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Improving Automation in Bug Report

Categorization and Defect Prediction∗

Nachai Limsettho

Abstract

Many automated software engineering techniques have been proposed to help

the process of bug report categorization and defect prediction. While the out-

come of these techniques can be rewarding, the process of deploying them is often

difficult and labor intensive. This dissertation focuses on improving the ease of

deployment for bug report categorization and defect prediction with less human

resources. This dissertation investigates and proposes the solutions for three as-

pects of automated software engineering techniques: nonparametric preprocessing

of natural language, cross-project prediction, and unsupervised categorization. In

preprocessing, a new approach is proposed to extract feature vectors from nat-

ural language in the bug reports and conducted experiments. The experimental

results showed that the new features still retain the pattern which can easily

be categorized by classifier algorithm. The cross-project prediction and unsu-

pervised categorization tackle the same problem, that is, the unavailability of

historical training dataset. When a similar dataset from another project is avail-

able, cross-project approach can be used. This dissertation proposes a technique

for improving the cross-project performance by taking the distribution of the tar-

get unlabeled project into account. Compared with conventional techniques, the

experimental results showed that the prediction performances were significantly

improved. Lastly, the unsupervised categorization framework is proposed for the

situations where the similar dataset is unavailable. Using clustering and cluster

labeling techniques, the proposed framework could automatically categorize bug
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reports with comparable performance to the supervised approach. The conclu-

sion is that the proposed techniques and framework could reduce human efforts

required for the deployment of bug report categorization and defect prediction

techniques, while still retain their performances compared to conventional tech-

niques.

Keywords:

automated knowledge extraction, bug report classification, defect prediction, ma-

chine learning, classification, clustering
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Chapter 1

Introduction: Human Effort and

Knowledge Discovery in Software

Quality Assurance

Nowadays, software development infrastructure is complicated and contains a lot

of connecting components. Bug tracking system, also known as issue tracking

system, is undeniably a fundamental part of any software development infras-

tructure. It is a database that records the information of the known bug and

contains a collection of bug reports submitted by either its developer themselves

or by its end-user. Aside from its usual benefits, it also provides a good quanti-

ty of information which can be extracted and analyzed [1–7], to offer important

insight into the quality of the target software project.

Bug report categorization is often used to extract meaningful information.

This technique can be used in many applications such as: to detect duplicated bug

reports [2, 3, 7], to estimate bug fixing time [1], or to correct bug report type [8].

Machine learning approach is usually employed for this task; most of them rely on

classification [4–8], a supervised learning approach. These approaches construct

a prediction model from the training data of the labeled bug reports that can

later be used to automatically categorize new incoming data into predetermined

labels. The advantage of this approach is that it can greatly reduce the amount

of human effort required after a classification model is built. However, building

the said model is, sometimes, quite difficult. The supervised learning approach
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requires a lot of labeled bug reports to construct its model, but these reports are

often unavailable in many software engineering projects. In most cases, obtaining

this dataset itself is not an easy task, since preparing a training data needs human

inspections and in order for supervised learning to work properly, a large amount

of data is initially required. While the long existing project that already manually

processed its data, could bypass this problem easily; the same could not be said

for many other projects.

While analyzing a bug tracking system has many possible applications, the

major problem is that most of bug report’s information is in the unstructured

form: such as natural language in the title, description , and comment sections.

Traditionally, these reports are inspected by humans [8]; this approach has good

accuracy and flexibility. However, the time it takes to understand each individual

report combined with the numerous numbers of reports makes manually reading

through them impractical or even impossible in many situations [8]. It is clear

that in order to use this natural language information in a practical environment,

the automated translating process is needed. Natural language processing (NLP)

techniques are commonly employed [2,5,9,10] to solve this problem; the raw text

is converted into a more processable form, often to create a set of features vector

from bug reports.

Another essential technique in quality assurance of software engineering is

defect prediction. It is the process of predicting the defect-proneness of software

modules, and helps in organizing and allocating testing resources [11, 12], by

indicating modules with high defective risks. Defect prediction is known to work

well when the prediction model is built using its own historical data [11, 12].

However, given a lack of historical data for a new project, the ability to build

an effective defect prediction model becomes a very difficult task, as specifically

noted by He et al. [13] and Turhan et al [14].

1.1. Motivation

While many quality assurance processes do, indeed, reduce the human effort re-

quired tremendously, many of their parts are still required human experts to

process and oversee the procedures. The effort which could be spent elsewhere if

2



the process becomes automatic. The example of such scenario are:

Example situation 1: The number of topics for topic modeling. The number

of topics is one of the most important parameters required for topic modeling

and often required as an input parameter from an expert in the Natural Lan-

guage Processing (NLP) field. However, the appropriate number of topics largely

depends on the target bug report repository, which means randomly assigning the

number of topics will often lead to performance degradation of the software qual-

ity assurance technique that builds upon it. To account for this problem experts

usually run several experiments to find the suitable number of topics for their

application, this lead to increasing amount of time and resource that required for

the deployment of the target software quality assurance technique. Furthermore,

even when the number of topics is carefully tuned, the increasing amount of text

from the new incoming bug reports will, sooner or later, lead to a change in the

suitable number of topics resulting in the needed for parameter tuning again.

The stream of text in the natural language form is very hard to understand

and interpret by machine learning algorithm. To account for this problem, the

natural language processing (NLP) techniques are commonly employed [2,5,9,10]

to transform the text into matrix form; for example, bag-of-words, N-grams or

Topic modeling. These processes often required input parameters from experts,

i.e. the number of topics for topic modeling, and without carefully tuning, the

performance of the model build upon will usually degrade.

Example situation 2: The preparation of the labeled training dataset. Many

automated quality assurance process in software engineering employed classifi-

cation, a machine learning technique. Even though this process offers a lot of

benefits and utilities, it also has limitation. In order to build a classification

model a set of labeled historical data in required; however, obtaining the said

training dataset is not an easy task, especially if the project is newly started,

a lot of human effort will be required to gather and correct that dataset [8, 15].

While cross-project classification [13,14,16,17], the technique which trains a mod-

el using labeled data from similar projects, can be used to solve this problem. its

performance is still not quite as good as the within project approach. Further-

3



more, there are many situations where cross-project approach can not be applied.

This dissertation aims to reduce the human resource spent in such scenarios and

improving the efficiency of software quality assurance.

1.2. Contributions

This dissertation aims to reduce the amount of human resource needed to deploy

this automation process and offer better solutions that are more automated and

still retain the performance comparable to those of the previous approaches. The

followings are the contributions of this dissertation:

1. Improving an automation process of converting natural language into topic

membership vector by introducing the use of nonparametric topic modeling

instead of the commonly used topic model. This eliminates the need for

parameter tuning, thus further reduces time and effort needed to processing

bug reports.

2. Improving the cross-project prediction performance to improve it feasibility

when it can be applied. Our technique solves the problems associated with

cross-project prediction by using quantification and oversampling

3. Create an automated framework for bug report categorization that is capa-

ble even when the cross-project prediction cannot be applied. Using clus-

tering and cluster labeling methods, our framework provides the definitive

benefit of not requiring any training dataset, while still having comparable

performance to the supervised approach.

1.3. Thesis Layout

This dissertation is structured into seven chapters. The first chapter is this section

which introduces the topic of human effort and knowledge discovery in software

quality assurance.

Chapter 2 and 3 explain the background of this dissertation in the software

quality assurance, NLP preprocessing, and machine learning, respectively.

4



Chapter 4 presents a study of improving automation in the conversion from

text to feature vectors. In the context of bug report classification, we make a

comparison between the feature vectors extracted from the conventional paramet-

ric topic model, Latent Dirichlet Allocation (LDA) [18], and its non-parametric

cousin, Hierarchical Dirichlet Process (HDP) [19]. Empirical evaluation is con-

ducted with manually labeled bug reports from open-source software projects.

Chapter 5 presents a study of cross-project categorization where the historical

dataset of the target project is not available but there is a historical dataset

from another similar project. The proposed algorithm, CDE-SMOTE, focuses

on the problem of imbalance class distribution, where the amount of skewness is

uncertain due to the cross-project scenario. Empirical evaluation is conducted

with code complexity information from open-source software projects.

Chapter 6 presents a study of unsupervised categorization where the historical

dataset is not available at all, for both within and without the target project. This

chapter present the framework for using in such scenario utilizing clustering and

cluster labeling techniques. Empirical evaluation is conducted with manually

label bug reports from open-source software projects.

Finally, Chapter 7 concludes the dissertation with a summary and directions

for future work.
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Chapter 2

Background: Automated System

in Software Quality Assurance

Figure 2.1. Research Areas of this Dissertation

2.1. Bug Report Categorization

The aims of bug report categorization are to categorize unlabeled bug reports

into desired categories. Several different goals can be achieved by this catego-
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rization depending on utilized categories; for example, if categories are Bug and

Others [5], bug report classification can be used to help the assigners decide how

their project resource should be allocated. Or if the categories are whether the

bug report is Duplicated or Not Duplicated [2,3,7], the classification process can

help identifying whether the submitting bug report is the same as any previously

submitted bug reports or not, in order to reduce efforts and save time for de-

velopers in fixing the same issues. There are several kinds of research related

to bug reports categorization. Some [8, 15] use a manual inspection to classify

bug reports according to their interested categories. While using a traditional

approach like this has its own benefits and is necessary for some situations, it

usually requires more time and human resources than what most projects can

actually afford.

To solve this problem, the previous research proposes an automated system

for categorizing bug reports. Most researches use classification [4–8], a supervised

learning approach, to learn concepts from a labeled dataset.As the classification

technique required the input in a form of feature vectors, the bug reports raw

text parts which contain the most information it cannot be used directly. As such

natural language processing (NLP) techniques are usually applied to convert the

raw text parts of each bug report into a feature vector format. Depending on

the approach different kind of vector is utilized, there are mainly three main

approaches usually used in the conversion: Bag of Words [20], N-grams [7], and

Topic Modeling [2,5,9,10]. These NLP processes will be discussed in more detail

in the following NLP section.

While these classification approaches already reduce the development effort

drastically, there are still several areas where they can be improved to be more

automated. For instance, so far, in the previous research employing topic mod-

eling [2,5,9,10], the appropriate number of topics for each project is hard to de-

termine and can be widely different depending on the project. Furthermore, up

to this point, there is yet to be any automated approach to estimate the number

of topics required for accurate bug report type classification. In this dissertation,

we propose a nonparametric approach to automatically classify bug reports with,

another topic modeling method, Hierarchical Dirichlet Process (HDP) [19]. The

result indicates that our nonparametric approach performance is comparable to

8



the parametric one.

Another example of the case where the automation can be improved is the

requirement for a dataset of labeled historical bug reports. In order to create

a bug report classification model, a number of labeled bug reports is needed.

The major problem is that, unless the labeled dataset is readily available, a

huge amount of labor will require to process and categorized these bug report

[8,15]. There are two major solutions for this problem: Cross-project classification

and unsupervised learning, both with advantages and disadvantage of its own.

This dissertation proposes an approach for improving the current cross-project

prediction and provide a new unsupervised alternative for when the cross-project

approach cannot be applied, due to the absent of compatible cross-project dataset.

2.2. Defect Prediction

Defect prediction is the process of identifying fault-prone modules and aids in

the effective allocation and prioritization of scarce testing resources [21]. Several

defect prediction models have been proposed in the past decade employing various

machine learning, statistical and manual approaches. Conventional methods such

as neural networks [22], support vector machine [23], bayesian classifier [24] and

so on [25] have been used. Menzies et al. [26] recommends the application of Naive

Bayes with logNums preprocessing for better defect prediction. These proposed

defect prediction models are however studied in within-project scenarios. The

models are open to projects with historical datasets available hence restricting

their applicability on new projects without any historical dataset available. To

avoid this problem, the cross-project prediction is often employed [13, 14, 16, 17],

it circumvents the problem by using the historical datasets from other projects.

Over the years, several studies [13,14,27–30] have been proposed to solve the lack

of historical dataset problem, which can be divided into two main approaches:

the unsupervised and the cross-project defect prediction approaches.

With the availability of open source datasets, the feasibility of cross-project

defect prediction where datasets of other projects are used to train prediction

models has been investigated in recent years but with an inconclusive result. The

first to attempt on cross-project defect prediction was Zimmermann et al. [27].
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Conducting a large-scale experiment on 12 real-world datasets, 622 cross-project

prediction models were analyzed and investigated for the feasibility of cross-

project defect prediction. Observing a low success rate of 3.4%, they concluded

cross-project defect prediction was still a challenge. In their work, Turhan et

al. [14] proposed a practical defect prediction approach for organizations aiming

to employ defect prediction but lacks historical data. Applying the principles of

analogy-based learning, they use the k-nearest neighbor algorithm which selects

10 nearest data instances for every unlabeled test instance for cross-company de-

fect prediction. They demonstrate that small data samples acquired using their

approach could be used to build effective defect predictors. Similarly, Peters et

al. [17] proposed a new filter which outperformed the Burak filter proposed in

the work by Turhan et al. [14]. The Peters filter selects training data considering

the structure of the other projects and could select as few as one data instance

for each test instance. Conducting large-scale cross-project defect prediction ex-

periments on 34 data sets extracted from 10 open source projects, He et al. [13]

observes that carefully selecting training data from different projects is very vital

for constructing defect prediction models for new projects. They also support

conclusions that cross-project defect prediction works in few cases as previously

reported in studies by Zimmermann et al. [27] and Turhan et al. [14]. Jureczko

and Madeyski [31] applied clustering techniques to partition various projects into

distinct groups with the assumption that projects in the same group have the

similar characteristics. They argue that a defect prediction model trained on

datasets in the same group is reusable for new projects, which tend to have the

characteristics of the group hence no need for datasets to have historical datasets

before defect prediction model could be constructed. Zhang et al. [32] studies the

performance of the ensemble approach, which combines multiple classifiers to-

gether, in the cross-project scenario. Their results indicate that several ensemble

algorithms can outperform the CODEP, a defect prediction algorithm proposed

by Panichella et al. [9].
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Chapter 3

Preliminaries: NLP

Preprocessing & Machine

Learning

3.1. NLP Preprocessing

Most information in bug reports is in the raw text format, which is unstructured

and cannot be directly processed by machine learning algorithms. In order to

convert the raw text into a more processable format, natural language processing

(NLP) techniques are commonly employed often to create a set of features vector

from bug reports. The NLP techniques involve in this dissertation can be cate-

gorized into the following: General Preprocessing, Bag of Words, N-grams, and

Topic modeling.

3.1.1 General Preprocessing

General preprocessing are simple and heuristic techniques that often utilize by

other NLP techniques in order to preprocess the raw text input. While these

techniques are simple, they usually are necessary for improving the quality of the

latter process down the pipeline; although depending on the final goal, a certain

technique could be excluded. The processes that fall into the general category

are Parsing, Tokenization, Stemming, and Stop Words Removal.
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The parsing process goal is to extract the textual information from incoming

bug reports. As most of the time the extracted bug reports are in XML format, a

lot of non- textual information such as tags, attributes, and declarations are also

included. Thus, the parsing process in required to selecting the intended parts

for further preprocessing.

Tokenization is to break the stream of text into terms and removal of unnec-

essary punctuations. Most of the times the space, comma, and dot punctuations

are used as an indicator for the tokenized location, although depending on the

approach, other punctuations can be used together as well. The output of this

process is a list of words containing the input raw text

The stemming process is used to convert the tokenized terms back into their

root form [33], often as a basic method for grouping words with a similar meaning.

Note that, this stemmed root is not necessary to be the same as the morphological

root of the word, just that the related words share the same stemmed root. There

are several methods for stemming ranging from a simple lookup table to more

complicated method such as Stochastic algorithm [34] or Lemmatization [35],

which involves determining the part of speech of the word.

Stop Words Removal [36] is a process used to remove a list of certain words

from processed text. These stop words are terms that contain very little informa-

tion when alone, for instance: is, an, or and. Such word only conveys its meaning

when placed in its correct position, they will not provide useful information when

transformed into a feature vector space that disregards their position. Note that,

the content of the stop words list depends on the context of the target project;

even if the word normally has its meaning it can still be included in the list given

the situation.

3.1.2 Bag of Words

Bag of words is a process used to represent a raw text in a simplified model.

Each document, i.e. bug report, is transformed into a feature vector, with each

dimension represents a word. An input raw bug report will be processed by several

general preprocessing techniques, such as parsing, tokenization, stemming, and

stop words removal; followed by quantifying the proportion of each word in that

bug report. The method for quantifying is vary depending on each particular
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research, ranging from zero/one to term weighting.

