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Highly Reliable Memory Architectures Using
Combination of In-Field Self-Repair, ECC and

Aging Test∗

Gian Paolo Topico Mayuga

Abstract

Embedded memory is occupying the most area in System-on-Chips (SoCs). It
contributes to SoCs to have greater features, but at the expense of taking up
the most area. The continuous scaling of nano-device technology makes memory
more susceptible to errors. Aging-induced faults, as well as soft errors, manifest
in field, which is a concern as causes of errors. Hence, reliability of memory is
crucial to overall reliability of SoCs.

In-field test and repair, as well as Error Correction Codes (ECC), can be used
to maintain reliability, and recently, these methods are used together to form a
combined approach, wherein uncorrectable words are repaired, while correctable
words are left to the ECC. In order to enhance reliability, a novel in-field repair
strategy that repairs uncorrectable words, and possibly correctable words, for an
ECC-based memory architecture is proposed. It executes an adaptive reconfigu-
ration method that ensures fresh memory words are always used until spare words
run out. To further enhance the reliability of memory, a more sophisticated test
that can identify not only faulty memory cells, but aged ones as well, is used. A
novel aging-aware in-field repair strategy that adaptively assigns aged and faulty
words to functional repair or correction based on their vulnerabilities is proposed.
Experimental results of both strategies demonstrate enhancement of reliability,
and the hardware overhead contributions are small.

∗Doctoral Dissertation, Graduate School of Information Science,
Nara Institute of Science and Technology, NAIST-IS-DD1361204, September 16, 2016.
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1 Introduction

1.1 Background
Embedded memory is used to integrate with logic partitions located on the same
chip in order to address requirements of high performance and low power. Mem-
ories have emerged to predominantly occupy the most silicon area in System-
on-Chips (SoC) as shown in Figure 1.1. This integration of logic and memory,
with the continuous scaling of the device sizes, leads to a more powerful SoC,
which works on the latest applications that require larger memory. However, it
introduces drawbacks on manufacturing yield and field reliability. Since mem-
ory occupies most of the SoC, the memory yield directly affects the overall yield
of an SoC [1]. To improve the memory yield, repair by using redundancy has
traditionally been used, and recently has been combined with error correction
codes (ECC) [2]. Also, post manufacturing reliability failures might highly occur
for nanoscale devices, and this challenge may be resolved by using periodic field-
level repair [1]. Several works address the effect of increasing failure rates and the
importance of resolving the challenges it brings for both yield and reliability [2–6].

At the same time, the continuous scaling of nanodevice technology produces
random process variation which causes time-dependent deviation of memory cell
parameter, and brings aging which results in significant degradation of Static
Noise Margin (SNM) [7, 8]. Aging is due to Negative-Bias Temperature Insta-
bility (NBTI), Time Dependent Dielectric Breakdown (TDDB) and Hot Carrier
Degradation (HCI), which causes memory cell data flipping, and increase in cell
access time. Continuous monitoring of the memory cell, as well as actively us-
ing spare elements via performing in-field self-repair, is necessary to mitigate the
effects of aging.

Post manufacturing reliability failures and aging are identified as factors that
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Figure 1.1: SoC Area Partitioning [9]

affect reliability of memory, and thus, the overall reliability of SoCs. Periodic
field-level test and repair and ECC are used as solutions to maintain reliability.

1.2 State of the Art
Memory test is an important point of interest in the industry today. Memory
historically advances faster in terms of technology than microprocessors. This is
due to the fact that memory is generally less complex, and is mostly composed of
arrays of information-storing devices that are designed for either speed or density.
This implies that the test and repair requirement must be at par with the advance-
ment of memory technology. Memory test is applied at 1) during manufacturing
or before memory is shipped out, or 2) while in-field when memory is already in
operation, as shown in Figure 1.2. Manufacturing test is a general procedure all
integrated chips go through before shipping, and also during this time, repair is
applied to replace faulty elements in order to improve the yield. Combination
of repair and ECC has been applied during manufacturing test and has shown
to be effective in enhancing yield. Also, due to the aforementioned impending
issues regarding reliability, the importance of memory, and SoCs as a whole, to

2



Figure 1.2: Time when memory test is applied

remain in operation while in field is an immediate priority by researchers in the
design and test community, and is being explored further. The configuration for
combination of repair and ECC can be used for reliability enhancement as well,
and it is explored in this work.

Also falling under the in-field category is aging test. Various researches on
on-chip sensor design have been thoroughly explored in order to detect aging in
memory cells as it can induce faults, and thus failures, to occur. Recent industry
tools are now exploring embedding aging sensors into memory systems [10]. The
capability to detect aging in memory cells can be used for reliability enhancement,
and it is also explored in this work.

The reliability problem presented by combining repair and ECC in field is ex-
plained in Chapter 2, and a solution is presented in Chapter 3. At the same time,
we present the importance of aging and its effect in memory, and by using the
same configuration of repair and ECC, we enhance reliability further in Chapter
4. Overall, this work outlines the importance of fault-tolerant operations while
in field, and the identified reliability problems are presented with solutions.

3



1.3 Thesis Contributions
The contributions of this thesis are the following:

• A novel adaptive remapping configuration architecture that enhances relia-
bility by repairing uncorrectable words first, and repairing correctable faulty
words when spare space is remaining is proposed. To guarantee remapping
ability of uncorrectable words, the remapping of correctable faulty words is
cancelled if necessary.

• A stochastic reliability model of the proposed architecture, where reliability
improvements by memory scrubbing and repair of correctable faulty words
are evaluated as well as that of uncorrectable word repair is proposed. The
simulation-based evaluation shows that the proposed architecture provides
greater reliability than the traditional architecture.

• The proposed remap controller that executes an adaptive reconfiguration
method to realize the in-field repair strategy is implemented. The overhead
of the remap controller is found to be small.

• The 2-state model used in the proposed architecture is extended into a
3-state model for memory cells, where memory cells are classified to be
healthy, aged or faulty. The stochastic evaluation is presented, and the
further enhancement of reliability is shown.

• Given the proposal of 3-state model for memory cells, a novel aging-aware
architecture that enhances reliability further by repairing faulty words and
aged words based on their vulnerabilities is proposed. Memory words are
classified into 5 status types based on the 3-state model of memory cell.
To ensure repair of a more vulnerable word, the previous repair of a less
vulnerable word is cancelled if necessary.

• The proposed remap controller is extended such that it adaptively reconfig-
ures a remap CAM based on status types of the memory words based from
the 3-state model.

4



2 Memory and Reliability

In this chapter, the importance of ensuring that memory is reliable in its lifetime
is discussed. The vulnerabilities encountered by embedded memory in SoCs,
the efficiency of using the combination of repair and ECC for memory, and the
reliability problem it presents are presented. Also, the effect of aging in memory is
introduced and how incorporating aging-awareness in memory systems has been
recently prioritized.

2.1 Memory in Field
Memory occupies the most area in SoCs, which means memory also has the most
probability of encountering an error. Therefore, we have to consider that occur-
rences of errors, and eventually failures, is an important aspect in maintaining
reliability, especially after the memory devices are already used in field.

2.1.1 Memory Errors and Repair and ECC

Memory errors are classified as either hard or soft errors [3]. Memory errors can
either be repaired (hard errors) or corrected (hard and soft errors). Hard errors
are errors caused by permanent hardware faults. The causes are 1) single bit fault
for a cell in a memory word, 2) faults for all cells in a memory row or column,
or 3) faults for all cells in a memory array. While faults that appear on rows or
columns and arrays are most of the time repaired right after manufacturing test
and are wholly replaced, single bit faults on a cell represent issues in allocation of
spares. As an example, as shown in Figure 2.1(a)-(b), the faulty row or column
is replaced by a spare or column. However, for a row or column with single bit
faults as shown in Figure 2.1(c)-(d), replacements can only be a spare row or
column. The priority is to repair as much as possible since it is important to

5



Figure 2.1: Repair and ECC for Hard Errors a) faulty row must be replaced by
spare row b) faulty column must be replaced by spare column c) row
with single error replaced by spare row d) column with single error
replaced by column row e) erroneous code word replaced by spare
code word f) code word with single error can be corrected with ECC
instead to increase repair efficiency

have a good yield. There will be remaining spares that are left over, but they are
only limited if most of the spares have already been used. Careful allocation of
these spares becomes important for in-field repair.

Memory repair is usually done by external means like using fuses or other
methods [3], usually during manufacturing test. However, for embedded mem-
ories, especially being in operation in field, physical reconfigurations are costly.
Functional reconfiguration techniques are instead used where memory access is
logically re-assigned to a spare instead of the faulty row/column [11], word [4] or
cell [12]. The work [12] proposed performing repair through the use of a content
addressable memory and a functional remapping occurs in the cell level if the
original cell is faulty. The work [5] proposed performing repair through the use
of a content addressable memory and a functional remapping occurs in the word
level as shown in Figure 2.2. This work focuses on a word-based organization,
and functional word repair will be discussed further later on.

Soft errors are caused by transient phenomena such as alpha rays or cosmic
rays that change the data stored in memory cells. Solutions include making the

6



Figure 2.2: Functional Repair for Memory Words

memory cell design more radiation-hardened in the device level layer. Another is
to integrate fault-tolerant solutions on the memory system-level by using ECC.
ECC is already featured in almost all IC implementations such as prominent
Intel processors, and other leading IC companies. Correction capability depends
on the number of correctable bits by the ECC. Single-Error Correction (SEC) is
the most common type. Other types are Single-Error Correction Double-Error
Detection (SECDED), which is in addition to SEC, it can detect 2 errors in a
codeword, Double-Error Correction (DEC), which can correct up to 2 errors in a
codeword, and Chipkill, which can correct up to 4 errors in a codeword. ECC is
effective for correcting both hard and soft errors, but at the expense of extra bits
added to the memory data to form a codeword, as well as encoder and decoder
circuits to generate and extract the codeword. The higher the number of bits
that ECC can correct, the greater the overhead. As an additional protection,
the error-free data output can be fed back to the source memory word and can
be re-written, in order to ensure the integrity of the memory data. When the
error-free data is re-written periodically, this process is called scrubbing, and it
can either be done via software or hardware controller [13]. The use of ECC and
scrubbing is shown in Figure 2.3.
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Figure 2.3: Correction for Memory Words

2.2 Self-Repair and ECC
Given the use of ECC in a memory system, the memory is now organized as a
collection of codewords. Given a faulty codeword, a spare codeword is used to
perform repair as shown in Figure 2.1(e). Also, given a codeword with a single
error as shown in Figure 2.1(f), a whole spare codeword does not have to be
allotted to perform repair since ECC can be used instead in order to provide
error-free operation in memory.

