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Study on Sensing Technology for Resident’s

Behavior Awareness in Home∗

Yukitoshi Kashimoto

Abstract

Thanks to the continuous advancements of ubiquitous computing technologies,

Resident’s Behavior Awareness (RBA) with sensors in home is attracting more

attention. To realize the wide spread use of RBA, it needs to fulfill the following

requirements: (i) Adoption of diffusive devices and (ii) Accurate recognition of

context. However, few applications are realized, because they usually cannot

fulfill these requirements. Thus, the objective of this study is to develop sensing

technologies for improved RBA, and to expand applicability of them.

To realize RBA applications, we need to develop techniques to estimate the

following two types of information: Location and Activity. 1) In order to track

the location of resident, we need to develop indoor positioning system. 2) In order

to estimate the activity of resident, we need to develop an activity recognition

system.

The indoor positioning system includes the floor plan creation tool, as well

as the system itself. The indoor positioning system enables the resident’s behav-

ior awareness application to recognize the surrounding environment of the user.

First, we work on the development of floor plan creation tool. In this study, we

utilize the prevailed device: smartphone, and develop an easy-to-use measure-

ment method: the user completes a lap along all of the walls in a single room,

and the tool estimates the accurate shape and size of this room. To realize an

accurate measurement, we attach an ultrasonic distance measurement sensor to

the phone and develop a technique to handle the noise effects from the object

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, NAIST-IS-DD1461001, February 2, 2017.
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such as bookshelf attached to wall. The evaluation result showed that the we

created the accurate floor plan. Through the experiments, we confirmed that we

created an accurate floor plan creation tool with diffusive devices that is essential

to RBA.

Second, we work on the development of indoor positioning system that adopts

diffusive sensors and achieves accurate positioning of the user. In this study,

we work on the development of a vibration type estimation technique towards

indoor positioning system. The proposed system estimates the position of a

user by distinguishing the vibrations that occur when the user interacts with

furniture. To design the diffusive and low-cost system, we utilize an easy-to-

conceal and low-cost piezo sensor attached on the floor in a home. To improve

the recognition accuracy, we use Mel Frequency Cepstrum Coefficient (MFCC)

feature to estimate various vibration types. Through evaluation, the system

estimated the vibration type with F-measure: 93.9%. Through experiments,

we confirmed our fundamental indoor positioning technique works with diffusive

devices that is essential to RBA.

The activity recognition system in a home enables resident’s behavior aware-

ness applications through recognizing the activity state of the user. However,

there is no system that is privacy-aware and utilizes diffusive sensors and performs

accurate activity recognition. In this study, we develop an activity recognition

system to track resident’s behavior at home. The system is making efficient use of

Passive Infra-Red (PIR) door sensors installed in a home. To design the diffusive

and low-cost system, we adopt a device-free and low-cost energy-harvesting PIR

sensor. To improve the recognition performance of the PIR sensor’s dead zone,

we utilize machine learning and supplemental techniques. The evaluation results

showed that the system estimated the user’s activity with F-measure: 68.6%.

Through experiments, we confirmed our fundamental activity recognition system

works with diffusive devices that is essential to RBA.

Keywords:
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1 Introduction

1.1 Background and motivation

First, we will introduce Context-Aware Computing and after, we describe Resi-

dent’s Behavior Awareness and motivations. The relationship between Context-

Aware Computing and Resident’s Behavior Awareness is depicted in Figure 1.

1.1.1 Context-Aware Computing

Thanks to the advancements in the development of ubiquitous computing, there

is a strong research interest in realizing Context-Aware computing. The term:

“Context-Aware Computing” is initially defined by Schilit et al. in 1994[1]. Ac-

cording to the article, Context-Aware Computing is a technology to sense the

surrounding environment and find the meaning of objects in it, which is simi-

lar to the process in human’s brain. In other words, through this technology, the

computer estimates the user’s context by sensing the following: “What or Who,”

“When,” “Where,” “What does he/she or it do?”. With the information, we can

develop various kinds of applications.

Up until now, there are various kinds of Context-Aware Computing applica-

tions in practical use as well as in the research domain.

First examples are health care applications which are broken down below:

There are many research studies which work on healthcare[2, 3, 4, 5, 6, 7, 8, 9,

10, 11]. For example, in [3], authors propose an smartphone application that

tracks the user’s health status by utilizing wearable sensors and locations, and

reports them to the care-advisor. Based on the report, the advisor supports the

user to improve his/her health. On the other hand, there are many commercial

applications such as Google Fit1, Fitbit2, Up by Jawbone3, Flu near you4, and

1Google Fit: https://play.google.com/store/apps/details?id=com.google.android.

apps.fitness
2Fit bit: https://www.fitbit.com/jp
3Up by Jawbone: https://jawbone.com
4Flu near you: https://flunearyou.org/
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Runkeeper5. One example is the life log application such as Moves6. In Moves, the

smartphone application records the sensor data from the accelerometer, GPS, and

so on. After activities the application analyzes the stored data, and estimates the

user’s activity such as “Where and when did the user run?”. After this process,

it generates activity report for him. The report helps the user to spend his or her

life in a healthier way, for example to lose weight.

Other examples are the social networking applications installed in a smart-

phone. There are many studies which work on this domain[12, 13, 14, 15, 16].

For example in [15], they propose an smartphone Instant Messenger (IM) applica-

tion: Hubbub which automatically extracts the relationship between users from

interactions in IM. Based on the relationship, the IM automatically sends the

messages that encourage the user’s conversation. In addition, there are many ap-

plications in practical use such as Facebook7, Twitter8, Linkedin9, Foursquare10,

and Pokemon Go11. These applications estimate the location in the real world as

well as in the social network domain. Based on the estimated relationship, they

recommend the user to exchange contact information with each other.

1.1.2 Resident’s Behavior Awareness (RBA)

Nowadays, Context-Aware Computing specifically inside buildings is attracting

attention. Here, we define it as Resident’s Behavior Awareness (RBA). As its

name suggests, RBA is a technology to estimate the user’s context inside a build-

ing by utilizing sensors.

RBA enables various kinds of applications such as Energy saving appliance

control and concierge service in a smarthome12, and the elderly monitoring system

in nursing home. In “Energy saving appliance control in smarthome,” the system

reduces the power consumption by considering the location of the user within a

5Runkeeper: https://runkeeper.com/
6Moves: https://moves-app.com/
7Facebook: https://www.facebook.com/
8Twitter: https://twitter.com/
9Linkedin: https://www.linkedin.com/

10Foursquare: https://foursquare.com/
11Pokemon Go: http://www.pokemongo.com/
12Smarthome is a house in which there are many sensors attached to the ceiling, wall, or floor

to track the residents .
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Context-Aware Computing

Resident’s Behavior Awareness
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(Moves)
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Home

Figure 1. Context-Aware Computing and Resident’s Behavior Awareness

smarthome. For example, when the user leaves a room without turning off an

airconditioner, the system automatically recognizes the absense of a person and

powers the airconditioner off. In “concierge service in smarthome,” the system

provides the user with life supporting services in a smarthome. For example,

we assume that the user has a habit of going bed after taking a bath and the

system learns the life pattern of the user. In “Elderly monitoring system,” the

system monitors the senior citizen that lives his daily life apart from his/her

family. When the user starts taking a bath, the concierge system turns on the

air-conditioner and changes the lighting in the bedroom. For example, we assume

that the activity pattern of the user changes, since he/she begins being suffered

from dementia. Then, the system detects it and notifies it to his/her family.

In these applications, the system senses the user’s behavior: “What or Who,”

“When,” “Where,” “What does he/she or it do?”. Based on the acquired in-

formation, the system estimates the user’s context: “How much calorie did the

user take or consume?,” “What kind of activity did the senior citizen perform?,”

and “What kind of concierge service does the user prefer to?”. Then, the system

provides the service on the context. While there are many Context-Aware Com-

puting applications, there are small number of RBA applications in practical use.

3



In some research fields, there are RBA applications proposed. One example is

the home-concierge robot by NEC13. This robot recognizes the user’s context by

utilizing camera, infrared sensor, and so on and provide services such as babysit-

ter and elderly monitoring. However, the practical use of the robot is limited to

some experimental objective.

1.1.3 Motivation

As we have surveyed in the former section, there are many Context-Aware Com-

puting Applications. On the other hand, there are few RBA applications into

practice. Through the literature review[17][18], we find that the state-of-the-art

RBA applications are hard to be widely used, since they are too performance-

centric and demands expensive devices. However, Referring to the widespread

use of low-cost IoT devices these days[19], we strongly believe that we are able to

develop techniques that accelerates the diffusion of RBA applications. Then, fi-

nally we decided to work on the development of fundamental technology to realize

RBA system.

1.2 Classification of RBA

There is various taxonomy for Context-Aware Computing[20]. In this thesis, by

referring the document, we categorize RBA in the following two view points:

“Classification by information flow (Classification A)” and “Classification by in-

formation characteristic (Classification B)”.

1.2.1 Classification by information flow (Classification A)

Our laboratory originally categorizes the ubiquitous computing system in terms

of information flow by referring Cyber-Physical System[21] as depicted in Figure

2. In accordance with this manner, RBA can be divided into three types.

13NEC childcare robot PaPeRo: http://www.nec.co.jp/press/en/0503/1601.html
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AgricultureVehicles City EnvironmentHuman activity

Real world

Collection (A-1)

Analysis (A-2)

Application (A-3)
Activity navigation, smart homes, 
context-aware systems, …

Figure 2. Information flow in Cyber-Physical System

(From Ubi-lab’s document)

Data collection from real world (A-1)

“Data collection from real world” focuses on gathering the information of hu-

man/object by utilizing sensors. In addition, the well-designed sensor network

conveys the data to the computers.

Context estimation by analyzing collected data (A-2)

In “Context estimation by analyzing collected data,” the computer processes

the collected data from A-1 and recognizes the user’s context such as “What or

Who,” “When,” “Where,” “What does he/she or it do?”. In addition, it estimates

physical, psychological and health status, futuristic activity of the user.

Context-aware service application (A-3)

“Context-aware service application” realizes the services such as health care, el-

derly monitoring, and home-concierge robot. These applications works on the

context estimated in A-2.

5



Location (B-1) Identity (B-2) Activity (B-3) Time (B-4)

Context-Aware Computing

Figure 3. Information characteristics in Context-Aware Computing

1.2.2 Classification by information characteristics (Classification B)

Dey et al. defines the categories of context for Context-Aware Computing in

terms of the most likely pieces of context (information characteristic) that will be

useful in the applications[20] as depicted in Figure 3. Based on the information

characteristics, RBA can be divided into four types.

Location: Where (B-1)

Location of the user or object is the important information to recognize the

context. Same as Subject, to track the user or object easily, we can utilize mobile

device to it. However, to alleviate the installation cost, we need to estimate the

location without tag.

Identity: What or Who (B-2)

Identity: “What or who behaves” is the key information to recognize the context.

There are mainly two approaches for this. First approach is that the user or object

carries a mobile tag which transmits identification (ID) code. Based on ID, the

system easily distinguishes them. However, assuming the home environment,

carrying the tag becomes burden on the user. There are two reasons for this.

First reason is that most user prefer to take off those devices when he/she spends

in home. Second reason is that attaching those tag to all objects in home raises

the installation cost. Therefore, the system needs to distinguish the user or object

without attaching tag.

6



Activity: What does he/she or it do? (B-3)

Activity of the user or object is the important information to recognize the con-

text. Same as Subject, we can utilize mobile device to it. However, to alleviate

the installation cost, we need to estimate the activity without tag.

