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Behavioral Analysis using Non-Stationary Time

Series Modeling Method with Bayesian

Nonparametrics∗

Ryunosuke Hamada

Abstract

Time series data are broadly collected and analyzed in diverse fields of science

and engineering. To cope with such data, the non-stationary multidimensional

time series modeling method plays a dominant role and is widely applied to the

data for predicting future values and unveiling interesting structure of them.

The remarkable progress of Bayesian nonparametric methodology has ex-

panded the scope of the non-stationary time series modeling methods, not only

enabling us to automatically determine the number of parameters in the model

according to the complexity of the dataset, but also tolerating a certain class

of heterogeneity among a set of time series data. However, there is relatively

little literature on utilizing the non-stationary time series modeling method with

Bayesian nonparametrics for applications of time series data analysis, despite the

recent extensive use of methods that are not based on any temporal or structural

assumption of the time series data such as deep neural networks.

In this thesis, we present two application studies of the non-stationary time

series modeling method with Bayesian nonparametrics. First, we apply the

Bayesian nonparametric hidden Markov model to a birdsong dataset, and reveal

that distinct syntactic rules are adopted by different groups of birds that have

different tutors. Second, we analyze a set of multiple time series data of driver

behaviors, and show that driver behaviors in future can be predicted by using the

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1361010, August 1, 2016.

i



Bayesian nonparametric Markov-switching vector autoregressive processes with-

out any model selection procedure. These results support the effectiveness of the

non-stationary time series modeling method with Bayesian nonparametrics for

behavior analysis.

Keywords:

Non-stationary time series, hidden Markov model, Bayesian nonparametrics, driv-

ing behavior modeling, bird song modeling.
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ノンパラメトリックベイズ非定常時系列モデリング法

による行動解析 ∗

濱田 龍之介

内容梗概

時系列データは科学・工学の諸分野において盛んに収集・解析が行われてい

る．時系列データの未来の値を予測したり，その中に隠された興味深い構造を明

らかにすることを目的として，多次元非定常時系列モデリング法が広く利用され

ている．

近年ノンパラメトリックベイズ法のめざましい発展により，非定常時系列モデ

リング法においてモデルのもつパラメータ数をデータから自動的に決定すること

が可能になったのみならず，従来法では適切に扱えなかったある種の不均質さを

もつデータセットをも扱える手法が開発されている．しかしながら，深層ニュー

ラルネットワークに代表されるような時系列の時間的・構造的な仮定に基づかな

い手法が頻繁に用いられている一方で，このようなノンパラメトリックベイズ法

を用いた非定常時系列モデリング法による解析を行った研究はあまり見られない．

本論文では，我々の行った非定常時系列モデリングの応用研究の 2例を紹介

する．一つ目は，ノンパラメトリックベイズ隠れマルコフモデルを鳥の歌声デー

タセットに適用し，異なる教師をもつ被験者の 2つのグループがそれぞれ異なる

統語ルールをもっていることを明らかにする．二つ目は，運転行動時系列データ

を解析した研究で，ノンパラメトリックベイズ法を用いることでモデル選択を行

うことなくマルコフ転換ベクトル自己回帰過程により運転行動をモデル化し，未

来の運転行動を予測可能であることを示す．これら 2つの結果から，ノンパラメ

トリックベイズ非定常時系列モデリング法の行動解析における有効性を示す．

キーワード
∗奈良先端科学技術大学院大学情報科学研究科情報科学専攻博士論文, NAIST-IS-DD1361010,

2016年 8月 1日.
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Chapter 1

Introduction

1.1 General Background

Time series data appear in diverse fields of science and engineering. The method-

ology of time series modeling has been developed and applied to finance [1], behav-

ior analysis such as acoustic signal processing [2] etc. Some intrinsic properties of

time series make the analysis of time series difficult compared to those of data that

show no temporal dependency. Such difficulty arises especially when we treat non-

stationary time series [3]. One of the modeling methods of non-stationary time

series is to use an autoregressive integrated moving average (ARIMA) model [4]

which models the temporal difference of the original time series as an autoregres-

sive moving average (ARMA) process. The ARIMA models are commonly used

to analyze the difference-stationary processes that are often appear in financial

time series, but lack the ability to capture sudden changes in a mean or variance

of time series, referred to as a structural break [5].

A promising approach of non-stationary time series modeling is to use the

models that have their internal states or regimes [3]. A hidden Markov model

(HMM) is widely applied to analysis of non-stationary time series, including the

outstanding success in speech signal processing [6]. The vector autoregressive

processes with Markov-switching regimes, also referred to as autoregressive hid-

den Markov models (AR-HMM), have been shown their effectiveness in finance [7]

and behavior analysis [8]. These models are based on symbolizing or segmenting

the non-stationary time series, then considering each symbol or segment to be

1



piecewise stationary.

The main problem of using such non-stationary time series modeling methods

with internal states comes from the model selection, that is, how to determine the

number of states or regimes. The number can be determined according to cer-

tain quantities like the information criterion or estimate of the likelihood. These

quantities, however, are inappropriate for the HMM or AR-HMM to determine

the number, and calculating the quantities tends to require the expensive com-

putational or human cost.

Bayesian nonparametric methodology can provide a solution to the problem

by incorporating stochastic processes with the models. The stochastic processes

enable the models to be arbitrarily complex or have countably infinite number

of model parameters [9]. Bayesian nonparametric extensions of the HMM and

AR-HMM were proposed and can automatically determine the number of states

according to dataset [10,11]. In addition, these models can also consider a certain

class of heterogeneity in inter-state switching probabilities for the dataset that

consists of multiple time series.

In this dissertation we present two studies of behavior analysis. First, we

develop the automatic annotation and clustering method for birdsong data by

using the Bayesian nonparametric HMM, which has no autoregressive processes

in the model. Our method of the automatic annotation is shown to achieve

consistent annotation performance with a human specialist, and the clustering

method identify subjects of birdsong time series without any information on sub-

ject ID or relationship of the subjects. Second, we develop the prediction method

of driving behavior data in real cars by using the Bayesian nonparametric AR-

HMM. Our method of predicting future behaviors is shown to have the better

prediction performance than those based on the methods without any autore-

gressive assumption on observable variables. From these two results we verify the

effectiveness of non-stationary time series modeling methods with Bayesian non-

parametrics for the behavior analysis. The measurements of bird song data and

driving behavior data were performed and provided by collaborators in RIKEN

Brain Science Institute and DENSO CORPORATION, respectively.

2



1.2 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides brief in-

troductions of the hidden Markov model (HMM), autoregressive hidden Markov

model (AR-HMM), Bayesian nonparametric methodology, and Bayesian nonpara-

metric extensions of the HMM and AR-HMM. Chapter 3 describes the analysis

of bird songs and clustering of the birdsong dataset without any prior knowledge.

Chapter 4 describes the analysis of driving behaviors and prediction of the future

driving behaviors. Chapter 5 concludes this dissertation and give discussions of

our works.

3



Chapter 2

Hidden Markov model and

Bayesian nonparametrics

In this chapter, we shortly review a hidden Markov model and its extensions,

Bayesian nonparametric methods, and Bayesian nonparametric extensions of the

hidden Markov model.