So far, most software engineering researches that utilizing the bag of word [37]

rely on term weighting , specifically, they often rely on term frequencyinverse

document frequency (tfidf) for quantifying the proportion of words in bug reports.

3.1.3 N-grams

N-grams is, similar to the bag of words, also a process used to represent a doc-

ument through a simplified model. However, instead of representing a word in

each dimension, a dimension of n-grams vector will consist of n words that are a

contiguous sequence. These sequences are used to represent a document through

their quantified proportion. Normally the length of sequences are fixed at n, some

approach, however, offers varying length sequences ranging from one to n.

The n-grams approach is commonly used in many software engineering re-

searches [7, 38], compared to the bag of words, n-grams offer much less sparse

dimensions for the feature vectors as its dimension is a lot more specific.

3.1.4 Topic Modeling

Topic modeling [18, 19] is an unsupervised learning technique that captures the

underlying structure of the document repository by grouping co-occurrence words

into the same topic. The result is a set of topics, a cluster of words that likely to

share the same meaning. A document can be associated with topics using a topic

proportion vector that indicates what topics that document is associated with.

The more the document relates to the topic, the more proportion is assigned to

that topic. Compared to the bag-of-words, topic modeling can greatly reduce

the effect of data sparseness, which is one of the main problems of the word-level

approach. In addition, this approach also help reduces synonymy and polysemy

problems by grouping the co-occurrence words together. This generally makes

documents much easier to distinguish and it reduces the computation time for

both supervised and unsupervised learning.

Projecting bug reports into topic vector space can be advantageous in many

ways. When comparing to the bag of words approach, its performance is definitely

better [5]. Plingclasai et.al [5] has shown that this area could benefit from topic
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modeling and could significantly improve classification performance of bug reports

by just adopting it instead of using a word-level model. This is mainly due to

two reasons. First, by projecting documents into topic vector space, we can

greatly reduce the effect of data sparseness which is one of the main problems

of word-level approach. Second, by grouping words that frequently co-occur in

document corpus into a single topic, we can also reduce the problem of synonymy

and polysemy. This generally makes documents easier to distinguish as well as

reduce the computation time.

While topic modeling is certainly very useful, using this approach alone is

often not enough to understand the underlying structure of bug reports; even

with topics proportion demonstrated, comprehending the similarity of each bug

report in high dimensional data space is far from easy.

3.2. Machine Learning

3.2.1 Classification

Supervised learning is widely used in the area of software engineering; the most

prevalent method is a classification that trains a classification model with training

dataset to later be used to classified new incoming data [4]. Each instance in the

training dataset is labeled with its actual class; these classes are pre-determined

and act as prior knowledge which the model will try to learn.

While this approach is widely used and clearly has its own advantages, its

major problem lies in its absolute requirement for the prior knowledge; without

this information the classification model simply can not be built and obtaining

this knowledge is far from easy. Since to obtain a good classification model, a

large amount of training data is needed, human inspection is required in order

to prepare this dataset. In Herzig et.al [8], a large amount of time and effort are

spent to reclassify bug report categories.

One way for supervised learning to mitigate this problem is cross-project

classification [13,16,39]. This method builds a classification model from a dataset

from another project instead of using its own. This generally makes obtaining

training data become easier, and it also makes the concept that the model learns
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become much more general.

3.2.2 Quantification

Class distribution estimation (CDE) or Quantification is a technique in a machine

learning [40]. Unlike classification that is interested in the actual label of each

instance, quantification is more interested in the distribution of each class; given

an unlabeled dataset, a quantification will estimate the proportion of each class

in that dataset. This approach has many possible applications; while it has yet

to be utilized in the software engineering field, it has been adopted in many other

fields such as in text mining [41], sentiment analysis [42] and epidemiology [43].

Our research uses this estimated class distribution to approximate the amount of

oversampling needed for the target unlabeled project.

3.2.3 Clustering

Some research in this area uses unsupervised learning to find hidden structures

within their data. It is commonly used in bug triaging [10], duplicate bug report

detection [2] and in topic modeling [9,44]. The main advantage of this approach is

the non-requirement of a training dataset. This greatly helps reduce the amount

of effort required to obtain and process prior knowledge which would otherwise

be needed for the supervised learning.

Aside from this, the amount of knowledge obtainable from supervised learning

is also limited by its prior knowledge; supervised learning cannot comprehend any-

thing beyond which it is specifically taught. This means that supervised learning

will always categorize bug report to the predetermined class which, sometimes,

is not the best approach since a certain class might be better represented as two

or more in certain situations.
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Chapter 4

Improving Automation: Bug

Report Categorization

(Classification)

4.1. Background

In data mining, good quality of data is a valuable asset. This also applies to

empirical software engineering as well. Since nowadays, mining data from changes

and bug databases had become common. As bug database is built from bug

reports, quality of bug reports are crucial to data quality [45]. Correctly classified

bug reports will greatly help in both research validity and modeling performance.

More detail bug report will also contain more information which could help in

understanding data. On the contrary, inadequate information and misclassified

bug reports lead to misleading research and misrepresenting model. However,

Antoniol et al. [46] found that a significant number of bug reports are incorrectly

classified; many reports labeled as bug are not actually a bug. They are, in fact,

referring to other things such as a request for a new feature, an improvement,

or an update to documentation. These errors happen mostly due to reporters

misunderstanding and the complicating nature of Bug Tracking System used for

reporting a number of other requests besides bug [46].

In order to correct these miss-classification, large amount of effort is required,

especially for manual inspection [8,15,46,47]. For example, Herzig et al. [8] spent
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totaling 725 hours, 90 days, to classify over 7,000 bug reports. For this very

reason, a technique to automatically classify bug reports is desired.

Several studies have been proposed to tackle this problem. A word-based

automatic classification technique [46] , by Antoniol et al., creates classification

model base on word corpus and got a decent result. A recent study proposed

a binary classification based on topic modeling approach [5]. This method tries

to improve bug report classification process by substitute word-level document

corpus with Latent Dirichlet Allocation (LDA) [18] topic membership vectors.

The experiments show that topic-based model outperforms word-based in almost

of the evaluated cases.

Nevertheless, some problems still remain. First is that the LDA approach [5]

requires a parameter tuning in order to work optimally. This means a certain

amount of effort is needed. Second, only one dimension of topic modeling, LDA,

has been explored. Other dimensions of topic modeling are left uncharted. Third,

it only works on binary classification this abandons some useful information,

which otherwise would be obtainable with multiclass classification.

The motivations for this work are as followed:

1. Quality of Data: For most of statistical and data mining tasks, good

quality of data is essential. The mistakes in data, aka noise, can lead to

misleading and poor performance model. More specifically in bug classifi-

cation task, decision boundary between each class can be significant affect,

thus, make the classification model to be unsuitable for real world data [45].

Another aspect of data quality is how detail it is. For bug report data, while

binary class data can contain a good amount of information and suitable

for many tasks. The absence of some important information that otherwise

obtainable with multiple classes data could be a problem. Using multiple

classes data allows exact pinpoints of bug report purpose. It also enables

research into many directions which would be impossible with binary one.

2. Topic Modeling Approach: Using topic modeling to preprocess docu-

ments for bug report classification is advantageous in many ways. Compared

with manual categorization, it definitely saves a huge amount of effort and

time. Its performance is also better than the bag of words approach [5].
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There are two reasons for this. First, since words that frequently occur to-

gether in document corpus are grouped into a topic, problems of synonymy

and polysemy are diminished. Second, it projects a very sparse vector s-

pace model into a more compact and meaningful form. This generally helps

classification in both computation time and classifying accuracy.

Topic modeling can be done in many different ways; in this chapter, t-

wo of popular methods are experimented on. Latent Dirichlet Allocation

(LDA) [18] is a Bayesian approach to topic modeling bug reports. This

method views each document as a mixture of various topics and assumes

that topic distribution has a Dirichlet prior. Another way is Hierarchical

Dirichlet Process (HDP) [19]. It is a nonparametric Bayesian model which

assumes the number of topics from Dirichlet process and allows mixture

components to be shared between groups. Both approaches have its merit.

While LDA is easier to apply since many tools and libraries implement it,

the nonparametric nature of HDP is also very appealing.

4.2. Proposed Algorithm

Our bug report classification process is divided into two main phases. First

is Topic Modeling phase, which converts bug reports into topics membership

vectors. In the second phase, Classification, data from the previous phase are

combined with its classes then preprocessed and used to build a classification

model. More detail will be described in following subsections.

1. Topic Modeling Phase: This phase is consist of five steps.

(a) Parsing: Our bug reports come in XML format. In order to get a

more meaningful data from these bug reports, we extract three tex-

tual sections: title, description, and comments. These sections are

combined into a single text file per bug report.

(b) Tokenization: After parsed, the stream of text from bug reports

are tokenized, broken into terms, and unnecessary punctuations are

removed.
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(c) Stemming: In this step, the tokenized terms are mapped and con-

verted to their root form. Porter Stemming algorithm [33] is used for

experiments in this chapter.

(d) Removing Stop Words: Some words in English hold little to no

meaning alone. As such, they are removed. We use stopwords from

mallet 2.0.7 stoplist [36]. The examples of these words are a, both,

but, by, can, and the.

(e) Topic Modeling: Topic modeling is applied in this step in order to

automatically extract topics from a text corpus. Two of well-known

topic modeling methods are applied in this research as we want to

experiment on which approach is more suitable for topic modeling bug

reports.

First is LDA, which is commonly used and implemented. This method

is a probabilistic generative model and it is required for a user to

specify the number of topics (N). Since the best perform N depends on

the dataset, parameter tuning on topic’s number is needed. Therefore,

for any experiment that uses LDA topic, several numbers of topics are

examined.

Second is HDP, which can assume the number of the topic by itself,

hence reducing tuning effort. However, as the second level of HDP

drawn samples from already drawn the subset of the first level (as-

suming it is 2-levels HDP), topics drawn from HDP are overlapped.

This is different from LDA since LDAs topics are drawn separately

from base distribution, thus making it less likely to overlap. Though

the overlapping nature of HDP can be advantageous in many situa-

tions, it can also make data be harder to separate.

After topic modeling process, the output of both approaches is a set of topic

membership vectors. Each vector represents a bug report and consists of

a set of topics with its proportion. These topics comprise of co-occurring

words throughout the bug report textual corpus and their proportion indi-

cates what topics such bug report are related.

Figure 4.1 summarizes these steps in topic modeling phase.
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Figure 4.1. Features Extraction: Diagram of the Topic Modeling phase

2. Classification Phase: In this phase, HDP and LDA data are processed

separately. Each topic membership vectors dataset from the previous phase

is combined with the corrected dataset containing bug reports actual classes.

This process is done to prepare these data for the classification task. Data

from LDA and HDP then proceed independently to the following three

steps.

(a) Preprocessing: This step will be described later in each experiment

results subsection as the process is different for each experiment.

(b) Spilting Data: Preprocessed data are then spilt randomly into

two datasets: train and test dataset. The test data are reserved for

evaluation, while train data are passed to the next step. To validate

our result, we employ 10-fold cross-validation to all experiments in this

chapter and report average value of 10 runs as our result.

(c) Build Classifiers: Classification models, aka classifiers, are built

from train data. All classifiers built in this research utilize multi-
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class ensemble classifier all-against-all, a wrapper based type classifier.

The wrapped classifiers depend on the experiment. For Experiment

1, the base classifier is a logistic regression. While in Experiment

2, three types of classification technique are wrapped: Alternating

Decision Tree (ADTree), Naive Bayes and Logistic Regression [48].

These classification techniques are chosen based on previous researches

[5, 49]. Their details are described below.

i. All-against-All: This is a wrapper based type classification

technique that enables binary classifiers to handle multiclass dataset-

s. The wrapper based nature of this classifier means it cannot work

by itself and needs a base classifier to wrap on. Specifically, this

classifier transforms a K classes classification problem into K(K-

1)/2 binary classification problems of separating between each pair

of classes, while ignoring the rest of them. Results from these clas-

sifiers then are combined via voting. We choose this method to

handle multiclass problem since it is intuitive and has a good per-

formance.

ii. Alternating Decision Tree (ADTree): It is a set of general-

ized decision trees that employ boosting algorithm. A number of

boosting iterations is user specific. For each iteration, the weight

for each instance will be given differently according to the previ-

ous iteration results. The correctly classified instances are given

reduced weight while the misclassified are given a larger weight.

iii. Naive Bayes: This classifier applying Bayes’ theorem with an

assumption that each other features aside from class are indepen-

dent.

iv. Logistic Regression: A regression analysis that uses probabil-

ity scores to measure the relationship between class and features.

Figure 4.2 summarizes these steps in the classification phase.
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Figure 4.2. Features Extraction: Diagram of the Classification phase

4.3. Experimental-Design

Our experiments are divided into two parts: LDA-HDP comparison in Exper-

iment 1, then optimization of LDA in Experiment 2. All experiments in this

paper are evaluated by accuracy, F-measure and receiver operating characteristic

(ROC).

4.3.1 Datasets

Our study use combined data from three datasets in previous study [8]. The

bug report from three open-source software projects from Apache: HTTPClient,
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Jackrabbit, and Lucene, are combined. The reason we used combined dataset is

because we want to evaluate each method in cross-project learning environment

since it can greatly reduce the amount of effort required in preparing training

data in real world implementation. The Class distribution of combined dataset

is shown in Table 4.1.

Table 4.1. Features Extraction: Class Distribution of Combined Dataset

Bug Report types (Classes) Number of Reports Percentage of Reports

Bug 2,718 49.96%

Improvement (IMPR) 2,092 38.46%

Request For Enchantment (RFE) 337 6.19%

Test 79 1.45%

Total 5,440 5,440%

4.4. Results

4.4.1 Experiment 1: Comparing LDA and HDP Perfor-

mance

We want to compare LDA and HDP performance in this experiment, so aside

from using LDA and HDP, all other parameters here are identical.

LDA and HDP topic membership vectors from Topic Modeling phase are in-

dependently processed. After combined with the corrected dataset, both datasets

are preprocessed. Here, the values in topic dimensions of each instance are the

occurrence of words from that topic divided by the sum of word occurrences from

all topics of that instance. Note that this sum is not the same as a total word

occurrence count for that instance as two different topics may have some identical

words.

The preprocessed datasets are then spilt into train and test dataset. Then

train datasets are used to build a multiclass classification model; in this experi-

ment, All-against-all classifiers are built with Logistic Regression as a base.
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The result of Experiment 1 is shown in Table 4.2 where overall performance

is presented in the upper table. The first column of the upper table is evaluation

measures. Other consecutive columns are grouped into results from LDA and

HDP. For LDA, the three columns represent different numbers of topics which

are 25, 50 and 100 respectively. As for HDP, since the number of topics for each

run is not identical, we report the result from 3 runs of HDP in the following

columns.

For the lower table, F-measure in each class is shown here. Bug report types

or classes are in the first column while the other columns are identical to the one

in the upper table.

Table 4.2. Features Extraction: Comparison Between LDA and HDP

Overall Performance

LDA HDP

25 50 100 1 2 3

topics topics topics run run run

Accuracy 62.94% 64.38% 67.04% 63.57% 63.99% 63.62%

F-measure 0.591 0.611 0.641 0.599 0.604 0.601

Roc 0.766 0.785 0.807 0.764 0.767 0.768

Number of Topics 25 50 100 42 46 47

F-measure for each Type of Bug Report

BUG 0.729 0.743 0.767 0.733 0.734 0.732

IMPR 0.584 0.605 0.639 0.598 0.607 0.603

RFE 0.006 0.034 0.090 0.006 0.000 0.006

TASK 0.026 0.100 0.091 0.052 0.077 0.066

TEST 0.024 0.100 0.229 0.065 0.068 0.022

As we see in Table 4.2, LDA with 50 and 100 topics perform better than HDP

and the trend seems to go up as the number of topics is increased. This can

be interpreted in two ways. First, the performance of classifier built from LDA

topics will increase more and more as the number of topics increased; or second,

the performance will increase until the number of topics reaches a certain point
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then it will start to drop. This question is answered in Experiment 2, which

indicates that second interpretation is right. Therefore, we can summarize that

with a proper number of topics tuning, LDA performance is better than HDP.

While this make HDP seems unsuitable for this task, it still has its use, as its

performance is still comparable with classifier built from LDA and it requires no

parameter.

The F-measure in each class from Table 4.2 demonstrates that for this dataset

both LDA and HDP suffer from lack of data and imbalance dataset problems.

