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Abstract

Recently, systems that employ various sensors have been constructed, and
thus the amount of the sensor data in electronic form is growing. The combined
data could be high dimensional, and modeling from this data may output poor
models since it is difficult to fill the high-dimensional space. If we use the model
constructed with high dimensional data, the prediction of the model with new
data may be irrelevant. That is, the curse of dimensionality could be a problem.
Meanwhile, since the high-dimensional data often lies on a lower-dimensional
manifold intrinsically, the low-dimensional manifold can be extracted by apply-
ing the manifold learning techniques, also known as nonlinear dimensionality
reduction methods. Then, we provide a better model, thus avoiding the curse of
dimensionality. However, the model constructed with the low-dimensional data
obtained with such a method may deteriorate the task performance or can lead
to task failure since the method does not consider the task.

Thus, in this dissertation, we propose task-relevant manifold learning methods
through construction of new criteria by adding constraints induced from the task
such as prediction or control. By introducing this criterion, we achieve both
manifold learning and modeling simultaneously, and the model is constructed
that ameliorates the task performance. The proposition is validated through the

following two problems.

*Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science
and Technology, NAIST-IS-DD1361008, March 14, 2016.



First, we consider the linear system identification method using high dimen-
sional input and output data. We assume that the input and output data lie on
manifolds respectively, and each manifold relates dynamically. In this study, we
propose a new criterion to obtain a model for accurate prediction by considering
the error of fitting to the linear dynamics. Using this criterion, we achieve both
the dimensionality reduction of the input and output data, and the system iden-
tification. We experimentally validate the effectiveness of the proposed method
by experimenting with synthetic data.

Next, a partial manifold learning method is considered. We consider a two-
factor generative model whose one factor is known and the other is unknown. In
order to obtain an unknown factor considering the effect of both factors to the
observation, we propose a manifold learning method that uses a prior informa-
tion of the model structure as the constraints for optimization of the criteria. The
proposed method is used for modeling for the object recognition problem using
a robot hand with tactile sensors. The object recognition is achieved by esti-
mating the inherent parameter of objects allocated in advance, by executing the
exploratory action by the robot to the object. In order to achieve the recognition
efficiently, we need a sensor model, which represents the relationship among the
sensor data, the exploratory action, and the object being touched, to determine
the informativeness of the resulting sensor data of the action. It is better to use
the smooth model to make the recognition easier. Thus, we apply the proposed
method in order to estimate the parameter so that a smooth model is obtained.
The effectiveness of the proposed methods is validated through the numerical

simulation and the experiments with the actual robot.
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Chapter 1
Introduction

This chapter introduces the overview of the dissertation. The research back-
ground is described in section 1.1. Next, the research motivation and the ob-
jective is presented in section 1.2. Then, the outline of this thesis is shown in

section 1.3.

1.1. Background

Recently, various data from sensors are available in electronic form, and an in-

telligent system with these sensors is constructed to achieve many tasks. For

Image 10° dim

Tactile

102 dim

J
—>
m"l w i 10% dim

Auditory

Figure 1.1. Robot as an example of a system. Since the amount of the data in one
sample obtained from external sensor such as an image sensor (camera), a tactile
sensor (pressure) and an auditory sensor (microphone) is large, the vectorized

data will be high dimensional.



example, to enable automatic driving with intelligent mobility or to achieve ef-
ficient use of energy with a smart living environment, these systems (i.e., a car
or a house) are employed with many sensors. Further, a robot is used for the
assembly of parts, and it can be regarded as one of these systems. The robot is
composed of external sensors such as camera, microphone, and pressure sensors
in order to obtain the information around the robot (Fig. 1.1). In addition, the
robot contains the internal sensors such as encoders, tachogenerators, and torque
sensors in order to obtain the information that is related to the inside of the robot
body. The sensor data of the robot is utilized for help in the nursing care and
welfare units, and can be used to control the robot autonomously.

The obtained data is first used for modeling the generative models. For exam-
ple, to achieve the assembly of parts with robots, the robot should be controlled
accurately, and the robot should be able to recognize the required parts in order
to pick up the part. The model-based control can be applied if the dynamical
model of the robot is made available. Moreover, the classification of parts can be
achieved with the generative model of the sensor model. However, the obtained
data from the system is high dimensional. More concretely, since the amount
of data in one sample is large, it will be high dimensional if whole data of each
sample is vectorized. Modeling with such high-dimensional data is affected by the
curse of dimensionality. To avoid the curse, the dimensionality reduction meth-
ods are proposed in the machine learning field, and the effectiveness is shown in
many applications.

The dimensionality reduction methods reduce the dimensionality of the data
without loss of the information under some assumptions. The principal com-
ponent analysis (PCA) [3] is a well-known algorithm in multivariate statistics,
and it is used for the visualization of the high-dimensional data. In PCA, it
is assumed that the (observed) high-dimensional data is a linear projection of
the low-dimensional data. The methods that can be regarded as similar meth-
ods to PCA are MultiDimensional Scaling (MDS) [4] and Probabilistic Principal
Component Analysis (PPCA) [5].

However, if the assumption is not held (e.g. the nonlinear projection), applying
a linear method such as PCA loses information. This deteriorates the task per-

formance with the low-dimensional data. In contrast with the linear method, the



nonlinear dimensionality reduction methods, sometimes called manifold learning
methods, were proposed in 2000s. As typical methods, Isometric Feature Mapping
(Isomap) [6], Locally Linear Embeddings (LLE) [7], and Laplacian Eigenmaps [8]
are well known. One of the assumptions in Isomap is that the observation process
is isometric, which is embedded in high dimensions. This assumption leads to
failure in reduction of dimensionality without loss of information, if the manifold
in the high-dimensional space is nonconvex. However, such a nonlinear dimen-
sionality reduction method leads to success in reducing the dimensionality in
many applications. Moreover, these manifold learning methods can be regarded
as the kernel principal component analysis with a data-driven kernel. In the late
of 2000s, the Gaussian Process Latent Variable Models (GPLVMs) [2] have been
proposed as an extension of PPCA to nonlinear projection, and they successfully

achieve the reduction of dimensionality even if the observation is noisy.

