing 16 evaluation singers into two groups.

0-1, 1-2, 24, 4-6, and 6-8 kHz, which were also extracted by STRAIGHT analy-
sis [49]. The frame shift was 5 ms. The mel log spectrum approximation filter [40]
was used as the synthesis filter in both the conventional waveform generation with
vocoder and the proposed direct waveform modification.

In the training of the gender-independent MR-GMM, we used parallel data sets of a
female reference singer in her 20s and 56 pre-stored target singers including 28 males
and 28 females in their 20s, 30s, 40s and 50s. In the training of the gender-dependent
MR-GMMs, we separately used a female and male reference singer in their 20s and
28 male or 28 female pre-stored target singers. Each singer sang 23 phrases, where
the duration of each phrase was approximately 20 seconds. The number of mixture
components of each MR-GMM was 128 for the spectral feature and 64 for the aperi-
odic components. We have developed the singer-dependent MR-GMMs for 16 singers
consisting of two male and two female singers in each age group (the 20s, 30s, 40s,
and 50s), who were not included in the pre-stored target singers, and conducted voice
timbre control evaluations for these singers. We used P039 as an evaluation phrase.
The perceived age score for each singer was determined as an average score of the
singer rated by 8 subjects in their 20s [70].

To examine the effectiveness of two proposed techniques, the gender-dependent
modeling, and the direct waveform modification, singing voices converted by the fol-

lowing three methods were evaluated:

e SVC (GI): converted with the gender-independent Modified MR-GMM,
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e SVC (GD): converted with the gender-dependent Modified MR-GMM,
e DIFFSVC (GD): converted with the gender-dependent Modified DIFFMR-GMM.

The converted singing voice samples were generated by settings of the perceived age
score differential to -60, -30, 0, 30, and 60. The number of training phrases for the
development of the singer-dependent MR-GMM was 23 in each singer. Figure 4.10
indicates a method of dividing 16 evaluation singers into two groups. The 16 evaluation
singers were divided into two groups so that one group always included one male singer
and one female singer in each age group. Each subject was assigned one evaluation
singer group in each evaluation in order to evaluate the evaluation singers of both
genders and all age groups.

First, we evaluated perceived age controllability. The number of the converted
singing voice of an evaluation singer was 15. Each subject evaluated the converted
singing voices of 120 phrases from only one group of the evaluation singers. Sub-
jects were asked to assign the perceived age to each converted singing voice sample by
listening to it in random order.

In the second experiment, we evaluated the quality of the converted singing voice
using a mean opinion score (MOS). Each subject evaluated the natural and converted
singing voices of evaluation singers. The number of evaluation phrases in each subject
is 128. The subjects rated the quality of the converted singing voice using a 5—point
scale: “5” for excellent, “4” for good, “3” for fair, “2” for poor, and “1” for bad.

In the final experiment, we conducted an XAB test on the singer individuality to
compare the conventional method SVC (GI) and the proposed method DIFFSVC (GD).
The evaluation singers were separated into two groups and each subject evaluated the
converted singing voices from only one group in the same manner as the first experi-
ment. A pair of singing voices converted by SVC (GI) and by DIFFSVC (GD) for the
same singer with the same setting of the perceived age score differential was presented
to the subjects after presenting the natural singing voice as a reference. Then, they
were asked which singing voice sounded more similar to the reference in terms of the

singer individuality. The number of evaluation pairs in each subject is 40.
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Figure 4.11.: Experimental result on perceived age controllability.

Experimental result

Figure 4.11 shows the relationship between the perceived age differentials given to the
system to generate the converted singing voices and their perceived ages actually eval-
uated by the listeners. We can see that using the proposed gender-dependent models
(SVC (GD) and DIFFSVC (GD)), the perceived age varies more linearly according
to a change of the settings of the perceived age differential from -60 to 60 compared
with the conventional gender-independent model (SVC (GI)). Moreover, a range of
the perceived age of the converted singing voice becomes wider by using SVC (GD)
and DIFFSVC (GD) compared with SVC (GI). These results indicate that voice timbre
variations caused by the perceived age depend on the gender in singing voices and they
are well modeled by using the proposed gender-dependent modeling technique.
Figure 4.12 indicates the results of the opinion test on the quality. We can see that
DIFFSVC (GD) tends to significantly improve the quality of the converted singing
voices compared with SVC (GI) and SVC (GD). Although the quality is greatly de-

graded in the conventional method SVC (GI) as the perceived age score differential
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Figure 4.12.: Mean opinion score of sound quality.

is set to larger or smaller values, this quality degradation is effectively alleviated by
the proposed method DIFFSVC (GD) because the DIFSVC (GV) method can avoid
the errors caused by spectrum parameterization and excitation generation. In compar-
ison between SVC (GD) and SVC (GI), the speech quality of SVC (GD) is improved
compared with that of SVC (GI) as the perceived age score differential is set to higher
values (+30, +60). On the other hand, in terms of setting lower values (—60, —30), we
can see that there is no significant difference between these methods. As shown in
Figure 4.11, the perceived age differential achieved by SVC (GI) tends to be smaller
than that by SVC (GD) when setting the perceived age score differential to —60. This
result implies that the resulting acoustic changes by SVC (GI) are smaller than those
by SVC (GD) under such a setting, also making the quality degradation in SVC (GI)
smaller. Even in such an unfair condition, SVC (GD) causes no quality degradation
compared with SVC (GI).