2.1 Hidden Markov model

2.1.1 Formulation of hidden Markov model

The hidden Markov model (HMM) is a probabilistic model of time series [6],

which is widely used to model time series data in various applications, e.g., speech

processing [12, 13], genomics [14], and human motion [15]. The HMM mainly

consists of two stochastic components: first is the emission of observable variables

that is characterized by a set of distributions and parameters of them, and second

is a discrete-time stochastic process referred to as a Markov chain [16] that has

finite states associated with the sets of parameters. These stochastic components

enable us to convert time series into a sequence of symbols, that is, the HMM

transforms an observed value of the signal into a certain state at each time point,

according to similarity to representative values of clusters and probabilities of

transitions between the clusters. This symbolization of the signal simplifies time

series that have inherent noise, and results in clustering or recognition of the

4



signals.

At each time point t of time series, the HMM assigns a hidden variable zt

whose value is in {1, 2, . . . , K}. Here the number of states K is a fixed constant.

We say a state is k at time t when zt equals to k. Let the length of the time series

to be T . A sequence of hidden variables [z1, z2, . . . , zT ] is a Markov chain, then

for 1 < t ≤ T

p(zt = l|zt−1 = k) = πkl, k, l = 1, 2, . . . , K, (2.1)∑
l

πkl = 1, k = 1, 2, . . . , K, (2.2)

where π = (πkl) is a K×K transition probability matrix of the states. An initial

state, namely z1, is determined according to the unconditional probability of the

states,

p(z1 = k) = πinit
k , k = 1, 2, . . . , K, (2.3)∑

k

πinit
k = 1, (2.4)

where πinit is aK dimensional vector. If the state is given at time t an observation

vector yt is generated by a certain class of distribution, typically and in our case

a Gaussian distribution. This distribution is associated with the given state for

time 1 ≤ t ≤ T ,

yt | zt = k ∼ N (µk,Σk), k = 1, 2, . . . , K, (2.5)

where N (µk,Σk) denotes a Gaussian distribution with mean and variance of µk

and Σk, respectively. Graphical model of the HMM that omits initial probability

πinit is shown in Fig. 2.1. This formulation of the HMM results in the likelihood

of whole time series y1:T = [y1, . . . ,yT ] and z1:T = [z1, . . . , zT ],

p(z1:T ,y1:T ) = p(z1)p(y1|z1)
T∏
t=2

p(zt|zt−1)p(yt|zt). (2.6)

Direct maximization of the likelihood function is intractable, so instead EM al-

gorithm is often used [17,18].

5



Figure 2.1. Graphical model of HMM. yt, observable variable; zt, hidden state at

time point t; θk = {µk,Σk}, parameters of k-th Gaussian distribution; π, state

transition probabilities.

2.1.2 Estimation of parameters of HMM

Parameters of the HMM are often estimated by using the EM algorithm, which

consists of expectation step (E step) and maximization step (M step) [6, 19].

In E step given the parameters and observations y1:T , posterior probabilities

γ(zt) ≜ p(zt|y1:T ) and joint posterior probabilities ξ(zt−1, zt) ≜ p(zt−1, zt|y1:T )

are efficiently calculated by the forward-backward algorithm [17, 18, 20]. From

the Bayes theorem and the conditional independence of one order Markov chain,

γ is factorized into

γ(zt) = p(zt|y1:T ) =
p(y1:T |zt)p(zt)

p(y1:T )

=
p(y1:t, zt)p(yt+1:T |zt)

p(y1:T )

≜ α(zt)β(zt)

p(y1:T )
. (2.7)

For forward recursion, the α(zt) (t = 2, 3, . . . , T, zt = 1, 2, ..., K) can be recur-

sively calculated from a following relationship

α(zt) = p(yt|zt)
∑

zt−1∈{1,2,...,K}

α(zt−1)p(zt|zt−1), (2.8)

6



where the initial value is obtained by multiplying an initial probability of states

by an emission probability given a state

α(z1) = p(y1, zt) = p(zt)p(y1|zt). (2.9)

For backward recursion, the β(zt) (t = T − 1, T − 2, . . . , 1, zt+1 = 1, 2, ..., K) can

be recursively calculated as follow

β(zt) =
∑

zt+1∈{1,2,...,K}

β(zt+1)p(yt+1|zt+1)p(zt+1|zt), (2.10)

and the initial value is β(zT ) = 1. The ξ(zt−1, zt) can be calculated by using

α(zt−1), β(zt)

ξ(zt−1, zt) =
α(zt−1)p(yt|zt)p(zt|zt−1)β(zt)

p(y1:T )
. (2.11)

In M step the estimation of means and covariance matrices {µk,Σk}Kk=1 are cal-

culated by using the posteriors calculated in E step as follow

µk =

∑
zt=k α(zt)β(zt)yt∑
zt=k α(zt)β(zt)

, (2.12)

Σk =

∑
zt=k α(zt)β(zt)(yt − µk)(yt − µk)

T∑
zt=k α(zt)β(zt)

. (2.13)

Iterative execution of E step and M step continues until the likelihood satisfies a

certain condition, typically such that the value of likelihood ceases to increase.

The number of states K is fixed for the HMM, and determining the number

might be a crucial problem. To determine the number, an information criterion

such as BIC is conventionally used [21]. Another approach is to estimate the

generalization error under a certain K by cross validation [22]. Although these

approaches are commonly adopted, there are some difficulties to use them. First,

it takes relatively long time to train a lot of the HMMs that have different Ks.

Second, we do not certain how much K possibly ranges in advance. Third, the

information criterion is not appropriate to use for singular models such as the

HMM [23].

7



2.1.3 Estimation of most probable sequence

We are sometimes interested in the state sequence itself. Given the observations

y1:T and parameters of the HMM, most probable sequence of states can be es-

timated for the time series. The most probable sequence can be obtained by

maximizing the likelihood of hidden variables z1:T . Its direct calculation needs

the evaluation of the likelihood whose computational cost is proportional to all

possible combinations of states KT .

There exists an efficient algorithm based on dynamic programming to obtain

the most probable sequence, called the Viterbi algorithm [6, 17, 18, 24]. The

computational cost of the Viterbi algorithm is proportional to K2T , which takes

drastically smaller time than the direct computation. The Viterbi algorithm

recursively calculates the joint probability of hidden variable sequence at time t,

δt(k) ≜ max
z1:t−1

p(z1:t−1, zt = k|y1:t)

= max
j

δt−1(j)p(zt = k|zt−1 = j)p(yt|zt = k). (2.14)

At the same time it stores history of the most probable previous state when a

state is k at time t,

at(k) ≜ argmax
j

δt−1(j)p(zt = k|zt−1 = j)p(yt|zt = k). (2.15)

At first the algorithm forward calculates from

δ1(k) = p(z1 = k)p(y1|z1 = k), (2.16)

to δT (k). Next it gets the most probable state at time T by

z∗T = argmax
k

δT (k). (2.17)

Finally it traces back from time T to 1 by using the following relationship,

z∗t−1 = at(z
∗
t ), (2.18)

then finally we get the most probable sequence of hidden states.

8



Figure 2.2. Graphical model of AR-HMM. θk = {Ak,Σk}, VAR parameters of

state k; the rest is the same as in Fig. 2.1.