1.2. Research motivation and objective

Most of the dimensionality reduction methods are classified as unsupervised learn-
ing methods. The high-dimensional observation is only available when the low-
dimensional data is computed. The criterion to find the low-dimensional data
is based on some a prior knowledge (e.g. the observation was generated through
linear generative model, or the space is convex). If the prior knowledge correctly
fits to the data, the low-dimensional data can be obtained without information
loss. However, the obtained low-dimensional data is not supposed to be used for
system modeling for the task that is to be executed later, and so there is an open
question, “are these criteria always the best for obtaining the low-dimensional
data used for the task?”. If the obtained low-dimensional data is not suitable for
the task, then, the task fails (Fig. 1.2(a)).

In this dissertation, we propose task-relevant manifold learning methods. The
task to be executed later is considered when the manifold is learned. The require-
ment is, for example, the model is linear or smooth. This requirement is con-
verted into a new criterion or some additional constraints (Fig. 1.2(b)). Then,
by solving the new optimization problem, the task-relevant manifold learning is

achieved. Both the modeling and manifold learning are simultaneously achieved.



manifold

learning modeling
>  E— Task

" failed

high dimensional data low dimensional data
(training data)

(a) Conventional: manifold learning without considering the task

task-relevant
manifold learning
| ——

modeling
= Task

success
high dimensional data low dimensional data
(training data)

(b) Proposed: with a task-relevant manifold learning

Figure 1.2. Illustration of the contribution of this dissertation

The proposition is validated through the following two problems.

First, we consider modeling using the high-dimensional data. The obtained
model is useful for the analysis, or prediction. Particularly, we consider modeling
of the linear dynamical systems represented using transfer function models. Thus,
the task to be considered is to estimate the transfer function model using the
high-dimensional data. In order to obtain an accurate model, we propose input-
output manifold learning with transfer function models (IOMLTF) constructed by
changing the criterion in the manifold learning. Through numerical simulations
with synthetic data, the effectiveness of the proposed method will be validated.

Next, in order to consider the non-zero initial state of the system, we study
another version of input-output manifold learning. Our solution is to use the
state space model for the system representation. We call the proposed method
input-output manifold learning with state space models (IOMLSS). That is, the
state space model allows us to assume non-zero initial state. Additionally, more

complicated noise models can be identified. The effectiveness of the proposed



method will be validated with numerical simulations.

Lastly, a partial manifold learning method is considered in order to determine
a suitable manifold to obtain the desired model structure. We consider a two-
factor generative model whose one factor is known and the other is unknown. In
order to obtain the unknown factor considering the effect of both factors to the
observation, we propose a partial manifold learning method using the observa-
tion and the known factor. The method is based on GPLVMs and constructed
by adding a constraint related to the desired model structure to the optimization
problem. Further, this method is applied to obtain the suitable sensor model for
object recognition using robots with tactile sensors. We call the proposed method
object manifold learning in this particular application. The object recognition is
achieved by sequential parameter estimation: first, a suitable parameter is allo-
cated for each object, and the parameter is sequentially estimated by the sensor
data obtained through an exploratory action of the robot. The requirements
are 1) an intrinsic parameter should be allocated for each object since multiple
observations are obtained by executing multiple exploratory actions to only one
object, and 2) the model should be smooth to make the problem easier. Thus,
the first consideration is to estimate the suitable parameter for each object from
the observation considering the effect of the action and the smoothness of the
parameter in the model. The proposed manifold learning method will be applied
to this problem to extract the object manifold which lies on the tactile sensor
space. In addition, particularly considering the object recognition problem, the
quality of the obtained data affects to the quickness of the recognition. In other
words, the informativeness of the obtained data is important. Simultaneously, the
compliance of the exploratory action should be considered to avoid breaking the
object and the robot. Hence, we additionally need to consider obtaining informa-
tive and compliant exploratory action. To achieve this, we propose information
mazimization control. The information maximization control then generates the
informative and compliant action based on the optimal control framework. The
effectiveness of the proposed methods is validated through the numerical simula-

tion with the synthetic data and obtained data from the actual robot.



1.3. Dissertation layout

This dissertation is composed of chapters as described below. The flow of the

chapters is shown in Fig. 1.3.

Chapter 2 provides an overview of the manifold learning methods, which form
the base of the proposed method as shown in Fig. 1.3. The dimensionality
reduction schemes with linear generative models such as PCA and MDS
are described. Then, Isomap, which is a nonlinear dimensionality reduction
scheme, is explained as an extension of MDS. Finally, the dimensionality
reduction methods with probabilistic generative models such as PPCA and
GPLVMs are described.

Chapter 3 describes modeling from high dimensional data, namely input-output
learning with transfer function model (IOMLTF). First, the manifold learn-
ing method is reformulated as a quadratic programming problem with
quadratic constraint condition. Then, the changed criterion for the ac-
curate model is described. The numerical simulation with synthetic data

and image data (Fig. 1.4) used to validate the criterion is shown.

Chapter 4 describes the extension of the IOMLTF to capture the transient re-
sponse, namely input-output learning with state space model (IOMLSS).

The numerical simulation with synthetic data for validation is shown.

Chapter 5 describes a partial manifold learning method for two-factor genera-
tive models. In this chapter, we particularly consider the object recognition
problem using a robot hand with tactile sensor shown in Fig. 1.5 as the ap-
plication of the method. In this application, we call the proposed method
object manifold learning. The proposed method is applied to obtain the
probabilistic sensor model and suitable parameters of each object. In ad-
dition, to consider the compliance of the exploratory action, information
maximization control is proposed. The proposed methods are validated
through the numerical simulations with synthetic data and the obtained

data from the actual robot hand.