Figure 4.13 indicates the result of the XAB test on the singer individuality. DIFFSVC
(GD) better or equally retains singer individuality in any perceived age setting com-

pared with the conventional method SVC (GI). We can see that as a change of the
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Figure 4.13.: Preference score on singer individuality.

perceived age differential setting is larger, the difference between DIFFSVC (GD) and
SVC (GI) becomes smaller. In particular, no difference is observed between them
when setting the perceived age differential to —60 while the significant difference is
still observed when setting it to 60. It is expected that this result is also caused by
the resulting acoustic changes by SVC (GI) is smaller than SVC (GI) when setting the
perceived age differential to —60 as mentioned above.

These results suggest that 1) the gender-dependent modeling technique is effective
for improving the perceived age controllability, and 2) the direct waveform modifica-
tion technique with spectral differential significantly improves the quality of the con-
verted singing voice.

Although the proposed method DIFFSVC (GD) makes it possible to control the per-
ceived age with higher speech quality compared with the conventional method SVC
(GI) and SVC (GD) in Figures 4.12 and 4.13, there still remains the speech quality
degradation compared with the natural singing voice. It is expected that this degrada-
tion is caused by insufficient modeling accuracy of the perceived age variations using
the gender-dependent MR-GMM. Therefore, it is worthwhile to further improve the
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modeling accuracy.

4.5.3. Evaluation of unsupervised adaptation
Experimental condition

In this evaluation, we varied the number of the adaptation phrases as 1, 6, 12, and 22 in
order to evaluate the effectiveness of the proposed unsupervised adaptation technique.
The adaptation phrases are selected in order from the beginning of the index of singing
voice database. In this evaluation, the ML estimation with parallel phrases was used as
the supervised adaptation and the MAP estimation with only phrases of each evaluation
singer was used as the unsupervised adaptation. The hyper-parameter 7 for the MAP
adaptation was manually set to 3.0 in the subjective evaluations.

First, we evaluated the modeling accuracy of the singer-dependent MR-GMMs de-
veloped with the adaptation approaches using Mahalanobis distance of their mean vec-
tors to those of the singer-dependent MR-GMMs developed with the conventional su-

pervised approach using 22 parallel phrases in each singer, which is calculated as

L M
D=7 33 w60~ A0) 0 (w0 - ).
(4.18)

where L denotes the number of evaluation singers. f1”’(/) denotes the adapted singer-
dependent MR-GMM for the evaluation singer / using his/her i phrases in the unsuper-
vised adaptation or i parallel phrases in the supervised adaptation. Note that the mean
vectors of the singer-dependent MR-GMM used as a target /,tm)(l) in this distance cal-
culation is equivalent to those determined using the supervised ML adaptation using
22 parallel phrases.

In the second experiment, we evaluated the conversion accuracy using the mel-
cepstrum distortion as an evaluation metric in the different settings of the hyper-parameter
7. The mel-cepstrum distortion was calculated as follows:

24

1 .
Mel-CD [dB] = o (1)0 JZZ (mcf” MCS))Z’ (4.19)
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Figure 4.14.: Mahalanobis distance as a function of the number of adaptation phrases.

where mcgz) denotes the mel-cepstrum coeflicients analyzed from the converted singing
voice generated with the singer-dependent MR-GMM developed with the supervised
ML adaptation using 22 parallel phrases, and nicg) denotes those developed with the
unsupervised MAP adaptation using i phrases. The setting of the hyper-parameter
is varied from O, 1, 3, 6, 12, to 24. Note that the setting of 7 = 0 corresponds to the
unsupervised ML adaptation.

In the third experiment, we evaluated the perceived age controllability. The number
of adaptation phrases was set to 1 and 6. The 16 evaluation singers were divided into
four groups. Each subject evaluated the converted singing voices from only one group
of the evaluation singers. Subjects were asked to assign the perceived age to each
converted singing voice in one group of the evaluation singers by listening to it in
random order. The number of evaluation samples in each subject was 48.

In the final experiment, we evaluated the quality of the converted singing voice using
an opinion test. The number of subjects and evaluation singers was the same as in the
second experiment. The subjects evaluated the quality of the converted singing voices

in the same manner as described in 4.5.2.
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Figure 4.15.: Mel-cepstrum distortion as a function of the number of adaptation
phrases and hyper-parameters settings.

Experimental result

Figure 4.14 indicates the Mahalanobis distances as a function of the number of adap-
tation phrases. The distance when using 1 parallel phrase in the ML adaptation is very
large. On the other hand, the distance using 1 phrase in the MAP adaptation is signif-
icantly lower than it. In the ML adaptation, it is necessary to use 6 or more parallel
phrases to reduce the distance as small as in the MAP adaptation.

Figure 4.15 shows the mel-cepstrum distortion as a function of the number of adap-
tation phrases in each hyper-parameter setting. We can see that the unsupervised adap-
tation using either ML or MAP is effective. The unsupervised ML adaptation (7 = 0)
causes significantly large degradation when using only one adaptation phrase. On the
other hand, such a degradation is effectively alleviated by using the proposed MAP
adaptation. We can also see that performance of the proposed MAP adaptation is af-
fected by the hyper-parameter setting, and relatively good performance is achieved by
setting the hyperparameter to a small value.