2.2 Autoregressive hidden Markov model

2.2.1 Formulation of autoregressive hidden Markov model

The autoregressive hidden Markov model (AR-HMM), also known as Markov-

switching vector autoregressions [25], is an extension of the HMM in which ob-

servation vectors y1:T have temporal dependency and are subject to several vector

autoregressive (VAR) processes [6,26,27]. As is for the HMM, the AR-HMM as-

signs a hidden variable zt at each time t and it is subject to a Markov chain with

a finite state set {1, 2, . . . , K}. If we assume the order of VAR processes is 1,

given the state is k the generative process of observation vectors is written as

yt | zt = k ∼ N (Akyt−1,Σk), k = 1, 2, . . . , K, (2.19)

where Ak,Σk are a coefficient matrix and covariance matrix of a Gaussian distri-

bution, respectively (here, we use the same notation for a covariance matrix as in

the HMM). In the AR-HMM the observation vectors are subject to the identical

VAR process as long as the hidden variables take the identical values. Graphical

model of the AR-HMM that omits initial probability πinit is shown in Fig. 2.2.
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2.2.2 Estimation of parameters and most probable state

sequence of AR-HMM

Parameters of the AR-HMM can be estimated by using EM algorithm as well

as the HMM. E step, that is, the calculation of the posteriors p(zt|y1:T ) and

p(zt−1, zt|y1:T ) is the same as the HMM. For M step, the calculation of transition

matrix and initial probability is also the same as the HMM, but some modula-

tions are necessary for VAR parameters [A1, . . . ,AK ,Σ1, . . . ,ΣK ] [18, 26]. The

covariance matrices [Σ1, . . . ,ΣK ] are estimated as

Σk =

∑
zt=k α(zt)β(zt)(yt −Akyt−1)(yt −Akyt−1)

T∑
zt=k α(zt)β(zt)

, (2.20)

then the coefficient matrices [A1, . . . ,AK ] are estimated by solving K weighted

linear regression problems

J(Ak) =
∑
t:zt=k

α(zt)β(zt)(yt −Akyt−1)
TΣ−1

k (yt −Akyt−1), (2.21)

which can be efficiently solved by the Levinson-Durbin method [18]. The number

of states K should be determined also for the AR-HMM, typically by using the

information criterion or cross validation. The most probable state sequence can

be efficiently estimated by using the Viterbi algorithm as well as the HMM.

2.3 Bayesian HMM

The HMM can be extended to the Bayesian modeling by introducing prior distri-

butions of parameters. Posterior distributions of the parameters are calculated

by multiplying the priors to a likelihood function in (2.6). Practically maximum

a posteriori (MAP) parameters that maximize the posterior distributions are ob-

tained as an estimate of parameters of the Bayesian HMM. Direct maximization

is intractable as well as the conventional HMM, so the variational Bayes approx-

imation [28, 29] or MCMC sampling inference [30, 31] are used. The Bayesian

methodology can also be applied to the AR-HMM. In both the Bayesian HMM

and AR-HMM, determining the number of states K is still a dominant problem.
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2.4 Bayesian nonparametric extension of HMM

2.4.1 Bayesian nonparametric methods

Bayesian nonparametric methods have attracted interests of machine learning

researchers in recent years, and give flexibility to the parameter space of statistical

models. The core idea of Bayesian nonparametrics is to tolerate the number of

model parameters being countably infinite by incorporating certain classes of

stochastic processes as priors, in other words, to determine the complexity of

models according to a dataset.

A natural question to the Bayesian nonparametrics would be, why should

we use the stochastic process as a prior, not only the probability distributions?

This necessity comes from the motivation that we set a prior on the probability

distributions or functions themselves. For clustering problem, a Dirichlet process

[32] is often used as a prior on the mixing weights of the mixture model like a

Gaussian mixture model, and the Dirichlet process allow the number of mixture

components to be an arbitrary positive integer [33]. For regression problem, a

Gaussian process provides a prior on a nonlinear function that approximates the

relationship between input and output variables, and the function is estimated

being regularized by the Gaussian process [34]. In both cases the stochastic

processes let the model be infinitely complex (or countably infinite number of the

model parameters) in theory.

In this section we briefly explain a beta process, which is used as a building

block of a Bayesian nonparametric extension of the HMM. For general information

of Bayesian nonparametrics, see [9, 35–37].

2.4.2 Beta process and Bernoulli process

A beta process was originally proposed by Hjort as a prior of a cumulative hazard

rate for survival analysis [38]. Thibaux and Jordan [39] defined a Bernoulli process

as a conjugate process of the beta process, and found that their combinatorial

process, a beta-Bernoulli process, is a de Finetti’s mixing distribution of Indian

buffet process proposed by Griffiths and Ghahramani [40].

The beta process is one of the classes of stochastic processes, called as Lévy
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processes [41], and is completely characterized by its Lévy measure. Let Θ denotes

a parameter space of the model, and θ ∈ Θ a point in the parameter space. Then

a Lévy measure of the beta process on [0, 1]×Θ is defined as,

νBP(dω, dθ) = c ω(1− ω)c−1dωB0(dθ), (2.22)

where c > 0, B0 are a concentration parameter and a base measure that corre-

sponds to a prior distribution of the model parameters, respectively [11,39]. Here

ω ∈ [0, 1] is an abstract random variable, but plays a relevant role in a Bayesian

nonparametric HMM described in the next subsection. We say B ∼ BP(c, B0) is

a beta process that has c and B0 as its parameters.

If B0 is continuous on Θ, the beta process B has a form

B =
∞∑
k=1

ωkδθk , (2.23)

where δθk is a Dirac measure at an atom θk on Θ [42]. Intuitive illustration of B

is an countably infinite set of pillars whose heights are ωk at the positions of θk

on the parameter space Θ.

Let us think an independent series of random variables X1, X2, . . . , XN , each

of them is actually a Bernoulli process. A Lévy measure of the Bernoulli process

Xi ∼ BeP(B) (i = 1, 2, . . . , N) on {0, 1}∞ ×Θ is

νBeP(df, dθ) = δ1(df)B(dθ), (2.24)

where δ1 is a Dirac measure at 1. Then Xi has a form

Xi =
∞∑
k=1

fikδθk , i = 1, 2, . . . , N, (2.25)

where fik ∼ Bern(ωk) is a binary valued variable that takes 1 with probability

0 ≤ ωk ≤ 1 or 0 otherwise.

The important consequence of this formulation is a posterior of beta process

B given X1, X2, . . . , XN ,

B | X1, X2, . . . , XN , B0, c ∼ BP

(
c+N,

c

c+N
B0 +

∞∑
k=1

mk

c+N
δθk

)
, (2.26)

where mk =
∑N

i=1 fik. The base measure of the posterior is a weighted sum of

the base measure of the prior and an empirical measure.
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2.4.3 Beta process hidden Markov model

Formulation of beta process hidden Markov model

The problem of the HMM as mentioned above is that one should fix the number

of the states K before estimating the model parameters, and then determine the

number by comparing the fitness of different Ks according to the information

criterion or performing the cross validation. Incorporating stochastic processes

enable us to avoid this problem by introducing an unfixed dimensional parameter

space in the model.

Bayesian nonparametric approaches imply prior stochastic processes to the

emergence of parameters in a dataset, not only the prior distributions to the pa-

rameters. Fox et al. proposed a Bayesian nonparametric extension of the HMM,

a sticky hierarchical Dirichlet process HMM (HDP-HMM) [43], which use a hi-

erarchical Dirichlet process prior to automatically determine the number of the

states K.

Although the HDP-HMM can avoid the model selection, there remains an-

other problem for modeling a set of time series. The problem arises from a kind

of heterogeneity among multiple time series, that is, when multiple time series

are diverse in terms of transition probabilities between states that appear in the

HMM, it might be appropriate to have a tailored state transition probability

matrix for each single time series, rather have just one matrix for all time series.