Chapter 6 concludes this dissertation with discussion.
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Chapter 2
Manifold Learning

In this chapter, we describe the dimensionality reduction methods based on gen-

erative models. We consider the following function

y = £(x). (2.1)

where y € R% is the (known) d,-dimensional observation, and x € R% is the
(unknown) d,-dimensional latent variable. This model assumption indicates that
the observation y is obtained as a function value of x. Thus, such a model is
called a generative model. Assuming d, > d,, the operation to find suitable x
corresponding y is regarded as the dimensionality reduction of y. Note that the
function f is also unknown. Hence, it is important to determine a suitable function
f. We assume N > d, data set {y;}~ is available, and its mean y = + SNy

is assumed to be zero. In this chapter, we consider the datasets shown in Fig. 2.1.

2.1. Linear dimensionality reduction
Let us assume a linear generative model:

y = Wx, (2.2)



dataset 1

additional noise
—_

linear,
nonlinear

additional noise
pobsthibadiatllth/y

Figure 2.1. The two datasets used in this chapter. (Left): true low-dimensional
data x. (Upper Middle) and (Upper Right): observation using linear generative
model and the observation with additional noise, respectively (dataset 1, noisy 3
dimensional data). (Lower Middle) and (Lower Right): observation using non-
linear generative model and the observation with additional noise, respectively

(dataset 2, noisy swissroll dataset).

where W is a d,, x d, orthogonal matrix: W'W =1, . Then, let us consider the

average of the squared reconstruction error E:

N
1 .
E= -l 23)
=1

where y;, = Wx;. The model with the orthogonal matrix W and the correspond-
ing latent variables x; that minimize the error E defined by Eq. (2.3) is called
(classical) principal component analysis (PCA).

The optimal solution of W is obtained by setting W = V, , where V,  is
composed of with the eigenvectors of the covariance matrix ¥,, = % Zf\il vy}
associated with d, eigenvalues in decreasing order. Let us describe the derivation.
Firstly, we define the matrix Y € RV*4dv ag

T
Y=|yi1 y2 - YN] .



Then, the matrix can be decomposed by singular value decomposition as follows:
Y = UySyVy

where Uy is the N x N matrix with orthogonal columns (Uy Uy = Iy), Sy is
the N x d, matrix, Vy is the d, x d,, orthogonal matrix (V{Vy = VyV§ =1, ),

and Sy is the N x d,, matrix whose (i, 7)-entry contains the singular values s; > 0

fori =1,...,d,. It can be shown that Uy is associated with the eigenvectors
of YY?T. Using this decomposition, we can obtain a rank d, approximation as
follows:
Y ~ Y = -LA]—YSYV;I‘/
where
Uy = Uy(:,1:d,) (2.4)
Sy = Sy(1:d,,1:d,) (2.5)

Vy:Vy(Z,lidx).

The generative model (2.2) indicates that the relationship between all observation
and corresponding latent variables is represented by Y = XW™. Then, using the
approximated matrix Y, the latent variables X and the matrix W are obtained

as follows
X = Uy Sy, (2.6)
W = Vy. (2.7)
It can be shown that the matrix V is equal to Va,.
Let us introduce another method of using the linear generative model. We

consider a matrix Dy whose (i, j)-entry consists of the Euculid distance between

the observations,

Dyi; = |lyi — y;lI> = llyill> + lly; ]I = 2y y;
= Ky + Kyj; — 2Ky, (2.8)

where Ky ;; is the (4, j) entry of Ky. Since the mean of the observations y is 0,

the following relationship is satisfied:
N
Z y;ry] = 07
i=1

10



for j = 1,...,N. Using this equation and Eq. (2.8), the matrix Ky can be

obtained using D as follows:

1
Ky = —;HDyH, (2.9)

where H is the centering matrix H = Iy — %1 Nl%. We can rewrite the expres-
sion as Ky = YYT = XWTWXT = XXT. Then, the low-dimensional latent

variables are obtained through the eigen decomposition of Ky = Ug, Sk, Uf{w
A ral/2
X = Uk, S, (2.10)

where U Ky and S K, are composed of d, eigenvectors and the corresponding d,
eigenvalues of Ky in decreasing order respectively. This is same as Eq. (2.6). The
result indicates that the low-dimensional latent variables can be obtained from
the distance among observations, and this method is called MultiDimensional
Scaling (MDS). Note that the MDS does not output the matrix W. Also note
that the latent variables X can be obtained from the eigen decomposition of Ky
without scaling.

The results for the datasets are shown in Fig. 2.2. As shown in the figure,

Figure 2.2. Dimensionality reduction results with PCA. (Left) Results for
dataset 1. (Right) Results for dataset 2. PCA determines the low-dimensional
structure well for dataset 1. However, the roll structure is squashed for dataset 2.

Hence, the nonlinear structure cannot be found by PCA.

PCA determines the low-dimensional structure well for dataset 1. However, the
roll structure is squashed for dataset 2. Hence, the nonlinear structure is difficult

to determine using PCA.

11



samples @
Geodesic distance *=r==*r==**
Euclid distance = = =
Zap graph distance

Figure 2.3. Comparison of the distances. The black line shows a one-dimensional
manifold in two-dimensional space. The objective is to determine the appropriate
one-dimensional representation from the obtained samples. MDS can be used
to determine the low-dimensional representation such that the Euclid distance
among high-dimensional samples holds as much as possible. Isomap focuses on
the geodesic distance instead, as the original structure is nonlinear. The geodesic

distance is approximated using the graph distance.

2.2. Nonlinear dimensionality reduction

Additionally, let us consider the feature vector of y as follows,

z=¢(y).

