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Understanding Human Factors and Social
Aspects in Modern Code Review∗

Xin Yang

Abstract

Code reviewing is an important quality assurance mechanism that helps soft-
ware development teams improve the quality of software products during the de-
velopment cycle. Due to the distributed collaborations in Open Source Software
(OSS) developments, modern code review techniques conducted in OSS projects
differ from the traditional code review that based on formal inspection meetings.
The effectiveness of code reviews is heavily relied on human involvement and
social interactions between developers. However, only a few studies have been
performed from the human and social aspect.

In this dissertation, we use multiply research methodologies to research on the
human and social aspects of modern code review in OSS projects. There exist
three main steps. First, we examine the review processes of OSS projects and
retrieve review histories from five large and successful OSS projects. We estab-
lish a method to obtain code review data from Gerrit, a widely used code review
tool. Second, we investigate review processes from the communications and in-
teractions among code review participants. We analyze the social relationship
between patch authors and reviewers by conducting social networks from the
data we retrieved. The results indicate that the social network structure of code
review participants corresponds with their activeness and expertise. Moreover, it
can help practitioners to assign review work and recommend reviewers. Three,
since code review process is a social structure, but little is known about how
reviewers treat patches and whether their treatments are fair. Hence, we study
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fairness in the context of the code review process. Furthermore, we investigated
the behaviors of reviewers that might lead to unfair code review practices. We
further perform an online survey on the developers of OpenStack project about
the perception of fairness in code review process. Our results shed light on the
existence of fairness issue in the code review process, and practitioners should
consider review fairness when they design or improve code review processes.

The primary contribution of this work is understanding modern code review
from social aspects. We find that: (1) social structure of code review community
is essential to evaluate the performance of developers. (2) reviewers’ behaviors
strongly affect the review process and outcomes. (3) Fairness issues exist in code
review process and should not be ignored.
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Chapter 1.

Introduction

1.1. Overview

Software peer review (or peer review) refers to the code inspections by develop-
ers, rather than the authors themselves. It can be regarded as one of the most
important activities to guarantee the quality of software products [7,8]. Software
projects adopt code review for two principal reasons: reducing defects and sav-
ing development cost. The traditional code review (a.k.a code inspection) was
established 30 years ago. Code inspection requires experienced reviewers meet
and discuss the source code written by other developers [26, 27]. Code review
is a process of evaluating a software contribution (e.g., a patch)through manual
inspections and peer discussion. Rigby and Bird found that the most significant
content of the code review process is performed by human (i.e., reviewers) [60].
Moreover, Code review is not only an indicator of the quality of source code but
also signifies a healthy organization. Stable and growing development commu-
nities always hope the experienced developers could share their knowledge with
new members [60].

Recently, the code review process of Open Source Software (OSS) varies from
the traditional industrial setting. One main reason is most OSS projects are ge-
ographically distributed, whereas traditional industry projects take the form of
gathering developers in the same room. The OSS code review applies a broad-
casting method to announce code review tasks and locate appropriate review-
ers. Differ with sending mailing list for review candidates, more and more OSS
projects adopt modern, light-weight, traceable tools to manage code review pro-
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cess. Modern code review process is quite different with traditional code inspec-
tion or mailing list code review. Furthermore, the effectiveness of code reviews is
heavily relied on human involvement and social interactions among developers.
However, we find that only a few of studies have focused on modern code review
especially from social perspective.

In this dissertation, we use a multi-case study methodology to research the hu-
man and social aspects of modern code review in OSS projects. Our methodology
includes three main steps:

First, we examine the review processes and retrieve review histories from OSS
projects that adopt modern code review techniques. We establish a complete
method to obtain code review related histories from project source code repos-
itories and code review repositories. We show how the dataset can be utilized
to study code review from three aspects: people, process, and product-related
aspects of code review.

Second, we investigate review processes from the communications and interac-
tions among code review participants. To understand how code review contrib-
utors work and communicate together, we need to investigate the structure of
code review community. In this part, we present PeRSoN, which is a construc-
tion of social networks from peer review activities, which is based on our previous
work [85] [84]. The results indicate that the social network structure of code re-
view participants corresponds with their activeness and expertise. Moreover, it
can help practitioners to assign review work and recommend reviewers.

Three, since code review process is a social structure, but little is known about
how reviewers treat patches and whether their treatments are fair. Hence, we
study fairness in the context of the code review process. Furthermore, we investi-
gated the behaviors of reviewers that might lead to unfair code review practices.
We further perform an online survey on the developers of OpenStack project
about the perception of fairness in code review process. Our results shed light on
the existence of fairness issue in the code review process, and practitioners should
consider review fairness when they design or improve code review processes.

The primary contribution of this work is understanding modern code review
from human factors and social aspects. We find that:

• we provide a dataset that could help researchers to perform in-depth study

2



regarding modern code review process.

The dataset includes five successful, big-scale, industry leading OSS projects,
and with a total amount of 370,296 patches, 11,058 review contributors, and
5,531,212 review comments.

• We identified the most important contributor roles in modern code review
and how to use social network to evaluate developers’ performance.

We found the most active verifiers have significant more centrality measures
than all the other contributors group. Moreover, we found strong correla-
tions between activities and centrality measures in most active verifiers
group.

• We investigated that unfairness cases exists in a fairness-perceived system
such as OpenStack. And we found human is the most important factor to
perceive unfairness in code review process.

From our survey responses and open-coding results, we found that: (1) Most
patch authors (85%) perceive fairness, while 15% of them perceive unfair-
ness. Patch authors perceive unfairness maily from: Delay and neglect,
Favoritism, Nitpicky, and Newcomers. (2) Most of the reviewers (97%) per-
ceive they are fair when they perform code reviews. Patch reviewers mainly
perceive unfairness of themselves from: Who is the patch author, misun-
derstanding, and Nitpicky. (3) Most of the developers (86%) perceive the
entire OpenStack code review process is fair. Developers mainly perceive
unfairness from: Newcomers, Core bias, Projects, etc.

1.2. Outline of Dissertation

We organize the dissertation to make sure that each research stage has a inde-
pendent section for the literature, research questions, methodology and outcomes.
The final discussion chapter ties together the three stages and our findings into
a summary of modern code review. This thesis is organized as follows.

3



1.2.1. Review Process and Data Mining Chap. 3

Objective: What are the review processes used by modern code review? How
can we retrieve the review data history and source code from these projects?

Literature: We examine the related data mining studies and techniques in
code review process.

Methodology: We investigate the basic process of modern code review using
Gerrit code review tool from five big-scale and success OSS projects.

Outcome: We present our data in an easy–to–use relational database, thus
making it easy for researchers to import into their tools and techniques. We also
provide the scripts and procedures to obtain source code revisions in code review
histories.

1.2.2. Peer Review Social Network (PeRSoN) Chap. 4

Research question: Which contributor role is the most important in the peer
review community (RQa-1), what is the relationship between contributors’ activ-
ities and their network position (RQa-2).

Literature: We examine the empirical studies of code review process and the
social network research from graph theory.

Methodology: We categorize contributors into different role groups based
on their authorities, and we define the review activity as any contribution in
the review process. We use the PeRSoN to measure the performance of each
individual in review networks and statistical analysis to evaluate it.

Outcome: We applied PeRSoN to three large-scale OSS projects: Android
Open Source Project (AOSP), Qt and OpenStack by case study. The results
of analysis addressed our research questions and gave hints about the relation-
ships among OSS peer review contributor roles, their activities and their network
structure.

1.2.3. Review Fairness Chap. 5

Research question: What is the perception of fairness of developers in code
review (RQb-1), what is fairness in code review process (RQb-2), how do reviewers

4



prioritize code reviews and how do prioritization strategies reflect review fairness
(RQb-3), what does the data tell us about the practical review fairness (RQb-4).

Literature: We examine the empirical studies of code review in human factors
and social aspect. To establish fairness theory in code review process, we perform
literature survey for the concept of fairness.

Methodology: We categorize contributors into different role groups based
on their authorities, and we define the review activity as any contribution in
the review process. We use the PeRSoN to measure the performance of each
individual in review networks and statistical analysis to evaluate it.

Outcome: we first performed a literature survey to formulate the fairness
concept for the code review context. Then, we performed an online survey with
OSS developers to better understand how do they prioritize a patch to examine,
and how they perceive fairness in code review process. We also applied a queuing
system to measure the degree of prioritization and performed quantitative analysis
to investigate the impact that prioritization practices have on the reviewing time.
Finally, we use statistical analysis to compare the practical fairness and perceived
fairness.

1.2.4. Conclusion Chap. 6

The primary contribution of this work is understanding modern code review from
human factors and social aspects. (1) Social structure of code review community
is essential to evaluate the performance of developers. (2) Reviewers’ behaviors
strongly affect the review process and outcomes. (3) Fairness issues exist in code
review process and should not be ignored.

Our findings identify that modern code review methods and techniques changed
with the work flow of development life cycle. Findings also present that human
factor significantly influences code review process and outcomes such as behav-
iors. Furthermore, we find interactions among developers such as treatments to
patch contribution affect the perceptions of people and it influences the fairness
perceptions.
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Chapter 2.

Background and Theory

This section presents the background and existing research which related to this
study. Section 2.1 introduces the background of code review. Section 2.2 in-
troduces the background and related work about modern code review in OSS.
Section 2.3 introduces social network analysis (SNA) and the measures applied
in this study.

2.1. Code Review

Code review comes from traditional industrial code inspections [57, 65, 76, 82].
The traditional code review (a.k.a code inspection) was established 30 years ago.
Industry projects perform code inspections in a form of formal inspection meet-
ings. Code inspection requires experienced reviewers meet and discuss the source
code written by other developers. In the meeting, developers evaluate software
contributions (e.g., patches) through manual inspections and peer discussion. An
inspection meeting is not as simple, it cost time, money, and human efforts. To
prepare an inspection meeting, project/team leaders need to set up a plan, de-
cide the inspection scope, arrange meeting rooms, even consult the available time
with every participants. Since developers’ schedules are always tight, performing
inspection meetings are actually difficult in practices.

6



2.2. Modern Code Review in OSS

In the past, OSS development has been regarded as unstructured and disordered
when compared to industry software development. Eric S. Raymond referred to
the different structures and processes of industry software and open source soft-
ware as Cathedral and Bazaar [59]. With the rise of OSS projects in the past
decade, more research has been performed and more supportive tools have been
introduced and developed in OSS developments (such as version control systems
and bug tracking systems) [64, 68]. The development of these supportive tools
have been successfully adopted and developed even by industry software devel-
opment organizations.

Peer review (code review) in OSS projects can be regarded as an important
and necessary component in OSS development process to find defects in software
projects [31]. Some study of OSS code review have been done in recent years [70,
74]. Rigby et al. examined Apache Server Project for two techniques and created
some metrics similar to traditional inspection experiments in order to find an
efficient and effective OSS review technique [62]. Rigby et al. also have studied
the broadcast nature of OSS code review, which is total different with traditional
method [63]. Balachandran suggested use review bot to reduce human effort
and improve review quality [12]. In the past, OSS contributors mainly used
e-mail to communicate to send patch review requests and responses about their
review results. But in modern OSS projects, code review tools have been put into
development regularly [11]. Researchers also study the pull-request based code
review in OSS projects [33,80] Based on code review tools, contributors can easily
see whether their source code in new patches have been reviewed. In addition,
project managers can manage and control the whole review process easily.

Gerrit is a web-based code review system which is mainly used by software
projects using Git∗ as version control system. It can make the review process
easier to observe all the changes and also be able to add inline comments. Gerrit
system can manage all the patchset (changes) which developers expect to merge
into the software code repository. Each patchset should be reviewed by more

∗http://git-scm.com/
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Figure 2.1.: An Example of OSS Review Process

than one experienced reviewers before accepting its integration. Below are some
important terms used throughout this study.

• Contributor.

A contributor represents a participant who take part in the code review
process.

• Contribution Activity.

A contribution activity refers to the main activities carried out by contrib-
utors. The main contribution activities includes submission new patchset,
current patchset update, code review, patchset approval, patchset verifica-
tion and others.

• Author, Reviewer and Committer.

An author represents the contributor who submits a patchset and the owner
of review report belonged to this patchset. A reviewer represents the con-
tributor who review the patchset to find defect and bug inside. A committer
represents the contributor who has the authority to commit the patchset
into the code repository.

• Approver and Verifier.

8



A approver is an experienced reviewer who reviews and approves the patch-
sets by checking whether the patchset changes follows the best practices that
have been established by the project, fits the project’s stated purpose, the
existing architecture, introduce design flaws, etc. A verifier is responsible
for building, testing and verifying the patchset and decide whether it is
suitable for merging into the source code. In some OSS projects, verifiers
can be human contributors and automatic tools.

• Code Review Process.

A code review process represents the process to perform code review ac-
tivities by code authors and reviewers in order to guarantee the reliable
software. In summary, the following steps are followed: First, authors sub-
mit a new patchset and the review system will notify approvers and verifiers.
Second, approvers and verifiers will review, build and test this patchset to
find whether patchset follows the requirement and it is free for bugs. Fi-
nally, the system merges the verified patchset into the code repository and
notify the authors whether their patchset pass the review. (see Figure 2.1)

2.3. Social Network Analysis

A social network is a special kind of network structure that vertices (or Ac-
tors) represent people and edges represent relationships or interaction between
people [55]. Figure 2.2 is a example of developer social network, which vertex
present the developers (number represents ID) and edges present they work in
same files. Initially social network was applied to research sociology and other
sciences.

Social Network Analysis (SNA) is a set of approach and technique which
research social network covering sociology, statistics and graph theory. Some
researcher in software engineering research distributed OSS development using
SNA. Bird et al. extracted and studied the potential structure for latent sub-
communities in OSS projects using SNA [16]. In the latest study of SNA research
in OSS bug tracking system, Zanetti et al. using SNA to predict bugs into valid

9



Figure 2.2.: An Example of Social Network

and invalid as bug triage approach of OSS projects [88]. Not only OSS projects,
some studies on industry projects also have been done and the analysis results
have been confirmed that be able to use for process improvement and failure
prediction [51,56] Other researchers have studied social networks based on social
networking media such as Twitter [43]. Different from their previous work which
generate social networks mainly from mailing list or bug tracking system, this
study generated social networks from code review dataset.

2.4. Related work

Prior work related to this dissertation are listed as below:
We introduce the most important related work with respect to code review

10



studies. Bacchelli and Bird studied the motivations, the expectations, and the
outcomes of modern code review [11]. Rigby et al. studied the review policies
and examined which metrics have the largest impact on review efficacy in OSS
projects [61]. Balachandran suggested using review-bot to reduce human effort
and improve code review quality [12]. Bosu et al. investigated the factor of useful
reviews to improve the effectiveness of code reviews [19]. Thongtanunam et al.
studied traditional code ownership heuristics using code review activities [72].
Baysal et al. found the non-technical factors of code review can significantly
influence the code review outcomes [13]. McIntosh et al. found that there ex-
ists a negative influence on software quality when the poorly-reviewed code is
merged [49]. Jiang et al. found the experiences of the developers impact the
patch acceptance and the reviewing time [38]. Tsay et al. found that in some
case, even the submitter’s contribution is rejected, the core team still fulfill the
submitter’s technical goals by implementing an alternative solution [77]. Toda
et al. Tourani and Adams studied the impact of human discussions, which is re-
lated to the interactional fairness [75]. Yang et al. studied the social relationships
among the patch authors and the reviewers [85].

We look into the concept of fairness in psychology field and we list the related
work with respect to fairness theory research. Leventhal studied the equity is
one of the rules of distributive justice, which implies that the rewards and re-
sources should be distributed in accordance with people’s contribution [44, 45]
Some studies have been done in the research of the procedural justice [69, 79].
Blodgett et al. examined the influences of distributive justice, interactional jus-
tice, and procedural justice on complainants’ repatronage [17]. Colquitt studied
distributive justice, interactional justice, and procedural justice in organizational
justice [22]. Sindhav et al. performed survey to test the satisfaction of airport
security from the perspective of perceived fairness [67]. Avi-Itzhak et al. studied
the measurement of fairness in queuing system [9,10].