Correctable and Uncorrectable Words

Given that ECC handles memory errors in memory words in field, this allows
re-classification of memory words and errors. Erroneous memory words are clas-
sified as either 1) correctable words, which can be corrected by ECC, and 2)
uncorrectable words, which the ECC cannot handle. We can then refer to a
memory error as either a 1) correctable error, if it is in a correctable word, and
2) uncorrectable error, if it is in an uncorrectable word. Handling of correctable
and uncorrectable words is important since it affects memory lifetime.

Real Data of Errors in Memory

A recent study that explores a large experimental scale of errors in DRAM mem-
ory used by Google servers has been reported [14]. The large gathered data shows
a practical picture of how errors affect memory lifetime. The crucial conclusions
are as follows: 1) A memory word with correctable error is more likely to develop

8



Figure 2.4: Traditional Combination Strategy of Repair and ECC a) Uncor-
rectable word is repaired using spare word b) Correctable word is
left to be corrected by ECC

uncorrectable errors (In the same month, there is a 70-80% chance that an un-
correctable error will develop after a correctable error appears in the same Dual
Inline Memory Module (DIMM)); 2) Error rates are unlikely to be dominated by
soft errors, and hard errors contribute the most for memory failures, and 1.3% of
machines across the entire fleet are affected by uncorrectable errors per year, in
such a way that even if a DIMM is replaced with a new one at the first sign of an
uncorrectable error, another uncorrectable error appears on a different DIMM.
These observations on module-based memory devices indicate that it is important
to mitigate the effect of uncorrectable errors in the memory.

2.3 Combination of Self-Repair and ECC
The combination of self-repair and ECC synergistically improves both yield and
reliability when it is systematically used into a combination strategy as shown in
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Figure 2.4. Using single error correction, the combination strategy is as follows:

• Repair a word if it has 2 or more faulty bits.

• Leave it to be corrected by ECC if it has 1 faulty bit.

The combination strategy, which is referred to as the traditional combination
strategy in this work, has been adapted in several works [2–6]. The methods
introduced in [2–4] improve yield by repairing uncorrectable words given a lim-
ited amount of spare space. They repair uncorrectable faulty words and leave
correctable faulty words in charge to ECC. As a result, memory yield can be
improved much, even if defect density is large. This is because memory will work
well in cooperation with ECC if spare space cannot cover all the faulty words.
The work [5] studies online periodic self-test using a transparent BIST [15]. The
transparent BIST is enhanced so that it can distinguish between correctable and
uncorrectable errors and it is used to repair uncorrectable words. The work [6]
also integrates in-field self-test and ECC, where ECC is used to distinguish hard
and soft errors, and all the identified hard errors are repaired.

All in all, this strategy ensures that spares are only allotted for words that
correction cannot handle. It improves repair efficiency and ensures that uncor-
rectable words are repaired.

2.4 Reliability Problem of Combination of
Self-Repair and ECC in Field

Some issues arise from using combination of self-repair and ECC solution in
field. In [2–4], since correctable faulty words are shipped along with the memory
chip, correctable errors are already in the memory system, and there is a high
probability that these correctable errors will develop into uncorrectable errors,
which affects reliability, and shortens memory lifetime. In [5], memory words
with correctable errors are left active in the memory system, and are vulnerable to
uncorrectable errors. In [6], the available spare space might quickly run out, and
the next occurrence of an uncorrectable error causes failure, and thus shortens
memory lifetime. For all these cases, they present a reliability problem since
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Figure 2.5: Reliability Problem of Combination of Repair and ECC in Field

the correctable word is part of the memory system as shown in Figure 2.5(a).
The moment the correctable word becomes an uncorrectable words as shown in
Figure 2.5(b), failure may occur.

2.5 Aging and Memory
Aging-induced faults manifest in field and it is an important cause for concern.
Memory cells affected by NBTI suffer from SNM degradation. In [16], SNM
degrades by about 8% after 3 years on 100nm and 70nm cells under continuous
stress. In [17] which features 6T SRAM cells in 65nm technology, the SNM of
aged cell is reduced by 12.5% with respect to a fresh cell after 6 years. Thus,
memory cells become prone to errors. Memory cells suffer from bit flips during
read operations, and memory read failures.

The effect of SNM degradation is shown in Figure 2.6. For a ’fresh’ memory cell
shown in Figure 2.6(a), the minimum (MIN) value is enough to turn on (’ON’)
the memory cell. Aging causes the MIN value to become degraded as shown in
Figure 2.6(b). This implies that a greater value than the previous MIN value
is needed to put the memory cell in ’ON’ state. A problem occurs when the
same operating level is used all throughout to turn on the memory cell. For
example, the operating level of the cell is just right above the ’MIN’ level, and
when degradation occurs, the ’MIN’ level changes, and failure may occur. Thus,
having an aging sensor can inform the system about the status of the memory
cell as aged, as shown in Figure 2.6(c).
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Figure 2.6: Memory Cell Operating Level and Aging a) Memory cell only need
to be at the minimum (MIN) operating level for it to be turned ’ON’
b) Aging affects the memory cell such that the new MIN operates at
a higher level, and if the operating level lower than the new MIN is
applied, the memory cell is unsure if it is ’ON’ or ’OFF’ c) Memory
cells can be identified as aged once the MIN operating level passes
the AGED level
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2.5.1 Aging Test

Awareness and identification of the agedness of memory cells have been recently
investigated. A self-test circuit to detect SRAM cell aging was proposed, called
on-chip aging sensor (OCAS) [17], which enables degraded SNM cells to be identi-
fied as aged cells. The block diagram of this self-test circuit is shown in Figure 2.7.
During normal operation, VDD is connected to the memory cells. Also at this
time, the aging circuit is completely disconnected from VDD, as it is gated off
from power supply. This ensures that the OCAS remains unaffected by aging.
During testing operation, the memory cells are disconnected from VDD. A mem-
ory cell under test is chosen among the memory cells. Two consecutive write
operations are performed to the cell under test, first the opposite of the previ-
ously written value, and then the original value. This causes a discharge to the
value at the point of VDD’. This value is compared to that of a reference mem-
ory cell that does not experience aging. If VDD’ is not discharged well, aging is
detected.

The aging detection is also explained in terms of operating level. If the oper-
ating level of the cell under test is less than the reference memory cell (greater
discharge), then the memory cell is non-aged. If the operating level of the mem-
ory cell under test is greater than the reference memory cell (less discharge), then
the memory cell is aged. The aging test is performed for each memory cell.

Also, active use of spare elements has been shown to effectively mitigate the
effects of aging [18]. Combining the capability of identifying aged elements and
an adaptive way of reconfiguring spare elements, an aging-aware architecture can
now be formulated in order to further enhance reliability.

2.6 Chapter Summary
Given the vulnerabilities encountered by embedded memory in SoCs, combination
of self-repair and ECC can be configured such that memory repair is performed
efficiently. The reliability problem that can occur from this configuration has been
presented. The solution for this problem is discussed in Chapter 3. Moreover,
aging that can make memory more susceptible to failure has been explained. The
solution to make the memory architecture become aging-aware is presented in
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Figure 2.7: On Chip Aging Sensor Circuit [17]

Chapter 4.
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3 Reliability Enhancement Using
Combination of In-Field
Self-Repair and ECC

While the combination of repair and ECC improves the yield, it poses a reliabil-
ity problem for the memory in field. In this chapter, a solution to the reliability
problem of the combination of repair and ECC is presented. A memory archi-
tecture that enhances reliability by using an in-field repair strategy that repairs
uncorrectable words, as well as correctable words, if spare space is available is
described in detail.

3.1 Proposed In-Field Repair Strategy
In the proposed strategy, given enough spares, both uncorrectable and correctable
words are repaired using functional remapping after applying self-test and repair.
It improves reliability since the possibility of uncorrectable words during system
use is reduced. However, the number of uncorrectable words may increase, and
not all erroneous words may be remapped to fresh spare words. In such a case,
priority is given to uncorrectable words to be remapped, to the extent of cancelling
previously remapped correctable words. The correctable words are then left to the
system, wherein it is protected by error correction. This is shown in Figure 3.1.

The proposed in-field repair strategy is summarized as follows:

• Apply self-test and repair in field

• Reconfigure the address mapping
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Figure 3.1: Proposed In-Field Strategy a) Repair word with 1 faulty bit if spare
is available b) ECC can handle, if no more spares

– Repair a word if it has 2 or more faulty bits. Remapped word with 1
faulty bit is cancelled if no more spare available.

– Repair a word if it has 1 faulty bit and a spare is available. If no spare
is available, do not repair the word and leave it to be corrected by
ECC.

3.2 Memory Architecture Using Combination of
In-Field Self-Repair and ECC

In this section, the specifics of the proposed memory architecture are described in
detail. The proposed memory architecture is based on the work [5]. It is composed
of ECC-based memory, memory BIST, diagnosis CAM and remap CAM as shown
in Figure 3.2. We assume that an effective hardware repair has already been
applied at production test, and memory used by the system includes enough
number of spare words. Also, our proposed strategy can be applied to cases
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Figure 3.2: Proposed ECC-Based Memory Architecture

wherein correctable words are included in the shipped memory devices.

3.2.1 Architecture Details

The proposed architecture operates in two modes, 1) user mode, which is dur-
ing normal operation, and 2) test mode, which is during test operation. The
components in operation for each mode are described in detail.