Hence, the relationship between x and z is nonlinear. When we construct K,
similar to Eq. (2.9), we need to consider the distances between ¢(y;) and ¢(y;).
By defining ¢ so that the distance among {¢(y;)}Y, corresponds to a graph
distance among {y;}&,, which is the approximation of the geodesic distance (see
Fig. 2.3, and see Appendix A for the computation method of the graph distance),
we can determine {x;}¥ ;, and the method is known as isometric feature mapping
(Isomap).

We can find a nonlinear structure using Isomap even it is difficult to find using
PCA and MDS. Isomap can be regarded as an extension of MDS. It is assumed
that the squared graph distance between the i-th sample and j-th sample d?(i, j)

12



fori,j =1,..., N is stored in the N x N matrix D, as follows:
(D.)yj = d2(i, ).

Then, with an assumption that the samples are centered (zero-mean), the matrix

K. can be constructed using D, in a similar way to Eq. (2.10) as

K, = —%HDZH

where H is the centering matrix H = Iy — %1 ~1%. The only difference is the
distance used for D. MDS is regarded as a special case where ¢(y) = y. With
both distances, the low-dimensional representation can be obtained by solving the
eigenvalue decomposition problem. The nonlinear mapping can be successfully
found with Isomap as shown in Fig. 2.4. However, some data points are mixed

because of the observation noise.

Figure 2.4. Dimensionality reduction results with Isomap. (Left) Results for
dataset 1. (Right) Results for dataset 2. For both dataset 1 and dataset 2,

[somap can be used to determine the suitable low-dimensional representation.

2.3. Dimensionality reduction with probabilistic

model

To take the observation noise into account, let us consider the following generative

model:

y=Wx+e (2.11)

13



where € is the Gaussian noise € ~ AN (0,0%I). Let us represent this model using

a probability distribution as follows,
p(ylx) = N(Wx, 0’1 (2.12)

The prior of the latent variable p(x) is set to a Gaussian p(x) = N(0,I). Then,
the marginal distribution p(y) can be obtained as

py) = [ pyopexx
=N(0,C)
where the covariance matrix C is defined as
C=WW" 4L

Let us determine W and o2 using the maximum likelihood method. The

corresponding log-likelihood is obtained as

N
np(Y|W,0%) =Y Inp(y;[W,0%)

=1

N
N N 1
= —% In(27) — 5 Indet C — 3 ;X?C_lxi

N
= —?{D In(27) + Indet C + Tr(C'Ky)}.
The optimal W and o? are obtained as follows:

WML = ﬂy(Sy — 0'21)1/2
dy

2 1
oML = d

Si

Y T i=dy+1

where Uy and Sy are defined by Eqs. (2.4) and (2.5) respectively. This is known
as probabilistic PCA (PPCA). By setting 02 — 0, the maximum likelihood solu-
tion of the PPCA is reduced to the solution of PCA.
Let us consider a dual problem: obtain X instead of W. First, we define the
prior over W as follows
dy

p(W) = [[V(w,[0.1).

j=1

14



Then, the log-likelihood of the marginal distribution p(y) = [ p(y|W)p(W)dW

becomes
2 N -1 T
Inp(Y|X,0%) = —i{Dln(Zw) +Indet Kx + Tr(Ky YY)},
where
Kx = XX* +¢°L (2.13)
Now, let us consider other representation of Kx as follows,
KX =K + O'2I.

If K=XX", it is same as Eq. (2.13). In this case, the (i, j)-entry of K is x;x;.
Replacing x; with 1(x;) and defining k(x;,x;) = ¥ (x;)¥(x;), the (i, j)-entry
of K is replaced with k(x;,x;). The function k(x,x’) is called a (Mercer) kernel
function. The vector 1) is implicitly determined by the function k. In the case of
Eq. (2.13), as k(x;,X;) = x; x;, the kernel is called a linear kernel. One of other

selections is a squared exponential kernel function expressed as:
! 2 1 NTng—1 !
k(x,x') = aexp —§(X—X) M~ (x —x')

where M is a diagonal matrix with positive elements. The likelihood function
with this kernel function is determined with v = {a? M, 0?}. Thus, v is called
a hyperparameter. The maximum likelihood solution is no longer obtained by
eigen decomposition. Instead, we can obtain the solution via numerical opti-
mization methods, e.g. maxx , Inp(Y|X,~). The dimensionality reduction result
with GPLVMs is shown in Fig. 2.5. The initial low-dimensional data are obtained
through Isomap, and the hyperparameters and low-dimensional data are simulta-
neously optimized using a quasi-newton algorithm. The data points have enough

distance against with the observation noise, as shown in the figure.

2.4. Summary

We described the manifold learning methods. The properties of each method are

summarized in Table 2.1. A comparison of the methods can be found in [9, 10].
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Figure 2.5. Dimensionality reduction results with GPLVMs. (Left) Results for
dataset 1. (Right) Results for dataset 2. Each point of low-dimensional data is

separated, as shown in the left figure of Fig. 2.1.

Table 2.1. Comparison of the methods described in this chapter.

Method

Generative model

Criterion

PCA
MDS
Isomap
PPCA
GPLVM

Deterministic, linear
Deterministic, linear
Deterministic, nonlinear
Probabilistic, linear

Probabilistic, nonlinear

16

Reconstruction error
Euclid distance error
Graph distance error
Marginal log-likelihood
Marginal log-likelihood



Chapter 3

Linear System Identification from

High-dimensional Data

3.1. Introduction

The sensor data such as image, sound and tactile can be easily obtained given
that good and cheap sensors are available nowadays. The obtained data are use-
ful for many objectives such as recognition, prediction, and control. By analyzing
multiple data sets simultaneously, we can find the latent relationship among the
data sets. These data are often obtained as high-dimensional vectors. For ex-
ample, a 128 x 128 pixel RGB image is regarded as a 49,152 (= 128 x 128 x 3)
dimensional vector. This study focuses on the system identification problem that
arises when applying such high-dimensional data for both input and output.