The F-measure for the three minority classes are terrible. So measure for handling

this problem is needed, the interesting approaches are sampling and cost-sensitive

technique.

4.4.2 Experiment 2: Characteristics of LDA and its Opti-

mization

As for Experiment 2, we want to search for an answer for two questions. First is

whether LDA performance can increase unlimitedly with the increasing number

of topics or it will start to drop at some point. The second question is how to

optimize LDA for the optimum performance. This is achieved by varying numbers

of topics (N), preprocessing methods and classifiers.

The numbers of topics in this experiment start from 50 topics and increase

by 50 until it reaches 200. After that, we examine on every 100 topics until it

reaches 600.

Three preprocessing methods are experimented on. First, a simple count of

words occurrences in each topic is used as a value in topic dimensions. Second,

we use the existence of words in the topic, the value will be 1 if for that bug

report there is an occurrence of words in that topic and will be 0 if a word from

that topic is not found. Third, the preprocessing method used in Experiment 1

is used.

The results for Experiment 2 are shown in Table 4.3, 4.4 and 4.5 The Table

4.3 shows accuracy, Table 4.4 shows weight F-measure and Table 4.5 show Roc.

Each table aligns in a similar way. The first column, N is the Number of LDA

topics; the rest of columns are grouped base on their preprocessing. The count is
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a simple count of words occurrence, Exist uses the existence of word and Ratio

is the preprocessing method used in Experiment 1. Each preprocessing column

consists of three sub-columns that indicate used classification techniques, ADTree

for Alternating Decision Tree, NB for Naive Bayes and LR for Logistic Regression.

The black cell means that experiment on that cell position takes too long to finish,

thus left blank. The best result for each sub-column is marked with gray color.

Table 4.3. Features Extraction: Accuracy of the LDA Topic-based Classifier

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1]

N ADTree NB LR ADTree NB LR ADTree NB LR

50 0.62 0.24 0.61 0.60 0.53 0.61 0.62 0.34 0.64

100 0.62 0.32 0.63 0.61 0.52 0.63 0.64 0.35 0.67

150 0.62 0.50 0.63 0.59 0.51 0.62 0.63 0.39 0.67

200 0.61 0.50 0.63 0.60 0.50 0.63 0.62 0.40 0.67

300 0.62 0.51 0.62 0.60 0.50 0.61 0.61 0.42 0.63

400 0.61 0.52 0.62 0.61 0.51 0.62 0.46 0.63

500 0.61 0.51 0.60 0.51 0.60 0.49 0.60

600 0.60 0.52 0.60 0.50 0.61 0.49

AVG 0.61 0.45 0.62 0.60 0.51 0.62 0.62 0.43 0.65

From ADTree and Logistic Regression columns of these tables, we can see

that the performance of LDA topic-based classification model does not increase

along with the number of LDA topics. Instead, the performance will increase

until reach the certain point depending on the dataset, then it starts to drop.

This is because too much increase in a number of topics will lead to too sparse

dataset and a lot of uninformative features. As for some Naive Bayes columns

that the best perform a number of topics are 500 and 600, this is due to slower

increase trend of Naive Bayes, which means that they have not yet reached the

optimum performance.

When comparing performance by varying preprocessing methods, the Ratio

method is the most promising one. Both ADTree and Logistic Regression perform

best with this preprocessing while Naive Bayes, on the other hand, prefers Exist
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Table 4.4. Features Extraction: F-Measure of the LDA Topic-based Classifier

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1]

N ADTree NB LR ADTree NB LR ADTree NB LR

50 0.59 0.29 0.56 0.56 0.53 0.58 0.58 0.40 0.61

100 0.58 0.36 0.60 0.57 0.52 0.60 0.60 0.41 0.64

150 0.59 0.43 0.61 0.56 0.52 0.60 0.60 0.44 0.65

200 0.57 0.44 0.61 0.57 0.51 0.62 0.59 0.45 0.65

300 0.59 0.45 0.59 0.56 0.51 0.60 0.58 0.47 0.62

400 0.58 0.46 0.62 0.57 0.51 0.59 0.49 0.63

500 0.58 0.45 0.56 0.53 0.57 0.52 0.61

600 0.56 0.46 0.56 0.51 0.58 0.52

AVG 0.58 0.42 0.60 0.56 0.52 0.60 0.59 0.47 0.63

Table 4.5. Features Extraction: ROC of the LDA Topic-based Classifier

Count [integer,0-N] Exist [boolean,0/1] Ratio [double,0-1]

N ADTree NB LR ADTree NB LR ADTree NB LR

50 0.74 0.59 0.75 0.72 0.69 0.74 0.74 0.68 0.79

100 0.75 0.59 0.78 0.73 0.70 0.76 0.76 0.66 0.81

150 0.75 0.59 0.77 0.72 0.70 0.77 0.76 0.69 0.81

200 0.74 0.59 0.77 0.72 0.71 0.78 0.75 0.66 0.81

300 0.74 0.59 0.74 0.72 0.71 0.76 0.73 0.67 0.78

400 0.74 0.59 0.76 0.73 0.71 0.75 0.66 0.79

500 0.73 0.60 0.72 0.73 0.73 0.68 0.81

600 0.72 0.60 0.72 0.72 0.73 0.68

AVG 0.74 0.59 0.76 0.72 0.71 0.76 0.74 0.67 0.80

method.

From these three classification techniques, Logistic Regression achieves the

best evaluation scores in all three measurements: accuracy, F-measure, and Roc.
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Though when the number of topics is exceed 300, its run time increases tremen-

dously. In this regard, ADTree runtime is doing a lot better. Its runtime is more

reasonable with a large number of topics and its classifying performance is still

comparable to the best performs logistic regression. As for Naive Bayes, although

it got the fastest run time, its classifying performances is significantly worse than

the other two techniques.

Therefore, for these mentioned reasons. We recommend using Ratio for pre-

processing, using all-against-all with Logistic Regression as the base for classifi-

cation when the size of the dataset is small while using ADTree with a bigger

dataset. As for the appropriate number of topics, it depends on the dataset but

starts from smaller N value is generally better for both Logistic Regression and

ADTree.

4.5. Threats to Validity

This research experiments on published dataset from the previous study. Al-

though data we use are manually inspected with a fixed set of rules, some errors

might still occur. The rules for manual inspection also depends on an individual

perspective which could be different for each person. These might cause data to

change thus cause our classifier to produce different results.

Some of the processes in our research involve random value. For example,

HDP and 10-fold cross-validation are both random process. Thus, although we

try to repeat our experiment as much as possible to ensure the validity of our

results, we cannot guarantee that our results are optimal.

Experiments are done on the limited research subject. All bug reports in our

combined dataset come from projects written in Java and using JIRA bug tracker

which might not be representative for other programming language or bug tracker

system.

4.6. Conclusion

In this chapter, we propose a method for automatically classify bug reports base

on its textual information without the need to do a parameter tuning. This fur-
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ther reduces time and effort need to process these bug report. In section 4.4.1, the

result from our experiment demonstrates that this nonparametric method perfor-

mance is comparable, though lowers, to the parametric one. In section 4.4.2, we

also experiment on how to optimize the bug report classification process that uses

parametric method to topic modeling bug reports. The experiments are done on

varying topic numbers, preprocessing methods and classification technique. The

result could serve as a guideline to efficiently employ this bug report classification

process.
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Chapter 5

Improving Automation:

Improving Cross-Project Defect

Prediction

5.1. Background

Defect prediction is a process of predicting the defect-proneness of software mod-

ules and is of great importance in organizing and managing scarce testing re-

sources [11, 12]. Defect prediction is known to work well when the prediction

model is built using its own historical data [11,12]. However, given a lack of his-

torical data for a new project, the ability to build an effective defect prediction

model becomes a very difficult task, as specifically noted by He et al. [13] and

Turhan et al [14].

Several software engineering studies have been working on improving the per-

formance of defect prediction models in the absence of historical data. One of

them is cross-project defect prediction [13, 14, 27, 28], which selects and utilizes

historical data from other similar projects to fill in the gap. It enables the con-

struction of a prediction model in the otherwise not possible scenario; however,

the inherited problem from the classification model has so far been overlooked.

Most classification algorithms are developed based on the assumption that al-

l instances are equally important, which means it will usually try to maximize

the number of correctly classified instances. Generally, defect prediction dataset
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contains more non-defective examples than the defective ones [50]. This class im-

balanced issue causes a trained prediction model to be biased toward the majority

and thus shifts the decision boundary toward the non-defective class. Software

quality teams and researchers are however interested in the defective or minority

class [50].

A common preprocessing technique adopted by researchers [51–53] for en-

hanced defect prediction performance is the application of sampling techniques

such as over and under sampling. These techniques are applied to alleviate the

negative effects of highly skewed datasets or the imbalanced distribution nature

of defect prediction datasets [54]. However, oversampling techniques have been

shown to perform better than undersampling techniques in several empirical s-

tudies [51–53] whereby more minority or defective examples are added to the

dataset. Nevertheless, determining in advance the amount of oversampling re-

quired is still a key challenge during the training of a prediction model. This

issue is especially more important in the cross-project scenario where the distri-

bution of the defective examples, the percentage of defective modules in a dataset,

cannot be easily assumed as in the within project situation. The exact amount of

the skewness is varied depending on each project; while some might only have a

very low number of defective modules (i.e. 0.081% in NetBSD 0.081), half of the

module in another project might be defective (i.e. 0.491 in XFree86). None of

the existing cross-project defect prediction studies have also considered this issue

when oversampling is applied. Having prior knowledge of the class distribution

of the unlabeled data and how this information could be applied to improve the

performance of the prediction model would be of great benefit in addressing this

challenge.

There are a few related works aiming to solve these problems, such as Ryu et

al. [55] and Ryu et al. [56] works which use TCSBoost and Boosting-SVM [57],

respectively. However, what has been missing in previous studies of the within

and cross-project defect prediction is the possibility of knowing beforehand the

expected percentage of defect-prone modules from the unlabeled data without

any prior knowledge, and how this information could be applied to improve the

prediction performance of the prediction model. This problem is especially more

important in the cross-project scenario where the distribution of the defective
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modules cannot be easily assumed to be similar to its training dataset as in the

within project situation.

This chapter proposes Class Distribution Estimation with Synthetic Minority

Oversampling Technique (CDE-SMOTE), a technique for cross-project defect

prediction that modifies the distribution of the training dataset according to

the estimated distribution of the unlabeled dataset. Whilst it is not practical

to assume that the true distribution of the unlabeled data can be obtained, it

can be estimated using a quantification approach [40] from the machine learning

field. By leveraging this estimated distribution, we can approximate the amount

of oversampling required for each dataset and prevent excessive oversampling,

which can degrade the prediction performance. The hypotheses and performance

of CDE-SMOTE are validated and evaluated through four experiments together

with Wilcoxon signed-rank tests. We conduct extensive empirical studies on 14

open-source projects considering all of their possible cross-project pairs for a total

of 14 × 13 = 182 cross-project pairs, and 7 defect prediction models comprising

of 5 base classifiers and 2 ensemble classifiers.

In this study, CDE-SMOTE significantly improved the cross-project defect

prediction performance, offering significant improvement in 63% of the cross-

project pairs according to Wilcoxon test: with 16.422%, 29.687% and 20.259%

improvement for Balance, G-measure, and F-measure, respectively. It also im-

proved the prediction performance compared to the CLAMI [30] and Burak [14]

approaches.

5.1.1 Synthetic Minority Oversampling Technique (SMOTE)

These techniques are applied to alleviate the negative effects of highly skewed

datasets or the imbalanced distribution nature of defect prediction datasets [54].

However, oversampling techniques have been shown to perform better than un-

dersampling techniques in several empirical studies [51–53,58] whereby more mi-

nority or defective instances are added to the dataset.

Among the oversampling techniques, SMOTE is one of the most prevalent

techniques for synthetic data generation [51]. Proposed by Chawla et al. [59], it

aims to alleviate the imbalance in the original dataset by synthetically generating

new data instances in the region of the minority class so as to shift the classifier
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Figure 5.1. Diagram showing how SMOTE works (k=3)

learning bias towards the minority class. Figure 5.1 shows how SMOTE works.

SMOTE generates synthetic examples by:

1. Choose an example from the minority class. The middle circle in Figure

5.1.

2. Find it k-nearest neighbors, they must belong to the minority. In Figure

5.1 these are the three surrounding circles (k=3).

3. Create synthetic examples, between the chosen example and its neighbors,

each synthetic example will have each of its features randomized in the value

between the chosen and its neighbor. In Figure 5.1, this is represented by

the three triangles. The possible location for the synthetic example in the

right corner is within the dashed box.

Then repeats these steps until the target amount of oversampling is reached.

5.1.2 Class Distribution Estimation (CDE)

Class distribution estimation (CDE) or Quantification is a technique in a machine

learning [40]. Unlike classification that is interested in the actual label of each

instance, quantification is more interested in the distribution of each class; given

an unlabeled dataset, a quantification will estimate the proportion of each class

in that dataset. This approach has many possible applications; while it has yet

to be utilized in the software engineering field, it has been adopted in many other

fields [41–43]. Our research uses this estimated class distribution to approximate

the amount of oversampling needed for the target unlabeled project.

34



5.2. Proposed Algorithm

5.2.1 CDE-SMOTE Principles

Our proposed approach, Class Distribution Estimation with Synthetic Minority

Oversampling Technique (CDE-SMOTE) aims to reduce the negative effects of

a highly skewed dataset in the cross-project defect prediction by using CDE and

SMOTE oversampling. The amount of oversampling is decided by the unlabeled

dataset estimated distribution in order to prevent excessive oversampling which

cause the prediction performance to become lower.

1. Hypotheses of CDE-SMOTE The base hypotheses of CDE-SMOTE are:

(a) First The training dataset could be modified to better suit the class

distribution of the target unlabeled dataset

(b) Second Without knowing any actual label of the unlabeled dataset,

the class distribution of the unlabeled dataset can be estimated.

The first hypothesis is based on the previous work by [60], though with

modification. While the second hypothesis is base on the quantification

field [40] in machine learning.

2. Steps and Procedures CDE-SMOTE consists of three main steps: class

distribution estimation, class distribution modification, and prediction mod-

el building.

5.2.2 Steps and Procedures

The first step, class distribution estimation, is shown in Figure 5.2. Our approach

starts by building the first classification model from the training dataset, this is

an estimator classifier for approximating the class distribution of the unlabeled

dataset. The training dataset is a historical data from another software archive

that already labeled and modified using SMOTE oversampling to have an equal

number of the Defective and the Clean classes. Following that, the unlabeled

dataset from the target software project is then labeled by the estimator classifi-

er; this will yield a machine labeled result of the target software. The estimated
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Figure 5.2. CDE-SMOTE Diagram: Class Distribution Estimation

distribution of target software is then obtained by the classification and count

(CC) technique [40], simply count the number of machine-labeled instances for

each class. Our assumption is that, while there might be some classification mis-

takes in the first labeled result, the overall distribution should still remain quite

accurate. This assumption is investigated in our results related to experiment 2.

The second step, class distribution modification, is shown in Figure 5.3. This

part takes the estimated distribution and the training dataset as inputs then

output a modified training dataset. The estimated positive rate, the ratio of

the number of defective instances to the number of overall instances, is used

to dictate the amount of oversampling required. The modification is done by

oversampling the original unmodified training dataset, adding synthetic examples

to the training dataset until the class distribution of the training data becomes

the reverse of the estimated distribution of the unlabeled dataset. To achieve this,

synthetic examples will be added to the minority class in the training data, in

order to shift the defect prediction model decision boundary toward that minority

class. For example, if the distribution of the training is are 6:4 and the estimated

distribution of the unlabeled datasets is 8:2, synthetic examples will be added

to the class with 4 ratio until the distribution of the training dataset changed

36



Figure 5.3. CDE-SMOTE Diagram: Class Distribution Modification

to 2:8. These synthetic examples are generated by SMOTE [59], a well-known

oversampling technique. Our aim is to improve the prediction performance whilst

avoiding the excessive oversampling of the minority class.

The last step, prediction model building, is shown in Figure 5.4, the modified

training dataset from the second part is used to create the second classification

model, CDE-SMOTE prediction model. The unlabeled dataset from the target

software is then labeled by this classifier; its result is final classification results of

the target software which is evaluated in our results related to experiment 3 and

4.
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Figure 5.4. CDE-SMOTE Diagram: Prediction Model Building

5.3. Experimental-Design

5.3.1 Experimental Setup

Experimented datasets, evaluation measures, and validation procedure for our

base hypotheses are explained in this section.