User Mode

The user has access to the memory architecture. The ECC-based memory is com-
posed of 1) user memory, which is available for normal read or write operations,
and 2) spare memory, which can be reconfigured for repair purposes. Given a
read operation for memory word, the data flow is as shown in Figure 3.3. Before
accessing the user memory, the remap CAM is first searched. Data output is
then accessed from the user memory if there is no hit, and from spare memory
if there is a hit. The remap CAM, ECC encoder/decoder circuits and scrubbing
controller are all operational. The parts are detailed as follows:
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Figure 3.3: Data Flow for User Mode

1. Remap CAM: The remap CAM is active and a given original address is
remapped to a spare address if the original address has been identified as a
word to be repaired.

2. ECC Encoder/Decoder Circuits: ECC ensures correct output at any time
a correctable error occurs.

3. Scrubbing Controller: Scrubbing controller periodically re-writes the data
in its original location. Scrubbing eliminates soft errors if it is correctable
through ECC. Given that a word with 1-bit soft error gets corrected via
scrubbing, it becomes ready for an occurrence of another soft error.

Test Mode

Memory systems are physically organized into several blocks [19]. We assume
that each block becomes idle periodically, and test can be applied when it is
idle. We can apply periodic self-test and diagnosis separately on each memory
block. The test mode operates as shown in Figure 3.4. BIST is firstly applied to
find faulty words, then the found faulty word addresses and faulty bit locations
are placed in the diagnosis CAM, and then based on the proposed strategy, the
remap CAM is reconfigured based on operations listed in Table 3.1. The parts
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Figure 3.4: Data Flow for Test Mode

are detailed as follows:

1. BIST: BIST identifies faulty memory words. A March-like test repeatedly
performs write and read operations in memory words. For each period of
self-test, faulty bits in memory word are identified.

2. Diagnosis CAM: A diagnosis CAM is adapted [5] to classify faulty words
based on the number of faulty bits. It stores the address of the faulty word,
and the faulty bit locations within the word, once a faulty bit is detected
during test. The address of the word is used as a tag to access the word in
the diagnosis CAM. During test, though the same bit may be identified to
be faulty several times, or multiple bits in the same words are identified to
be faulty at different test timings, they are well integrated in the diagnosis
CAM and every faulty word can be classified based on the number of faulty
bits in a word.

3. Remap Controller: After the diagnosis CAM has stored all the faulty word
addresses of the memory, this information is sent to a remapping controller.
The remapping controller decides how the faulty word addresses are stored
on the remap CAM depending on the number of faulty bit locations in
the faulty word. It also updates the contents of the remap CAM on the
succeeding self-test and repair periods.
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3.2.2 Memory Elements

The role of the memory elements in the proposed architecture during the different
modes of operation are described in detail as well.

During User Mode

• The memory is available to the user.

• The remap CAM is in effect.

• The spare memory is accessed when the called memory address is stored in
the remap CAM.

• The diagnosis CAM is not operational during user mode.

During Test Mode

• The memory available to the user is subjected to the proposed in-field adap-
tive self-test and repair strategy.

• The spare words are included when test is performed to all words in memory.
If a spare word is found to be faulty, a flag bit is used to set that the spare
word is excluded from words that can be used for repair [4].

• Both CAMs may also be subjected to hard and soft errors. Similar to the
the procedure adapted for spare words, if an entry of the CAM is found
to be faulty, a flag bit in the tag field of the CAM is used to set that the
tag field is excluded from words to be matched among all entries in the
CAM [4]. The CAM is tested and repaired as described in [5].

3.3 Proposed Remap Controller Implementation
To realize the in-field repair strategy, a remap controller that executes an adaptive
reconfiguration method is implemented. The remap CAM is reconfigured based
upon the proposed strategy and the cases for remap CAM operation.
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Figure 3.5: Writing New Entry when Remap CAM is Not Full

3.3.1 Reconfiguring the Remap CAM

The remap CAM is divided into two areas based on fault classification and we use
two address counters RC2F and RC1F. The top part is used for uncorrectable
words and the bottom part is used for correctable words. The counter RC2F
points to the next address to be written into for uncorrectable words in the top
part, and the counter RC1F points to the next address to be written into for
correctable words in the bottom part. When there are enough unused spare
words, all of the faulty words are repaired, wherein remap CAM is adequately
maintained according to the in-field repair strategy, as explained in the previous
section. When remap CAM is full, all of the spare words have been used for
repair. After this, only uncorrectable words are added to the remap CAM. This
is achieved by removing previously remapped correctable words.

Figures 3.5 and 3.6 show examples on how to reconfigure the remap CAM
where we assume both RC2F and RC1F point to a valid spare memory word.
Figure 3.5 shows a case where the remap CAM has enough unused spare words,
and a new faulty word is written into the remap CAM. Since the word is a new
entry, the address is not yet stored in the remap CAM. In a case where a new
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Figure 3.6: Writing New Entry when Remap CAM is Full

entry is an uncorrectable word, the address is written at the location pointed
to by RC2F, and then RC2F is decremented. In a case of correctable word, its
address is written at the location pointed to by RC1F, and then RC1F is incre-
mented. Figure 3.6 shows a case where remap CAM has no more spare words and
new faulty word is found. In a case where a new entry is an uncorrectable word,
the address is written at the location pointed to by RC2F, and then RC2F is
decremented. Since an uncorrectable word is given priority in our in-field repair
strategy, the uncorrectable word address is overwritten into the entry which pre-
viously stored a correctable word address. On the other hand, if a new entry is a
correctable word address, no action is done since priority is given to uncorrectable
word addresses.

3.3.2 Remap CAM Operations

Table 3.1 shows all the possible cases for remap CAM operation. The left column
shows 2 types of faulty word address entry. The remap controller classifies the
faulty word address to be written into the remap CAM as either a new entry or an
old entry. When a faulty word address is compared to the contents of the remap
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Table 3.1: Remap CAM Cases
Faulty Number of Remap CAM Condition
Word Faulty Bits

Address Previous Current Enough Full-1† Full-2‡
Entry Test Test

Period Period

new - ≥2
1) write (RC2F)
2) decrement (RC2F)

1) write (RC2F)
2) decrement (RC2F)
3) decrement (RC1F)

fail

new - 1
1) write (RC1F)
2) increment (RC1F)

do nothing do nothing

old ≥2 ≥2 do nothing do nothing do nothing
old 1 1 do nothing do nothing n/a

old 1 ≥2

1) decrement (RC1F)
2) copy (hit_addr,RC2F)
3) copy (RC1F, hit_addr)
4) decrement (RC2F)

1) decrement (RC1F)
2) swap (hit_addr, RC1F)
3) decrement (RC2F)

n/a

old ≥2 1

1) increment (RC2F)
2) copy (hit_addr, RC1F)
3) copy (RC2F, hit_addr)
4) increment (RC1F)

1) increment (RC2F)
2) swap (hit_addr, RC2F)
3) increment (RC1F)

same as
Full-1

Full-1†: both correctable and uncorrectable word addresses Full-2‡: uncorrectable word addresses only
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CAM, and if it gives a miss, this means it is not yet stored at the remap CAM and
the entry is new. If it gives a hit, it is denoted as a hit_addr, which means it is
already stored at the remap CAM, and the entry is old. The middle column shows
the number of faulty bits in a self-test period. Besides executing the in-field repair
strategy for new entries, the remap controller considers whether the number of
faulty bits varies or remains the same in a self-test period for old entries, and
executes as such the corresponding operations. The operations write, increment

and decrement take address pointers as parameters, where write means storing a
faulty word address at the address in remap CAM pointed by the address pointer,
while increment and decrement means to increment or decrement values of the
address pointer. For the copy operation, the contents pointed by an address
pointer (left operand) is copied to a destination address (right operand). For
the swap operation, the contents pointed by the address pointers is swapped.
The right column shows remap controller operations depending on the number
of stored entries of the remap CAM. The remap controller executes operations
whether a) the remap CAM has enough space to write a new entry, b) the remap
CAM is full composed of both uncorrectable and correctable word addresses, or
c) the remap CAM is full of uncorrectable word addresses. Memory fails when
the remap CAM is full with uncorrectable words, and a new entry occurs.

3.4 Reliability Model Using Combination of
In-Field Self-Repair and ECC

In this section, the stochastic model used in order to evaluate the reliability
of the proposed strategy is explained. Also, the environment, under which this
evaluation is performed, is described, specifically the periodicity of the time when
self-test and repair, as well as memory scrubbing, is applied.

Reliability of the proposed strategy is evaluated under assumption that hard
and soft errors occur with Poisson distributions. Let λh and λs be error rates of a
single bit for hard and soft errors, respectively. Let N and Ns denote the number
of words and spare words, respectively. The memory system provides N words
to users among N + Ns words.

Reliability of a memory is evaluated in the interval [0, t]. This is the probability
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Figure 3.7: Self-test and repair and scrubbing

that a system is working well during [0, t], which means the system has no uncor-
rectable word during [0, t]. Periodic self-test and repair and periodic scrubbing
protect memory from hard and soft errors. Since scrubbing is more frequently
applied than self-test, the interval [0, t] is divided into several self-test periods
and one self-test period is further divided into scrubbing periods as shown in
Figure 3.7. Let tt and ts denote the lengths of self-test period (an interval be-
tween two successive self-tests) and scrubbing period (an interval between two
successive scrubbings), respectively. The system is reliable if all the past and
current self-test periods are reliable, and one self-test period is reliable if all the
scrubbing periods in the self-test period are reliable. At any given moment t, a
system works well, or has no uncorrectable word, if every user word has 1) no
error, 2) one hard error and no soft error, or 3) no hard error and one soft error.