In general, the raw data obtained from the sensors may not be used directly
owing to its high dimensionality, which induces high computational cost. In-
stead, a suitable feature is extracted from data for the purpose of dimensional-
ity reduction of data. As a hand-tuned feature, for the tracking objective, the
centroid position of a specific area in the obtained image is calculated. As a
data-driven feature, SIFT or HOG features are used for image-based recognition
tasks (e.g. [11, 12]). Manifold learning methods such as Isomap [6], LLE [7], or
GPLVM [2] can be used as data-driven feature extractors for more general ob-
jectives. The effectiveness of these schemes for various applications such as the

video image [13], and motion capture data [14] has been shown.
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Figure 3.1. Problem setting of IOMLTF. The obtained data are high-dimensional
input g and output n. It is assumed that the features regarded as low-dimensional
input u and output y have the relationship represented as a linear dynamical

system Y, represented using a transfer function model.

Let us assume that the relationship between the features extracted from two
high-dimensional data is represented as a linear time-invariant dynamical system.
The approach to estimate the system based on from input and output data will
first require the application of the manifold learning method individually for two
data, and then the system is estimated by using a system identification method.
However, given that the manifold learning methods are unsupervised, the features
extracted from the data cannot be exactly the same as the true features: therefore,
the estimated latent relationship between them may not be represented by a LTI
system anymore. This means that a simple linear system identification problem
is undesirably converted to complex nonlinear system identification problem.

To resolve this issue, we propose a paradigm that simultaneously considers
the feature extractions by manifold learning and linear system identification on
the extracted feature space. To realize this concept, we propose the input-output
manifold learning with transfer function model (IOMLTF). Figure 3.1 illustrates
this problem setting. First, the IOMLTF assumes the linear system is represented
using a transfer function model. The features (referred to as low-dimensional

input and output) of high-dimensional data (referred to as high-dimensional input
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and output) are extracted by Isomap [6] with a regularization term that considers
the fitness for the linear system. Then, linear system identification is applied to
update the transfer function model. Repeated application of these optimization
steps converges to a locally optimal solution.

The remainder of this chapter is organized as follows. Firstly, the related work
is listed in Section 3.2. Our proposition, IOMLTF is described in Section 3.3.
The numerical simulation for validating IOMLTF is shown in section 3.4, and the

summary and the scope for future work are discussed in Section 3.5.

3.2. Related works

With regard to related works, Weight Determination by Manifold Regulariza-
tion [15] has been proposed. This method regards the system identification prob-
lem as a regression problem between the input and output, and it finds the low
dimensional input considering the regression performance. However, finding the
low dimensional output is not discussed in the method. Our problem setting is
difficult to be applied. In addition, Gaussian process dynamical models [16] or
variational Gaussian process dynamical systems [17], which are the methods to
find the latent dynamics in the observations, seem to be applicable to our problem
settings. Nevertheless, the exogenous input is not considered in the methods. In

addition, the linear dynamical system may not be considered directly.

3.3. Proposed method: input-output manifold learn-

ing with transfer function model

3.3.1 Problem settings

Now, let us consider an unknown linear time-invariant discrete-time dynamical

system > with the following input and output

u(t) := [u(t), ..., ug, (t)" € R%™,
y(t) == [n(t), ..., ya,(t)]" € R,
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which are referred to as the low-dimensional input and output of the system,
respectively. The objective is to find this relationship from the high-dimensional
input p(t) € R%(d, > d,) and output n(t) € R (d, > d,). Here, we assume that
the dataset of the high-dimensional input and output from timet =0tot =T —1,
D = {p(t), n(t)}tT:_Ol, is available, and the system order n and the dimensionality
of the low-dimensional input d,, and output d, are known. Figure 3.1 illustrates

this problem setting.

3.3.2 Iterative optimization scheme

Let us define the matrices comprising the data from ¢ = 0 to ¢t = T'— 1 as follows:

[ u'(0) ]

U= : ::[ul uz - udu:|7
u' (T —1) |
[ yT(0) ]

Y = s |y v oy |
Ly (T —1)

The system ¥ could be identified from U and Y. However, all of these variables
are unknown, and simultaneous estimation of all unknown variables can pose
a difficulty. Therefore, we propose the solution methods of two optimization
problems called input-output manifold learning as an efficient algorithm.

Obtaining the low-dimensional representation

Assuming that the system ¥ is given, we first solve the manifold learning problem,
which is reconstructed by adding the penalty term so that the low-dimensional

data follow the dynamics:
min f(UY, K, K,.,7) st U'U=1L,, Y'Y=1I, (3.1)
where

f(U7 Ya ETF) K}u Km 7) = PYfl(Uv Y7 K}u Kn) + (1 - 7)f2 (U7Ya Z:TF) (32)
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The function f;(U,Y,K,,K,) with the constraints in equation (3.1) is a

function to find the eigenvectors of K, and K, which corresponds to the maximum

=]

which is identical to the original manifold learning methods. Here, the matrices

eigenvalue,

Idu X K;l

L, 9 K,

AU Y K, K,) = [ Zzzgg; ]

K, K, are defined by the gram matrix of Isomap for each, and these are as-
sumed to be positive definite. If the matrix is not positive definite, the following
operation can be applied: K, + K, — A\ (K,

In addition, the function f5 (U, Y, E) represents the fitting error for the sys-

tem. We consider a transfer function model as the system representation of Y1,
Yrr y(t) = Glg)u(t).