Figure 4.16 shows the experimental result on the perceived age controllability. We
can see that the MAP adaptation using only 1 phrase has higher controllability com-

pared with the ML adaptation in 1 parallel phrase and its controllability is similar to
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Figure 4.16.: Experimental result on perceived age controllability of the adapted MR-
GMMs.

that of the MAP adaptation using 6 phrases and that of the ML adaptation using 6 par-
allel phrases. This tendency is consistent with that observed in the previous objective
evaluation shown in Figure 4.14. Moreover, comparing to the result described in Fig-
ure 4.11, we can see that the proposed MAP adaptation method using only 1 phrase
achieves similar controllability to the conventional method using 22 parallel phrases.
Figure 4.17 indicates the results of the opinion test on the speech quality. We can
see that there is no significantly large quality difference between the MAP adaptation
and the ML adaptation. We can also see that the quality of the converted singing
voice tends to degrade if using only 1 phrase. This quality degradation is alleviated by

increasing the number of adaptation phrases to 6 and the resulting quality reaches to
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tation phrases.

that of the conventional method using 22 parallel phrases.

These results suggest that 1) the MAP adaptation outperforms the ML adaptation
when a few phrases are available, and 2) the MAP adaptation by using only a small
number of arbitrary phrases (e.g., 6 phrases) achieves almost the same controllability
and quality of the converted singing voice as in the conventional method that needs a

larger number of parallel phrases (e.g., 22 phrases).

4.6. Summary

In this chapter, in order to control voice timbre of singing voice based on perceptually
understandable voice timbre expression words while retaining singer identity, we have
investigated acoustic features affecting on the perceived age and proposed voice timbre
control technique with the Modified MR-GMM and the gender-dependent Modified
DIFFMR-GMM.

Sections 4.2 and 4.3: These sections illustrated the investigation of the acoustic fea-
tures affecting on the perceived age in order to asses effects of each acoustic fea-

ture. The experimental results showed that 1) the perceived age of singing voices
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corresponds relatively well to the actual age of the singer, 2) prosodic features
have a larger effect on the perceived age than spectral features, 3) the individu-
ality of a singer is influenced more heavily by segmental features than prosodic
features.

Sections 4.4 and 4.5: In these sections, in order to control voice timbre of the singer
based on the perceived age while retaining singer identity, we have proposed a
statistical voice timbre control technique based on Modified MR-GMM. The ex-
perimental results confirmed that the proposed technique based on the Modified
MR-GMM makes it possible to achieve to control perceived age of the source
singing voice while not having an adverse effect on singer identity. Moreover,
to improve the controllability of the perceived age and source quality of the
converted singing voice, we have proposed a perceived age control technique
based on direct waveform modification using time-variant spectral differential
with gender-dependent Modified DIFFMR-GMM. The experimental results in-
dicated the perceived age control technique based on the gender-dependent Mod-
ified DIFFMR-GMM achieved higher controllability and sound quality com-
pared with the perceived age control technique based on Modified MR-GMM.
Furthermore, to develop the singer-dependent model for an arbitrary source singer
easily, we have proposed a rapid adaptation technique based on MAP adapta-
tion. The experimental results have demonstrated that the unsupervised adapta-
tion technique makes it possible to develop the singer-dependent model for the

arbitrary source singer even when parallel phrases are not available.
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5. Real-time VC systems via statistical
waveform modification

5.1. Introduction

In speech communication, speakers can transmit their speech consisting of linguistic
and non-linguistic information utilizing their speech production mechanism. Voice
timbre is one of the most important non-linguistic information for listeners to identify
the speakers’ individuality. In order to convert an individuality of a source speaker
into that of a target speaker, several voice conversion (VC) techniques such as Gaus-
sian process regression [19,20] and deep neural network [21-23] have been proposed.
Although these techniques achieved a conversion of voice timbre with higher conver-
sion accuracy compared with VC based on Gaussian mixture model (GMM) [8, 10], it
is difficult to utilize these techniques into a real-time conversion system because these
techniques are difficult to convert voice timbre in real-time.

A real-time VC system has some possibility of growing a valuable interactive com-
munication tool. For example, it is expected that the real-time VC system makes it
possible to expand our speech expressions in various conditions such as speech disor-
der, pronunciation correction of a non-native language, impersonation and so on. If the
speakers freely produced various voice timbre using the real-time VC system, it would
open up a new speech communication style.

In order to make it possible to implement such that VC system, in this chapter, we
propose real-time statistical waveform modification systems using a low-delay con-
version technique [25]. Although several real-time conversion systems such as lip-
synching into speech waveform [71], a timbre of a musical instrument [72], pitch of
singing voice [73] have been proposed as the real-time conversion systems when user’s
input is given, these techniques are not possible to convert a speaker individuality of
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a user into that of another user. In Chapters 3 and 4, we have proposed VC and voice
timbre control techniques via statistical waveform modification to improve the sound
quality of the converted voice. However, it is not possible to directly apply these tech-
niques into the low-delay conversion framework. In this chapter, in order to apply
the statistical waveform modification techniques into real-time conversion systems,
we propose following techniques: 1) parameter transformation technique for the low-
delay conversion and 2) frame-based global variance (GV) post-filter to alleviate the
over-smoothing effect of the converted feature trajectory.

This chapter is organized as follows. System overview consisting of our imple-
mented VC and voice timbre control systems is illustrated in Section 5.2. System
components consisting of a parameter transformation technique for the low-delay con-
version and frame-based GV post-filter for statistical waveform modification are de-
scribed in Section 5.3. The experimental evaluations are described in Section 5.4. This

chapter is summarized in Section 5.5.

5.2. System overview

5.2.1. Real-time VC system based on statistical waveform
modification

Figure 5.1 illustrates a graphical user interface of the real-time VC system. In this
interface, it is possible to immediately change a conversion model between the source
and target speakers by clicking “Model Selection” push buttons. In order to transform

F of an input voice, we install Fy control sliders.