3.4.1 Probability of Words

Probability due to Hard Error

The Poisson distribution gives the probability that no hard error occurs for one
word during [0, t] as

Ph0(t) = e−λhnt (3.1)
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where n is the number of bits in a codeword, the probability that n − 1 bits have
no hard error is given as

P n−1
h0 (t) = e−λh(n−1)t (3.2)

and the probability that exactly one bit gets hard error during period [0, t] is
given as

Ph1(t) = n
(
1 − e−λht

)
� e−λh(n−1)t (3.3)

The probability that 2 or more bits get hard errors during period [0, t] is given as

P>h1(t) = 1 − Ph0(t) − Ph1(t) (3.4)

and the probability that 1 or more bits get hard errors during period [0, t] is given
as

P≥h1(t) = 1 − Ph0(t) (3.5)

Probability due to Soft Errors

The probability that no soft error occurs during period [0, t] is given as

Ps0(t) = e−λsnt (3.6)

the probability that n − 1 bits have no soft error is given as

P n−1
s0 (t) = e−λs(n−1)t (3.7)

and the probability that exactly one bit gets a soft error during period [0, t] is
given as

Ps1(t) = n
(
1 − e−λst

)
· e−λs(n−1)t (3.8)

Probability due to Scrubbing

Assume that a word has no hard error during [0, t]. During this interval, the
word works well if the word does not have multiple soft errors at the same time.
Since scrubbing eliminates soft errors if each word has at most one soft error, the
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probability that at most one bit has soft error at the same time during [0, t] if
there is no soft error at 0 is given as

P≤s1(t) = (Ps0(ts) + Ps1(ts))c · (Ps0(te) + Ps1(te)) (3.9)

where c = ⌊t/ts⌋ is the number of scrubbings in [0, t], and te = t − cts is the
elapsed time after the last scrubbing.

3.4.2 Reliability of Word for 1st Self-Test Period

The reliability for one word during [0, t] within the 1st self-test period is given as

R0
w(t) = Ph0(t) · P≤s1(t) + Ph1(t) · P n−1

s0 (t) (3.10)

where any word has no error at time 0 is assumed.

3.4.3 Reliability of Memory using Traditional Strategy

Using the reliability of word for the 1st self-test period, the reliability of memory
system during [0, t] within the 1st self-test period is given as

R0(t) =
(
R0

w(t)
)N

(3.11)

This expresses as well the reliability of a memory system that does not repair
faulty words with one hard error.

3.4.4 Reliability of Memory for 1st Self-Test Period

The reliability of memory during the 1st period is given as

Rperiod(1) = R0(tt) (3.12)

3.4.5 Reliability of Word during One Test Period

The reliability of one word during one test period for an interval [t, t + te], where
t is the time at the beginning of the current self-test period and te is the elapsed
time in the current test period, is given as

R0
w(te) = Ph0(te) · P≤s1(te) + Ph1(te) · P n−1

s0 (te) (3.13)
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if there is no hard error at t, and

R1
w(te) = P n−1

h0 (te) · P n−1
s0 (te) (3.14)

if there is 1 hard error at t.

3.4.6 Reliability of Self-Test Period

The memory system is still reliable if one of the following two conditions hold as
a result of self-test: 1) there are at least N words with 0 hard error, or 2) there
are less than N words with 0 hard errors, but at the same time, there at least N

words with 0 or 1 hard errors.
The reliability for the k-th period is given as

Rperiod(k) = P0(k)
P0(k) + P0+1(k)

(
R0

w(tt)
)N

+
N−1∑
i=0

P0(i)+1(k)
P0(k) + P0+1(k)

(
R0

w(tt)
)i (

R1
w(tt)

)N−i
(3.15)

For the condition that there are at least N words with 0 hard error in the
memory at the beginning of the k-th period, the probability is given as

P0(k) =
N+Ns∑
i=N

(
N + Ns

i

)
(Ph0((k − 1) tt))i · (P≥h1((k − 1) tt))N+Ns−i (3.16)

where there are i words with 0 hard errors, and N + Ns − i words with 1 or
more errors.

For the condition that there are i words (i < N ) with 0 hard error and at least
N words has at most one hard error at the beginning of the k-th period can be
expressed as

P0(i)+1(k) =
N+Ns−i∑
j=N−i

(
N + Ns

i + j

)(
i + j

j

)
(Ph0((k − 1) tt))i

· (Ph1((k − 1) tt))j (P>h1((k − 1) tt))N+Ns−i−j (3.17)

where there are i words with 0 hard errors, j words with 1 hard errors, and
N + Ns − i − j words with 2 or more errors.
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Then, for the condition that there are less than N words with 0 hard errors
and there are at least N words with 0 or 1 hard errors at the beginning of the
k-th period, the probability is given as

P0+1(k) =
N−1∑
i=0

P0(i)+1(k) (3.18)

3.4.7 Reliability of Memory System using Proposed
Strategy

To complete the expression for the reliability as a function of time, the reliabilities
for the all the previous (k − 1)-th periods are multiplied to the current period
until the elapsed time, and the reliability of memory is given as

R(t) =
k−1∏
p=1

Rperiod(p) × [ P0(k)
P0(k) + P0+1(k)

(
R0

w(te)
)N

+
N−1∑
i=0

P0(i)+1(k)
P0(k) + P0+1(k)

(
R0

w(te)
)i (

R1
w(te)

)N−i
] (3.19)

where t is in the k-th period, and te = t mod tt is the time elapsed after the
last self-test.

3.5 Experimental Results
In this section, the evaluation results of the reliability model, and hardware over-
head of the remap controller are presented.

3.5.1 Reliability Evaluation

The reliability is evaluated using a data analytical and graphing software. Nom-
inal values are chosen as baseline as shown in Table 3.2. The number of bits in a
code word n considers 16-bit memories and 5 redundant bits to provide error cor-
rection. Soft errors must occur much more frequently that hard errors, wherein
λh ≪ λs, since soft errors are transient phenomenon, while hard errors are physi-
cal defects that occur after continued usage of the device. The scrubbing interval
ts is set to occur every 6 minutes, while self-test and repair is set to occur every
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Table 3.2: Baseline Memory Parameters
Parameters Definition Values

N number of words 1e+5
Ns number of spare words 50
n number of bits per word 21
λh hard error rate (errors per hour) 10−11

λs soft error rate (errors per hour) 10−7

tt time between self-test and repair (hours) 240
ts time between scrubbing (hours) 0.1

10 days. The reliability of the proposed strategy is compared to the reliability of
the traditional combined approach strategy [2,5], where only uncorrectable words
are repaired, while correctable words are left to the ECC.

From the experts’ hearings, it is known that a part of the power plant products
requires high reliability for lifetime longer than 20-50 years, though usual products
and applications require reliability of 10 years for normal systems, and 20 years for
automotive. Throughout 50 years, including the 10-year and 20-year marks, the
results show that the proposed strategy has better reliability than the traditional
strategy.

The parameters are varied in order to observe how the proposed strategy im-
proves reliability. Figure 3.8 shows the results of the reliability evaluation for
various memory sizes. The reliability of the proposed strategy is close to 1 all
throughout the observed range, except for the case of 512K words. Also, the pro-
posed strategy is more reliable by several decades than the traditional strategy.

Figure 3.9 shows the results for various spare word sizes. All the plots for the
traditional strategy coincide with each other. This shows that even if there are
enough spare words, if correctable words are not repaired, the traditional strategy
is not able to mitigate the errors, and system reliability is severely degraded. The
plots of both 50 and 500 spare words for the proposed strategy coincide with each
other. This shows that for a given baseline of error rate and for a given time period
that the reliability of the system is observed, a minimum number of spare words

30



Figure 3.8: Reliability of proposed strategy vs traditional strategy for various
memory sizes

Figure 3.9: Reliability of proposed strategy vs traditional strategy for various
spare word sizes
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Figure 3.10: Reliability of proposed strategy vs traditional strategy for varying
hard error rate given soft error rate λs=10−7

can be enough to maintain reliability.
Figure 3.10 shows that case when hard errors occur more often. Though the

proposed strategy may use up all of the spare words within several decades, it has
better reliability than the traditional strategy. Figure 3.11 shows the case when
soft errors occur more often. The proposed strategy provides higher reliability
than the traditional strategy, though the system reliability degrades quickly. For
high soft error rates, the system might require stronger soft error protection.

Figure 3.12 and Figure 3.13 show the results for various word lengths, where
two numbers in the legend mean lengths of an original word and redundant bits
for ECC. Memories with longer word lengths are more susceptible to errors, espe-
cially for codewords of 522 bits, which may require stronger correction schemes.
For all the word lengths, the proposed strategy provides greater reliability than
traditional stately.

Figure 3.14 shows the results for varying self-test and repair periods. The
result shows that as long as the proposed strategy performs self-test and repair
on the ample period needed, it will be able to protect the memory system. When
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Figure 3.11: Reliability of proposed strategy vs traditional strategy for varying
soft error rate given hard error rate λh=10−11

Figure 3.12: Reliability of proposed strategy vs traditional strategy for various
word lengths up to 32 bits
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Figure 3.13: Reliability of proposed strategy vs traditional strategy for various
word lengths up to 512 bits

Figure 3.14: Reliability of proposed strategy vs traditional strategy for varying
self-test and repair periods
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Table 3.3: Memory Elements Used for Proposed Architecture
Memory Element Number of Words Word Size (in Bits)

Memory 1e+5 21
Spare 50 21

Remap CAM 50 34
Diagnosis CAM 256 38

self-test and repair is done in a slower rate, the reliability of the system is affected.
All in all, the proposed strategy shows enhanced reliability performance com-

pared to the traditional strategy.

3.5.2 Hardware Overhead

The remap controller of the proposed in-field repair strategy using the Synopsys
SAED90nm_EDK library is implemented. Controllers were implemented for 5
types of memory sizes given a fixed number of words for spare memory, diagno-
sis and remap CAM. The size of each entry for the diagnosis and remap CAM
depends on memory size. The overhead introduced by the remap controller to
determine the area cost is evaluated. Also, the power and latency overhead of
diagnosis CAM and remap CAM is evaluated, and the method and tool used to
perform this evaluation is presented. Then, the power and latency overhead of
the periodic test strategy by assessing the number of operations needed to per-
form test are evaluated. A method that minimizes power and latency is cited as
well.