11



Chapter 3.

Review Process and Data Mining

Many OSS use a modern code review system (e.g., Gerrit, Rietveld) to archive
the records of code review activities in their repositories. Many researchers in
the MSR field have used these archives for the empirical investigation of code
review [40,50,61,71]. Each research group developed their own individual datasets
for mining code repositories. However, we need a dataset that can be replicated
and used as a benchmark to test related techniques and tools.

As a result, Mukadam et al. [54] and our research group [35] published datasets
in the 2013 MSR data showcase. However, compared to our older dataset, the
presented dataset is comprised of more projects and has a richer set of content for
researchers. Based on the official REST API, our dataset extracts only the key
data attributes needed to reconstruct specific aspects of the peer review process.

We present our data in an easy–to–use relational database, thus making it easy
for researchers to import into their tools and techniques. Concretely, we show
how the dataset can be utilized to study code review from three aspects; (i) people
(ii) process and (iii) product-related aspects of code review.

3.1. Peer Review Concepts

We designed our dataset by identifying these three essential aspects that are
related to the code review research, as shown in Figure 3.1.

1. People-related: refers to social features of software development teams,
reviewer roles, and types. Leveraging the socio-technical aspects, we inves-
tigate teamwork and collaboration of code members. This can be beneficial

12
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to the quality and efficiency of the end product. Typical topics of interest
that could be mined are knowledge sharing, collaboration and information
flows, code component ownership, and hierarchy within the software team.

2. Process-related: refers to review process and review states that are in-
volved in the modern code peer review. Effective and efficient software
processes allow for better quality of the code review, which results in a
higher quality product. Mining these processes can be utilized to reduce
the review time, while making assignments of skilled reviewers to every
review.

3. Product-related: entails code change, the reviewed code patchset, and
associated files. Finally, studying the submitted and merged code patches
provides insights into quality aspects, answering such research questions like
‘what is the ideal patch size?’ to ‘what are critical elements of a successful
or unsuccessful patch?’. Program analysis techniques and code metrics can
be utilized to this end.

We now discuss the peer review terms used in this section. People–People
Types. In a code review, we distinguish the different roles assigned to members
of the review community. An author/submitter represents the developer who
submits a change to Gerrit, and is the owner of this change. A committer
represents the contributor who has the authority to commit the change to the
source code repository. A reviewer represents the contributor who performs
the code review to any submitted code change. A verifier is responsible for
building, testing and verifying the changes and decides whether it is suitable for
merging. Verifiers could be either human or automatic tools (e.g., OpenStack
runs testing scripts in Jenkins CI as verifiers). An approver is an experienced
reviewer who has the authority to approve the changes. An approver approves
any changes by checking whether the changes fit the best practices established by
the project; assessing whether the changes fits the project’s stated purpose and
the existing architecture. Some projects refer to approvers as core reviewers.
As shown in Figure 3.1 a.), we can use the reviewer types to create a social
network, which is useful to analyze social interactions such as knowledge sharing
or information flows within the review community.
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Process–Code Review States. Every project usually follows a customized
workflow, such as the AOSP project∗. However, as shown in Figure 3.1 b.),
most projects follow these three generic states of code review: open, merged, and
abandoned states. An open change indicates that a change has not been merged
into the source code repository. A merged change indicates that the change has
already been merged into source code repository, while an abandoned change
indicates that the change cannot be merged for certain reasons.

As shown in Figure 3.1 b.), the code review states indicates different stages in
the code review process. The open state can be divided into new, merge conflict
and many other states, specific to a projects workflow. Every change must start
from new state once the author has submitted it. merged and abandoned can be
regarded as the final decisions of a open change. The final decisions of changes
usually come from the code review, testing and discussions of core reviewers,
which have high authorities in Gerrit system. In addition, projects can tailor
their code review states to meet their own needs (e.g., Qt have specialized review
states: Staged, Integrating and Deferred).

Product–Code Changes. Shown in Figure 3.1 c.) the code review includes
the code changes related to a code review. When a author commits source code,
Gerrit will generate a unique change-id and create a new change in server if
not exists. When the author commits a new version of the change, it is regarded
as a revision in Git (it also can be called as a Patch Set in Gerrit). Through
Gerrit web server, reviewers can observe the lists of the complete file paths of
related files in each revision, and the summaries of source code changes to
files (number of inserted lines and deleted lines). Furthermore, the specific source
code changes of files can be observed by showing the diff of two different revisions.

3.2. Mining Methodology

Extraction rationale Our dataset is an extraction of the Gerrit repositories
through Gerrit official REST API†. Using the REST API, we obtained a raw

∗ https://source.android.com/source/life-of-a-patch.html (Feb 18, 2016)
†https://gerrit-documentation.storage.googleapis.com/Documentation/2.11.1/
rest-api.html (Feb 18, 2016)
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Gerrit dataset from Gerrit servers by sending API requests. The received response
will be in the form of a JSON format

However, we identified two reasons why researchers may find it difficult to use
the JSON format:

• Complex querying - Querying the JSON format for aspects such as the
reviewer types or the process states can quickly become tedious.

• Portability - We would like to represent the data in a format that is easily
imported into researchers analysis tools. Thus, we transform the data into
a relational database format.

Mining Scripts. We have created a set of mining scripts, which allowed us
to mine the dataset easily. Specifically, we choose Python to develop the mining
scripts, with MySQL to store the extracted dataset. In Section 3.3, we introduce
the detail of review dataset and the database schema.

To obtain the changed code from the pending Git repositories, the following
script can be used: git ls-remote | grep [change-id]. This will list all the
commit-id and path of revisions for a change. The Git command then can be
used to obtain certain revision and the diff. Similar useful scripts‡ were used for
other aspects of extraction.

Challenges and Limitations. The main challenge faced when mining the
repositories, was the adaptation of the mining script to correctly extract the
data from each project. This is because each project has customized the review
process. As a result, we had to modify our mining scripts to fit the different API
versions of each Gerrit server. For example, we had to change our scripts for the
AOSP project, as it adopted the newer version of Gerrit API.

Since reviewer profiles are based on the registration, a possible threat is email
aliasing. This is where members may use multiple accounts. We propose for
future work to use a semi-manual process of cross-checking the username, name,
and email address to remove duplicates. In addition, we currently only identify
the file path and size of the patch submitted. For future work, we would like to
capture the actual source code changed.

‡https://github.com/saper/gerrit-fetch-all (Feb 18, 2016)
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3.3. Dataset

Mined Repositories.The core of the dataset comes from projects that use git
as their source code repository, and are also integrated with the Gerrit§ modern
code review system. As shown in Table 3.1, the datasets comprise of five large-
scale open source projects. All projects are hosted online and are accessible
through their respective web interfaces [1–5]. The largest project is OpenStack,
a cloud operation system. It has over 3,900,000 reviews and just over 5,000
reviewers. The smallest project collected is LibreOffice, with just over 66,600
reviews and 437 reviewers. We compressed the datasets files to RAR and 7z
format for each project. All files are available online for download.

Dataset Schema. We transformed the JSON format into our database schema.
Each attribute of the tables can be found in Table 3.2. Our data structure is con-
sistent with the official Gerrit REST API. A full description of the database
schema is available¶. We summarize the descriptions of the five tables below:

• Change - The change table represents an instance of a code change that
is in the review system. The table also contains relevant information such
as the author of the code change (ch_authorId).

• Revision - As a change gets reviewed, it may undergo several revisions
of the source code before it is committed. The revision holds information,
such as the final commit date of the code change (rev_committedTime).

• People - The people table was created to store all details of the review
members. Each member has a unique id (p_author Id).

• History - The history table contains all messages or comments related to a
review. The history table contains the messages attribute (hist_message)
that can be used to identify all comments and activities related to the review
process.

• File - The file table contains the details of the code changes. This ta-
ble contains information such as the pathname (f_filename), and size
(f_linesInserted, f_linesDeleted) of the code change.

§https://code.google.com/p/gerrit (Feb 18, 2016)
¶https://github.com/kin-y/miningReviewRepo/wiki/Database-Schema (Feb 18, 2016)
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Queries example. To utilize the data tables, we need to map the tables to
the different aspects of the peer review process. Table 3.3 shows the rationale and
hints to which attributes to use when making a query. A sample of other useful
queries is available on our website. For example, to get all the core reviewers for
a project we need to query the history table (t_history) for all people that have
1.) approved or 2.) reject a review or able to provide a score of either 3.) +2 or
4.) -2. This would be in the SQL query:

SELECT distinct hist_authorId FROM t_history
WHERE hist_message LIKE ’%Looks good to me, approved%’
OR hist_message LIKE ’%Code-Review+2%’
OR hist_message LIKE ’%Do not submit%’
OR hist_message LIKE ’%Code-Review-2%’
ORDER BY hist_createdTime ASC;
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Table 3.2.: Relational database schema with attributes
Table Key Attribute(Definition)
Change PK id(Unique change id (auto increment))
(t_change) ch_Id(Combination of project name,

branch name and change id)
ch_changeId(Change id in Gerrit)
ch_project(Project name of change)
ch_branch(Branch name of change)

FK ch_authorId(Author of change)
ch_createdTime(Timestamp of when
change was created)
ch_status(Review status of change)

Revision PK id(Unique revision id (auto increment))
(t_revision) rev_Id(Commit id of revision)

rev_subject(Subject of revision)
rev_message(Message of revision)
rev_authorName(Author of the revision)
rev_createdTime(Timestamp of when
revision was created)
rev_committerName(Committer
of revision)
rev_committedTime(Timestamp of when
revision was committed)

PK rev_patchSetNum(Revision number
in change)

FK rev_changeId(Change that the
revision belongs to)

People PK id(Unique people id (auto increment))
(t_people) p_authorId(Id of author)

p_authorName(Name of author)
p_email(Email address of author)
p_domain(Domain of email address)

History PK id(Unique comment id (auto increment))
(t_history) hist_id(Comment id in UUID form)

hist_message(Comment message)
FK hist_authorId(Author of comment)

hist_createdTime(Timestamp of when
comment was created)

FK hist_patchSetNum(Revision number that
comment was created for)

FK hist_changeId(Change that comment
was created for)

File PK id(Unique file ID (auto increment))
(t_file) f_fileName(The path and name of file)

f_linesInserted(# of inserted lines)
f_linesDeleted(# of deleted lines)

FK f_revisionId(Revision that file
belongs to)
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Chapter 4.

Peer Review Social Network
(PeRSoN)

4.1. Research Questions

We address the following research questions in this chapter.

RQa-1 Which contributor role is the most important in the code review com-
munity?

RQa-2 What is the relationship between contributors’ activities and their net-
work position?

Our objective is establishing a model of OSS code review community and a
set of quantitative measures to describe the code review process from both tech-
nical metrics and non-technical metrics. Another motivation comes from the
importance of the human factor in software development. The human factor has
been researched from the diversity of different cultures and the rise of globally
distributed projects [25].

To understand how contributors work and communicate together, we need
to investigate the structure of code review community. In this work, we present
Peer Review Social Network (PeRSoN), which is a construction of social networks
from code review activities, which is based on our previous work [85] [84]. We
categorize contributors into different role groups based on their authorities, and
we define the review activity as any contribution in the review process. We use
the PeRSoN to evaluate two research questions: RQa-1. Which contributor role
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Figure 4.1.: The Review Process of Change #17768 in AOSP

is the most important in the code review community? and RQa-2.What is the
relationship between contributors’ activities and their network position?.

We applied PeRSoN to three large-scale OSS projects: Android Open Source
Project (AOSP), Qt and OpenStack by case study. The results of analysis ad-
dressed our research questions and gave hints about the relationships among OSS
code review contributor roles, their activities and their network structure. Our
main findings can be summarized as two points. First, the contributors who have
the verification authority are the most important (most central) role in the review
community (see Table 4.8). Second, a strong linear relationship exists between
activities of the contributors who have verification authority and their network
positions (see Table 4.9). The main contribution of this work can be summarized
as follows:

In the past decade, OSS as a dynamic software development manner has been
adopted by many software organizations. Unlike traditional industry projects,
OSS code is accessible for patch contributions [28, 53]. With the rise of OSS
projects, regular code inspection also has been modified to cater for OSS projects
development. It is not feasible for developers to always have communication or
collaboration directly. As a result, it is hard to search appropriate reviewers to
perform the high-quality review because of lacking the information of contribu-
tors. Based on these difficulties, OSS code review applies a broadcasting method
to announce and search the appropriate reviewer for particular source code [63].
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To facilitate these OSS code review style, many software projects even indus-
trial projects have adopted code review tools. These companies perform code re-
view instead of face-to-face inspection meeting (e.g., Google uses Gerrit∗ in AOSP,
and Microsoft uses CodeFlow as their review tools†). Many large-scale OSS
projects have adopted web-based code review. They also have claimed that code
review is an important quality assurance technique in their projects [52] [20] [37].
During the early time of OSS projects, most OSS projects assign review task
and retrieve feedback using mailing list [62]. Currently, OSS projects adopt light-
weight code review tools instead of using mailing-list. Applying code review tools,
the status of code review can be tracked easily and review contributors can par-
ticipate in code review freely. The mechanism being used in OSS projects for code
review provides benefits to communities like sharing knowledge and experience
among contributors.

4.2. Peer Review Social Network (PeRSoN)

4.2.1. Process and Networks

Code Review Process.
The code review process represents the process to perform code review related

activities by code authors and reviewers to guarantee the reliable software. In
our study, contribution activity refers to the activities carried out by contrib-
utors, which means both authors of code change and reviewers. The primary
contribution activities include submission of new patchset, revision of patchset,
code review, review approval, review verification, review discussion and others.
Based on the activities records in code review system, we calculate the number of
activities then separate contributors into different roles by their activities. Also,
we introduce the definitions of contributor roles that will be used throughout this
study in Table 4.1.

Figure 4.1 is a practical example of review process. This figure represents the
review process of Change #17768 of AOSP‡. The first step of review is commit

∗https://code.google.com/p/gerrit/
†http://goo.gl/5zk0wF
‡https://goo.gl/8uFZiv
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Table 4.2.: Centrality Measures and Social Implication.
Centrality Measures Social Implication
Degree Activity
Betweenness Control
Closeness Independence

phase that author submit new patchset and the system will notify reviewers by
email. Then in review phase, reviewers will perform reviews based on this patch-
set (Change #17768). Every contributor can perform review in a project, but
only those reviewers who have the authority of Approval or Verification(Always
chosen from core members, or experienced and active reviewers) can determine
whether this change can be merged (Some projects also use bots to build and test
the patchset as Verifiers). In this case, three different reviewers have performed
reviews. Mark Gross has reviewed but still need someone with approval authority
to approve it. As a result, David Turner has approved this patchset, and JBQ
(Jean-Baptiste Queru) has verified it. The final step is integration phase, system
or particular core members will merge the approved and verified patchset into
project code repository. In this example, JBQ has merged this patchset to the
repository.

PeRSoN Definition.
Our approach uses social network described as a graph network called PeRSoN.

PeRSoN is a social network constructed by code review dataset, which a vertex
represents a review contributor and an edge represents a review activity happened
between two review contributors (e.g., in Figure 4.1, Mark, David, and JBQ
performed code review for Bruce’s patchset, and then they left comments as
feedback to everyone who have contributed in these reviews). In this study, we
define the network model as a undirected and weighted network.

We assume that a contributor ci has a set of reviews Rci. A review r in a
patch set has a set of contributors including both authors and reviewers {c1, c2,
... , cn}. A PeRSoN edge e is formed when two contributors (e.g., ci and cj) are
members of the same review. Formally, e(ci, cj) exists if ci ∈ Rci and cj ∈ Rcj

where Rci ∩ Rcj �= ∅.
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Figure 4.2.: An Example of Contributors Evaluation Using PeRSoN

Network Measures
Our model can be used to describe more complex distribution characteristics of

the contributors. In our approach, we evaluate the reviewers network by using the
three standard centrality measures of Degree, Betweenness and Closeness based
on the definitions from Freeman [29] as below:

• Degree Centrality.