The cross-project defect prediction experiments are conducted with the fol-

lowing seven classification algorithms:

• J48 Decision Tree (Quinlan 2014)

• Random Forrest (10 trees) (Breiman 2001)

• Nave Bayes (NB) (John et al. 1995)

• Logistic Regression (Le Cessie et al. 1992)
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• kNN (k = 3) (Aha et al.. 1991)

• Vote ensemble: Average of Probability (J48+NB) (Kuncheva 2004)

• Vote ensemble: Average of Probability (J48+NB+kNN(3)) (Kuncheva 2004)

Five of them are very well known and commonly used in the defect prediction

area, while the remaining two are the ensemble classifiers created from the com-

binations of these classification algorithms. The classification algorithms used in

this chapter are all implemented in WEKA Machine Learning Toolkit, version

3.6.3. [48].

1. Datasets The cross-project defect prediction experiments are conducted

using 14 datasets, with each dataset extracted from a different open source

software project. We deliberately extracted 14 single release version of d-

ifferent open source software engineering projects for the experiment, each

with different class distribution as presented in Table 5.1. Our aim is to

experiment on a wide variety of class distribution to see whether adjusting

the training distribution can help mitigate the negative effect of the differ-

ence in class distribution between the training and the unlabeled datasets

has on prediction performance. The metrics of each software repository are

collected from its commit logs using Git/CVS version control tools to ex-

tract seven common process metrics as recommended by Moser et al. [61].

Module labeled as ”error” in its commit logs, having error density more

than zero, are thus labeled as Defective in our datasets.

These datasets consist of following nine metrics commonly used in defect

prediction [25]; they are shown in Table 5.2:

2. Evaluation Criteria

We have two set of measurements, one for measuring the prediction per-

formance of the defect prediction model and second for measuring the mis-

match in the class distribution estimation process.

For the first set of measures, the evaluation measures used are: probability

of detection (PD), probability of false alarm (PF), balance (Bal), G-measure
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Table 5.1. CDE-SMOTE: Datasets Class Distribution (Pr)

Datasets %Defective Module Datasets %Defective Module

Clam 0.058 GANYMEDE 0.158

NetBSD 0.081 OpenBSD 0.161

Scilab 0.088 Squid 0.236

OpenNMS 0.102 WineHQ 0.359

Samba 0.113 XFree86 0.491

Helma 0.122 Hylafax 0.511

Spring 0.136 Iipnetfilter 0.616

Table 5.2. CDE-SMOTE: Dimensions (Metrics) of Datasets

Name Type Description

CODECHURN Integer The total number of lines of code

added and deleted from the module.

LOCADDED Integer The total number of lines of code

added to the module.

LOCDELETED Integer The total number of lines of code

deleted from the module.

REVISIONS Integer Number of revision made to the

module.

AGE Integer Age of the module.

BUGFIXES Integer Number of bug fixed in the module.

REFACTORINGS Integer Number of code refactoring made to

the module.

LOC Integer Number of lines of code in the module.

BUGGINESS Boolean Indicate the defect proneness of the

module.

Defective or Clean.

40



and F-measure. These measures are widely used in the defect prediction

field, which emphasizes the importance of the defective class.

• Precision: How accurate is the prediction of the defective class, this is

used to calculate the F-measure:

Precision = #Correctly PredictedDefectiveModules
#PredictedDefectiveModules

• Probability of Detection (PD): Recall of the defective class:

PD = #Correctly PredictedDefectiveModules
#ActualDefectiveModules

• Probability of False Alarm (PF): Rate of misprediction of Non-Defective

module:

PF = #Incorrectly PredictedNonDefectiveModules
#ActualNonDefectiveModules

• Balance (Bal): The Euclidean distance between (0,1) and (PF, PD)

points:

Bal = 1−
√

(1−PD)2+(0−PF )2
√
2

• G-measure: The harmonic mean of PD and (1-PF):

G−measure = 2×PD×(1−PF )
PD+(1−PF )

• F-measure (F1): The harmonic mean of precision and recall. In this

chapter, only the F-measure of the Defective-class is evaluated:

F1 = 2×Precision×Recall
Precision+Recall

The predicted results are compared with the original classifier, classifica-

tion model built from the unmodified training data, then Wilcoxon signed

rank tests are performed. The Wilcoxon Win-Tie-Loss across all the five

measures as well as the percentage improvements are shown for evaluation

in experiment 1.

The second set of measures aims to measure the performance of class distri-

bution estimation, the measures of this set are: Predicted class distribution

mismatch in the actual value and in percentage difference compared to the

difference in the actual training and the unlabeled datasets.

• PositiveRate: is the distribution of the defective module in a term

of the ratio between the number of defectives and the total number of

modules:
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PositiveRate= #DefectiveModules
#Modules

Three PositiveRate are used in our experiment:

– PositiveRateTrain, True distribution of the defective module in

the actual unmodified training dataset.

– PositiveRateUnlabeled, True distribution of the defective module in

the unlabeled dataset.

– PositiveRatePredicted, Predicted distribution of the defective mod-

ule in the unlabeled dataset.

• ActualMismatchV alue: is the value of positive rate difference between

the train and the unlabeled datasets:

ActualMismatchV alue

= |PositiveRateTrain − PositiveRateUnlabeled|

• PredictedMismatchActualV alue: is the value of positive rate difference

between the estimation (predicted) and the actual distribution of the

unlabeled datasets:

PredictedMismatchV alue

= |PositiveRatePredicted − PositiveRateUnlabeled|

• PredictedMismatch%Diff : is the percentage of mismatch difference

between the estimation, PredictedMismatchV alue, and the actual mis-

match, ActualMismatchV alue. Its negative value indicates that the

estimated positive rate is closer to the true distribution, on the other

hand, the positive value means the estimation is more misleading than

the training dataset distribution.

PredictedMismatch%Diff

= PredictedMismatchV alue−ActualMismatchV alue

ActualMismatchV alue
× 100

3. Validation Procedure

Experiment 1: Oracle and Original Classifiers Comparison

The first experiment aims are to validate the first hypothesis and investi-

gate whether the prediction model can be improved if the true distribution

42



of unlabeled dataset, PositiveRateUnlabeled, is know beforehand. By con-

firming our first hypothesis, we demonstrate the possibility of improving

the cross-project prediction model by the modification of training dataset

and the danger of applying training data of one project for another project

without considering their class distributions.

In this experiment, we assume that the distribution of the unlabeled data

is known beforehand; which should be noted that it is not practical in most

cross-project defect prediction scenario. This knowledge is used to adjust a

number of training instances from each class in the training dataset to make

the training dataset more suitable to the current unlabeled dataset. The

adjustment is done by adding synthetic examples to the training dataset

until the class distribution of the training data becomes the reverse of the

actual unlabeled dataset.

This modified training dataset is used to build a classification model to pre-

dict the defective modules in the unlabeled dataset. This model is called

“Oracle classifier” as it obtained information that would not have been pos-

sible to obtain in a normal circumstance. We then examine the prediction

results of this model against the true labels of the unlabeled dataset and

evaluate its performance. The evaluating measures used are probability of

detection (PD), probability of false alarm (PF), balance (Bal), G-measure

and F-measure. We then compare the prediction results with the original

classifier, that is, the classification model built from the unmodified training

data, and lastly applied a statistical test, specifically the Wilcoxon signed

rank test to compare the significant difference in the performance of the

models. Experiments are performed 14 times, each time one project is se-

lected as a training project to train a classification model. This model is

then used to predict the defect in the remaining 13 projects, for the total

of 14×13 = 182 cross-project pairs. Each cross-project pair is studied with

the above classification algorithms, for the total of 182 × 5 = 1, 274 runs.

The Wilcoxon test is done for each training dataset selected across all of

its cross-project pairs in each measure and reported in terms of Win, Tie

or Loss depending on its significance at p ¡ 0.05 two-tailed test. Five Win-

Tie-Loss values are reported for each training dataset, as such, the total
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runs of Win-Tie-Loss for each classification algorithm on the 14 datasets is

14× 5 = 70.

Experiment 2: Performance of the Class Distribution Estimator

The second experiment aims are to validate the second hypothesis and

investigate the performance of quantification technique in the cross-project

environment. Since the actual distribution of the testing or unlabeled data,

in most cases, is assumed to be unobtainable, the following question is

can it be estimated from the unlabeled instances of the testing data? By

only using the unlabeled data, the same data used as the input for the

already built classification model, the quantification performance of the

classification and count (CC) technique in the cross-project environment is

examined.

To evaluate the estimation performance, quantification experiments are

run on 182 cross-project pairs; each prediction model is built from the

labeled historical data from 1 project then used to estimate the 13 remain-

ing unlabeled projects. Estimation performances are is evaluated in term

of PredictedMismatchActualV alue and PredictedMismatch%Diff .

Experiment 3: CDE-SMOTE and Original Classifiers Compari-

son

Given that we can reliably estimate the unlabeled data distribution, can

we build a better cross-project defect prediction model based on this esti-

mated value? This experiment presents the practical use of this chapter,

to estimate and adjust the training data according to each set of unlabeled

data.

The performance of the CDE-SMOTE prediction model is validated in

terms of PD, PF, Bal, G-measure and F-measure. The results are com-

pared to the performance of the original classifier using Wilcoxon Win-Tie-

Loss and percentage improvement in the same manner as in Experiment

1; the results are shown in Section 5.4.3. In contrast to the experiment

conducted in Results related to experiment 1, the actual distribution of the
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unlabeled dataset is never used in this experiment as a measure of avoiding

contaminating the trained classifier.

Experiment 4: CDE-SMOTE and Related Works Comparison

The fourth experiment aims are to compare the predictive performance

of CDE-SMOTE with its related works, to this end, two state of the art

filtering techniques discussed in our related works: Burak filter [14] and

CLAMI [30], are used as comparisons.

The Burak filter is an approach proposed for selecting the right training

examples for the target unlabeled project. This approach filters large quan-

tity of labeled instances, usually consisting of several software engineering

projects, and selects only a subset of these combined projects to be used as a

training dataset. Each instance in the filtered dataset is selected according

to its similarity to the unlabeled instance; for each unlabeled instance, the

closest k labeled instances are selected and added to the training dataset.

Our Burak filter experiments consist of 14 runs. As Burak filter assumes

that there is a large amount of training dataset composed of historical

data from several software engineering projects, for each run, one dataset is

selected as the testing/unlabeled whilst the rest (13 datasets) are combined

to create a composited labeled dataset with which the Burak filter is applied

to. The number of closest instances, k, is set to 10 and the similarity is

measured using the Euclidean distance metric. We then applied our CDE-

SMOTE to the filtered training dataset and compared its performance to

just using the Burak filter alone. The performance is evaluated in terms of

increased Balance, G-measure, and F-measure.

The second approach, CLAMI, is the more recent approach. It is an unsu-

pervised threshold approach for identifying the defect-prone modules from

an unlabeled dataset. CLAMI starts by calculating the median of each

feature or metrics from the unlabeled dataset. The median value for each

feature is used as a threshold, values which exceed the corresponding median

are identified and marked. CLAMI then counts the number of marked val-

ues for each instance and clusters the same number together. The instances

are then separated into two big groups: the group with higher and lower
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number of marked values, which are labeled as defect-prone and not defect-

prone, respectively. After this labeling, CLAMI then performs metrics and

instance selections to further refine its labeled dataset. The final labeled

dataset is then used as a training dataset for building a defect prediction

models.

While the CLAMI and its assumptions are very different from ours, the fi-

nal goal is the same: to identify the defect-prone modules. To demonstrate

the effective performance of our proposed approach, we compare the per-

formance between ours and CLAMI. Different from the Burak experiments

where we filter the training dataset using Burak’s technique before applying

CDE-SMOTE, the CLAMI experiments are not performed on the CLAMI

labeled dataset, as our pilot experiment shows that applying CDE-SMOTE

to CLAMI labeled dataset often result in either insignificant or detrimental

performance. Instead, the performances are compared between only using

CDE-SMOTE and only using CLAMI. The other experiment setups exper-

iments are similar to the one in Results related to experiment 3, performed

14 times for the total of 14×13 = 182 cross-project pairs, we just substitute

the original classifier with CLAMI and compared them. In our experiment,

the Logistic Regression Classifier is used for CLAMI from its author claim

that it performs the best for CLAMI [30].

The results of Both Burak and CLAMI experiment are shown in Section

5.4.4.

5.4. Result

5.4.1 Experiment 1: Oracle and Original Classifiers Com-

parison

For this experiment, we compared the cross-project defect prediction performance

of the oracle classifier with the performance of the classifier built from the origi-

nal unmodified training dataset. Across 14 extracted datasets, 182 cross-project

experiments are conducted and the summarized results in terms of Wilcoxon

Win-Tie-Loss comparison between the oracle and the original classifiers for each
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select training dataset. The barplot in Figure 5.5 shows the summarized result,

the Y axis denotes the number of Win, Tie or Loss while the X axis denotes the

classification algorithm used.

Figure 5.5. CDE-SMOTE: Oracle comparison to the Original Classifier: Wilcoxon

Win-Tie-Loss

We observe from Figure 5.5 that modifying the training dataset to be the

reverse of the class distribution of the unlabeled dataset can help improve the

performance of the cross-project defect prediction models. Out of the 490 Win-

Tie-Loss comparison, 70 from each of the 7 classifiers, this approach performed

significantly better than the original, 64.286% of the time according to the sta-

tistical Wilcoxon test.

The average increase in performance of each classifier is shown in Table 5.3.

The table demonstrates the average performance increases, compared to the orig-

inal predictor, evaluated using the following three measures: Balance, G-measure

and F-measure. All measures are the means across 182 cross-project pairs.

Across these seven classification algorithms, we can see the increase in per-

47



Table 5.3. CDE-SMOTE: Oracle increase performance (%) compared to original

classifier [Averaged from 14 x 13 = 182 combinations of cross-project pairs]

Balance G-measure F-measure

J48 23.016 47.296 40.082

RF (10 Trees) 15.628 22.861 22.861

Naive Bayes 10.143 15.726 10.045

Logistic 0.920 -1.380 24.110

kNN (k=3) 11.649 21.262 20.910

Vote 1 (J48+RF) 12.979 20.874 15.490

Vote 2 (J48+RF+kNN) 22.637 39.157 26.224

Averaged 13.853 24.406 22.817

formance across all measures; G-measure and F-measures increase by 24.406%

and 22.817%, respectively. Furthermore, the performances of all algorithms have

shown at least some improvements. Out of the seven experimented algorithms,

aside from a slight F-measure decrease in Logistic Regression, none of the algo-

rithms experienced a performance degradation in the results.

5.4.2 Experiment 2: Performance of the Class Distribution

Estimator

As it is not practical to assume that the distribution of the unlabeled data is

known beforehand, this experiment aims to investigate the practicality of esti-

mating the distribution of the unlabeled dataset. First, the average mismatch

class distributions in term of positive rate (PR) between the estimation and the

true value (PredictedMismatchV alue), averaged from all cross-project pairs for

each training dataset, are shown in Figure 5.6. From the graph, the Y-axis

denotes the positive rate (PR) mismatch while the X-axis denotes the various

training datasets used for training the prediction model. The Logistic Regression

and kNN results are excluded from Figure 5.6 as well as our further experiments,

since we found in this experiment that these two algorithms could not accurately

estimate the distribution of the unlabeled dataset. Their estimations were even
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Figure 5.6. CDE-SMOTE: Actual class distribution mismatch

(PredictedMismatchV alue) between train and unlabeled datasets in the

actual value

more mismatched than using the original training dataset as it is, generating

160% and 190% more error at maximum compared to just using the unmodified

training dataset.

From Figure 5.6, we observe that the remaining five classifiers can estimate

the class distribution of the unlabeled dataset. Without any prior information or

knowledge about the unlabeled dataset, the class distribution can be estimated

with a positive rate (PR) mismatch value of 0.1689 averaged across all classifiers.

Comparing the estimation result with the mismatch of the original training

dataset, we show the increase/decrease percentage mismatch difference

(PredictedMismatch%Diff ) in Figure 5.7. The X-axis displays the training dataset

used, each result is averaged across all of its unlabeled datasets. The Y-axis

shows the increase and decrease in percentage error of the estimated distribution,
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Figure 5.7. CDE-SMOTE: Class Distribution Mismatch Compared to the original

Training Data: Percentage differrent betwen actual test data error and CDE

estimation (PredictedMismatch%Diff )

PredictedMismatchV alue, compared to ActualMismatchV alue. The decrease in

error, when the value is less than zero, indicates that the estimated class distri-

bution is more accurate than assuming that the distribution of the unlabeled is

the same as the training dataset. While on the contrary, the increase in error

implies that the actual performances for each selected training estimation is more

misleading than the original unmodified training data. The best possible estima-

tion will decrease the error by 100% maximum (-100%) where the prediction is

exactly the same as the true distribution, On the other hand, there is no upper

limit for the increase in estimation error (+∞). The two red dotted horizontal

lines in the figure show the lines where there are 5% increase and decrease in class

distribution mismatch.