Time: When (B-4)

Time information is also the key information to recognize the context. To track

time information, the system always keeps on synchronizing to an accurate clock

that is provided through Internet.

1.3 Requirements for RBA

Our motivation is to realize the RBA application. To take the adaptation into

building, the device must be diffusive one. Furthermore, the performance of

Context-Awareness must be accurate. Thus, RBA needs to accomplish the fol-

lowing requirements.

Requirement 1: Adoption of diffusive device

Requirement 2: Accurate recognition of the context

To achieve Requirement 1, our target RBA system utilizes diffusive devices.

The diffusive devices, which are easy to be deployed in building, are low-cost and

easy to be used. To achieve Requirement 2, our target system utilizes machine

learning and signal processing technique.

1.4 Scope and research goal

In the previous sections, we described several challenges and defined the require-

ments to realize the RBA system. As we have discussed in 1.1.3, the current RBA

are too performance-centric and utilizes expensive devices, which cannot fulfill

the requirements . For example, the RBA system such as the indoor positioning

or activity recognition system by utilizing camera has been gradually realized.

However, those information systems can be applied to limited applications.

7
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Floor
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Interface

Acoustic signal 
processing
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USB DAC
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Chapt. 4: Activity recognition 
with energy-harvesting sensor

Figure 4. Requirement in developing RBA applications

Objective of our research is to address the development of a few fundamen-

tal systems for RBA that fulfills both requirements. Specifically, we tackle the

development of new devices, which is relevant to (A-1), and data processing sys-

tem, which is relevant to (A-2), to realize RBA. Since Application domain (A-3)

must be realized after matured A-1 and A-2, we strongly believe that we need to

establish the basis of A-1 and A-2.

In terms of “Information characteristics (Classification B),” we need to tackle

“Location (B-1)” and “Activity (B-3)”. This is because these two domains are

essential but more challenging than other two: “Identity (B-2),” and “Time (B-

4)”. For “Identity (B-2),” we consider that we can estimate it after obtaining

“Location (B-1)” and “Activity (B-3)” by utilizing the user’s habits affecting

these two. For example, in home, we can track the user based on the moving

pattern and activities, i.e. if a father tends to take a bath every morning, we can

easily estimate a user who stays in the bathroom to be him. For “Time (B-4),” we

can easily track it just by recording the clock connected to Internet. Therefore,

we focus on B-1 and B-3.

In this study, we aim to develop three fundamental systems/techniques as
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depicted in Figure 4. The first one is the floor plan creation tool. The second one

is the indoor positioning system. The other one is the activity recognition system

of the resident in home. Based on the previous discussion and requirement, we

focus on three specific systems: “Floor size and shape estimation tool by utilizing

a smartphone attached with an ultrasonic distance measurement sensor,” “Indoor

positioning system by utilizing a piezo sensor attached to floor,” and “Activity

recognition technique by utilizing energy-harvesting PIR sensor”.

Floor plan creation tool

In “Floor size and shape estimation tool by utilizing a smartphone attached

with an ultrasonic distance measurement sensor,” our objective is to realize the

low-cost (diffusive) and accurate floor plan creation tool. Floor plan is the key

information to realize RBA, since it enables the system to recognize the location

of the user. Based on the location of the user, the system recognizes the context of

the user. For example, if the user exists in kitchen, the system can estimate that

the user performs cooking. We focus on the development of the first prototype of

the proposed tool and achieve the fundamental floor plan creation performance

for RBA.

Indoor positioning system by utilizing piezo sensor

In “Indoor positioning system by utilizing a piezo sensor attached to floor,” our

objective is to realize the low-cost, tag-free (diffusive), and accurate indoor po-

sitioning system. Same as the floor plan creation tool, the indoor positioning

system is also the key information to realize RBA, since it enables the system

to estimate the location of the user. We focus on the development of the first

prototype of the indoor positioning hardware and technique to estimate the floor

vibration type.

Activity recognition by utilizing energy-harvesting sensors

In “Activity recognition technique by utilizing energy-harvesting sensors,” our

objective is to realize the low-cost (diffusive), tag-free, and accurate activity

recognition in smart home. Activity of the user is the significant information
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to estimate the user’s context. We focus on the development of the first system

and establishment of fundamental technique to realize the activity recognition in

smarthome by utilizing the machine learning.

1.5 Contributions

Thus far, we have overviewed the current Context-Aware Computing and focused

on the RBA domain that is especially developing field in it. And more, we

classified RBA in terms of information flow and its characteristic. Then, we

focused on the development of three fundamental system to realize RBA. The

contributions of each system are as follows:

In “Floor size and shape estimation tool by utilizing a smartphone attached

with an ultrasonic distance measurement sensor,” our major contribution is that

we have realized the simple and low-cost room measurement tool that estimates

the size and shape of the room accurately. Specifically, we achieve the following

contributions.

• Simple room measurement method

• Development of low-cost room measurement tool

• Accurate room measurement technique

In “Indoor positioning system by utilizing a piezo sensor attached to floor,”

we show the feasibility of the accurate indoor positioning system by utilizing a

diffusive piezo sensor attached on floor. Specifically, we achieve the following

contributions:

• Piezo-sensor-based indoor positioning hardware

• Vibration estimation technique by utilizing machine learning and MFCC

feature

In “Activity recognition technique by utilizing energy-harvesting PIR sensor,”

we show the feasibility of the accurate activity recognition system by utilizing PIR

and door sensors. Specifically, we achieve the following contributions:
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• Development of tag-free activity recognition system by utilizing energy-

harvesting sensors

• Activity recognition by utilizing machine learning

• Supplemental technique for dead-zone of PIR sensor

1.6 Outline of thesis

This thesis consists of five chapters.

In chapter 2 of this thesis, we describe our work on the indoor positioning

system that includes the floor plan creation tool as well as the system itself. The

indoor positioning system enables the resident’s behavior awareness application

to recognize the surrounding environment of the user. First problem is that there

is no floor plan creation tool that adopts diffusive sensors and achieve accurate

floor plan creation. Then, we present a room measurement tool which utilizes a

smartphone equipped with an ultrasonic sensor gadget. By utilizing this tool, an

ordinary user can measure the size and shape of a room and create a floor plan

with small effort. In the measurement, the user completes a lap along the walls

of all rooms. Then, the tool estimates the accurate shape and size of the room.

It leverages the inertial sensors, embedded in the smartphone, to track the user

in the walking path. Moreover, the ultrasonic sensor in the gadget measures the

distance between the path and walls. There are three main challenges to achieve

optimized performance. The first challenge is the stride length estimation for

indoor environment. To realize this, we estimate the stride length of the user

walking toward the wall by utilizing an ultrasonic sensor and accelerometer. The

second challenge is consideration of adjacent objects, such as bookshelves, that

deteriorate the accuracy in spatial layout estimation. To cope with this problem,

we use a mixed Gaussian filter. The last challenge is that the narrow room,

such as corridors, leads to the low accuracy, since the error of the estimated

stride length affects the estimation. To cope with this problem, we implement

two ultrasonic sensors in the reverse direction, and measure the distance between

walls directly. The results from experiments show the considerable improvement

in shape and size estimation accuracy.
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The chapter 3 of this thesis describe our next problem is that there is no indoor

positioning system that adopts diffusive sensors and achieve accurate estimation

of the user’s position. Then, we introduce a technique to estimate the vibration

type estimation toward the realization of indoor positioning system in building by

utilizing piezo sensor attached to floor. The indoor positioning system has to fulfill

the following four requirements: Req 1: high accuracy; Req 2: low installation

cost; Req 3: small burden on the user. There are several studies which work

on the indoor positioning system. Some studies[22][23] estimate the position of

the user by utilizing the inertial sensors in the smart phone. Accelerometer and

gyroscope in the smart phone estimate the walked path of the user. However,

the accumulated error from these inertial sensors makes the positioning system

inaccurate. In some experimental installations, they use an indoor positioning

system which adopts ultrasonic sensor1415. A user holds an ultrasonic transmitter.

There are ultrasonic receivers which are attached on the ceiling of the room.

Based on the Time Difference of Arrival (TDoA) of the ultrasonic wave between

the transmitter and the receivers, the system estimates the position of the user.

However, the system requires high installation cost, since we have to attach many

receivers on the ceiling. Moreover, the user always has to carry the transmitter.

That becomes burden on the user. There is an indoor localization system which

utilizes camera[24]. This system estimates the position of the user based on image

processing. However, capturing the posture of the user infringes his privacy. In

summary, these previous works do not satisfy the all requirements. The other

one is a technique to create the floor plan of the building.

In the chapter 4, we describe the activity recognition system in home that

enables the resident’s behavior awareness applications to recognize the state of

the user. However, there is no system that utilizes low-privacy and diffusive sen-

sors and performs accurate activity recognition. Specifically, the current living

activity recognition system has the following problems remain: (i)privacy expo-

sure due to utilization of cameras and microphones; (ii) high deployment and

maintenance costs due to many sensors used; (iii) burden to force the user to

carry the device and (iv) wire installation to supply power and communication

14ActiveBat: http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/
15Cricket Indoor Location System: http://cricket.csail.mit.edu/
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between sensor node and server; (v) few recognizable activities; (vi) low recogni-

tion accuracy. Then, we propose an in-home living activity recognition method

to solve all the problems. To solve the problems (i)–(iv), our method utilizes

only energy harvesting PIR and door sensors with a home server for data collec-

tion and processing. The energy harvesting sensor has a solar cell to drive the

sensor and wireless communication modules. To solve the problems (v) and (vi),

we have tackled the following challenges: (a) determining appropriate features

for training samples; and (b) determining the best machine learning algorithm

to achieve high recognition accuracy; (c) complementing the dead zone of PIR

sensor semipermanently. We have conducted experiments with the sensor by five

subjects living in a home for 2–3 days each. As a result, the proposed method

has achieved F-measure: 62.8% on average.

Chapter 5 summarizes this thesis, with discussion about the contributions,

limitations and feasible future work.
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2 Floor size and shape estimation tool by utiliz-

ing a smartphone attached with an ultrasonic

distance measurement sensor

2.1 Introduction

The resident’s behavior awareness applications can offer various services to the

user such as the home appliance control and concierge robot. These applications

recognizes the surrounding environment of the user by utilizing the indoor floor

plan. For example, the home appliance control system recognizes that the user

stays in kitchen for long time, which means that user cooks, and then adjusts the

temperature of air-conditioner so that the user feels comfortable. To create the

floor plan, we need to develop an floor plan creation tool.

In order to develop the floor plan creation tool for the resident’s behavior

awareness, we believe that an easy-to-use measuring tool is important. The floor

plan creation workflow consists of (i) Step 1. Room measurement to measure

each room and (ii) Adjustment for connection between rooms to format the floor

plan as illustrated in Fig.5. We focus on the realization of Step (i). There are

many measurement tools which we can assume to use for this purpose. One of the

famous tools is the electro-optical distance measuring instrument for land survey.

This tool measures the distance between two points by utilizing the Time of Flight

Floor plan

(i) Room 
measurement

(ii) Adjustment for
connection between rooms 

Figure 5. Steps for creating a floor plan
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(ToF) of the laser wave. Second familiar tool is the stereo camera, Kinect16,

Laser Imaging Detection and Ranging (LIDAR)17 which can be connected to

a laptop. These tools measure the size of the room by the image processing.