Degree Centrality indicates the number of edges that a vertex has, A vertex
(contributor) is defined as ck, and a(ci, ck) = 1 if ci and ck are connected,
otherwise 0. Degree Centrality of ck is defined as CD(ck):

CD(ck) =
n∑

i=1
a(ci, ck)

• Betweenness Centrality.

Betweenness Centrality of a given vertex indicates the number of shortest
paths from all vertices to all other vertices that pass through this vertex.
We define gij = the number of edges from vertex ci to vertex cj, and gij(ck)
= the number of edges from vertex ci to vertex cj that passing through ck.

Then calculate the probability bij = gij(ck)
gij

. Betweenness Centrality of ck

is defined as CB(ck):
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CB(ck) =
n∑ ∑

i<j

bij(ck)

• Closeness Centrality.

Closeness Centrality of one vertex indicates the inverse of its farness. Far-
ness indicates the sum of the distance between this vertex to all other
vertices. We define d(ci, ck) = the distance (number of edges) linking ci and
ck. Then Closeness Centrality of ck is defined as CC(ck)−1:

CC(ck)−1 =
n∑

i=1
d(ci, ck)

Freeman also suggested that each centrality measures have social implications
as shown in Table 4.2 [29]. First, Degree centrality implies activity degree, a
vertex with a high degree in the network suggests this person should be active and
enthusiastic. Second, betweenness centrality implies control. A vertex with high
betweenness centrality acts as a bridge among other vertices in social networks.
Third, closeness centrality implies independence of a vertex. A vertex with low
closeness represents that this people is independent and far away from all other
people.

Figure 4.2 is an example of how we evaluate the performance of contributors
from their human factor and social aspect using our approach. Here we simplified
the networks by ignoring the weight of edges. However, in the practical experi-
ment, we calculate the weight of edges. The vertices represent contributors and
edges represent the review activities between contributors. We perform social
network analysis for this network by calculating the centrality measures for each
contributor. After we calculated the centrality distribution, some observation
can be summarized as follows: c5 has the highest degree in this network, which
indicated he/she is the most active contributors; c1 has the highest betweenness
and it represents that he/she work as a bridge in the community, and he/she
could be a potential bottleneck, which may cause problems to the process; c0
has the lowest closeness which means he/she contribute as individual or rarely
collaborate with others.
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Table 4.3.: Field and Definition in Comment History.
Field Definition
reviewId ID of the review report.
authorId The author who created the patch.
reviewerId The contributors who reviewed this patch.
lastUpdate The timestamp of last update in this review.
writtenOn the time when this review comment is created.
message the content of this review comment.

As we introduced in Section 4.2.1, social network analysis provides the data
constructed from the social relationship between people. We want to investigate
who are the most important contributors and is there a relationship between
review authority and social network position in code review community (RQa-1).
Moreover, whether realistic activities of contributors correlate with their social
network position (RQa-2). To address these research questions, we introduce
the details of our approach in next subsection.

4.2.2. Approach

We now introduce the main steps to our approach as three steps; 1.) Dataset
mining, 2.) Network generation and role classification and 3.) Metrics analysis.

Dataset Mining. We used a dataset from our previous work [35]§.
To extract raw code review dataset we apply Gerrit official API to obtain raw

dataset. Gerrit code review system provides an REST-like API for users ¶. Users
can access and gain the raw dataset through HTTP for their use. The raw dataset
is stored in the form of JSON files. For each review in code review system, the
JSON dataset has a unique ChangeID. The JSON dataset includes the following
features: The review information with reviewers’ comments, the updates history
of patches, and the details of when and how they have been merged into the
source code or be abandoned. We created scripts using Python to download
the raw dataset by using official API. The primary functions of the scripts are

§ The dataset is available to download at http://sdlab.naist.jp/reviewmining/
¶https://goo.gl/PsKwFx
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Figure 4.3.: An Illustrative Example of Network Generation

extracting useful data out from raw dataset and store this useful refined dataset
into a database. In detail, we extracted the data from the comments history of
each review reports in raw dataset. Some important data we used is described as
Table 4.3. In next paragraph, we will introduce how we use these data to create
the social network and investigate the potential relationship between contributors.

Network Generation and Role Classification. We regard the review as a
communication channel between code submitters and reviewers. Every review is
a time of discussion or feedback between patch authors and reviewers. Using the
history dataset of each review, we extract the connection of all the contributors
in code review communities. The steps how we extract the review connection is
introduced as follows: First, it was assumed that all the review related activities
of the contributors in a review process are recorded in the comments on the review
reports, such as an author has submitted a new patch or another reviewer has
reviewed a patch and given his/her comments based on the patch change. This
step is shown in Figure 4.3(a).

Second, to form the network, all contributors participating in the same review
were connected, which indicates the contributors who work in the same review
have used the same communication channel as a team work, as shown in Figure
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Table 4.4.: Basic Information of AOSP, OpenStack and Qt.
AOSP OpenStack Qt

Period 2009/01∼ 2011/07∼ 2011/07∼
2011/06 2012/06 2012/06

# of Comments 42449 64793 219044
# of Contributors 1086 426 620
# of Reviewers 451 165 207
# of Approvers 99 86 201
# of Verifiers 111 29 117
# of Vertices 808 379 558
# of Edges 15429 55301 150017

4.3(b).
Finally, we perform role classification by contributors’ activities from their

comments (e.g., An approval comment from a contributor can be regarded that
this contributor has the authority to approve a patch). We separate contributors
by their different activities and authorities. More details about classification will
be introduced in Section 4.3.3.

Metrics Analysis. The analysis of this study includes analysis of the network
metrics. Specifically, we use the standard centrality measures: degree, between-
ness and closeness to obtain contributors’ network position. Then we compare the
centralities between different contributor role groups to investigate which group
is most important. We then use statistical analysis to find correlations between
the contributors centrality measures and their activities.

4.3. Methodology

We evaluate our approach by applying PeRSoN network to three real world OSS
projects that using Gerrit as code review system. These three projects require
strict code review mechanism, which means every code change must be reviewed
first, then be commit to project code repository. Another reason for choosing
these projects is that they adopt code review system instead of a mailing list,
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which bring more convenience when collecting the data.

4.3.1. Experiment Setup

At first, we studied the code review process using Gerrit environment in three
projects. We found that Gerrit system manages contributors by providing dif-
ferent authorities. For example, normal contributors (not core members) can
review code, but they have no permission to make the final decision of change.
While core members can both review and judge a change. Because high-authority
contributors have more responsibility to the quality of change, we first hypothe-
size the high-authority contributors are more important to the review system as
follow.

H1 The contributors with high authorities and be active in code reviews play
the most important role in code review community.

We address RQa-1 by accepting H1, and we introduce how we compare the
difference between high review authorities contributors and other people in sta-
tistical analysis in Section 4.3.4. Complementary to H1, we add a H0 as a null
hypothesis that indicates the contributors who have the highest review authorities
and other contributors are from the same distribution.

We address RQa-2 by calculating the correlation of contributors’ activities
and their network positions for different contributor groups, which separated by
the roles. We use degree, closeness and betweenness to measure contributors’
network positions, and then compare their activities.

4.3.2. PeRSoN Generation

Datasets. AOSP (Android Open Source Projects) is an industrial open source
project that developing software products for mobile device‖. OpenStack project
provides cloud services platform ∗∗. Only a few of verifiers are human, but the
primary verification works are done by Continuous Integration (CI) tool. Qt
Project is an application framework that mainly use to develop graphical user

‖http://source.android.com/
∗∗http://www.openstack.org/
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interface ††. Qt uses the term Sanity Review instead of Verify in its Gerrit system.
Several necessary data in change information table is needed to generate PeR-

SoN. e.g., Change-Id represents the review report identification, a unique Hash
code generated by Git. Uploaded and Updated represents the timestamps when
this report created and when is the latest update.

When a patchset is under review, the author who has submitted this patchset
could still update and fix this patchset. A review report could include more than
one patchsets if the author upload revisions. In Gerrit, contributors can check
the status for current patchset such as who has reviewed or who will verify it.
As a result, the comments record all the reviewers who take part in the review
are important. In this study, PeRSoN was generated by R ‡‡ and igraph package.
The statistical analysis of this study was performed by R.

Generated Networks. Applied the network generating method mentioned
in 4.2.2 and in Figure 4.3, the social networks have been generated from these
projects separately. The basic information of these social networks is shown as
Table 4.4. In this study, the dataset of AOSP covers 2.5 years but OpenStack and
Qt have only one year. Because projects have different periods, the review dataset
was separated into smaller samples. We split the dataset by one month, three
months and six months to observe how the networks of AOSP evolved through
time.

In experiment period, we found that results of every six months are most
obvious and evident, and then we decided to divide dataset by every six months.
We also generate PeRSoN by the whole dataset, and the number of vertices and
edges are shown as Table 4.4. We include all the participants in our networks
as vertices, and all the review comments between contributors as edges. We can
found that each project has a different size in networks.

From the information in Table 4.4, it is easy to find out the common reviewers
group is larger than the verifiers group. This observation complies with the Onion
Model of OSS development [6, 24] that considers the core members as the most
important and the smallest group. It can be supposed that the smallest group
of code review, the verifiers should also play the most important roles in code

††http://qt-project.org/
‡‡http://www.r-project.org/
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Table 4.5.: Summary of Distributions for VAC, VC, AC, and C contributors in
AOSP

VAC VC AC C
Min 5 4 1 1
1st Qu. 46 15 7 3

Degree Median 108 29 24 6
Mean 251 56 25 13
3rd Qu. 293 49 31 12
Max 3349 439 79 779
Min 0.0000 0.0000 0.0000 0.0000
1st Qu. 0.0002 0.0000 0.0000 0.0000

Betweenness Median 0.0036 0.0000 0.0000 0.0000
Mean 0.0176 0.0017 0.0006 0.0002
3rd Qu. 0.0111 0.0024 0.0001 0.0000
Max 0.6509 0.0155 0.0065 0.0440
Min 0.3417 0.2837 0.3194 0.0024
1st Qu. 0.4274 0.3438 0.4089 0.3328

Closeness Median 0.4474 0.4099 0.4199 0.4033
Mean 0.4455 0.3884 0.4094 0.3708
3rd Qu. 0.4683 0.4263 0.4226 0.4121
Max 0.6793 0.4738 0.4473 0.5176

review process. To observe results easily, we separated contributors into different
roles from the activities of their review comments that can be regarded as the
history of their activities.

4.3.3. Contributor Roles Classifications

We classified the roles of the contributors by the activities they performed during
the code review. We extracted contributors’ activities by mining their review
comments. Administrators or team leaders in a project can set the review rules,
such as evaluating code changes by a different score or approving code change with
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certain review authorities. Each project may have their rules and own authorities
assignment. In this study, we investigated the review rules of three projects
to extract review activities from the comment history. Moreover, we classify
contributors roles more detail to gain a better understanding of the relationship
between contributor groups.

As a result, a new classification method using activities are proposed and ap-
plied. Based on our previous work related to contributor classifications [85] [42]
[73], we apply a classification method based on the activity types. Each contribu-
tor is labeled based on their roles, such as V as Verification, A as Approval, C as
Code-Review. We investigate contributors from all seven combinations of V, A,
C, VA, VC, AC, and VAC. For example, If one contributor has activities records
of review and verification, he will be noted as VC. A contributor only contributed
by approval without other activities, he will be noted as A. If a contributor has
Verification activities also did code review and approved patchsets, who takes
part in everything can be noted as VAC.

4.3.4. Results

RQa-1: Most Important Contributors. We address RQa-1 by comparing
the distributions of contributors’ network positions. In code review process, ver-
ification should be the highest authority in the code review as it was the last
stage of change before its merge or abandoned. Moreover, from Freeman’s study,
we know in a network structure, the centrality measures imply the importance of
each node. As a result, the most important contributors indicate they have the
highest centralities. In this study, three standard centrality measures have been
used, and all of them have different social implications. From the observations of
our previous work based on AOSP, which we separated contributor roles into Ver-
ifier and Non-Verifier, we created cumulative graphs of contributors’ frequency,
and we observed: Verifiers’ degree and betweenness increased over time while
non-verifiers did not change too much. Verifiers have a relatively greater degree
and betweenness than non-verifiers. However, we did not find any relationship
between Verifiers and non-verifiers in terms of closeness.

Also, we separate contributors by more detail way as we mentioned in Section
4.1. The classification results like follows: AOSP has four different contributor
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Table 4.6.: Summary of Distributions for VAC, AC, and C contributors in
OpenStack

VAC AC C
Min 263 9 1
1st Qu. 995 106 11

Degree Median 1497 277 29
Mean 2665 429 69
3rd Qu. 2604 650 78
Max 20050 2273 1016
Min 0.0000 0.0000 0.0000
1st Qu. 0.0006 0.0000 0.0000

Betweenness Median 0.0033 0.0002 0.0000
Mean 0.0337 0.0011 0.0000
3rd Qu. 0.0128 0.0012 0.0000
Max 0.6290 0.0139 0.0060
Min 0.5108 0.4725 0.3510
1st Qu. 0.5602 0.5099 0.4809

Closeness Median 0.5753 0.5232 0.4993
Mean 0.5966 0.5306 0.4966
3rd Qu. 0.6082 0.5498 0.5101
Max 0.8873 0.6087 0.5745

roles as VAC, VC, AC, and C. From the observations we found: VAC group has
greater median value than other contributors’ groups, and the interquartile range
of VAC group is wider than other groups in terms of degree and betweenness but
not in closeness (see Table 4.5). OpenStack has three groups: VAC, AC, and
C. The results show that the VAC group has greater median than other groups,
and same as AOSP, the interquartile range of VAC group is wider than other
groups in degree and betweenness but not in closeness (see Table 4.6). Qt has
four groups: VAC, AC, A and C. The observation shows, Qt’s VAC group has
greater median value than other groups in degree and closeness but not obviously
in betweenness, and the interquartile range of VAC group is wider than any other
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Table 4.7.: Summary of Distributions for VAC, VC, A, and C contributors in Qt
VAC VC AC C

Min 8 7 2 2
1st Qu. 363 48 6 6

Degree Median 776 124 36 20
Mean 1204 314 45 70
3rd Qu. 1420 346 82 68
Max 12010 4194 124 764
Min 0.0000 0.0000 0.0000 0.0000
1st Qu. 0.0000 0.0000 0.0000 0.0000

Betweenness Median 0.0000 0.0000 0.0000 0.0000
Mean 0.0002 0.0000 0.0000 0.0000
3rd Qu. 0.0000 0.0000 0.0000 0.0000
Max 0.0053 0.0006 0.0000 0.0001
Min 0.5014 0.5018 0.5004 0.5009
1st Qu. 0.5119 0.5053 0.5018 0.5023

Closeness Median 0.5213 0.5082 0.5036 0.5036
Mean 0.5283 0.5123 0.5039 0.5061
3rd Qu. 0.5369 0.5134 0.5059 0.5071
Max 0.6545 0.5919 0.5073 0.5351

group (see Table 4.7).
To compare the different centrality distributions among VAC and other roles,

we applied a Wilcoxon-Mann-Whitney test to evaluate H1 [83]. We adopt
Wilcoxon-Mann-Whitney because that we found the population has only one
variable (each centrality) but with more than two levels (different roles), and we
assume that each role group have independent centrality distribution and not
affect each other. All three project have tested by comparing the VAC role with
other groups existing in each project. VAC role with VC, AC and C has proved
in AOSP. The null hypothesis H0 that related to H1 is that VAC and other roles
come from the same distribution. H0 can be rejected, and H1 can be accepted if
VAC > VC, VAC > AC and VAC > C, the p-value of all comparison is below the
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Table 4.9.: Correlation (Spearman) of VAC Activity And Centrality Measure.
Projects Degree Betweenness Closeness
AOSP 0.952 0.789 0.485
OpenStack 0.964 0.992 0.868
Qt 0.953 0.884 0.795

significant threshold of 0.05. The results of p-value are given in Table 4.8 are all
below 0.05. The null hypothesis is rejected, and the one-sided alternative hypoth-
esis is accepted, the true location shift is greater than 0. For AOSP, OpenStack
and Qt, The most active Verifier (VAC) have significantly higher centrality than
other contributors.