Area Overhead

Table 3.3 shows the values of memory elements for a case of 1e+5 words. The
remap CAM has the same number of entries as the spare words, but has twice
the address width, since each entry consists of a faulty word address and the
corresponding spare word address. The diagnosis CAM has 256 word entries
with word size of 38 bits, 17 bits for the faulty word address and 21 bits, which is
the memory word size, since these are where the faulty bit locations are stored.

35



Table 3.4: Hardware Overhead of Remap Controller
Number of Words Address Bit Count Gate Count

8K + 50 spare 14 1467
64K + 50 spare 17 1570
1e+5 + 50 spare 17 1599
256K + 50 spare 19 1663
512K + 50 spare 20 1711

*K means exactly 1,024 bits

The rest of the memory sizes use an extra addressing bit to be able to map into
the spare addresses. For example, a memory with 8K words is addressed with
13 bits + 1 more bit to access the spare words, so in total, 14 bits are used.
Table 3.4 shows the experimental results gathered for increasing memory sizes,
where areas are evaluated in 2-input NAND gate-equivalent. The size of the
remap controller slightly increases as memory words increase. This is because
the number of addressing bits logarithmically increases with increase in memory
size. For all the types, the hardware overhead is less than 1,800 gates, which is
small compared to the total number of gates for an SoC. It also shows that the
remap controller is scalable.

Power and Latency Overhead

The power and latency overhead using memory elements shown in Table 3.3 are
evaluated. The power overhead is mainly contributed by the CAM operation due
to the comparison circuitry activated in parallel. Both CAMs are relatively small
in size. The bigger diagnosis CAM is only used during test mode, while the smaller
remap CAM is used during test mode, and during user mode, where remapping
is in effect. The CAM size limits the number of operations performed by the
CAM. We use CACTI [20] to evaluate power and latency for 90nm technology.
CACTI is used for cache memories, and does not fully support CAM evaluation.
Nevertheless, the tool can be used by carefully choosing parameters that are
close to that of the CAMs in Table 3.3. CACTI can evaluate set associative
cache memories with at least 16 sets, associativity of a power of 2, and block
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Table 3.5: CAM Power Overhead and Access Time
Parameter Diagnosis CAM Remap CAM

Dynamic Power (W) 0.0995 0.1066
Leakage Power (W) 0.0309 0.0022

Total Power (W) 0.1304 0.1088
Access Time (ns) 5.94312 1.8076

size of at least 8 bytes. On the other hand, the CAMs in Table 3.3 require full
associative (single set) caches with 256 entries (associativity) and 17-bit tag and
21-bit data (block size) for the diagnosis CAM, and 50 entries and 17-bit tag
and 17-bit data for the remap CAM. Caches with 16 sets and 8-byte (64-bit)
block, and 256 entires for the diagnosis CAM and 64 entries for the remap CAM
are evaluated. In this setup, each of the diagnosis CAM and the remap CAM is
considered as one of the sets of a set associative cache. However, when accessing
a cache, only one set becomes active, and evaluation of power and latency of
the CAMs with a slight overestimation is considered. The results are shown in
Table 3.5.The dynamic power and leakage power for each set of the CAMs is
found to be relatively small. Also, the access time, and thus latency overhead, is
found to be relatively small.

The power and latency overhead of periodic test strategy are evaluated. The
memory BIST, which uses a March-like self-test for a word-based memory organi-
zation, is assessed. The MATS+ [21] is used to perform self-test and has test time
of 5 ∗ n/B, where n is number of cells and B is number of bits in a word. Given
that memory organization is composed of N user words and Ns spare words, the
total time to perform memory test is 5∗ (N +Ns) operations, which are relatively
few.

Also, the number of times the CAMs may be accessed during periodic test and
repair, which is dependent on the number of faults found, is assessed. Given the
memory in Table 3.3, for a hard error rate of λh = 10−11, the faults that have
occurred are expected to be ∼1.83 at the 10-year mark, and ∼3.64 at the 20-year
mark, while for a hard error rate of λh = 10−10, the faults that have occurred
are expected to be ∼18.35 at the 10-year mark, and ∼36.4 at the 20-year mark.
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From this, it is known that at first, less faults occur, and the number of accesses
to the CAMs are infrequent. Then after some time, more faults occur, and the
number of accesses to the CAMs increase. This implies that power or latency
overhead to access CAMs during test mode is negligible in early life, and it is
slightly increased with time. These overheads can be reduced by dividing a whole
memory into blocks and applying the test and repair to each memory block [5].

3.6 Chapter Summary
Given an ECC-based memory architecture, a novel in-field repair strategy that
repairs uncorrectable words and possibly correctable words is proposed. An adap-
tive reconfiguring method is executed by the implemented remap controller to
realize the proposed in-field repair strategy. A stochastic reliability model of the
proposed strategy is established based on Poisson distributions for hard and soft
errors. The proposed strategy enhances memory reliability in field compared to
the traditional strategy, which repairs uncorrectable words only. Also, the hard-
ware overhead of area, power and latency is found to be small. These show that
the proposed strategy extends memory lifetime in practical use.
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4 Reliability Enhancement Using
Combination of Aging-aware
Adaptive In-Field Self-Repair
and ECC

In this chapter, we propose to enhance reliability further by introducing a new re-
liable memory architecture that combines aging test and the ECC-based memory
architecture with in-field self-repair proposed from the previous chapter and uses
a novel aging-aware in-field repair strategy. First, we propose a 3-state model of
a memory cell where agedness is considered as a state of a memory cell. We also
derive the probabilities when the state of a memory cell included in a memory
word is considered as aged for a memory word organization. We describe in de-
tail a reliable aging-aware memory architecture, and the further enhancement in
reliability is evaluated.

4.1 Aging and Memory Cells and Memory
Words

Given that a memory cell is aged compared to an average memory cell, we now
consider the three possible states of a memory cell: healthy, aged, and faulty.
Both healthy and aged cells are considered non-faulty, but an aged cell is more
susceptible to turn faulty. Degradation of SNM is one cause of aged cell. In this
section, we introduce a 3-state model for memory cell states, then introduce five
status types of memory words.
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Figure 4.1: 2-State Model vs. 3-State Model for Memory Cell

4.1.1 State Model of Memory Cells

Figure 4.1 shows a conventional 2-state model and the proposed 3-state model
for memory cells. The 2-state model has non-faulty and faulty states, and it is
assumed that a non-faulty cell becomes faulty according to a Poisson distribution
with a constant rate of λ. Note that such a constant rate can be assumed in
the stable or useful life period of memory lifetime, and the analyses focus on this
period.

In the three state model, a non-faulty state is divided into healthy and aged
states. States of aged and faulty can be determined with SNM for example, and
therefore, we can also assume that the rate that a healthy cell becomes aged or
faulty is also constant. In the proposed 3-state model, we denote transition rates
from healthy to faulty, healthy to aged and aged to faulty as constants λ0, λ1,
and λ2, respectively.

4.1.2 Probability of Memory Cell States

Let P H
C (t), P A

C (t), P F
C (t) denote probabilities that a cell is healthy, aged and

faulty at time t, respectively. As shown in Figure 4.1, from 2-state and 3-state
models, we derive the following equations:

λ0 · P H
C (t) + λ2 · P A

C (t) = λ
(
P H

C (t) + P A
C (t)

)
(4.1)

d

dt
P H

C (t) = − (λ1 + λ0) P H
C (t) (4.2)

d

dt
P A

C (t) = λ1P
H
C (t) − λ2P

A
C (t) (4.3)
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P H
C (t) + P A

C (t) + P F
C (t) = 1 (4.4)

From Equation 4.1, we first obtain

P H
C (t)

P A
C (t)

= −λ − λ2

λ − λ0
(4.5)

which shows that the ratio of P H
C (t) and P A

C (t) is a constant independent of time.
Let P H

C (0) = α, P A
C (0) = β and P F

C (0) = 0, which implies that α + β = 1,
and P H

C (t)
P A

C (t) = α
β
. Then, we can derive the probabilities on cell states using Laplace

transform:

P H
C (t) = αe−(λ1+λ0)t (4.6)

P A
C (t) = βe−(λ1+λ0)t (4.7)

P F
C (t) = 1 − P H

C (t) − P A
C (t) (4.8)

Values of α and β can be determined as, for example, SNM of an aged cell is
less than −3σ or −4σ with assumption of Gaussian distribution of SNM. Assume
that λ0 is so small that we can approximate α = 99.87%, β = 0.13%, α

β
= 768,

λ2 ≈ 768λ, λ0 ≈ λ
768 , λ1 ≈ λ for −3σ, and α = 99.997%, β = 0.003%, α

β
= 33332,

λ2 ≈ 33332λ, λ0 ≈ λ
33332 , λ1 ≈ λ for −4σ.

4.1.3 Word Status Types

Based on cell states, we introduce 5 word status types as shown in Figure 4.2.
They are classified as: 1) 2F : a word with 2 or more faulty cells, 2) 1FA: a word
with 1 faulty cell and 1 or more aged cells, 3) 1F0: a word with 1 faulty cell and
no aged cells, 4) A: a word with 1 or more aged cells, and lastly, 5) H: a word
with all healthy cells. A 2F word is uncorrectable through the ECC as single
error correction is employed. Words are vulnerable, or prone to be uncorrectable,
in the order of 2F , 1FA, 1F0, A and H. The priority for repair uses the same
order as well, where 2F words have the most priority.
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Figure 4.2: Word Status Types Based on Priority For Repair

4.1.4 Probability of Memory Word Status Types

Let P H
W (t), P A

W (t), P 1F 0
W (t), P 1F A

W (t), P 2F
W (t) denote probabilities that a word

status is H, A, 1F0, 1FA, 2F at time t, respectively. These probabilities can be
derived as follows:

P H
W (t) =

(
P H

C (t)
)n

(4.9)

P A
W (t) =

n∑
i=1

P A
W (t, i) =

n∑
i=1

(
n

1

)(
β

α

)i (
P H

C (t)
)n

=
{(

1 + β

α

)n

− 1
}(

P H
C (t)

)n
(4.10)

P 1F 0
W (t) =

(
n

1

)(
P F

C (t)
) (

P H
C (t)

)n−1
(4.11)

P 1F A
W (t) = ∑n−1

i=1 P 1F A
W (t, i) = ∑n−1

i=1

(
n
1

) (
P F

C (t)
) (

n−1
1

)
( β

α
)i
(
P H

C (t)
)n−1
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=
(

n

1

)(
P F

C (t)
)

(
1 + β

α

)n−1

− 1

(P H
C (t)

)n−1
(4.12)

P 2F
W (t) = 1 − P H

W (t) − P A
W (t) − P 1F 0

W (t) − P 1F A
W (t) (4.13)

Given the probabilities and the order of vulnerability due to status type of the
memory words, a strategy must be devised in such a way that the most vulnerable
word is given priority to be repaired. The architecture and the strategy needed
to fulfill this strategy are explained in the succeeding sections.