From Figure 5.7, we observe that on several instances, our proposed approach

accurately estimates the class distribution of the unlabeled dataset. Out of 70

test cases, the estimations reduced the class distribution mismatch more than 5%
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in 50% of the cases compared to the 30% significant error when our approach was

not applied.

5.4.3 Experiment 3: CDE-SMOTE and Origianl Classifiers

Comparison

As demonstrated in Experiment 1, the modified training dataset produces bet-

ter prediction performance, and in Experiment 2, the class distribution of an

unlabeled dataset can be estimated. This experiment aims to investigate the

practicality of using this estimated class distribution. The experiment setup is

very similar to that in experiment 1, with the only difference being that, we

have no prior knowledge about the class distribution of the unlabeled datasets.

Rather than use the actual class distribution of the unlabeled dataset which is

unknown to us, the estimated class distribution is used. Additionally, as men-

tioned previously, the Logistic Regression and kNN algorithms are not included

in this experiment since they could not accurately estimate the distribution of

the unlabeled datasets.

Figure 5.8, shows the Wilcoxon Win-Tie-Loss comparison between our CDE-

SMOTE and the original classifier, the Y-axis denotes the number of Win, Tie

or Loss while the X-axis denotes the classification algorithm used.

The results in Figure 5.8 shows that the CDE-SMOTE performed much better

than the original classifier. Considering the 350 Win-Tie-Loss comparisons, the

prediction performances significantly improved in 62.857% of the cases. The J48

and the ensemble Vote 2 (J48+RF+kNN) models accomplished 44% and 50%

improvement, respectively.

The increase in performances for the remaining classifiers are shown in Table

5.4 summarized with respect to their Balance, G-measure and F-measure values

which are averaged across 182 cross-project pairs.

From Table 5.4, we observe the increase in performances for all measures

and all classifier algorithms, especially for J48 and Vote 2 (J48+RF+kNN) cases

which exhibited major improvements.

The actual performances for each selected training data are shown in Table

5.5. The first column presents the training dataset, the remaining columns are
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Figure 5.8. CDE-SMOTE: comparison to the Original Classifier: Wilcoxon Win-

Tie-Loss

the Balance, G-measure, and F-measure, respectively. The performances shown

for each training dataset are the averaged from all 13 cross-project pairs.

5.4.4 Experiment 4: CDE-SMOTE and Related Works Com-

parison

Aiming to compare our proposed method to other related works, two well-known

defect prediction approaches are implemented: Burak filter and CLAMI.

In the Burak filter, experiments were performed across 14 extracted datasets,

the average increase performance for each classifier after CDE-SMOTE is applied

to the training dataset selected by Burak filter is shown in Table 5.6.
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Table 5.4. CDE-SMOTE: increase performance compared to original classifier

(Percentage)

Balance G-measure F-measure

J48 20.471 43.455 34.049

RF (10 Trees) 15.487 27.806 21.261

Naive Bayes 11.018 17.467 10.082

Vote 1 (J48+RF) 12.038 19.718 12.163

Vote 2 (J48+RF+kNN) 23.094 39.988 23.741

Averaged 16.422 29.687 20.259

Table 5.5. CDE-SMOTE: cross-project defect prediction performance in terms of

Balance, G-measure, and F-measure

Training Dataset
Balance G-measure F-measure

J48 RF NB Vote 1 Vote 2 J48 RF NB Vote 1 Vote 2 J48 RF NB Vote 1 Vote 2

Clam 0.632 0.655 0.586 0.651 0.631 0.629 0.653 0.569 0.649 0.629 0.448 0.467 0.414 0.458 0.423

NetBSD 0.465 0.446 0.658 0.591 0.623 0.384 0.344 0.657 0.578 0.618 0.302 0.282 0.441 0.419 0.414

Scilab 0.646 0.618 0.583 0.638 0.669 0.644 0.609 0.562 0.633 0.670 0.435 0.421 0.398 0.439 0.459

OpenNMS 0.623 0.630 0.619 0.634 0.634 0.614 0.624 0.602 0.631 0.627 0.430 0.417 0.421 0.419 0.404

Samba 0.602 0.579 0.494 0.591 0.579 0.597 0.562 0.434 0.585 0.568 0.406 0.376 0.327 0.416 0.377

Helma 0.573 0.575 0.643 0.625 0.655 0.548 0.561 0.633 0.617 0.651 0.414 0.382 0.423 0.423 0.435

Spring 0.532 0.508 0.653 0.645 0.603 0.485 0.450 0.644 0.636 0.589 0.378 0.350 0.410 0.422 0.397

GANYMEDE 0.573 0.508 0.639 0.566 0.648 0.546 0.448 0.634 0.540 0.643 0.364 0.302 0.396 0.350 0.405

OpenBSD 0.552 0.535 0.625 0.579 0.616 0.527 0.493 0.620 0.559 0.604 0.356 0.377 0.422 0.368 0.404

Squid 0.563 0.579 0.628 0.598 0.613 0.551 0.563 0.627 0.590 0.611 0.341 0.374 0.397 0.376 0.374

WineHQ 0.578 0.603 0.537 0.573 0.632 0.559 0.592 0.498 0.552 0.626 0.384 0.413 0.356 0.391 0.421

XFree86 0.652 0.671 0.569 0.655 0.672 0.643 0.669 0.544 0.648 0.670 0.426 0.442 0.382 0.426 0.425

Hylafax 0.560 0.620 0.626 0.531 0.631 0.512 0.615 0.612 0.479 0.617 0.353 0.401 0.399 0.312 0.405

Ipnetfilter 0.618 0.666 0.675 0.678 0.653 0.598 0.666 0.674 0.673 0.652 0.402 0.434 0.428 0.427 0.429

Averaged 0.584 0.585 0.610 0.611 0.633 0.560 0.561 0.594 0.598 0.627 0.389 0.388 0.401 0.403 0.412

The results in Table 5.6 indicates that, by taking into account of the dis-

tribution difference, the prediction performance could be significantly improved.

Compared to just using Burak’s filter alone, according to Wilcoxon signed-rank

tests at p≤ 0.05, our CDE-SMOTE combined with Burak’s filter significantly

enhanced the prediction performances in four measures: probability of detec-

tion (PD), balance (Bal), G-measure and F-measure. This demonstrates that

CDE-SMOTE can be used in conjunction with Burak filter and it does provide

a significant improvement in prediction performance.

In contrast to the Burak experiments, the CLAMI algorithm was directly
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Table 5.6. CDE-SMOTE: Increase performance (Percentage) comparison between

Burak Filtered dataset and Burak Filtered dataset with CDE-SMOTE applied

Balance G-measure F-measure

J48 18.852 35.566 24.469

RF (10 Trees) 16.855 32.499 21.044

Naive Bayes 17.262 35.596 21.502

Vote 1 (J48+RF) 22.327 41.538 20.440

Vote 2 (J48+RF+kNN) 28.684 52.873 22.904

Averaged 20.796 39.615 22.072

trained on a single dataset, which was selected as the unlabeled dataset as CLAMI

required no training dataset. The results from the 14 trained CLAMI datasets

was then compared to the CDE-SMOTE results from Experiment 3. Table 5.7

displays the averaged prediction performances of CLAMI across 14 unlabeled

datasets and across 182 cross-project pairs for CDE-SMOTE.

Table 5.7. CDE-SMOTE: Increase performance (Percentage) comparison with

CLAMI - When the Cross-Project training dataset is chosen randomly

Balance G-measure F-measure

J48 -7.277 -10.734 -2.033

RF (10 Trees) -7.013 -10.585 -2.079

Naive Bayes -3.107 -5.344 1.110

Vote 1 (J48+RF) -2.899 -4.673 1.708

Vote 2 (J48+RF+kNN) 0.559 -0.041 3.933

Averaged -3.948 -6.275 0.528

As shown in Table 5.6, performances of the CLAMI approach were really

promising. With the ensemble classification model Vote 2 (J48+RF+kNN) be-

ing the only model that demonstrated some slight improvement in prediction

performance, CLAMI outperformed the other classification models trained with

CDE-SMOTE. Whilst the results shows that CLAMI is a very efficient defect pre-
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Figure 5.9. CDE-SMOTE: Box plots Perfomance (Actual value) comparison be-

tween CLAMI and CDE-SMOTE (VOTE 2) - When the Cross-Project training

dataset is chosen randomly

diction approach, it should, however, be noted that, the results computed for the

CDE-SMOTE models were trained on cross-project training datasets randomly

chosen without considering the similarity between the cross-project pairs projects

in contrast to the CLAMI algorithm.

Figure 5.9 shows the performance comparison between CLAMI and CDE-

SMOTE Vote 2 (J48+RF+kNN) in terms of Balance (Bal), G-measure (G), and

F-measure (F1). The Y-axis denotes the actual value of these measures. Results

from CLAMI come from 14 experiments, as it runs on only unlabeled data, while

CDE-SMOTE results are from 182 cross-project pairs.

From Figure 5.9, in term of Balance and G-measure there is almost no dif-

ferent between CLAMI and CDE-SMOTE; their medians are exactly the same

(0.640); with slightly larger ranges for CDE-SMOTE which suggest lower con-

sistent in these two measures. On the other hand according to the F-measure,

CDE-SMOTE offer an improvement over CLAMI with 13.16% increased in me-

dian.
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In the real-world scenario, the main advantage the Cross-Project defect predic-

tion approach holds over the unsupervised method such as CLAMI, is the ability

to select the training dataset that is similar to the target unlabeled project. Aim-

ing to investigate this question, in the three measurements: Balance, G-measure,

and F-measure, we do another Win-Tie-Loss comparison for each selected cross-

project pair. Win is defined as the case where CDE-SMOTE offers more than

5% improvement than CLAMI, Loss when CLAMI offers more than 5% improve-

ment than ours, and Tie when neither of the cases is true. Each Win-Tie-Loss,

contributes 1, 0, and -1 to the selected cross-project pair, the case where the sum-

mation of scores is more than 0 is deemed as Success and the rest is considered

as No improvement.

Figure 5.10 presents the ratio of Success and No improvement. The 14 unla-

beled datasets in total are represented by a barplot represented on the x-axis and

each unlabeled dataset consists of 13 scores in percentages distributed among the

two results (ratio).

Overall we observe that the overall percentage of the Success cases is 39.010%

despite the fact we randomly selected cross-project pairs. Moreover, out of 14

randomly chosen datasets, 12 (85.7%) of them contains at least one case where

CDE-SMOTE Success compared to CLAMI, offering the better prediction perfor-

mances. This shows that CDE-SMOTE could achieve better performance results

than the CLAMI algorithm when the training dataset is carefully selected.

In Table 5.8, we present the overall increase in prediction performance when

only the Success cross-project pairs are selected. Results for OpenNMS and

WineHQ datasets were thus omitted in the table since they were regarded as no

Success projects.

Similar to Figure 5.10, the results in Table 5.8 also indicates that when the

training datasets are carefully selected, CDE-SMOTE approach could perform

significantly better than CLAMI. We observe how CLAMI performs very bad for

the NetBSD dataset. Should we try to exclude the results of NetBSD from the

table, the average performance improvement is still quite significant, with CDE-

SMOTE gaining 7.742406%, 8.045064%, and 18.70076% increments, respectively

for Balance, G-measure, and F-measure.

Our results show that although the CLAMI approach is capable of handling
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Figure 5.10. CDE-SMOTE: Percentage of cases that CDE-SMOTE shows Signif-

icant improve over CLAMI

Table 5.8. CDE-SMOTE: Increase performance (Percentage) comparison with

CLAMI - When the Cross-Project training dataset is selected

Training Dataset

Vote 2 (J48+RF+kNN)

Training Dataset

Vote 2 (J48+RF+kNN) (Con.)

Increase performance (Percentage) Increase performance (Percentage)

Balance G-measure F-measure Balance G-measure F-measure

Clam 7.443 7.615 22.223 GANYMEDE 4.122 2.899 6.541

NetBSD 105.686 149.683 452.052 OpenBSD 7.982 8.418 10.416

Scilab 4.996 5.371 21.008 Squid 4.414 4.783 12.256

OpenNMS - - - WineHQ - - -

Samba 12.330 12.897 38.539 XFree86 4.894 4.923 9.071

Helma 7.865 4.281 24.560 Hylafax 2.408 3.163 6.683

Spring 4.763 4.900 21.778 Ipnetfilter 23.950 29.244 32.635

Averaged Balance: 15.904 G-measure: 19.848 F-measure: 54.813
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defect prediction very well overall especially for unsupervised prediction, if similar

cross-project datasets are available, our proposed approach CDE-SMOTE would

offer a significant improvement.

5.5. Discussion

5.5.1 Implications

Our experiments address the practicality of CDE-SMOTE, as well as, our hy-

potheses and research questions.

Results from Experiment 1 show the danger of applying training data from

one project to predict another project without considering their class distribu-

tions, and demonstrate that it could be mitigated by modifying the class distribu-

tion of training dataset. Using the modified dataset, significantly improvements

(increased by at least 5%) can be found in 64% of the test cases according to

Wilcoxon signed ranks, and thus validated our first hypothesis.

In Experiment 2, its results demonstrate that the class distribution of an

unlabeled dataset can be estimated even in the cross-project scenario, with only

0.1689 positive rate (PR) error on average; compared to just using the unmodified

training data, these estimations could significantly reduce the mismatch in 50%

of the cases (reduced by at least 5%) which confirms our second hypothesis.

Experiment 3 simulated the practical case of using CDE-SMOTE in real world

scenarios. Its results validate our Research Question 3 by confirming that the

estimated distribution could be used as a substitute for the actual distribution

and could significantly improve (increased by at least 5%) the cross-project defect

prediction performance in 63% of the test cases according to Wilcoxon signed

ranks.

The fourth Experiment compared CDE-SMOTE with two proposed approach-

es in literature: Burak filter and CLAMI. According to our results, applying

CDE-SMOTE after the Burak filter is applied, can help improve its prediction

performance by 27%. When compared to CLAMI: when the training dataset is

randomly selected, a slight improvement in F-measure can be expected, while

significant performance improvements were observed when similar cross-project
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pairs were selected.

Following this, the implications of our results are:

1. When building a cross-project defect prediction model, the class distribu-

tion of the training and the intended target projects should be taken into

account.

2. The quantification approach from the machine learning field could be ap-

plied to the cross-projects scenario.

5.5.2 Validity

The main threats to validity in this study are discussed in this section.

Internal Validity:

As our datasets were extracted from commit logs and faulty modules were

labeled based on comments from these logs. Faults that were not reported in

such commit logs were thus not included in our dataset and better extraction

techniques could be used to ensure all fault data are recorded. As a future

study, we will include all possible techniques to record all faulty models

aside those in the commit logs.

External Validity:

With our results from the experiments conducted on this limited amount of

datasets, we thus cannot guarantee that our results will be able to generalize

for every non-experimented projects.

While there are many methods to account for the class distribution such

as undersampling, oversampling, resampling and cost-sensitive classifier,

only one method of oversampling, SMOTE, is experimented in this chapter.

Even if the previous study shows the it is the best approach to handling

the imbalanced dataset. There might be a better technique for modifying

the training dataset distribution in the cross-project scenario.

In estimating the class distribution of the unlabeled dataset, while there are

several way to quantify the class distribution of the unlabeled dataset, only

classification and count (CC) technique is investigated. As such we cannot
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guarantee that this method is the most suitable approach for estimating the

percentage of the defect-prone module in cross-project defect prediction.

Additionally, only several classification algorithms were considered in this

study. While these algorithms are widely used in the defect prediction field

and we also extend our study to the ensemble techniques, many classification

algorithms are still not experimented on. Consideration of more prediction

models is left for future studies, in this chapter, only the results from J48

Decision Tree, Random Forests, Nave Bayes, Logistical Regression, kNN,

and Vote ensemble: Average of Probability are published.

5.6. Conclusion

This study presents an approach for improving the prediction performance of the

defect prediction model. The proposed approach, CDE-SMOTE, alleviates the

detrimental effect of class distribution different and highly skew dataset. It can be

used by practitioners to predict the defect-proneness of their software-engineering

module and could be easily applied to any software engineering project.