As mentioned above, RQa-1 can be addressed that the most active Verifier
(VAC) are the most important (central) role in the review process.

RQa-2: Activities and Network Position. We address RQa-2 by cal-
culating the correlation of contributors’ activities and their network positions.
We use Spearman because we take the measurements from ordinal scales, while
Pearson correlation is more appropriate for the measurement taken from interval
scale. The correlations between the activities of different contributors and their
centrality measures in three projects have been calculated. We calculated the
correlation for each role group, but we only found a strong relationship in VAC
contributors. The results in Table 4.9 shows that in OpenStack and Qt, activities
of VAC have a strong linear relationship to all centralities. In AOSP, activities of
VAC have a strong linear relationship between degree and betweenness, but not
in closeness.

As a result, we addressed RQa-2 by analyzing contributors’ activities and
their centrality measures that indicate their network position. We found that
most active verifiers (VAC), the relationship between their activities and their
network position had a strong positive correlation. Except closeness centrality
is unusual in AOSP, all the results show that a strong positive correlation exists
between with centralities and contributors’ activities. However, we did not found
a strong relationship for other contributors’ role groups.
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Figure 4.4.: Correlations for Three Centrality Measures Evolution.

4.4. Discussion

4.4.1. Implications

The results of the case study show that the network metrics (centrality) can
be used to provide useful information about users roles based on their review
activities. In RQa-1, we find that verifiers and not the approvers are the most
important roles of a review process. In RQa-2, we find that again contributors
that are verifiers (VAC) have a significant correlation with all other network
measures.

To further understand the reviewer roles, additionally studied the evolution
of role types and network positions over time. As depicted in Figure 4.4, the
relationship between the three centrality measures is compared, to estimate cor-
relation coefficients over time. This figure shows that strong positive correlation
exists between verifiers’ betweenness and closeness, and also between their degree
and betweenness. We used this results to categorizing several exception cases of
contributors’ centralities. Based on the positive correlation between verifiers’ be-
tweenness and closeness, it is impossible to find a verifier has high betweenness,
but low closeness or a verifier has low betweenness but high closeness. Exception
cases have been analyzed in which:
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• A verifier had high-degree and low-closeness. A verifier has high-degree
means he or she performed more activities than other people, and the low-
closeness means he or she is far away from the network center.

• A verifier had low-degree and high-closeness. A verifier has low-degree
means he or she performed few activities, and the high-closeness means he
or she is close to the network center.

We manually checked dataset to find special cases we described above. We
found a core member from AOSP, who has a high degree and a low closeness
(comparing with median value). This contributor has contributed a lot in Ap-
provals and Verifications but participated only in kernel/common project. While
we found another maintainer in AOSP who has low degree but high closeness, we
investigated that this contributor contributed very limited times but participated
in many projects (e.g., platform/build, platform/external/qemu, platform/exter-
nal/clearsilver, and platform/system/core).

In addition, the correlation results (see Figure 4.4) and the exception cases to
create Table 4.10 were combined. From which the following observations can be
made: First, verifiers with high-closeness (close to the network center) may have
high-betweenness (more control). Second, verifiers with high-degree (more contri-
bution) may have high-betweenness (more control). However, results show that
no significant correlation exists between verifiers’ degree (contribution activity)
and closeness (network position). Finally, from these findings, several suggestions
for the exception cases can be provided:

• Verifiers with high-degree and low-closeness may be experts in specialized
fields because they perform more activity and have few connections with
other members or work teams. Therefore, if they result to be specialists,
the important review requests can be suggested to send to them.

• Verifiers with low-degree and high-closeness may contribute less; however,
being close to the network center, they may represent key figures tied to
many other people. So, verifiers as high authorities can be suggested not
to remove them or change their roles thoughtlessly.

Based on the analysis of detecting particular cases, certain contributors can be
found in their different behaviors.
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Table 4.10.: Exception Cases For Verifiers.
Low

Degree
Low

Closeness
Low

Betweenness
High

Degree
— Active

/ Far away
—

High
Closeness

Inactive
/ Central

— —

High
Betweenness

— — —

4.4.2. Threats to Validity

This study researched three large-scale OSS projects and proved that the verifiers
in code review process are the most important contributors. We discuss the
limitations of this study as the following:

• Dataset Period. Modern code review process using code review tools is a
new technique for OSS projects, different from many bug tracking systems
that have been used for more than ten years. In this study, review dataset
was extracted from three projects, the longest period (AOSP) are still less
than three years. Because AOSP server has shut down for six months, the
data structures have been changed after that. As a result, our study based
on the dataset has relatively short term period.

• Community Size and Density. The community size can be regarded as
an important factor in the project’s development. Centrality measures are
dependent on network size, which is presumably changing over time. The
three projects have the different size that may affect the analysis of results.
This approach needs to be evaluated by more projects with the different
size.

• Threshold of contributor activities. One possible threat in our study
is the threshold of contributor activities’ number. We classify the contrib-
utor roles by categories of different activities. However, we did not classify
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the roles from the number of activities. For example, a VAC contributor
who only contribute very few times in Verification but contributed a lot in
Code-reviews or Approvals should not be regarded as an active verifier ac-
cording to his authority and responsibility. In our future study, we need to
define a threshold of number of activities according to the case of unbalance
activities.

4.5. Related Work

Prior work related to this study could be divided into two aspects: Studies on
OSS community and OSS code review; Studies on the social aspect of software
engineering. We provide these related work as following two parts.

Raymond referred to the different structures and processes of industry software
and OSS as Cathedral and Bazaar [59]. Rigby et al. examined Apache Server
Project for two techniques and created several metrics similar to traditional in-
spection experiments to find an efficient and effective OSS review technique [62].
Rigby et al. also have studied the broadcast nature of OSS code review, which
is totally different with traditional method [63]. Balachandran suggested use
review-bot to reduce human effort and improve review quality [12].

Bird et al. extracted and studied the potential structure for latent sub-communities
in OSS projects using SNA [16]. Zanetti et al. adopted SNA to predict bugs into
valid and invalid as the bug triage approach of OSS projects [88]. Kwak et al. have
studied social networks based on social networking media such as Twitter [43].

The main difference between our study and related works above is we study
code review from social aspect while traditional study are mainly from the techni-
cal perspective only. Moreover, based on the prior studies that studied the human
and social aspect of software engineering, we found the value and importance to
perform study from human and social perspective.

4.6. Conclusion

The motivation of using the approach of Social Network Analysis to research OSS
code review process comes from the distributed construction of OSS community
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and human factors in software development. OSS projects, especially industry-
leaded OSS projects need developers to contribute enthusiastically. As proposed
human factor should affect OSS review process, SNA approach was applied into
this case study has researched three OSS projects. Then reviewers can be classi-
fied into several role groups with significant differences. The results show there
is a strong correlation between the activities of most important contributors and
their network positions. Network measures distributions of contributors can be
used for evaluating contributors’ activeness. For example, project managements
can identify contributors who are enthusiastic but in a specialized field, and con-
tributors who are in important network position but unenthusiastic.
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Chapter 5.

Review Fairness

5.1. Research Questions

Since defect resolution cost many resource like time and people, modern code
review requires to be performed in a timely manner [30, 36, 62]. Our previous
studies about the code review contributors have identified that the roles of con-
tributors (i.e., patch authors, approvers, verifiers) have a lot of overlap [87]. A
developers might need to write his or her own patches as a patch author, and also
perform code review on other developers’ patches as a reviewer. The problem is
that if patch authors or reviewers continues focus on their own task, they might
have limited time to review other developers’ patches (i.e., overload). Other
studies about bad smells also reported that the high workloads are more prone
to cause bad smells [78]. PostgreSQL project has commitfest managers, who are
responsible to make sure that every patch gets review in a timely manner∗.

Due to the limited time and workloads, we assume that patches in modern
code review may not have the same treatments. In this study, we investigate how
developers perceive the treatment of their patches to be equal or not. Moreover,
we perform data analysis on the practical patch review histories to identify the
difference between developers’ perception and the truth. We introduce a concept
of fairness to measure the perception of developers. The fairness (or social justice)
represent the degree of making judgments that without bias, and it plays an
essential role in any social construction that is conducted by human being [44,
45,48]. Since the code review activities can be regarded as the social interactions

∗http://blog.2ndquadrant.com/managing-a-postgresql-commitfest/
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among the community members (developers), the fairness in software code review
should be considered, especially in Open Source Software (OSS) projects. It is a
likely case that the OSS developers are discouraged or leave the project if many
of their patches do not pass the code review process, which is the final gate to
the software repositories of the project. Furthermore, we have asked the OSS
developers at the major OSS event of FOSDEM,† and two OpenStack Summits
about how egalitarian the code review process is perceived.‡ From the discussion
with OSS developers, we find evidences that the OSS developers tend to perceive
unfairness in the code reviews. For example, the OSS developers indicated late
responses from the reviewers may cause the perceptions of unfairness for them.

Despite the importance of fairness, little is known whether patches are treated
fairly in the code review process or not. In the past literature of the code review
studies, several studies investigated in human factors and social aspect. For
example, Bosu and Carver found that developers’ reputation influence their code
review outcomes [18]. Yang et al. also found that the social network structure
affects the contribution of developers in the code review practices [87].

Thus in this chapter, we address the following research questions:

RQ1 What is the perception of fairness of developers in code review?

RQ2 What is fairness in code review process?

RQ3 How do reviewers prioritize code reviews and how do prioritization strate-
gies reflect review fairness?

RQ4 What does the data tell us about the practical review fairness?

In this study, we set out to study the fairness in the code review process. To
do so, we first performed a literature survey to formulate the fairness concept
for the code review context. Then, we performed an online survey with OSS
developers to better understand how do they prioritize a patch to examine, and
how they perceive fairness in code review process. We also applied a queuing
system to measure the degree of prioritization and performed quantitative analysis

†https://fosdem.org/2016/about/
‡Vancouver (2015):https://www.openstack.org/summit/vancouver-2015/
Tokyo (2015):https://www.openstack.org/summit/tokyo-2015/
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to investigate the impact that prioritization practices have on the reviewing time.
Through a case study of the OpenStack project, we address the following research
questions:

(RQ1) What is the perception of fairness of developers in code re-
view?

Motivation: Since code review is heavily relied on human involvement and the
waiting and service process can be regarded as a social structure, the fairness
or social justice in code review process should be investigated. Hence, we asked
OpenStack developers about their fairness perceptions in code review practice.

Results: In OpenStack, most developers perceived they perform code review
fairly and have been treated well. Most developers perceive the entire code review
system is fair, a few of them perceived unfairness.

(RQ2) What is fairness in code review process?
Motivation: Since fairness in code review process should be considered, we have

to investigate what review fairness is and why it is important. Hence, we perform
literature survey for the concept of fairness.

Results: From the results of the literature survey, we found that the concept of
fairness from psychology can be applied to the code review context. Furthermore,
we identified that: Reviewing time, Review feedback, Communication, Review
priority, and Project policy can be used to measure the fairness in the code review
process.

(RQ3) How do reviewers prioritize code reviews and how do priori-
tization strategies reflect review fairness?

Motivation: To understand the review fairness in practices, we start our in-
vestigation from Review priority. Little is known about how reviewers actually
prioritize a patch from previous studies. Hence, we asked OpenStack developers
about their prioritization strategies.

Results: We found that the OpenStack developers use prioritization strategies
to select a patch to examine. In particular, patches are selected based on the
related-knowledge of the reviewers, the importance and the difficulty of the patch.
Moreover, we found that the OpenStack developers also tend to select the patches
from particular patch authors. We found prioritization might lead to potential
unfairness perception by some developers.
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(RQ4) What does the data tell us about the practical review fairness?
Motivation: In addition to the patch prioritization practices, reviewers should

also perform code reviews in a timely manner in a fair review system. In other
words, the reviewing time of a patch should not be corresponding to the patch
author or the affiliation of the patch author. However, as suggested by the OSS
developers, late responses from the reviewers tend to imply a relationship with
the unfairness. Furthermore, prior work by [15] found that contributions made
by different affiliation can be in unequal practices (i.e., the contributions may not
be organizationally distributed). Hence, we investigated whether an author of a
patch has an effect on the reviewing time of the reviewers or not. Moreover, we
investigated that the perception of fairness from developers, we further discuss
that how to measure the fairness in practice.

Results: We found that the patch authors who do not come from the same
affiliation as the reviewers are more likely to suffer from a longer review waiting of
patch examination than the patch authors who come from the same affiliation as
the reviewers. Moreover, we found that a self-approve practice (i.e., patch authors
who approve their own patches during the code review) affects the reviewing
time. From the statistical analysis, we found that priority of a patch and time-
consuming affect the practical fairness, which have similar results as the perceived
fairness.

The study is organized as follows: Section 5.2 presents the approaches and the
results of three research questions. Section 5.3 discusses the broader implications
of our observations. Section 5.4 discloses the threats to the validity. Section 5.5
lists prior related work. Finally, Section 5.6 concludes our works.

The code review process represents the process that patch reviewers and patch
authors perform code review related activities. The mechanism of MCR provides
additional benefits to the development community such as knowledge sharing
among the developers and establishing social connections through the code review
interactions.

A typical MCR process in OSS projects includes the following steps: (1) the
patch author must submit his or her patch to the code review system before
merging it to the code repositories (patches with the same goal can be orga-
nized as a change with an unique Change-id). (2) reviewers perform reviews
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Table 5.1.: Review Score and Definition in OpenStack.

Category Score Definition

+2 Looks good to me, (approved)
+1 Looks good to me, but someone else

Code Review
must approve

0 No score
-1 I would prefer that you didn’t submit this
-2 Do not submit

+2 Succeeded (gate test)

Verify
+1 Succeeded (check test)
-1 Failed (check test)
-2 Failed (gate test)

on this patch and discuss with the patch author through comments. In most
OSS projects, every contributor can perform review but only the core reviewers
have the authorities to approve or verify a patch, which determines whether this
change can be merged or not. Some projects also apply automated review tools
(e.g., Continuous Integration tools) to build and test patches for repeated tasks.
(3) the patch author obtain the feedback from the reviewers and tries to revise
the original patch. MCR system regards the revised patches as the revisions
of the original patch and organize them under the same Change-id. (4) if the
core reviewers who participate in this patch reviews consider that this patch has
achieved the practices of product quality in this project, they will allow this patch
to be merged into the code repositories.

In this section, we examine the code review process in OpenStack. We retrieve
part of the dataset from the code review repositories of OpenStack Gerrit. Open-
Stack is a large, industrial lead OSS project that provides a set of software tools
for building and managing cloud computing platforms, for both public and pri-
vate clouds. OpenStack project started in 2010. Over 200 companies are involved
by the time of March 2015 in its development. However, not all the companies
have the same authorities to determine the particular development tasks or set
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the entire business strategies.
OpenStack uses Gerrit to manage the code review tasks.§ Gerrit is a code

review tool that enables developers to perform code reviews and track the status
of the reviews through web browser. In addition, OpenStack uses review bots
integrated with the CI tools to build and test the patches instead of a human
verifier. Gerrit in OpenStack has two kinds of review categories: Code-Review
and Verify. Reviewers vote the patches based on their judgements. Table 5.1
shows the voting score and their definitions in OpenStack. In the Code-Review
category, the score varies from -2 to +2. (Note that two +1 votes do not make a
+2 vote). In the Code-Review category, Approve means the core members have
approved this patch and it can be merged.

In April 2014, OpenStack added a new category Workflow, where a patch can
be marked as a work-in-progress (WIP) or uncompleted. The purpose of this new
category is to avoid unnecessary costs of the code review. There is an additional
category Verify which is used by Jenkins, the CI tool used in OpenStack. Jenkins
runs the “check” tests and returns the results as a +1 or a -1, depending on if the
tests are passed or not. If a patch is approved and pass the “check” tests, Jenkins
will run the “gate” tests before merging this patch, and return the result as a +2
or a -2. The code is merged only after the “gate” tests are passed successfully.