The problem of heterogeneity can be solved by considering distinct emer-

gences of states in different time series data. Such formulation of a Bayesian

nonparametric HMM, called a beta process HMM (BP-HMM), was proposed by

Hughes et al. [10]. The BP-HMM not only automatically determines the number

of states, but also consider an emergence of states and a tailored state transition

probability matrix for each time series, in contrast to the HDP-HMM that has

only one transition probability matrix in the model.

Let us consider a set of N time series data [y
(1)
1:T1

,y
(2)
1:T2

, . . . ,y
(N)
1:TN

] each of

which is of length Ti (i = 1, 2, . . . , N). Each time series i is associated with a

Bernoulli process Xi =
∑

k fikδθk that represents an emergence of states in the

time series. If f i ≜ [fi1, fi2, . . . , fik, . . .] has Ki non-zero entries, then time series

i is modeled by the HMM with Ki states. Following a notation in [11], the j-th

13



row of a tailored transition matrix, referred to as a feature-constrained transition

matrix of time series i, can be written as

π
(i)
k | f i, γ, κ ∼ Dir ([γ, . . . , γ, γ + κ, γ, . . . , ]⊙ f i) , (2.27)

where Dir(·) denotes a Dirichlet distribution, ⊙ element-wise product, and γ, κ

are hyperparameters. Here the k-th element of π
(i)
k has a heavier weight than the

other elements, which makes each state sticky to itself.

Now we see the generative process of the BP-HMM

z
(i)
t | z(i)t−1 ∼ π

(i)

z
(i)
t−1

, (2.28)

y
(i)
t | z(i)t ∼ N (µ

z
(i)
t
,Σ

z
(i)
t
). (2.29)

Graphical model of the BP-HMM is shown in Fig. 2.3.

Prior settings and estimation of parameters and most probable state

sequence of BP-HMM

Prior distributions on Gaussian emission parameters, means and covariance ma-

trices {µk,Σk}Kk=1, are set to normal distributions given Σk, and inverse-Wishart

distributions, respectively. Posterior distributions of the emission parameters are

again the normal distributions and inverse-Wishart distributions with different

hyper parameters.

Parameter estimation of the BP-HMM is conducted by using Markov chain

Monte Carlo (MCMC) sampling [10]. To briefly describe, the sampling from the

beta process and Bernoulli process is based on the Metropolis-Hastings proposal,

birth and death proposal, and split-merge moves. Parameters of the Gaussian

distributions and state transition probabilities are sampled from the posterior,

and the most probable state sequences are block sampled by using dynamic pro-

gramming. The hyperparameters for the beta process, α and c, and the Dirichlet

distribution prior, γ and κ, can be also estimated. α is sampled from the poste-

rior. The posteriors of c, γ and κ are not conjugate, so these hyperparameters

are updated by Metropolis-Hastings steps [44].
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Figure 2.3. Graphical model of BP-HMM. y
(i)
t , observable variable; z

(i)
t , hidden

state at time point t in time series i; θk = {µk,Σk}, parameters of k-th Gaussian

distribution; π(i), a set of state transition probabilities π
(i)
k ; f i, emergence of the

states in time series i; κ, γ, hyperparameters; B0, base measure.

2.4.4 Beta process autoregressive hidden Markov model

Formulation of beta process autoregressive hidden Markov model

The AR-HMM can be incorporated with the beta process and Bernoulli processes

in the similar way for the HMM. Fox et al. proposed a beta process AR-HMM

(BP-AR-HMM) [11], as a Bayesian nonparametric extension of the AR-HMM.

The difference from the BP-HMM is that the generative process is the switching

VAR processes

z
(i)
t | z(i)t−1 ∼ π

(i)

z
(i)
t−1

, (2.30)

y
(i)
t | z(i)t ∼ N (A

z
(i)
t
y
(i)
t−1,Σz

(i)
t
). (2.31)

Graphical model of the BP-AR-HMM is shown in Fig. 2.4.
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Figure 2.4. Graphical model of BP-AR-HMM. θk = {Ak,Σk}, VAR parameters

of state k; the rest is the same as in Fig. 2.3.

Prior settings and estimation of parameters and most probable state

sequence of BP-AR-HMM

Prior distributions on dynamic parameters, VAR coefficient matrices and covari-

ance matrices {Ak,Σk}Kk=1, are set to matrix normal distributions given Σk, and

inverse-Wishart distributions, respectively. As is the BP-HMM, posterior distri-

butions of the emission parameters are again the matrix normal distributions and

inverse-Wishart distributions with different hyper parameters.

The parameters are estimated by using the MCMC sampling with birth and

death proposals, without split-merge moves [11]. The VAR parameters and state

transition probabilities are sampled from the posterior, and the most probable

state sequences are block sampled by using dynamic programming. The hyper-

parameter of the beta process c is set to 1. The other hyperparameters, α, γ and

κ are estimated as is for the BP-HMM.
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Chapter 3

Syntactic rule analysis of

birdsong data

3.1 Introduction

Human beings can speak languages, which are syntactically and hierarchically

organized behaviors. In spoken languages, syllables constitute words, and words

further sentences. The order of words provides meaning of sentences with complex

sequencing rule, syntax. The process how neural circuits in the human brain

regulate this syntactic behavior is still unknown and difficult to examine, because

of its high complexity.

A certain kind of oscine, called Bengalese finch (Lonchura striata var. domes-

tica), is known to sing with apparently complex syntactic rules. The Bengalese

finch is one of the most ideal animal model for exploring neural circuits of speech

production [45]. Transition between syllables of the Bengalese finch song is re-

garded as non-deterministic, which is different from deterministic songs of the

zebra finch, White-rumped Munia (an ancestral species of Bengalese finch), etc.

For a study of the complex syntactic rule of Bengalese finches, large scale anal-

ysis is necessary including comparison between syllable sequencings of different

birds. Such large scale analysis, however, needs large amount of manual anno-

tation of the songs, which is impractical or requires high labor costs. Therefore

developing automatic annotation and analysis for the songbird is imperative.

For the annotation of the Bengalese finchs’ songs the HMM was used [46].
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Also, annotation performance of the first-order HMM was comparable to that of

the second order HMM. They individually modeled the song of each subject by

using its individual HMM. The HMMs were trained for the different numbers of

states.

The conventional HMM is not appropriate for comparison of syntactic rules

of different birds. Such comparison of syntactic rules is necessary for a study that

investigate how songs propagate from a father to its children. In addition to this,

the comparison of the songs of an identical subject is also necessary. This is due

to variability in sequencing even within the songs of the identical bird [47, 48].

The conventional HMM does not allow the transition probability matrix to have

variability, so evaluation of the variations in sequencing is difficult.

In order to model multiple time series of diverse songs simultaneously, it is

necessary to utilize a novel method that can share the set of common features

corresponding to sharing of the syllables, and consider variations of syntactic

rules among multiple different condition, e.g. different individuals, development

stages, experimental intervention, etc. In this study, we use the BP-HMM as the

method that can model multiple time series data considering common or different

features across them and automatically determine the number of the features that

corresponds to that of hidden states.

There are two purposes in this study. One is to evaluate the performance of

automatic annotation with the BP-HMM and the other is to assess whether the

BP-HMM can discriminate songs of different birds, and different syntactic rules

of an identical bird in an unsupervised way.