In section 5.4.1, results from Experiment 1 show the danger of applying train-

ing data from one project to predict another project without considering their

class distributions, and demonstrate that it could be mitigated by modifying the

class distribution of training dataset. Using the modified dataset, significantly

improvements (increased by at least 5%) can be found in 64% of the test cases

according to Wilcoxon signed ranks, and thus validated our first hypothesis.

In section 5.4.2, experiment 2 results demonstrate that the class distribution

of an unlabeled dataset can be estimated even in the cross-project scenario, with

only 0.1689 positive rate (PR) error on average; compared to just using the un-

modified training data, these estimations could significantly reduce the mismatch

in 50% of the cases (reduced by at least 5%) which confirms our second hypoth-

esis.

In section 5.4.3, experiment 3 simulated the practical case of using CDE-

SMOTE in real world scenarios. Its results validate our Research Question 3 by

confirming that the estimated distribution could be used as a substitute for the

actual distribution and could significantly improve (increased by at least 5%) the
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cross-project defect prediction performance in 63% of the test cases according to

Wilcoxon signed ranks.

In section 5.4.4, the fourth Experiment compared CDE-SMOTE with two

proposed approaches in literature: Burak filter and CLAMI. According to our

results, applying CDE-SMOTE after the Burak filter is applied, can help improve

its prediction performance by 27%. When compared to CLAMI: when the training

dataset is randomly selected, a slight improvement in F-measure can be expected,

while significant performance improvements were observed when similar cross-

project pairs were selected.

Following this, the implications of our results are:

• When building a cross-project defect prediction model, the class distribu-

tion of the training and the intended target projects should be taken into

account.

• The quantification approach from the machine learning field could be ap-

plied to the cross-projects scenario.

Our approach is validated through four experiments, confirming the validity

of each part. Their results demonstrate that CDE-SMOTE could significantly

improve the cross-project defect prediction performance. It also supports our

underlying theory that the skewness of the unlabeled dataset could be estimat-

ed and mitigated by using oversampling to shift decision boundary toward that

minority class, hence improve its overall defect prediction performance.
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Chapter 6

Improving Automation: Bug

Report Categorization with

Shortage of Historical Data

6.1. Background

Bug reports offer important insight into the status of the software project; they

can be used to estimating the bug-fixing time [1, 32], deciding which bug should

be fixed [62], or analyzing the bug type distribution [8,63]. Categorization is one

way to extract meaningful information from bug reports. Traditionally, these re-

ports are inspected and categorized by humans; this approach has good accuracy

and flexibility. However, the time it takes to understand each individual report

combined with the numerous numbers of reports make manually reading through

them impractical or even impossible in many situations [8]. It is clear that in

order to use categorization in a practical environment, an automated system is

needed.

Many approaches using supervised learning [4,5,44] have been proposed to au-

tomate the process of obtaining information from bug reports. These approaches

construct a classification model from the training data of the labeled bug reports

that can later be used to automatically categorize new incoming data into pre-

determined labels. The advantage of this approach is that it can greatly reduce

the amount of human effort required after a classification model is built. However,
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building that said model is, sometimes, quite difficult. The supervised learning

approach requires a lot of labeled bug reports to construct its model [4], but these

reports are often unavailable in many software engineering projects.

There are mainly two options that can be used to obtain labeled data for

the project without historical data. The first approach is manual inspection [8],

which as mentioned previously requires a great amount of human effort. The

second is a cross-project classification [13, 16, 39], which builds a classification

model from the labeled dataset of another project. While this approach has its

own advantages, there are also some limitations. Depending on the characteristics

between the target and training projects, the same class might not represent the

same concept and would be better to differently represent. To illustrate, while

both Debian and HttpClient projects have bug reports in a network category,

their impacts are starkly different. In an operating system project such as Debian,

network bug, while still important, is not as critical as in HttpClient that mainly

focus on communicating. Instead of grouping every network bugs in just one

class, it would make much more sense for HttpClient to divide this class into

several categories.

Another way to obtain knowledge from bug reports is unsupervised learning

which extracts information from the underlying structure of unlabeled bug re-

ports. The major advantage of this method is its ability to categorize the bug

reports without the need for pre-labeled data. Also, since knowledge obtained by

this method is not limited by the pre-determined categories, using this method

may allow information to be discovered that might otherwise be easily overlooked

by supervised learning.

While using unsupervised learning offers many advantages, this approach has

not been applied to classify bug reports. Moreover, this approach still requires

some human effort to understand the obtained categories. In other application

domains, there have been many attempts to automate a cluster labeling process

[4, 64–66] in order to make them easier to comprehend by labeling these clusters

with more representative names. Most approaches do this by using either the

most prevalent words in that cluster or bigrams of words in the cluster. However,

while using these methods makes the cluster result easier to understand to some

degree, using the n-gram does not take into account the grammatical meaning
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of sentences; its prerequisite is just adjacent terms in a string. Therefore, in

many cases, the cluster that is labeled by the verb phrase will be quite counter-

intuitive for a human inspector since we normally label a group of things using

a noun phrase. For example, between wont connect and connection timeout, the

second one is more likely to be a better label candidate.

This chapter extends our workshop paper and gives improvements and further

investigation on the performance of our previous categorization framework [67].

In that paper, an almost fully automatic framework was proposed to categorize

bug reports, according to their textual contents . That paper also provided a new

technique for automatically labeling a cluster using NLP chunking [68] and top

words from relevant topics of that cluster.

While the previous paper shows a potential of the proposed framework, there

are still many questions left unanswered: Is using topic modeling actually help

improve the categorization performance? Is it stable? How well does it perform

compared to cross-project classification? These questions are answered in this

chapter.

Another problem is that the previous labeling algorithm lacks the variety

in its suggesting labels; a few high ranking words dominates almost its entire

suggesting labels. For example a word JUnit, although it is representative for its

BUG related cluster, appears in 9 out of 10 of the suggesting phrases. This lowers

the coverage of the suggesting labels, which is not a good thing. To counter the

lack of term variation, this chapter presents a new weighted reduction algorithm

to increase the variety of terms in the suggesting labels.

Our result shows that our method can distinguish between different types of

bug reports and can categorize them into different groups with a performance

result comparable to the supervised learning approach. It also shows that our

cluster labeling method can generate representative labels for clusters built in

topic vector space.

This chapter is organized as follows. We discuss the Preliminaries in Section

II. Section III describes our method. Section IV explains our experimental design.

Experiment results are reported in Section V, threats to validity in Section VI,

and related works in Section VII. Section VIII concludes our research and future

work.

65



6.1.1 Supervised Learning Approach

Supervised learning is widely used in the area of software engineering; the most

prevalent method is a classification that trains a classification model with training

dataset to later be used to classified new incoming data [4]. Each instance in the

train dataset is labeled with its actual class; these classes are pre-determined and

act as prior knowledge which the model will try to learn.

While this approach is widely used and clearly has its own advantages, its

major problem lies in its absolute requirement for the prior knowledge; without

this information the classification model simply can-not be built and obtaining

this knowledge is far from easy. Since to obtain a good classification model, a

large amount of training data is needed, human inspection is required in order

to prepare this dataset. In Herzig et.al [8], a large amount of time and effort are

spent to reclassify bug report categories.

One way for supervised learning to mitigate this problem is cross-project

classification [13,16,39]. This method builds a classification model from a dataset

from another project instead of using its own. This generally makes obtaining

training data become easier, and it also makes the concept that the model learns

become much more general. However this generality, sometimes, becomes its

own downfall. When the classification model is intended to be used only in one

project, the project manager will definitely want a model that best performs on

that said project, not one that works best in general. Technically, the decision

boundary that the model used to categorize each class will be distorted causing

parts of the data to be misclassified.

6.1.2 Unsupervised Learning Approach

Some research in this area uses unsupervised learning to find hidden structures

within their data. It is commonly used in bug triaging [10], duplicate bug report

detection [2] and in topic modeling [9,44]. The main advantage of this approach is

the non-requirement of a training dataset. This greatly helps reduce the amount

of effort required to obtain and process prior knowledge which would otherwise

be needed for the supervised learning.

Aside from this, the amount of knowledge obtainable from supervised learning
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is also limited by its prior knowledge; supervised learning cannot comprehend any-

thing beyond which it is specifically taught. This means that supervised learning

will always categorize bug report to the predetermined class which, sometimes,

is not the best approach since a certain class might be better represented as two

or more in certain situations.

6.1.3 Topic Modeling

Topic modeling is an unsupervised learning technique that captures the under-

lying structure of the document repository by grouping co-occurrence words into

the same topic [18,19]. The result is a set of topics, a cluster of words that likely

to share the same meaning. A document can be associated with topics using a

topic proportion vector that indicates what topics that document is associated

with. The more the document relates to the topic, the more proportion is assigned

to that topic. Compared to the bag-of-words [5, 69], topic modeling can greatly

reduce the effect of data sparseness, which is one of the main problems of the

word-level approach. In addition, this approach also help reduces synonymy and

polysemy problems by grouping the co-occurrence words together. This generally

makes documents much easier to distinguish and it reduces the computation time

for both supervised and unsupervised learning.

In the software engineering field, there are several research areas that use

topic modeling. However most of them are used in bug triaging [10] and dupli-

cate detection [2], while only a few of them are applied to the categorization and

knowledge discovery of bug reports. Pingclasai et.al [5] has shown that this area

could benefit from topic modeling and could significantly improve classification

performance of bug reports by just adopting it instead of using a word-level mod-

el [46]. The problem is that using this approach alone is often not enough to

understand the underlying structure of bug reports; even with topics proportion

demonstrated, comprehending the similarity of each bug report in high dimen-

sional data space is far from easy.
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6.2. Proposed Algorithm

We present our methodology in this section. Our framework can be divided into

three main phases: Topic Modeling, Clustering and Cluster Labeling. The first

phase, Topic Modeling, is to preprocessing raw bug reports textual content. These

bug reports are then projected into topic document vectors, a format which can

easily be utilized by machine learning algorithms. In the second phase, projected

bug reports are categorized according to its textual similarity using clustering

algorithm. Finally, in the Cluster Labeling phase, each group of bug reports is

labeled by phrases that portray its characteristics.

6.2.1 Topic Modeling Phase

Bug reports are projected onto topic vector space in this phase. This projection

processes and transforms bug reports into a more manageable form, and topic

modeling is employed instead of the bag-of-words to mitigate data sparseness as

well as the effect of word ambiguity. The input of this phase is bug reports in

the XML format, and the outputs are topic membership vectors of all the bug

reports in the corpus and the top word list of each topic. This list also contains

the proportion of each top word in each topic. Our topic modeling phase consists

of four steps, presented in Figure 6.1

1. Parsing: Raw incoming bug reports are in XML format; therefore, some

non-textual information such as tags, attributes and declarations are also

included. For each bug report, three sections: title, description and com-

ments are extracted and combined into a single text file.

2. Tokenization: In this step, in order to transform these bug reports into a

more processive form, we a tokenize stream of text from the previous step.

The parsed stream of text is broken into words and unnecessary punctuation

is removed.

3. Stop Words Removal: Since many words in English hold little to no mean-

ing when alone, they will not provide useful information when transformed

into a topic vector space that disregards their position. Therefore, these

words are removed. The Stop list from mallet 2.0.7 is used in this step.
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Figure 6.1. Unsupervised: Diagram of the Topic Modeling phase

4. Topic Modeling: Topic modeling is applied in this step in order to project

bug reports onto the topic vector space. The Hierarchical Dirichlet Process

(HDP) [19] is chosen as our topic modeler due to its ability to infer the

number of topics automatically, hence reducing tuning effort and making

our framework become much more automatic.

We also provide results from Latent Dirichlet Allocation (LDA) topic mod-

eling [18]. While this process is less automatic and some amount of tuning

is required, it could provide a significant performance improvement when

properly tuned. Note that even if we only use HDP and LDA in our exper-

iments, our framework is modular. As such, other topic modelers can also

be easily applied. This allows our framework to be adjusted according to

data structure and the actual situation in which it will be employed.
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The outputs of this process are bug reports in topic vector space and the top

words list of each topic. Bug reports are represented by a set of topic membership

vectors; each vector represents a bug report and consists of a set of topics with

its proportion. Frequently co-occurring words are grouped into a topic and top

words from each topic are output in the top words list.

6.2.2 Clustering Phase

To categorize bug reports without the need for any prior knowledge of the data, a

clustering technique is used. In this phase, topic membership vectors representing

bug reports from the previous phase are grouped and categorized according to

their textual similarity. Any clustering algorithm can be used in this phase,

depending on preferred categorization criteria and available information about

dataset structure.

This available information can easily be utilized, which allows a boarder range

of algorithm to be used and improves the categorizing performance. For example,

when the number of categories existing in the dataset is known, a clustering

algorithm that can specify the number of clusters should be employed. On the

other hand, if there is no known information about the dataset structure, an

algorithm that can automatically infer the number of clusters on its own should

be used instead.

The clustering methods used in our experiments are Expectation Maximiza-

tion (EM) and the X-means algorithm [70]; both are methods that can automat-

ically estimate the number of clusters. All experiments using X-means in this

chapter set a minimum number of clusters to 2 and maximum to 10. Both of

the clustering algorithms are employed using Weka 3.6.3. [48] The output of this

process is the cluster assignment, which indicates which bug report belongs to

which cluster. Figure 6.2 summarizes our Clustering phase.

6.2.3 Cluster Labeling Phase

Understanding the result of clustering is difficult because normal clustering tech-

niques do not provide adequate descriptions to understand the meaning behind

their results. This means that the task of interpreting the meaning of each cluster
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Figure 6.2. Unsupervised: Diagram of the Clustering phase

is often left to its user.

While there are many algorithms already proposed for cluster labeling [64–66]

and topic naming [71, 72], they are not directly applicable for our work, which

performs clustering in the topic space. Most cluster labeling algorithms are de-

signed for word-level clustering, not for topic-level. Similarly, just finding a set

of important topics and then using topic naming algorithms will either limit the

labeling result to a set of terms or disregard the term co-occurrence between top-

ics. With this in mind, we suggest three algorithms for labeling clusters in topic

vector space.

Title of the closest instance: Cluster Labeling: One of the simplest meth-

ods for labeling a cluster of documents, this method sorts the instances (bug

reports) in each cluster according to their distance from the cluster center,

and then uses the title of the closest instance to label the cluster.

While this method is both straightforward and easy to implement, its result

can be misleading; largely because the result depends on how informative

the report’s title is in that particular bug report.

Adjusted Jensen-Shannon Divergence: Cluster Labeling: Labeling accord-

ing to the adjusted Jensen-Shannon Divergence, makes slight modifications

to the important word extraction method proposed by Carmelet et al [65].

This method selects a set of top ranking topics for each cluster according

to two criteria: First, the Jensen-Shannon Divergence, DJS, between the
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target cluster and the other clusters, has to be as high as possible. The

Jensen-Shannon Divergence is measured for each dimension (topic), from

the centroid of the target cluster to the centroid of other clusters. Second,

in addition to having the highest possible Jensen-Shannon Divergence, the

selected topic has to have an averaged topic distribution higher than the

averaged topic distributions of that topic in other clusters. Figure 6.3 shows

a diagram of this process. The MaxDJS can be calculated by Eq.6.1.

Figure 6.3. Unsupervised: Diagram of Adjusted Jensen-Shannon Divergence:

Cluster Labeling

MaxDJS =
TopicNum

max
i=1

( J∑
j=1

P (i)log
P (i)

M(i, j)
+

J∑
j=1

Q(i, j)log
Q(i, j)

M(i, j)
) (6.1)

P is the centroid of the target cluster; P(i) is the location of P in Topici

dimension. Q is centroid of other cluster; Q(i, j) is the location of other

clusterj in Topici. J is the number of clusters. M(i,j) is computed by Eq.6.2.

M(i, j) =
1

2× (P (i) + Q(i, j))
(6.2)
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After obtaining a set of top ranking topics for each cluster, the top words

of these clusters are then assigned as the clusters’ labels.

NLP Chunk: Cluster Labeling: This novel method takes term co-occurrence

between topics into account, labeling clusters with noun phrases extracted

via a NLP chunker. This method consists of four main steps: Important

Topics Extraction, Important Words Extraction, Noun Phrase Extraction,

and NLP Chunk labeling. These steps are summarized in Figure 6.4.