Note that in this process, every time the patch author updates and resubmits
the patch, all the tests and the review tasks must be performed again, except
when the updates do not include any change (as it might happen when a patch
is rebased in Git).

5.2. Case Study

In this section, we present the results of our case study with respect to our four
research questions. For each research question, we present our approach and
results.

§https://review.openstack.org/
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(RQ1) What is the perception of fairness of
developers in code review?

Since code review is heavily relied on human involvement and the process can
be regarded as a social structure, the fairness or social justice in code review
process should be investigated. Hence, we asked OpenStack developers about
their fairness perceptions in code review practice.

Approach

To address RQ1, we conduct an online survey with OpenStack developers. We
asked the developers what do they perceive their contributions to be treated. In
the survey, we provided three selection questions about how developer perceive
fairness in code reviews practice as follows.

• According to your experience as a contributor, have your contributions been
treated unfairly? (never, rarely, occasionally, often, always)

• According to your experience as a reviewer, do you perform code reviews
unfairly? (never, rarely, occasionally, often, always)

• In general, the code review process in OpenStack is fair. (strongly agree,
agree, neutral, disagree, strongly disagree)

For each question, we provided either 5-point unipolar scale or 5-point likert
scale. Since there is not clear definition about fairness in code review, we in-
cluded an opened-ended question after each question to collect the explanation
or evidence of the answers of respondents. We provided a free-text box for this
open-ended question as below.

• Feel free to explain or provide evidence for your answer (optional)

This survey is focused on the OpenStack code reviewers. Therefore, we selected
only the OpenStack developers who participated in code reviews in the last 4
years. We acquired a list of developers and their email addresses that are recorded
in the code reviews of the OpenStack project (i.e., Gerrit). Finally, we invite the
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Figure 5.1.: Survey responses of fairness perceptions as patch authors.

2,870 OpenStack developers to participate in the survey by emails and the survey
was open for two weeks.

Once we received the responses, we analyzed descriptive statistics on the re-
sponses. Furthermore, we analyzed the responses of the open-ended question by
using Grounded Theory, which is based on the concept of coding [23]. To do
so, we carefully read the responses of the open-ended question and categorized
them into several groups. To mitigate the bias of the categorization results, two
authors of this study performed the coding separately, then their results were
cross-validated.
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Figure 5.2.: Survey responses of fairness perceptions as patch reviewers.

Results

Perception as Developers:
(have your contributions been treated unfairly?)

We are interested to investigate the “perception of fairness from the perspective
of developers”. After the memoing phase, we group the responses of this questions
into seven categories. Each category indicate a reason why respondents perceive
unfairness from their experience in code review processes.

1. Delay and Neglect
Respondents stated that review delay or neglect for a long time to their con-

tributions can be regarded as a phenomenon of unfair treatment.
It largely depends on the project. [Project A] is the absolute worst. Easy
patches for bug fixes can go 9 months without approval.
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Figure 5.3.: Survey responses of fairness perceptions as patch authors.

Reasons: Developers’ mistake (e.g., use Old API) geographical or cultural issue
(e.g., patch authors and reviewers from different countries) Contribution with less
importance

2. Nitpicky Reviews
Respondents stated that they perceive unfairness from the reviewers who are

overly picky to their contributions, especially in detailed parts like spelling, gram-
mar or code style. Some respondents mentioned that they do not regard picky
as unfairness but a quite unpleasant behavior.

I don’t think I’d categorize reviews on my contributions as ’unfair’ but
rather ’nitpicky’. I think there are many reviewers in OpenStack who will
give a negative review not for functionality but rather for a typo or an
extra space...
Influence: It discourages people
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Figure 5.4.: Explanations about fairness perceptions to the entire code review
system.

3. Reputation
Respondents mentioned that the reputation of a contributor or his/her affilia-

tion in community can affect his/her perception about review fairness.
It helps to be a member of a corporation. I would imagine the experience
of anyone contributing on one’s own would be very difficult for many
projects.

It usually takes a bit longer to get a reviewer to look at your code when
they don’t know you. Once you’ve built some trust, it’s easier.
4. Confused Reviews
Respondents stated that sometimes they obtain the confused review feedback,
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Figure 5.5.: Explanations about fairness perceptions as patch reviewers.

such as beyond the scope of their submitted changes, or conflicts and arguments
among reviewers.

Something that usually happens is that you spend a lot of time modifying
your patches to fit the current reviewer’s view, and after a couple months,
a new reviewer takes over and makes you change another bunch of things,
I’ve got patches hanging around for more than a year due to that.
5. Low-value Reviews
low quality feedback
Respondents stated that they perceive unfairness when their contributions re-

ceive low-value reviews, or be rejected without good reasons.
Frequent reviews where reviewers clearly hadn’t even read the code.
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Figure 5.6.: Explanations about fairness perceptions to the entire code review
system.

Recently i had 5 +1 and 1 +2 and a core reviewer gave me a -1 which
was not understandable. I asked him 4 times on IRC to discuss with me
and he ignored it.
6. As a Newcomer
Respondents stated that newcomer may suffer difficulties when contribute, and

they may perceive discouragement or bias from the review feedback.
I have only tried to make one contribution. I was so discouraged by the
response from the reviewer I have not tried again.
Reason: New contributors know few about the project and community.
7. Prioritization
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A few of respondents mentioned that they perceive unfairness from the priori-
tization strategies of core reviewers.

Leads in [Project A] have indicated that their believe the group of core
reviewers focus on reviews they care about primarily (e.g. changes they
want in the project) rather than treating the whole community equally and
fairly.
Perception as Reviewers:

(have your performed review unfairly?)
We are interested to investigate the “perception of fairness from the perspective

of reviewers”. After the memoing phase, we group the responses of this questions
into five categories. Each category indicate a reason why respondents perceive
unfairness from their experience when performing code reviews.

1. Human aspect (WHO)
Respondents stated that human aspect cause a lot of influence when they per-

form code review. They express that a review can be affected by who the author
is and which company the author belongs to.

I try to treat all code review as equal as possible. Often I try to avoid
looking at the name of the contributor so that I am not accidentally biased.
2. Delay
Respondents stated that the delay of reviews may cause unfair perceptions.
There are case that people are trying to delay other’s contributions.
Reasons: Miss the posting order Not enough reviewers (bandwidth)
3. Nitpicky
Respondents stated that they are more strict to the newcomers. However, they

do not treat this behaviors as unfair. The respondents tend to check the small
mistakes such as typo or spelling error, which may cause newcomers perceive
unfairness. Another respondent expressed that he/she is more picky to his/her
colleagues than contributors from other companies.

... I think I do tend to be tougher on a new contributor (or perhaps I’m
just more prone to looking very deeply at their code and as a result, catch
more spelling mistakes and other small errors)
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put into WHO
I often am much more strict when reviewing code from my [Company]
colleagues than I am from other companies. It’s not that I am being
unfair; it’s more that I am just extra picky in how I treat the code.

4. Author’s Fault
Respondents stated that they may perform unfairly because of the problem

of authors. A respondent expressed he/she will stop to review the patches from
particular patch contributors because his/her comments have been ignored by
these contributors.

If I comment on a review several times and the committer totally ignores
the comments, and does not respond, then I’ll stop future review of that
commit. Since I’m under no obligation to review code, I’ll sometimes be
reluctant to select that person’s code reviews in the future.
5. Misunderstanding
Respondents stated that the misunderstanding of reviewed code can be re-

garded as an issue.
Sometimes reviews may be missed or the patch may be misunderstood,
causing the patch owner to appear to have been treated poorly
Perception to the entire project

(In general, the code review process in OpenStack is fair?)
We are interested to investigate the “perception to the entire project” from

a wider viewpoint. After the memoing phase, we group the responses of this
questions into six categories. Each category indicate a reason why respondents
perceive fair or unfairness in the entire project.

1. Core contributors (WHO)
Most respondents stated that core (or high reputation) contributors play im-

portant roles in the review process. Some of the respondents claimed the core
contributors deserve more resource and better treatments in code review. Other
respondents expressed that they perceive unfairness from the bias treatments
from/to core contributors.

OpenStack is a *community*. Contributing members in good standing
that regularly and unselfishly carry their share of the workload can and
should expect to receive higher priority for reviews.
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It’s strongly biased towards existing core contributors, whose patches are
often reviewed faster. Tiny issues are allowed to hold up patches, and
delay in review often translates to missing a feature freeze or release win-
dow, and forcing the code to wait for another 6 months to go through the
process again.
2. lack of reviewers
Respondents stated that some projects have few core members, which may

delay the entire work progress and cause unfairness perception.
As the OpenStack projects are becoming bigger, the issue about the number
of core reviewers to review all the changes was raised. This is discussed
regularly in the OpenStack mailing list and there is no easy solution. So
today, the review process is slowed down by the small number of core
reviewers.
3. Politics of reviews
Some respondents stated that the review process is politicized.
Cores review other cores patches, need to get all political to have a decent
chance for a review every 2 to 3 weeks.

I believe the process is fair, but politicized. A submitter is presented with
the illusion that all submissions are equal, when in reality the community
prioritizes PR’s from knows submitters on current topics of discussion.
4. Importance of projects and affiliations
Respondents stated that the importance of projects and affiliations cause dif-

ferent results in the code review process.
... If you spend a lot of time on IRC and the mailing list and work
on areas considered to be important, then you’re more likely to get your
patches reviewed quickly...

Though I’ve not have much issues aside from the delays, I have a lot of
colleagues that have been turned down just because the company that had
the most members in the specific project’s committee did not benefit from
that contribution.
5. Statistics-driven reviewers (WHO)
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A respondent stated that he/she found some “Statistics-driven” reviewers are
unfair. Those reviewers are motivate to generate reviews by the desire of increas-
ing the amount of contributions.

I have contributed and reviewed in 3 projects: A, B, and C. I found that
A and B to be quite reasonable and fair. As stated above, C is a disas-
ter. But in general I have found that the review process and the metrics
gathered by stackalaytics to generally favor negative reviews, especially to
contributions by non-cores. Reviewers have an incentive to increase their
review count on stackalytics, and it is *much* easier to do that by giving
a -1 to someone’s change for some trivial or minor stylistic change than
to actually +1 it.

Most developers perceived they perform code review fairly and have been treated
fairly. Moreover, most developers perceive the entire code review system is fair,
a few of them perceived unfairness.

(RQ2) What is fairness in code review process?

In order to better understand what is the fairness in the code review process, we
perform a literature survey of the concept of fairness [46]. In particular, our goals
of RQ2 are to investigate (1) What is fairness in other areas (e.g., psychology)?,
(2) What is fairness in the context of code review process?, and (3) Can the
concept of fairness be applied to the context of the code review process?

Below, we present our approach of literature survey and discussion of applying
the results of literature survey to the code review context, followed by a general
conclusion.

Literature Survey

We focus on the studies that have been published in the past 10 years (2006-
2016). To ensure the coverage of the survey, we select the prior studies that have
been published in several areas such as computer engineering, psychology, and
management. Therefore, our approach of the literature survey consists of two
steps: searching and filtering. We now describe each step of our approach.
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Searching: To discover the related works on fairness, we search for publica-
tions in Google Scholar using “fairness” as a main keyword. We also use the
“code review” and “computer” keywords for the searching. However, there is no
publications related to fairness in neither the code reviews nor software engineer-
ing studies. We only find several studies address the fairness in terms of resource
allocation in the computer system and computer network. Yet, these studies are
not related to the fairness in terms of human and social aspect. Therefore, we
mainly focus on the literature in psychology studies.

Once we retrieve a set of publications from the discovering step, we expand
this set of publications by searching their references. To determine whether the
publication is related to the fairness, we check the title and the abstract of each
publication. Finally, we identified 17 related publications.

Filtering: In the filtering step, we carefully read these 17 papers. We found
that 7 papers are applicable to investigate our proposed fairness issues occurring
in code review practices. We found that some work mention fairness but the
contents are diverse. For example, some papers apply the concept of fairness
to explain the phenomena and issues in the area of law, politics, or economics.
Due to our limit knowledge, we only keep the papers that mainly introduce the
fundamental concepts of fairness.

Results

From the literature survey, we find that the concept of fairness is derived from
the service fairness and organization justice [34]. These studies are focused on
how do recipients perceive the degree of fairness in the behaviors of service
providers [66] and employees perceive the fairness from employers [34]. More-
over, we can identify three main types of the fairness: (1) distributive [17,22], (2)
procedural [9, 39, 79], and (3) interactional [17] fairness. Table 5.2 lists the basic
rules and their examples for each type of fairness, which we describe in detail
below.

Distributive Fairness: The distributive fairness refers to the fairness in the
outcome of a dispute, a negotiation, or a decision [17,22]. Distributive fairness is
focused on the fair exchange between a contribution and an outcome. There is
three applicable rules for distributive fairness, i.e.,(1) Equity, (2) Equality, and
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(3) Need. Equity refers to the distribution of rewards and resources that should
correspond to one’s contribution. In contrast of equity, equality requests everyone
to receive the same outcome regardless the contributions. Need refers to whether
the outcome meets the requirements of the recipient.

Procedural Fairness: The procedural fairness refers to the fairness in the
procedures of deciding the outcome [79]. The rules of procedural fairness include
control (including process-control and decision-control), consistency, bias suppres-
sion, information accuracy, correctability, and ethicality. Procedural fairness is
related to timeliness, responsiveness, and convenience of the issues handling pro-
cess. For example, several studies have found that the long-term waiting causes
participants’ negative emotion, which leads to unfairness perception [9, 39].

Interactional Fairness: The interactional fairness refers to the interpersonal
treatments between recipients and decision makers during the process. In partic-
ular, the interactional fairness requires a good social manner such as politeness,
respect and dignity. Prior studies have shown that the fair interactional prac-
tices bring better overall evaluations of complaint handling process in service
fairness [17].
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Applying Fairness Theory to Code Review Context

From our results of the literature survey, we apply the concept of fairness to
the context of the code review process. Thus, we separate a typical code review
process into three main phases corresponding to the three categories of fairness
theory, i.e., interactional fairness, procedural fairness, and distributive fairness.
Figure 5.7 provides an overview of the three perspectives of fairness in the code
review process. Below, we discuss how the fairness theory (see Table 5.2) can be
applied to the code review process as shown in Table 5.3.

Distributive Review Fairness:
Distributive review fairness refers to the fairness in the outcome of the code review
process. The review outcome includes a decision (i.e., whether a patch should be
integrated into the software repositories or not) and reviewing time (e.g., when
to review a patch and how long). Since the patches in the code review process
are diverse, one should not expect that every outcome will be equal. However,
since the long-term code reviews can disappoint developers, the review outcomes
of patches should close to an mean value or a similar result. Hence, we suggest
that the equity and equality rules should be applied in the code review process.
Furthermore, a project should avoid merging the patches with low quality. Thus,
the need rule should be applied in code reviews.

We propose that the reviewing time and review feedback can be used to measure
the distributive review fairness in code review practices. The reviewing time refers
to the timestamp of each review feedback , while the review feedback presents the
reviewers’ opinion towards a patch or revisions.

Procedural Review Fairness:
Procedural review fairness refers to the fairness that exists in the procedures of
code reviews.

Since the procedures of code review are involved by developers, we suspect that
the behaviors of the participants can influence the fairness in the code review
process. In the code review process, developers can act as both a patch author
and a reviewer, i.e., creating a patch and selecting a patch to review. To yield
a fair review system, when developers act as reviewers, they should apply the
code review process consistently to every patch without bias. In other words,
the consistency rule and bias suppression rule should be applied in the code
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review process. Furthermore, developers should able to express their opinion
about code review practices and get responses from others (i.e., control rule).
For example, when a developer is searching for a reviewer for his or her patch
in case of emergency, the review system or project should allow the developer to
express his or her request.

Since the review procedures are designed by projects, the policy of a project
is essential to the fairness of code reviews. On the granularity level of system
(project), a fair code review process should: (1) provide accurate information
to developers (i.e., Information accuracy rule), (2) prepare for correcting the
mistakes in review process (i.e., Correctability rule), and (3) adhere to ethical
and moral principles in practices (i.e., Ethicality rule).