Another expanding approach is the utilization of the inertial sensors such as the

accelerometer and gyroscope in the smartphone[25]. Some users install an ad-

hoc application to their smartphones and walk in the building. By collecting

the walked paths which are estimated from those inertial sensors, the application

estimates the size of the room. Then, we employ the smartphone based approach,

since it has the advantages of the usability and low installation cost for the

volunteer users to measure many buildings. In this chapter, we add the ultrasonic

distance measurement gadget to the smartphone so that the tool measures the

distance between the walked path and wall. When the user measures the size

of a room, the user makes a lap along the wall. After that, the tool estimates

the accurate shape and size of the room. This tool leverages the inertial sensors

implemented in the smartphone to track the walking path of the user. Moreover,

the ultrasonic sensor in the gadget measures the distance between the path and

walls.

2.2 Related research

Many research studies on the room measurement have been reported. In this

section, we discuss them in terms of the accuracy and the amount of work effort

for the measurement.

2.2.1 Rough floor plan creation with the inertial sensor in the smart-

phone

CrowdInside[25] and Hallway[26] are the state-of-the-art approach, which utilizes

the inertial sensors (e.g. accelerometer and gyroscope) in the smartphone. First,

they estimate the location of the user by utilizing the indoor localization tech-

niques. Next, they extract the position of the user when he is close to the walls.

Finally, they connect points to shape a convex hull and estimate the size and

16Kinect, Microsoft: http://www.xbox.com/kinect
17LiDAR, Hokuyo-Denki: https://www.hokuyo-aut.jp/02sensor/
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shape of the room. However, the accumulated error of the inertial sensors is the

challenge for these approaches. In CrowdInside, they utilize GPS to modify the

error. Nevertheless, in some buildings (e.g. reinforced concrete buildings), GPS is

not available. On the other hand, Hallway utilizes the WiFi fingerprint to modify

the error. Nevertheless, the construction of WiFi fingerprint is a laborious work

for the ordinary user. Moreover, in some rooms, they do not suppose that objects

attached to the wall prevent the user from walking along the wall.

2.2.2 Structure extraction of the facility from the walking path of

users

There is a study that works on the structure extraction of the facility[27]. It

utilizes the inertial sensors in the smartphone. First, it collects the walking paths

of the user. Second, it finds the common parts (e.g. a path in a corridor) from

them. Finally, it combines those parts and constructs the building structure (e.g.

the connection between rooms). However, the structure extraction techniques are

not sufficient to estimate the room shape and size.

2.2.3 Image processing with the depth sensor and camera

Google Tango project18, Structure19, and Spike20 have been working on the 3D

modeling of buildings in the recent years. First, they attach the depth sensor to

the smartphone. Second, the camera in the smartphone captures the surface of

walls, floors, and the ceilings. The depth sensor measures the distance between

the smartphone and all the surfaces. Finally, they construct the model of the

building by image processing techniques. However, the 3D structure model is

a complex data for the indoor navigation. Even though the required model is

simple 2D floor plan, the users have to measure the room in 3D scan manner

and create the 3D model of the room. Those works become burdens on the user.

Moreover, it is not cost-effective and needs large battery amounts and processing

power.

18Google Tango Project: https://www.google.com/atap/projecttango/
19Structure: http://structure.io/
20Spike: http://www.ikegps.com/spike
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Table 1. Comparison between the distance measurement sensors

Sensor type Weight Price 　Battery consumption Connectivity22

Laser rangefinder heavy Costly Heavy Poor

Kinect heavy Costly Heavy Poor

Ultrasonic sensor Light Low cost Small consumption Good

2.2.4 Summary for related research

There are several studies[26][27] and an application which generate the floor plans

utilizing inertial sensors in the smartphone. Some studies[26][27], collect users’

trajectories and find the common paths among them by utilizing Pedestrian Dead

Reckoning (PDR). Finally, they generate the floor plan from the walking path

of the user. However, more than 20 paths must be collected to compensate the

low accuracy of PDR, and it is tedious and time-consuming. This work imposes

a strain on the ordinary user. RoomScan21, an iPhone application, is a tool to

measure the shape and size of rooms. The user touches each wall in the room

and walks along the walls with the smartphone. Simultaneously, the application

estimates the shape and size of the room by utilizing PDR. However, RoomScan

can measure rooms where four walls are directly touched by the user and some

rooms without accessible walls, e.g., a stairwell cannot be measured. Moreover,

the user fails to measure the spatial layer of the room, while obstacles and objects

in the room prevent the walking task. Thus, we have to develop complementary

techniques for the smartphone based approach.

In order to cope with the above-mentioned problems, we propose to add a

distance measurement sensor for the smartphone. There is different types of

sensors for this purpose, such as a laser rangefinder, Kinect, and an ultrasonic

sensor. Table 1 shows the comparison between the sensors. However, the laser

rangefinder and Kinect have heavy battery consumption and are neither light nor

cost-effective for the ordinary user. To make matters worse, these sensors require

the laptop computer to process the complex data and makes the connectivity

to the smartphone difficult. On the other hand, the ultrasonic sensor is light

21RoomScan: http://locometric.com/
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and low cost and works with the small amount of energy consumption. Also,

the ultrasonic sensor has good connectivity to the smartphone, since it outputs

the distance data which requires small processing resource. Thus, we employ the

ultrasonic sensor.

2.3 How to measure the room

2.3.1 Requirements and policy for the room measurement

We suppose that the volunteer users measure rooms. Therefore, the measurement

tool must be low cost and easy-to-use. Also, the measured size of the room must

be accurate. Thus, we define the requirement for this tool as follows:

Requirement 1: low cost device

Requirement 2: an accurate measurement

Requirement 3: small effort to measure the room

To achieve Requirement 1, we utilize the inertial sensors in the smartphone

and an ultrasonic sensor gadget. However, as we have discussed in Sect. 2.2, we

cannot accurately measure the room just with the inertial sensor in the smart-

phone. Thus, we develop a low-cost ultrasonic sensor gadget and attach it to the

smartphone. The ultrasonic sensor measures the distance between walking path

of the user and walls. Additionally, we develop an algorithm to eliminate the ef-

fect from adjacent objects next to the wall so that we achieve Requirement 2. To

achieve Requirement 3, the user walks along walls of the room. The tool achieves

the estimation of the shape and size of the room for a single measurement.

2.3.2 Assumption for the floor and room

We suppose the following conditions:

• Rooms are separated by walls.

• Shape of the room is rectangular.

• The whole wall is not covered with obstacles.
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We categorize the rooms into two groups. First, rooms that are separated by

walls, such as rooms in office buildings. Second, rooms that are not separated,

such as open spaces in shopping malls. In general, we can say that the indoor

navigation works efficiently in the first one. Thus, our target rooms is the first

category. As the second assumption, we suppose that the shape of the room is

rectangular. In addition, we suppose that the room does not have opened windows

and sunk part such as bay window. As the third assumption, we suppose that

the whole wall is not covered with obstacles. We assume it, since the obstacles

that cover the whole wall prevent an ultrasonic wave from reaching the wall.

In addition, it is considered that there is an accumulated error after the mea-

surement. However our preliminary experiment shows that the accumulated error

is negligible. This is because the accumulated error becomes small if the total

walk distance is small. (e.g. We observed 0.3[m] error against the 44[m] walking

distance.) Moreover, we use the gyroscope to estimate the change of moving di-

rection. It is the other factor for this small-accumulated error. As a result, we

modify the start and end point of the measurement, the red circles, to the cross

point of the walking path, the green circle, as described in Figure 6.
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Red line: the estimated line of the wall
Solid line: the measured position of the wall
Broken line: the walk path

du1 du2dw

p1

p2

p3

p4

Red circle: the start and end position before the modification
Green circle: the start and end position after the modification

Figure 6. The room size/shape estimation

2.3.3 Problem definition and basic idea for the solution

We measure the room shape and size in two steps.

In the first (Step1), the user walks along walls and make a lap in a room. The

user holds the smartphone attached with an ultrasonic sensor gadget. Next, the

user walks along the walls of the room and makes a lap in it. At the same time, the

inertial sensors (accelerometer and gyroscope) estimate the walking path of the

user by utilizing the PDR technique. The ultrasonic sensor measures the distance

between the path and walls. We use PDR algorithm described in[28][29][30]. We

also use the gyroscope to estimate the change of moving direction. (i.e. if the
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accumulated angle from the gyroscope exceeds 90, the tool estimates that the user

changes the walking path to perpendicular direction). In order to improve the

performance of PDR, we have to measure the stride length of the user accurately

(Challenge A). The stride length of the user varies according to the environment

around him. To handle this problem, we measure the stride length by utilizing

an ultrasonic sensor when he walks toward the wall.

In the second (Step2), the tool estimates the shape and size of the room. We

measure the distance between walls, combining the distance from walking path

and ultrasonic sensor. We estimate the distance by equation (2) as illustrated in

Figure 6.

w = dw + du1 + du2 (1)

Here, dw denotes the distance calculated from the walking path. du1 and du2

denote the distance measured by ultrasonic sensors in p1 and p2, respectively.

We calculate dw from the product of the number of steps and the average stride

length measured in Step 1. In order to improve the performance of the room

size estimation, we have to tackle two more challenges. One is that the narrow

room, such as corridors, leads to the low accuracy (Challenge B). To cope with

this problem, we use two ultrasonic sensors, installed in the reverse direction, and

measure the distance between walls directly. The other is that objects, such as

bookshelves, attached on the wall deteriorate the room shape estimation accuracy

(Challenge C). We formulate this problem as a number estimation problem of

the mixed Gaussian distribution and solve it by utilizing Bayesian Information

Criteria (BIC) and Expectation-Maximization (EM) algorithm.

2.4 Three room measurement methods

We describe the solution for three challenge which we have mentioned in Section

2.3.3 as follows:

Challenge A: Stride length estimation

Challenge B: The shape and size estimation for a narrow room

Challenge C: Eliminating influence of objects adjacent to walls
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Figure 7. The distance between the user and the wall

Solution for Challenge A: Stride length estimation

In order to realize the precise room measurement, we need to measure the stride

length accurately. Unfortunately, the accurate stride length estimation is difficult

in the indoor environment (Challenge A).

There are many techniques232425 to estimate the stride length by utilizing the

correlation between the height of the user and his stride length (We call these

methods as “height correlation method”). In those techniques, they have found

the correlation between them from the experiment and generated the regression

formula such as (2).

23Soleus: determing your stride: https://cdn.shopify.com/s/files/1/0196/4616/

files/determingyourstride.pdf
24Oregon Scientific SE900 User ’s manual: http://www.manualguru.com/

oregon-scientific/se900/users-manual/page-3
25How to Determine Stride Length for an Elliptical Machine: http://

bodytrainersreviews.com/how-to-determine-stride-length-for-an-elliptical-machine
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lst = 0.415 ∗ h (2)

Here, lst denotes the stride length of the user. h is the height of the user.

However, several articles[31]26 have reported that these techniques are not enough

to estimate the stride length accurately, since there is a weak correlation between

them. Thus, we cannot adopt this technique to estimate the stride length.

Accelerometer

Ultrasonic 
sensor

Smartphone

Ultrasonic sensor gadget

Step count

Walked distance

Stride length

Figure 8. The workflow for the stride length estimation

Also, we can estimate the stride length in outdoor environment by utilizing the

accelerometer and Global Positioning System (GPS)[32][33] in the smartphone. In

these studies, they calculate the stride length from the walked distance measured

by GPS and the number of steps estimated from the accelerometer. However, we

cannot use these techniques for the room measurement. There are two reasons

for this. First, we cannot use GPS in the building, since the radio wave from

the GPS satellite is blocked by the building. Second, even if we try to use the

stride length estimated outside, we cannot use that length in the building. This

is because Öberg et al. reported that there is a difference between outdoor and

indoor stride length[34]. Thus, we have to develop a new technique to estimate

the stride length for indoor environment.