Here, ¢ is the shift operator ¢~ 'y(t) = y(t — 1), G(q) is the transfer function
matrix, and (4, j) entry of the matrix is the transfer function from the j-th input
to the i-th output:

Gilg) = pid) 4 001y Ly i) g
v D ) DU

forte=1,2,...,d,and j = 1,2,...,d,. The squared fitting error to this system

is represented as follows:

f2(U7Y7 ETF) = f;(U,Y,G(q)) (3.3)
dy du

=YY Wiy, — Wy (3.4)
i=1 j=1

where the matrices Wé” ) and W) are asymmetric Toeplitz matrices repre-

sented as follows,

m—n m—n

Wg(/i,j) _ [a(m‘)

}T—l

i,9) _ [5(8d)
m,n=0’ Wl(* ) = [b

}T—l

m,n=0"’

with agi’j) =1, a,(f’j) = b,(j’j) =0for k <Oork>n.
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The weighting factor 7, (0 < v < 1) is a free parameter, which can be manually

modified. The function f can be represented in the quadratic form as follows:

T
U U
FUY 2K K = | Y ey | YY)
Vec(Y) Vec(Y)
where
[ -1
IC = Idu © K“ O 3
i O Idy X K;l
W — Wuu _Wuy
L _Wgy Wyy
T T
&1,1) 1(11,1) Wq(f’l) W&du,du)
W’uu = . . : 5
Wl(Ldu,l)TWI(Ldu,l) o Wq(idu,du)TWQ(Ldu,du)
T T
51,1) W?(;Ll) Wq(},dy) WZ(JLdy)
Wuy = . : )
T T
i Wl(Ldu,l) Wédu,l) qudu,dy) Wl(/du,dy) |
T T
ngl’l) Wg(Jl,l) W?(Jl,dy) Wél,dy)
Wyy = : . :
| WD WD gy e gy )

If we assume a SISO system (d, = d, = 1), this optimization problem can be
reformulated as a Multi-Eigenvalue Problem (MEP) [18] (see Appendix B). First,

the optimization problem (3.1) is represented in the following quadratic form,

[ w ]T [ WK,II + (1 = Y)W —(1 =)Wy ] [ u; ] (3.5)

min T o
Y1 —(1 =W, YK+ (T =)Wy, Y1

ui,y1

stuju; =1, yjy; =1

We apply the method of Lagrange multiplier. Let us introduce the auxiliary

22



function,
E(ul, Y1, )\u, )‘y)

u ' ’YK,:I + (1 - V)Wuu _(1 - V)Wuy u
Y1 —(L =W, VKV (=)W, | | 71

—A(ufus — 1) = \(yly1 — 1) (3.6)

where A, and )\, are the Lagrange multipliers. Then, 0£/0u; = 0 and 9L/0y; =
0 are reformulated as follows,

—(1- 'Y)Wgy 'YK# + (1 =)Wy Y1
I
I N e BT
O )\yI Y1

The determination of the vectors u; and y; and the constants A\, and A,, which
satisfy this equation, is called the multi-eigenvalue problem. The solution of the
problem (3.1) corresponds to the vector associated with the minimum value of
Auw + Ay. As a numerical solver of the MEP, the Horst-Jacobi method shown in
Algorithm 4 can be applied.

Updating the latent system

Second, we update the system X using the obtained low-dimensional data U,Y.

This problem is then defined as an optimization problem as follows:

Iél(lqr)l fs (U, Y, G(q)). (3.8)

The solution for the optimization problem (3.8) for G(q) is obtained entrywise.
Regarding the system as ARX model, the least square solution of the fitting error

to G; is obtained as follows:

~

-1
0;; = (‘I’E‘Pu> Tlyi, (3.9)
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where, with y;(t) = u;(t) = 0 for t < 0,

6, — [ I ORI A T’
W= -V U],
vi(=1)  w(=2) - yi(-n)
Vi — yz-('O) yi('l) yi(l - n) |
| vi(T—2) w(T—-3) - w(lT—-—n-1)
w(0)  w(=1) o w(l-n)
" uj:(1) ujf()) uj(2:— |
| (T —1) w(T=2) - u(T—n)

fori =1,...,d, and j = 1,...,d,. The optimal G(q) is obtained using the
coefficients 8;; for all i and j.
Algorithm 1 shows the summarized algorithm of IOMLTF.

Convergence

Here, we give the following theorem that the value of f will be monotonically

decreasing.

Theorem 1. Let us utilize the following representations: u®) | y® and G®*)(q)
as the solutions at k-th iteration, W and W@(,k) as W, and W, associated with
G®)(q) respectively, and f*) as the value of function at k-th iteration. Then f*)
converges to a local optimal when k — oo.

Proof. Let us drop K, K,, and v from the input arguments of f, fi, and f, for
the sake of simplicity. The following two steps are executed at each iteration: 1)
Obtain the updated low-dimensional representations u*+1, y(*+1 2) Estimate
the transfer function G*+1(q).

At Step 1, f is minimized with the fixed G®(q). Then, f£, which is the
second term of f, is minimized at Step 2. Note that this operation (i.e. obtaining
G#HD(g) from UKD and Y*+Y) does not effect the first term of f. As a result,

24



Algorithm 1: Input-Output Manifold Learning with Transfer Function
Models

Input : D = {u(t),n(t)} ", // high dim. dataset
U y©, // Initial low-dim. rep.
GO (q), // initial transfer function.
0 // weighting factor
h // prediction horizon

Output: U, Y, G(q)
Compute correlation matrices K, and K,, from D.
1< 0
repeat
Obtain {UD YD1 by solving the problem (3.1) with initial value
UD, YO and GO(g).
Obtain G@*1(q) by Eq. (3.9) with {UCTD Y(+D L,
1< i+ 1
until convergence
U+ UD Y YD,
Obtain estimates of the transfer function model G(g) by Eq. (3.9) with U
and Y.

the following inequality is satisfied.

f(U(k+1) 7 Y(k—‘:—l)7 G(k—‘rl) <q))
< fUFD Y aW(g))
< fUW, Y® GW(g))

e fE < f® (3.10)

Consequently, f*) monotonically decreases. Since f*) > 0, it converges to a local

optimal. As a result, the repeat of two steps converge f. ]

3.4. Experiment

In this section, we evaluate the proposed method using two numerical simulations.

