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Query Preservation for Tree-Structured Data∗

Kazuki Miyahara

Abstract

Query preservation is a notion for information preservation when the structure
of the data is updated. This thesis discusses the decidability of several query
preservation problems for tree-structured data.
First, we consider the problem of deciding whether a query can be preserved by

a nondeterministic view. It is known that preservation is decidable if views are
given by single-valued non-copying devices such as compositions of single-valued
extended linear top-down tree transducers with regular look-ahead, and queries
are given by deterministic MSO tree transducers (where MSO stands for Monadic
Second-Order logic). In this thesis, we extend the result to the case in which views
are given by nondeterministic devices that are not always single-valued. We define
two variants of preservation: universal preservation and existential preservation,
and discuss their decidability.
Second, we discuss the decidability of node query preservation problems. We

assume a view given by a deterministic linear top-down data tree transducer
(dltV) and an n-ary query based on runs of a tree automaton. We say that a
dltV Tr strongly preserves a query Q if there is a query Q′ such that for every
tree t in the domain of Tr, the answer set of Q′ for Tr(t) is equal to the answer set
of Q for t. We also say that Tr weakly preserves Q if there is a query Q′ such that
for every t in the domain of Tr, the answer set of Q′ for Tr(t) includes the answer
set of Q for t. We show that the weak preservation problem is coNP-complete
and the strong preservation problem is in 2-EXPTIME. We also show that the
problems are decidable when a given transducer is a single-valued extended linear
top-down data tree transducer with regular look-ahead, which is a more expressive
transducer than dltV.
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Chapter 1
Introduction

The cherry-trees are in flower but it is chilly
in the garden. There is an early frost.

— The Cherry Orchard, Act I [11]

1.1 Research Motivation
Almost every company or all kinds of organizations retrieve, handle, and store
some information or data such as employee information, customer information,
patent information, etc. These data are usually stored in databases, and main-
tained by using a database management system. Due to data exchanges and data
updates, long-term databases are often required to transform the structure of its
contents. When transforming the structure a fundamental problem comes up:
what kind of information is needed to be preserved? The solution of the problem
depends on what information is needed to be recovered from the transformed
data. There are some formulation of such information preservation such as in-
vertibility and query preservation. Intuitively, invertibility means that one can
recover the source data from the transformed data, and query preservation means
that information retrieved from source data by a (designated) query can be also
retrieved from the transformed data, by some query that is determined by the
transformation and the source query.
In database theory, some solutions for query preservation problem have been

presented, where the problem is motivated by data integration and query opti-
mization (see, e.g., surveys [31,32]). Let Q be a class of queries and V be a class
of transformations (or views). Query preservation for Q under V is the problem
deciding whether, given a query q ∈ Q and a view v ∈ V , a mapping q′ ∈ Q
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can be constructed from q and v such that q = v ◦ q′, where v ◦ q′ denotes the
composition of v and q′ defined as (v ◦ q′)(t) = q′(v(t)) for every input t. If such a
mapping q′ exists, we say that v preserves q or, q can be rewritten in terms of v.

q ∈Q

v ∈ V

∃ q′ ∈Q

Various techniques of query preservation have been developed in relational
database theory. On the other hand, query preservation for semi-structured data,
especially, tree-structured data such as XML documents has received attention
recently due to the enormous success of the model on the Web (see, e.g., [2, 4, 7,
23,29,33,36,40]).

NAIST

BS-student

id*

name

MS-student

id*

name

IS-student

id*

name

(a) Source schema Ss

NAIST

BS

students

student*

nameid

MS

students

student*

nameid

IS

students

student*

nameid

(b) Target schema St

Figure 1.1: Example: source schema and target schema.

Example 1. (Schema update) Let Q be a class of queries and V be a class of
transformations. Consider a tree-structured database D that stores information
about students at NAIST such as their IDs and names. The schema Ss of the
database is depicted in Figure 1.1a, which has the root labeled “NAIST” with
(ordered) children labeled “{IS,MS,BS}-student” followed by some children la-
beled “id”, which followed by a child labeled “name” (where “IS”, “MS”, and
“BS” stand for (the department of) Information Science, Materials Science, and
Biological Sciences, respectively, and “X*” means that there are zero or more
nodes labeled ‘X’). We also consider some applications that use a query q ∈ Q
over instances on Ss. One day, a database administrator of D decided to change
the schema of D from Ss to St depicted in Figure 1.1b. Let v ∈ V be a schema
transformation from Ss to St. Query preservation is the problem deciding whether
q′ ∈ Q can be constructed from q and v such that q = v ◦ q′. If such q′ exists, we
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can say that the information used by the applications is preserved through the
transformation. ♦

The case when both views and queries are single-valued (or deterministic) tree
transducers, which are a formal model of computer programs that transform each
input tree-structured data to the output one, was studied in [4,33]. Contributions
of [4,33] will be reviewed in Section 1.2.1 in some detail. These two studies opened
a new research direction of query preservation for tree-structured data. Starting
from [4,33], this thesis aims at extending the study on query preservation in two
ways, namely, nondeterminism and hybrid approach.

Example 2. (Transformation by tree transducer) The transformation v of Exam-
ple 1 can be realized by a linear deterministic extended top-down tree transducer
(see Section 2.2.2 for a formal definition). We assume for the sake of simplic-
ity that there is an upper limit m on the number of information about students.
The transducer is a tuple E = (Q,Σ,∆, I, R) whereQ = {qr, qid}, Σ = {NAIST,IS-
student,MS-student,BS-student,id,name},∆ = {NAIST,IS,MS,BS,students,student,id,name},
I = {qr}, and R contains the following two rules:

r1 : qr(NAIST(IS-student(x1, . . . , xm),
MS-student(xm+1, . . . , x2m),
BS-student(x2m+1, . . . , x3m)))
→ NAIST(IS(students(qid(x1), . . . , qid(xm))),

MS(students(qid(xm+1), . . . , qid(x2m))),
BS(students(qid(x2m+1), . . . , qid(x3m)))),

r2 : qid(id(name))→ student(id,name).

These rules are depicted in Figure 1.2. The rule r2 in R performs a local rotation;
such rule is not expressible by ordinary top-down tree transducers that are not
extended. ♦

Nondeterminism. Single-valued tree transducers output just one tree for each
input tree (see [4,33,40]). However, to our knowledge, no previous work has con-
sidered the query preservation for nondeterministic tree transducers (that are not
always single-valued) as views. Nondeterminism of tree transducers is required
in some applications, e.g., probabilistic database (see a survey [14]) and natural
language processing. In machine translation, each sentence in a source natural
language can possibly be translated into more than one sentence in a target lan-
guage (see, e.g., [35, 38, 39]). Thus we need nondeterminism in tree transducers
that model syntax-based machine translations (see, e.g., [9, 46]). By the way,

3
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· · · · · · · · ·

· · · · · · · · ·

r1

r2

Figure 1.2: Example: rules of an extended top-down tree transducer.

Figure 1.3: An application of query preservation to machine translations.

bilingual documents are essentially required to construct statistical syntax-based
translators. The translation accuracy of statistical syntax-based translators de-
pends heavily on quality and quantity of the documents that are used to construct
the translators (see, e.g., [8]). However, preparing huge and high-quality bilin-
gual documents requires many efforts and costs in general. Query preservation
for nondeterministic tree transducers suggests a solution to this problem, which
we call rewriting-based construction of machine translators. For instance, let
q, v be English-to-Japanese and English-to-French machine translators, respec-
tively, realized by nondeterministic tree transducers. One can construct by the
rewriting-based construction French-to-Japanese translator q′ from q and v, if q
can be rewritten in terms of v (see Figure 1.3). Advantages of the rewriting-based
construction of translators are: (1) the translation accuracy of q′ is guaranteed
to be almost the same as q, because q(t) = q′(v(t)) holds for every input t by
the definition of query preservation, and (2) any bilingual documents are not re-
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quired. In the above example, French-to-Japanese bilingual documents are not
needed to construct the French-to-Japanese translator q′.
There are gaps in the expressive power of tree transducers between ones studied

in the previous work [4,33] for the query preservation and ones used to construct
statistical syntax-based machine translations. To achieve the rewriting-based
construction, the expressive power of tree transducers has to be extended from
single-valued (or deterministic) models to nondeterministic ones.
Hybrid approach. By the way, query preservation for a tree query, which an-
swers tree(s) retrieved from an input tree, requires that not only the existence of
all nodes but also the tree structure in the query result should be completely pre-
served. This type of preservation is meaningful when we regard the tree structure
itself as necessary information. In contrast, query preservation for node queries,
which answer a set of nodes retrieved from an input tree, requires that a view
should maintain the relationship between the nodes specified by a node query,
rather than the tree structures.
For example, assume that a given view extracts some nodes and sorts them

depending on the labels of their children, and then removes the children. Also
assume that a given node query extracts exactly the same nodes. In this case,
the original ordering between the extracted nodes cannot be identified from the
transformed tree in general. Since the set of the extracted nodes is preserved,
the query preservation holds for the node query. On the other hand, the query
preservation does not hold for a tree query that returns an ordered tree in which
the target nodes occur according to the original ordering, because the view loses
the ordering as stated above.

Example 3. Consider a single-valued view Tr and a single-valued query Q such
that their domains are a set of trees { r(♠(m),♣(n)), r(♣(m),♠(n)) | m,n ∈
{1, 2}}. Tr sorts subtrees whose root nodes are labeled by ‘♠’ or ‘♣’ depending
on the labels (‘1’ or ‘2’) of their children in ascending order from the left to the
right, and then removes the children. Q just removes the nodes labeled by ‘1’
or ‘2’. In this case, the original ordering between the extracted nodes cannot
be identified from the transformed tree. For instance, let t1 = r(♠(1),♣(2))
and t2 = r(♣(2),♠(1)), which are depicted in Figure 1.4. Any mapping cannot
identify the original ordering from Tr(t1) = Tr(t2), because Tr loses the ordering.
Hence the query preservation does not hold for the tree query Q. On the other
hand, consider a node query Q̄ that just extracts a set of nodes labeled by ‘♠’ or
‘♣’. In the case, the query preservation holds, because the set of the extracted
nodes is preserved. ♦

To our knowledge, no previous work has considered the query preservation for
node queries with views realized by tree transducers.
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Figure 1.4: The original ordering between the extracted nodes cannot be identi-
fied from the transformed tree.

1.2 Research Contribution
This thesis extends the study of query preservation in two ways according to
the two observations in the previous section. This section summarizes the two
contributions. The details are presented in Chapter 2 and Chapter 3, respectively.

1.2.1 Query Preservation for Nondeterministic Tree
Transducers

Our first study in Chapter 2 contributes to the rewriting-based construction by
extending the previous work [4, 33] on the query preservation from single-valued
models to nondeterministic ones. More specifically, Hashimoto et al. showed
in [33] that the query preservation problem is decidable when views are realized
by single-valued extended linear bottom-up tree transducers and queries by single-
valued bottom-up tree transducers. Benedikt et al. generalized in [4] the results
of [33]. They showed that the problem is decidable when views are realized by
compositions of single-valued extended linear top-down tree transducers with reg-
ular look-ahead and queries by deterministic MSO tree transducers (where MSO
stands for Monadic Second-Order logic). Note that the problem is undecidable
even if the views can copy only once at each root of input trees [4]. Thus [4, 33]
and we treat views that cannot copy∗.
In Chapter 2, we first define two variants of information preservation, which

are natural extensions of query preservation for nondeterministic views: universal
preservation and, its relaxed version, existential preservation.

∗Usually the non-copying property is called linearity.
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Let V , Q be classes of queries and views, respectively. Given a view v ∈ V and
a query q ∈ Q, v universally preserves q if there is a query q′ ∈ Q such that for
every input t to q and for every output t′ ∈ v(t), q(t) = q′(t′) holds; v existentially
preserves q if there is a query q′ such that for every input t to q there is an output
t′ ∈ v(t) satisfying q(t) = q′(t′). An example of the universal and the existential
preservation is depicted in Figure 1.5. Obviously, if v universally preserves q,

t {t′1, t′2}

q(t)= q′(t′1)= q′(t′2)

v

q ∃q′

(a) Universal preservation

t {t′1, t′2}

q(t)= q′(t′1) q′(t′2)

v

q ∃q′

(b) Existential preservation

Figure 1.5: v universally or existentially preserves q, where v is 2-valued.

then v existentially preserves q. Intuitively, if v universally preserves q then the
result of q can be computed from any output of v. Whereas if v existentially
preserves q then there exists at least one output of v from which the result of q
can be computed. Existential preservation is useful in the case that the result of
query is more important than that of view. For example, in the case of Figure 1.3,
v does not need to universally preserve q to construct q′. The French-to-Japanese
translator q′ can be constructed if at least one result of v preserves the result of q,
that is, if v existentially preserves q then q′ can be constructed.
To obtain the decidability of universal preservation for nondeterministic views,

we first extend slightly the results in [20] on the equivalence problem for deter-
ministic MSO tree transducers (see Theorem 13). Namely, we show that for a
deterministic MSO tree transducer q1 and a nondeterministic one q2, the equiva-
lence of q1 and q2 is decidable. Note that the equivalence is undecidable if q1 and
q2 are both nondeterministic ones. Then, by adopting the proof strategy intro-
duced in [4] that uses “uniformizers” and reduces the query preservation problem
to the equivalence problem for deterministic MSO tree transducers, we obtained
the desired result (Theorem 15), that is, we show that the problem is decid-
able when views are realized by compositions of nondeterministic extended linear
top-down tree transducers with regular look-ahead and queries by deterministic
MSO tree transducers. Summary of decidability results on query preservation
is shown in Table 1.1, where b, dt, dmsot, elb, elt stand for the classes of
all transductions realized by bottom-up, deterministic top-down, deterministic
MSO, extended linear bottom-up, and extended linear top-down tree transduc-
ers, respectively. “s-” is an abbreviation of single-valued, and the transducers in
the classes with superscript R have regular look-ahead. The composition closure

7



Table 1.1: Decidability results on query preservation. Our result is indicated in
bold. Incomparability is denoted by ./.

single-valued nondeterministic
Query \ View s-elb ( (s-eltR)∗ ( (eltR)∗
s-b decidable [33]
( dtR decidable [4]
./ dmsot decidable [4] decidable (Thm.15)

Table 1.2: Summary of our decidability results, where ∀ and ∃ stand for universal
and existential preservation, respectively, “part” stands for the preser-
vation for nondeterministic queries (see Section 2.4), and “sound”
means that we give a sound algorithm of the problem for the classes
in the line.
Query View ∀ or ∃ Result
dmsot (eltR)∗ ∀ decidable (Thm.15)

dmsot / dtR finite-valued lb ∃ sound (Thm.18)
finite-valued lb (eltR)∗ ∀ part sound (Thm.23)
finite-valued lb finite-valued lb ∃ part sound (Cor.24)

of a class X is denoted by X∗. See Section 2.2 for the definitions of them. As
depicted in Table 1.1 there are class hierarchies of tree transductions such that
s-elb ( (s-eltR)∗ ( (eltR)∗ and s-b ( dtR. dmsot is incomparable with dtR.
Furthermore, we give an algorithm that is sound for existential preservation

(see Theorem 18). Also, we give other algorithms that are sound for the related
situations in which queries are expressed by nondeterministic tree transducers,
specifically finite-valued bottom-up tree transducers (see Theorem 23 and Corol-
lary 24). To show the results, we use the decomposition theorem for such trans-
ducers [48] (see Theorem 17). These results are summarized in Table 1.2. Note
that finite-valued lb is a proper subclass of (eltR)∗ and incomparable with dm-
sot, namely, dmsot ./ finite-valued lb ( (eltR)∗. The sound algorithms are
actually complete if a given view and a given query are single-valued transducers
that are mentioned in the previous work.
The methods using the decomposition have a disadvantage that when decom-

posing a view v into v1, . . . , vK , the domain of the resulting view vi may be a
proper subset of the domain of the original view v, which implies that univer-
sal or existential preservation cannot be guaranteed. We give a solution that
reduces the disadvantage by constructing a union of views appropriately (see
Theorem 22).

8



1.2.2 Hybrid Approach to Query Preservation
In Chapter 3, we examine query preservations of data tree transformations. We
treat data trees as a data model, which is a ranked ordered tree where each
node can have any nonnegative integer as a data value. We use deterministic
linear top-down data tree transducers (abbreviated as dltVs) and run-based n-
ary queries [42] as classes of transformations (or views) and queries, respectively.
Transformations induced by dltV include simple filterings, relabelings, insertions,
and deletions of elements, depending on paths from the root, but do not include
duplicate subtree copying. The transformation is determined independently of
data values assigned to nodes, though some data values can be transferred from
input to output without duplication. Run-based n-ary queries is a powerful class
equivalent to MSO n-ary queries [49]. The query class can capture the core of
navigation power of XPath [5] in the XML context, and XPath cannot express a
run-based n-ary query with n greater than 1. The answer set of a query is the set
of tuples of data values that are assigned to nodes selected by the query instead
of the selected nodes themselves. In this sense, an n-ary query retrieves some
tables consisting of n columns from a tree.
We define two types of query preservation in the above setting: weak and strong

query preservation. We say that a dltV Tr strongly preserves a query Q if there
is a query Q′ such that for every tree t, the answer set of Q′ for Tr(t) is equal to
the answer set of Q for t. Also we say that Tr weakly preserves Q if there is a
query Q′ such that for every t, the answer set of Q′ for Tr(t) includes the answer
set of Q for t.
Our contributions are as follows. We show that the weak query preservation

problem is coNP-complete. If the tuple size n of queries is a constant, the com-
plexity becomes PTIME. We also show that the strong preservation problem is
in 2-EXPTIME and EXPTIME-hard. If the tuple size n of queries is constant,
the complexity becomes EXPTIME-complete. The decidability results of the two
cases can be extended to the situation where the transformation is given by a
single-valued extended linear top-down data tree transducer with regular look-
ahead (abbreviated as s-eltVR), which has more expressive power than dltV.