In order to cope with this challenge, we estimate the stride length of the

user by utilizing the ultrasonic sensor and the accelerometer implemented in the

smartphone. Figure 7 illustrates the situation of the stride length estimation.

Figure 8 illustrates the workflow of the stride length estimation. First, with the

26Using the ADXL202 in Pedometer and Personal Navigation Applications:

http://www.analog.com/media/en/technical-documentation/application-notes/

513772624AN602.pdf
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ultrasonic sensor, we measure the walked distance, when the user walks toward the

wall. Simultaneously, with the accelerometer, we calculate the number of walking

steps. Second, we calculate the stride length based on the walked distance and

the number of walking steps as described in (3).

lsl = dw/cntstep (3)

We denote that lsl is the stride length of the user. dw is the walked length of the

user. cntstep is the walking steps of the user. Figure 9 illustrates the sensor data

output of the ultrasonic sensor and the accelerometer.

Solution for Challenge B: Shape and size estimation for a narrow room

We can measure the size and shape of most rooms by the technique described in

Section 2.5.2. Since the error of the estimated stride length affects the estimation,

we fail to accurately estimate the short wall length in narrow rooms, such as

corridors (Challenge B).

We have conducted a pilot experiment to observe the effect of the short wall

to the user. We asked three users to walk along the walls and make a lap in a

corridor which has 22 [m]×2.0 [m] size for five times. We observed their behavior

especially when they walk along the short wall, i.e. 2.0 [m] wall. As a result, we

confirmed that they cannot walk along that wall with keeping the constant stride

length.

In order to cope with this problem, we use two ultrasonic sensors in the gadget

and measure the distance between walls. Figure 10 illustrates the measurement

diagram of the narrow room. First, the user holds the smartphone with the

ultrasonic sensor gadget. Second, the user moves from one side of the corridor to

the other side. Then, two ultrasonic sensors measure the short side of the room.

Simultaneously, the inertial sensors measure the long side of the room. We switch

them based on the error code from the ultrasonic sensor. The ultrasonic sensor,

which we have selected, outputs the error code when the distance between the

sensor and an object exceeds 4.5m. If the number of sensors without error is

one, we adopt the technique described in Section 2.3. On the other hand, if the

number is two, we adopt the technique using two ultrasonic sensors.
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Figure 9. The output from the ultrasonic sensor and the accelerometer

when the user walks toward the wall

Solution for Challenge C: Eliminating influence of objects adjacent to

walls

Objects adjacent to the wall affect the room shape and size estimation (Challenge

C). Figure 11 illustrates this problem. The user walks along the wall and keeps

the distance d0 between the walking path and the wall. When the user walks

near the object, the distance is d1. This change causes the mixed Gaussian

distribution and disturbs the accurate estimation. To cope with this problem, we

adopt Bayesian Information Criteria (BIC) and Expectation-Maximization (EM)

algorithm. The processing flow is described as follows:

Step 1: Estimation for the number of Gaussian distributions utilizing BIC

Step 2: Estimation for the mean value for each Gaussian distribution

Step 3: Estimation the maximum mean value µmax
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Figure 11. The mixed Gaussian distribution from walls and obstacles

In Step 1, we estimate the number of Gaussian distributions using BIC. We

use BIC definition in (4)

BIC = 2× (Logarithmic-likelihood) (4)

In Figure 11, we can estimate the number of Gaussian distributions as two.
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Figure 12. The prototype device

In Step 2, we estimate the mean value for each Gaussian distribution. In

Figure 11, we can estimate mean values as µ0 = d0 and µ1 = d1.

In Step 3, we estimate the distance between the walking path and the wall,

extracting the maximum mean value. In Figure 11, we can estimate it as µmax =

µ0 = d0.

We assume that the room does not have the wall which has sunk part.

2.5 Implementation

2.5.1 Prototype device

We have implemented a prototype of an ultrasonic sensor gadget shown in Figure

12. The gadget consists of mbed, a microcontroller, and two ultrasonic sensors.

The size of the device is 80mm × 180mm × 40mm. It weighs less than 120g.
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mbed (Micro-Processing Unit)27 sends the distance data to Android smartphone

application via an USB cable. Android application processes the data from the

sensor gadget, accelerometer, and gyroscope and generates the measured shape

and size on the display.

Figure 13 shows the design of the ultrasonic sensor gadget. The ultrasonic

sensor gadget consists of three components, which are ultrasonic sensors, Micro

Processing Unit (MPU), and USB connector. We implement two ultrasonic sen-

sors in the reverse direction with each other and perpendicular direction to the

walking path. The ultrasonic sensor gadget communicates with the measurement

application in the smartphone via USB connector. First, the smartphone applica-

tion written in Android Java emits the start signal for the measurement. Second,

the MPU generates the ultrasonic wave from the transmitter and measures the

Round Trip Time (RTT) of it. Based on RTT, the MPU calculates the distance

between the walk path and the wall by equation (5).

d = (331.5 + 0.6t)×RTT ÷ 2 (5)

We denote that d is the distance between the path and the wall. t is the Celsius

temperature and the sampling rate is 10 Hz.

We conducted a preliminary experiment to evaluate the accuracy of the dis-

tance measurement. We compared the measured distance between the ultrasonic

sensor and the laser range finder, when the user stands at 0.5[m], 1[m], 2[m],

and 4[m] from a wall. We use Leica DISTO D210, a laser range finder. Table

2 shows the result. The result proves that the prototype device measures the

distance within 0.2[m] errors. We consider that the proposed tool has the suffi-

cient basic performance to create the floor plan, since it achieved the competitive

performance to the laser range finder. In addition, we found that there is a pro-

portional correlation between the error and the distance from the wall, suggesting

that the posture of the user strongly affects it.

2.5.2 Conceptual design of the practical room measurement tool

Figure 14 illustrates the conceptual design of the room measurement tool. The

conceptual design adopts an ultrasonic sensor gadget smaller than the proto-

27NXP semiconductors, mbed LPC1768: http://mbed.org/nxp/lpc1768/
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Table 2. The measurement result of the prototype device and laser range finder

Distance Prototype device 　 Laser range finder

0.5m 0.5m 0.5m

1m 1.1m 1.3m

2m 1.9m 2.0m

4m 4.2m 4.2m

type. Also, all components are implemented in the connector for the smartphone.

Thanks to these features, the user is able to carry this gadget to anywhere he

wants and measure the room with small effort.
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Figure 13. The system architecture of the ultrasonic sensor gadget
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Figure 14. The usage of the proposed system
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2.5.3 Real-time feedback view

Estimated size of 
the room

Room shape

User position
Walk path

Figure 15. The interface for real-time feedback to the user

We implement a real-time feedback view for the user, to suppress the unnecessary

measurement. When the user conducts the measurement, the tool shows the

estimated room shape on the application simultaneously. Figure 15 shows the

feedback view. When the user notices that he makes a mistake, he can stop it

and measure it from the beginning.
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Figure 16. The evaluation environment

2.6 Evaluation

We conducted three experiments to evaluate the proposed tool.

2.6.1 Stride length estimation

Evaluation method

We conducted an experiment to evaluate if the technique described in Section 2.4

can measure the stride length precisely. We also instituted the other experiment

to figure out the performance of the proposed method to the multiple users with

different heights. We conducted these two experiments in the corridor of the

author’s university depicted in Figure 16. In order to evaluate the performance,

we set up the special walking pattern described in the following scenario.
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1. The user holds the smartphone attached with the ultrasonic sensor gad-

get.

2. The user directs the ultrasonic sensor at the wall.

3. The user walks toward the wall from about 4m away from it.

4. The user stops in front of the wall.

5. The user makes “U-turn” in front of the wall and starts walking toward

the other side of the corridor.

6. The user stops walking until the point under about 4m from the other

side of the corridor.

We measure the stride length in (3)–(4). Also, we calculate the walked dis-

tance of the user by equation (6).

dc = du1 + dw + du2 (6)

Here, dc denotes the length of the corridor. du1 denotes the distance between the

point the user stops in the step (2) and the wall. dw denotes the walked distance

of the user with the technique which we measured in (3). du2 denotes the distance

between the point the user stops in the step (4) and the wall. In other words,

we calculate that distance by utilizing the technique described in Section 2.4. In

this experiment, we calculated the distance from (8).

dw = lsl × cntmove (7)

Here lsl is the stride length of the user. cntmove is the number of steps of the

user.

In order to evaluate the effect of the height difference between users, we asked

three users (170cm, 180cm, and 200cm) to participate in the experiment. We

conducted the evaluation five times for each user.
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Table 3. The evaluation result to measure the length of the corridor

User1 　 User2 User3

Soleus (Stride-height correlation) 30.4m(10.4m) 　 29.1m(9.1m) 　 26.6m(6.6m)

Proposed method　 19.7m 20.0m 　 19.8m

Table 4. The comparison of physical profile between participants

User1 User2 User3

Height 1.7m 1.8m 2.0m

Number of steps (average) 38 35 27

Soleus (Stride-height correlation) 0.77m 0.81m 0.89m

Stride length (Proposed method) 0.49m 0.55m 0.69m

Also, we measured the length of the corridor by utilizing “height correlation

method” described in Soleus and compared the performance.

Result and discussion

Table 3 shows the measured length and the error of the corridor by utilizing each

technique. We calculated the result from the average of five times experiment.

Also, Table 4 shows the height, average number of steps, stride length of each

user.

From the evaluation result, we discovered that the proposed method accu-

rately measures the length of the corridor. On the other hand, the corridor

length 30m with “height correlation method”. There are two reasons for this re-

sult. First, there is a weak correlation between the stride length and the height.

Second, these two correlation models are formulated from the experiments out-

door. Therefore, we confirmed that we cannot apply these models for indoor

environments.
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2.6.2 Shape and size estimation for a narrow room

Evaluation method

We conducted an experiment in two rooms, Room D and Room F. Room D has

a 3.0[m] width wall. Room F has a 2.6[m] width wall. The user walked along

the wall, keeping along the line that is drawn 1[m] away from the wall. Then,

we collected the position of the user from inertial sensors and the distance from

the ultrasonic sensor gadget. Next, we measured the length of the wall using the

two ultrasonic sensors. After that, we measured it by a single ultrasonic sensor.

Finally, we compared them.

Result and discussion

Table 7 shows the result. Two ultrasonic sensors method measured the length

with less than 5.0% error, while the single one measured it with more than 10%

error. We discovered that the proposed method accurately measures the size

of two narrow rooms. Also, we found that the proposed method works more

accurately in Room F than Room D, since the stride length estimation error

affects more in the narrow room.
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Figure 17. The experimental environment (Left picture: Student room, Right

picture: Corridor)
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2.6.3 Eliminating the error due to the objects attached on the wall

Evaluation method

In the first experiment, the user walked along the wall on the straight line, which is

drawn 1[m] away from the wall while holding the smartphone with the prototype.

We conducted this experiment with two walls. One is the wall in the office

(Student room). 70 % of the wall is covered by bookshelves. The other is the

wall in a corridor (Corridor). The wall is not covered with any objects. Then,

we collected the position of the user from inertial sensors and the distance from

the ultrasonic sensor gadget. Next, we measured the distance between the user

and the wall by using the proposed method. On the other hand, we measured

the distance by using the simple average. Finally, we compared two distances.