5.2.2. Real-time voice timbre control system based on statistical
waveform modification

Figure 5.2 illustrates a graphical user interface of the real-time perceived age control
system. In this interface, it is possible to control the perceived age of an input singing
voice by manipulating a slider in accordance with the perceived age to “up” or “down”.
The conversion begins when pushing a “start” button after choosing pre-stored voice
samples. In this system, the user can change the perceived age slider while confirming

the output converted voice. Therefore, it is easy for the user to find the ideal voice

105



[ JON | MainWindow

Frequency
Model Selection ‘/T' 48000
© STC2_Koba-STC3_org () TodaATR-Mamegu © 44100
116000
() STC3_actA-STC3_org [ TodaATRL-LICCA -
(1 STC3_actB_1.28-STC3_org | | KobaATRL2-LICCA
O (| KobaATRM2-Mamegu
Conversion S
Start Stop
© Direct output | PowMod .
© Wave input ) :
Analysis/Synthesis ClpLmt
() Mic input Intra-conversion Pitch
Conversion
() Conversion (DIFF)
O
GAIN FO ALPHA Min FO - Max FO - GV - FO
4

Figure 5.1.: Graphical user interface of a real-time VC system.

timbre. Moreover, to confirm the reference perceived age, the system prepares several
representative voice timbre in each age.
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5.3. System components

In this section, we propose following two techniques to implement real-time VC and
voice timbre control systems: 1) parameter transformation technique for low-delay
statistical waveform modification and 2) frame-based GV post-filtering for statistical
waveform modification to alleviate the over-smoothing effect of the converted feature

trajectory.

5.3.1. Model parameter transformation for low-delay statistical
waveform modification

In the conventional low-delay conversion algorithm [25], to reduce computational costs
of the feature extraction, source spectral envelope of an input waveform is extracted
based on a simple spectral feature extraction method based on fast Fourie transform
(FFT) using fixed window and liftering. And also, spectral envelope extracted based
on STRAIGHT analysis [12] is used as a target spectral envelope in order to achieve
the higher sound quality of the converted voice compared with the spectral envelope
extracted based on FFT using fixed window and liftering. Therefore, it is not pos-
sible to directly apply the joint probability density function of a differential GMM
(DIFFGMM) modeled using joint source and target spectral features extracted using
STRAIGHT analysis as the same manner as described in Chapter 3 into the low-delay
conversion algorithm. In this section, in order to estimate the joint probability den-
sity function for the real-time statistical waveform modification systems, we propose
parameter transformation technique.

LetX, = [x/,AxT,]", X, = [x],Ax/]",and Y = [y, Ay ]" denote 2D-dimensional
joint static and dynamic feature vectors of the source extracted based on the simple
spectral envelope extraction and the source and target extracted based on STRAIGHT
analysis, respectively, where T denotes the transposition of the vector. These feature
vectors consist of D-dimensional static feature vectors x;, x, and y, and their dynamic

feature vectors Ax,, Ax, and Ay, at frame 7, respectively. Their joint probability density
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modeled by the GMM is given by

O X XX XX XY
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where N (-; u, X) denotes the normal distribution with a mean vector u and a covariance
matrix X. The total number of mixture components is M. The mixture component
index is m. A is a GMM parameter set consisting of the mixture-component weight
@, the mean vector u,,, and the covariance matrix X, of the m-th mixture component.
Note that we use single-path training to model this joint probability density.

In order to estimate joint probability density function for the low-delay conversion

systems, we define following transformation matrix:

5.2)

ARD) _ I 0 0
0 -1 I|

Let D, = [le, Ad,T]T denote the static and dynamic differential feature vector, where
d, = y, — x,. Applying to the transformation matrix A®™ into the joint probability
density function in Eq. 5.1, the joint probability density function of the low-delay

statistical waveform modification is derived as follows:

M : X) (XX) (XD)
. . X J7i )y py
P(X. DJAYP) =X N || 1 T 1 s e |- >3
( Dy ) ; D, e T(OX)  y D) (5.3)
ﬂ,(f;)) _ ﬂ,(nY) _ ﬂﬁf), 5.4)
YD) _ yOH' _ y&Y) _ TEX) (5.5)
EEP = 3OO0 0V 300y, 56)

5.3.2. Frame-based GV post-filter for low-delay statistical
waveform modification

For DIFFVC considering GV described in 3.2, it is necessary to iteratively estimate

spectral feature differential while considering the GV of the converted feature trajec-
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Figure 5.3.: A conversion flow of the low-delay statistical waveform modification con-
sidering frame-based GV.

tory. If the source spectral feature is analyzed using STRAIGHT analysis [12] likewise
the off-line conversion, it is possible to estimate the converted spectral feature trajec-
tory by working out the sum of the source spectral feature and the differential. On the
other hand, in the low-delay conversion framework, simple spectral feature extraction
process consisting of FFT using fixed window width and liftering is performed. There-
fore, the conversion accuracy of the spectral feature differential is degraded because
spectral envelope modeling accuracy of the simple spectral feature extraction is usu-
ally worth compared with that of STRAIGHT analysis. Consequently, this degradation
arises the sound quality degradation of the converted voice.

In this section, in order to alleviate this sound quality degradation, we propose a
frame-based GV post-filtering technique for low-delay statistical waveform modifi-
cation using intra-speaker VC technique. Figure 5.3 indicates a conversion flow of
the low-delay statistical waveform modification considering frame-based GV. Using
intra-speaker VC, it is possible to approximately estimate the source spectral feature
extracted using STRAIGHT from the source spectral feature extracted simple spectral
feature extraction.