First, the simulation settings are described in Sec. 3.4.1. Second, the parameter
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settings of the proposed method are shown in Sec. 3.4.2. Section 3.4.3 explains
the comparison methods for showing the effectiveness of the proposed method,
and the criterion in the evaluation is shown in Sec. 3.4.4. The results of each

experiment are shown in Sec. 3.4.5.

3.4.1 Settings of experiments

Experiment 1 is designed such that the dimension of the high-dimensional in-
put and output is controllable in order to validate the robustness of the pro-
posed method for high dimensionality. Now, let us consider the SISO system,
and change the dimension of the high-dimensional input and output from 2 to
5. This high-dimensional data are generated by the following procedure: the
low-dimensional input u(t) is generated by the value which follows the uniform
distribution in [—0.5 0.5], and the output y is obtained through the following

transfer function,
0.7—-0.3¢71 +0.2¢72
G(q) = — =
1—-0.5¢71 —-0.1q

Then, the high-dimensional input p and output 1) are generated by the following

(3.11)

procedure: Let us set the same dimension d, = d,. The j-th entry of p for

Jj=1,...,d, is represented as follows,

;i (t) = u(t) sin (u(t) +7 7T) + €(t), €(t) ~ N(0,0.05%)

u

We apply the same procedure for 1. Figure 3.2 illustrates an example of two
dimensional input and output.

Experiment 2 is designed with the image data, which is known as the effective
data, for applying the manifold learning in order to validate the effectiveness for
real data. In this experiment, the identification problem for the system shown
in Fig. 3.3 is considered. In this experiment, the functions between u and p,
and between y and 1 are unknown. Nevertheless, this is a more realistic problem
setting as compared to Experiment 1. First, the smooth angle sequence of the left-
turntable {u(#)}?°07 and the angle sequence of the right-turntable {y(t)}>°*
through the transfer function (3.11) are determined. The image corresponding
to each angle has been generated from COIL-100 [19] data-set, and it is used
as the high-dimensional input and output (d, = d, = 49,152). Note that we

26



Up: 0

0u(t) | |inear System
(angle) (2nd order)

Figure 3.3. Problem setting using image data as input and output in experiment
2

have utilized kernel regression with the squared exponential kernel to generate
the image from angle information since COIL-100 is associated with the image
for each 5 degrees of rotation. It is expected that this image sequence will be lie
on 1-dimensional manifold corresponding to the angle information. The image
data for validation is newly generated in u(t) € [0,90].

We also note that the system order n = 2 is assumed to be known.

3.4.2 Parameter settings for the proposed method

In Experiment 1, the number of the nearest neighbor in ISOMAP is set to 20, and
the weighting factor v is set to v = 0.1 in a trial-and-error manner. We continue
the iterative optimization np,, = 50 times. Horst-Jacobi method [18] is used to
solve MEP. The nonlinear regression in Step 6 is done with LS-SVM [20] whose
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Figure 3.4. Pole-Zero map of GG1,Gs, Gz and G. X represents the pole, and o

represents the zero.

hyperparameters are determined by the leave-one-out cross validation. The initial

transfer function is selected from the following three transfer functions.

—0.29 + 0.73¢~! — 0.84¢2

G, =
! 1—1.2¢71 +0.27¢2
o —0.04¢71 +0.02¢72
2 14 1.72¢71 +0.78¢2
0.14¢2
Gy = q

1 —0.48¢~1 +0.22¢2

The pole-zero map of these transfer functions and the transfer function (3.11) is
shown in Fig. 3.4.

In Experiment 2, the weighting factor v is set to v = 0.01 in a trial-and-
error manner, and the maximum number of iterations ny.. is set to 10. The

nonlinear regression in Step 6 is done with the kernel regression with the squared
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exponential kernel, and the initial transfer function is selected as

1.0 — 1.0¢g7! + 1.0¢72
1.0 + 0.05¢~2

The other settings are the same as those in Experiment 1.

Ginit -

3.4.3 Comparison methods

In Experiment 1, we utilize the following five methods (four for comparison, and

our proposed method).

(a) Linear subspace system identification method (4SID)
(b) Nonlinear system identification method 1 (NLHW)
(c) Nonlinear system identification method 2 (KCCA+LS-SVMO [20])

(d) Applying the manifold learning method for the input and output separately,
then identifying the system (Isomap). This is the same as the v = 1 case
in the proposed method)

(e) Proposed method (Proposed)

Method (a) is applied because the system to be identified is a linear system.
Next, this identification problem can be deemed as the identification problem
of a Hammerstein-Wiener system because the observed (high-dimensional) input
and output can be regarded as the data through a nonlinear function; therefore,
method (b) is applied. We also utilize method (c) that regards the system as
a nonlinear dynamical system and reduce the dimensionality using the kernel
canonical correlation analysis. Method (d) is applied to validate the penalty term
which represents the fitting error to the dynamics. For methods (a) and (b), we
use MATLAB System Identification Toolbox with default settings. In method
(b), the nonlineality is estimated with a piecewise linear function. In method (c),
the Gaussian kernel is utilized, and its hyperparameters are determined by 4-fold
cross validation. The hyperparameters of the SVM are determined by the 10-fold
cross validation.

In Experiment 2, Only method (d) is applied since methods (a), (b), and (c)

are computationally complex.
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3.4.4 Evaluation criteria

In Experiment 1, the fitting rate (FIT) of y with the filtered state with the Kalman
filter is used for the evaluation®. Note that the Unscented Kalman Filter (UKF)
is used because of the nonlinear dynamics. In Experiment 2, the correlation

coefficient between the images is used for the evaluation.