Figure 6.4. Unsupervised: Diagram of NLP Chunk: Cluster Labeling

1. Important Topic Extraction: The inputs to this step are topic mem-

bership vectors, the output of 6.2.1, and the assignment of the interested

cluster from 6.2.2. A set of important topics for each cluster is acquired by

ranking topics according to the ratio between each cluster’s average proba-

bility distribution in that cluster and the average probability distribution of

the entire dataset. The idea is that the topics with the highest probability

distribution in the specific cluster when compared to the corpus average are
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likely to be the best representatives for that cluster. This phrase, however,

does not directly take each topic word distribution into account, but only

selecting a top important topic for each cluster.

The average probability distribution of topici in clusterj is equal to the sum

of topic i proportion from all documents in cluster j divided by the number

of documents in cluster j. The equation is show in Eq. 6.3.

AV GTopicDistribution(Topici, Clusterj) =

1

nj

∑
Reportx∈Clusterj

TopicDistribution(Topici, Reportx)

(6.3)

The variable nj is the number of instances (bug reports) that are assigned to

clusterj. For the entire dataset average distribution, simply replace clusterj

with the set of all instances in the bug report corpus.

The ratio of each Topici in clusterj can then be calculated by dividing the

average Topici proportion of clusterj with the average Topici proportion of

the entire document corpus. The equation is shown in Eq. 6.4.

Ratio(Topici, Clusterj) =
AV GTopicDistribution(Topici, Clusterj)

AV GTopicDistribution(Topici, EntireCorpus)
(6.4)

All topics are ranked according to their ratio, and then output as a set of

the top relevant topics. These topics can also be used to generate the label

list of the cluster, by selecting the top word of each topic in the set. This

relevant topics set is used as input for the following step.

2. Important Word Extraction: The previous step does not take the word

distribution into account, this means it will neglects the second and later

ranking words in the topic even though they might have probability distri-

bution closed to the top one. Since same word can appear multiple times

in the different topics, it is entirely possible that using only the topic dis-

tribution ratio will result in discarding potential representative words. To

solve this problem, we propose using Eq. 6.5 to ranking words obtain from
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the set of top relevant topics.

WordScore(wordk, Clusterj) =

TopicNum∑
i=1

Ratio(Topici, Clusterj)×P (wordk|i)

(6.5)

P(wordk|i) represents the probability distribution of wordk in topici, and

this combined with the summation of all relevant topics makes it possible

for subsequent words to obtain a higher TermScore than a top word if it

appears multiple times in several topics. Each word is then sorted according

to their WordScore into a relevant word list, which can also be used as a

label list. This relevant word list is used as input for the last step, NLP

Chunks labeling.

3. Noun Phrase Extraction: In this step, a set of noun phrases are extract-

ed from the interested cluster. The inputs for this step are raw bug reports

from the interested cluster. A Natural Language Processing (NLP) chunker

from Apache OpenNLP [68] Library version 1.5.3 is used to extract a set

of noun phrases from these bug reports. A noun phrase is used instead of

other phrase types, as it is more informative and more prevalent [73]. The

output of this phrase, the chunked list, is used as input for the next step.

4. NLP Chunks Labeling: This step labels each cluster with its most repre-

sentative noun phrases. The inputs for this step are a relevant word list and

a chunked list. Each noun phrase in the chunked list is scored according to

Eq. 6.6.

PhraseScore(Phrasem, Clusterj) =
∑

k∈Phrasem

WordScore(wordk, Clusterj)

(6.6)

The Phrasem score in Clusterj is the summation of the WordScore of all

words in Phrasem. After the score calculations are complete, all phrases are

then sorted using their score.

However, we found that using this scoring method alone will usually result

in only a few of the most important words dominating the label list. To

give the label list more variety, the score of words that already appeared

several times in the phrase list are adjusted to have less and less impact on
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the PhraseScore. This is done by reducing the score of the sorted phrase

list, from Eq.6.6, using Eq.6.7.

ReductionScore(Phrasem, Clusterj) =∑
k∈Phrasem

WordScore(wordk, Clusterj)×
X2

k

(X2
k + 1)

(6.7)

X is the number of times wordk already appears in the higher ranking

phrases. After this score reduction, the phrase list is then sorted again to

represent its new ranking. The output of this process is a noun phrase list

representing the interested cluster.

6.3. Experimental Design

We describe the measurements used, the experimented datasets, and the experimental-

design in this section. The goal of these experiments is to demonstrate the perfor-

mance of the proposed framework in various perspectives, and the specific goals

for each experiment are given in the experimental-design subsection.

6.3.1 Measurements

In this section, we describe five measurements used in our experiments: Cluster’s

Purity, Accuracy, Precision, Recall and F-measure (F1). All clustering results

are evaluated via external evaluation, by using known class labels.

Cluster’s Purity: Cluster purity is a simple measure to evaluate how pure the

cluster’s result is according to the predetermine categories, classes. This

measure can be calculated using Eq.6.8.

Purity(ClusterResult, Categories) =
1

n

∑
j

maxi|Clusterj ∩ Classi|

(6.8)

The ClusterResult is a set of Clusters, {Cluster1, Cluster2,..., Clusterj} while

Categories represent the set of categories (classes) {Categories1, Categories2,...,
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Categoriesi}. The n variable is the total number of instances in the entire

data corpus.

To summarize, each cluster will be assigned to its predominant class. How-

ever, in the case where there is a class not assigned to any cluster, a cluster

containing the highest ratio between the number of unassigned class and

the number of instances in that cluster, will be reassigned.

Accuracy: Accuracy is similar to the cluster’s purity, but it is used on the

classification result instead of clustering. It grants a basic idea of how

many instances are correctly classified in relation to the total number of

instances. The arithmetic equation is shown in Eq. 6.9.

Accuracy =
|Correctly Classified Instance|

Total number of instance
(6.9)

F-measure: F-measure, or F1, is used to evaluate the results of both clustering

and classification. In the case of clustering, the same method as in cluster’s

purity is used to assign a class to each cluster. This measure is a harmonic

means of precision and recall, which can be computed via Eq. 6.10 and Eq.

6.11, respectively. The calculation is applied to each class separately, then

combined using a weight average.

A true positive indicates the number of instances in the interested class, a

positive class, that are correctly classified while a false positive represents

the number of instances from other classes mis-assigned into the positive

class. A false negative is the number of positive classes that are incorrectly

classified to any other classes.

Precision =
TruePositive

TruePositive + FalsePositive
(6.10)

This precision provides us with the insight as to how accurate the prediction

is, in relation to the number of the predictions made.

Recall =
TruePositive

TruePositive + FalseNegative
(6.11)

Recall indicates the completeness of the prediction in the interested class.

In other words, recall shows how many instances in the interested class that
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the classifier misses, in relation to the actual number of instances in the in-

terested class.

When the two measures above are calculated, the f-measure can be com-

puted using Eq. 6.12.

F1 =
2× Precision×Recall

Precision + Recall
(6.12)

After obtaining the f-measure for each class, the final overall result is sum-

marized using the weight average which takes the number of instances from

each class into account.

6.3.2 Datasets

The experimented bug reports are from three datasets of our previous research [8],

and which are manually classified by experts using a fixed set of rules. To repre-

sent our method performance by two possible situations, we use two sets of binary

classes to evaluate its performance. First is to distinguish between the different

projects, to represent this problem; namely, the bug reports from the Lucene and

Jackrabbit (JCR) projects are combined. We then try to categorize the merged

dataset back into its original categories: Lucene and JCR. This dataset is used

in Experiment 2.

Second, we classify bug reports into their corresponding types. Originally,

these bug reports were categorized into six categories. However, as the increasing

number of categories make it harder to accurately classify bug reports [4, 5, 44],

the number of categories is reduced to preserve the process performance. The

used categories are BUG and Other Requests types; the Other Requests type is

a composite type consisting of four non-bug report types: Improvement, Request

for Enchantment (RFE), Task and Test. These datasets are used in Experiment

1,3,4 and 5. Each project class distribution is shown in Table 6.1.

6.3.3 Design For Each Experiment

There are a total of five experiments in this research, and each is designed to

evaluate the different aspects of our method. The detail and idea behind each
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Table 6.1. Unsupervised: Class distribution of the experimented datasets

Project
Total Number of Number of Number of

Instances “Bug” Type “Other Requests” Type

Lucene 2382 1037 1345

Jackrabbit (JCR) 2328 1213 1115

HTTPClient 731 469 262

experiment are given below.

Experiment 1: Comparison between Bag-of-Words and Topic Modeling

The first experiment is designed to evaluate the performance of differen-

t ways to represent a document corpus. We experiment on a well known

word-level approach, the bag-of-words model, using both term frequencies

and term weighting. Then we compare their results with the topic modeling

approaches.

First, the document corpus is transformed into term frequencies; each in-

stance is a bug report and the value in each dimension represents the fre-

quency of the associated term appearing in that particular bug report. Af-

ter the transformation, the dataset is further processed to eliminate out the

terms with an insignificant appearance, so that dimensions with a frequency

below twenty are filtered out.

Tf-idf stands for term frequencyinverse document frequency, and it is a

term weighting method regularly applied to the bag-of-words model. The

tf-idf scores for each term in each document are calculated via the following

equations.

tf(termk,Docp) = freq(termk,Docp) (6.13)

Tf can be computed using Eq. 6.13. It represents how many times termk

appears in documentp.

idf(termk,Docp) = log
Number of Documents in theCorpus

1 + Number of DocumentsContaining termk

(6.14)
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Idf is calculated by Eq. 6.14. This measure indicates the significant of the

termk, according to its appearance in the entire data corpus. The less the

term is found in other documents, the better its score.

tf − idf(termk,Docp) = tf(termk,Docp)× idf(termk,Docp) (6.15)

After both tf and idf are obtained, the tf-idf can be calculated using Eq.

6.15. This tf-idf represents the importance of termk in documentp.

Topic modeling is a natural language processing (NLP) process, and in

this research, it is used to transform the bug report corpus into a vector

matrix of documents and topics. Each topic modeling’s topic is a group

of words assumed to represent the same or similar meaning. There are

two topic modelers used in this experiment, Latent Dirichlet Allocation

(LDA) [18] and the Hierarchical Dirichlet Process (HDP) [19]. LDA is

a method commonly used in research [5]; however, the method requires

the user to specify the number of topics. This makes the method rather

inconvenient when there is no prior knowledge about the dataset.

The second topic modeler, HDP, has the advantage that it can infer the

number of topics automatically. The number of LDA’s topics in this ex-

periment are set to be similar to the HDP’s topics. Since the output of

each run from these topic modelers can be slightly different, due to their

probabilistic property, the experiments are done on three separate runs for

each topic modeler. These results are then averaged and shown in section

6.4.1.

These two topic modeling methods are experimented on to decide which

method is more suitable for our categorization method.

Four document vector corpora are used as an input for X-means clustering

[70]. The number of minimum clusters is two and the maximum is ten; each

cluster is labeled according to the method described in subsection 6.3.1. As

X-means results can change according to the cluster seeds used, we perform

an experiment on one thousand different cluster seeds for each corpus, then

average the results. All approaches are evaluated by five measurements

described in section 6.3.1. This experiment is done on HttpClient and JCR

dataset, by categorizing bug reports into BUG and Other Requests.
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Experiment 2: Categorizing bug reports from two different projects

This experiment measures the ability of our method when trying to distin-

guish between two groups of bug reports that are not closely related. To

achieve this, the bug report from the projects Lucene and JCR, are com-

bined. The HDP is then employed to the topic model to the combined

dataset, according to the results in Experiment 1. We then try to cate-

gorized bug reports from this dataset into their actual projects using four

different approaches.

The first two are our unsupervised method employed using two different

clustering algorithms, X-means [70] and Expectation Maximization (EM)

Clustering [74], both capable of inferring the appropriate number of clusters

each on their own.

For comparison, we compared our unsupervised method results with two

classification algorithms; J48, an implementation of the C4.5 decision tree

[75] and Logistic Regression [76]. These two supervised methods are used

as an upper bound of the unsupervised method, as they are created from

the prior knowledge (labeled training dataset) in which we assume that it

may not exist or is very costly to obtain. All methods are evaluated in

term of the cluster’s purity/accuracy and f-measure. The results shown

are the average values obtained from three separated HDP’s runs. Both

classification methods are trained and tested using 10-fold cross-validation.

Experiment 3: Categorizing bug reports into Bug and Other Requests

The goal of this experiment is to evaluate our method performance in a

more complex situation, and to distinguish between the different types of

bug reports in the same project. Different from the previous experiment,

each project is separately experimented on; the experimented on projects

are HTTPClient, JCR, and Lucene. The results of the X-means clustering

are from the average of one thousand runs. Aside from this, the settings of

this experiment are similar to 6.3.3.

Experiment 4: Cross-Project Classification Comparison

In this experiment, we look into more competitive methods of handling the

lack of prior knowledge. Generally, when we want to categorize a project
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in which no labeled training dataset is available, we usually employ cross-

project classification [13]. Cross-project classification trains a classification

model from the different but similar projects that already have training data

readily available. While there are still some limitations, for many projects,

this method is certainly more realistic than creating a whole new training

dataset from scratch. Here, the cross-project classifiers are trained using

training dataset from first one, and then two projects, and is then compared

with our unsupervised approach.

Experiment 5: Cluster Labeling Results Comparison

This experiment shows the results of several cluster labeling algorithms.

Most cluster labeling research is done on the word-document vectors [65],

not the topic ones, so that some processes are required to make them capable

of properly handling topic-level clusters. In this experiment, there is a total

of three labeling methods, as described in section 6.2.3

6.4. Results

In this section, we present five experimental results as described in section 6.3.3.

The experiments are performed on Lucene, Jackrabbit (JCR) and HTTPClient

datasets.

6.4.1 Experiment 1: Comparison Between Bag-of-Words

and Topic Modeling

While previous studies have shown the advantages of topic modeling in classifica-

tion [5] and information retrieval (IR) [2,9], its efficiency in bug report clustering

has hardly been explored. The goal of our experiment is to verify the benefits of

using topic modeling and selecting the best topic modeler that is most compat-

ible with our framework. Four different methods for representing the document

corpus are investigated: Tf, Tf-idf, LDA, and HDP. The set of document vectors

from each method is then used as input for X-means clustering. The experiment

is done on HTTPClient and JCR datasets.
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Table 6.2 presents the result of this experiment. The lower part of the table

shows F-measure: per class and Weight Average summarizing the overall perfor-

mance from both classes

Table 6.2. Unsupervised: Experiment 1 - Comparison between different Dataset

Dimension

HTTPClient JCR

Bag-of-Words Topic Model Bag-of-Words Topic Model

Tf Tf-Idf LDA HDP Count Tf-Idf LDA HDP

Overall
Num Dim 1220 1220 52 52.67 1922 1922 52 55.67

Accuracy 0.645 0.573 0.559 0.596 0.533 0.553 0.620 0.625

BUG

Precision 0.646 0.676 0.747 0.711 0.529 0.585 0.639 0.638

Recall 0.991 0.725 0.490 0.641 0.938 0.653 0.661 0.649

F-measure 0.782 0.629 0.539 0.656 0.676 0.576 0.595 0.625

Other

Precision 0.712 0.625 0.452 0.459 0.601 0.580 0.642 0.640

Recall 0.025 0.302 0.684 0.516 0.091 0.443 0.575 0.600

F-measure 0.048 0.224 0.510 0.467 0.155 0.436 0.564 0.605

WeightAVG

Precision 0.669 0.658 0.642 0.621 0.564 0.583 0.640 0.639

Recall 0.645 0.573 0.559 0.596 0.533 0.553 0.620 0.625

F-measure 0.519 0.484 0.529 0.588 0.426 0.509 0.580 0.616

From Table 6.2, we see that even with the removal of the terms with less fre-

quency, the bag-of-words approaches still have a very high number of dimensions.

This results in a very sparse high-dimensional space degrading the clustering ef-

ficiency. In both datasets, the topic model approaches perform better than the

word-level approaches, and have higher weight average F-measures in all situ-

ations. While the Tf method has better accuracy in HTTPClient dataset, its

performance in Other class is clearly suffered due to a heavy bias toward the ma-

jority class (BUG). This confirms that using topic modeling can efficiently reduce

the sparseness of the bug report dataset and project it into a space more suitable

for clustering.

When compared between the two topic modelers, the HDP method is shown

to be more compatible with our method. The results of using HDP document
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vectors are better than LDA in almost all aspects. Further more, HDP is also

more automated than LDA,and is capable of assuming the number of topics

by itself. With these two factors combined, we are confident that HDP topic

modeling is more compatible with our method for representing a set of document

vectors.