Let a?td and X,, denote d dimensional converted static differential feature vector
without considering GV and converted static feature vector based on intra-speaker VC.
The frame-based GV post-filtering process follows:

3GV 3 --3 o 4 _ _ ~
df,d '= My Ry P (Rea + dia = Ya) + §a — Xeas (5.7)

where ,ug’) is GV of d-th dimensional static feature vector of the target speaker. pil”)

and i, denote GV and mean vector of d-th dimensional converted static feature vector
without considering GV, which are previously calculated using DIFFVC without con-
sidering GV. Although the proposed post-filtering technique is necessary to convert
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double at the same time because it requires both the converted static feature vectors
of intra-speaker VC and the converted static differential feature vector of DIFFVC,
these conversions are capable of converting in real-time. Note that we also suppress a

conversion using spectral feature differential by padding to zero at the unvoiced frame.

5.4. Experimental evaluation

5.4.1. Experimental condition

We used singing voices of 21 Japanese traditional songs, which were divided into 152
phrases, where the duration of each phrase was approximately 8 seconds. Amateur
singers including 3 males and 3 females sang these phrases. The sampling frequency
was set to 16 kHz. The frame shift was 5 ms. STRAIGHT [12] was used to extract
spectral envelopes, which were parameterized to the 1-24th mel-cepstral coefficients
as spectral features. The mel log spectrum approximation (MLSA) filter [40] was used
as the synthesis filter. We used 80 phrases for the GMM training and the remaining 72
phrases were used for evaluation. GMMs were separately trained for individual singer
pairs determined in a round-robin fashion within intra-gender singers. The number of
mixture components for the mel-cepstral coeflicients was 128. The number of subjects
was 6. We denote the spectral feature extracted based on STRAIGHT analysis as
STRAIGHT mel-cepstrum and the spectral feature extracted simple spectral feature
extraction as FFT mel-cepstrum.

5.4.2. Objective evaluation

For the objective evaluation, at first, we compared mel-cepstrum distortions (Mel-CD)
to evaluate the effectiveness of the parameter transformation technique and frame-
based GV post-filter for the low delay conversion. The Mel-CDs were calculated in
the same manner as Equation 3.4.1 described in Section 3.4. Maximum likelihood pa-
rameter generation was hired as a parameter generation technique in this evaluation.

We compared several techniques as follows:

DIFFSVC (w/o GV)
DIFFSVC without considering GV using STRAIGHT mel-cepstrum as an input

feature,
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Table 5.1.: Mel-cepstral distortions of low-delay statistical waveform modification

techniques.
Mel-CD [dB]
Method Target singer
DIFFSVC (w/o GV) 4.54
RT-DIFFSVC (w/o GVPF) 4.86
RT-DIFFSVC (w/ GVPF, w/ intra) 5.03
RT-DIFFSVC (w/ GVPF, w/o intra) 5.19

RT-DIFFSVC (w/o GV)
DIFFSVC based on the real-time DIFFGMM without considering GV using FFT

mel-cepstrum as an input feature vector,

RT-DIFFSVC (w/ GVPF w/ intra)
DIFFSVC based on the real-time DIFFGMM with frame-based GV post-filter
using FFT mel-cepstrum as an input feature vector and intra-singer SVC to cal-

culate the GV of converted feature trajectory,

RT-DIFFSVC (w/ GV, w/o intra)
DIFFSVC based on the real-time DIFFGMM with frame-based GV post-filter

using FFT mel-cepstrum as an input feature vector.

Table 5.1 indicates that the Mel-CDs of several conversion techniques. It can be
said that there is little quality degradation due to parameter transformation technique
for low-delay conversion because the difference of Mel-CDs between “DIFFSVC (w/o
GV)” and “RT-DIFFSVC (w/o GV)” is small. Therefore, it is considered that there
is small sound quality degradation due to the use of the FFT mel-cepstrum as an in-
put feature vector. We can see that the Mel-CD tends to be bigger when considering
frame-based GV post-filter. This tendency is also observable in the offline conver-
sion described in 3.2. There is small difference between “RT-DIFFSVC (w/ GVPE, w/
intra)” and “RT-DIFFSVC (w/ GVPF, w/o intra)”. Therefore, it is expected that the
sound qualities of the converted voice are not difference.

In the objective evaluation, we also evaluated the delay of the low-delay statis-

tical waveform modification technique. We calculated the delay 7 based on cross-
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Table 5.2.: Conversion delay of low-delay statistical waveform modification.
F, transformation ratio delay [ms]
0.5 76.62
1.0 (w/o F, transformation) 35.00
1.0 (w/ F, transformation) 60.00

2.0 62.72
correlation function as follows:
Y141
T = argmax so(n)s;(n + 1), (5.8)
T =0 n=0

where s;(n) and s,(n) denotes a sample of the input and converted waveforms, respec-
tively. N is the number of samples of a sentence. The number of delay components
for the low-delay conversion technique was set to 3. Note that the input and converted
waveforms were recorded at the same time.

Table 5.2 illustrates the result of delay in the low-delay statistical waveform mod-
ification. In the intra-gender conversion, it is not necessary to perform F| transfor-
mation. Therefore, the delay of the low-delay conversion is equivalent to the conven-
tional low-delay conversion. When the F, transformation is enabled, the delay tends
to be bigger even when the F transformation set to 1.0. This is because the wave-
form similarity-based over-lap add (WSOLA) requires proceedings frame of the input
waveform. Moreover, when the F transformation ratio set to 0.5 or 2.0, the delay of
conversion significantly increases. This delay is quite large, but it is considered that

the user can avoid a bad effect of his/her auditory feedback by practice.