3.2 Birdsong modeling

In this section we first explain the recording condition of Bengalese finches’ songs

and labeling by human experts. Next we introduce the formulation of birdsong

with beta process hidden Markov model (BP-HMM), which can model multiple

bird son time series considering common and different features among them. In

the last of this section, we introduce similarity analysis of the estimated syntactic

rules, or transitional probability matrices, of the bird songs.
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3.2.1 Birdsong time series data

In this study, a part of data from those used in [46] was used1. The data consist

of undirected songs (songs in the absence of a female) of 4 male adult Bengalese

finches (BF1–4). All experimental procedures and housing conditions were ap-

proved by the Animal Care and Use Committee at RIKEN (approval ID: H22-2-

217). BF1 and BF2 learned songs from their father, tutor A, as well as BF3 and

BF4 from tutor B. Their songs were recorded during 24 hours using a microphone

placed in sound attenuation chambers. The recorded songs were separated into

lumps of twittering, referred to as bouts, which are sequences of song elements,

referred to as syllables.

Three acoustic features were extracted for each syllable: syllable duration,

mean pitch, and mean Wiener (spectral) entropy [49]. These features were nor-

malized to have means of zero and variances of one. Thirty bouts for each sub-

ject were randomly picked and used for analysis below. Distributions of acoustic

features fitted by Gaussian mixture model are visualized (Fig. 3.1). Some distri-

butions of syllables are overlapped in the acoustic feature space, and others have

multiple modes.

Three human experts annotated syllables in all bouts of subjects based on

visual inspections on sonogram. These annotations were confirmed by calculating

Fleiss’s κ coefficient [50] from the annotated syllable sequences among different

annotators, and the values fell within the range of “almost perfect agreement”

(0.81− 1.00). Then we use the annotation result by a single expert.

3.2.2 Modeling birdsong with BP-HMM

We modeled the syntactic rules of Bengalese finches’ songs from multiple time

series data of acoustic feature by using one of the Bayesian nonparametric ap-

proaches, a BP-HMM [10,11]. The emission distributions are Gaussian distribu-

tions in this study. Each time series intuitively corresponds to a bout of a subject,

and its state sequence to a series of syllables. We used the code of the BP-HMM

developed by Hughes et al. (available from [51]). With this code, the parame-

1The data were measured and provided by a group of Dr. Kazuo Okanoya in RIKEN Brain

Science Institute, Hirosawa, Wako-shi, Saitama 351-0198, Japan.
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Figure 3.1. Distributions of acoustic features of BF3. The distributions is fitted

by Gaussian mixture model, plotted with a scatter plot of acoustic features. Axes

of a horizontal plane are duration and mean Wiener entropy of a syllable, which

are normalized to have means of zero and variances of one respectively. Each

color of the scatter plot represents a manually annotated syllable a–f.

ters were estimated with Markov chain Monte Carlo (MCMC) sampling method,

utilizing split-merge moves [52] and data-driven reversible jump MCMC [53].

The BP-HMM is applied to 120 time series data (30 bouts for each subject),

and 120 transition matrices of hidden states, and 120 state sequences are obtained.

The sets of Gaussian distribution parameters corresponding to the states are also

estimated, and the number of the states is automatically determined according

to the dataset.

3.2.3 Consistency of estimated syllable sequences with

manual annotation

For the automatic annotation, it is necessary to translate the estimated state

sequences into syllable sequences. Mapping from the set of the BP-HMM’s states

to the set of syllables labeled manually is defined, according to the highest con-

ditional probability of a syllable given a state. These mappings are allowed to be

many-to-one mappings (from a state to a syllable). After translating the state
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Figure 3.2. Examples of relationship between state sequence and time-courses of

the features (a bout of BF1). Horizontal axis represents the index of song elements

in the bout arranged in time order. Vertical dashed red lines are partitions of

similar state transition patterns that occurred periodically. The partitions are

drawn by visual inspection.

sequences to the estimated syllable sequences, the consistency of the sequences

and syllable sequences manually annotated is evaluated by calculating Cohen’s κ

coefficient between them [50].

3.2.4 Calculating similarity between transition matrices

and hierarchical clustering

To evaluate variations of syntactic rules, the similarity measure between two

syllable transition rules are needed. For such evaluation of the syllable transi-

tion probabilities of Bengalese finches, Okanoya and Yamaguchi proposed that

Pearson’s correlation coefficient of syllable transition matrices be calculated after

vectorization [45]. In this study, we calculate Pearson’s correlation coefficients
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between all possible combinations of state transition matrices of the bouts, in

order to examine how state transition probabilities differ within and between in-

dividual subjects. In addition, we conduct the hierarchical clustering analysis

according to these Pearson’s correlation coefficients [54].

3.3 Result

Automatic annotation of syllables

We obtained a state sequence for each bout and 72 sets of Gaussian distribution

parameters corresponding to the states, 120 transition matrices, and 120 state

sequences. In bouts of each subject, 52, 52, 47, and 53 states appeared for BF1,

BF2, BF3, and BF4, respectively. BF1 and BF2 shared 43 states, on the other

hand BF3 and BF4 34 states. Even within the individuals that have different tu-

tors, some states were shared (39, 43, 38 and 41 for BF1-BF3, BF1-BF4, BF2-BF3

and BF2-BF4, respectively). Fig. 3.2 shows an example of relationship between

state sequences and feature’s time-course. Periodical change in the feature spaces

are reflected by the state sequence with high reproducibility.

In order to evaluate the annotation performance, we calculated the consistency

of estimated syllable sequences and human annotation. Cohen’s κ coefficients are

0.8084, 0.7373, 0.8153, and 0.9332 for BF1, BF2, BF3 and BF4, respectively. For

BF1, BF3 and BF4 the values are within the range of “almost perfect agreement

(0.81–1.00)”, and for BF2 “substantial agreement (0.61–0.80)”. This result sug-

gests that the automatic annotations based on BP-HMM are consistent with the

labels annotated by human.

The estimate of Gaussian emission parameters were also consistent with the

actual distributions of acoustic features of syllables (for BF4 in Fig. 3.3). The

Gaussian distributions covered the actual distributions of syllables. Several Gaus-

sian distributions overlapped in the feature space but were distinguished as dif-

ferent states (state 42 and 47 for syllable a; state 13, 21 and 51 for syllable d),

due to distinct transition probabilities.

Some states were shared across different subjects (Fig. 3.4). State 47 (corre-

sponds to syllable a of BF3 and BF4) only appeared in bouts of BF3 and BF4, for

278 and 127 times, respectively. Distributions of acoustic features of individual
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(a) Syllable a (b) Syllable b (c) Syllable c

(d) Syllable d (e) Syllable e (f) Syllable f

(g) Syllable g (h) All syllables

Figure 3.3. 2D histogram of syllables of BF4 in feature space. Each color of the

histogram represents the degree of density. Ellipsoids are contour lines of Gaus-

sian distributions corresponding to each syllable (standard deviation multiplied

by 2). The value of the features were normalized.
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(a) BF3 (b) BF4 (c) Both BF3 and BF4

Figure 3.4. 2D histogram of state 47 of BF3 and BF4 in feature space. Color and

ellipsoids are the same as in Fig. 3.3.

subjects were apparently similar. BP-HMM unwrapped the sharing of syllables

among the different birds.