In the second experiment, we examined the relationship between the measured

distance and the cover rate of objects. Moreover, we changed the cover rate of

the bookshelves in Student room between 0% and 100%, and then we compared

the distance by two methods, similarly to the first experiment.

Result and discussion

Table 5 and 6 show the result of the accuracy in the experiments. The “Simple

average” is the distance estimation between the user and the wall with the simple

average. The “Proposed method” is the distance with the proposed technique.

Table 5 shows that both methods, the proposed method and the simple aver-

age, achieve accurate distance estimation. We have confirmed that the proposed

method works accurately in the normal condition, i.e. no objects adjacent to the

wall. Table 6 shows that the proposed method measures the distance as 95[cm],

while the simple average measures it as 78[cm].

Figure 18 shows the position of the wall and objects in the office. The red line

shows the position of the wall. The dashed red line shows the bookshelf. The blue

dots show positions of the wall and objects which the proposed tool has captured.

The user walked along the line, i.e. y = 0. Also, Figure 20 shows the distribution

of the distance between the user and the wall in Student room. There are two

Gaussian distributions. The one whose average value is µ1 = 55[cm] is made up

from bookshelves. The other one whose average value is µ2 = 95[cm] is made up
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Figure 18. The position of walls and objects in the office

from the wall. As a result, we found that the proposed method eliminates the

influence of objects adjacent to the wall.

Figure 22 shows the relationship between the measured distance and the cover

rate of objects. The vertical axis shows the measured distance, while the hor-

izontal axis shows the cover rate. We found that the proposed method works

correctly up to 80%. We also discover that the proposed method fails to di-

vide the mixed Gaussian distributions over 80% cover rate. This is because two

Gaussian distributions are merged when over 80% of the wall is covered.

Table 5. The experiment result for the corridor wall

Distance Error

Simple average 105cm 5.0%

Proposed method 105cm 5.0%

Table 6. The experiment result for the student room wall

Distance Error

Simple average 78cm 22%

Proposed method 95cm 5.0%
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Figure 19. The relationship between the wall coverage and the measured distance

Table 7. The result for the corridor wall
Room Length Single ultrasonic sensor Two ultrasonic sensors

D 3.0m 3.6m (Error: 16%) 2.9m (Error: 4.7%)

F 2.6m 3.1m (Error: 21%) 2.7m (Error: 5.0%)
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Figure 20. The frequency distribution of the distance between the wall and the

user
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Table 8. The measurement time for each room
Room A 　B C D E F G

Manual measurement [s] 82.4 47.1 50.3 59.1 45.1 119.1 165.1

Proposed tool [s] 36.9 30.2 21.1 31.2 30.1 62.2 73.4

2.6.4 Evaluation for floor plan

Evaluation method

In order to evaluate the usability of the proposed room measurement tool, we

created a floor plan of a building and measure the time for the work. First, the

user walked along the wall. Then, we collected the position of the user from

inertial sensors and the distance from the ultrasonic sensor gadget. Next, we

created a floor plan by utilizing the proposed method. Here, we attached one

room to the other manually. We compared the size of the measured rooms and

the real ones. Also, we compared the measurement time for each room.

Result and discussion

Figure 21 illustrates the floor plan we created. The solid line denotes the real

shape of the room. The dashed line denotes the shape using the proposed method.

In addition, Table 9 shows the true, estimated, error, and predicted error length

of each room. The left part of the table shows the result of East-West direction.

The right part of the table shows that of North-South direction. From these

results, we strongly believe that our prototype achieves the accurate room shape

and size estimation. In addition, Table 8 shows the measurement time for each

room. From this table, we have confirmed that the measurement time is short

enough for the volunteer user to use this tool with small effort.
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2.7 Discussion

We have realized a room measurement tool composed of a smartphone with an

attached ultrasonic sensor. Through experimental evaluations, we confirmed that

the proposed tool satisfies the requirements presented in Section 2.3: easy-to-use,

low-cost, and accurate.

To evaluate whether operating our proposed tool was easy enough, we asked

users to complete a lap along a wall. We interviewed some users whether us-

ing our proposed tool is simpler than the measurement-based method. Most

of them answered responded that using our proposed tool was easier than the

measurement-based method because it required less time to use.

To reduce costs, we simply attached an ultrasonic sensor to a smartphon.

Smartphones are ubiquitous nowadays and have negligible cost. The ultrasonic

sensor costs less than other sensors, i.e. the ultrasonic sensor costs just $20,

while the laser rangefinder and Kinect cost $100 and $2,450 respectively. We

believe that adding external device will not be a burden on the user, since there

is situation in society to prompt it as we mentioned in “1. Introduction”.

To achieve accurate measurements, we proposed three techniques: stride

length estimation, shape and size estimation of narrow rooms, and eliminating

the influence of objects adjacent to the wall. The evaluation results showed that

our proposed techniques achieved more accurate measurements.

For stride length estimation, our proposed method measured a corridor more

accurately than the height-stride-length-correlation method. For the 20 m corri-

dor, our proposed method estimated the length as 19.8 m, while the height-stride-

length-correlation method estimated it as 28.7m. On the other hand, the corridor

length 30m with the height-stride-length-correlation. There are two reasons for

this result. First, there is a weak correlation between the stride length and height.

Second, these correlation models are obtained from outdoor environments. There-

fore, we confirmed that we cannot apply this model for indoor environments. As

a result, we conclude that the proposed stride-length-estimation was essential to

realize an accurate floor plan creation tool.

For the shape and size estimation of narrow rooms, we found that our pro-

posed method accurately measured the size of two narrow rooms. Also, we found

that our proposed method worked more accurately in Room F than Room D,
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because the stride length estimation affects narrower rooms more. In terms of

eliminating the influence of objects adjacent to walls, our proposed method esti-

mated the distance between the walked path and the wall more accurately than

the simple average method. The 1-m distance between the walked path and

wall was estimated as 97cm by our proposed method, while the simple average

estimated it as 78cm.

As we presented in Section 2.4, objects adjacent to the wall influences the

accuracy of measurements. Our proposed method analyzed the accumulated data

and estimated an accurate distance. On the other hand, the simple average

method suffered from objects, such as the 40 cm-wide bookshelf. Furthermore,

we explored the limits of our proposed method in terms of how much cover rate

of the object to the wall it can eliminate. We evaluated it using a simulation

where we changed the length of the wall for the data obtained from previous

measurements. Then, we applied the proposed method and measured whether it

can measure the distance accurately. Figure 22 shows the relationship between

the measured distance and the cover rate of objects. The vertical axis shows

the measured distance, while the horizontal axis shows the cover rate. We found

that the proposed method works correctly up to 80%. We also discover that the

proposed method fails to divide the mixed Gaussian distributions over an 80%

cover rate. This is because the two Gaussian distributions are merged when over

80% of the wall is covered.

In addition, we consider that the proposed method is hard to eliminate the

object adjacent to wall that has the thickness less than 20 [cm]. This is because

the preliminary experiment to measure the accuracy of the ultrasonic distance

measurement sensor shows that the tool has the error up to 20 [cm].

In the experiment to create a floor plan of a building, we conducted the

experiment on room types with enough to evaluate the basic performance of our

proposed tool. We discuss the error in terms of the error model. The error model

of the proposed tool is the summation of the error from the ultrasonic sensor,

DR, and user’s posture.

(Error) = (Ultrasonic− sensor) + (DR) + (User′s− posture) (8)

From the preliminary experiment in Section 2.5.1, the error of the ultrasonic

distance sensor is 20 [cm]. Evaluation result showed that the accumulated error
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of DR and the effect from the user’s posture are 30 [cm] and 50 [cm] respectively.

Therefore, the total error is calculated as 1 [m]. On the other hand, the evaluation

result showed that we estimated the size and shape of the room under 1 [m] error.

In addition, we discuss whether the accuracy is enough to realize RBA with

some case studies. First, we discuss the elderly monitoring system. We consider

that the accuracy is enough to realize the system, since the system recognizes

which room the senior citizen stays in. We interviewed the owner of a nursing

home. He says that the staff in the nursing home monitors which room the senior

citizen stays in and estimates his/her physical or mental status. Second, we

discuss the home-concierge robot. We consider that the home-concierge demands

the floor plan in the following two objectives. First objective is that the floor plan

enables the robot to recognize which room the user stays in. For this objective,

the performance of the proposed tool is sufficient, since the robot can recognize

which room the user stays in. Second objective is that the robot utilizes the

created floor plan to move in the house. For this objective, the created floor plan

is not sufficient, since it does not show the accurate area in which the robot can

move. That is, the robot also requires the position of obstacles. To cope with

this problem, the robot also needs to be equipped with the obstacle detection and

record the position of it to the created floor plan.

On the other hand, assuming realistic use-cases, our experimental room set

still does not cover all room types. Thus for future work, we will consider how to

account for a larger variety of rooms.

Moreover, we can assume to utilize the proposed tool and create the floor plan

for the researches described in Chapter 2 and 3. However, we did not create it,

since we have already had the floor plan that is precisely created when it built.

2.8 Conclusion

In this research, we proposed the room measurement tool that utilizes the smart-

phone attached with an ultrasonic sensor gadget. There are three challenges to

realize the measurement tool. The first challenge is that we have to develop a

technique to measure the stride length in the building. To solve this problem,

we calculated the stride length from the ultrasonic sensor and the accelerometer.

The second challenge is that objects, such as bookshelves, attached on the wall
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Figure 22. The relationship between the wall cover rate and the measured distance

deteriorate the room shape estimation accuracy. To solve this problem, we used a

mixed Gaussian filter. The third problem is that the narrow room, such as corri-

dors, leads to the low accuracy. To cope with this problem, we used two ultrasonic

sensors, implemented in the reverse direction, and measure the distance between

walls directly. The evaluation experiments showed that the proposed tool can

measure more accurate shape and size estimation than the existing methods.
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3 Indoor positioning system by utilizing a piezo

sensor attached to floor

3.1 Introduction

The resident’s behavior awareness applications can offer various services to the

user such as the home appliance control and concierge robot. These applications

recognizes the surrounding environment of the user by utilizing the indoor posi-

tioning system. For example, the home concierge robot recognizes the position

of the user by utilizing this technique and approaches to him/her. Thus, we need

to develop an indoor positioning system that utilizes the diffusive sensor.

In this chapter, we present a piezo sensor-based indoor positioning system

which estimates the position of the user by utilizing the piezo component attached

on the floor. Our system fulfills the requirements as follows: First, assuming

that the positions of all furniture are known in advance, our system accurately

estimates the position of the user from the vibration type of furniture in the

home (Req 1). Second, our system suppresses the installation cost by utilizing

the low cost piezo component (Req 2). Third, our system does not require the

user to carry any mobile device (Req 3). Finally, our system does not capture

any privacy-related information such as the image of the user (Req 4).

In order to realize the proposed positioning system, we have tackled two chal-

lenges. First challenge is the development of an indoor positioning technique. We

can assume that we estimate the position of the user from several piezo sensors

by utilizing that technique. Although we have to acquire the velocity of the vi-

bration wave which travels on the floor, we cannot calculate that velocity. Thus,

we have developed a new technique which estimates the position of the user from

the type of the vibration. Second challenge is the selection of the feature vector

to estimate the vibration type accurately. We have selected Mel-Frequency Cep-

strum Coefficients (MFCC), Fast Fourier Transform (FFT), and Envelope shape

features from preliminary experiments.
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3.2 Related work

Many research studies on the indoor positioning system have been reported. In

this section, we divide them into two groups: “Wearable sensor approaches” and

“Device free approaches”.