5.4.3. Subjective evaluation

In the subjective evaluation, we evaluated the effectiveness of the frame-based GV
post-filter for the statistical waveform modification. Two preference tests were evalu-
ated to compare singing VC based on direct waveform modification (DIFFSVC) with-
out GV post-filter (“w/o GVPF”) and DIFFSVC with proposed frame-based GV post-
filter (“w/ GVPF”). The first preference test evaluated sound quality of the converted

singing voices of the “w/o GVPF” and “w/ GVPF". The converted singing voice sam-
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Figure 5.4.: Results of preference tests on (a) speech quality of converted singing voice
and (b) conversion accuracy on singer individuality.

ples of the “w/ GVPF” and the “w/o GVPF’ methods for the same phrase were pre-
sented to subjects in random order. The subjects selected which sample had better
sound quality. The second preference test evaluated the conversion accuracy on singer
identity of the converted singing voices. A natural singing voice sample of the target
singer was presented to the subjects first as a reference. Then, the converted singing
voice samples of the “w/ GVPF” and the “w/o GVPF” methods for the same phrase
were presented in random order. The subjects selected which sample was more sim-
ilar to the reference natural singing voice in terms of singer identity. The number of
subjects in the first and second evaluation was 6 and each listener evaluated 32 sample
pairs. All subjects don’t specialize in audio. Subjects were allowed to replay each
sample pair as many times as necessary. Note that we have performed batch type con-
version using maximum likelihood parameter generation [10] in the subjective eval-
uation because the conversion accuracy of low-delay conversion [25] and maximum
likelihood parameter generation [10] are almost same.

Figure 5.4(a) indicates the results of preference test for the sound quality of the
converted voice. We can see that “w/ GVPF” has higher sound quality compared with
“w/o GVPF”. Figure 5.4(b) illustrates the results of conversion accuracy on singer

individuality. It can be said that the conversion accuracies of “w/ GVPF” and “w/o
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GVPF” are almost equal.

5.4.4. Analysis of converted feature trajectory

Figure 5.5 indicates the GVs of converted spectral feature extracted from converted
singing voice. “Diff-based” indicates the GV of converted spectral feature using GV
post-filtering against estimated spectral feature differential. We can see that the GV of
“Diff-based” method can not restore the GV of the converted spectral features. On the
other hand, the GV of “w/ GVPF” is restored compared with the GV of “w/o GVPF”.

5.5. Summary

In this chapter, in order to implement real-time statistical waveform modification sys-
tems for voice conversion and voice timbre control, we have proposed following tech-
niques: 1) parameter transformation technique for low-delay statistical waveform mod-

ification and 2) frame-based GV post-filtering for statistical waveform modification.

Section 5.2: This section has illustrated our implemented VC and voice timbre con-

trol systems.
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Sections 5.3 and 5.4 : This section has proposed several techniques to implement
the real-time conversion systems as follows: 1) parameter transformation tech-
nique for low-delay statistical waveform modification and 2) frame-based GV
post-filtering for statistical waveform modification. The experimental results
demonstrated that the frame-based GV post-filtering makes it possible to im-
prove the sound quality of converted singing voice while maintaining conversion

accuracy.
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6. Conclusions

6.1. Summary of thesis

Voice conversion (VC) is a potential technique for enabling us to produce speech
sounds beyond our own physical constraints. However, the VC framework has not
yet been used in practice because the sound quality of the converted voice is signifi-
cantly degraded compared with that of a natural speech waveform. One of the major
factors causing the quality degradation is the waveform generation process using a
vocoder. For the vocoding process, the sound quality degradation usually arises ow-
ing to various factors. To address this issue, in this thesis, we proposed VC and voice
factor control techniques with statistical waveform modification.

In Chapter 2, we introduced traditional vocoding and VC frameworks based on
Gaussian mixture models (GMM).

In Chapter 3, we addressed the sound quality degradation caused by vocoding in VC
using speaking and singing voices. At first, in order to address the sound quality degra-
dation of the converted singing voice, we proposed intra-gender singing VC (SVC)
based on direct waveform modification using the spectral differential (DIFFSVC).
Then, to make it possible to apply the intra-gender DIFFSVC to intra/inter-gender
VC based on direct waveform modification using spectral differential (DIFFVC), we
proposed several F, transformation techniques for the source voice. The experimental
results confirmed that our proposed methods achieved higher sound quality of the con-
verted voice than the conventional VC based on GMM using vocoding for waveform
generation in both intra/inter-gender conversion.

In Chapter 4, we proposed a singing voice factor control technique based on voice
timbre expression words while retaining singer individuality. We focused on the per-
ceived age of the singing voice as a voice timbre expression word, because the per-

ceived age is one of the most generic voice timbre expression words regardless of the
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user. First, we investigated several acoustic features of the singing voice affecting
on the perceived age. Then, we proposed a voice timbre control technique based on
the perceived age while retaining singer individuality. Moreover, to develop a better-
controllable, higher quality, and more flexible voice timbre control framework, we also
proposed the following techniques: 1) gender-dependent modeling, 2) voice timbre
control based on direct waveform modification using a spectrum differential, and 3) an
unsupervised adaptation method based on maximum a posteriori (MAP) estimation.
The experimental results confirmed that our proposed voice timbre control methods
make it possible to control voice timbre based on the perceived age while retaining
singer identity.