Clustering analysis of bouts

Correlations within individual subjects are higher than those between subjects

(Fig. 3.5). Histograms of the correlation of transition matrices within subjects

are shown in Fig. 3.6. Individual correlation coefficients of BF1 and BF2 were

significantly low in comparison with those of BF3 and BF4 (one-sided Wilcoxon

rank sum test; p = 6.5983e-22). The difference of the correlation suggests that the

magnitudes of variation in sequencing is inherited from a tutor to some extent.

In addition, the histogram of BF3 and BF4 have multiple modes.

Subsequently, we then conducted hierarchical clustering of all state transition

matrices by using correlation coefficients of them (Fig. 3.7). As a result, the

bouts from BF1 and BF2 can be perfectly separated from those from BF3 and

BF4. In other words, correlations calculated between BF1 and BF2 in Fig. 3.8

are significantly higher than those calculated between a learner of tutor A and

a learner of tutor B (one-sided Wilcoxon rank sum test; p = 1.7401e-24). In

addition, the bouts from different individual subjects can be almost clearly dis-

criminated from each other. These results insist that different sequencing rule of

states is employed by each subject, although subjects share some states.

Some similar transition matrices seem to form subclusters within individuals,
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Figure 3.5. Correlation matrix calculated between bouts. Bout indices are ar-

ranged to line up from bouts of BF1 to those of BF4, downward or left to right.

Each color represents the magnitude of correlation coefficient. Negative compo-

nents of smaller magnitude than 0.1 are taken absolute values for visualization.

that is, the bouts in SC1 and SC2 within BF4 (Fig. 3.9). The entropy of transition

probabilities from syllable a, which were calculated from human annotations, were

significantly larger for SC2 than for SC1 (one-sided Wilcoxon rank sum test;

p = 0.0473 < 0.05, effect size (Pearson’s correlation) r = 0.3284). This indicates

that the hierarchical clustering analysis based on the BP-HMM disclosed distinct

syntactic rules of songs within an identical birds.

3.4 Discussion

Estimated syllable sequences were almost perfect agreement (0.81–1.00) with

manually annotated labels for three subjects out of four. This insist that the

BP-HMM can estimate sequencings of multiple birds simultaneously, even if the

sequencings are not homogeneous.

Songs of different subjects could be discriminated and the bouts of a subject

had subclusters in terms of transition probabilities. Such variability in sequencing

of an identical bird can also arise from social context [47], LMAN lesions [55], and

differential reinforcement [48]. The clustering based on the BP-HMM can promote

the study of such variability in sequencing. The quantitative analysis scheme for

birdsong also enables us to evaluate syntactic rules of bouts in heterogeneous
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Figure 3.6. Comparison of distributions of correlation coefficients calculated from

transition matrices within individual subjects. Each blue circle and error bar

represent the mean and ±1 standard deviations of correlations.

conditions, e.g., different development stages of an identical bird.

Magnitudes of the similarity among the bouts of identical subjects varied ac-

cording to subjects’ tutors. This suggests that the difference of tutors modulates

the magnitudes of variations in syllable sequencing.

3.5 Conclusion

We modeled songs of four Bengalese finches by using a beta process hidden

Markov model that allows each time series data to have its own transition ma-

trix. Our result of automatic annotation was within the range of almost perfect

agreement (0.81–1.00) for three subjects out of four. As a result of analysis on

transition matrices, it was shown that the BP-HMM can capture the larger sim-

ilarity of transition matrices within individuals than those among the subjects.

In addition, the BP-HMM discovered subclusters within the songs of an individ-

ual subject. These results are promising, especially considering to deal with the

diversity of bird songs.
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Figure 3.7. Result of hierarchical clustering based on the correlation coefficient.
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Figure 3.8. Comparison of distributions of correlation coefficients calculated from

transition matrices between different subjects. Upper figure is a histogram of

correlation coefficients calculated between BF1 and BF2, middle between BF3

and BF4, and lower between subjects that have different tutors. Each blue circle

and error bar represent the mean and ±1 standard deviations of correlations.
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Figure 3.9. Reordered correlation matrix. The indices of correlation matrix in

Fig. 3.5 was reordered according to the result of hierarchical clustering.
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Chapter 4

Analysis and prediction of

driving behavior

4.1 Introduction

Recent advanced driver assistance systems (ADASs) such as automatic brak-

ing systems [56, 57], adaptive cruise control or lane-keeping systems [58–60] and

pedestrian protection [61–63] have reduced the number of traffic accidents [64].

These systems detect a dangerous condition and warn the driver of the condition.

This means that the driver falls into the dangerous condition once, which should

be avoided in advance.

To prevent a car from a dangerous condition, the future movement of the car

must be estimated, which results in the prediction of driving behaviors since the

car is operated by a driver (Fig. 4.1). Some systems have successfully predicted

Figure 4.1. Typical application of driver assistance system.
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specific behaviors, for example, braking behaviors [65], “approaching a traffic

light” behaviors [66], lane departure behaviors [67], and behaviors at intersections

[68,69]. Although they successfully predict specific behaviors in a short time scale,

few systems have achieved to predict general behaviors in a longer time scale.

To treat general behaviors, a prediction system must divide a sequence of

behaviors into segments and extract sequences of segments. Taniguchi et al. [70]

formulated this problem as a two-level structure and solved it based on an anal-

ogy with language (letters/words) by a nonparametric Bayesian method called

the nested Pitman-Yor language model (NPYLM) [71]. They modeled driving be-

haviors by the NPYLM and predicted sequences of segments that corresponded

to more than eight seconds. However, they predicted only symbolized behav-

iors, not driving behaviors themselves, that are necessary to predict the future

movement of the car.

Inspired by the success of the NPYLM in predicting driving behaviors, in this

chapter, we proposed to apply a nonparametric Bayesian method with dynamical

systems to predicting driving behaviors, not the sequence of symbols. Driving

behaviors are well modeled by a set of linear dynamical systems called a hybrid

dynamical system (HDS), wherein the dynamics switches from one to another

[72,73]. The HDSs have some variants depending on the switching method and the

dynamical systems therein such as the Markov dynamic model [73], the switching

linear dynamical systems [74] and the autoregressive hidden Markov model (AR-

HMM) [8]. In this study, the AR-HMM was employed because it is a simplest

model to express dynamics although more complicated models were employed in

the literature [75, 76]. The AR-HMM must determine the number of AR models

(the number of kinds of behaviors in driving) in advance. To avoid this difficulty,

we incorporated the nonparametric Bayesian technique into the AR-HMM, which

was proposed as the beta process autoregressive hidden Markov model (BP-AR-

HMM) [11].

The BP-AR-HMM divides a sequence of behaviors into segments (called driv-

ing letters in [70]) in an unsupervised way and assigns an AR dynamical system

to each segment. When given a sequence, the BP-AR-HMM is trained by alterna-

tively carrying out the segmentation of the sequence according to the estimated

dynamical systems and the identification of the dynamical system in each seg-
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ment. After trained, the BP-AR-HMM predicts a sequence of segments (driving

letters) using the state transition probability of the HMM and then predicts the

behaviors using the AR model in each segment.

In the following, we show the soundness of the BP-AR-HMM for prediction

of driving behaviors using the real driving data.
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Figure 4.2. A typical example of BP-AR-HMM applied to driving behaviors.