We propose that the review priority of patches, the communication between
review participants, and the project policies can be considered to measure the
procedural review fairness in code review practices. The review priority refers to
the priority of a patch based on the potential prioritization strategies of reviewers.
From mining the information of communication, we can identify that whether
individuals can control the review process. The project policy refers to the policies
established by project managements to protect the interests of developers.

Interactional Review Fairness:
Interactional review fairness refers to the fairness that exists in the interpersonal
treatments in the code review process. In particular, during code review, re-
viewers examine a patch and provide feedback to the patch author. The patch
author can either revise the patch to address the reviewer feedback or discuss
with the reviewers in order to find a better solutions. According to such review
practices, the quality of code review is heavily relied on this social interactions
between patch authors and reviewers. Hence, the politeness, respect, and dignity
rules should be applied in the code review process. Therefore, we assume that
interpersonal treatments during interactions can influence the fairness in the code
review process.

We propose that the communication can be considered to measure the proce-
dural review fairness in code review practices. In a modern code review process,
many communication channels exist to support developers. Developers can use
the internet relay chat (IRC), email or comment in the code review system di-
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rectly to communicate.
The concept of fairness can be applied to the code review context. Furthermore,

we suspect that: (1) the review outcomes in the distributive review, (2) the
behaviors of participants and the policies of projects in the procedural review,
and (3) the interpersonal treatments in the interactional review, can influence
the fairness in the code review process.

(RQ3) How do reviewers prioritize code reviews
and how do prioritization strategies reflect
review fairness?

Our RQ2 has shown the concept of fairness in the code review context. Moreover,
it is a likely case that the behaviors of participants in the procedural review can
reflect the fairness in the code review process. Hence in RQ3 we further investigate
how do reviewers select and prioritize a patch to examine.

Approach

To address RQ2, we conduct an online survey with OpenStack developers. We
asked the developers how they prioritize a patch to review. Figure 5.8 shows
the overview of the survey. In the survey, we provided five possible prioritization
strategies, i.e., a patch is selected based on (1) the developer’s expertise, (2) the
importance, (3) the author of the patch, (4) the difficulty (the easiest or the most
difficult patch first), or (5) the freshness (the newest or the oldest patch first).
For each strategy, we provided a 5-point unipolar scale of the priority. To comple-
ment our predefined prioritization strategies, we also included an opened-ended
question to collect the additional responses if developers have other prioritization
strategies. We provided a free-text box for this open-ended question.

Results

Among 2,870 OpenStack developers, we received 213 responses, with a response
rate of 7.4%. We also received 48 open-ended responses from the free-text ques-
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Figure 5.8.: An overview of the developer survey for patch prioritization
strategies.

tion of the survey. Base on the responses, we are able to obtain a brief understand-
ing on how OpenStack reviewers prioritize patches and how these prioritization
strategies affect the unfairness issues during the code review process. Figure
5.9 shows the summary of the survey responses using stacked bar chart. Table
5.4 shows the categories of patch prioritization and their respective frequencies,
which are based on the open-ended responses. In below, we present our findings
according to our prioritization strategies.

Expertise: We found that patches where the reviewers have related expertise
tend to have higher priority. Figure 5.9 shows that 43% of the respondents pri-
oritize the patches where they have the related expertise as essential. Moreover,
10% and 41% of the respondents prioritized such patches as medium and high,
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Figure 5.9.: Survey responses of patch prioritization strategies.

respectively. Only 6% of the respondents prioritize such patches as no or low
priority. Table 5.4 also shows that the respondents tend to select a patch based
on their expertise (12 of 48 responses). From these responses of the open-ended
question, we found two main reasons that lead the respondents to select a patch
based on their expertise. One reason is to increase the productivity of reviewing
code:

“Usually, I try to look for places where I have experience so that I can
maximize the time I have available to contribute.”

Another reason is to ensure the quality of reviewing code, i.e., reducing the like-
lihood of misunderstanding the effects of the code to be reviewed and of making
mistakes during the review:

“I focus on the projects that I have experience. To increase the quality of
code review, I am always reviewing very carefully.”
Importance: Similar to the expertise, we find that the important patches tend

to have higher priority. Figure 5.9 shows that 35% of the respondents prioritize

68



the important patches as essential, 46% of them as high, and 11% of them as
medium. On the other hand, only 8% of the respondents prioritize the important
patches as no or low priority. From the open-ended question, the respondents
stated that they prioritize the patches with high impacts or the patches that may
block other patches, e.g., patches with dependency on others (5 of 48 responses),
security-related issues (3 of 48 responses), and bugs (2 of 48 responses):

“security requirements are on essential priority” and “dependencies: re-
views which are dependencies to other reviews are on higher priority.”
Who: We found that there is priorization based on who the patch author is.

Figure 5.9 shows that 56% of the respondents gave a medium to essential priority
to the patches that are made by particular developers. Table 5.4 shows that 10
of 48 respondents prefer to review the patches made by the patch authors who
the respondents know or those who come from the same affiliation:

“I respond to requests to review code from the (patch) author or team I’m
working with.” and “Those who have tagged me as a reviewer, or that I
have reviewed a previous patchset of first.”
Difficulty: We found that easy patches have a higher chance to be reviewed

before more difficult patches. Figure 5.9 shows that 67% of the respondents prefer
to review the easiest patches first with medium to essential priority, while only
40% of the respondents prefer to review the most difficult ones. From the open-
ended question, 6 of 48 respondents confirmed that they prioritize the patches
that are perceived as easy to review. However, no response describes any reason
why some respondents prioritize the complex patches to review first:

“I often try to review the changes that are most likely to get merged quickly
first. Often this is the code reviews that are easy or do not contain a lot
of changes in the same patch.”
Besides the difficulty, we also found that another prioritization strategy is se-

lecting patches that already have positive feedback from other reviewers or that
have passed the integration tests (9 of 48 responses):

“I try to prioritize patches with positive feedback from reviewers (first)
and CI (second).”

Freshness: Though we designed the freshness as two possible strategies (the
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newest or the oldest patch first) in closed-ended questions, only one respondent
stated that he or she prefers to prioritize the patches from the freshness from the
open-ended responses. This respondent expressed that he or she equalizes the
review opportunities for all the patches in order to reduce the number of ignored
patches (i.e., old patches first).

“I sometimes pick patchsets mostly at random that have been around for
a bit, just to try to reduce the problem of patchsets that sit around without
getting sufficient review.”
Others: Besides our predefined prioritization strategies, we obtain the other

strategies that were reported by some respondents. Several respondents (4 of 48
responses) also stated that they prioritized a patch that benefits them or aligns
their interests (i.e., egocentric):

“The ones that are most critical for my solution.” and “Area of codebase,
where I have my interest - to figure out the changes in the landscape,
which may potentially impact my work”

Furthermore, 2 of 48 respondents reported that they prefer to review the
patches without prioritization strategies:

“Random: something catches my eye when it’s committed....”
One respondent described that he or she prioritizes patches based on the busi-

ness requirements of the OpenStack system, rather than the needs of individuals
or organizations:

“....Look for features or bugs that have cross-company consensus (again
based upon shared customer requirements, real-world use cases). I lower
the priority of things where it is apparent a single company is trying to
force in proprietary code....”

Although the goals for most of the prioritization strategies tend to increase the
productivity of reviewing code (i.e., expertise, importance, difficulty), there also
is a likely case that patches are prioritized based on the author of the patches.
Such practices can indicate potential unfairness in the code reviews process.
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(RQ4) What does the data tell us about the
practical review fairness?

We want to further investigate whether the patch authors related bias has an
effect on the distributive review fairness. In a fair review system, there should
not be an association between the reviewing time and the affiliation of the patch
author.

Human factors Influence

Approach

To address our RQ3, we performed a quantitative analysis to investigate the effect
of patch author’s affiliation on the reviewing time. In particular, we studied the
patch author’s affiliation from three perspectives: (1) same affiliation, i.e., a patch
author who comes from the same affiliation as the reviewers, (2) core affiliation,
i.e., a patch author who comes from the core affiliation (i.e., the affiliation that
has OpenStack core members), and (3) self-approved, i.e., a patch author who
is one of the reviewers. Furthermore, we studied the reviewing time in terms of
the feedback delay, i.e., the time from a patch submission to its initial feedback
and the review length, i.e., the time from a patch submission to its integration.
Below, we describe our data preparation and analysis approaches.

Data preparation:
We used the review dataset from our data study [86] which describes the patch
information, the personnel involved, and review discussion history.¶ This dataset
captures review history from July 2011 to March 2015. Furthermore, we used
the dataset of Gonzalez-Barahona et al. [32] to include the affiliation information
of the personnel involved.‖ We then linked the information between our dataset
and the affiliation dataset using the username field in the affiliation dataset and
the user-id field in our dataset. For the developers that we cannot identify
their affiliation (221 developers in total), we manually examined their personal
websites and social media (e.g., GitHub, Twitter, and LinkedIn) to identify their

¶http://kin-y.github.io/miningReviewRepo/
‖http://gsyc.es/~jgb/repro/2015-msr-grimoire-data/
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affiliations.
Once the review datasets are linked, we cleaned the data in order to ensure the

accuracy of the study results. Since the OpenStack project is composed of several
sub-projects, we selected only the official sub-projects for our study.∗∗ Then, we
selected the patches where their reviews are closed (i.e., a review that is marked
as merged or abandoned). We also removed the patches that are generated by
automatic tools, since our study is focused on human involvements. Table 5.5
provides an overview of the dataset that we used for this study.

Finally, we identified a patch corresponding to the three perspectives of patch
author’s affiliation, i.e., same affiliation, core affiliation, and self-approved. We
identified a patch as a same affiliation patch if the author of the patch has the same
affiliation as one of the reviewers of the patch. Otherwise, we identified the patch
as a different affiliation patch. We identified a patch as a core affiliation patch if
the affiliation of the patch author has at least one core member. Otherwise, we
identified the patch as a peripheral affiliation patch. We identified a patch as a
self-approved patch if the patch author has approved the patch for integration.
Otherwise, we identify the patch as a peer-approved patch. Table 5.6 shows the
results of our classifications.

Data analysis:
Since several studies have found that the reviewing time and the patch size often
related to each other [14,38], we also check the correlation between the reviewing
time and the patch size using Spearman’s correlation [41].

Then, we used the one-tailed Mann-Whitney U tests to statistically confirm the
differences between the reviewing time (i.e., the feedback delay and the review
length) of the patches that are identified as same affiliation (core affiliation or
self-review) and the reviewing time of the patches that are classified as different
affiliation (peripheral affiliation or peer-review) (α = 0.05). We also used Cliff’s
δ [47] to measure the effect size, i.e., magnitude of the differences. Cliff’s δ is
considered as negligible for δ < 0.147, small for 0.147 ≤ δ < 0.33, medium for
0.33 ≤ δ < 0.474, and large for δ ≥ 0.474.

∗∗http://git.openstack.org/cgit/openstack/governance/tree/reference/projects.
yaml
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Figure 5.10.: A comparison of reviewing time between patches where the patch
authors come from the same affiliations (blue) and the different
affiliations (gray) as the reviewers of the patches. The horizontal
lines show the median values of the distributions.
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Results

From the correlation analysis, we find that the correlation between the reviewing
time and the patch size is relatively small, i.e., Spearman’s correlation of 0.19 for
feedback delay and Spearman’s correlation of 0.32 for review length [41].

The same affiliation patches tend to undergo reviews with shorter
reviewing time than the different affiliation patches do. Figure 5.10
shows that the feedback delay of the same affiliation patches is shorter than
that of the different affiliation patches. The median values of the feedback delay
are 15 hrs for the same affiliation patches and 36 hrs for the different affiliation
patches. Similarly, Figure 5.10 also shows that the review length of the same
affiliation patches is shorter than that of the different affiliation patches. The
median values of the review length are 2.1 days for the same affiliation patches
and and 5.7 days for the different affiliation patches. Mann-Whitney U tests
confirm that the differences are statistically significant (p-value < 0.001 for both
feedback delay and review length), with small effect size (δ = 0.23 for feedback
delay and δ = 0.25 for review length).

The patch authors who do not come from the same affiliation as the reviewers
are more likely to suffer from a longer (small effect) review waiting of patch
examination than the patch authors who come from the same affiliation as the
reviewers.

The core affiliation patches tend to undergo reviews with shorter
reviewing time than the peripheral affiliation patches do. Figure 5.11
shows that the feedback delay and the review length of the core affiliation patches
are shorter than those of the peripheral affiliation patches. The median values of
feedback delay are 1.1 days for the core affiliation patches and 1.8 days for the
peripheral affiliation patches. The median values of the review length are 4.2 days
for the core affiliation patches and 7 days for the peripheral affiliation patches.
Mann-Whitney U tests confirm that the differences are statistically significant
(p-value < 0.001 for both the feedback delay and the review length). However,
we find that the effect size is negligible with a δ value of 0.11 for the feedback
delay and a δ value of 0.14 for the review length.
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Although the differences are statistically significant, there is a less likely case
that the patch authors come from peripheral affiliations will suffer from a long
review waiting.

The self-approved patches tend to undergo reviews with shorter re-
viewing time than the peer-approved patches do. Figure 5.12 shows that
the feedback delay and the review length of the self-approved patch are shorter
than those of the peer-approved patches. As for the median values, the feedback
delay of the self-approved patches is one hour, while the feedback delay of the
peer-approved patches is one day. Similarly, the median values of the reviewing
time are 6 hrs and 5 days for the self-approved patches and the peer-approved
patches, respectively. Mann-Whitney U tests also confirm that the differences
are statistically significant (p-value < 0.001 for both feedback delay and review
length). Moreover, the effect size of the differences are large for both the feedback
delay (δ = 0.57) and the review length (δ = 0.56).

The self-approved practices significantly affect the reviewing time.
Prioritization Influence
We further investigate that how we can measure the review fairness in a priori-

tization review system. Below, we present our quantitative approach of adopting
a queuing system model to measure fairness in a code review system, followed by
the results of statistical analysis.

Approach

Since we found that prioritization behaviors strongly affect the reviewing time
in code review processes, we regard a code review process as an time ordering
process, which represents every patch in the code review process has an ordinal
position according to the time (e.g., the arrival time of a patch). Thus, we apply
a queuing system model from the perspective of social justice (fairness) [9,10] to
address RQ4. Ordered queues have been used in many scenarios of real life, such
as supermarket, hospitals, airports, computer (network) systems and many other
systems [58]. A queue conducted by people can be regarded as a miniature of
social construct, and the main reason for using this formation is to maintain the
social fairness of participants.

In this study, we use two disciplines of queuing system that have been regarded
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as most fair from the perspective of service providers. The most common, natural,
and traditional queuing disciplines is first-in-first-out (FIFO), or first-come-first-
served (FCFS). The FIFO discipline comes from the practices of queues where the
total amount of service is limited by the resource of service system. For example,
the queuing system in a supermarket is a typical FIFO discipline: customers are
lining up in front of several counters, and the cashiers will serve the customers
one by one. However, FIFO is not the only fair queue discipline, prioritizing short
jobs ahead of long jobs can also be treated as fair, which is known as shortest-
job-first (SJF) or shortest-job-next (SJN). Prior study has proved that waiting
in a queue can cause emotion changes [81]. Avi-Itzhak et al. simulate a scenario
happened in a supermarket [9]: a customer holding only one item lines behind
another customer carrying a fully loaded cart of items. In the viewpoint of a
cashier, would it be more fair to serve the customer with only one item ahead
of the customer with a fully loaded cart? This case may be fair, if the cashier
regards fairness from the service time principle: the one who demands the least
of the server’s time should be served first. Thus, we use both the FIFO and SJF
disciplines to measure fairness in the code review queuing system.