4.2 Memory Architecture Using Combination of
Aging-Aware Adaptive In-Field Self-Repair
and ECC

In this section, a reliable memory architecture that combines ECC and in-field
aging test and repair is described in detail. It is an enhancement from the archi-
tecture introduced in the previous chapter by using an extended in-field repair
strategy that takes into account aging of memory cells.

4.2.1 Extended In-Field Repair Strategy

In the extended proposed strategy, the word status types are repaired, as shown
in Figure 4.3. The more the vulnerable words, the higher priority for repair. It
is summarized as follows:

• Apply self-test and repair in field

• For each detected faulty or aged word, reconfigure the remap CAM as fol-
lows:

– Repair a word through remapping if spare space is not fully occupied
with words with the same or higher repair priority. If there is no free
spare word, cancel one word with lowest priority if it exists, and replace
it with current word to be repaired
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Figure 4.3: Extended In-Field Repair Strategy

– Do nothing if spare space is occupied with words with the same or
higher priority.

• Correctable or aged words may be used in field, with the output corrected
by ECC if necessary.

4.2.2 Architecture Details

The main addition to the aging-aware architecture as compared to the previous
architecture is the aging test. The aging-aware architecture is shown in Figure 4.4
operates in user mode and test mode. In user mode, a remap CAM isolates
already identified faulty or aged words, and ECC and scrubbing protect users
from memory errors. In test mode, memory BIST and aging test are applied,
and the remap CAM is reconfigured. The various functionalities and the main
additions are briefly reviewed below.

1. Remap CAM: A called address is remapped to a spare address if it is stored
in remap CAM. It stores the memory words of various status types.

2. ECC Encoder/Decoder Circuits: They ensure correct output if the words
can be corrected.
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Figure 4.4: Proposed ECC-Based Aging-Aware Memory Architecture

3. Scrubbing Controller: It re-writes content of memory word through ECC
and eliminates correctable soft errors within the word.

4. Memory BIST and Aging Test: Memory BIST identifies faulty memory
cells, and aging test identifies aged cells.

5. Extended Diagnosis CAM: It diagnoses words with faulty or aged cells as
either 2F , 1FA, 1F0 or A words. It stores the addresses of the diagnosed
words, and the bit locations of faulty and aged cells within the word.

6. Extended Remap Controller: It reconfigures the remap CAM based on
vulnerabilities.

4.2.3 Extended Remap Controller

The remap CAM stores the original and remapped addresses of 2F , 1FA, 1F0
and A words to be remapped as shown in Figure 4.5. From the top of the remap
CAM, 2F words use the space with the space for 1FA words following, while
1F0 words use the space starting from the bottom with the space for A words
following upwards. This arrangement is employed to minimize rewrite traffic and
retaining word status type contiguity. Four address counters, RC2F , RC1FA,
RC1F0 and RCA, are used to mark word status type boundaries. Figure 4.6
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Figure 4.5: Remap CAM Using Extended In-Field Repair Strategy

shows an example where a new 2F word is inserted into the remap CAM. The
space for 2F words is extended and the top 1FA word is moved to the bottom of
space for 1FA words. It shows a similar operation for a new 1F0 word, but from
the opposite direction. Figure 4.7 shows a case where a new 2F word is inserted to
a full remap CAM. In this case, spaces for 2F and 1FA are reconfigured similarly
as Figure 4.6 and the top entry of the A word is overwritten. It can be seen in
this case that the dropped A word is no longer in the remap CAM as priority has
been given to the more vulnerable word. Concurrently, writing a new A word is
forfeited since it is less vulnerable, and thus, with lower priority.

4.3 Reliability Model Using Combination of
Aging-aware Adaptive In-Field Self-Repair
and ECC

The reliability of the extended proposed strategy is evaluated under the condition
where BIST and aging test is periodically applied together and scrubbing is also
applied periodically.

Let N and Ns be the number of user words and spare words, respectively.
The memory system utilizes N words among N + Ns words. Memory system
reliability is the probability that the system is working well in the interval [0, t].
This means the system has no unremapped 2F words during [0, t]. The interval
[0, t] is divided into several self-test periods and one self-test period is further
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Figure 4.6: Writing New Entry when Extended Remap CAM is Not Full

divided into scrubbing periods. Self-test period is the time between consecutive
self-tests, and scrubbing period is the time between consecutive scrubbings. Let
tt and ts denote the lengths of self-test period and scrubbing period, respectively.
The system is reliable if all the past and current self-test periods are reliable, and
one self-test period is reliable if all the scrubbing periods in the self-test period
are reliable.

This section is organized as follows:

1. The probabilities that occur at the cell level (bit level) are described first.
The state probabilities describe the probability that a cell is healthy, aged or
faulty, and they are the basis of the aging-aware reliability evaluation. They
are described at the beginning of this chapter. The transition probabilities
takes into account that the states of the cell may change after an interval.
The cell probabilities also take into account that they are affected by soft
error.

2. The probabilities at the word level are described based on the expressions
formulated at the cell level. A word is composed of n bits.

3. The reliability of a memory word is expressed based on the word level
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Figure 4.7: Writing New Entry when Extended Remap CAM is Not Full

probabilities such that it has at most 1 error at any given time T . These
are the reliability expressions for the word status types.

4. The reliability of one self-test period is expressed as the probability that
the memory words in the system are of a certain word status type for the
given period.

5. Lastly, the reliability of the memory system, which is the reliability of all
the self-test periods including the current test period, is described.

4.3.1 Probability at Cell-Level (Bit-Level)

State Probability of Cell

See Section 4.1.2.

Transition Probability of Cell

Let P H→A
C (t) as a probability that a healthy cell at time T is aged at time T + t

for any T . P H→F
C (t) and P A→F

C (t) P H→H
C (t), P A→A

C (t) and P F →F
C (t) are defined
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similarly.

P H→H
C (t) = e−(λ1+λ0)t (4.14)

P H→A
C (t) = β

α

(
e−(λ1+λ0)t − e−λ2t

)
(4.15)

P H→F
C (t) = 1 − 1

α

(
e−(λ1+λ0)t − βe−λ2t

)
(4.16)

P A→A
C (t) = e−λ2t (4.17)

P A→F
C (t) = 1 − e−λ2t (4.18)

P F →F
C (t) = 1 (4.19)

Probability of Soft Error in a Cell

A word is reliable if it has at most one memory cell error; memory cell has an
error if it is faulty, or if it has a soft error. A soft error in memory cell is modeled
using a Poisson distribution. Let P 0S

C (t) and P 1S
C (t) denote the probabilities of

the absence and presence, respectively, of a soft error in a memory cell during
[T, T + t] for any T . They are expressed as:

P 0S
C (t) = e−λst (4.20)

P 1S
C (t) = 1 − e−λst (4.21)

4.3.2 Probability at Word-Level

Probability of Word

See Section 4.1.4.
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Transition Probability of Word

Let P H→H+A
W (t) denote a probability that an H word at time T is an H or

A word at time T + t for any T . P H→1F 0+1F A
W (t), P A→A

W (t), P A→1F 0+1F A
W (t),

P 1F 0→1F 0+1F A
W (t), and P 1F A→1F A

W (t) are defined similarly. Let P A→A
W (t, i) denote

a probability that an A word with i aged cells at time T is an A word at time
T + t for any T . P A→1F 0+1F A

W (t, i) and P 1F A→1F A
W (t, i) are defined similarly.

P H→H+A
W (t) =

(
P H→A

C (t) + P H→H
C (t)

)n
(4.22)

P H→1F 0+1F A
W (t) =

(
n
1

)
P H→F

C (t)
(
P H→A

C (t) + P H→H
C (t)

)n−1
(4.23)

P A
W (t, i) =

(
n

1

)(
β

α

)i (
P H

C (t)
)n

(4.24)

P A→A
W (t) = ∑n

i=1
P A

W (t,i)
P A

W (t) P A→A
W (t, i) (4.25)

P A→A
W (t, i) =

(
P A→A

C (t)
)i (

P H→A
C (t) + P H→H

C (t)
)n−i

(4.26)

P A→1F 0+1F A
W (t) = ∑n

i=1
P A

W (t,i)
P A

W (t) P A→1F 0+1F A
W (t, i) (4.27)

P A→1F 0+1F A
W (t, i) =

(
i
1

) (
P A→F

C (t)
) (

P A→A
C (t)

)i−1

·
(
P H→A

C (t) + P H→H
C (t)

)n−i
+
(
P A→A

C (t)
)i (n−i

1

) (
P H→F

C (t)
)

·
(
P H→A

C (t) + P H→H
C (t)

)n−i−1
(4.28)

P 1F 0→1F 0+1F A
W (t) =

(
P H→A

C (t) + P H→H
C (t)

)n−1
(4.29)

P 1F A
W (t, i) =

(
n

1

)(
P F

C (t)
)(n − 1

1

)(
β

α

)i (
P H

C (t)
)n−1

(4.30)

P 1F A→1F A
W (t) = ∑n−1

i=1
P 1F A

W (t,i)
P 1F A

W (t) P 1F A→1F A
W (t, i) (4.31)

P 1F A→1F A
W (t, i) = (

P A→A
C (t)

)i (
P H→A

C (t) + P H→H
C (t)

)n−i−1
(4.32)
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Probability of Soft Error in a Word

Let P 0S
W (t) and P 1S

W (t) denote the probabilities that no cell and that one cell has
soft error in a word during [T, T + t] for any T , respectively.