1.3 Related Work
In this section, we review related work other than [4, 33] on query preservation.
In [23,41], it was shown that the query preservation is undecidable for the class of
views and queries that are able to simulate first-order logic (FO) queries and pro-
jection queries, respectively, and even for views and queries expressed as unions of
conjunctive queries (that are much weaker than FO queries), in the relational case.
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The problem was also shown to be undecidable in [23] for XSLT (or XQuery) as
views and simple selection queries, in the XML context. In [29], views are defined
as transformations that retrieve nodes selected by queries, such as Regular XPath
and MSO queries in the context of unranked trees. Similarly, in [36] both queries
and views are n-ary node queries represented by tree automata. The result in [24]
is for deterministic tree transducers that require “origin” information.
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Chapter 2
Query Preservation for
Nondeterministic Tree
Transducers

2.1 Introduction
On one side rise dark poplars,

behind them begins the cherry orchard.

— Act II [11]

Let Q be a class of queries and V be a class of views. Query preservation for Q
under V is the problem deciding whether, given a query q ∈ Q and a view v ∈ V ,
a mapping q′ ∈ Q can be constructed from q and v such that q = v ◦ q′. If such
a mapping q′ exists, we say that v preserves q.

q ∈Q

v ∈ V

∃ q′ ∈Q

As mentioned in Chapter 1, we generalize the results of [33] and [4] to that
for nondeterministic views that are not always single-valued. We first define
two variants of information preservation, which are natural extensions of query
preservation for nondeterministic views: universal preservation and, its relaxed
version, existential preservation.
Let V , Q be classes of queries and views, respectively. Given a view v ∈ V and

a query q ∈ Q, v universally preserves q if there is a query q′ ∈ Q such that for
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every input t to q and for every output t′ ∈ v(t), q(t) = q′(t′) holds; v existentially
preserves q if there is a query q′ such that for every input t to q there is an output
t′ ∈ v(t) satisfying q(t) = q′(t′). Obviously, if v universally preserves q, then v
existentially preserves q. Intuitively, if v universally preserves q then the result
of q can be computed from any output of v. Whereas if v existentially preserves q
then there exists at least one output of v from which the result of q can be
computed.
Main results in this chapter are as follows (see Section 1.2.1 for details). We

prove that the universal preservation is decidable for compositions of extended
linear top-down tree transducers with regular look-ahead as views and determin-
istic MSO tree transducers as queries (see Theorem 15). To obtain the result
we slightly generalize the result [20] of the equivalence problem for determinis-
tic MSO tree transducers (see Theorem 13). Moreover, we show an algorithm
that is sound for the existential preservation for finite-valued linear bottom-up
tree transducers as views and deterministic MSO tree transducers as queries (see
Theorem 18), and also show some algorithms that are sound for the problem for
nondeterministic queries realized by finite-valued (linear) bottom-up tree trans-
ducers (see Theorem 23 and Corollary 24).

Organization
This chapter is organized as follows: Section 2.2 provides terminology and defi-
nitions of graphs, trees, tree automata, various tree transducers with their class
hierarchies, and uniformizers. In Section 2.3, we show additional class hierar-
chies of tree transducers, which are needed to prove our main results. Section 2.4
defines universal and existential preservation for nondeterministic views. Fur-
thermore, for nondeterministic queries two variants of query preservation are
provided, which are analogue of existential preservation. Our main result on
the decidability of universal preservation is presented in Section 2.5. The re-
sult is proved using a decidability result on the equivalence for deterministic and
nondeterministic MSO tree transducers, which is included in the same section.
A sound algorithm for existential preservation with single-valued queries is pre-
sented in Section 2.6, and others for nondeterministic queries are provided in
Section 2.7. These sound algorithms employ a method that decomposes finite-
valued tree transducers into a finite union of single-valued ones, and then the
algorithms apply decision procedures of query preservation for single-valued tree
transducers presented in the previous work [4, 33] to decomposed transducers.
Section 2.6 also includes a solution for the problem of how to extend the domain
of a view, which may be useful if a view does not preserve a query because of the
difference between the domains of the view and the query. Section 2.8 concludes
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the chapter and outlines future work.

2.2 Preliminaries
We denote the set of all nonnegative integers by N. For n ∈ N, the set {1, . . . , n}
is denoted by [n]. A (ranked) alphabet is a finite set Σ of symbols with a mapping
rk : Σ → N, and let Σ(n) be the set {σ ∈ Σ | rk(σ) = n }. For every k ≥ 1, let
Xk = {xi | i ∈ [k] } be the set of variables with rk(xi) = 0 for every xi ∈ Xk. We
write X = ⋃

k≥1Xk and generally assume that Σ ∩ X = ∅. For a binary relation
R ⊆ A× B, let dom(R) = { a ∈ A | (a, b) ∈ R }, ran(R) = { b ∈ B | (a, b) ∈ R },
R−1 = { (b, a) ∈ B×A | (a, b) ∈ R }, and R|A′ = { (a, b) ∈ R | a ∈ A′ } for A′ ⊆ A.
The composition of relations R1 : A→ B and R2 : B → C, denoted by R1 ◦ R2,
is the relation A → C defined by R1 ◦ R2 = { (a, c) | (a, b) ∈ R1 and (b, c) ∈
R2 for some b ∈ B }. For classes of binary relations R, S, we write R ◦ S =
{R ◦S | R ∈ R, S ∈ S }, R∗ = {R1 ◦ · · · ◦Rn | n ≥ 0, Ri ∈ R (1 ≤ i ≤ n) }, and
R−1 = {R−1 | R ∈ R}.

2.2.1 Graphs, Trees, Strings and MSO Graph Transducers
We basically follow the definitions of [20].
A graph alphabet is a pair (Σ,Γ ) where Σ and Γ are ranked alphabets of node

labels and edge labels, respectively. A graph over (Σ,Γ ) is a tuple (V,E, lab),
with V a finite set of nodes, E ⊆ V × Γ × V the set of labeled edges, and
lab : V → Σ the node-labeling function. For a graph g, we write Vg, Eg, and labg
to denote the set of nodes, the set of edges, and the node-labeling function of g,
respectively. The set of graphs over (Σ,Γ ) is denoted by G(Σ,Γ ).
We define MSO formula and MSO graph transducers concretely below. The

reader may skip the concrete definitions because they are only used in the proof
sketches of some lemmas cited from [20].
For alphabets Σ and Γ , the language MSO(Σ,Γ ) of MSO formulas over (Σ,Γ )

uses node variables (written with lower-case letters x, y, . . .) and node-set vari-
ables (written with upper-case letters X, Y , . . .). Atomic formulas in MSO(Σ,Γ )
are equalities x = y; membership constraints x ∈ X; labels labσ(x) for σ ∈ Σ,
denoting that x has label σ; and edge labels edgγ(x, y) for every γ ∈ Γ , denot-
ing that there is an edge labeled γ from x to y. Formulas are built from the
atomic formulas using the logical connectives ∧, ∨, ¬, ⇒ and the quantifiers ∃x,
∀x (quantification on node variables), and ∃X, ∀X (quantification on node-set
variables). For a closed formula ψ ∈ MSO(Σ,Γ ) and a graph g ∈ G(Σ,Γ ), we
write g |= ψ if g satisfies ψ. Let u, v be nodes of graph g and assume ψ has a free
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variable x or variables x, y, we write (g, u) |= ψ or (g, u, v) |= ψ if g satisfies ψ
with x = u or with x = u, y = v, respectively.
Let (Σ1, Γ1) and (Σ2, Γ2) be graph alphabets. A deterministic MSO graph

transducer from (Σ1, Γ1) and (Σ2, Γ2) is a tuple M = (C,ϕdom, Ψ,X) where C is
a finite set of copy names, ϕdom ∈ MSO(Σ1, Γ1) is the closed domain formula, Ψ =
{ψc,σ(x)}c∈C,σ∈Σ2 is a family of node formulas, and X = {χc,c′,γ(x, y)}c,c′∈C,γ∈Γ2

is a family of edge formulas. For a deterministic MSO graph transducers M ,
the graph transduction JMK : G(Σ1, Γ1) → G(Σ2, Γ2) realized by M is defined
as follows: For every graph g |= ϕdom over (Σ1, Γ1), h = JMK(g) is the graph
over (Σ2, Γ2) with Vh = { (c, u) | c ∈ C, u ∈ Vg, and there is exactly one σ ∈
Σ2 s.t. (g, u) |= ψc,σ(x) }, Eh = { ((c, u), γ, (c′, u′)) | (c, u), (c′, u′) ∈ Vh, γ ∈
Γ2, and (g, u, u′) |= χc,c′,γ(x, y) }, and labh = { ((c, u), σ) | (c, u) ∈ Vh, σ ∈
Σ2, and (g, u) |= ψc,σ(x) }. Instead of JMK(g) we write M(g) by identifying a
transducer M with its transduction JMK (and similarly for other transducers).
A (nondeterministic) MSO graph transducer M ′ is obtained from a determin-

istic one by allowing all formulas to have fixed free node-set variables called
parameters. The transducer binds each parameter to a set of nodes of the in-
put graph g satisfying the domain formula, then for each set of nodes, the node
formulas and the edge formulas define the output graph as the deterministic one
does. Thus, the graph transduction realized by M ′ is (not always a function but)
a relation JM ′K ⊆ G(Σ1, Γ1)×G(Σ2, Γ2).
For an alphabet ∆ and a1, . . . , an ∈ ∆ (n ≥ 0), we identify the string w =

a1, . . . , an over ∆ with the graph in G({#}, ∆) that has #-labeled nodes v1, . . . ,
vn+1, and an ai-labeled edge from vi to vi+1 for 1 ≤ i ≤ n.
Let Σ be a ranked alphabet and m be the maximal rank of symbols in Σ. A

tree t (over Σ) is an acyclic, connected, and directed graph in G(Σ, [m]). Every
tree t has the node called the root that has no incoming edges. A node of t
except the root is called a leaf if the node has no outgoing edges. Each node
of t is labeled with a symbol σ ∈ Σ and has just rk(σ)-outgoing edges, labeled
1, 2, . . ., rk(σ), respectively. The set of all trees over Σ is denoted by TΣ. A tree
whose root is labeled with σ ∈ Σ(k) and has subtrees t1, . . . , tk from left to right
is denoted by σ(t1, . . . , tk). For σ ∈ Σ(0) we write σ() as σ for simplicity. For Σ
and X ′ ⊆ X , we write TΣ(X ′) to mean TΣ∪X ′ . A tree t ∈ TΣ(X ′) is linear if every
variable in X ′ occurs at most once in t. For sets of trees T1, . . . , Tk, a tree t and its
subtrees t1, . . . , tk that are not subtrees of others, we denote by t[ti ← Ti | i ∈ [k]]
the set of trees obtained from t by replacing each occurrence of a subtree ti of t
by a tree in Ti. Notice that different occurrences of ti need not to be replaced
by the same tree. The set of contexts C(Σ,X ′) (over Σ and X ′) is the set of all
linear trees in TΣ(X ′). For t ∈ C(Σ,Xk) and t1, . . . , tk ∈ TΣ, t[t1, . . . , tk] is the
tree obtained from t by replacing the variable xi ∈ Xk in t with ti for each i ∈ [k].
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An MSO graph transducer M is called an MSO graph-to-tree transducer if the
range of M is a set of trees. For sets of graphs A and B, M is called an MSO
A-to-B transducer if dom(M) ⊆ A and ran(M) ⊆ B. In the case of A = B,
M is called an MSO A transducer, e.g., an MSO tree transducer (abbreviated
by msot transducer, and by dmsot for deterministic one). The class of all
transductions realized by msot transducers is denoted by msot, and similarly
for other transducers.
The closure properties of MSO transducers under composition are shown, e.g.,

in Proposition 3.2(2) of [12] and Proposition 2 of [6].

Proposition 1. MSO graph transductions and (deterministic) MSO tree trans-
ductions are closed under composition.

2.2.2 Tree Automata and Tree Transducers
We define tree automata and various tree transducers concretely below. The
reader may skip the concrete definitions of them, because the definitions are used
few times in the rest of this chapter, and are less important than class hierarchies
of tree transducers.
A deterministic bottom-up tree automaton (ta) is a tuple A = (P,Σ, F, δ)

where P is a finite set of states, Σ is a ranked alphabet, F ⊆ P is a set of final
states, and δ = { δσ | σ ∈ Σ } is a finite set of transition rules with δσ : P k →
P for every σ ∈ Σ(k). We generalize δ to a mapping δ̄ : TΣ → P such that
δ̄(σ(t1, . . . , tk)) = δσ(δ̄(t1), . . . , δ̄(tk)), where σ ∈ Σ(k) and t1, . . . , tk ∈ TΣ. For
all p ∈ P , we denote by L(A)p the set { t ∈ TΣ | δ̄(t) = p }. The tree language
accepted by A is L(A) = ⋃

p∈F L(A)p. A tree language L is regular if there exists
a ta A such that L = L(A).
An extended bottom-up tree transducer (eb transducer) is a tuple E = (P,Σ,

∆, F,R) where P is a finite set of states, Σ and ∆ are ranked alphabets of input
and output symbols, respectively, F ⊆ P is a set of final states, and R is a finite
set of transduction rules of the form C[p1(x1), . . . , pk(xk)]→ p(r), where C 6= xi
(for any i ∈ [k]) is a context in C(Σ,Xk), p1, . . . , pk, p ∈ P , x1, . . . , xk ∈ Xk,
k ∈ N, and r ∈ T∆(Xk). For all p ∈ P and t ∈ TΣ, we denote by JEKp(t) the
smallest set of trees T ⊆ T∆ such that for every rule C[p1(x1), . . . , pk(xk)]→ p(r)
and t1, . . . , tk ∈ TΣ, if t = C[t1, . . . , tk] then T includes r[xi ← JEKpi

(ti) | i ∈ [k]].
We also denote by JEK the transduction realized by E that is the binary relation
{ (t, t′) ∈ TΣ × T∆ | t′ ∈

⋃
p∈F JEKp(t) }. An eb transducer is linear if for every

rule ρ, each variable in the left-hand side of ρ occurs at most once in the right-
hand side of ρ. We write elb transducers to denote eb ones that are linear. For
example, an eb transducer that has a rule a(b(p1(x1)), p2(x2)) → p(c(x1, x1)) is
not linear. A bottom-up tree transducer (b transducer) is an eb transducer whose
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transduction rules are of the form σ(p1(x1), . . . , pk(xk)) → p(r) where σ ∈ Σ(k).
We write lb transducers to denote linear b ones. Notice that some definitions of
eb transducers allow a rule that has the left-hand side of the form pi(xi), which is
called an input-ε rule (see, e.g., [17] and [33] in which eb is denoted by xbot−e).
An extended top-down tree transducer with regular look-ahead (etR transducer)

is a tuple E = (Q,Σ,∆, I, R,A) where Σ and∆ are the same as an eb transducer,
Q is a finite set of states, I ⊆ Q is a set of initial states, A is a tree automaton
(P,Σ, F, δ), and R is a finite set of transduction rules. For T ⊆ T∆(X ), we denote
by Q(T ) the set { q(t) | q ∈ Q, t ∈ T }. Every transduction rule of R is of the form
q(C)→ r 〈p1, . . . , pk〉, where C 6= x is a context in C(Σ,X ), q ∈ Q, p1, . . . , pk ∈ P ,
and r ∈ T∆(Q(X )). For example, q(a(b(x1), x2))→ c(q1(x2), d(d(q2(x2)))) 〈p1, p2〉
is a rule of an etR transducer. For all q ∈ Q and t ∈ TΣ, we denote by JEKq(t) the
smallest set of trees T ⊆ T∆ such that for every rule q(C) → r 〈p1, . . . , pk〉 and
t1, . . . , tk ∈ TΣ, if t = C[t1, . . . , tk] and δ̄(ti) = pi for every i ∈ [k], then T includes
r[q′(xi) ← JEKq′(ti) | i ∈ [k], q′ ∈ Q]. We also denote by JEK the transduction
realized by E that is the binary relation { (t, t′) ∈ TΣ × T∆ | t ∈ L(A), t′ ∈⋃
q∈IJEKq(t) }. An etR transducer is linear if for every rule ρ, each variable in the

left-hand side of ρ occurs at most once in the right-hand side of ρ. We write eltR

transducers to denote linear etR ones. A top-down tree transducer with regular
look-ahead (tR transducer) is an etR transducer whose transduction rules are of
the form q(σ(x1, . . . , xk)) → r 〈p1, . . . , pk〉 where σ ∈ Σ(k). A tR transducer E
has no regular look-ahead (denoted by a t transducer) if tree automaton A of
E is a trivial one-state tree automaton such that L(A) = TΣ. tR transducers
are deterministic (denoted by dtR transducers) if for each state q ∈ Q and
symbol σ ∈ Σ there exists at most one transduction rule that contains both q
and σ in its left-hand side. As with the eb transducers, some definitions of etR

transducers allow input-ε rules that have the left-hand side of the form qi(xi)
(see, e.g., [3, 27,37,39], in which etR is denoted by xtopR

ef or e-xtopR).
For a tree transducer M and an input tree t, valM(t) = |M(t)| denotes the

number of different outputs of M for t, and let val(M) = sup{ valM(t) | t ∈ TΣ },
which is called valuedness of M . M is finite-valued if val(M) <∞. For any tree
transducer M , we say that M is single-valued (or functional) if val(M) ≤ 1, i.e.,
for each input t, there exists at most one output M(t). We use the prefix ‘s’ to
denote the single-valued tree transducers of the class under consideration, e.g.,
a single-valued eb transducer is denoted by an s-eb transducer. We also say
that M is finite-copying (denoted with the subscript ‘fc’) if each subtree of the
input tree is transduced by a bounded number of times independent of the input
(see [1, 21] for more formal definition of finite-copying). We denote by JMK the
transduction realized by M , which is a binary relation on trees. For transducers
M1 and M2, we say that M1 and M2 are equivalent if JM1K = JM2K.
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We will use the abbreviation such as eb, b for a class of tree transducers to
denote the class of transductions realized by that class of tree transducers. By
the definitions above the relations b ⊆ eb, lb ⊆ elb, and t ⊆ tR ⊆ etR hold.
Additionally, as noted in Section 2.1, there are well-known class hierarchies of tree
transducers such that s-elb ( (s-eltR)∗ ( (eltR)∗, s-b ( dtR ./ dmsot, and
dmsot ./ finite-valued lb ( (eltR)∗, where incomparability is denoted by ./.