In Chapter 5, we introduced our implemented real-time VC and voice timbre con-
trol systems based on statistical waveform modification. In order to implement real-
time VC and voice timbre control systems, we proposed 1) a parameter transformation
technique for the small-delay conversion algorithm and 2) a frame-based GV postfil-
tering for statistical waveform modification. The experimental results indicated that
our proposed techniques make it possible to convert voice timbre with a sound quality

comparable that obtained with the conventional technique in real time.

6.2. Future work

6.2.1. Voice conversion

In this thesis, although we struggled with the sound quality degradation of the con-
verted voice in VC, an absolute VC system, which would enable us to completely
convert the speaker/singer individuality without any sound degradation, has not yet
been attained. In order to implement such a VC system, we consider that it would be

meaningful to achieve the following.

Improvement of spectral conversion accuracy: In this thesis, we included a con-
ditional probability density function of the GMM between a source and target
speakers/singers for acoustic feature mapping. It is considered that more so-
phisticated acoustic modeling techniques such as discriminative training [74],
Gaussian process regression [19,20], and deep neural networks [21,22,75], will
reduce the sound quality degradation by incorporating statistical waveform mod-
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ification. It is also important to focus on the factors such as error residual compo-
nents of the converted feature trajectory, that are not converted in the statistical

conversion.

F, transformation without sound quality degradation: For the inter-gender con-
version, we proposed several F( transformation techniques for the statistical
waveform modification. These F, transformation techniques usually cause slight
sound quality degradation. In particular, the sound quality tends to be degraded
when the F transformation ratio is large. In order to improve the sound quality
of the inter-gender conversion, it is necessary to improve the F, transformation

technique.

Implementation of duration and time-variant F, transformation: In the GMM-
based VC, duration and prosodic components are usually maintained after con-
version. Although these restrictions to keep the prosodic components are mean-
ingful in implementing a real-time VC system, to improve the conversion accu-
racy of speaker/singer individuality, it is worthwhile to implement a transforma-
tion technique of these components.

Direct modeling of waveform signals: WaveNet [23] can estimate not acoustic fea-
tures such as Fj, aperiodicity, and spectral features, but waveform samples di-
rectly from linguistic features and Fj in text-to-speech synthesis. Applying this
technique to VC, significant improvements in sound quality are expected to be
achieved.

When the absolute VC system has been established, the boundary between speak-
ers and singers is assumed to vanish. Although this may be accepted by users who
want to expand their speaking/singing expression, those who have superb abilities of
speaking/singing may not be pleased with the VC system because it may also erase
such abilities. Also, the VC system may possibly be used in crimes such as remittance
fraud. We must not only focus on the effectiveness of the VC system, but also continue

to consider and deal with problems related to VC.
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6.2.2. Voice timbre control

For voice timbre control, although we only focus on the perceived age as a voice timbre
control cue, the proposed voice timbre control technique is capable of controlling other
voice timbre expression words. In related works, attempts to convert voice timbre
based on the other voice timbre expression words [16, 76] have been made. Those
groups reported that it is possible to control the voice timbre of a source speaker using
other voice timbre expression words similarly to using the perceived age.

In the perceived age control, we did not perform any prosodic feature modification
because the singer individuality significantly depends on the prosodic features com-
pared with the segmental features. Therefore, if the prosodic features are controlled,
the singer individuality will be lost. On the other hand, if the singer individuality need
not be retained, it is worthwhile to manipulate the prosodic features using prosody
control techniques [77,78].

6.2.3. Real-time VC systems

In this thesis, we implemented real-time VC and voice timbre control systems with
statistical waveform modification. We confirmed that our proposed systems greatly
improve the sound quality of the converted voice compared with the conventional
small-delay conversion system in any situation. This improvement mainly results from
avoiding the F|, extraction process, because the accuracy of F( extraction depends
on the sound environment. However, there still remains some problems for practi-
cal use. First, the delay in real-time conversion tends to be very large when the F)
transformation technique is used. This delay makes speaking to the system difficult
via our auditory feed-back mechanism, because delayed auditory feed-back may intro-
duce stammering [79]. In order to improve the conversion accuracy for speaker/singer
individuality, it is necessary to decrease the delay to enable the auditory feed-back
mechanism. Next, the conversion accuracy of the converted voice depends on the pair
of source and target speakers. To use the VC system, stability of the conversion accu-
racy is important. Therefore, it is essential to improve the conversion accuracy of not

only off-line conversion but also the real-time VC system.
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A. The NU-NAIST VC system in VCC
2016

This chapter presents the NU-NAIST voice conversion (VC) system for the Voice Con-
version Challenge 2016 (VCC 2016) developed by a joint team of Nagoya University
(NU) and Nara Institute of Science and Technology (NAIST). VC research has been
continued from about 20 years ago as a technique to convert speaker identity of a
source speaker into that of a target speaker. However, it is difficult to directly compare
their performances because there is no unified evaluation framework. In order to com-
pare various VC techniques on identical training and evaluation speech data [80], VCC
2016 was held [52]. In this appendix, we describe additional results of the NU-NAIST
VC system in VCC 2016.

A.1. Experimental evaluation

In this section, we describe results of the VCC 2016 to demonstrate performance of
the NU-NAIST VC system. Moreover, we compare the following three systems:

e DIFFVC (EC): The NU-NAIST VC system submitted to the VCC 2016,
e VC: Our conventional VC system [13],
e DIFFVC: The NU-NAIST VC system w/o excitation conversion.