A code review process can be regarded as a blind queuing system. OpenStack
adopts Gerrit as the review tracking system, every patch (or revision) must be
committed and stored in the pending repositories of Gerrit. Despite the review
system in OpenStack is not designed as a typical queuing system that follows the
FIFO discipline, the OpenStack project managements still suggest that reviewers
should prioritize the patches by their arrival time (i.e., the FIFO discipline)††.
Moreover, from the observation of Figure 5.9, we found that 67% of the respon-
dents choose easiest patches as priority, which implies the SJF discipline. Thus,
we apply a queuing system mode based on the code review practices. In the code
review queuing system, we assume that all patches can be ordered by different
factors, such as the arrival times of patches or the difficulties of patch reviews.
However, a code review queuing system is different from the queuing systems in
supermarket or hospital. In code review process, a patch author submits a new
patch and he/she may expect to get the review feedback in a certain time frame

††https://wiki.openstack.org/wiki/Nova/CoreTeam#Review_Prioritization
see “Review Expectations”

78



(e.g., seven working days). On the other hands, a reviewer is able to choose
any patch from the queue to perform reviews according to his/her prioritization
strategies. However, the patch author may never know the actual position of
his/her patch in the code review queue, which is prioritized by the reviewer. For
example, this patch has been treated as a lower priority from reviewers, the patch
author may only notice that the review cost relatively longer time than normal.

We define a code review timeline to present when code review related activities
have occurred in each patch. Figure 5.13 is an example of the code review time-
line. A patch in code review timeline includes two main timeframes: waiting and
reviewing. Waiting timeframe presents the period from a patch first arrives to
code review system until the first core-review happens to this patch. Reviewing
timeframe presents the period from the first core-review of a patch, until the close
time of this patch. We assume that three patches exist in a project as shown in
Figure 5.13. After the prioritization of reviewers, we observe the following results:

Three patches P1, P2, and P3 that arrived with different arrival times (i.e.,
A1 < A2 and A2 < A3. Observe the scenario in this example, we found that: (1)
P3 has been core-reviewed earlier than P1, and P1 has been core-reviewed earlier
than P2 (i.e., F3 < F1 and F1 < F2), (2) P3 has been closed earlier than P2, and
P2 has been closed earlier than P1 (i.e., C3 < C2 and C2 < C1).

Results

From the correlation analysis, we found that the correlation between review-
ing time and skip metrics is strong negative, which implies the prioritization
activities significantly affect the review outcomes. From this result, we identify
the prioritization strategies are essential to maintain the fairness perceptions of
review participants.

The target dataset is retrieved from the projects (the sub-project, a.k.a. com-
ponents) in OpenStack. We detail the analysis of the entire OpenStack into
several projects because the different project have different reviewer teams with
different expertise as well. Finally, we choose most contributed six projects sorted
by the amount of patches: Nova, Neutron, Heat, Keystone, Horizon, and Cinder.
In our selected six projects, Nova project includes 14,296 changes, while Cinder
includes 3,540 changes. We then calculate the orders of happening times for each
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Figure 5.13.: An example of code reviews timeline. There are three patches with
different review waiting time and reviewing time. The timeline
presents the arrival time, first core-review time, and close time of
each patch.

review activities such as submitted order, first core-review order, and close order.
Finally, the skip metrics that measures the degree of prioritization activities can
be calculated.

We calculate the correlation using Pearson method since the distribution of
skip metrics is normal distribution in a review queuing system. We found strong
correlation between the skip metrics and reviewing time, both first core-review
(-0.90) and close review (-0.88). The results identify that the prioritization sig-
nificantly influence the reviewing time. Moreover, since reviewing time can be
a factor of fairness perceptions, the overuse of prioritization might bring unfair
perceptions to developers and entire project.

5.3. Discussion

In this section, we discuss the implications of the results.
Why is fairness important for code review practices?
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Figure 5.14.: An model of the code review queuing system. This case assumes
that the arrival queue and the expected queue have the same order
following the FIFO discipline. However, the actual queue is different
with the expected queue: P3 skipped two positions (i.e., +2) and
became the first patch to be reviewed by core reviewers. P1 and P2
kept the same order but all of them slipped one position (i.e., -1)
from the expected queue.

The results of our RQ1 show that the concept of fairness can be applied to the
code review context. From Table 5.2, we understand the importance of fairness
and the rules that help to make a fair community. Fairness is important as it
assures people to be treated fairly in a community. Fairness is also important
for decision makers, employers, or the entire community. For example, in a fair
system or community, participants are required to follow the rules, but they are
also able to express their views when they have the needs.

A fair environment helps to establish a friendly, strong, and healthy community
among people. Similarly, a project using code reviews requires a fair community
since the code review activities highly depend on human involvement and social
interactions. Therefore, to perform code reviews more efficiently, we suggest the
practitioners to consider the potential fairness issues in the project communities.

How can we measure the code review practices by using the concept
of fairness?

Here we do the complementary discussion of the results of RQ2 and RQ3: From
the results of RQ2, we found that more than half of the reviewers prioritize the
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patches that are created by particular patch authors. According to the consistency
rule in procedural fairness in Table 5.2, this prioritization practices do not meet
the consistency rule in procedural fairness. Similarly, the bias suppression rule
in procedural fairness requires the decision makers to be neutral. However, some
reviewers report that they tend to select the patches that already have positive
feedback.

From the results of RQ3, we found that there is an association between the
reviewing time and the affiliations of a patch author. According to the equality
rule in distributive fairness, reviewers should treat every patch author equally in
the code review outcomes. However, reviewers spend different reviewing time for
different person.

How can we improve the code review process by using the concept
of fairness?

Since we already found that fairness plays an important role to make stable,
and healthy code review process, we wonder how we can improve the review
practices using the concept of fairness. Based on the findings of this study, we
make several suggestions to practitioners:

(1) The development communities should make prioritization practices more
open and transparent. The openness and transparency help to increase interac-
tional fairness and distributive fairness in the code review process. In particular,
since some prioritization strategies influence the fairness in the code review pro-
cess, the communities can suggest the reviewers to use the strategies with less
bias.

(2) Since the patch authors’ background information (e.g., affiliation) sig-
nificantly affects the code review outcomes, we suggest that communities can
anonymize the user names of patch authors when reviewers perform the code
review practices. Despite some reviewers may guess the patch authors correctly
from their source code, or the project needs a “shortcut” to merge particular
patches, we still provide this suggestion because it reduces the impact of first
impressions to the patch authors.

The perspective of reviewers From the results of our survey in RQ2, we ob-
served that OpenStack reviewers neither followed the FIFO discipline (i.e., Newest
first), nor the last-in-first-out (LIFO) discipline (i.e., Oldest first) as shown in Fig-
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ure 5.9.

5.4. Threats to Validity

External validity

One potential threat to external validity is that the number of projects that we
studied. However, we focused on the concept of review fairness and this concept
has not been defined in software engineering. Thus, we applied a exploratory
research method and we designed three different approaches for three research
questions. In the data collection, we collected the data from both developers
and software repositories by using survey and data mining. As for the analysis,
we applied a mixed method which combine both qualitative and quantitative
approaches. Therefore, our main goal in this study is to establish a new concept of
review fairness and discuss the best method to define and measure it. Nonetheless,
further replication studies on other projects are needed to refine and generalize
our results.

Construct validity

We mainly collected the data from online survey and code review system. One
of the potential threats to construct validity is that we may not capture all the
affiliation information for every developer. We can only include the people who
have recognizable email domain, or free accessible personal information on the
internet. It is difficult to gather information from some individual developers
who use emails from public mailbox providers and have no personal information
on the internet. However, the developers whose lack information of affiliation is
less than 7% of the total number. Considering that OpenStack is an industrial
leading OSS project, we had to ignore the individuals without public personal
information. In addition, we examined that this type of developers contributed
significant fewer than the median.
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Internal validity

Our code review data is collected from the Gerrit repositories of the OpenStack
project. However, Gerrit in OpenStack has several big changes on the API, the
user interface and even the review criteria. These history events of OpenStack
caused some inconsistencies of the dataset. For example, we discovered 3,087
patches (around 5.7% of all patches) that the patch’s submit time is later than the
patch’s closed time. Similarly, the changes on the rules of the code review process
might influence the reviewing time. We need more experiment to determine and
solve this threats.

5.5. Related work

Prior work related to this study can be divided into two main aspects: studies
on code review and studies on fairness theory.

Code Review

We introduce the most important related work with respect to code review stud-
ies. Bacchelli and Bird studied the motivations, the expectations, and the out-
comes of modern code review [11]. Rigby et al. studied the review policies
and examined which metrics have the largest impact on review efficacy in OSS
projects [61]. Balachandran suggested using review-bot to reduce human effort
and improve code review quality [12]. Bosu et al. investigated the factor of useful
reviews to improve the effectiveness of code reviews [19]. Thongtanunam et al.
studied traditional code ownership heuristics using code review activities [72].
Baysal et al. found the non-technical factors of code review can significantly
influence the code review outcomes [13]. McIntosh et al. found that there ex-
ists a negative influence on software quality when the poorly-reviewed code is
merged [49]. Jiang et al. found the experiences of the developers impact the
patch acceptance and the reviewing time [38]. Tsay et al. found that in some
case, even the submitter’s contribution is rejected, the core team still fulfill the
submitter’s technical goals by implementing an alternative solution [77]. Tourani
and Adams studied the impact of human discussions, which is related to the in-
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teractional fairness [75]. Yang et al. studied the social relationships among the
patch authors and the reviewers [85].

Fairness Theory

We look into the concept of fairness in psychology field and we list the related
work with respect to fairness theory research. Leventhal studied the equity is
one of the rules of distributive justice, which implies that the rewards and re-
sources should be distributed in accordance with people’s contribution [21,44,45]
Some studies have been done in the research of the procedural justice [69, 79].
Blodgett et al. examined the influences of distributive justice, interactional jus-
tice, and procedural justice on complainants’ repatronage [17]. Colquitt studied
distributive justice, interactional justice, and procedural justice in organizational
justice [22]. Sindhav et al. performed survey to test the satisfaction of airport
security from the perspective of perceived fairness [67]. Avi-Itzhak et al. studied
the measurement of fairness in queuing system [9,10].

5.6. Conclusions

A code review can be regarded as social interactions between a patch author and
a reviewer of this patch. Though many studies have been done to understand
code review techniques, little research has been directed towards the developers’
behaviors and perceptions in code review practices.

In this study, we are interested in how the developers’ behaviors influence the
code review process, and whether the code reviews are performed fairly among
the developers. We apply an exploratory research method since the concept of
fairness has never been defined in the context of code review. First, we apply
the concept of fairness in the context of code review through a literature survey.
Second, we start an investigation on the behaviors of developers which have a
potential impact on fairness. Final, we investigated whether this unfairness can
influence the review practices.

We made the following main contributions in this study:

• Most participants in OpenStack perceived the whole system is fair, a few
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of them perceived unfairness.

• We proposed a fairness theory in the context of the code review process to
study the fairness issues in review practices.

• Though projects have principles about prioritizing patches in code review
practice, some reviewers use different methods. Prioritization might lead to
potential unfairness perception by some developers.

• We are able to measure fairness metrics and discussed the differences be-
tween perceived fairness and practical fairness.

Our study shed light on the existence of unfairness in the code review pro-
cess, which implies potential risks of the development communities. Our findings
also suggest that the code fairness issues exist, even in a system that most de-
velopers perceived to be fair. However, practitioners should consider to reduce
the unfairness perception of developers when design or improve the code review
process.

86



Ta
bl

e
5.

2.
:T

yp
es

of
Fa

irn
es

s
fro

m
T

he
R

es
ul

ts
of

T
he

Li
te

ra
tu

re
Su

rv
ey

.

C
at

eg
or

ie
s

Ru
le

s
D

es
cr

ip
tio

n
Li

te
ra

tu
re

D
ist

rib
ut

iv
e

Fa
irn

es
s

Eq
ui

ty
R

ew
ar

ds
an

d
re

so
ur

ce
s

ar
e

di
st

rib
ut

ed
in

ac
co

rd
an

ce
w

ith
on

e’
s

co
nt

rib
ut

io
n

[1
7,

22
,4

4
Eq

ua
lit

y
A

ll
pa

rt
ie

s
re

ce
iv

e
th

e
sa

m
e

ou
tc

om
e

re
ga

rd
le

ss
of

co
nt

rib
ut

io
n

[1
7,

22
]

N
ee

d
T

he
ou

tc
om

e
m

ee
ts

th
e

re
qu

ire
m

en
ts

of
th

e
re

ci
pi

en
t

[1
7,

22
]

Pr
oc

ed
ur

al
Fa

irn
es

s

C
on

tr
ol

T
he

ab
ili

tie
s

to
(1

)
vo

ic
e

on
e’

s
vi

ew
s

an
d

(2
)

in
flu

en
ce

th
e

ou
tc

om
es

[1
7,

22
,6

7
C

on
sis

te
nc

y
T

he
pr

oc
es

s
is

ap
pl

ie
d

co
ns

ist
en

tly
ac

ro
ss

tim
e

an
d

pe
rs

on
s

[1
7,

22
,6

7 ]
Bi

as
su

pp
re

ss
io

n
D

ec
isi

on
m

ak
er

s
ar

e
ne

ut
ra

l
[1

7,
22

,6
7

In
fo

rm
at

io
n

A
cc

ur
ac

y
In

fo
rm

at
io

n
ar

e
no

t
ba

se
d

on
in

ac
cu

ra
te

in
fo

rm
at

io
n

[1
7,

22
,6

7
C

or
re

ct
ab

ili
ty

A
pp

ea
lp

ro
ce

du
re

s
ex

ist
fo

r
co

rr
ec

tin
g

ba
d

ou
tc

om
es

[1
7,

22
]

Et
hi

ca
lit

y
T

he
pr

oc
es

s
up

ho
ld

s
pe

rs
on

al
st

an
da

rd
s

of
et

hi
cs

an
d

m
or

al
ity

[1
7,

22
]

In
te

ra
ct

io
na

lF
ai

rn
es

s
Po

lit
en

es
s

W
he

th
er

on
e

ha
s

be
en

tr
ea

te
d

w
ith

po
lit

en
es

s
[1

7,
22

]
R

es
pe

ct
W

he
th

er
on

e
ha

s
be

en
tr

ea
te

d
w

ith
re

sp
ec

t
[1

7,
22

,6
7]

D
ig

ni
ty

W
he

th
er

on
e

ha
s

be
en

tr
ea

te
d

w
ith

di
gn

ity
[1

7,
22

]

87



Ta
bl

e
5.

3.
:R

ev
ie

w
Fa

irn
es

s
in

C
od

e
R

ev
ie

w
Pr

ac
tic

es
.

C
at

eg
or

ie
s

Ru
le

s
D

es
cr

ip
tio

n
M

ea
su

re
m

en
t

D
ist

rib
ut

iv
e

R
ev

ie
w

Fa
irn

es
s

Eq
ui

ty
th

e
re

vi
ew

ou
tc

om
e

co
rr

es
po

nd
s

to
de

ve
lo

pe
r’s

co
nt

rib
ut

io
n

R
ev

ie
w

in
g

tim
e

R
ev

ie
w

fe
ed

ba
ck

Eq
ua

lit
y

Ev
er

y
pa

tc
h

re
ce

iv
es

th
e

sa
m

e
ou

tc
om

e
re

ga
rd

le
ss

th
e

co
nt

rib
ut

io
ns

N
ee

d
th

e
re

vi
ew

ou
tc

om
e

m
ee

ts
th

e
re

qu
ire

m
en

ts
of

pr
oj

ec
ts

Pr
oc

ed
ur

al
R

ev
ie

w
Fa

irn
es

s

C
on

tr
ol

T
he

ab
ili

tie
s

to
(1

)
vo

ic
e

on
e’

s
vi

ew
s

(2
)

in
flu

en
ce

th
e

ou
tc

om
es

C
om

m
un

ic
at

io
n

C
on

sis
te

nc
y

R
ev

ie
w

pr
oc

es
s

is
ap

pl
ie

d
co

ns
ist

en
tly

ac
ro

ss
tim

e
an

d
pe

rs
on

s
R

ev
ie

w
pr

io
rit

y
Bi

as
Su

pp
re

ss
io

n
R

ev
ie

we
rs

ar
e

ne
ut

ra
l

In
fo

rm
at

io
n

A
cc

ur
ac

y
In

fo
rm

at
io

n
ar

e
no

t
ba

se
d

on
in

ac
cu

ra
te

in
fo

rm
at

io
n

Pr
oj

ec
t

po
lic

y
C

or
re

ct
ab

ili
ty

A
pp

ea
lp

ro
ce

du
re

s
ex

ist
fo

r
co

rr
ec

tin
g

ba
d

ou
tc

om
es

Et
hi

ca
lit

y
T

he
pr

oc
es

s
up

ho
ld

s
pe

rs
on

al
st

an
da

rd
s

of
et

hi
cs

an
d

m
or

al
ity

In
te

ra
ct

io
na

l
R

ev
ie

w
Fa

irn
es

s

Po
lit

en
es

s
O

ne
ha

s
be

en
tr

ea
te

d
w

ith
po

lit
en

es
s

C
om

m
un

ic
at

io
n

R
es

pe
ct

O
ne

ha
s

be
en

tr
ea

te
d

w
ith

re
sp

ec
t

D
ig

ni
ty

O
ne

ha
s

be
en

tr
ea

te
d

w
ith

di
gn

ity

88



Table 5.4.: Categories and subcategories of review prioritization strategies that
emerged from the open-ended responses.