2.2.3 Uniformizers
We define uniformizers following [4]: Let R be a binary relation. A function u
is a uniformizer of R if u ⊆ R and dom(u) = dom(R). For classes T , U of
transductions, we say that T has uniformizers in U if for every τ ∈ T we can
construct a uniformizer u of τ such that u ∈ U . Benedikt et al. [4] showed that it
is decidable whether v preserves q, by reducing the problem to the equivalence of
the query q and the composed mapping v ◦ u ◦ q, where u is a uniformizer of v−1.
The following result is used later to prove our main result.

Theorem 2. [Theorem 11 of [4]] ((eltR)∗)−1 has uniformizers in dtR
fc.

2.3 Class Hierarchies of Tree Transducers
In the section, we show some class hierarchies of tree transducers that are needed
in Section 2.5 and Section 2.7.

Theorem 3.

(eltR)∗ ◦ dtR
fc ◦ dmsot ⊆ (eltR)∗ ◦ dmsot

⊆ (tR
fc)∗ ◦ dmsot

⊆ msot.

Proof. dtR
fc ⊆ dmsot by Theorem 7.4 of [18], and eltR ⊆ tR

fc by the construction
in the proof of Theorem 4.8 of [39], which states etR = tR (see also the paragraph
under Corollary 18 of [37]), moreover,

tR
fc ⊆ dbqrel ◦ tfc (2.1)
⊆ dbqrel ◦ homfc ◦ lt (2.2)
⊆ msot (2.3)

where dbqrel is the class of deterministic b transducers that can only relabel,
and homfc is the class of finite-copying tree homomorphisms. (2.1) follows by
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the fact that tR ⊆ dbqrel ◦ t (Theorem 2.6 [16]), and (2.2) follows by the
construction in the proof of Lemma 3.6 of [15], which states t ⊆ hom ◦ lt. It
is not difficult to see that msot can simulate dbqrel, homfc, and lt, then (3)
follows by Proposition 1.

Proposition 4. s-lb ( dmsot.

Proof. lb ⊆ elb by the definition of elb, elb = eltR by Theorem 1 of [4],
s-eltR ( dtR

fc by Corollary 13 of [4], and dtR
fc ⊆ dmsot by Theorem 7.4 of

[18].

2.4 Query Preservations
Let V and Q be a class of single-valued views and a class of single-valued queries
for some tree-structured data. For a query q ∈ Q and a view v ∈ V , we say that v
preserves q if there exists a query q′ ∈ Q such that q(t) = (v ◦ q′)(t) for all tree t.

t v(t)

q(t)= (v ◦ q′)(t)

v

q ∃q′

Hashimoto et al. [33] showed that the preservation problem is undecidable
even queries and views are identity queries (id) and tree homomorphisms (hom),
respectively.

Theorem 5. [Theorem 15 of [33]] For v ∈ hom as a view and q ∈ id as a query,
it is undecidable whether v preserves q.

Proof. It was shown in [33] that the query preservation is decidable if and only if
the injectivity for hom is decidable. However, the injectivity is undecidable for
hom [25]. Hence the query preservation is also undecidable.

Benedikt et al. [4] generalized the result for a total copy-once dt transducer.
A dt transducer is copy-once if for every rule p(σ(x1, . . . , xk)) → r the initial
state pI does not occur in r, and r is linear if pI 6= p.

Theorem 6. [Theorem 5 of [4]] For a total copy-once dt transducer v as a view
and q ∈ id as a query, it is undecidable whether v preserves q.

As mentioned in Section 2.1, previous studies on query preservation for tree
transducers focus on single-valued (or deterministic) views. In contrast, nondeter-
ministic views output a set of trees for each input tree. We consider two definitions
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t {t′1, t′2}

q(t)= q′(t′1)= q′(t′2)

v

q ∃q′

Figure 2.1: Example: v ∀-preserves q, where v is 2-valued.

t {t′1, t′2}

q(t)= q′(t′1) q′(t′2)

v

q ∃q′

(a) q(t) = q′(t′1)

t {t′1 = u(t), t′2}

q(t)= q′(t′1) q′(t′2)

v

u

q ∃q′

(b) q(t) = (u ◦ q′)(t)

Figure 2.2: Example: v ∃-preserves q, where v is 2-valued.

of query preservation for nondeterministic views that are not always single-valued:
Let V be a class of nondeterministic views and Q be a class of single-valued
queries. Given a view v ∈ V and a query q ∈ Q such that dom(q) ⊆ dom(v), we
say that v universally preserves q (∀-preserves q for short) if

∃q′ ∈ Q. ∀t ∈ dom(q) : q(t) = (v ◦ q′)(t) (ran(v) ⊆ dom(q′)).

The above definition coincides with the definition of the query preservation if v is
single-valued. An example of the universal preservation is depicted in Figure 2.1.
We also say that v existentially preserves q (∃-preserves q for short) if

∃q′ ∈ Q. ∀t ∈ dom(q). ∃t′ ∈ v(t) : q(t) = q′(t′).

This condition is equivalent to the following one: There exists a uniformizer u of
v such that

∃q′ ∈ Q, ∀t ∈ dom(q) : q(t) = (u ◦ q′)(t).

By definition, if q is universally preserved by v, then q is also existentially pre-
served by v. Examples of the existential preservation are depicted in Figure 2.2.
Furthermore, for a class Q of nondeterministic queries we define additional two

variants of query preservation, which are analogue of existential preservation. We
say that v ∀-preserves a part of q if

∃q′ ∈ Q. ∀t ∈ dom(q). ∃tq ∈ q(t) : tq = (v ◦ q′)(t) (ran(v) ⊆ dom(q′)).
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t {t′1, t′2}

{ tq1 , ∃tq2 = q′(t′1)= q′(t′2) }

v

q ∃q′

Figure 2.3: Example: v ∀-preserves a part of q, where v and q are 2-valued.

t {t′1, t′2}

{ tq1 , ∃tq2 = q′(t′1) } q′(t′2)

v

q ∃q′

(a) tq2 = q′(t′1)

t {t′1 = u(t), t′2}

{ tq1 , ∃tq2 = q′(t′1) } q′(t′2)

v

u

q ∃q′

(b) tq2 = (u ◦ q′)(t)

Figure 2.4: Example: v ∃-preserves a part of q, where v and q are 2-valued.

Similarly, we say that v ∃-preserves a part of q if

∃q′∈Q. ∀t∈dom(q). ∃tq∈q(t). ∃t′∈v(t) : tq=q′(t′).

This condition is equivalent to the following one: There exists a uniformizer u of
v such that

∃q′ ∈ Q. ∀t ∈ dom(q). ∃tq∈ q(t) : tq = (u ◦ q′)(t).

These two variants of query preservation restrict implicitly the class of q′ to a
single-valued one. Algorithms that are sound for the variants are presented in
Section 2.7. Examples of the variants are depicted in Figures 2.3, 2.4.

2.5 Universal Preservation
The main result of this section is Theorem 15: For v ∈ (eltR)∗ as a view and
q ∈ dmsot as a query, it is decidable whether v ∀-preserves q. To obtain the
result, we adopt the proof strategy taken by Benedikt et al. [4]. In [4], in order
to show the decidability of the query preservation for views realized by (s-eltR)∗
transducers and queries by dmsot transducers, Benedikt et al. reduced this prob-
lem to the equivalence problem of two dmsot transducers, which is known to be
decidable [20]. According to the strategy we reduce the problem to the equiv-
alence of msot transducers M1 and M2, where M1 is deterministic and M2 is
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nondeterministic. The previous result [20] is for the case that M1 and M2 are
both deterministic msot transducers (see Theorem 12 below). We slightly extend
the previous result (see Theorem 13). Note that ifM1 andM2 are both nondeter-
ministic msot transducers, the equivalence for them is known to be undecidable
due to the negative result for nondeterministic word transducers [28], which are
strictly less expressive than msot transducers.
To explain our result, let us summarize the decision procedure of [20] for the

equivalence of dmsot transducers. It can be shown that dmsot transducers M1
and M2 are not equivalent if and only if there exist an input t and a position n
such that the symbol at position n of M1(t) is different from the symbol at
position n of M2(t). Hence, roughly speaking, the procedure tests whether a
position n and distinct symbols a, b exist such that the pair (n, n) is contained
in the set Sa,b of all pairs (i, j) where a is the symbol at position i of M1(t) and
b is the symbol at position j of M2(t), for some input t. In [20] the set Sa,b is
shown to be semilinear (defined below) and then the existence of a pair (n, n) in
Sa,b is decidable (as stated in Lemma 8). The set Sa,b is constructed using Parikh
mapping (also defined below).
Additional definitions are needed to describe the decision procedure precisely.

For a string w, we denote by w/i the i-th letter of w. The Parikh mapping for
graphs is the function Par : G(Σ,Γ ) → Nk defined as Par(g) = (n1, . . . , nk)
where g is a graph over (Σ,Γ ) with Σ = {σ1, . . . , σk} and ni is the number of
σi-labeled nodes in g for i ∈ [k]. Similarly, the Parikh mapping for strings over
Σ = {σ1, ..., σk} is the function Par : Σ∗ → Nk defined as Par(w) = (n1, . . . , nk)
where ni is the number of occurrences of σi in w for i ∈ [k]. A discrete graph
(abbreviated as dgraph) is a graph that has no edges. Let dgr be a function
Σ∗ → G(Σ, ∅) such that Par(w) = Par(dgr(w)) for any string w ∈ Σ∗. For a
set G of graphs, we denote by Par(G) the set {Par(g) | g ∈ G }. Similarly, for a
string language L, let Par(L) = {Par(w) | w ∈ L }. A set S ⊆ Nk is semilinear
if there exists a regular string language R such that S = Par(R). The set G
is Parikh if Par(G) is semilinear. A set of graphs is VR if it is generated by
a context-free vertex replacement graph grammar (or a C-edNCE or an S-HH
grammar, see, e.g., [12, 13]). It should be noted that the set of all trees and the
set of all strings are VR. The following two lemmas state useful properties of
semilinear sets.

Lemma 7. [Theorem 7.1 of [12], Lemma 3 of [20]] The images of VR sets of
graphs under MSO graph-to-dgraph transductions are Parikh.

Lemma 8. [Lemma 4 of [20]] It is decidable for a semilinear set S ⊆ N2 whether
there exists an n ∈ N such that (n, n) ∈ S.
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Let us refer to the important lemma of [20] (see Lemma 11 below), which is
proved using the following two lemmas.

Lemma 9. [Lemma 5 of [20]] Let ∆ be an alphabet and a ∈ ∆. There exists
an MSO string-to-dgraph transducer Na

∆ such that for every w ∈ ∆∗, Na
∆(w) =

{ dgr(an) | w/n = a }.

Proof. (Sketch) Construct an MSO string-to-dgraph transducer that selects non-
deterministically a node v with an outgoing a-labeled edge, then copies v and
nodes in the (sub)string of w that is from the first letter to a (notice that if a is
the n-th letter of w, then the number of the nodes of the (sub)string is just n),
and finally labels the nodes a.

Lemma 10. [Lemma 6 of [20]] Let M1, M2 be MSO graph transducers. There
exists an MSO graph transducer M such that for every graph g,

M(g) = { g1 ] g2 | g1 ∈M1(g), g2 ∈M2(g) },

where g1 ] g2 means the disjoint union of g1 and g2.

Proof. Let M1 = (C1, φ1, Ψ1, X1) and M2 = (C2, φ2, Ψ2, X2). We can assume
w.l.o.g. the components of M1 and M2 are mutually disjoint. Then M can be
defined as (C1 ∪ C2, φ1 ∧ φ2, Ψ1 ∪ Ψ2, X1 ∪ X2 ∪ X), where X is the set of edge
formulas {χc,c′,γ ≡ false | (c, c′) ∈ (C1×C2)∪ (C2×C1) }, which guarantees that
there is no edges between nodes named c ∈ C1 and c′ ∈ C2 by M .

Lemma 11. [Lemma 7 of [20]] Let a, b be distinct symbols and let M1, M2 be
MSO graph-to-string transducers. There exists an MSO graph-to-dgraph trans-
ducer Ma,b such that for every graph g,

Ma,b(g) = { dgr(ambn) | ∃w1 ∈M1(g), w2 ∈M2(g) :
w1/m = a and w2/n = b }.

Proof. (Sketch) By Proposition 1, Lemma 9 and Lemma 10, we can construct the
desired transducer Ma,b = (M1 ◦Na

∆1) ] (M2 ◦N b
∆2).

The decision procedure of [20] consists of three steps, in which the above three
lemmas are used:
Step 1. Let M1, M2 be deterministic MSO tree transducers. Construct a deter-
ministic MSO tree-to-string transducer W that “flattens” input trees to strings,
then compose them with M1, M2, i.e., construct M ′

1 and M ′
2 with JM ′

1K =
JM1K ◦ JW K and JM ′

2K = JM2K ◦ JW K, respectively. Since dmsot transductions
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are closed under composition (see Proposition 1), M ′
1 and M ′

2 are obtained as
dmsot transducers.
Step 2. Let N$ be a deterministic MSO string transducer that reads a given
input string w ∈ ∆1 ∪∆2 and outputs the string w$, where $ is a symbol not in
∆1 ∪ ∆2. For i ∈ [2], let M$

i be a deterministic MSO tree-to-string transducer
with JM$

i K = JM ′
iK ◦ JN$K. Now we can say that JM1K 6= JM2K if and only if

JM$
1 K 6= JM$

2 K ∗.
Step 3. Let D1 and D2 be the domains of M$

1 and M$
2 , respectively. Clearly,

if D1 6= D2 then JM$
1 K 6= JM$

2 K. It is decidable whether D1 coincides with D2
because the domain of every (d)msot transducer is regular (see, e.g., Theo-
rem 5.82 of [13]). Then, assume D1 = D2 here and denote the domains of them
by D. JM$

1 K 6= JM$
2 K if and only if there exist a ∈ ∆1 ∪ {$}, b ∈ ∆2 ∪ {$}, n ∈ N,

and t ∈ D such that a 6= b, M$
1 (t)/n = a, and M$

2 (t)/n = b. Let Ma,b be the
transducer of Lemma 11 for a, b, M$

1 , and M$
2 . JM$

1 K 6= JM$
2 K iff dgr(anbn) is

in Ma,b(D) for some n ∈ N. Note that dgr(anbn) is in Ma,b(D) iff (n, n) is in
Par(Ma,b(D)). By Lemma 7 the set of vectors Par(Ma,b(D)) is Parikh because
D is regular and thus VR. By Lemma 8 it can be decided whether (n, n) is in
Par(Ma,b(D)) for some n ∈ N. This proves the main result of [20].

Theorem 12. [Corollary 10 of [20]] It is decidable whether two dmsot trans-
ducers are equivalent.

We now extend Theorem 12 slightly to show the decidability of the universal
preservation for nondeterministic views.

Theorem 13. It is decidable whether a deterministic msot transducer M1 and
a nondeterministic msot transducer M2 are equivalent.