3.2.1 Wearable sensor approaches

Wearable sensor approaches estimate the position of the user by utilizing mobile

devices such as a smart phone, smart watches and so on.

There are several studies of indoor positioning which utilizes the Pedestrian

Dead Reckoning (PDR)[22][23]. In those studies, they estimate the position of

the user by utilizing the inertial sensors, such as accelerometer and gyroscope, in

the smartphone. However, the accumulated error of the sensors is the challenge.

In order to cope with this problem, some studies adopt correction techniques. In

[35], for instance, they adopt the ultrasonic landmark to correct the error.

Meanwhile, Active Bat28 utilizes the ultrasonic wave to estimate the position

of the user. They estimate the position of the user by utilizing TDoA technique.

They attach the ultrasonic receivers on the ceiling. Also, the user carries a ul-

trasonic transmitter. Thus, TDoA technique estimates the position of the user.

However, the ultrasonic positioning system costs more than e3,000. The instal-

lation cost is the burden on the user. In addition, the wearable device approaches

force the user to carry the mobile device.

3.2.2 Device free approaches

Device free approaches estimate the position of the user by utilizing the sensor

attached to the wall or floor in the building. Thus, those approaches realize the

indoor positioning system without forcing the user to carry any mobile device.

There are several studies which estimate the position of the user by utilizing

the stereo cameras[36][37][38][39]. They install several stereo cameras in the room.

Based on the image processing of the cameras, they estimate the position of the

user. However, in order to realize the indoor localization for every room, the

installation of many stereo cameras is required and the cost becomes a burden to

28ActiveBat: http://www.cl.cam.ac.uk/research/dtg/attarchive/bat/

49



Table 10. Comparison between the related researches and the proposed system

Accuracy Cost Dev-free Privacy

PDR[22] -
√

-
√

Active Bat
√

- -
√

Camera[36]
√

-
√

-

Radio wave[44]
√

-
√

-

Piezo (proposed)
√ √ √ √

the user. Moreover, the stereo camera always captures the posture of the user.

This intrudes on the user’s privacy.

There are several studies which estimate the position of the user by utilizing

the transmission of the radio wave[40][41][42][43]. Pilot[44] is a device-free posi-

tioning system from the channel state of Wireless Local Area Network (WLAN).

However, it requires the installation of several Access Points (APs). Also, the

complex site survey of the radio wave is required to use the system. Thus, the

installation cost becomes the burden on the ordinary user.

3.2.3 Comparison between the related researches and proposed sys-

tem

Table 10 shows the comparison between the related researches and the proposed

system. First row shows the requirements for the indoor positioning system we

assume. Accuracy, Cost, Dev-free and Radio wave correspond to requirements

1 to 4 respectively. The related researches cannot fulfill all the requirements.

Meanwhile, the proposed system (Piezo) achieves the requirements.

3.3 Piezo indoor positioning system

3.3.1 Requirements and policies

In order to realize the indoor positioning system, we have to fulfill the following

requirements.

Requirement 1: Accurate indoor localization
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Figure 23. System overview

Requirement 2: Low installation cost

Requirement 3: Device free

Requirement 4: Low privacy concern

To achieve Requirement 1, we develop vibration type estimation technique for

indoor positioning in stead of TDoA. To achieve Requirement 2, we select the

piezo component as the sensor, since the sensor costs less than other sensors29.

To achieve Requirements 3 and 4, we attach the piezo sensor on the floor. Thus,

the user does not have to carry any mobile device. Moreover, the piezo sensor

attached on the floor captures information relating to residents’ privacy, which

we have confirmed through a preliminary experiment.

3.3.2 System overview

Figure 23 illustrates the system of the piezo sensor-based indoor positioning sys-

tem. Single piezo component is attached on the floor and captures vibration

29Piezo Element: https://www.sparkfun.com/products/10293
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Figure 24. TDoA approach problem

which is generated from the user and furniture. The system estimates the po-

sition of the user in three steps. In the first step: “Pretreatment”, the system

processes the captured sound in order to reduce the effect from noise. Also, the

captured signal is divided into each time-window. In the second step: “Vibra-

tion type estimation”, the system estimates the vibration type by utilizing the

classifier. In the final step: “Searching DB”, the system queries the database to

obtain the location data. The database stores the location which corresponds to

the estimated vibration.

3.3.3 Challenges and solutions

Vibration type estimation rather than TDoA

　

When we develop a piezo sensor-based indoor positioning system, we can assume

that we put three piezo sensors on the floor and estimate the position of the user

by utilizing TDoA technique. However, TDoA technique cannot estimate the

position of the user from the vibration which travels on the floor, since we cannot

calculate the velocity of the vibration. Figure 24 illustrates the estimation of the
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object’s position by utilizing TDoA. First, TDoA technique measures the time

difference of arrival: T12, T13, and T23 of the vibrations between sensors. Second,

in order to draw hyperbolic curves, TDoA technique calculates the Difference of

Distance (DoD) from the following equation DoD12 = vT12. In order to estimate

DoD, we have to calculate the velocity of the vibration: v accurately. In general,

we can calculate the velocity of the vibration which travels through solid body

from the following equations:

CL =

√
E

ρ
· 1− µ

(1 + µ)(1− 2µ)

CT =

√
G

ρ

Here, CL denotes the velocity of longitudinal wave in solid body. E denotes

the elastic modules. ρ denotes Young’s modules. µ denotes Poisson’s ratio. CT

denotes the velocity of transverse wave in solid body.

ρ is the density specific to each material. However, the floor is composed of

several substances. Thus, we cannot calculate the velocity.

Moreover, even if we assume that we estimate the velocity of the vibration,

we cannot adopt TDoA technique due to high installation cost. Since TDoA

technique demands several instrumentation devices with the clocks which are

synchronized accurately, and are often expensive, adoption of these devices does

not fulfill Requirement 2: Low installation cost.

In order to cope with this problem, we estimate the position of the user from

the type of vibration. The idea of this technique is that, when we capture the

vibration from specific furniture, we can estimate that the user exists around that

furniture. Figure 25 illustrates the waveform of vibrations which are captured

from a hinged door, a chair, the footsteps of a user. The vibration waveform

of the hinged door is captured when a user opens the door. That of a chair

is captured when a user stands up from it. There is a difference between the

vibrations. First, we should make a database which includes the correlation

between the position of each furniture and the vibration type. After that, we can

estimate the position of the user.
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Feature vector selection

　

In order to generate a classifier which estimates the vibration type, there are

many options for feature vectors. We empirically select three feature vectors:

MFCC, FFT and Envelope shape.

Mel-Frequency Cepstrum Coefficients (MFCC) is one of the feature vectors

which are frequently used for sound processing[45]. MFCC represents the power

spectrum of a signal, based on a linear cosine transform of a log power spectrum

on a nonlinear mel scale of frequency.

Fast Fourier Transform (FFT) feature is one of the feature vectors which are

normally used for signal processing[46]. FFT is the power spectrum of a signal,

based on a Fourier transform of it.

Envelope shape is one of the feature vectors which represents the shape of the

wave[47]. Figure 26 illustrates the methodology to generate the envelope shape.

3.3.4 Classifier generation

In order to estimate the vibration type, we generate a classifier that learns the

training data set including the vibration data and the activity type. There are

many options for the classifier. We have selected Logistic regression30 which is

implemented in scikit-learn31 as the classifier.

3.3.5 Prototype implementation

We have developed the first prototype of the piezo sensor module for it as illus-

trated in Figure 27. The module consists of the piezo sensor and the amplifier

circuit. The total cost of the module is less than e10, which is low cost. The

vibration is recorded through USB Audio interface and processed in a laptop with

Python32.

30Logistic Regression classifier: http://scikit-learn.org/stable/modules/generated/

sklearn.linear_model.LogisticRegression.html
31Scikit learn: http://scikit-learn.org/
32Python: https://www.python.org/
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3.4 Evaluation

We conducted an experiment to evaluate the proposed vibration type estimation

technique. Figure 28 shows the floor map of our smart home testbed. The total

cost of the module is less than e10, which is considered low cost. We attached

the piezo sensor on the floor close to the slide door as illustrated in the Figure

28.

3.4.1 Recording of vibrations

In order to conduct the evaluations, we collected the vibrations in the smart

home. We asked one participant to perform five activities which are likely to

occur in the living room: “step”, “open door”, “close door”, “stand up”, and “sit

down”. We collected ten vibrations for each action.

We put labels (activity types) to the vibrations and made a dataset by record-

ing the experiment with a video camera.

3.4.2 Evaluation protocol

We conducted two experiments to evaluate the proposed methods.

In the first experiment, we distinguish the vibration type with the dataset.

Since we collected ten vibrations for each action, we conducted the evaluation

with Leave-one-out method. Prior to the experiment, we divided the dataset in

ten groups. Each group has every vibration type including “step”, “open door”,

“close door”, “stand up”, and “sit down”. Fig 29 illustrates the procedure used

in the experiment. First, we processed the vibration data to reduce the effect

from the noise. Second, we extracted MFCC feature from each vibration. Third,

we divided the dataset into test dataset and the training dataset. Forth, we

generated a classifier using Logistic regression from the training dataset. Finally,

we estimated the type of each vibration in the test set by utilizing the classifier.

In the second experiment, we evaluated the performance difference of the

feature vectors between MFCC, FFT, and Envelope shape.
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Table 11. Confusion matrix with MFCCPPPPPPPPPPPPP
True

Predicted
a b c d e

a=Step 10 0 0 0 0

b=Open door 0 10 0 0 0

c=Close door 0 3 7 0 0

d=Stand up 0 0 0 10 0

e=Sit down 0 0 0 0 10

3.4.3 Result and discussion

Table 11 shows the confusion matrix of the evaluation. Each row shows the name

of the activities and each column shows the estimated activities. Table 12 shows

the precision, recall, and F-measure of each activity. We calculate the F-measure

from the following equation.

F-value =
2Recall · Precision
Recall + Precision

The evaluation result indicates that the proposed classifier with MFCC has

achieved the average F-measure: 89%. For each vibration, the proposed method

correctly classifies “step”, “stand up”, and “sit down”. On the other hand, the

method confuses “open door” with “close door”. It is assumed that this mis-

classification comes from the little MFCC feature difference between these two

vibrations.

Table 12 also shows the comparison of feature vectors between MFCC, FFT,

and Envelope shape. Each row shows the name of the activities and each column

shows F-measure with each feature vector. The Evaluation result shows that

MFCC is the best feature vector between these three. However, for distinguishing

between “open door” and “close door”, Envelope shape is better than MFCC.

Thus, we have confirmed that there is a possibility that we can improve the

performance by generating a new classifier which combines MFCC and Envelope

shape feature vectors.
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3.5 Discussion

Here, we discuss whether the accuracy is enough to realize RBA with some case

studies. First, we discuss the elderly monitoring system. We consider that the

accuracy is enough to realize the system, since the system recognizes which room

the senior citizen stays in. We interviewed the owner of a nursing home. He

says that the staff in the nursing home monitors which room the senior citizen

stays in and estimates his/her physical or mental status. Second, we discuss

the home-concierge robot. We consider that the home-concierge demands the

indoor positioning in the following two objectives. First objective is that the

indoor positioning enables the robot to recognize which room the user stays in.