Category Sub Category Frequency∗

Expertise 12

Importance
Dependency 5
Security issues 3
Bugs 2

Who 10

Difficulty
Easy patches first 6
Positive feedback 9

Freshness 1

Others
Egocentric 4
Random 2
Business 1

∗Since one responses can have
several prioritization strategies,
the sum of the frequency is higher
than the total number of the re-
sponses.

Table 5.5.: An Overview of the OpenStack Review Dataset
Review data Personnel
# Patches 49,886 # Authors 2,250
Median of Churn 30 # Reviewers 2,870
Median of Reviewers 3 # Core Members 462
Median of Comments 4 # Affiliations 229

Table 5.6.: Patch Classification Results
#Patch #Patch

Same affiliation 11,805 (24%) Different affiliation 38,081 (76%)
Core affiliation 40,478 (81%) Peripheral affiliation 9,408 (19%)
Self-review 2,030 (4%) Peer-review 47,856 (96%)
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Chapter 6.

Conclusion

The main contribution of this dissertation is understanding the human factors
and social aspects in modern code review. Though many studies have been done
from the technical parts like source code quality, post-release bugs in OSS code
reviews and traditional industry code inspections, there are few study focus on the
code review participants: their roles, their behaviors, their perceptions, and the
relationship among them. We explore these human and social related questions
and suggest practitioners that the software developments is a social collaboration
and we should consider the human factors and social aspects of it.

The primary contribution of this work is list as following parts.
(1) Social structure of code review community is essential to evaluate the per-

formance of developers.
Our findings identify that modern code review methods and techniques changed

with the work flow of development life cycle. Findings also present that human
factor significantly influences code review process and outcomes such as behav-
iors. Furthermore, we find interactions among developers such as treatments to
patch contribution affect the perceptions of people and it influences the fairness
perceptions.

As proposed human factor should affect OSS review process, SNA approach
was applied into this case study has researched three OSS projects. Then re-
viewers can be classified into several role groups with significant differences. The
results show there is a strong correlation between the activities of most impor-
tant contributors and their network positions. Network measures distributions
of contributors can be used for evaluating contributors’ activeness. For exam-
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ple, project managements can identify contributors who are enthusiastic but in
a specialized field, and contributors who are in important network position but
unenthusiastic.

(2) Reviewers’ behaviors strongly affect the review process and outcomes.
A code review can be regarded as social interactions between a patch author

and a reviewer of this patch. Though many studies have been done to understand
code review techniques, little research has been directed towards the developers’
behaviors and perceptions in code review practices.

We are interested in how the developers’ behaviors influence the code review
process. We apply an exploratory research method to study the prioritization of
reviewers. We found that even a project have principles about how to perform
code review, the actual review prioritization strategies vary among reviewers and
projects. From the results, we found that prioritization activities significantly
influence the review outcomes like reviewing time. Furthermore, the affiliations
of authors, self reviews strongly affect the reviewing time as well.

(3) Fairness issues exist in code review process and should not be ignored.
Since we already know review prioritization might affect code review outcome

strongly, we further investigate what is the influence and what is the degree of
this influence. We introduce the concept of fairness into code review practices.
Since the concept of fairness has never been defined in the context of code review.
First, we apply the concept of fairness in the context of code review through a
literature survey. Second, we start an investigation on the behaviors of developers
which have a potential impact on fairness. Final, we investigated whether this
unfairness can influence the review practices. The results identify that review
fairness is based on perceptions of developers more than the results of review. A
system that is perceived to be fair by most participants might be perceived as
unfair by some developers. Practitioners should consider the existence of fairness
when they design code review processes and policies, and care more about the
potential negative influence to other developers.

In our future plan, we plan to replicate our approaches to more software
projects. Since different projects have different review processes and different
review techniques, we might need more experiments to evaluate the usefulness
of our approaches. We believe our study can help to identify the human factors
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and social aspects that influence the review communities, and find out the weak
points for the potential improvements in processes or community structures.
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Appendix A.

Mining Repositories

A.1. Database Schema

Fig A.1 represents the data schema of the code review repositories we mined.
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A.2. Details of Tables

Here we introduce the fields of each table.
Change (t_change)
The change table contains the information of changes. In Gerrit, a change

represents a set of patches related to the same topic (e.g., fix a bug or add a new
feature). A change is unique, but it can include more than one revision, which
means the patch author can repeatedly update the change by committing new
revisions with the same change-id.

Table A.1.: Table t_change and field details
PK/FK Field Name Description
Primary Key id Unique id of changes in database (auto increment)

ch_Id A combination of project name, branch name and
change id

ch_changeId Change id in Gerrit
ch_project Project name (repository name) of change
ch_branch Branch name of change

Foreign Key ch_authorId Author’s id of change
ch_createdTime Timestamp of when change was created
ch_status Review status of change, i.e., NEW, MERGED and

ABANDONED

Revision (t_revision)
The revision table contains the information of revisions, which refer to the

patch commit history. Notice that you cannot get people’s id from revision table
directly, because username and email address are the only information stored in
Git.

People (t_people)
The people table contain the developers information who participate in Gerrit

code review. We have hashed the names and email of developers using SHA-1
to protect the privacy of developers. However, we remain the domain of email
address for each developer.

History (t_history)
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Table A.2.: Table t_change and field details
PK/FK Field Name Description
Primary Key id Unique revision id in database (auto increment)

rev_Id Commit id of revision
rev_subject Subject of revision
rev_message Message of revision
rev_authorName Author’s name in the revision (SHA-1)
rev_createdTime Timestamp of when revision was created
rev_committerName Committer’s name in the revision (SHA-1)
rev_committedTime Timestamp of when revision was committed

Primary Key rev_patchSetNum Revision number in change
Foreign Key rev_changeId Change that the revision belongs to

Table A.3.: Table t_change and field details
PK/FK Field Name Description
Primary Key id Unique people id in database (auto increment)

p_id Id of developer in Gerrit
p_name Name of developer in Git (SHA-1)
p_email Email address of developer (SHA-1)
p_domain Domain of email address

The history table records the review comment history. Every review comment
can be mapped to certain change and revision.

File (t_file)
The file table contains the files and churn (lines of code that added and deleted)

information. One file can be modified in various propose and involved in different
revisions and changes.
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Table A.4.: Table t_change and field details
PK/FK Field Name Description
Primary Key id Unique comment id in database (auto increment)

hist_id Comment id in UUID form
hist_message Review comment message

Foreign Key hist_authorId Author id of review comment
hist_createdTime Timestamp of when review comment was created

Foreign Key hist_patchSetNum Revision number that review
comment was created for

Foreign Key hist_changeId Change id that review comment was created for

Table A.5.: Table t_change and field details
PK/FK Field Name Description
Primary Key id Unique file id in database (auto increment)

f_fileName The path and name of file
f_linesInserted Number of inserted lines
f_linesDeleted Number of deleted lines

Foreign Key f_revisionId Revision id that file belongs to
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A.3. Example of query

Here are some examples about how to query our database.

Query the number of changes by status
Default status in Gerrit includes Merged, Abandoned and New

SELECT COUNT(∗ ) , ch_status FROM t_change
GROUP BY ch_status ;

Query all the review with -2 vote

SELECT ∗ FROM t_his tory
WHERE hist_message LIKE ’%Do not submit%’
OR hist_message LIKE ’%Code−Review−2%’
ORDER BY hist_createdTime ASC;

Query all the review with -1 vote

SELECT ∗ FROM t_his tory
WHERE hist_message LIKE ’%I would p r e f e r that
you didn \ ’ t submit t h i s %’
OR hist_message LIKE ’%Code−Review−1%’
ORDER BY hist_createdTime ASC;

Query all the review with +1 vote

SELECT ∗ FROM t_his tory
WHERE hist_message LIKE ’%Looks good to me,
but someone e l s e must approve%’
OR hist_message LIKE ’%Code−Review+1%’
ORDER BY hist_createdTime ASC;
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Query all the review with +2 vote

Note that some projects have different rules about patch approvals.

SELECT ∗ FROM t_his tory
WHERE hist_message LIKE ’%Looks good to me, approved%’
OR hist_message LIKE ’%Code−Review+2%’
ORDER BY hist_createdTime ASC;

Query all the core reviewers

Here we define the core reviewers as the reviewers who voted +2 or -2

SELECT d i s t i n c t h ist_authorId FROM t_his tory
WHERE hist_message LIKE ’%Looks good to me, approved%’
OR hist_message LIKE ’%Code−Review+2%’
OR hist_message LIKE ’%Do not submit%’
OR hist_message LIKE ’%Code−Review−2%’
ORDER BY hist_createdTime ASC;
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A.4. Obtain the source code

In this example, we obtain the diff of commits (revisions) in the source code
repositories of OpenStack Nova Project.

1) Clone the repositories.

g i t c l one https : // g i t . openstack . org / openstack /nova

2) Check the patchsets (revisions) of changes. For example, we examine a
patchset (change-id = 176805). You will get a list of patchsets of this change.

g i t l s −remote | grep /176805/

3) Get the revisions and create new branches. Here we create two new branches
based on patchset 1 and patchset 2.

g i t f e t ch https : // rev iew . openstack . org / openstack /nova
r e f s / changes /05/176805/1
g i t branch change /176805/1 FETCH_HEAD

g i t f e t ch https : // rev iew . openstack . org / openstack /nova
r e f s / changes /05/176805/2
g i t branch change /176805/2 FETCH_HEAD

4) Compare the diff file. You can also save the diff to local.

g i t d i f f change /176805/1 change /176805/2

or

g i t d i f f change /176805/1 change /176805/2 >
d i f f −176805−1−2. txt
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(Similar shell script to fetch all the diff, please check https://github.com/saper/gerrit-
fetch-all/blob/master/gerrit-fetch-all)
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Appendix B.

Online Survey

B.1. Request Email

We sent personalized email to each potential participate in OpenStack Project
for the survey of code review fairness. The goal of this request was to show
investigate the factors that influence developers to perceive fairness or bias in
peer review processes.

Dear {PARTICIPANT NAME} ,

I am a PhD student at Nara I n s t i t u t e o f Sc i ence and
Technology , Japan , and I work with a group o f r e s e a r c h e r s
from Canada and Spain . We are r e s e a r ch i ng the code review

proce s s and e f f e c t i v e n e s s in OpenStack .

We are i n t e r e s t e d in your pe r cept i on o f the code review
proce s s . There fore we have b u i l t a smal l survey composed
o f 5 que s t i on s . This survey should take 3−10 minutes to
answer . The r e s u l t s o f t h i s r e s ea r ch w i l l be shared with
the OpenStack community .

This survey can be acce s s ed at
http :// sd lab . n a i s t . jp /members/kin−y/ survey . html

102



For more in fo rmat ion about our r e s ea r ch group , p l e a s e
v i s i t http :// kin−y . g ithub . i o /groupCodeReview/
Furthermore , i t w i l l be very appr e c i a t i ng i f you can
prov ide us with your feedback .

Thank you in advance .

S inc e r e l y ,

Xin
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B.2. Survey Information

We present the details of our online survey as follows:

Title
OpenStack Survey on Fairness in Code Reviewing

Subtitle
A survey on how fair code reviewing process is in Free/Open Source Projects.

Research Goal
We want to investigate the factors that influence developers to perceive fairness or
bias in peer review processes. As perception is very subjective, we have launched
a survey and are asking OpenStack developers to give us their input.

Survey Period
1st Announcement: 22 Feb 2016
2nd Announcement: 29 Feb 2016
Closing: 7 Mar 2016

Details
Both industrial software projects and Free and Open Source Software (FOSS)
projects have adopted peer review as an important quality assurance technique
in their software development process.

Many studies have been done to understand the peer review techniques, but
little research has been directed towards the developers’ personal understanding of
the peer review process. In this paper, we propose a novel approach to investigate
the factors that affect developers to perceive fairness or bias in peer reviews. We
define review fairness metrics to measure the degree of fairness perceived by
developers who participated in the peer review process.

Statistical models are used to determine the factors that affect the percep-
tion of fairness and help in predicting if a review is fair or not. These metrics
are evaluated in an empirical study of the peer review process of OpenStack, a
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large FOSS project mostly contributed and managed by several large commercial
organizations.

In addition, we ask developers about how they perceive the code reviewing pro-
cess in regard to its fairness. Therefore, a survey has been created and OpenStack
developers have been kindly invited to participate.

Research Team

This survey is carried out by an international group of researchers with ample
experience in the study of Free/Open Source Software projects.

Xin Yang
PhD student, Nara Institute of Science and Technology, Japan.

Germán Poo Camaño
PhD student / developer, University of Victoria, Canada.

Daniel M. Germán
Professor, University of Victoria, Canada.

Gregorio Robles
Associate Professor, Universidad Rey Juan Carlos, Spain.
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B.3. Survey Questions

Description We are researching the code review process in OpenStack and its
effectiveness. We are interested in the developers’ perception of the code review
process, either as a reviewer, patch contributor or both.

This survey should take around 3-10 minutes to answer 5 short questions.
The results of this research will be shared with the OpenStack community.
For more information (goals, research team, etc.), please go to http://kin-

y.github.io/groupCodeReview

Questions

1. How many hours a week do you usually spend reviewing code
(single choice)

• less than 1 hour

• 1 ∼ 2 hours

• 2 ∼ 4 hours

• 4 ∼ 8 hours

• 8 ∼ 15 hours

• 15 ∼ 20 hours

• 20 ∼ 40 hours

• more than 40 hours

2. When you review code, how do you prioritize what contribution
to review?

Do you have other review prioritization strategies? (optional)

3. According to your experience as a contributor, have your contri-
butions been treated unfairly?
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Not a Low Medium High Essential
priority priority priority priority priority

Oldest first
Newest first
Most Importance first
Most difficult first
Easiest first
Based on what your
expertise is
Based on who the author
of the contribution is

• never

• rarely

• occasionally

• often

• always

Feel free to explain or provide evidence for your answer (optional)

4. According to your experience as a reviewer, do you perform code
reviews unfairly?

• never

• rarely

• occasionally

• often

• always
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Feel free to explain or provide evidence for your answer (optional)

5. In general, the code review process in OpenStack is fair.

• strongly agree

• agree

• neutral

• disagree

• strongly disagree

Feel free to explain or provide evidence for your answer (optional)

6. If you have interests in this survey or our research, If so, fill out
your username, e-mail or openstack ID
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Appendix C.

Manual Analysis of Survey

C.1. Examples of coding and memoing

The following images represent the open coding and memoing procedures. The
response are listed on the left and we performed memoing on the right.
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Figure C.1.: Survey responses and coding for filtering theme
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Figure C.2.: Survey responses and coding for filtering theme
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Figure C.3.: Survey responses and coding for filtering theme
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Figure C.4.: Survey responses and coding for filtering theme
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Figure C.5.: Survey responses and coding for filtering theme
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Figure C.6.: Survey responses and coding for filtering theme
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Figure C.7.: Survey responses and coding for filtering theme
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Figure C.8.: Survey responses and coding for filtering theme
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Figure C.9.: Survey responses and coding for filtering theme
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