Proof. Recall that the domain of every (d)msot is regular, so we can decide
whether the domain of M1 coincides with that of M2. Let us assume dom(M1) =
dom(M2) = D. Since Lemmas 7–11 described above are not restricted to deter-
ministic msot transducers, the same idea for dmsot can be applied to our case.
Thus we can state that M1 ∈ dmsot and M2 ∈ msot are not equivalent if and
only if there exist a ∈ ∆1 ∪ {$}, b ∈ ∆2 ∪ {$}, n ∈ N, t ∈ D, and w ∈ M$

2 (t)
such that a 6= b, M$

1 (t)/n = a, and w/n = b. The nondeterminism of M2 makes
differences in Steps 1–3, in which nondeterministic msot transducersM ′

2 andM$
2

such that JM ′
2K = JM2K◦ JW K and JM$

2 K = JM ′
2K◦ JN$K are constructed instead of

∗ If we do not compose N$ with M ′i , then the following procedure answers “M1 and M2 are
equivalent” incorrectly if one of them always outputs “prefix strings” of the other, i.e., for every
input tree t and let w = M ′1(t), there exists a string z 6= ε such that M ′2(t) = w · z, where · is
concatenation of strings.
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deterministic ones. Recall that msot transductions are closed under composition
(Proposition 1), i.e., msot ◦ msot ⊆ msot, hence msot ◦ dmsot ⊆ msot.
For an input tree t, a ∈ ∆1 ∪ {$}, and b ∈ ∆2 ∪ {$}, assume M$

1 (t) = w1 and
w2 ∈ M$

2 (t) with i ∈ N, w1/i = a, w2/i = b, a 6= b. In the case, obviously M$
1

and M$
2 are not equivalent. Let Ma,b be an msot transducer in Step 3, which

can be (effectively) constructed because Lemma 11 is not restricted to dmsot
transducers. By the assumption, dgr(aibi) ∈ Ma,b(t), and so Par(Ma,b(t)) con-
tains (i, i) ∈ N2. Conversely, for distinct symbols c ∈ ∆1 ∪{$} and d ∈ ∆2 ∪{$},
assume Par(M c,d(D)) includes (j, j) ∈ N2 with j ∈ N. By the assumption, there
exist a tree t ∈ D, w1 ∈ ∆∗1, w2 ∈ ∆∗2 such that M$

1 (t) = w1$, w2$ ∈ M$
2 (t),

w1$/j = c, and w2$/j = d. Hence M1 and M2 are not equivalent. It is decidable
whether there exists (i, i) ∈ N2 in Par(Ma,b(t)) because Lemmas 7 and 8 are not
restricted to dmsot transducers.

We would like to mention that the discussion above can be applied to the
equivalence of MSO graph-to-string or graph-to-tree transducers. Hence we can
generalize the previous result (Theorem 8 of [20]) as follows, but the generalized
result is not used in this thesis.

Corollary 14. For a deterministic MSO graph-to-tree or graph-to-string trans-
ducer M1, a nondeterministic one M2, and a VR set D of graphs, it is decidable
whether JM1K|D = JM2K|D.

Proof. Let Di = dom(Mi) ∩ D for i ∈ [2]. As stated in the proof of Theorem 8
of [20], it is decidable whether D1 = D2. If D1 6= D2, then M1 6= M2. The rest of
the proof of the case D1 = D2 is exactly the same as the proof of Theorem 13.

We are now ready to describe our main result.

Theorem 15. For v ∈ (eltR)∗ as a view and q ∈ dmsot as a query, it is
decidable whether v ∀-preserves q.

Proof. By Theorem 2 we can construct a dtR
fc transducer that realizes a uni-

formizer u of v−1. Let v ∈ (eltR)∗, q ∈ dmsot. We show that v ∀-preserves q
if and only if q = v ◦ u ◦ q. The right-to-left direction is obvious. For the other
direction, assume that v ∀-preserves q and let q̃ be a query in dmsot such that
q = v ◦ q̃. Then, v ◦u◦ q = v ◦u◦ v ◦ q̃ = v ◦ q̃ = q holds. Precisely, let t ∈ dom(q)
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and then,

q(u(v(t)))
= { q(t′′) | t′ ∈ v(t), t′′ ∈ u(t′) }
= { q̃(v(t′′)) | t′ ∈ v(t), t′′ ∈ u(t′) } (∵ q = v ◦ q̃)
= { q̃(t′) | t′ ∈ v(t) } (∵ v ◦ q̃ is single-valued, t′ ∈ v(t′′))
= q̃(v(t))
= q(t).

It follows that u ◦ q ∈ dmsot by Proposition 1 and Theorem 7.4 of [18] that
states dtR

fc ◦ dmsot ⊆ dmsot, and v ◦ u ◦ q ∈ msot by Theorem 3. We can
decide the equivalence of q and v ◦ u ◦ q by Theorem 13.

2.6 Existential Preservation
Even when v does not universally preserve q, it is still too early to give up
on preserving information of q. In the case, we would like to know whether
v existentially preserves q. There is a simple relation between the existential
preservation and the universal preservation.
Proposition 16. Let v, v′ be (nondeterministic) views and q be a single-valued
query. If v′ ⊆ v and v′ ∀-preserves q, then v ∃-preserves q.

t { t′1, t′2, t′3}

q(t) = q′(t′1) = q′(t′2) q′(t′3)

v

q

v′

∃q′

Based on Proposition 16, we give a decidable sufficient condition of the ex-
istential preservation. We only focus on finite-valued views, because we use a
decomposition theorem for finite-valued b transducers (recall that the results in
the previous section focus not only on finite-valued views but also on “infinite”-
valued ones). Note that it is decidable in deterministic polynomial time whether
a b transducer is finite-valued or not (Theorem 6.9 of [47])†.
The following theorem states that every finite-valued b transducer can be ef-

fectively decomposed into a finite union of single-valued ones.
† We also note that for fixed k > 1 and a b transducer, it is decidable whether val(M) ≥ k in
nondeterministic polynomial time (Theorem 2.2 of [48]). No deterministic polynomial time
algorithm has been founded so far (to our knowledge) for the k-bounded finite-valuedness
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Theorem 17. [Theorem 6.2 of [48]] For every finite-valued b transducerM , there
exist single-valued ones M1, . . . ,MK such that JMK = JM1K ∪ · · · ∪ JMKK, where
K ≤ 22P (|M|) , |Mj| ≤ 22P (|M|) , j ∈ [K], for some polynomial P independent of M .‡

By Proposition 16 and Theorem 17, we obtain a decidable sufficient condition
of the existential preservation for views realized by finite-valued lb transducers
and queries realized by dmsot (or dtR) transducers as follows. Notice that, in
the following theorem, each vj is single-valued, hence we just say “vj preserves”
instead of “vj ∀(∃)-preserves.”

Theorem 18. Let v be a finite-valued lb transduction and q be a dmsot (or
dtR) transduction. Let v1, . . . , vK be s-lb transductions such that v = v1 ∪ · · · ∪
vK . Then, v ∃-preserves q if vj preserves q for some j ∈ [K]. The latter condition
is decidable.

Proof. By Proposition 16, v ∃-preserves q if vj preserves q for some j. Every s-lb
transduction is in (s-eltR)∗. Thus the preservation is decidable by Theorem 15
of [4], which states that it is decidable for v̄ ∈ (s-eltR)∗ and q̄ ∈ dmsot (or
dtR), whether v̄ preserves q̄ (see Table 1.1).

Let ∃-Pres be the algorithm that decides the above sufficient condition.

Algorithm ∃-Pres

Input: Finite-valued lb transduction v, dmsot (or dtR) transduction q.
Output: If vj preserves q for some j ∈ [K], output “Yes,” otherwise “No.”
Step 1. Decompose v into s-lb transductions v1, . . . , vK by using Theorem 17.
Step 2. Decide vj preserves q for each j ∈ [K] by using Theorem 15 of [4], which
states that it is decidable for a (s-eltR)∗ transduction v′ and a dmsot (or dtR)
transduction q′, whether v′ preserves q′. Note that s-lb ( (s-eltR)∗.

We are not sure whether ∃-Pres (and the other algorithms that are sound in the
rest of this chapter) is complete for existential preservation, because even when

problem for b transducers. In the word case, for a word transducer there are deterministic
polynomial time algorithms presented in [43,50] for the finite-valuedness, and for the k-bounded
valuedness in [30,43].
‡Here the size of a b transducer M = (P,Σ,∆, F,R) is denoted by |M |, which is the sum of the
sizes of all its rules:

|M | =
∑

(σ(p1(x1),...,pk(xk))→p(r))∈R

(k + |r|+ 2)

where |r| is the size of a tree r = δ(t1, . . . , tm) ∈ T∆(Xm) defined by: |r| = 0 if δ ∈ Xm, |r| = 1
if δ ∈ ∆(0), and |r| = 1 +

∑m
i=1 |ti| if δ ∈ ∆(m).
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∃-Pres answers “no,” another s-lb transduction v′ may exist such that v′ ⊆ v and
v′ preserves q. The problem of deciding whether such v′ exists seems to be hard,
because one is required to prove a given query q is not preserved by vi (i ∈ [K])
for every possible way of decomposing a finite-valued tree transduction v into
single-valued ones v1, . . . , vK .

Extending the domain of a view

Let v be a view given by a finite-valued lb transducer and q be a query given
by a dmsot transducer. When ∃-Pres answers “no,” there remains a possibility
that v existentially preserves q. When decomposing a view v into v1, . . . , vK
by Theorem 17, the domain of the resulting transduction vi may be a proper
subset of the domain of the original transduction v. Consider the case when
dom(q) ) dom(vi) for each i ∈ [K]. In the case, by the definition of query
preservation, every vi does not preserve q. Still, there may be S ⊆ [K] such
that the union v′ of transductions ∀-preserves q where v′ = ⋃

j∈S vj. If so, we
can conclude that ⋃

j∈[K] vj ∃-preserves q. Hence the following result holds as a
corollary of Theorem 15. Note that every union of s-lb transductions is an lb
transduction.

Corollary 19. Let v1, . . . , vK ∈ s-lb and q ∈ dmsot. It is decidable whether
there is S ⊆ [K] such that v′ ∀-preserves q where v′ = ⋃

j∈S vj. If such an S
exists, ⋃

j∈[K] vj ∃-preserves q (by Proposition 16).

By the way, let q be a query given by an s-b transducer. Since s-b is incom-
parable with dmsot, we cannot apply Theorem 15 directly to obtain a decidable
sufficient condition similar to the one stated in Corollary 19 for q ∈ s-b. For the
case, in order to construct an appropriate view v′(⊆ v) from v1, . . . , vK obtained
by decomposing v by Theorem 17, each component vj of v′ is required not to be
joinable with another. For views vi, vj and a query q, we say that vi and vj are
joinable against q if there exists a pair of trees (t1, t2) such that q(t1) 6= q(t2) and
vi(t1) = vj(t2). To show why transductions must not be joinable, let us suppose
that vi and vj are joinable against q with a pair (t1, t2) and v′ = vi ∪ vj (at least)
existentially preserves q, then there exists q′ in the same class as q’s (s-b) such
that for all t ∈ dom(q) there exists t′ ∈ v′(t) satisfying q(t) = q′(t′). However,
q′(t′1,2) for t′1,2 = vi(t1) = vj(t2) has to be {q(t1), q(t2)} but q′ is single-valued,
which is a contradiction. Thus, each component vj of v′ is required not to be
joinable against q with another. We show that joinability is decidable by using
the single-valuedness test for eb transducers with “grafting” presented in [33].

Lemma 20. Let v1, v2 ∈ s-lb and q ∈ s-b. It is decidable whether v1 and v2 are
joinable against q.
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Proof. Construct elb transducers with grafting (elb+g for short) that realize v−1
1

and v−1
2 , respectively. The detailed construction is given in [33] (see Lemma 6

in it). Next, construct a ta A that accepts the intersection of the ranges of
v1 and v2, i.e., L(A) = ran(v1) ∩ ran(v2). A can be effectively constructed by
the fact that the range of every lb transducer is effectively regular (see, e.g.,
Corollary 3.11 of [15]) and by the construction of product automaton. After
that, construct an elb+g transducer that realizes w = v−1

1 ∪ v−1
2 |L(A), which is

the union of v−1
1 and v−1

2 , and the domain of which is restricted to L(A). Finally,
decide whether q′ = w◦q is single-valued or not, which is decidable by Lemmas 7–
8 of [33]. It is not difficult to show that v1 and v2 are joinable against q if and
only if q′ is not single-valued. The left-to-right direction holds obviously by the
definition of joinability. Conversely, if q′ is not single-valued, there exists a tree
t ∈ dom(q′) ⊆ ran(v1) ∩ ran(v2) such that |q′(t)| ≥ 2. Hence, there exist t′1,
t′2 ∈ q′(t) with t′1 6= t′2. Since q is single-valued, there exist t1, t2 (t1 6= t2) such
that q(t1) = t′1 6= t′2 = q(t2) and v1(t1) = v2(t2). Thus v1 and v2 are joinable
against q.

Lemma 21. Let v1, . . . , vK ∈ s-lb and q ∈ s-b. The union v′ ∀-preserves q if and
only if (1) each component vj of v′ is not joinable against q with another, (2) vj
preserves q|dom(vj), and (3) dom(q) ⊆ dom(v′).

Proof. As described in the beginning of this subsection, if (1) does not hold, v′
does not ∃-preserve q, and hence v′ also does not ∀-preserve q. On the other
side, suppose (1), (2), and (3) hold. For simplicity, suppose K = 2. By (2),
let q′1, q′2 be s-lb transductions such that q|dom(vi) = vi ◦ q′i (i ∈ [2]). For any
t12 ∈ dom(v1) ∩ dom(v2), q(t12) = (v1 ◦ q′1)(t12) = (v2 ◦ q′2)(t12). Hence for any
t ∈ dom(v1) ∪ dom(v2), q(t) = (v1 ∪ v2) ◦ (q′1 ∪ q′2)(t) holds. Also, q′1 ∪ q′2 is
single-valued by (1). Therefore, v1 ∪ v2 ∀-preserves q|dom(v1)∪dom(v2). Generally,
v1 ∪ · · · ∪ vK ∀-preserves q|dom(v1)∪···∪dom(vK), therefore v′ ∀-preserves q by (3).

By Lemmas 20, 21, we obtain the following result for queries realized by s-b
transducers.

Theorem 22. Let v1, . . . , vK ∈ s-lb and q ∈ s-b. It is decidable whether there
is S ⊆ [K] such that v′ ∀-preserves q where v′ = ⋃

j∈S vj. If such an S exists,⋃
j∈[K] vj ∃-preserves q (by Proposition 16).

Proof. It suffices to show that the three conditions (1)–(3) in Lemma 21 are decid-
able. (1) is decidable by Lemma 20 and (2) is also decidable [33] (see Table 1.1).
(3) is decidable due to the regularity of dom(q) and dom(v′).
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2.7 Nondeterministic Queries
Let v be a view and q be a nondeterministic query. In this section, we show two
algorithms that are sound for the problem of deciding whether v universally or
existentially preserves a part of q (see Section 2.4 for definition).
We can adopt the idea of Theorem 18 to obtain an algorithm called ∀-PresPart

that is sound for query preservation for finite-valued queries. ∀-PresPart is almost
the same as ∃-Pres (see the previous section), but it decomposes a given query q
into q1, . . . , qK instead of a given view v, after that for each i ∈ [K] it tests
whether v ∀-preserves qi.

Algorithm ∀-PresPart

Input: (eltR)∗ transduction v, finite-valued lb transduction q.
Output: If v preserves qj for some j ∈ [K], output “Yes,” otherwise “No.”
Step 1. Decompose q into s-lb transductions q1, . . . , qK by using Theorem 17.
Step 2. Decide v ∀-preserves qj for each j ∈ [K]. It is decidable by using
Proposition 4 and Theorem 15.

Theorem 23. For v ∈ (eltR)∗ as a view and a finite-valued lb transduction q
as a query, the algorithm ∀-PresPart is sound for the problem of deciding whether
v ∀-preserves a part of q.
By Theorems 18, 23, and by Theorem 21 of [33] that states query preservation

is decidable for a view realized by an s-elb transducer and a query realized by
an s-b transducer (see Table 1.1), we also obtain an algorithm (called ∃-PresPart)
for the case when views and queries are both finite-valued. We do not describe
explicitly the algorithm ∃-PresPart here because it can easily be obtained by
modifying slightly the algorithm ∀-PresPart.
Corollary 24. For a view v (resp. query q) realized by a finite-valued lb (resp. b)
transducer, the algorithm ∃-PresPart is sound for the problem of deciding whether
v ∃-preserves a part of q.
Weak condition. By the way, in [4] the “weak condition” is considered. For a
view v ∈ V and a query q ∈ Q, v (∀- or ∃-) preserves q if there exists q′ ∈ Q such
that (1) dom(v ◦ q′) = dom(q) and (2) (v ◦ q′)(t) = q(t) for every t ∈ dom(q). For
some situation in practice, the condition (1) is weakened to dom(v◦q′) ⊇ dom(q).
The above results (Theorems, Lemmas, and Corollaries 15–24) can be applied to
the weak condition by restricting dom(v) to dom(q) ∩ dom(v)§.

§ It is known that dom(q) and dom(v) are regular for every q realized by a dmsot or an lb
transducer and every v realized by (eltR)∗, hence dom(q) ∩ dom(v) is also effectively regular.
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Complexity. Since the complexity of the algorithm for deciding equivalence
of dmsot transducers is non-elementary [20], that of our procedure for decid-
ing equivalence of dmsot and msot transducers (Theorem 13) is also non-
elementary. Hence the complexities of our algorithms that use the procedure are
non-elementary as well. The complexities of the other algorithms (that do not
use the procedure for the equivalence of (d)msot transducers) are dominated by
that of the decomposition theorem (Theorem 17), which is in 2-EXPTIME [48].

2.8 Conclusion of the Chapter
We have defined two kinds of query preservation problem for nondeterministic
views and queries on ranked trees: universal preservation and existential preser-
vation. We have proved that the universal preservation is decidable for compo-
sitions of extended linear top-down tree transducers with regular look-ahead as
views and deterministic MSO tree transducers as queries (see Theorem 15). To
obtain the result we have slightly generalized the result [20] of the equivalence
problem for deterministic MSO tree transducers (see Theorem 13). Moreover, we
have shown an algorithm that is sound for the existential preservation for finite-
valued linear bottom-up tree transducers as views and deterministic MSO tree
transducers as queries (see Theorem 18), and also showed some algorithms that
are sound for the problem for nondeterministic queries realized by finite-valued
(linear) bottom-up tree transducers (see Theorem 23 and Corollary 24).
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Chapter 3
Hybrid Approach to Query
Preservation

3.1 Introduction
“You boldly settle all important questions, but tell me, dear,

isn’t it because you’re young, because you haven’t had time to suffer
till you settled a single one of your questions?”