4.2 Materials and Methods

4.2.1 Generative model

We used the BP-AR-HMM to model driving behaviors [11]. The behavior vector

y
(i)
t at time t that consists of the accelerator opening rate, the brake pressure and

the steering angle is expressed as

y
(i)
t = Azty

(i)
t−1 + εt, (4.1)

where zt and εt are the hidden state and the Gaussian noise at time t, respectively.

The BP-AR-HMM assigns a hidden state (VAR model) in the same way as the

AR-HMM. Differently from the AR-HMM, the BP-AR-HMM makes a new state

not assigned so far in a certain probability according to a beta process. Thus, the

beta process generates a prior probability of emergence ωk of state k [11]. The AR

coefficients of the AR process are also chosen according to the base measure B0.

This model can produce an infinite number of states in principle and determines

the total number of states according to the intrinsic complexity of given data

(Fig. 4.2).
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4.2.2 Training and prediction

When sequences of behaviors were given, the unknown variables are the state

(AR model) at each time step and the AR coefficients of the AR model. To

estimate them from the given sequence, the BP-AR-HMM assigns a state to each

time step using the current criterion for assignment and updates the estimates

of the AR coefficients in the states and the state transition probability using the

assigned data, and iterates this procedure until the estimates satisfy a certain

condition [11].

The BP-AR-HMM code in [77] was used in our experiments, where the pa-

rameters were estimated using a Markov chain Monte Carlo (MCMC) sampling

with a sum-product algorithm [78] and reversible jump MCMC [79]. Their hyper-

parameters, γ and κ, were assumed to have gamma-distribution priors and the

other parameters were set as follows: The order of the VAR processes, one;

the prior distribution of observation noises, Gaussian with mean zero where the

variance was the covariance of the observed data multiplied by 0.75. In the ex-

periments for Dataset 2 (See the next subsection), the parameters were estimated

using the Viterbi algorithm [6] according to the past driving behaviors to reduce

the computational complexity.

The BP-AR-HMM can predict how the states and the behaviors change in

the future. First, the trained BP-AR-HMM made a sequence of states according

to the estimated state transition probability. Since each state expressed a VAR

process, behaviors in the future were predicted using the VAR process of the state

at each time point.

For the prediction of the state sequences, we took two different methods. The

first method chose the most probable state as the predicted state (Fig. 4.3(a)).

This method is easy to implement with less computational complexity. The

second method predicted the states successively using the Viterbi algorithm with

the state transition probability, the AR coefficients, and a batch of past behaviors

(Fig. 4.3(b)). This prediction method corresponds to the Bayesian inference but

requires high computational complexity.
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(a) Naive prediction

(b) Prediction with Viterbi

Figure 4.3. Overview of state sequence prediction.

Figure 4.4. Courses 1 and 2 of a short track experiment. Subject was instructed

to drive car clockwise along course 1, and counterclockwise along course 2.

4.2.3 Driving behavior datasets

We used two datasets1. Dataset 1 was the same dataset as Driving Data in

Factory Course in [70], where one participant drove our experimental car along

two courses in a factory five laps for each (Fig. 4.4). Dataset 2 was the same

dataset as Driving Data on Public Road also in [70], where one participant drove

our experimental car along a course in a public road in Japan for nine roundtrips

(Fig. 15 in [70]). The eighteen runs took 42.9 minutes on average with standard

deviation 6.6 minutes. During the experiments, the accelerator opening rate,

1The two datasets were measured and provided by DENSO CORPORATION in 1-1 Showa-

cho, Kariya-shi, Aichi 448-8661, Japan.
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the brake pressure, the steering angle, and the speed of the car were measured

through control area network (CAN) at a sampling rate of 10 Hz.

4.2.4 Evaluation

We compared the prediction performance of our model, the BP-AR-HMM, with

the simple HMM, the sticky hierarchical Dirichlet process HMMs (HDP-HMMs),

the AR-HMM and the HDP-AR-HMM to see the effectiveness of introducing AR

models and beta processes. The evaluation was done in two ways using the five-

fold (Dataset 1) or nine-fold (Dataset 2) cross validation method. The one is the

sequence of states as in [70] and the other is the accuracy of the behaviors, that

is, the accelerator opening rate, the brake pressure and the steering angle. The

former calculated the ratio of the correspondence between the prediction in the

cross validation and the true state determined by using all the data. The latter

calculated the mean absolute error (MAE) between the measured and predicted

driving behaviors.
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4.3 Results

4.3.1 State sequence prediction

4.3.1.1 Dataset 1

Given the whole data with Courses 1 and 2 in Dataset 1, the BP-AR-HMM

produced seven states (AR models) and assigned one of them to each time point

(Fig. 4.5). Although several disturbances occurred such as a pedestrian crossing

a road and another vehicle in front of the experimental car, the assignment of the

states was consistent and 76.9% of the states at the same position were coincident

in three or more laps among five (Fig. 4.6). Moreover, the same state sequence

frequently appeared in the same situations. For example, when the driver turned

left, the sequence of states, 3-7-1, appeared in Course 2, which was analyzed

hereafter.

To evaluate the prediction ability of our model, the BP-AR-HMM predicted

the state sequence of a lap in the cross validation procedure. The number of

states were determined to be eight on median across folds of the cross validation.

The model trained with the rest correctly predicted the state sequence of a lap

for 23.4 time points (2.34 seconds) on average (Fig. 4.7).

4.3.1.2 Dataset 2

Given the whole data (nine go-runs and nine return-runs) in Dataset 2, the BP-

AR-HMM produced eight states (AR models) and assigned one of them to each

time point (Fig. 4.8). Here, we concentrated the driving behaviors on the left-

turns at an intersection because the driving behaviors in other situations widely

diverged. For example, the driver changed the lane in some runs and did not in

others.

For Dataset 2, the state sequences are not consistent as the case for Dataset 1.

However, they seem to be classified into four classes (Fig. 4.8, leftmost) and the

class depends on the vehicle’s speed of the car. Note that the state sequences were

estimated using the Viterbi algorithm because the estimation of driving states is

not so easy task compared with a short track case.
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(a) Course 1

(b) Course 2

Figure 4.5. Determined state sequences with our model for Dataset 1. The five

laps are shown.
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Figure 4.6. Correspondence rate of the assigned states in five laps.

4.3.2 Behavior prediction

4.3.2.1 Dataset 1

Using the predicted states and the corresponding AR models, the BP-AR-HMM

predicted the behaviors of the driver (the brake pressure and the steering angle)

during left-turn corners in Course 2 in Dataset (Fig. 4.5), where the initial state

was set to State 3 since the sequence of states, 3-7-1, frequently appeared in

left-turn corners.

The BP-AR-HMM had a smaller mean absolute error (MAE) in the brake

pressure than the other models but did not have a significantly smaller MAE in

the steering angle (Fig. 4.9), where the accelerator opening rates were omitted

because they almost always took the value of 0% during the corners. Here, the

numbers of states of HMM and AR-HMM were selected so that their MAEs took

minimum among the different numbers of states. This means that nonparametric

Bayesian methods were comparable in performance without model selection. This

is because the BP-AR-HMM predicted the sudden decrease in brake pressures in

four laps in the five although it did not predict the gradual increase in steering

angles except for one lap (Fig. 4.10). Note that the HMM without AR models

could not predict any of the above.
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Figure 4.7. Histogram of lengths the sequence prediction methods could predict.