Note that the DIFFVC (EC) almost equals DIFFVC w/ STRAIGHT described in Sec-
tion 3.4.2.
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A.1.1. Experimental conditions

We evaluated speech quality and speaker identity of the converted voices to compare
performance of the different VC systems in both intra-gender and cross-gender conver-
sion tasks. We used the English speech database used in the VCC 2016. The number
of source speakers was 5 including 3 females and 2 males, and that of the target speak-
ers was 5 including 2 females and 3 males who were different from the source female
and male speakers. The number of sentences uttered by each speaker was 216. The
sampling frequency was set to 16 kHz.

STRAIGHT [12] was used to extract spectral envelopes, which was parameterized
into the 1-24th mel-cepstral coeflicients as the spectral feature. The frame shift was
5 ms. The mel log spectrum approximation (MLSA) filter [53] was used as the syn-
thesis filter. As the source excitation features, we used F and aperiodic components
extracted with STRAIGHT [49]. The aperiodic components were averaged over five
frequency bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz, to be modeled with the GMM.

We used 162 sentences for training and the remaining 54 sentences were used for
evaluation. The speaker-dependent GMMs were separately trained for all combina-
tions of source and target speaker pairs. The number of mixture components for the
mel-cepstral coefficients was 128 and for the aperiodic components was 64.

Two preference tests were conducted. In the first test, speech quality of the con-
verted voices was evaluated. The converted voice samples generated by two different
VC systems for the same sentences were presented to subjects in random order. The
subjects selected which sample had better speech quality. In the second test, conver-
sion accuracy in speaker identity was evaluated. A natural voice sample of the target
speaker was presented to the subjects first as a reference. Then, the converted voice
samples generated by two different VC systems for the same sentences were presented
in random order. The subjects selected which sample was more similar to the reference
natural voice in terms of speaker identity. The number of subjects was 10 and each lis-
tener evaluated 54 sample pairs in each evaluation. They were allowed to replay each

sample pair as many times as necessary.
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A.1.2. Results of the VCC 2016

Figure A.l indicates an overall result of the VCC 2016. The NU-NAIST VC system
achieved quite high speech quality over 3.0 of MOS and the best conversion accuracy
(about 74%) among all submitted VC systems. In terms of the conversion accuracy, our
system achieved successful performance even though very simple prosodic conversion
was performed. However, it is observed that there is still a large gap between the
converted voices and the natural target voices. It is expected that further improvements
will be yielded by implementing a conversion method of prosodic patterns or asking the
source speakers to mimic target prosodic patterns, which would be possible in several
practical applications. In terms of speech quality, the NU-NAIST VC system causes
serious quality degradation compared to natural voices, i.e., from 4.6 to 3.0 in MOS.
This quality degradation is mainly caused by using a vocoder to perform the excitation
conversion as shown in the next section. Therefore, it is expected that the converted
speech quality will be significantly improved by developing a better analysis/synthesis
technique than STRAIGHT.
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A.1.3. Results of subjective evaluation

Figures A.2 (a) and (b) indicate the results of the preference test for speech quality.
DIFFVC (EC) achieves equivalent speech quality compared to VC in both intra/cross-
gender conversions. On the other hand, DIFFVC achieves significantly higher speech
quality compared to the other two methods in the intra-gender conversion. This is
because DIFFVC can avoid using vocoding to generate converted speech waveforms,
making the conversion process free from various errors, such as F extraction errors
and unvoiced/voiced decision errors. Note that DIFFVC in cross-gender conversion
condition does not result in any significant quality improvements as it suffers from
mismatches between spectral envelope and Fj in the cross-gender conversion.

Figures A.3 (a) and (b) indicate the results of the preference test for speaker iden-
tity. Although DIFFVC (EC) has equivalent conversion accuracy compared to VC in
the intra-gender conversion, it tends to be degraded in the cross-gender conversion. It
is expected that the residual spectral envelope preserved in the direct waveform modifi-
cation process still includes speaker-dependent or gender-dependent features, and that
this causes adverse effects on conversion accuracy.

These results suggest that 1) the NU-NAIST VC system demonstrating the best con-
version accuracy and high speech quality in the VCC 2016 has an almost equivalent
performance compared to the conventional VC system in both intra-gender and cross-
gender conversions, and 2) the direct waveform modification technique achieves sig-
nificantly higher converted speech quality compared to the conventional VC system if
the excitation conversion is not necessary as in the intra-gender conversion, and there-
fore, there is still large room to improve the converted speech quality of the NU-NAIST
VC system.

A.2. Summary

This chapter describes the NU-NAIST voice conversion (VC) system for the Voice
Conversion Challenge 2016 (VCC 2016) developed by a joint team of Nagoya Univer-
sity (NU) and Nara Institute of Science and Technology (NAIST). In order to improve
the quality of statistical VC based on Gaussian Mixture Model (GMM), we applied
the following techniques: 1) voice conversion with direct waveform modification with

spectral differential (DIFFVC), 2) speech parameter trajectory smoothing, 3) post-
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filtering based on modulation spectrum for DIFFVC, and 4) preprocessing for exci-
tation conversion with Fy and aperiodic component transformations using high-quality
vocoding. The experimental results demonstrated that the NU-NAIST VC system was
highly ranked in the VCC 2016, its performance was comparable to our conventional
VC system, and the DIFFVC technique showed large potential to significantly improve
the converted speech quality of the NU-NAIST VC system.
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