— Act III [11]

In this chapter, we focus on query preservation of a tree transducer for a node
query where models for view(s) and queries are different.
As mentioned in Chapter 1, we examine query preservations of data tree trans-

formations. We treat data trees as a data model, which is a ranked ordered
tree where each node can have any nonnegative integer as a data value. We use
deterministic linear top-down data tree transducers (abbreviated as dltVs) and
run-based n-ary queries [42] as classes of transformations and queries, respec-
tively.
It is unknown whether the decision problem of the preservation for node queries

discussed in this chapter can be reduced to the problem for a certain class of
tree queries which is known to be decidable (mentioned in Chapter 2). For this
reduction, we have to construct a tree query corresponding to a given node query,
taking care of what kind of ordered tree is necessary and sufficient to express the
relation of extracted nodes as well as the existence of the nodes. We conjecture
that such simulation of run-based n-ary queries requires (a subclass of) dmsot
for the node selection ability, but, as mentioned in Chapter 2, the known way to
decide the query preservation problem for (d)msot transducers requires deciding
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the equivalence of dmsot (and msot) transducers, which is non-elementary in
general. In contrast, we show later that the query preservation problem for run-
based n-ary queries is in 2-EXPTIME and EXPTIME-hard.
We define two types of query preservation in the above setting: weak and strong

query preservation. We say that a dltV Tr strongly preserves a query Q if there
is a query Q′ such that for every tree t, the answer set of Q′ for Tr(t) is equal to
the answer set of Q for t. Also we say that Tr weakly preserves Q if there is a
query Q′ such that for every t, the answer set of Q′ for Tr(t) includes the answer
set of Q for t.
Main results in this chapter are as follows. We show that the weak query

preservation problem is coNP-complete. If the tuple size n of queries is a constant,
the complexity becomes PTIME. We also show that the strong preservation
problem is in 2-EXPTIME and EXPTIME-hard. If the tuple size n of queries is
constant, the complexity becomes EXPTIME-complete. The decidability results
of the two cases can be extended to the situation where the view is given by a
single-valued extended linear top-down data tree transducer with regular look-
ahead (abbreviated as an s-eltVR), which has more expressive power than dltV.

Organization
This chapter is organized as follows: Section 3.2 provides terminology and def-
initions of data trees, tree automata, dltV, and run-based n-ary queries. Sec-
tion 3.3 defines weak and strong query preservation problem and summarizes the
decidability results of these problems, which are the main results of this chapter.
Our decision algorithms for weak and strong query preservation problem are pre-
sented in Section 3.4 and Section 3.6, respectively. If a transducer Tr strongly
(resp. weakly) preserves a query Q for every tree t, the algorithm we present
in Section 3.5 can construct the query Q′ for Tr(t) that satisfies the conditions
of the strong (resp. weak) query preservation. In Section 3.7, it is shown that
the problems are decidable for s-eltVR. Section 3.8 concludes the chapter and
outlines future work.

3.2 Preliminaries
Some notations and devises mentioned in Chapter 2 are redefined here for the
sake of self-containment and readability.
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3.2.1 Data Trees
We denote the set of all nonnegative integers by N. For n ∈ N, the set {1, . . . , n}
is denoted by [n]. A (ranked) alphabet is a finite set Σ of symbols with a mapping
rk : Σ → N. Let Σn = {σ ∈ Σ | rk(σ) = n }. A data tree is a tree such that
each symbol of the tree can have a nonnegative integer as a data value. Formally,
the set T (N)

Σ of data trees over an alphabet Σ is the smallest set T such that
σ(t1, . . . , tn) ∈ T and σ(ν)(t1, . . . , tn) ∈ T for every σ ∈ Σn, t1, . . . , tn ∈ T and ν ∈
N. For a data tree t, the set of positions (nodes) pos(t) is defined in the usual
way and let t/v denote the subtree of t at position v ∈ pos(t). The size |t| of
a data tree t is |pos(t)|. A data tree t is proper if every symbol appearing in t
has a value. If t/v = σ(ν)(t1, . . . , tn), we write lab(t, v) = σ and val(t, v) = ν. If
t/v = σ(t1, . . . , tn), we write lab(t, v) = σ and val(t, v) = nil. Let t[v ← t′] be the
tree obtained from t by replacing t/v with t′. We say that a data tree t is value-
unduplicated if val(t, v1) 6= val(t, v2) for any two different positions v1, v2 ∈ pos(t).
A tree is a data tree that does not contain any value. Let TΣ denote the set of all

trees over Σ. For a data tree t, let t− denote the tree obtained from t by removing
all the values in t. For every n ≥ 1, let Xn = {xi | i ∈ [n] } be a set of variables
with rk(xi) = 0 for every xi ∈ Xn. A tree t is linear if each variable occurs at
most once in t. A linear tree in TΣ∪Xn is called an (n-ary) context over Σ. Let
C(Σ,Xn) denote the set of n-ary contexts over Σ. For a context C ∈ C(Σ,Xn), let
C[t1, . . . , tn] denote the tree obtained from C by replacing xi with ti for i ∈ [n].

3.2.2 Tree Automata and Tree Transducers
A tree automaton (ta) is a tuple A = (P,Σ, PI , δ) where P is a finite set of
states, Σ is a ranked alphabet, PI ⊆ P is a set of initial states, and δ is a finite
set of transition rules of the form p → σ(p1, . . . , pn) where p ∈ P , σ ∈ Σn, and
p1, . . . , pn ∈ P . Let state(A) = P . A ta A accepts a tree t ∈ TΣ if there is
a mapping m : pos(t) → P such that (1) m(ε) ∈ PI , and (2) for v ∈ pos(t)
with t/v = σ(t1, . . . , tn), m(v) → σ(m(v1), . . . ,m(vn)) ∈ δ. The mapping m is
called a run of A on t. The set of all runs of A on t is denoted by run(A, t).
Let L(A) = { t ∈ TΣ | run(A, t) 6= ∅ }. A state of A is useless if it is not
assigned to any position by any run of A, and a rule is useless if it has a useless
state. A ta A is said to be reduced, if A has no useless states and transition
rules. For a ta A = (P,Σ, PI , δ), let |r| = rk(σ) + 2 be the size of a rule
r = p→ σ(p1 . . . , prk(σ)) ∈ δ, and the size of A, denoted by |A|, is |P |+ ∑

r∈δ |r|.
A linear top-down data tree transducer (ltV) is a transducer that can imple-

ment standard edit operations on trees such as insertion, deletion, relabeling, and
moving data values. An ltV is a tuple Tr = (P,Σ,∆, PI , δ) where P is a finite
set of states, Σ and ∆ are ranked alphabets of input and output, respectively,
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PI ⊆ P is a set of initial states, and δ is a finite set of transduction rules of the
form

p(σ(z)(x1, . . . , xn)) → C(j←z)[p1(x1), . . . , pn(xn)],

where p, p1, . . . , pn ∈ P , σ ∈ Σn, j ∈ { v | v ∈ pos(C), t/v /∈ Xn }, x1, . . . , xn ∈
Xn, C ∈ C(∆,Xn), and (j ← z) is optional. We call (j ← z) the value position
designation of the rule. The move relation ⇒Tr of an ltV Tr = (P,Σ,∆, PI , δ)
is defined as follows: If p(σ(z)(x1, . . . , xn)) → C(j←z)[p1(x1), . . . , pn(xn)] ∈ δ,
t1, . . . , tn ∈ T (N)

Σ and t/v = p(σ(ν)(t1, . . . , tn)) (ν ∈ N), then

t⇒Tr t [ v ← C(j←ν)[p1(t1), . . . , pn(tn)] ],

where C(j←ν) is the context obtained from C by replacing lab(C, j) with lab(C, j)(ν).
When the value position designation is missing in the rule, Tr does not trans-
fer ν to any position of the output. Let [[Tr]] = { (t, t′) | pI(t) ⇒∗Tr t′, t ∈
T (N)
Σ , t is proper, t′ ∈ T (N)

∆ , pI ∈ PI }. The domain of Tr is defined as dom(Tr) =
{ t | ∃t′. (t, t′) ∈ [[Tr]] }, and the range of Tr is defined as rng(Tr) = { t′ |
∃t. (t, t′) ∈ [[Tr]] }. We define the size |Tr| of an ltV Tr as with tree au-
tomata. Let |r| = |pos(C)| + 2 be the size of a rule r = p(σ(z)(x1, . . . , xn)) →
C(j←z)[p1(x1), . . . , pn(xn)] ∈ δ, and the size |Tr| is |P |+ ∑

r∈δ |r|.
An ltV Tr = (P,Σ,∆, PI , δ) is deterministic (denoted as a dltV) if (1) |PI | = 1,

and (2) for each p ∈ P and σ ∈ Σ, there exists at most one transduction rule
that contains both p and σ in its left-hand side. If Tr is deterministic, there is
only one pair (t, t′) ∈ [[Tr]] for each t ∈ dom(Tr). Thus, we write Tr(t) = t′ when
(t, t′) ∈ [[Tr]]. For L ⊆ T (N)

Σ , we write Tr(L) = {Tr(t) | t ∈ L }. We denote by
Tr−1 the inverse of Tr, i.e., Tr−1(t′) = { t | Tr(t) = t′ }. Let dlt be the class of
ordinary deterministic linear top-down tree transducers over trees containing no
data values.
A subtree-deleting rule is a rule such that at least one variable in its left-hand

side does not occur in its right-hand side as p1(σ(z)(x1, x2)) → σ′(z)(p2(x2)). A
value-erasing rule is a rule that does not have the value position designation in
its right-hand side.
Consider a dltV Tr = (PT , Σ,∆, {p0

T}, δT ) and t ∈ dom(Tr). For v ∈ pos(t),
we say that Tr ignores v in t if p0

T (t[v ← x])⇒∗Tr t′ ∈ T
(N)
∆ where x is a variable.

We say that Tr reaches p ∈ PT at v in t if there exist C ′ ∈ C(∆, {x}) containing x
and t′v ∈ T

(N)
∆ such that p0

T (t [v ← x]) ⇒∗Tr C ′[p(x)] and p(t/v) ⇒∗Tr t′v. For
t ∈ dom(Tr), consider a mapping mT

t : pos(t)→ PT ∪ {⊥} such that:

• if Tr ignores v in t, then mT
t (v) = ⊥,

• if Tr reaches p at v in t, then mT
t (v) = p.
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Figure 3.1: Example of 2-rq.

The mapping mT
t is determined uniquely by Tr and t because Tr is deterministic.

We call mT
t a run of Tr for t. Note that if mT

t (v) = p and lab(v) = σ, then Tr
applies to v a rule in δT with p and σ in its left-hand side.

3.2.3 Run-based n-ary Queries
A run-based n-ary query (n-rq) [42] is a node selection query that retrieves sets
of n-tuples of nodes from trees. An n-rq is a pair (A, S) where A = (P,Σ, PI , δ)
is a ta and S ⊆ P n. In this chapter, we assume that each s ∈ S consists of
n different states. We simply call a run-based n-ary query a query. For a data
tree t and a query Q = (A, S), define

Q(t) =
⋃

m∈run(A,t−)
Q(m, t),

where Q(m, t) = { (v1, . . . , vn) | (m(v1), . . . ,m(vn)) ∈ S, v1, . . . , vn ∈ pos(t) }.
For an n-rq Q and a data tree t, let val(Q(t)) = { (val(t, v1), . . . , val(t, vn)) |
(v1, . . . , vn) ∈ Q(t), val(t, vi) 6= nil, i ∈ [n] }. Note that if t− /∈ L(A) then
Q(t) = ∅. Two queries Q1 and Q2 are equivalent if val(Q1(t)) = val(Q2(t)) for
each data tree t. We assume that for a given query Q = (A, S), the ta A is
reduced. We define that the size |Q| of an n-rq Q is |A|+ n |S|.

Example 4. Consider the 2-rq Q = (A, S) defined by: A = (P,Σ, PI , δ), P =
{p1, p2, p3, p4}, Σ2 = {f}, Σ0 = {a}, PI = {p1}, δ = { p1 → f(p2, p3), p2 →
a, p3 → f(p4, p3), p3 → a, p4 → a }, and S = {(p2, p3)}. Figure 3.1 shows that
the result of the query on the data tree t = f (1)(a(2), f (3)(a(4), a(5))) is val(Q(t)) =
{(2, 3), (2, 5)}, where the numbers 1 to 5 are the data values on t. ♦

3.3 Query Preservation
Let LT and LQ be a class of tree transducers and a class of queries, respectively.
Given a query Q ∈ LQ and a tree transducer Tr ∈ LT , we say that Tr (strongly)
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preserves Q if there exists Q′ ∈ LQ that satisfies

∀t ∈ dom(Tr). val(Q′(Tr(t))) = val(Q(t)). (3.1)

We also define the weak query preservation. We say that the transducer Tr weakly
preserves the query Q if there exists Q′ ∈ LQ such that

∀t ∈ dom(Tr). val(Q′(Tr(t))) ⊇ val(Q(t)). (3.2)

Example 5. Let Q = (A, {p1}) where A = ({p0, p1, p2}, {f, g, a}, {p0}, {p0 →
f(p1, p2), p0 → g(p2, p1), p1 → a, p2 → a}). Let Tr be a dltV defined by the
homomorphism that maps f, g, a to h, h, a, respectively (and moves each data
value as well). We can see that L(A) = {f(a, a), g(a, a)}. Let t1 = f (3)(a(4), a(5))
and t2 = g(3)(a(4), a(5)). Then Tr(t1) = Tr(t2) = h(3)(a(4), a(5)). In this example,

f (3)

a(5)a(4)

g(3)

a(5)a(4)

Tr weakly preserves Q. In fact, Q′ obtained from Q by replacing the first two
rules of A with p0 → h(p1, p2), p0 → h(p2, p1) satisfies Eq. (3.2). On the other
hand, Tr does not preserve Q because val(Q(t1)) = {4} 6= {5} = val(Q(t2)) while
Tr(t1) = Tr(t2), which imply that there is no Q′ that satisfies Eq. (3.1). ♦

In this chapter, we primarily focus on the following decision problems.

Problem: n-WeakQueryPres
Input: dltV Tr, n-rq Q

Question: Does Tr weakly preserve Q?

Problem: n-QueryPres
Input: dltV Tr, n-rq Q

Question: Does Tr preserve Q?

During the discussion about the problems, we assume that L(A) ⊆ dom(Tr)
where A is a ta of an n-rq Q = (A, S). This assumption does not lose gener-
ality since we can easily construct a query Q′ = (A′, S ′) satisfying the following
conditions from a given Q and Tr:

• L(A′) = L(A) ∩ dom(Tr), and

• ∀t ∈ dom(Tr). val(Q(t)) = val(Q′(t)).
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Table 3.1: Summary of complexity results on node query preservations.
Parameter n-WeakQueryPres n-QueryPres

fixed n in PTIME EXPTIME-complete
(Theorem 28) (Theorem 39)

unbounded n coNP-complete
(Theorem 28)

in 2-EXPTIME
/ EXPTIME-hard
(Theorem 38)

Our main results are that n-WeakQueryPres is coNP-complete, and n-
QueryPres is in 2-EXPTIME and EXPTIME-hard for unbounded n. If n
is fixed, n-WeakQueryPres is in PTIME, and n-QueryPres is EXPTIME-
complete. Summary of the complexity results is shown in Table 3.1.
The second result we obtained is that given an n-rq Q and a dltV Tr, if Tr

preserves Q then we can construct a query Q′ satisfying the condition of the query
preservation (Eq. (3.1)). If n is fixed, we can construct Q′ in polynomial time
(Theorem 33). We show the detail of our query construction algorithm and its
correctness in Section 3.5.

3.4 Decision Algorithm for n-WeakQueryPres

3.4.1 Unary Queries
We first give a polynomial time algorithm (called 1-WQP) that decides 1-Weak-
QueryPres. In Section 3.4.2, we will give a decision algorithm for n-WeakQue-
ry-Pres by using 1-WQP. We explain the idea of 1-WQP here, assuming for
simplicity that S = {p}, i.e., |S| = 1, for a given query Q = (A, S). Our algo-
rithm for the weak query preservation decides if there exist a tree t ∈ dom(Tr)
and a position v ∈ pos(t) satisfying the following conditions:

• There exists a run m ∈ run(A, t−) such that m(v) = p.

• The data load at v on t is “removed” by a subtree-deleting rule or a value-
erasing rule of Tr.

Assume there exist a data tree t and a position v of t that satisfy the above
conditions. Consider a value ν ∈ N such that ν 6= val(t, v′) for any v′ ∈ pos(t),
and a tree t(v←ν), which is obtained from t by changing the value of the position v
to ν. We then have ν ∈ val(Q(t(v←ν))) and Tr(t(v←ν)) = Tr(t). However, ν is
not contained in Tr(t(v←ν)) because the unique value ν at v on t(v←ν) is removed
by Tr. Hence there is no Q′ satisfying val(Q′(Tr(t(v←ν)))) ⊇ val(Q(t(v←ν))), and
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thus Tr does not weakly preserve Q. Conversely, if such t and v do not exist, we
can specify the position of Tr(t) corresponding to each position of t selected by
Q, by a ta that simulates each run m ∈ run(A, t−) on Tr(t).