For this objective, the performance of the proposed tool is sufficient, since the

robot can recognize which room the user stays in. Second objective is that the

robot utilizes the indoor positioning to move in the house. For this objective, the

proposed indoor positioning is not sufficient, since it does not show the accurate

position in which the robot can move. Therefore, for this objective, the robot

needs to utilize the sonar sensor to detect

3.6 Conclusion

We present a piezo sensor-based indoor positioning system which estimates the

position of the user by utilizing the piezo component attached on the floor. In

order to realize the proposed positioning system, we have tackled two challenges.

First challenge is that we have to develop an indoor positioning system which

does not utilizes TDoA techniques. In order to cope with this challenge, we have

developed a new method which estimates the position of the user from the type of

the vibration. Second challenge is that we have to select an appropriate feature to

estimate the vibration type accurately. We have selected MFCC feature through

comparison evaluation with FFT and Envelop shape. We have implemented the

proposed system in the smart home which belongs to the authors’ university. As

a result, we have confirmed that our system estimates the type with F-measure:

93.9%.
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Hinged door (open)

Stand up from a chair Step

Figure 25. Wave form of the vibrations
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Envelope extraction

Envelope

Figure 26. Envelope shape extraction
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Piezo sensor

Floor

PC

Vibration

USB Audio
interface

Vibration type
estimation

with Python Piezo sensor
Amplifier

Door
Chair

Amplifier for the piezo

Figure 27. Implementation of the piezo sensor
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Piezo sensor

ChairHinged door

Figure 28. Sketch map of the smart home and the location of piezo sensor and

furniture

data
set

Vibrations set:
- Step
- Door open
- Door close
- Stand up
- Sit down 10 sets

Noise-effect
reduction

MFCC feature
extraction

data
set

Training 9 sets

data
set

Classifier
generation

Vibration type
estimation Estimated vibrations

Figure 29. Evaluation procedure
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Table 12. Comparison between MFCC, FFT, and Envelope shape

MFCC FFT Envelope

Precision 100% 100% 100%

Step Recall 100% 10.0% 66.7%

F-measure 100% 18.0% 80.0%

Precision 100% 33.0% 100%

Open door Recall 76.9% 80.0% 83.3%

F-measure 86.9% 47.0% 90.9%

Precision 70.0% 38.0% 80.0%

Close door Recall 100 % 30.0% 100%

F-measure 82.4% 33.0% 88.9%

Precision 100% 25.0% 20.0%

Stand up Recall 100% 20.0% 100.0%

F-measure 100% 22.0% 33.3%

Precision 100% 60.0% 90.0%

Sit down Recall 100% 55.0% 69.2%

F-measure 100% 57.0% 78.3%

Precision 94.0% 51.0% 78.0%

Average Recall 95.4% 39.0% 83.8%

F-measure 93.9% 36.0% 74.3%
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4 Activity recognition technique by utilizing energy-

harvesting PIR sensor

4.1 Introduction

The resident’s behavior awareness applications can offer various services to the

user such as the home appliance control and concierge robot. These applications

recognizes the user’s status by utilizing the activity recognition system. For

example, the home concierge robot recognizes that the user works on his business

hard, and then prepare the bath so that he/she take rest after working. Thus, we

need to develop an activity recognition system that utilizes the diffusive sensor.

The survey[48] reported that real-time utilization of IoT data streams is highly

anticipated an the real-time activity recognition in home is one of the main ap-

plications. Accordingly, there are many studies which work on the activity recog-

nition in the smarthome. There are activity recognition techniques which utilize

cameras[49][50]. They estimate the activities of the user based on the image pro-

cessing. However, in order to realize the recognition in the smarthome, we have

to set up several cameras, which breeds the installation cost problem. Moreover,

the camera intrudes the user’s privacy.

There are different approaches of activity recognition which utilize the wear-

able devices such as the smartphone[51]. In these studies, they estimate the activ-

ities by utilizing the accelerometer and gyro sensors in the device. Nevertheless,

they have succeeded in the recognition of simple activities just as “walk” and

“run”. Thus, they cannot estimate the daily living activities in the smarthome

such as “sleeping”. Moreover, the wearable device requires the battery replace-

ment, which becomes burden on the user. To summarize, the previous studies

leave the following challenges: (i) privacy intrusion from cameras, (ii) small num-

ber of activities that are recognized (iii) low accuracy of recognition (iv) high

installation and operation cost, (v) burden on the user to wear the device, and

(vi) wire installation for power supply and data collection.

In this chapter, we develop an activity recognition system by utilizing energy

harvesting Passive Infra-Red (PIR) and door sensors. The energy harvesting

63



PIR and door sensors have the solar panel and Supercapacitor33 inside. Under

the sunlight or bulb light, the energy generated from solar panel operates the

sensor and wireless communication module while charging Supercapacitor. In

the night without any light, the charged Supercapacitor keeps the unit running.

The cost of the energy harvesting PIR and door sensors is much smaller than

that of the ultrasonic positioning sensor. The energy harvesting sensor unit does

not demand the battery replacement, since the power supply depends on the

solar panel and Supercapacitor. Moreover, the sensor unit conveys the captured

data to a home server via wireless sensor network, which does not demand wire

installation. The PIR, which detects the user from the infrared emitted from his

skin, and door sensors realize the device free34 activity recognition. Thus, the

proposed system solves the challenges (i)–(vi).

4.2 Related work

Many research studies on the activity recognition in the smarthome have been

reported. In this section, we divide them into two groups: “Activity recognition

by utilizing wearable sensors” and “Activity recognition by utilizing cameras”.

4.2.1 Activity recognition by utilizing wearable sensors

Activity recognition methods that use wearable accelerometers have already achieved

accuracies greater than 90% for simple actions such as walking, sitting, running

and sleeping[52]. However, using wearable accelerometers to recognize abstract

or complex activities has not yet been proposed. The method of Bao et al.[53]

can recognize 20 activities, such as watching TV, cleaning, and working, using

five wearable accelerometers. However, the burden on users is heavy because it

requires a user to wear five sensors. Maekawa et al.[51] focused on the magnetic

field generated by home appliances when used, and proposed a method of recog-

nizing the living activities, such as watching TV, shaving, the operation of the

mobile phone, brushing of teeth and cleaning, using a wearable magnetic sensor.

33How does a Supercapacitor work?: http://batteryuniversity.com/learn/article/

whats_the_role_of_the_supercapacitor
34“Device free” means that user does not need to wear any device.
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However, their approach is limited to activities associated with the operation

appliances.

4.2.2 Activity recognition by utilizing cameras

Brdiczka et al.[54] proposed a technique for recognizing living activities inside a

smart home. Their study used an ambient sound sensor and a 3D video tracking

sensor, and achieved recognition rates ranging from 70% to 90% for both individ-

ual activities, such as working and naps, and activities performed by more than

one person, such as conversations and games. However, their method requires a

specific camera and microphone and places the residents at risk to privacy ex-

posure. In addition, the recognition accuracy of their method is not enough as

many other activities are left unrecognized.

Kasteren et al.[55] designed a system for recognizing living activities such

as eating, watching TV, going out, using the toilet, taking showers, doing the

laundry, and changing clothes in a smart home embedded with door sensors,

pressure-sensitive mats, float sensor, and temperature sensor. The recognition

accuracy of their system ranges from 49% to 98%. It can recognize many activ-

ities, but it has a high initial costs and low recognition accuracy depending on

the type of activities.

Chen et al.[56] designed a system for recognizing complex living activities such

as making coffee, cooking pasta, watching TV, taking a bath, and washing hands

in a smart home embedding contact, motion, tilt and pressure sensors. Their

system achieved a recognition accuracy greater than 90%. However, this method

requires many sensors and overall system cost will be high.

4.2.3 Approach of Energy Harvesting PIR and door sensor-based ac-

tivity recognition

In order to study the challenges in the previous researches, we aim to develop an

activity recognition system by utilizing PIR and sensors. Our system achieves

low installation and operation cost, reduces user’s burden because the user does

not need to wear any device, and has less impact on the intrusion of the user’s

privacy.
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4.3 Energy Harvesting PIR and door sensors based Ac-

tivity Recognition

4.3.1 Requirements and Basic Policy

As we already addressed in Sect. 4.1, the following requirements must be satisfied

in activity recognition in homes.

(1) Abstract and various types of living activities are recognized.

(2) Low-cost and a small number of sensors are used.

(3) Low privacy exposure of the residents is realized.

(4) Tag-free activity recognition

Basic steps to solve these requirements are described as follows. To satisfy

requirement (1), we target the eight daily living activities such as “cooking” and

“taking a meal” to cover the basic activities in the home. The following subsection

contains the definitions of living activities and the types of sensor data collected.

4.3.2 Definition of living activity

We describe the target living activities in this section. According to the Statis-

tic Bureau, Ministry of Internal Affairs and Communications in 2011, the main

activities within one day is classified into the 20 types shown in Figure 30. The

activities are classified as primary activities (i.e., physiologically necessary activ-

ities such as sleeping and eating), secondary activities (i.e., mandatory activities

in social life such as working and housework), and tertiary activities (i.e. activi-

ties in during times that can be used freely). In addition, a detailed classification

method with 6 large classifications, 22 middle classifications, and 90 small classifi-

cations of activities within one day are also defined. We refer to these definitions

in our study, and we extracted eight activities as targets of our living activity

recognition method: “Eat”, “Bathroom activity”, “Sleep”, “Cook”, “Clean-up”,

“Living room activity”, “Work and Study with PC”, and “Go out”.
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Figure 30. Examples of living activity classification

4.3.3 Collection of sensor data

In this subsection, we describe the sensors used in our study. Data is collected

by a person living in the smart home shown in Figure 31 (Experimental housing

facilities of 1 bed room and 1 living room with kitchen built in the Nara Institute

of Science and Technology). In the smart home, power meters, ambient sensors

(i.e. temperature, humidity, illumination, human sensors embedded in different

places), ultrasonic positioning sensor, door sensors, faucet sensors have been al-

ready deployed. In the proposed method, we additionally installed 11 PIR, which

includes nine directional PIR sensors, and eight door sensors whose power is sup-

plied from the energy harvesting module. The captured sensor data is stored in

a server via EnOcean 35 protocol based wireless sensor network.

35EnOcean https://www.enocean.com
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Figure 31. Floor plan and the position of sensors

Figure 32 shows the energy harvesting PIR sensor. Figure 33 shows the en-

ergy harvesting door sensor. The PIR sensor outputs 1/0 corresponding to the

existence of the user. Each sensor has EnOcean network transmitter and con-

veys the captured data to a home server with a EnOcean network interface via

EnOcean communication protocol, when the PIR sensor detects the user’s motion

or the door sensor detects the door’s open/close. The server stores the received

data with the timestamp into the database. The sensor unit operates from the

energy that is generated from the solar panel under sunlight or bulb light. Simul-

taneously, the unit charges Supercapacitor. In the night without any light, the

charged Supercapacitor keeps the unit running. Both sensors are provided from

Rohm Co., Ltd.
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Solar panel PIR sensor
EnOcean Transmitter

Figure 32. Energy harvesting PIR sensor

4.3.4 Activity recognition technique

In this section, we describe our method for recognizing living activities. The

proposed method recognizes the daily living activities by machine learning. The

process of applying machine learning is composed of the following three steps. (1)

Acquisition of training data to be used for learning, (2) extraction of the feature

values of the training data acquired, (3) construction of a recognition model for

living activities. In the following subsection, we describe the details of these steps.