P 0S
W (t) =

(
P 0S

C (t)
)n

(4.33)

P 1S
W (t) =

(
n
1

)
P 1S

C (t)P 0S
n−1(t) (4.34)

The probability P ≤1S
W (t) of a word with at most one soft error during [T, T + t]

is expressed as:

P ≤1S
W (t) =

(
P 0S

W (t) + P 1S
W (t)

)v
·
(
P 0S

W (te) + P 1S
W (te)

)
(4.35)

where v = ⌊t/ts⌋, which is the number of scrubbing intervals during [0, t], and
te = t − vts, which is the elapsed time after the last scrubbing.

We also use the probability that n − 1 cells (or a word with exception of 1 cell)
has no soft error during [T, T + t] for any T . It is expressed as follows:

P 0S
n−1(t) =

(
P 0S

C (t)
)n−1

(4.36)

4.3.3 Reliability of a Memory Word

A memory word is reliable if it has at most 1 error at any given time T . Let RH
W (t)

be a reliability of word, that is H at T , at T + t for any T . RA
W (t), R1F A

W (t), and
R1F A

W (t) are defined similarly.

RH
W (t) = P H→H+A

W (t) · P ≤1S
W (t) + P H→1F 0+1F A

W (t) · P 0S
n−1(t) (4.37)

RA
W (t) = P A→A

W (t) · P ≤1S
W (t) + P A→1F 0+1F A

W (t) · P 0S
n−1(t) (4.38)

R1F 0
W (t) = P 1F →1F 0+1F A

W (t) · P 0S
n−1(t) (4.39)

R1F A
W (t) = P 1F A→1F A

W (t) · P 0S
n−1(t) (4.40)
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4.3.4 Reliability of Self-Test Period

The reliability of one self-test period is a probability that there are N words in
H, A, 1F0, or 1FA among N +Ns words at the beginning of the period and they
do not become 2F during the period. The reliability for the k-th period is given
as

Rperiod(k, t) = P H
S (k)

P C
S (k)

(
RH

W (t)
)N

+∑N
i=1

P A
S (k,i)

P C
S (k)

(
RH

W (t)
)N−i (

RA
W (t)

)i

+∑N
j=1

∑N−j
i=0

P 1F 0
S (k,i,j)
P C

S (k)

(
RH

W (t)
)N−j−i (

RA
W (t)

)i (
R1F 0

W (t)
)j

+∑N
m=1

∑N−m
j=0

∑N−m−j
i=0

P 1F A
S (k,i,j,m)

P C
S (k)

·
(
RH

W (t)
)N−m−j−i (

RA
W (t)

)i (
R1F 0

W (t)
)j (

R1F A
W (t)

)m
(4.41)

Let Tk = (k − 1) · tt be the time at the beginning of a period k. P H
S (k) is

a probability that a system of N words has only H words at the beginning of
period k.

P H
S (k) = ∑N+Ns

h=N

(
N+Ns

h

) (
P H

W (Tk)
)h (

1 − P H
W (Tk)

)N+Ns−h
(4.42)

P A
S (k) is a probability that a system of N words has H or A words including

one or more A words at the beginning of period k. P 1F 0
S (k) and P 1F A

S (k) are
defined similarly.

P A
S (k) = ∑N

iA=1 P A
S (k, iA) (4.43)

P 1F 0
S (k) = ∑N

j1F 0=1
∑N−j1F 0

iA=0 P 1F 0
S (k, iA, j1F ) (4.44)

P 1F A
S (k) =∑N

m1F A=1

∑N−m1F A
j1F 0=0

∑N−j1F 0−m1F A
iA=0 P 1F A

S (k, iA, j1F 0, m1F A) (4.45)

P A
S (k, i) is a probability that a system of N words has H or A words where

the number of A words is i at the beginning of period k. P 1F 0
S (k, i, j) is defined

similarly where the number of A words are i(≥ 0) and 1F0 words are j(> 0).
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P 1F A
S (k, i, j, m) is defined similarly where the number of A words are i(≥ 0), 1F0

words are j(≥ 0) and 1FA words are m(> 0).

P A
S (k, i) = ∑iA+Ns

i=iA

(
iA+Ns

i

) (
P H

W (Tk)
)N−iA

(
P A

W (Tk)
)i

·
(
1 − P H

W (Tk) − P A
W (Tk)

)iA+Ns−i
(4.46)

P 1F 0
S (k, i, j) =∑j1F 0+Ns

j=j1F 0

(
j1F 0+Ns

j

) (
P H

W (Tk)
)N−iA−j1F 0

(
P A

W (Tk)
)iA

(
P 1F 0

W (Tk)
)j

·
(
1 − P H

W (Tk) − P A
W (Tk) − P 1F 0

W (Tk)
)j1F 0+Ns−j

(4.47)

P 1F A
S (k, i, j, m) =∑m1F A+Ns

m=m1F A

(
m1F A+Ns

m

) (
P H

W (Tk)
)N−iA−j1F 0−m1F A

·
(
P A

W (Tk)
)iA

(
P 1F 0

W (Tk)
)j1F 0

(
P 1F A

W (Tk)
)m1F A

·
(
1 − P H

W (Tk) − P A
W (Tk) − P 1F 0

W (Tk) − P 1F A
W (Tk)

)m1F A+Ns−m
(4.48)

P C
S (k) is the sum of P H

S (k), P A
S (k), P 1F 0

S (k), and P 1F A
S (k).

P C
S (k) = P H

S (k) + P A
S (k) + P 1F 0

S (k) + P 1F A
S (k) (4.49)

4.3.5 Reliability of Memory System

For memory to remain reliable, the system must utilize N words in H, A, 1F0,
or 1FA among N + Ns words, and the system is assessed per self-test period.
Thus, the reliability of the memory is the product of the reliabilities from the
previous (k − 1)-th self-test periods, and the reliability of the current period, and
it is given as

R(t) =
(∏k−1

p=1 Rperiod(p, tt)
)

× Rperiod(k, te) (4.50)

where t is in the k-th period, and te (= t mod tt) is the time elapsed after the last
self-test.
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Table 4.1: Baseline Memory Parameters
Parameters Definition Values

N number of words 1e+5
Ns number of spare words 50
n number of bits per word 21
tt time bet. self-test & repair (hours) 240
ts time between scrubbing (hours) 0.1
λs soft error rate (errors per hour) 10−7

λ rate from non-faulty to faulty 10−11, 10−10, 10−9

λ1 rate from healthy to aged λ

λ2 rate from aged to faulty (α/β) · λ

λ0 rate from healthy to faulty λ/(α/β)

4.4 Experimental Results
In this section, we present the evaluation results of the reliability model for the
extended proposed strategy, and its hardware overhead.

4.4.1 Reliability Evaluation

The reliability is evaluated using a similar set-up from the previous chapter.
Baseline parameters for this evaluation are shown in Table 4.1. The scrubbing
interval ts is 6 minutes, while BIST and aging test period tt is 10 days. The
reliability of the extended proposed strategy is compared to the reliability of the
proposed strategy from Chapter 3 that does not consider aged words, as well as
the reliability of the traditional repair [5,6] that only repairs uncorrectable words.
Reliabilities are observed up to 50 years. The results show reliability evaluation
for varying rates of λ.

Figure 4.8 shows the result for λ = 10−11. The traditional method shows a
downward trend at an early time. In Figure 4.9, given λ = 10−10, the reliability
of the proposed method is kept close to 1, while that of the previous method
degrades after a few decades. In Figure 4.10, given λ = 10−9, the reliability of
the previous method has clearly degraded. This shows that when the degradation
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Figure 4.8: Reliability of extended proposed strategy vs previous vs traditional
strategy for error rate of λ=10−11

Figure 4.9: Reliability of extended proposed strategy vs previous vs traditional
strategy for error rate of λ=10−10
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Figure 4.10: Reliability of extended proposed strategy vs previous vs traditional
strategy for error rate of λ=10−9

is not negligible, the proposed method is very effective compared to the other
method.

4.4.2 Hardware Overhead

Area Overhead

The memory elements used for the extended proposed architecture is similar to
that in Table 3.3, except for the extended diagnosis CAM, as shown in Table 4.2.

Table 4.2: Memory Elements Used for Extended Proposed Architecture
Memory Element Number of Words Word Size (in Bits)

Memory 1e+5 21
Spare 50 21

Remap CAM 50 34
Diagnosis CAM 256 59
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Table 4.3: Hardware Overhead of Extended Remap Controller
Number Address Gate Count Gate Count Gate Count
of Words Bit Count Previous [Table 3.4] Proposed Increase

8K+50 spare 14 1467 2858 1.95x
64K+50 spare 17 1570 3026 1.93x
1e+5+50 spare 17 1599 3056 1.91x
256K+50 spare 19 1663 3132 1.89x
512K+50 spare 20 1711 3182 1.86x

*K means exactly 1,024 bits

Each entry of the extended diagnosis CAM consists of the faulty address word,
and two words, one of which being used for localizing faulty bits, and another
being used for localizing aged bits as illustrated in Figure 4.4.

The remap controller of the extended in-field repair strategy using the Synopsys
SAED90nm_EDK library is implemented. 5 controllers were implemented with
increasing memory sizes. Table 4.3 shows the hardware overhead of 5 remap
controllers. The numbers of gate count are expressed in 2-input NAND gate
equivalents. The proposed controllers have less than 3,200 gates, a negligible
quantity compared to the total number of gates for an SoC.