Algorithm 1-WQP to Decide 1-WeakQueryPres

Step 1 constructs a ta AT such that L(AT ) = dom(Tr) and for every t ∈ dom(Tr)
a run of AT for t coincides with that of Tr for t. Step 2 and Step 3 construct
a reduced product automaton A′′ that satisfies L(A′′) = L(A) ∩ L(AT ). Step 4
checks if there exists a state of A′′ assigned to a position that will be selected
by Q and be deleted by Tr.

Input: 1-rq Q = (A, S) where A = (PA, Σ, P I
A , δA) is a ta and S ⊆ PA,

dltV Tr = (PT , Σ, ∆, {p0
T}, δT ).

Output: If Tr weakly preserves Q, output “Yes,” otherwise “No.”
Step 1. Construct the following ta AT = (PT ∪{⊥}, Σ, {p0

T}, δ′T ) from Tr where
⊥ /∈ PT and δ′T is the smallest set satisfying the following conditions.

• Let p(σ(z)(x1, . . . , xd))→ C(j←z)[p1(x1), . . . , pd(xd)] ∈ δT with p, p1, . . . , pd ∈
PT , σ ∈ Σd, and C ∈ C(∆,Xd). For each i ∈ [d], define p̃i as follows. If
C contains xi, let p̃i = pi. If C does not contain xi, let p̃i = ⊥. Then,
p→ σ(p̃1, . . . , p̃d) ∈ δ′T .

• For each σ ∈ Σ, ⊥ → σ(⊥, . . . ,⊥) ∈ δ′T .

Step 2. Construct a product ta A′ of A and AT that satisfies L(A′) = L(A) ∩
L(AT ). More specifically, construct the following ta A′ = (PA×P ′T , Σ, P I

A×P I
T , δ

′)
from Q = (A, S) and AT = (P ′T , Σ, P I

T , δ
′
T ): (pA, pT )→ σ((p1

A, p
1
T ), . . . , (pdA, pdT )) ∈

δ′ if and only if pA → σ(p1
A, . . . , p

d
A) ∈ δA and pT → σ(p1

T , . . . , p
d
T ) ∈ δ′T .

Step 3. Remove useless states and rules in A′. Let A′′ = (P ′′, Σ, P ′′I , δ′′) be the
resulting ta.
Step 4. If the following subset Pdel ⊆ P ′′ is empty, output “Yes,” otherwise
“No.”

Pdel = { (p, pT ) ∈ P ′′ | p ∈ S and (pT = ⊥, or
there are a rule (p, pT )→ σ((p1

A, p
1
T ), . . . , (pdA, pdT )) ∈ δ′′

and a value-erasing rule in δT that has pT and σ in its left-hand side) }

We now give a lemma for the correctness of our algorithm.
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Lemma 25. Let Q be a 1-rq and Tr be a dltV. Tr weakly preserves Q if and
only if Pdel = ∅ in Step 4 of the algorithm 1-WQP.

Proof. (⇒) Suppose Pdel 6= ∅ and let (p, pT ) ∈ Pdel . We have p ∈ S, and either
of the following two conditions holds: (i) pT = ⊥ or (ii) there is a symbol σ
such that δ′′ contains a rule (p, pT )→ σ((p1

A, p
1
T ), . . . , (pdA, pdT )) and δT contains a

value-erasing rule with pT and σ in its left-hand side. Since the ta A′′ constructed
in Step 3 of 1-WQP does not have useless states and rules, there exist a tree t ∈
L(A′′), a run m ∈ run(A′′, t), and a node v ∈ pos(t) such that m(v) = (p, pT ). In
addition, if (ii) holds, we can suppose that lab(t, v) = σ. We now assume without
loss of generality that t is value-unduplicated. Because A′′ is a reduced product
ta of A and AT , we can see that π1 ◦m (resp. π2 ◦m) is a run of A (resp. AT )
for t where πi is a mapping that retrieves the i th component pi from a state pair
(p1, p2). Since π1 ◦m(v) = p ∈ S, we have val(t, v) ∈ val(Q(t)). Since π2 ◦m is
also a run of Tr for t and π2 ◦ m(v) = pT , we see that v is ignored by Tr if (i)
holds and val(t, v) is erased by the value-erasing rule of Tr if (ii) holds. It follows
from the uniqueness of val(t, v) that Tr(t) does not have val(t, v) at any node.
Hence, val(t, v) /∈ val(Q′(Tr(t))) holds for any 1-rq Q′. Thus, Tr does not weakly
preserve Q.
(⇐) We give a proof for this direction in Section 3.5. More concretely, we show
that if Pdel = ∅, the algorithm 1-WQC given in Section 3.5 can construct a
query Q′ satisfying Eq. (3.2).

Theorem 26. 1-WeakQueryPres is in PTIME.

3.4.2 General Case
We sketch an algorithm for general case below. We will assume that |S| = 1 and
let s = (p1, . . . , pn). The basic idea is to consider the 1-rq Q′ = (A, {p1, . . . , pn})
instead of Q and test whether Tr weakly preserves Q′. However, this does not
work in general because Q(t) contains only a tuple (v1, . . . , vn) of positions such
that there is a run m ∈ run(A, t−) satisfying m(vi) = pi for each i (i ∈ [n])
simultaneously while Q′(t) contains every position v such that there is a run m ∈
run(A, t−) satisfying m(v) = pi even if there is some pj (j 6= i) such that for
any u ∈ pos(t), m(u) 6= pj.
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Example 6. Let Q = (A, S) be the 3-rq defined by

A = (P,Σ, PI , δ), P = {p1, p2, p3, p#},
Σ = Σ2 ∪ {#}, Σ2 = {A,B,C}, PI = {p1},
δ = { p1 → A(p2, p#), p2 → B(p3, p#),

p2 → C(p#, p#), p3 → C(p#, p#), p# → # },
S = {(p1, p2, p3)}.

Also let Tr = (P,Σ,Σ, {p1}, δT ) be the dltV defined by

δT = { p1(A(z)(x1, x2))→ A(z)(p2(x1), p#(x2)),
p2(B(z)(x1, x2))→ B(z)(p3(x1), p#(x2)),
p2(C(z)(x1, x2))→ #,
p3(C(z)(x1, x2))→ C(z)(p#(x1), p#(x2)),
p#(#)→ # },

where P and Σ are the same as A. Consider the following data trees:

t1 = A(1)(B(2)(C(3)(#,#),#),#),
t2 = A(1)(C(3)(#,#),#).

Figure 3.2 shows Q(t1), Q(t2), Tr(t1) and Tr(t2), the results of Q and Tr to t1
and t2. In fact, for any data tree t, the ta A never assigns p3 to any position of
t (and thus Q(t) = ∅ because (p1, p2, p3) contains p3) if and only if the Tr deletes
a subtree of t to whose root Tr assigns p2. That is, the deletion of a subtree by
Tr does not violate the weak query preservation for Q. However, if we consider
the 1-rq Q′ = (A, {p1, p2, p3}) instead of Q and apply 1-WQP to Q′, then 1-WQP
answers “No” (because Tr does not weakly preserve Q′). ♦

To overcome the above mentioned problem, we construct QF = (AF , SF ) from
Q = (A, S) such that Q(t) 6= ∅ if and only if run(AF , t−) 6= ∅ and QF (t) = { vi |
(v1, . . . , vn) ∈ Q(t), i ∈ [n] }. This modification can be done by augmenting each
state p with a subset P of {p1, . . . , pn}.
Let Q = (A, S) be a given n-rq. We can see that a dltV Tr weakly pre-

serves Q if and only if for every s ∈ S, Tr weakly preserves Qs = (A, {s}). Also
Q(t) = ⋃

s∈S Qs(t). So, it suffices to give an algorithm that decides if Tr weakly
preserves Q = (A, S) where |S| = 1.

40



Figure 3.2: Results of Q and Tr on t1 and t2.

Algorithm n-WQP to Decide n-WeakQueryPres

Input: n-rq Q = (A, {(p1, . . . , pn)}), A = (PA, Σ, P I
A , δA) where pi ∈ PA

(i ∈ [n]), dltV Tr = (PT , Σ,∆, {p0
T}, δT ).

Output: If Tr weakly preserves Q, output “Yes,” otherwise “No.”
Step 1. Let Ps = {p1, . . . , pn} ⊆ PA. Construct AF = (PA × 2Ps , Σ, P I

A ×
{Ps}, δF ) from A where δF is defined as follows: For p → a(p1

A, . . . , p
d
A) ∈ δA and

P, P1, . . . , Pd ⊆ Ps,

(p, P )→ a((p1
A, P1), . . . , (pdA, Pd)) ∈ δF

if and only if for each i ∈ [n],

• if pi ∈ P and p = pi, then pi /∈ Pj for all j ∈ [d],

• if pi ∈ P and p 6= pi, then there exists exactly one j ∈ [d] satisfying pi ∈ Pj,
and

• if pi /∈ P , then pi /∈ Pj for all j ∈ [d].

Step 2. Let QF = (AF , {p1, . . . , pn} × 2Ps). Decide whether Tr weakly preserves
QF by 1-WQP.

Lemma 27. Given an n-rq Q and a dltV Tr, Tr weakly preserves Q if and only
if Tr weakly preserves QF .

41



Proof (Sketch). Let Q = (A, S) and QF = (AF , SF ). For m ∈ run(AF , t−), if
m assigns (p, P ) to a position v, each state in P should be used at least once
as the first component of a state in the subtree rooted at v (including v itself).
Especially, an initial state of AF is a pair of an initial state of A and {p1, . . . , pn},
meaning that each pi (i ∈ [n]) should be used at least once in the input tree.
Hence, Q(t) 6= ∅ if and only if run(AF , t−) 6= ∅ and QF (t) = { vi | (v1, . . . , vn) ∈
Q(t), i ∈ [n] }. Thus, AF is weakly preserved by Tr if and only if the original A is
weakly preserved by Tr.

If n is not fixed, the above algorithm will take exponential time in n. The follow-
ing theorem gives the time-complexity for the weak query preservation problem.
If the tuple size n of queries is constant, we can solve the weak query preserva-
tion problem for n-rq under dltV in polynomial time by using the algorithm for
unary queries.
Theorem 28. n-WeakQueryPres is coNP-complete in general, in PTIME if
n is fixed.
Proof. We show that the complement of n-WeakQueryPres is in NP. If Tr does
not weakly preserve Q = (A, S), there exist a tree t, positions v1, . . . , vn, and a
run m ∈ run(A, t−) such that (m(v1), . . . ,m(vn)) ∈ S and Tr deletes some vi. We
consider as a witness the n-paths from the root to v1, . . . , vn with partial runs of
A and Tr on the paths. Given a witness, we can verify if some tree t includes the
n-paths, the partial runs are consistent with A and Tr in t, and some vi in t is
deleted by Tr. The verification can be done in polynomial time if the size of a
witness is polynomial. We show that there is a witness of polynomial size if Tr
does not weakly preserveQ. We call the least common ancestor of vi and vj (i 6= j)
their confluence position. A segment is the path between the adjacent confluent
positions or between some vi and the nearest confluent position. In Figure 3.3,
a segment is depicted as a subpath between two bold nodes. We can choose a
witness tw such that the length of any segment is at most (|Tr| + 1) × |Q| + 1
in the following way (see Figure 3.3): If the length of a segment is greater than
(|Tr|+1)×|Q|+1, there exist two different nodes u1, u2 on the segment such that
at least one of u1 and u2 is not a confluence position, the same state is assigned
to u1 and u2, and the same rule is applied at u1 and u2. Assume without loss
of generality that u1 is an ancestor of u2. Then tw[u1 ← tw/u2], that is, the
tree obtained by short-cutting the subpath from u1 to u2 is also a witness. By
iterating the above short-cut process, we can obtain a witness of which size is at
most 2n× ((|Tr|+ 1)× |Q|+ 1)×N where N is the maximal rank of symbols in
Σ.
For the coNP-hardness, we show that 3UNSAT is polynomial time reducible

to the weakly preservation problem. Let φ be an instance of 3UNSAT with
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Figure 3.3: Witness tw of the complement of n-WeakQueryPres.

k variables x1, . . . , xk and n clauses C1, . . . , Cn. First, we construct a query
Q = (A, S) as follows:

Q = (A, S), A = (P,Σ, PI , δ), S = {(PC1 , . . . , PCn)},
P = {Pr, PX1 , . . . , PXk

, PT1 , . . . , PTk
, PF1 , . . . , PFk

, PC1 , . . . , PCn },
Σ = { r, X1, . . . , Xk, T1, . . . , Tk, F1, . . . , Fk, C1, . . . , Cn },
PI = {Pr},

where δ is the smallest set that satisfies the following conditions:

• Pr → r(PX1 , . . . , PXk
) ∈ δ.

• For each i ∈ [k], PXi
→ Xi(PTi

) ∈ δ and PTi
→ Ti ∈ δ, also PXi

→
Xi(PFi

) ∈ δ and PFi
→ Fi ∈ δ.

• PTi
→ Ti(PCt1

, . . . , PCtd
) ∈ δ where {Ct1 , . . . , Ctd} is the set of all clauses

containing xi.

• PFi
→ Fi(PCf1

, . . . , PCfd
) ∈ δ where {Cf1 , . . . , Cfd

} is the set of all clauses
containing xi.

• For each j ∈ [n], PCj
→ Cj ∈ δ.

Figure 3.4 shows examples of a tree that is accepted by the ta A constructed
from φ = (x1 ∨ x2 ∨ x1) ∧ (x1 ∨ x2 ∨ x4) ∧ (x3 ∨ x4 ∨ x3).
Next, we construct a transducer Tr that deletes all nodes of a tree t− ∈ L(A)

except the root node of t−. For a given φ, Q and Tr can be constructed in linear
time.
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Figure 3.4: Examples of a tree accepted by the ta A constructed by φ = (x1∨x2∨
x1)∧(x1∨x2∨x4)∧(x3∨x4∨x3). (a) corresponds to (x1, x2, x3, x4) =
(T,T,T,T), and (b) corresponds to (x1, x2, x3, x4) = (T,F,T,F), where
T and F stand for the Boolean values true and false, respectively.

Lemma 29. φ is satisfiable if and only if there exists a tree t ∈ L(A) such that
for each clause C1, . . . , Cn of φ, t contains the nodes C1, . . . , Cn corresponding to
the clauses.

Proof. (⇒) Suppose that φ has a satisfying assignment v. If a literal xi on v
makes a clause Cj true, the ta A constructed from φ accepts a tree containing
Xi(Ti(. . . , Cj, . . . )) as its subtree. Whereas if a literal xi on v makes a clause Cj
true, the ta A accepts a tree containing Xi(Fi(. . . , Cj, . . . )) as its subtree. By
the assumption, for each clause Cj there exists a literal on v that makes Cj
true. Then, there exists a tree t ∈ L(A) such that for each clause Cj, t contains
Xi(Ti(. . . , Cj, . . . )) or Xi(Fi(. . . , Cj, . . . )) as its subtree. Therefore t contains the
nodes C1, . . . , Cn corresponding to the clauses C1, . . . , Cn of φ.
(⇐) Suppose that there exists a tree t ∈ L(A) such that t contains the nodes
C1, . . . , Cn corresponding to the clauses C1, . . . , Cn of φ. By the construction
of A, each node Cj of t has a subtree Xi(Ti(. . . , Cj, . . . )) or Xi(Fi(. . . , Cj, . . . ))
as its child. If Cj has Xi(Ti(. . . , Cj, . . . )), a clause Cj of φ is true when xi is true,
whereas if Cj has Xi(Fi(. . . , Cj, . . . )), a clause Cj of φ is true when xi is false.
By the assumption, each clause Cj is true under this assignment, and hence the
assignment above satisfies φ.

By applying Lemma 29 we show that φ is satisfiable if and only if Tr does not
weakly preserve Q.
(⇒) Suppose φ is satisfiable. By Lemma 29, there exists a tree t ∈ L(A)
that has nodes C1, . . . , Cn. Then a query result Q(t) is not empty because
S = {(PC1 , . . . , PCn)}. Since Tr deletes all nodes except a root node, Tr does
not weakly preserve Q if and only if Q(t) is not empty. Thus, if φ is satisfiable,
Tr does not weakly preserve Q.
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(⇐) By the assumption, Q(t) is not empty since Tr does not preserveQ, i.e., a tree
accepted by A has the nodes C1, . . . , Cn. Therefore φ is satisfiable by Lemma 29.

3.5 Construction of Queries
If a transducer Tr weakly preserves a query Q, a query Q′ = (A′, S ′) on target
documents can be constructed by a type-inference algorithm that runs in poly-
nomial time. The algorithm (called 1-WQC) works as follows: (1) Construct a
ta A′ from A such that L(A′) = T (L(A)) where T is the dlt obtained from Tr
by removing the manipulation of values, and (2) construct S ′ accordingly.

Algorithm 1-WQC to Construct Queries on Target Documents

Input: 1-rq Q = (A, S) where A = (PA, Σ, P I
A , δA), S = {p1, . . . , pn} ⊆ PA,

dltV Tr = (PT , Σ,∆, {p0
T}, δT ).