Acquisition of Training Data

For machine learning, the system needs the training data which have the corre-

spondence between the living activity labels and the sensor data in advance. We

have developed a living activity labeling tool to easily obtain the training data.
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Solar panel

Door sensor

EnOcean transmitter

Figure 33. Energy harvesting door sensor

This tool supports the labeling of living activity and visualizing of multiple het-

erogeneous sensing data collected in a smart home. This tool extracts the data

for arbitrary time interval from the accumulated sensor data, and shows graph of

various types of sensor data (Power consumption of each home appliance, tem-

perature and humidity of each room, etc.). Furthermore, it integrates a function

of synchronously displaying the corresponding video recorded as ground truth,

and we can use the labeling function which links arbitrary time interval of sensor

data to a specific activity with easy user operation: (1) select the sensor button

associated with the action, (2) select a time interval by dragging on the graph,

and (3) select the corresponding label of the living activity.

Extraction of Feature Value

Feature value is a data that is effective to identify the activities. In the proposed

method, we get the feature value from the sensor data of the time interval which

is labeled by the living activity labeling tool, as follows. First, we collect data

set for living activities, then, divide each data by a fixed time interval (window)
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Time PIR1 PIR2
0:00:00 1 0
0:00:10 0 0
0:00:20 0 0
0:00:30 1 0
0:00:40 0 1

Time PIR1 PIR2
0:00:00 1 0
0:00:10 1 0
0:00:20 1 0
0:00:30 1 0
0:00:40 0 1

Figure 34. complement for the dead zone of PIR sensor

into samples, and calculate the feature value for each sample which is required by

machine learning. We set 10 seconds to time window when dividing each data,

since 10 second interval achieved the best recognition accuracy in the preliminary

experiment with various lengths of time windows. As the feature value, we use

the OR product of PIR and door sensors in each time window. In other words,

if the sensor reacts at least one time in the time window, we regarded the time

window as the reacted one.

Furthermore, we have developed a supplemental technique for the PIR sensor,

since the sensor has the following challenge: when the user exists close to the

sensor without moving, the sensor cannot detect the user. Figure 34 illustrates

this technique. If there is no PIR sensor reacting, we hold the latest PIR sensor

output until any sensor responds.

Construction of Living Activity Recognition Model

We construct a machine learning model using feature values of sensor data la-

beled by the developed labeling tool as training data. We use Weka which has

various classifiers to generate the recognition model. In the proposed method, we

empirically employ Random Forest classifier which is one of the popular pattern

recognition algorithms.
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4.4 Evaluation method

To evaluate the performance of the proposed method, we collected data of daily

living activities in the smart home described in Figure 31. Below, we describe an

overview of experiments and results of evaluation.

The experiment targeted to recognize eight activities which occur frequently

in a home: “Eat”, “Bathroom activity”, “Sleep”, “Cook”, “Clean-up”, “Living

room activity”, “Work and Study with PC”, and “Go out”. Five subjects (Two

male subjects in 30s, two male subjects in 20s, and a female subject in 20s) lived

in the smart home for two-three days each. We collected the data for 14 days in

total. In Figure 31, locations of the appliances and furniture that were used for

the activities are shown. The TV is located in the area marked “TV” and the

participant watched TV while sitting on the sofa, “SF”. The participant cooked

using the IH heater, “IH”. Meals were taken on the dining table, “TB”. Finally,

dishwashing was done in the sink, “SK”.

After collecting the data, we labeled the sensor data according to activity type

using the living activity labeling tool. The recorded video was used as ground

truth. We constructed a machine learning model from the extracted features of

PIR and door sensors by utilizing Random Forest. We used 19 features extracted

from the 10 second time window. For the machine learning model, we generated

three models: one model generated from both the PIR and door sensors, another

from only the PIR sensor, the other from only the door sensor. We evaluated the

proposed method by means of Leave-one-day-out cross validation, i.e. the one-

day data of 14 days is used for the test data, while the other data is used for the

training data. And, we change the date used for the test data. Furthermore, we

compared the proposed method with Ueda’s technique[57]. In Ueda’s technique,

the subject wears the ultrasonic sensor transmitter. Based on the position from

the ultrasonic positioning system, we estimated the subject’s activity by utilizing

Random Forest.
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Table 13. Evaluation result of PIR and door sensors
Activity Precision Recall F-measure

Go out 74.5% 84.9% 72.5%

Living 58.2% 65.6% 58.4%

Work and study 23.9% 16.5% 18.2%

Cook 75.9% 85.2% 79.3%

Eat 18.4% 79.5% 10.3%

Bathroom 95.3% 91.1% 92.6%

Sleep 61.2% 62.8% 59.5%

Clean up 27.5% 14.0% 17.1%

AVerage 65.8% 64.0% 62.8%

Table 14. Comparison between PIR&door, PIR, and door

Evaluation item PIR&door PIR door

Precision 65.8% 66.2% 29.3%

Recall 64.0% 67.1% 31.1%

F-measure 62.8% 61.2% 24.9%

4.5 Evaluation result

Table 16 shows the confusion matrix for “Evaluation for four activities”. Each

row in the confusion matrix describes the activity which the user performs in

the evaluation. Each column describes the predicted activity. Table 13 shows

the Precision, Recall, and F-Measure for each activity. Precision is the ratio of

retrieved instances that are relevant. Recall is the ratio of relevant instances that

are retrieved. We obtained F-Measure from the following equation.

F-Measure =
2Recall · Precision
Recall + Precision

Table 13 shows the proposed method achieved F-measure; 65.8%. For each

activity, “Bathroom activity” has the highest F-measure: 92.6%, while “Eat” has
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Table 15. Comparison with Ueda’s method

Evaluation item Proposed Ueda[57]

Precision 65.8% 76.9%

Recall 64.0% 70.1%

F-value 62.8% 70.2%

the lowest value: 10.3%. It is found that the activity that has the strong correla-

tion with the specific position has the higher F-measure. For example, when the

subject performs “Bathroom activity”, he basically stays in the bathroom, which

breeds the highest score. On the other hand, when the subject performs “Eat”,

he sits on either chair or sofa, which breeds the lowest score. Moreover, when

the user has a meal while sitting on the sofa, we cannot distinguish the activity

between “Eat” and “Living activity” which includes “watching TV”.

Table 14 shows the average precision, recall, and F-measure of PIR&door,

PIR, and door models. With the comparison with the F-measure, PIR&door

model has the highest F-measure. And, single PIR and door models followed it.

The evaluation result indicates that we can estimate the subject’s activity just

by utilizing only PIR sensor model to some extent. However, only door sensor

model cannot estimate the subject’s activity very accurately, since we cannot

distinguish between “Living Activity” and “Cook”.

Table 15 shows the comparison with Ueda’s method. The evaluation result

shows that our proposed method has the F-measure comparable to Ueda’s. More-

over, our proposed method does not force the user to wear the ultrasonic sensor,

which means that the proposed method is better than Ueda’s.
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4.6 Discussion

Here, we discuss whether the accuracy is enough to realize RBA with some case

studies. First, we discuss the elderly monitoring system. We consider that the

accuracy is enough to realize the system, since the system recognizes which room

the senior citizen stays in accurately through the evaluation. We interviewed the

owner of a nursing home. He says that the staff in the nursing home records

the activities which we estimated through the evaluation and estimates his/her

physical or mental status. Second, we discuss the home-concierge robot. We

consider that the home-concierge can provide the service based on the estimated

activity.

4.7 Conclusion

In this research, we proposed an in-home living activity recognition technique

in the smart home. To suppress the privacy invasion and introduction cost, the

proposed method estimated the user’s activity by utilizing the energy harvest-

ing PIR and door sensors. We generated the classifier to estimate the activities:

“Eat”, “Bathroom activity”, “Sleep”, “Cook”, “Clean-up”, “Living room ac-

tivity”, “Work and Study with PC”, and “Go out” by utilizing Random Forest.

Evaluation result showed that we recognized the user’s activities with F-measure:

62.8%.
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5 Conclusion

In this thesis, we studied the resident’s behavior awareness. The objective of the

study was the feasibility study on the fundamental systems and technique that

are essential to realize the resident’s behavior awareness applications.

In Chapter 2, we proposed the room measurement tool that utilizes the smart-

phone attached with an ultrasonic sensor gadget. There are three challenges to

realize the measurement tool. The first challenge is that we have to develop a

technique to measure the stride length in the building. To solve this problem,

we calculated the stride length from the ultrasonic sensor and the accelerome-

ter. The second challenge is that objects, such as bookshelves, attached on the

wall deteriorate the room shape estimation accuracy. To solve this problem, we

used a mixed Gaussian filter. The third problem is that the narrow room, such

as corridors, leads to the low accuracy. To cope with this problem, we used

two ultrasonic sensors, implemented in the reverse direction, and measure the

distance between walls directly. The evaluation experiments showed that the

proposed tool can measure more accurate shape and size estimation than the

existing methods. Thus, we proved the potential and developed the fundamental

technique of the target tool. In this thesis, the proposed floor plan creation tool

considered that the shape of room is rectangular. However, in real condition,

there are some shapes other than rectangular. Future work includes the shape

and size estimation for rooms with other shapes. Moreover, we are going to work

on the automatic floor plan creation based on the estimation for the contiguity

between rooms.

In Chapter 3, we studied a piezo sensor-based indoor positioning system which

estimates the position of the user by utilizing the piezo component attached on

the floor. In order to realize the proposed positioning system, we tackled two

challenges. First challenge was that we have to develop an indoor positioning

system which does not utilizes TDoA techniques. In order to cope with this

challenge, we developed a new method which estimates the position of the user

from the type of the vibration. Second challenge was that we have to select

an appropriate feature to estimate the vibration type accurately. We selected

MFCC feature through comparison evaluation with FFT and Envelop shape.

77



We implemented the proposed system in the smart home which belongs to the

authors’ university. As a result, we confirmed that our system estimates the

type with F-measure: 93.9%. Thus, we proved the potential and developed the

fundamental technique of the target system. Future work includes the position

estimation during walking. In order to realize the estimation, we believe that we

should develop two techniques. First technique is the step count. The evaluation

result indicates that we can estimate “step” vibration. By counting the number

of “step” vibration, we can calculate the step count. Second technique is the

estimation of the moving direction. We think that We can estimate the moving

direction of the user by attaching several piezo sensors. Thus, we are going

to develop a technique to estimate the position of the user while walking by

combining these two techniques.

In Chapter 4, we proposed an in-home living activity recognition technique

in the smart home. To suppress the privacy invasion and introduction cost, the

proposed method estimated the user’s activity by utilizing the energy harvest-

ing PIR and door sensors. We generated the classifier to estimate the activities:

“Eat”, “Bathroom activity”, “Sleep”, “Cook”, “Clean-up”, “Living room ac-

tivity”, “Work and Study with PC”, and “Go out” by utilizing Random Forest.

Evaluation result showed that we recognized the user’s activities with F-measure:

62.8%. Thus, we proved the potential and developed the fundamental technique

of the target system. Future work includes minimization of the number of sensors

to reduce the installation cost. In order to realize this, we count on the estimation

of the removed sensors’ reaction by utilizing the user’s life pattern that breeds

the time series pattern of the sensors. Moreover, we plan to utilize the log of the

watt meter attached to the home appliances, which also indicates the user’s life

pattern. Furthermore, we plan to develop a technique to recognize the activities

when there are multiple residents. Finally, we are going to deploy the system into

an ordinary house and conduct the adaptability to the real environment.

After solving the remaining challenges described in each research, we plan to

work on the propagation of RBA system as well as developing RBA applications.
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