6.4.2 Experiment 2: Categorizing Bug Reports from Dif-

ferent Projects

This experiment evaluates the performance of our unsupervised framework in

the simple task of capturing the structural differences of bug reports from two

software engineering projects. In this experiment, our framework adopted two

clustering methods, X-means and Expectation Maximization (EM), with both

capable of assuming the number of cluster on their’s own. The upper bounds

are created using two, well-known classification algorithms: J48 and Logistic

Regression. Both supervised and unsupervised learning are performed on the

same HDP dimensions. The result is shown in Table 6.3.

Table 6.3. Unsupervised: Experiment 2 - Categorizing bug reports from different

projects

Train 2 dataset/ Lucene + JCR

Overall

Num Instance 4710

Num Topic 57.333

Method Xmeans EM J48 Logistic

Accuracy 0.8671 0.7939 0.9155 0.9646

F1

JCR 0.8675 0.7891 0.9147 0.9640

Lucene 0.8666 0.7914 0.9163 0.9653

WeightAVG 0.8670 0.7876 0.9157 0.9647

As shown in Table 6.3, the performance of our method, while lower, is still

comparable to the supervised learning one. For the X-means approach, its average

F-measure is 5.62 and 11.26 percent lower than its upper-bounds, J48 and Logistic

Regression, respectively. On the other hand, the EM clustering performance is
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not as decent; its performance is 16.26 and 22.49 percent lower, despite having a

higher number of clusters (12.667 while X-means only created 4).

6.4.3 Experiment 3: Categorizing Bug Reports in one Project

into Bug and Other Requests (In-Project Classifica-

tion)

This experiment categorizes bug reports from the one project into two different

classes: BUG and Other Requests. The experiments are done on three differ-

ent datasets: HTTPClient, JCR, and Lucene. Bug reports in each project are

transformed into three sets of topic document vectors, using three separated HDP

runs with the same setting. In each set, we perform 1,000 runs with the X-means

approach for a total of 9,000 runs in this experiment.

The result is shown in Table 6.4. The value in each cell is averaged from three

HDP runs, except for the X-means, which is from 3,000 runs.

Table 6.4. Unsupervised: Experiment 3 - Categorizing bug reports in one project

into Bug and Other Requests

HTTPClient JCR Lucene

O
ve

ra
ll

Instance 731 2328 2382

NumTopic 52.667 55.667 47.667

Methods Xmeans J48 Logistic Xmeans J48 Logistic Xmeans J48 Logistic

Accuracy 0.596 0.626 0.710 0.625 0.636 0.745 0.601 0.633 0.710

F
1

BUG 0.656 0.717 0.787 0.625 0.632 0.732 0.438 0.565 0.634

OtherReq 0.467 0.448 0.550 0.605 0.639 0.756 0.688 0.682 0.760

WeightAVG 0.588 0.621 0.702 0.616 0.636 0.745 0.579 0.631 0.705

Table 6.4 illustrates how this task of categorizing bug reports from the same

project is a much harder task; all approaches perform worse here compared to

the previous experiment.

As shown in Table 6.4, the F-measures of our X-means approach and J48 are

still in close proximity, with a 5.90 percent difference in the average F-measure
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from three projects. This shows that even in a complex environment the perfor-

mance of our framework is comparable to J48, the well-known classifier.

When compared to Logistic Regression, the difference here is significant; our

method average F-measure is 0.123 (20.71 percent) lower. However, as mentioned

previously, sometimes obtaining a training dataset in the first place can be quite

challenging. In those situations, using our unsupervised framework can provide

a good solution to the problem, as no training set is required.

6.4.4 Experiment 4: Comparison Between Our Method

and Cross-Project Classification

While Experiments 6.4.2 and 6.4.3 are performed in a circumstance where the

supervised approach has a very clear advantage, learning directly from the desired

project, this experiment provides a more competitive situation.

Here, our unsupervised framework stays the same as in Experiment 6.4.3,

while the classification models are trained using labeled datasets from other

projects [13]. From the three datasets: HTTPClient, JCR, and Lucene, cross-

project classification is performed using all possible combinations. Bug reports

are transformed into three sets of topic vectors using three separated HDP runs,

and their results are averaged.

Figure 6.5 presents this experimental result. The Y-axis is an average of the

weighted F-measure while the X-axis shows the used methods, which are grouped

according to the testing projects.

Figure 6.5 shows that, without any training data, the performance of our

framework is better than the J48 by 5.16 percent. However, when compared to

the Logistic Regression, its performance is 7.63 percent lower. While this indicates

that if labeled datasets from similar projects are available, Logistic Regression

can perform significantly better than our framework, but our framework can

still provide a good alternative. As in many scenarios, even with cross-project

classification, a labeled data matched with the desired categories can still be hard

to acquire due to the numerous ways that bug reports can be categorized. For

example: the types of package conflict [63], the types of bug report [8], the types

of bugs, etc.
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Figure 6.5. Unsupervised: F-measure comparison between Our Unsupervised

Method and Cross-Project Classification

The four experiments above demonstrate that our framework is capable of

classify bug reports automatically and reliably.

6.4.5 Experiment 5: Cluster Labeling Results

This experiment evaluates our cluster labeling process. Because there are only

a few methods that can be directly applied to the cluster in topic space, we

modify a cluster labeling method proposed by Carmelet et al [65]. This modified

labeling method (JSD) and labeling using the title of the closest instance method

(Section6.2.3) are employed as to provide comparison methods for cluster labeling.

Table 6.5 shows part of the labeling result, and this result is from one of the

runs on the HTTPClient dataset from Experiment 2. The columns in this Table

are the original cluster ID, while each row shows the cluster labels. The labeling

methods are JSD, Labeling using the NLP Chunk, and the Title of the Closest

Instance. These method are described in Section 6.2.3.

On the lower part of the table are rows that represent the number of instances
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Table 6.5. Unsupervised: Experiment 5 - Cluster Labeling Results

HttpClient

HDP 2 run

Cluster 1 Cluster 2 Cluster 3

BUG Others BUG

J
en

se
n

S
h
an

-

n
on

D
iv

er
ge

n
ce

(J
S
D

)

connection

connection

connection

abstracthttpclient.java

timeout getmethod

rulebasedcollator logs

exception debug

cache patch serializable

equals encoding

httpclient mockito

socket encoding

configuration

cookie uri http

authentication http

guide file

authentication

debug http

L
ab

el
in

g
u
s-

in
g

N
L

P
C

h
u
n
k

http request

connection timeout,

multi threaded

connection manager,

closed socket,

s catch stale

connection

chunked encoding,

alive debug headers

transfer encoding,

transfer encoding

header, cache responses

headers

cookie domain

attribute,

cookie domain,

domain public

credentials,

domain com cookies

T
it

le
of

C
lo

s-

et In
st

an
ce

Connection is not

released back to the

pool if a runtime,

An IOException or

RuntimeException

leaves the

underlying socket in

an undetermined

state

RequestEntity

EntityEnclosingMethod

have inconsistent

Javadocs use

deprecated variables,

Do not consume the

remaining response

content if the

connection is to be

closed

Invalid redirects are

not corrected, Di-

gestScheme.authenticate

returns invalid

authorization string

when algorithm is

null

Num Class

BUG
89 163 217

Num Class

Others
30 135 97
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in each class: BUG and Other Requests. Each cluster is labeled by its majority

class; the detail method is described in Section 6.3.1.

From the example result from Table 6.5, clusters 1 and 3 are labeled as BUG

classes. Their results are reliable, having an internal cluster purity around 0.7.

On the other hand, cluster 2 which is assigned to Other class has not quite as

good a result. The bug reports within it are mixed, containing a high number of

reports from both classes. The three labeling methods are present in Table 6.5

label cluster with different granularities: word, phrase and sentence level. We

only discuss the quality of labels from cluster 1 and 3, as their purity are quite

high so that it is easier to identify the main subjects in each cluster.

For the word level, with labeling using Jensen Shannon Divergence (JSD),

we can see that while some labels are representative and make sense; e.g. ”con-

nection”, ”timeout”, ”exception” and ”debug” in cluster 1, the majority of its

reports are related to ”connection problems”. However some of its labels, such

as ”abstracthttpclient.java”, ”getmethod” or ”rulebasedcollator”, are clearly not

that suitable to be a cluster label. Out of ten suggested labels, the numbers of

usable labels are six and four, in cluster 1 and 3, respectively. This shows that

using a word level approach for labeling a cluster of bug reports can introduce

some problems since, unlike in a general document, many software engineering

terms are too specific to be understood without their context.

For the sentence level, labeling is done using the title of the closest instance to

the cluster center, and while it can provide a decent idea of what bug reports in

that cluster are related to, there are a few problems. First, it largely depends on

how informative the title is. As the report’s title is written by just one submitter,

whose knowledge related to that particular report is not guaranteed, it is very

possible that its title will be misleading or not contain enough information. For

example, the title ”Invalid redirects are not corrected” is too short and can not

be easily assigned to either of the two categories.

For the phrase level the generated labels are quite representative. In cluster

1, all of the top four labels are related to ”connection” which is the main topic

of cluster 1. Moreover, three out of these labels are associated with ”connec-

tion problems”, topics strongly correlated with the BUG category to which the

majority of reports in cluster 1 were classified. The same trend can be found in
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cluster 3, related to ”authentication”, which means that all the suggested phrases

are representative as they all contain words like ”cookie” or ”credentials”. This

indicates that this labeling method can provide a high quality set of labels that

are both compact and representative.

6.5. Threats to Validity

This research is subject to threats to validity induced by the limitations of our

approach. The most important threats are listed below.

6.5.1 Measurements used

The evaluation measurements used in this research are: cluster purity, accuracy,

precision, recall and F-measure. While these measurements are well-known and

commonly used in many past studies, we still can not guarantee that the result

would be the same if other measurements are used instead.

6.5.2 The categories of bug reports

As mentioned previously, bug reports can be categorized in many ways. Our

experiments are performed only on two sets of categories, and as such, the per-

formance of our framework in other sets of categories still cannot be guaranteed.

6.5.3 Experimented Datasets

Our experiments are performed on the dataset of previous study. Even if these

datasets are manually inspected and cross-validated, some errors might still re-

main, which could slightly change the result of our experiments. The research

subjects of our experiment are also limited; all experiments are performed on bug

reports of projects written in Java using the JIRA bug tracker. This data might

not be representative of other programming languages or bug tracker systems.
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6.5.4 Heuristics parameters

Some parameters used in our approach and evaluation are heuristics. These

parameters are:

• The number of top words for topic modeling is set at 50 for both the HDP

and LDA topic modelers

• The minimum and maximum number of clusters for the X-means algorithm

(Set to two and ten receptively)

• Number of suggested labels for each label algorithm in Experiment 6.4.4

6.5.5 Coverage of other possible parameters and approach-

es

Due to the modular property of our framework, there are simply too many ways

that it can be adjusted. While this property is intended and beneficial, there

are just too many possible setting combinations for us to experiment on. For

instance, instead of LDA or HDP, the topic modeling algorithm can easily be

changed, the same could be said for the clustering algorithm as well.

6.6. Conclusion

In this chapter we propose a framework for categorizing bug reports automatically

by utilizing topic modeling and clustering algorithms. Compared to the tradi-

tional supervised learning method, our framework provides the definitive benefit

of not requiring any training dataset, while still having comparable, albeit lower,

performance to the supervised approach. Our framework could be deployed to

automatically classify bug reports for a newly deployed project, to categorize bug

reports in to several groups based on its text or to help as a label suggestion

system for manual data inspection.

In addition, we also presented a new cluster labeling method that can be

used in topic space. Different from previous approaches, it takes into account

both topic and word distribution. Its labels are also created from a noun phrase,

making them both compact and meaningful.
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Future work is to further improve the categorization performance while still

retaining its nonparametric and non prior knowledge properties. To further prove

the generality of our framework, we also aim to do more experiments on a wider

range of categories, projects, and bug tracker systems.
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Chapter 7

Conclusion

This dissertation focuses on how to reduce the amount of human effort required

in software development. The motivation came from when we were collecting,

processing, and preparing our software engineering dataset for further analysis.

What we have found is that a good number of man hours are needed to complete

these given tasks, weeks were spent in order to sort through and labeled data

according to the given categories.

All the works we did point us to the major problem in the software develop-

ment, how difficult it is to actually deploy and used automated software engineer-

ing techniques. While the outcome of these techniques can be very rewarding,

the process of deploying them is often difficult and labor intensive hindering

their used in the real life scenario. To improve the ease of deployment for soft-

ware engineering techniques, this dissertation investigates various perspectives

and means of how could we further reinforce these automated techniques to mini-

mize the human resources required. Two of the most important tasks in software

development-bug report categorization and defect prediction are the focuses of

this dissertation.

Bug report categorization, the task of categorizing unlabeled bug reports into

the target categories, can serve several purposes in software development. As

most of bug report’s information is in natural language form, the majority of

categorization approach employ NLP techniques to transform the textual infor-

mation into the formats that are easier for further processing, namely to the

feature vectors format. To this end, one of the most recent techniques used are
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topic modeling which combines several occurring wording into a topic then used

them as features. NLP technique holds many advantages over the previous tech-

niques used in the bug report categorization field. However, the main problems

of it are its requirement for the number of topics and how difficult it is to ef-

ficiently estimate the appropriate number of topics, as its largely depended on

the target bug report archive. This means for the most part when a project

wants to use this topic modeling technique a certain amount of human resource

is needed to spend on parameter tuning. Our dissertation experiments on using

nonparametric topic modeling and proposes a method for automatically classify

bug reports base on its textual information without the need to do a parameter

tuning which further reduces time and effort need to process these bug report.

The result from our experiment demonstrates that this nonparametric method

performance is comparable, though lowers, to the parametric one.

Another obstacle for the deployment of software engineering tasks is the re-

quirement for labeled historical data. As the labeling process for a new training

dataset is very costly, a project with unavailable labeled data will struggle to

deploy the supervised automated approach. To this end, there are two main

solutions: cross-project and unsupervised approaches. The first solution, cross-

project approach, can achieve better performance but has more limitation; as

it still required the knowledge from another similar project. If the said similar

project is not obtainable, then the unsupervised approach is needed instead. Our

dissertation proposed solutions for both situations, an enchant in performance

when the cross-project approach is possible, and purely unsupervised solution

for when it can not be applied. For the cross-project solution, The proposed

approach, CDE-SMOTE, alleviates the detrimental effect of class distribution

different and highly skew dataset. It can be used by practitioners to predic-

t the defect-proneness of their software-engineering module and could be easily

applied to any software engineering project. While for the unsupervised, the

framework for categorizing bug reports automatically by utilizing topic modeling

and clustering algorithms is proposed, compared to the traditional supervised

learning method, our framework provides the definitive benefit of not requiring

any training dataset, while still having comparable, albeit lower, performance

to the supervised approach. Our framework could be deployed to automatically
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classify bug reports for a newly deployed project, to categorize bug reports into

several groups based on its text or to help as a label suggestion system for manual

data inspection. In addition, we also presented a new cluster labeling method

that can be used in topic space. Different from previous approaches, it takes into

account both topic and word distribution. Its labels are also created from a noun

phrase, making them both compact and meaningful.

We believe that this research could contribute to the following:

• We proposed the nonparametric approach to topic model the natural lan-

guage in the bug reports and show that the new features still retain the

pattern which can easily be categorized by classifier algorithm

• We demonstrate the detrimental effects of building a cross-project model

without considering the distribution of the intended target projects and how

to improve the prediction performance using an estimated distribution.

• We confirm that the class distribution of the unlabeled project could be

estimated even in the cross-projects situation, and provides the guideline of

how to estimate this distribution.

• We proposed an unsupervised categorization framework for bug reports that

could perform even when there is no historical dataset and has a comparable

performance to the supervised approach.

• We proposed a new cluster labeling algorithm for topic features utilizing

both topic and word distribution.

7.1. Future Work

For the future work, we will investigate more on the factors related to our three

main topics:

• For automatic topic modeling, we plan to tackle the lack of data and im-

balanced dataset, the problems found in multiclass bug report corpus. We

also want to improve the nonparametric classification performance. Last,

we aim generalized our result by experiment on other project written in

other programming language and different bug tracking systems.
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• For cross-project, we plan to take more measurement metrics and include

other techniques for recording all faulty models. We also intend to fur-

ther optimize the CDE-SMOTE by testing other quantification and class

distribution modification techniques.

• For unsupervised categorization, the future work is to further improve the

categorization performance while still retaining its nonparametric and non-

prior knowledge properties. To further prove the generality of our frame-

work, we also aim to do more experiments on a wider range of categories,

projects, and bug tracker systems.
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