Output: A 1-rq Q′ = (A′′, S ′′) on target documents that satisfies Eq. (3.2).
Step 1. Construct a ta A′ = ((PA × PT ) ∪ (δA × δT × Call), ∆, P I

A × {p0
T}, δ′)

from Q and Tr where Call = ∪r∈δT pos(rhs(r)), rhs(r) is the right-hand side of
r ∈ δT , and δ′ is defined as follows: For any rules rA = (pA → σ(p1

A, . . . , p
d
A)) ∈ δA

and rT = (pT (σ(z)(x1, . . . , xd))→ C(j←z)[p1
T (x1), . . . , pdT (xd)]) ∈ δT ,

• for each v ∈ pos(C) such that lab(C, v) ∈ ∆,

M(v)→ lab(C, v)(M(v1), . . . ,M(vdv)) ∈ δ′

where dv = rk(lab(C, v)) andM is a mapping such that for each v ∈ pos(C),
– M(v) = (pA, pT ) if v = ε,
– M(v) = (piA, piT ) if lab(C, v) = xi ∈ Xd, and
– M(v) = (rA, rT , v) otherwise;

• (pA, pT )→ (piA, piT ) ∈ δ′ if C = xi ∈ Xd.

Step 2. Construct a reduced ta without ε-rules equivalent to A′. Formally, let
p̃ ⇒ε p̃

′ if and only if p̃ → p̃′ ∈ δ′, and ⇒∗ε be the reflexive transitive closure of
⇒ε. For each rule p̃ → σ(p̃1, . . . , p̃d) ∈ δ′ and p̃′1, . . . , p̃′d ∈ state(A′), add to δ′ a
new rule p̃ → σ(p̃′1, . . . , p̃′d) if for i ∈ [d], p̃i ⇒∗ε p̃′i and there is a rule with p̃′i in
its left-hand side and some symbol in ∆ in its right-hand side. Then, remove all
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epsilon rules, useless states and transition rules of A′. Let A′′ be the resulting
ta.
Step 3. Compute S ′′ = ⋃n

i=1 Spi
where Spi

is the smallest subset of state(A′′)
satisfying the following conditions.

• (rA, rT , v) ∈ Spi
if rA has pi in its left-hand side, and the right-hand side of

rT is C(j←z)[p1
T (x1), . . . , pdT (xd)]) where j 6= ε and v = j.

• (pi, pT ) ∈ Spi
if pT (σ(z)(x1, . . . , xd)) → C(j←z)[p1

T (x1), . . ., pdT (xd)]) ∈ δT
where j = ε.

We now prove the⇐ direction of Lemma 25 to show that Tr weakly preservesQ.

Figure 3.5: The relationship between an input tree t and a transformed tree td.

Proposition 30. Let Q be a 1-rq and Tr be a dltV. If Pdel = ∅ in Step 4 of
the algorithm 1-WQP then Tr weakly preserves Q.
Proof (Sketch). Let Q = (A, S) be the given query, and Q′ = (A′, S ′) be the
query constructed by 1-WQC from Q. Assume Pdel = ∅. We can say that for all
t ∈ dom(Tr), m ∈ run(A, t−), and v ∈ Q(m, t), there exist m′ ∈ run(A′, Tr(t)−)
and v′ ∈ Q′(m′, Tr(t)) such that val(t, v) = val(Tr(t), v′). Let t ∈ dom(Tr)
and m ∈ run(A, t−). Any position v of t such that m(v) ∈ S is not deleted
by Tr because Pdel = ∅. From the construction of the query Q′ = (A′, S ′)
in 1-WQC, there is a run m′ of Q′ on Tr(t)− corresponding to m. As shown
in Figure 3.5, for any position v of t such that m(v) ∈ S and mT

t (v) = pT , a
rule rT = pT (σ(z)(x1, . . . , xd)) → C(j←z)[p1

T (x1), . . . , pdT (xd)], which is not value-
erasing, is applied to v. Then, the context C is output and the value of v is
transferred to the position v′ = v′′j where v′′ is the root position of C in Tr(t).
Since the corresponding run m′ assigns a state p̄ ∈ S ′ to v′′, Q′ can retrieve the
value of v from Tr(t). Hence, we have val(Q(t)) ⊆ val(Q′(Tr(t))).
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Lemma 31. If a dltV Tr weak preserves a 1-rq Q, the query Q′ satisfying
Eq. (3.2) can be constructed by 1-WQC in polynomial time.

Proof. This lemma can be easily shown by Lemma 25 and Proposition 30.

We can create n-ary queries on the transformed documents by using a natural
variant of 1-WQC. Given a dltV Tr and an n-rq Q = (A, {(p1, . . . , pn)}), the
variant (called n-WQC) works in almost the same way as 1-WQC except that it
computes S ′′ = ∏n

i=1 Spi
in Step 3 while 1-WQC computes S ′′ = ⋃n

i=1 Spi
. The

query Q′ constructed by n-WQC is the minimum one as the following theorem
claims.

Theorem 32. For any n-rq Q′′ such that Tr weakly preserves Q by Q′′, and any
t ∈ dom(Tr), val(Q′(Tr(t))) ⊆ val(Q′′(Tr(t))).

Proof. We assume for contradiction that there are an n-rq Q′′ and a tree t ∈
dom(Tr) such that val(Q′(Tr(t))) \ val(Q′′(Tr(t))) 6= ∅. Let Q = (A, S) and
Q′ = (A′, S ′). Let ν̄ = (ν1, . . . , νn) ∈ val(Q′(Tr(t))) \ val(Q′′(Tr(t))). Since Tr
weakly preserves Q by any of Q′ and Q′′, both val(Q′(Tr(t))) and val(Q′′(Tr(t)))
contains val(Q(t)), and thus ν̄ /∈ val(Q(t)). Because ν̄ ∈ val(Q′(Tr(t))), there
exist a tuple w̄ = (w1, . . . , wn) of positions of Tr(t) and a runmν ∈ run(A′, Tr(t)−)
such that (mν(w1), . . . ,mν(wn)) ∈ S ′ and val(Tr(t), wi) = νi for each i ∈ [n]. By
the definition of dltV, there is a tuple v̄ = (v1, . . . , vn) of positions of t such that
for each i ∈ [n], wi is output when applying some rule of Tr to vi and val(t, vi) =
val(Tr(t), wi). Since ν̄ /∈ val(Q(t)), however, there exists no run m ∈ run(A, t−)
such that (m(v1), . . . ,m(vn)) ∈ S. The construction of Q′ guarantees that for the
run mν of A′ for Tr(t)−, there are a tree ta, a run m′ ∈ run(A, t−a ), a tuple v̄′ =
(v′1, . . . , v′n) of positions of ta such that Tr(ta)− = Tr(t)−, (m′(v′1), . . . ,m′(v′n)) ∈
S, and for each i ∈ [n], val(ta, v′i) = val(Tr(ta), wi) and wi is output when applying
some rule of Tr to v′i. Let ν̄a = (val(Tr(ta), w1), . . . , val(Tr(ta), wn)), and then ν̄a is
in both val(Q(ta)) and val(Q′(Tr(ta)). We assume without loss of generality that
each of t and ta is value-unduplicated. Then, w̄ is the only tuple of positions of
Tr(t) (resp. Tr(ta)) from whichQ′ extracts ν̄ (resp. ν̄a). It is also clear that v̄′ is the
only tuple of positions of ta from which Q extracts ν̄a. We have ν̄ /∈ val(Q′′(Tr(t)))
and thus w̄ /∈ Q′′(Tr(t)). Since Tr(ta)− = Tr(t)−, w̄ /∈ Q′′(Tr(ta)). Thus, ν̄a /∈
val(Q′′(Tr(ta))) but ν̄a ∈ val(Q(ta)). This contradicts the weak preservation by
Q′′.

Now we can say that the query Q′ satisfying the condition of the query preser-
vation (Eq. (3.1)) can be constructed by the algorithm n-WQC if Tr preserves Q.

Theorem 33. If a dltV Tr preserves an n-rq Q, the query Q′ satisfying Eq. (3.1)
can be constructed by n-WQC. If n is fixed, n-WQC runs in polynomial time.
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Proof. Recall that the query preservation is a special case of the weak query
preservation. By Theorem 32, the query Q′ constructed by n-WQC is the mini-
mum one that satisfies the condition of the weak query preservation (Eq. (3.2)).
Thus the query Q′ satisfies Eq. (3.1) if Tr preserves Q.

3.6 Decidability of Query Preservation
In this section, we provide an algorithm n-QP that decides the (strong) query
preservation.

3.6.1 One-by-Run Property
We define a property, called the One-by-Run property, that helps us to reduce
the query preservation problem to the equivalence problem of tas.

Definition 34. An n-rq Q = (A, S) has the One-by-Run property if (1) there
exist pairwise disjoint subsets S1, . . . , Sn of state(A) satisfying S = S1 × · · · × Sn,
and (2) for every t− ∈ L(A), m ∈ run(A, t−), and i ∈ [n], there exists exactly
one v ∈ pos(t−) such that m(v) ∈ Si.

Given Q = (A, {s}), we can construct a query that has the One-by-Run prop-
erty and is equivalent to Q. Let A = (PA, Σ, P I

A , δA), s = (ps1, . . . , psn), and
Ps = {ps1, . . . , psn}. Construct an n-rq Q̃ = (Ã, S̃) from A as follows. Let
Ã = (P̃ , Σ, P̃I , δ̃) where P̃ = PA× 2Ps × ([n]∪ {0}), P̃I = P I

A ×{Ps}× ([n]∪ {0}).
δ̃ is the set of rules such that (p, P, f) → σ((p1, P1, f1), . . . , (pd, Pd, fd)) ∈ δ̃ with
f, f1, . . . , fd ∈ [n] ∪ {0} if and only if there exists a rule p → σ(p1, . . . , pd) ∈ δA
and for all i ∈ [n], the following conditions hold:

• There exists at most one j ∈ [d] satisfying psi ∈ Pj.

• If psi ∈ Pj for some j ∈ [d], then psi ∈ P and f 6= i.

• If psi /∈ Pj for all j ∈ [d] and p = psi , then psi ∈ P and f = i, or psi /∈ P and
f 6= i.

• If psi /∈ Pj for all j ∈ [d] and p 6= psi , then psi /∈ P and f 6= i.

Finally, remove useless states and rules of Ã and let S̃ = S1 × · · · × Sn where
Si = { (psi , Pi, i) | Pi ⊆ Ps }.
Let Q̃ = (Ã, S̃) be the query obtained from Q = (A, {(ps1, . . . , psn)}) by the

construction above. Let t be a data tree such that t− ∈ L(A) and v be a node
of t−. Let m̃ be a run of Ã on t−, m̃(v) = (p, P, f) and Q̃(m̃, t) = {(v1, . . . , vn)}.
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The first component p of m̃(v) is a state of A. The third component f of m̃(v)
is i if and only if v = vi. When m̃(v) = (psi , P, i), psi is said to be selected at v
by Ã according to m̃. If we regard Ã moves according to m̃ in the bottom-up
manner, the second component P is the set consisting of the states which have
already been selected at some descendants of v. For example, consider a rule r =
(ps4, P4, 4) → σ((ps1, P1, 1), (p2, P2, 0), (ps3, P3, 0)) of Ã and let m̃(v) = (ps4, P4, 4).
By the construction of Ã, ps1 ∈ P1 and P4 = P1 ∪ P2 ∪ P3 ∪ {ps4}. If the rule r is
applied at v having children v1, v2 and v3, ps1 is selected at v1 and ps4 is selected
at v. Now we prove the correctness of the above construction.
Lemma 35. Let Q̃ = (Ã, S̃) be the query constructed from Q = (A, {s}) by
the construction above. The query Q̃ has the One-by-Run property and Q̃ is
equivalent to Q.
Proof. First, we show that Q̃ = (Ã, S̃) has the One-by-Run property. Let s =
(ps1, . . . , psn) and Ps = {ps1, . . . , psn}. It is obvious that S̃ satisfies the condition (1)
of the One-by-Run property by the construction of S̃. The second condition (2)
can be derived from the following property (†), which can be shown by induction
on N = |pos(t−/v)|:

m̃(v) = (p, P, f) with psi ∈ P
⇐⇒ ∃!w ≥ v. m̃(w) ∈ Si = { (psi , Pi, i) | Pi ⊆ Ps }. (†)

Because the second component of initial states of Ã is Ps = {ps1, . . . , psn}, the
property (†) implies that there exists exactly one node vi of t− such that m̃(vi) =
(psi , P, i) for any run m̃ of Ã, and i ∈ [n]. Hence, Q̃ satisfies the condition (2) of
the One-by-Run property.
Next, we show that val(Q̃(t)) = val(Q(t)) for every data tree t such that

t− ∈ L(A). It is obvious that val(Q̃(t)) = val(Q(t)) holds if Q̃(t) = Q(t). Let
m̃ be a run of Ã on a tree t− ∈ L(A). For i ∈ [n] and a node vi ∈ pos(t)
satisfying m̃(vi) = (psi , Pi, i) ∈ Si, there exists a run m of A such that m(vi) = psi
by the construction of Q̃. Hence Q̃(m̃, t) ⊆ Q(m, t). For each run m̃ of Ã,
Q̃(m̃, t) ⊆ Q(m, t) holds. Therefore Q̃(t) ⊆ Q(t). Next, let m be a run of A on t−
and assume (v1, . . . , vn) ∈ Q(m, t). Let m̃ be the mapping obtained from m and
(v1, . . . , vn) by m̃(v) = (p, P, f) where p = m(v), f = i if v = vi, and f = 0
otherwise and P is determined in the bottom-up way. This m̃ is a run of Ã on t−
by the construction of Ã, and Q̃(m̃, t) = {(v1, . . . , vn)} by the condition (2) of
the One-by-Run property.

Thus, any n-rq Q = (A, {s1, . . . , sk}) can be represented as the union of n-rqs
Q̃1, . . . , Q̃k such that each Q̃i is equivalent to (A, {si}) and has the One-by-Run
property.
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3.6.2 Algorithm for Query Preservation
We explain the idea of our algorithm n-QP. Let Tr and Q = (A, S) be a dltV and
an n-rq given as inputs. At the first step, n-QP turns Q into the union of n-rqs
having the One-by-Run property. For simplicity to explain the idea, let us assume
here that the obtained query is an n-rq Q̃ = (Ã, S̃). The query can be represented
as a set of “marked” trees. For a tree t and a run m of Ã on t−, we say that
τ is a marked tree for t corresponding to m if τ is obtained from t by replacing
lab(t, vi) with (i, lab(t, vi)) for each i ∈ [n] where (m(v1), . . . ,m(vn)) ∈ S̃. By
the One-by-Run property, each marked tree for t represents exactly one tuple of
positions selected by Q̃. Let Amk be a ta that recognizes the set of all the marked
trees for Q̃. The algorithm n-QP decides if L(Amk) = T−1

mk (Tmk(L(Amk))∩L(Awp)
where Tmk is a marked version of Tr that ignores data values, and Awp recognizes
the set of candidate marked trees in which any marked position is deleted by Tr.
Note that the set of trees in the right-hand side of the above equality can be
captured by a ta, and so n-QP reduces the query preservation problem to the
equivalence problem of tas.

Algorithm n-QP to Decide n-QueryPres

Input: n-rq Q = (A, {s1, . . . , sk}), dltV Tr = (PT , Σ,∆, {p0
T}, δT ).

Output: If Tr preserves Q, output “Yes,” otherwise “No.”
Step 1. For each si, construct Q̃i equivalent to (A, {si}) having the One-by-Run
property.
Step 2. For each Q̃j = (Aj, Sj) where Aj = (P j, Σ, P j

I , δ
j) and Sj = Sj1×· · ·×Sjn ,

construct ta Ajmk = (P j, Σ ∪ ([n] × Σ), P j
I , δ

mk
Aj ) from Aj where δmk

Aj is defined
as follows: For each rule of the form p → σ(p1, . . . , pd) ∈ δj, if p is in Sji then
p→ (i, σ)(p1, . . . , pd) ∈ δmk

Aj , otherwise p→ σ(p1, . . . , pd) ∈ δmk
Aj . Then, construct

the ta Amk as the union ta of A1
mk, . . . , A

n
mk.

Step 3. Construct the dlt Tmk = (PT , Σ ∪ ([n] × Σ), ∆ ∪ ([n] ×∆), {p0
T}, δmk

T )
where δmk

T is the smallest set satisfying the following conditions: For each i ∈
[n] and for each rule pT (σ(z)(x1, . . . , xd)) → C(j←z)[p1

T (x1), . . . , pdT (xd)] ∈ δT
that is not a value-erasing rule, let pT (σ(x1, . . . , xd)) → C[p1

T (x1), . . . , pdT (xd)] ∈
δmk
T , and pT ((i, σ)(x1, . . . , xd)) → C[p1

T (x1), . . . , pdT (xd)] ∈ δmk
T where lab(C, j) =

(i, lab(C, j)), and for each v ∈ pos(C) satisfying v 6= j, lab(C, j) = lab(C, j).
Step 4. Construct a ta A′mk such that

L(A′mk) = T−1
mk (Tmk(L(Amk))),
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by type inference and inverse type inference [10], where T−1
mk (L) = { t | Tmk(t) ∈

L }.
Step 5. Construct the ta Awp = (P ′′, Σ ∪ ([n]×Σ), P ′I , δ′′∪ δwp) from Tr and Q,
as the marked version of A′′ = (P ′′, Σ, P ′′I , δ′′) constructed in 1-WQP, where δwp
is defined as follows: For each rule (p, pT ) → σ((p1

A, p
1
T ), . . . , (pdA, pdT )) of A′′, if

pT 6= ⊥ and Tr has no value-erasing rule with pT in its left-hand side and σ in its
right-hand side, then add the rule (p, pT )→ (i, σ)((p1

A, p
1
T ), . . . , (pdA, pdT )) to δwp.