4.3.2.2 Dataset 2

Since the driving behaviors were strongly affected by the vehicle’s speed, we

included the vehicle’s speed to the state variables, that is, each state consisted

of the accelerator opening rate, the brake pressure, the steering angle and the

vehicle’s speed. The number of states were determined by BP-AR-HMM to be ten

on median across folds of the cross validation, which was not so larger compared

to Dataset 1. The HMM with AR models, i.e., AR-HMM, HDP-AR-HMM and

BP- AR-HMM, had smaller MAE in predicting the vehicle’s speed but they didn’t

have significant difference in the driving behaviors (Fig. 4.11). The numbers of

states of HMM and AR-HMM were selected as were in Dataset 1.
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Figure 4.8. Determined state sequences with our model. The nine return-runs

are shown.

4.4 Discussion

In our experiments using real driving data, the BP-AR-HMM successfully pre-

dicted not only states but also driving behaviors themselves for Dataset 1.

The duration time successfully predicted was shorter than the double articu-

lation analyzer [70] (Fig. 4.7). This is because the BP-AR-HMM did not treat

the states as sequences explicitly as the language model does [70, 71]. Introduc-

tion of such hierarchical dependency in state sequences will enables us to predict

more complex driving behaviors. Nonetheless, it could predict the sequences of

states by virtue of the dynamics (AR model) in each state and this implies the

soundness of introducing AR models to HMM models.
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Figure 4.9. MAEs of the models for brake pressures (left) and steering angles

(right). Wilcoxon rank-sum test, Bonferroni corrected, p ≤ 0.05.

The prediction accuracies of the modeling methods for driving behaviors were

compared in terms of MAE and the BP-AR-HMM outperformed the other models

that do not have dynamics such as the HMM and the HDP-HMM (Fig. 4.9). In

addition, the BP-AR-HMM showed a little smaller MAE than the AR-HMM and

the HDP-AR-HMM that include AR models. The HDP-AR-HMM is a nonpara-

metric Bayesian method of the AR-HMM as the BP-AR-HMM. One property of

the HDP-AR-HMM is to share a state transition probability among sequences [27]

although the BP-AR HMM assigns a different one to each state. This may be

the reason why the BP-AR-HMM would work better since the driving behaviors

were not homogeneous but heterogeneous due to the variety of road conditions.

For Dataset 2, however, the models had comparable MAE (Fig. 4.11). This

may be because the driving behaviors at intersections are not the same (Fig. 4.8).

Although we succeeded to predict the vehicle’s speed by adding the speed to the

measurement, we need to study more to improve the behavior prediction.
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(a) Brake pressures, BP-AR-HMM. (b) Steering angle, BP-AR-HMM.

(c) Brake pressures, HMM. (d) Steering angle, HMM.

Figure 4.10. Predicted and actual behaviors by the BP-AR-HMM and the HMM.

x’s, measured; lines, predicted; the same color shows the same run.
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Figure 4.11. MAEs of the models for the accelerator opening rate (upper right),

the brake pressure (upper right), the steering angles (lower left) and the vehicle’s

speed (lower right). Wilcoxon rank-sum test, Bonferroni corrected, p ≤ 0.05.

4.5 Conclusion

We showed the BP-AR-HMM successfully predicted the driving behaviors. The

BP-AR-HMM automatically segmented the past driving behaviors into discrete

states each of which corresponded to an autoregressive dynamical model and

predicted the state sequences as well as the driving behaviors better in our ex-

periments. Although the BP-AR-HMM fails to predict in some cases, the AR

models are found to be effective to predict the driving behaviors that might be

useful for a new type of advanced driver assistance systems that predict dangerous

conditions in advance.

43



Chapter 5

Conclusion

5.1 Summary

This dissertation verify the effectiveness of non-stationary time series modeling

methods with Bayesian nonparametrics for the analysis of behavior data. First,

we developed the automatic annotation and clustering method for birdsong data

by using the Bayesian nonparametric HMM. Our method could archive consistent

annotation with human annotators, and identify the subjects of bird song data

without any information of the subject ID or tutor-learner relationships of the

subjects. Second, we developed the prediction method of driving behaviors by

using Bayesian nonparametric AR-HMM, and showed that our method predicted

the driving behaviors better than the other methods without any model selec-

tion procedure. These results insist that the non-stationary time series modeling

methods with Bayesian nonparametrics are promising to analyze the behavior

time series dataset.

5.2 Discussions and Future work

The automatic annotation and clustering of birdsong data can encourage the

research of evolution or developmental process of birdsong. The comparison of

songs of the Bengalese finch and its ancestral species is important to reveal how

the Bengalese finches evolutionary acquire their songs, but difficult to conduct
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with conventional HMMs because the single HMM has a single state transition

probability matrix. Our modeling method of birdsong makes it possible to com-

pare different transition matrices of different subjects. Such comparison study

will give insight into the evolutionary acquisition of complex grammar. On the

other hand the comparison of songs of an identical subject but in different de-

velopmental stages is important for the study of song learning. Our modeling

method of birdsong enable us to investigate whether there are some differences

between two bouts, and it is possible to see how the song and its syntactic rule

change as the subject grows and learns his song. The developmental process of

birdsong is reported to have similarity to that of human speech [80], so analyz-

ing the developmental process of birdsong could be useful also for understanding

language acquisition of human.

The prediction of driving behaviors has an impact on the development of au-

tomatic driving and driver assistance systems. The automatic driving systems

have been developed and already realized for some driving environments such as

in highways by many researchers and automobile manufacturers. Although the

success in rather simple situations, the automatic driving in urban situations is

still difficult because a lot of cars and vulnerable road users such as pedestrians

and cyclists interact and their behaviors are not easily predicted with conven-

tional methods. To develop more practical automatic driving systems in complex

driving situations, more driving behavior data should be collected and analyzed.

Our modeling method of driving behaviors enables us to segment time series

data to obtain collections of complex driving situations, in which the state se-

quences typically have more transitions than in simple situations, then it results

in collecting amount of data in complex driving situations that rarely occur such

as accidents. The driver assistance systems will also benefit from our modeling

method, because if the driving behaviors can be predicted the driver assistance

systems can instruct a driver to avoid dangerous situations, or compensate for the

control of a car to keep the car more stable. Modeling and analyzing professional

drivers’ behaviors will give us some useful knowledge to educate novice drivers.

Some model selection methodology can be used as alternatives to Bayesian

nonparametrics. As pointed out above, information criteria like AIC and BIC

cannot be applicable to singular models such as the HMM and AR-HMM. On
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the other hand, information criteria that are adopted to the singular models, e.g.,

WAIC, WBIC [81], FIC [82], can be applied. These methods need to compare

the quantity calculated from different number of states but are still interesting

approaches in theory and practice.

For our future work, it is necessary to modify and extend the non-stationary

time series modeling method with Bayesian nonparametrics to harness prior

knowledge of datasets. If we know some information of time series data, for exam-

ple in our cases the course ID or subject ID, these information can be exploited to

associate some time series with each other. Hierarchical beta processes [39] can be

used to tie up multiple time series and introduce the grouping of them. Such semi-

supervised extension of the modeling method make an explicit assumption of the

hierarchical structure of time series dataset, and facilitate sharing or non-sharing

of states among multiple time series. Modification of syllables in birdsong should

be considered in the hierarchy for the birdsong dataset. Songbirds learn their

songs and inherit syllables by their tutors, but modify their acoustic structures

to some extent [83]. Explicitly modeling of the modification of syllables permits

the errors by inheritance and can enhance the sharing of syllables between a tutor

and his learners.
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