Power and Latency Overhead

For the aging-aware architecture, the power and latency overhead is similar to
the previous architecture. The discussion for power overhead is similar to Sec-
tion 3.5.2 since it uses the same estimation to perform the evaluation. For the
latency overhead, it is almost similar except that the aging test needs an extra 2
write cycles to perform the test [17].

4.5 Chapter Summary
Self-test can now identify aged memory cells, along with faulty memory cells.
Identification of aged cells enables development of a 3-state model for a memory
cell which thus can be categorized as healthy, aged or faulty. It also allows to clas-

57



sify words into 5 status types for in-field repair. A novel strategy that combines
aging-aware adaptive in-field self-repair and ECC, which enhances reliability fur-
ther by repairing the classified faulty and aged words in order of vulnerability, is
proposed. Repair of the more vulnerable word is guaranteed by cancelling pre-
vious repair of a less vulnerable word if necessary. Also, the remap controller’s
overhead is negligibly small. A stochastic reliability evaluation based on a Pois-
son distribution for transition rates between cell states, as well as soft errors, is
formulated. The extended proposed strategy enhances memory reliability further
and extends its lifetime by several decades compared to the previous methods.
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5 Support for Memory of Higher
Technology

Recent memory technologies are dramatically improving in a very high rate, which
gives greater performance. Thus, memory can have certain features for a specific
technology or may require optimized performance. The proposed architectures
can be further adapted to higher technologies, and some key points are identified
and described in detail in this chapter.

5.1 Memory with Burst Rate Operation
High speed memories have features such as burst rate operation. This means
memory reads or writes are composed of one or more memory words. This
tremendously speeds up time to access memory since the next set of words are
just waiting to be read, in case of memory read, or the next set of words to be
written are already included in a single access, in case of memory write.

The proposed architectures can be adapted to support burst rate operation.
The implemented architectures presented in this work discuss word-level orga-
nizations. For such a case that memory accesses are composed of one or more
memory words, the proposed strategies are applied in terms of memory blocks.
One memory block is distinguished as a batch of one or more words. Thus, for a

Figure 5.1: Block status for memory with burst rate operation
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Figure 5.2: Remap CAM Access During User Mode

given burst rate, test and repair is done for each memory block, and the proposed
strategies are still in effect. This also implies that a faulty block is repaired using
a spare block. In this scenario, since a single block contains one or more words,
the status type of the block depends on the worst word status type included in
the said block. For example, a block is composed of 4 words as shown in as
shown in Figure 5.1. It contains 2 healthy (H) words, 1 aged (A) word and an
1-faulty-aged (1FA) word. Since the block adopts the status of word with the
worst status, the status of the block is 1FA. This block is repaired according to
the strategy of its status.

Thus, the proposed architecture can be used for higher technology memories.

5.2 Latency Optimization
Without degradation of reliability, the proposed architecture can be further op-
timized in terms of performance. During user mode, the remap CAM can po-
tentially cause latency issues since the memory address to be accessed is checked
whether it is stored in the remap CAM or not as shown in Figure 5.2. In order
to avoid this bottleneck, the architecture is optimized as shown in Figure 5.3.
A memory address access is performed normally, while concurrently, the same
address is searched in the remap CAM. Each address entry in the remap CAM
is logically allocated to a spare address. A control signal indicates whether the
memory address comes from memory or spare. The concurrency in the opera-
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Figure 5.3: Modified architecture to optimize performance

tion of the normal memory access ensures that this output is just waiting for the
control signal coming from the remap CAM, whether it is a hit or a miss. A
miss indicates normal memory operation, while hit indicates access via the spare.
Thus, the latency overhead only comes from time required to access the remap
CAM, and the performance of the memory architecture is optimized.

5.3 Large Memory Block Size (up to 512 bits)
and ECC Protection Strength

Higher memory technologies require memory access to be block-based as described
in Section 5.1. Since each block is composed of multiple words, this implies block
sizes to be large. The results from Figure 3.12 already describe the reliability for
longer word lengths. However it only uses single error correction for the whole
block, which is not enough to be properly protected. To be able to provide
support for memory technologies like cache which requires block size of 512 bits
(or 64 Bytes), stronger ECC is required to protect not just the whole block, but
each memory word in the block as well. The work [22] experimentally shows how
varying the number of bits protected improves performance of cache memory.
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Figure 5.4: ECC for 512bit Block Size at Block and Word Level

The error correction schemes are described in terms of granularity, or the level of
protection of a given number of bits. These include block level correction, word
level correction, as well as stronger schemes, wherein the tag field of the cache is
equally protected as well.

The proposed strategy can be adapted into large memory blocks as shown in
Figure 5.4. For a 512bit block with only block level correction, the moment it
suffers from 2 or more errors, its status is considered as uncorrectable (or 2F,
as given from the strategy terminology for word or block status). For a 512bit
block with word level correction, including protection for tag field, the status of
the block depends only the worst status of the words among the block, such that
even if there are 2 or more errors, as long as it can be protected in the word level,
the block status is correctable (or 1F, as given from the strategy terminology
for word or block status). To check how strengthening error protection in large
memory block sizes affects reliability, the effect of granularity is adapted and
several experiments are performed. The case where tag and data field uses same
number of bits is considered. Cases for different data words such as 16-bit, 32-bit
and 64-bit words are explored. A minimum base block size of 512 bits is used.
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Figure 5.5: Reliability for 512bit Block Size Memory with ECC at Word Level

To illustrate the block size and word granularity, we cite an example for a 16-bit
data word. For a 512 bit block, this fits 32 16-bit words. Taking into account
the additional ECC bits, this corresponds to 32 21-bit codewords. Including an
additional codeword for the tag field, this adds up to a total of 33 21-bit codewords
for a total of 693 bits for each block. The corresponding block size calculation
are considered for the 32-bit and 64-bit words accordingly. The results are shown
in Figure 5.5, given that it uses the baseline parameters described in Table 3.2.
Increasing the error protection increases the reliability. However, the increase of
level of protection for smaller data word sizes correspond to increased block size.
Also, since baseline parameters are used, increasing the number of spares will
help improve reliability.
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Figure 5.6: Direct-mapped Cache Memory

5.4 Implementation of Proposed Strategy to
Cache Memory

The proposed architecture is expected to be adaptable into several high memory
technologies. As an example, the concept of the how proposed architecture can be
applied to cache memory is illustrated. A typical direct-mapped cache memory
is used for the example as shown in Figure 5.6, wherein access to the cache makes
use of a tag field to match if address is in the cache, and the corresponding data
field. Given 32-bit addressing, the cache has 1024 entries, and has 10 index bits,
20 tag bits and 2 offset bits. Data is outputted as long as valid bit (V) is indicated
to be set.

The proposed repair is implemented upon cache memory as shown in Figure 5.7.
It follows the same way how the proposed strategy works wherein access is thru a
CAM composed of tag and spares, when the cache entry is faulty. The tag is first
searched in the CAM, then the corresponding data field contains the spare data.
From which entry the access will come from is determined by the valid bit. A
valid bit set to 1 at the cache entry indicates a normal access. A valid bit set to
1 at the remap CAM, and a valid bit set to 0 at the cache entry indicates a spare
access. If valid bit is 0 for both cases, this implies that the memory address is
not located in the cache and access to secondary memory is necessary. A similar
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Figure 5.7: Proposed Repair Integrated into Cache

implementation can be used for set-associative cache but with separate allotment
of spare for each set.

5.5 Summary
With the recent advancement of higher memory technologies, certain features for
a specific technology or optimized performance are required for memory systems.
Key points for specific features for high speed memories, such as burst operation,
latency optimization, and large memory block sizes, have been addressed. These
show that the proposed architectures can be adapted to fit these systems. An
example of a cache implementation is also described.
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6 Conclusion

6.1 Memory Architectures for Reliability
Enhancement

The vulnerabilities encountered by embedded memory in SoCs have been pre-
sented, especially for reliability. The combination of self-repair and ECC is iden-
tified as a solution that can be efficiently used to perform memory repair. At
the same time, a reliability problem that can occur from the combination of re-
pair and ECC has been presented. Moreover, aging that can make memory more
susceptible to failure has been explained. Two architectures are presented as
solutions to enhance reliability.

The first architecture is the solution to the reliability problem of combination
of repair and ECC. A novel in-field repair strategy that repairs uncorrectable
words and possibly correctable words is proposed for ECC-based memory. An
adaptive reconfiguring method is executed by the implemented remap controller
to realize the proposed in-field repair strategy. A stochastic reliability model of
the proposed strategy is established based on Poisson distributions for hard and
soft errors. The proposed strategy enhances memory reliability in field compared
to the traditional strategy, which repairs uncorrectable words only. Also, the
hardware overhead is found to be small enough. These show that the proposed
strategy extends memory lifetime in practical use.

The second architecture is an aging-aware implementation for ECC-based mem-
ory. Self-test can now identify aged memory cells, along with faulty memory cells.
Identification of aged cells enables development of a 3-state model for a memory
cell which thus can be categorized as healthy, aged or faulty. It also allows to clas-
sify words into 5 status types for in-field repair. A novel strategy that combines
aging-aware adaptive in-field self-repair and ECC enhances reliability further by
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repairing the classified faulty and aged words in order of vulnerability, is pre-
sented. Repair of the more vulnerable word is guaranteed by cancelling previous
repair of a less vulnerable word if necessary. Also, hardware overhead is found to
be small enough. A stochastic reliability evaluation based on a Poisson distribu-
tion for transition rates between cell states, as well as soft errors, is formulated.
The extended proposed strategy enhances memory reliability further and extends
its lifetime by several decades compared to the previous methods.

All in all, both architectures presented are solutions to the reliability problems
that memory for SoCs encounter in field.

6.2 Summary
This thesis has presented reliability enhancement solution for memory in field.
It identified the reliability problems that memory may encounter, and strategies
and architectures that enhances reliability are proposed and presented. The com-
bination of self-repair, ECC and aging test, when strategically utilized, enhances
memory reliability further. The strategies can be adapted to memories of higher
technology, and can be explored for future work.
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