Step 6. If L(Amk) = L(A′mk) ∩ L(Awp), output “Yes,” otherwise “No.”

Example 7. Recall Q and Tr in Example 5. By steps 1–4 of the above algo-
rithm n-QP,

L(Amk) = {f((1, a), a), g(a, (1, a))},
L(A′mk) = {f((1, a), a), g((1, a), a), f(a, (1, a)), g(a, (1, a))}

= L(A′mk) ∩ L(Awp).

Hence, L(Amk)  L(A′mk) ∩ L(Awp) holds and the algorithm answers “No.” ♦

3.6.3 Correctness
To show the correctness of n-QP, we prepare some functions for marked trees.
We use the functions lab and val for any marked trees and their positions as
natural extensions of the functions for data trees and their positions. By the
assumption, if τ ∈ L(Amk) then for each i ∈ [n] there exist a unique vi ∈ pos(τ)
and a unique νi ∈ N, such that lab(τ, vi) = (i, σ) and val(τ, vi) = νi hold, and
we denote val(τ) = (ν1, . . . , νn). For instance, if τ = f (3)((2, a)(4), (1, a)(5)) then
val(τ) = (5, 4). We denote the function that removes all marks from a marked
tree τ as I− : T (N)

Σ∪([n]×Σ) → T
(N)
Σ . For any v of τ satisfying lab(τ, v) = (i, σ),

lab(I−(τ), v) = σ.
Before showing the correctness of n-QP, we show the following lemma for prop-

erties of (marked) trees accepted by Amk.
Lemma 36. Let Q = (A, S) be an n-rq. For any t where t− ∈ L(A), the
following condition holds.

(ν1, . . . , νn) ∈ val(Q(t))⇐⇒
∃τ. ( τ− ∈ L(Amk) ∧ I−(τ) = t ∧ val(τ) = (ν1, . . . , νn) ). (3.3)

Proof. It is obvious by the construction of Ajmk.

We show the correctness of n-QP by using Lemma 36.
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Lemma 37. A dltV Tr preserves an n-rq Q if and only if L(Amk) = L(A′mk) ∩
L(Awp) in Step 6 of the algorithm n-QP.

Proof. (⇒) We show that Tr does not preserve Q = (A, S) if L(Amk) 6= L(A′mk)∩
L(Awp).
(1) Assume that L(Amk) \ (L(A′mk) ∩ L(Awp)) 6= ∅. Let τ be a tree such that
τ− ∈ L(Amk) \ (L(A′mk) ∩ L(Awp)). We can assume that τ is value-unduplicated.
By Lemma 36, we have val(τ) ∈ Q(I−(τ)). We also have τ− ∈ L(A′mk) be-
cause τ− ∈ T−1

mk (Tmk(τ−)) ⊆ L(A′mk) whenever τ− ∈ L(Amk) ⊆ dom(Tmk). Thus,
τ− /∈ L(Awp). It follows from the construction of Awp that there exists a po-
sition v ∈ pos(τ) such that lab(τ, v) = (i, σ) for some i ∈ [n] and σ ∈ Σ,
and Tr ignores v or applies a value-erasing rule to v in I−(τ). In addition,
since τ is value-unduplicated, any position of I−(τ) other than v does not have
val(τ, v), and thus val(τ, v) is not contained in Tr(I−(τ)). Hence, for any n-rq
Q′, Q′(Tr(I−(τ))) does not contain val(τ), the i th element of which is val(τ, v),
and thus Q(I−(τ)) 6= Q′(Tr(I−(τ))). Note that in this case, Tr does not weakly
preserve Q.
(2) Assume that (L(A′mk) ∩ L(Awp)) \ L(Amk) 6= ∅. Let τ be a tree such that
τ− ∈ (L(A′mk) ∩ L(Awp)) \ L(Amk). We can assume that τ is value-unduplicated.
From the construction of A′mk, there exists a tree τa such that τ−a ∈ L(Amk) and
Tmk(τ−a ) = Tmk(τ−). We can assume without loss of generality I−(τa) 6= I−(τ),
val(τa) = val(τ), and that τa is value-unduplicated. Then, we have val(τ) ∈
Q(I−(τa)) by Lemma 36. Since τ− /∈ L(Amk) and τ is value-unduplicated,
val(τ) 6= val(τ̃) for any tree τ̃ such that τ̃− ∈ L(Amk) and I−(τ̃) = I−(τ), and so
we have val(τ) /∈ Q(I−(τ)). Next, let us observe Tr(I−(τ)) and Tr(I−(τa)). We
have (Tr(I−(τ)))− = (Tr(I−(τa)))− because Tmk(τ−) = Tmk(τ−a ). Let val(τ) =
(ν1, . . . , νn). There is one and only one n-tuple v̄ = (v1, . . . , vn) of positions
of Tr(I−(τ)) such that val(Tr(I−(τ)), vi) = νi for each i ∈ [n]. Also in Tr(I−(τa)),
v̄ is the only one tuple of positions such that val(Tr(I−(τa)), vi) = νi for each
i ∈ [n]. Thus, for any n-rq Q′, val(τ) ∈ Q′(Tr(I−(τ))) if and only if val(τ) ∈
Q′(Tr(I−(τa))). Here, we show that Tr does not preserve Q by any n-rq. For
contradiction, we assume that some Q′ satisfies val(Q(t)) = val(Q′(Tr(t))) for
every t ∈ dom(Tr). We have val(τ) ∈ Q′(Tr(I−(τa))) because val(τ) ∈ Q(I−(τa)),
and then val(τ) ∈ Q′(Tr(I−(τ))). However, val(τ) /∈ Q(I−(τ)) as stated above.
This is a contradiction.
(⇐) We show that L(Amk) 6= L(A′mk)∩L(Awp) if Tr does not preserve Q = (A, S).
(1) Assume that Tr does not weakly preserve Q. There is a tree t and positions
v1, . . . , vn of t such that (v1, . . . , vn) ∈ Q(t), and some vi (i ∈ [n]) is ignored
or is applied a value-erasing rule to by Tr. Consider the marked tree τ such
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that I−(τ) = t and lab(τ, vi) = (i, lab(t, vi)) for each i ∈ [n], and then τ− ∈
L(Amk) \ L(Awp). Hence τ− ∈ L(Amk) \ (L(A′mk) ∩ L(Awp)).
(2) Assume that Tr weakly preserves Q but does not strongly. We consider the
query Q′ constructed by n-WQC, by which Tr weakly preserves Q. Since Tr does
not strongly preserve Q, there is a tree t such that val(Q(t))  val(Q′(Tr(t))).
Consider ν̄ ∈ val(Q′(Tr(t))) \ val(Q(t)). Since ν̄ ∈ val(Q′(Tr(t))), there are a
run m′ ∈ run(A′, Tr(t)−) and positions w1, . . . , wn of Tr(t) such that (m′(w1), . . . ,
m′(wn)) ∈ S ′ and (val(Tr(t), w1), . . . , val(Tr(t), wn)) = ν̄. By the definition of
dltV, since val(Tr(t), vi) 6= nil for all i ∈ [n], there are positions v1, . . . , vn of t
such that (val(t, v1), . . . , val(t, vn)) = ν̄. Moreover, it follows that any vi (i ∈ [n])
is not deleted by Tr, that is, vi is neither ignored nor applied a value-erasing
rule to by Tr. Since ν̄ /∈ val(Q(t)), there is no run m ∈ run(A, t−) such that
(m(v1), . . . ,m(vn)) ∈ S. The construction of Q′ guarantees that for the run m′
of A′ for Tr(t)−, there are a tree ta, a run m′ ∈ run(A, t−a ), positions v′1, . . . , v′n
of ta such that Tr(ta)− = Tr(t)−, (m′(v′1), . . . ,m′(v′n)) ∈ S, and for each i ∈ [n], wi
is output when applying some rule of Tr to v′i, val(ta, v′i) = val(Tr(ta), wi). Here,
we consider the marked tree τ such that I−(τ) = t and lab(τ, vi) = (i, lab(t, vi))
for each i ∈ [n]. Similarly, let τa be the marked tree of ta. Then, we have
τ− /∈ L(Amk) and τ−a ∈ L(Amk) by Lemma 36. We also have Tmk(τ−) = Tmk(τ−a ),
and thus τ− ∈ T−1

mk (Tmk(τ−a )) ⊆ L(A′mk). Moreover, τ− ∈ L(Awp) because any vi
in I−(τ) is not deleted by Tr. Therefore, τ− ∈ (L(A′mk) ∩ L(Awp)) \ L(Amk).

Theorem 38. n-QueryPres is in 2-EXPTIME in general, EXPTIME-hard
even if Q is a unary query.

Proof. By Lemma 35, any n-rq Q = (A, {s1, . . . , sn}) can be divided into n of
n-rq Q̃1, . . . , Q̃n. Furthermore by applying Lemma 37, we can decide whether Tr
preserves Q for any Q̃j (j ∈ [n]) and Tr. Hence n-QueryPres for any n-rq Q
and Tr is also decidable. We can show n-QP runs in double-exponential time as
follows. We decompose a given query in Step 1, which can be done in exponential
time, and we test the equivalence for tas in Step 6 for each query decomposed.
It is known that the equivalence problem for tas is EXPTIME-complete (see,
e.g., [10]), so we can compute Step 6 in exponential time. Thus n-QueryPres
is in 2-EXPTIME.
For the EXPTIME-hardness, we give a reduction from the inclusion problem

for tree automata, which is known to be EXPTIME-complete. Consider two
tas A1 = (P1, Σ, P

I
1 , δ1), A2 = (P2, Σ, P

I
2 , δ2), and let A′1 = (P ′1 , Σ, P ′I1 , δ′1) be

a copy of A1, where P1, P2, and P ′1 are disjoint sets. Let the query be the
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1-rq Q = (Aq, P1 ∪ P2) where

Aq = (P1 ∪ P2 ∪ P ′1 ∪ {pq}, Σ ∪ {a, b}, {pq}, δ1 ∪ δ2 ∪ δ′1 ∪ δq),
δq = { pq → a(pI) | pI ∈ P I

1 } ∪ { pq → b(pI) | pI ∈ P ′I1 ∪ P I
2 },

a, b /∈ Σ, rk(a) = rk(b) = 1, and pq /∈ P1 ∪ P2 ∪ P ′1 . We let Tr be a dltV that
only deletes any node labeled a or b, e.g., Tr(a(b(c))) = c. We show that Tr
preserves Q if and only if L(A1) ⊆ L(A2), i.e., any tree t1 ∈ L(A1) \ L(A2) does
not exist. Note that the above Tr weakly preserves Q, because Tr does not deletes
any node retrieved by Q. Consider the four cases below:

1. If t1 ∈ L(A1)\L(A2): val(Q(a(t1))) = { val(t, v) | v ∈ node(t) }, val(Q(b(t1)))
= ∅, and Tr(a(t1)) = Tr(b(t1)).

2. If t1 ∈ L(A1) ∩ L(A2): val(Q(a(t1))) = val(Q(b(t1))), and Tr(a(t1)) =
Tr(b(t1)).

3. If t1 ∈ L(A2) \L(A1): a(t1) /∈ L(A), and any t′ 6= b(t1) satisfying Tr(b(t1)) =
Tr(t′) does not exist in L(A).

4. If t1 /∈ L(A1) ∪ L(A2): a(t1), b(t1) /∈ L(A).

Suppose Tr preserves Q. In the case 1, if there exists t1 ∈ L(A1) \ L(A2), we
have val(Q(a(t1))) 6= val(Q(b(t1))) and Tr(a(t1)) = Tr(b(t1)), which violate the
condition (3.1) of the query preservation. Hence any tree t1 ∈ L(A1)\L(A2) does
not exist. The other cases do not violate the condition (3.1). Conversely, if any
tree t1 ∈ L(A1) \ L(A2) does not exist, Tr does not preserve Q due to the same
reason above. Thus Tr preserves Q if and only if L(A1) ⊆ L(A2).
Note that the above Q is a 1-rq, and hence we obtain EXPTIME-hardness

even if Q is a unary query.

Theorem 39. n-QueryPres is EXPTIME-complete if n is fixed.

Proof. By Theorem 38, n-QueryPres is EXPTIME-hard, and we can compute
Step 1 of the algorithm n-QP in polynomial time if n is fixed.

Note that the above algorithm can work for more powerful classes of transducers
that preserve regularity under those transducers and inverse applications of them.
We discuss an extension of views in Section 3.7.
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3.7 Extension of Views
We have seen in the previous sections, the problem of deciding whether Tr pre-
serves Q or not is decidable, where Tr is a deterministic linear top-down data tree
transducer. In this section, we show that the class of tree transductions can be
extended to a more expressive class L whose transductions are single-valued and
preserve regularity. Note that a tree transduction Tr ∈ L preserves regularity if
Tr(L(A)) and Tr−1(L(A)) are regular for any ta A, i.e., the sets are recognized
by some tas. Whereas Tr is single-valued (or functional) if Tr has exactly one
output tree for each input tree in dom(Tr).
The class of single-valued extended linear top-down tree transducer with regular

look-ahead (s-eltR) is one of the more expressive class than the class of dlt
whose transductions are single-valued and preserve regularity [4, 26, 39]. The
transduction of s-eltR has rules whose left-hand side has multiple symbols instead
of a symbol, and the transduction has the ability to inspect a regular property
for the subtree of an input tree. These are why s-eltR is more expressive than
dltV.
Our proof of the correctness of the algorithm n-QP (Theorem 38) requires only

the single-valuedness and the regularity of tree transducers, and thus we can
easily extend our decidability result to the s-eltVR, which is a natural extension
of s-eltR running on data trees.

Theorem 40. Given an n-rq Q and an s-eltVR Tr, the problem of deciding
whether Tr preserves Q is decidable.

3.8 Conclusion of the Chapter
We have studied the decidability problems of the weak query preservation and the
strong query preservation for deterministic linear top-down data tree transducers
and run-based n-ary queries. We have shown the weak query preservation problem
is coNP-complete for n-ary queries where n is not fixed, and the problem becomes
PTIME if n is a constant. We have also shown the strong query preservation
problem is in 2-EXPTIME in general, EXPTIME-hard even if n is fixed. This
decidability results have been extended to the class of single-valued extended
linear top-down data tree transducers, which is a more expressive class than the
class of deterministic linear top-down data tree transducers. We have provided
an efficient algorithm to construct the query on transformed trees from a given
query on input trees and a given view.
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Chapter 4
Conclusion

We have considered several query preservation problems for tree-structured data
in this thesis.
In Chapter 2, we have defined two kinds of query preservation problems for

nondeterministic views and queries on ranked trees: universal preservation and
existential preservation. We have proved that the universal preservation problem
is decidable for compositions of extended linear top-down tree transducers with
regular look-ahead as views and deterministic MSO tree transducers as queries
(see Theorem 15). To obtain the result we have slightly generalized the result [20]
of the equivalence problem for deterministic MSO tree transducers (see Theo-
rem 13). Moreover, we have shown an algorithm that is sound for the existential
preservation for finite-valued linear bottom-up tree transducers as views and de-
terministic MSO tree transducers as queries (see Theorem 18), and also showed
some algorithms that are sound for the problem for nondeterministic queries re-
alized by finite-valued (linear) bottom-up tree transducers (see Theorem 23 and
Corollary 24). We would like to know whether (1) a sound and complete algo-
rithm exists for the existential preservation, and (2) our results can be extended
to more expressive classes of tree transducers such as macro tree transducers (see,
e.g., [18,19,22]). Obtaining a positive solution for the question (1) seems difficult,
because one is required to prove a given query q is not preserved by vi (i ∈ [K])
for every possible way of decomposing a finite-valued tree transduction v into
single-valued ones v1, . . . , vK .
As mentioned in Theorem 17, finite-valued bottom-up tree transducers can

be effectively decomposed into a finite number of single-valued ones of double-
exponential order of the size of the original transducers. Whereas, in the word
case, k-valued (word) transducers can be effectively decomposed into k single-
valued (unambiguous) ones [45, 51] of single-exponential size [44]. Can k-valued
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tree transducers decomposed into k single-valued ones of single-exponential size?
It is an important problem that remains open for twenty years.
In Chapter 3, we have studied the decidability problems of the weak query

preservation and the strong query preservation for deterministic linear top-down
data tree transducers and run-based n-ary queries. We have shown the weak
query preservation problem is coNP-complete for n-ary queries where n is not
fixed, and the problem becomes PTIME if n is a constant. We have also shown
the strong query preservation problem is in 2-EXPTIME in general, EXPTIME-
hard even if n is fixed. This decidability results have been extended to the
class of single-valued extended linear top-down data tree transducers, which is a
more expressive class than the class of deterministic linear top-down data tree
transducers. We have provided an efficient algorithm to construct the query on
transformed trees from a given query on input trees and a given view.
We would like to know whether the weak and strong query preservation prob-

lems are decidable or not for a transduction model having a copy operation,
because copying elements is one of the fundamental operations for trees. Note
that, as mentioned in Chapter 2, (universal and existential) query preservation
problem is undecidable for the case when a view and a query are realized by tree
transducers and the view can copy.

“I will. I’ll get there and show others the way.”
— Act IV [11]
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