3.4.5 Results and discussion
Experiment 1: with synthetic data

By using 500 data points for identification data and 500 data points for validation
data, we apply five methods with the transfer function Gy as the initial transfer
function. The result for the varied dimensionality (average of 20 trials) is shown
in Fig. 3.5.

Let us discuss Fig. 3.5. First, the FIT value decreases with high dimensional
data in method (a). On the other hand, methods (b), (c), (d), and (e) keep
the FIT value. However, the value of methods (b) and (c) is relatively small.
Moreover, the FIT value in method (d) is larger than the FIT value in method
(e). From these results, it is validated that the performance of the system is
accumulated with the proposed method. Note that the significant difference
between methods (d) and (e) is indicated by 2-sample t-test (p < 0.05).

Next, the fitting error to the linear system is shown in Table 3.1. Table 3.1
shows that the error of (d) is 1000 times larger than (e); therefore, it can be
indicated that method (e) can find the suitable low-dimensional representation
for the identification of linear dynamics. That is, the penalty term decreases
the fitting error. The higher FIT value of (e) may be attributed to this, and

*FIT (%) is given as

N—1,. 9
. (1 VS50 - y) ) -
VEN ) - g2

where §(t) is the actual data of y(t) [21]. § represents the sample mean of y(t). The FIT value
varies from —oo to 100, however we utilize FIT = 0 if FIT < 0. For MIMO cases, the average
of the FIT value is utilized as the FIT value.
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Figure 3.5. Normalized root mean square (NRMSE) fitness value in percentage

vs. the dimension of input-output data

the penalty term with the fitting error ameliorates the linear transfer function
estimation.

In addition, we confirm the effect of the initial transfer function. Using the
2-dimensional data as the high-dimensional input and output, we vary the initial
transfer function in G5, GG3, G. The mean and standard deviation of the FIT value
is shown in Table 3.2. The two-sample t-test (p;0.05) shows that a significant
difference for GGy is not observed. Consequently, the proposed method can achieve

the accurate identification independently of the initial transfer function.

Experiment 2: with image data

The images for validation and the prediction are shown in Fig. 3.6. Also the
fitting error to the linear system is shown in Table 3.3.

Let us discuss this result from the point of view of the penalty term. The
value of (d) is smaller than (e), and it is more significant than Experiment 1
(Fig. 3.5). Moreover, Table 3.3 shows that the fitting error is significantly reduced
by method (e). We suppose that this can be attributed to the fact that the higher

dimensionality of the image deteriorates the performance of the manifold learning,
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Table 3.1. Experiment 1: Identification error of G(g). This means the squared
norm of &, ||&]|?, which defined by Eq. (3.4). 0 Numbers within brackets indicate

standard deviations

m=p (d) Isomap (e) Proposed
2 | 3.086e+00 (2.804e+00) 3.8556-03 (8.173e-04)
3 3.424e4+00 (2.855e+00) 1.005e-03 (2.192e-04)
4 3.505e400 (2.938e¢+00) 3.493e-03 (5.490e-05)
) 3.701e4-00 (2.830e+00) 1.632¢-04 (2.531e-05)

Table 3.2. Experimentl: Initial parameter of the transfer function vs. NRMSE
fitness value in percentage. Numbers within brackets indicate standard devia-

tions.

‘ G, Go Gy G
FIT | 81.7879 81.8390 81.5149 R1.8645
(7.1854) (6.9840) (6.7578) (6.9236)

which is an unsupervised learning method. Therefore, the proposed method is

valid for high dimensional data such as images.

3.5. Summary

In this chapter, we consider the system identification problem from high-dimensional
input and output, and we propose the input-output manifold learning based on
the manifold learning method considering the fitting error to the transfer function
model. To show the effectiveness of the proposed method, we perform the system
identification using synthetic data.

In general, the manifold is embedded to the high-dimensional data space. This
can induce the interpretation that this system identification problem is a sys-
tem identification problem of the Hammerstein-Wiener model, which is a block-
oriented model with input and output with nonlinear function. Previously, many
system identification methods for the Hammerstein-Wiener model [22, 23, 24]
were proposed. However, these methods do not consider the high dimensionality,

therefore an accurate model may not be obtained, as seen in Section 3.4.
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(d) Isomap

(e) Proposed

Figure 3.6. An example using image data for both the input and the output. From
top to bottom, the image as the input for validation, the image as the output for
validation, the one-step prediction result with Isomap, and the one-step prediction
result with proposed input-output manifold learning. In particular at Frame No.
370, (e) makes a better prediction compared to (d). The correlation coefficient
between the output and (d) is 0.8895, and between the output and (e) is 0.9949.

Table 3.3. Experiment 2: Identification error of G’(q)
e
(d) Isomap | 8.0921
(e) Proposed | 4.1134 x 1072

Next, let us describe the scope for our future works. First, we describe a
theorem (Theorem 1) that shows that the error will decrease monotonically, and
converge to a local optima. In addition, the solver for MEP used here (Horst-
Jacobi method) or the quadratic programming problem (such as the interior-point
method) is the local solver. Thus, obtaining the global solution is not clear as of
now. Given that the global solver for the MEP has been recently proposed [25],
application of these methods can be regarded as our future work.

We have assumed the transfer function model as the system representation.
However, if the initial state of the system is non-zero when the high-dimensional

data is obtained, it is difficult to obtain an accurate transfer function model. In
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the next chapter, we consider changing the system representation.
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Chapter 4

Modeling of Non-relaxed System

using High-dimensional Data

4.1. Introduction

In the previous chapter, we proposed input-output manifold learning with transfer
function models (IOMLTF). Since the fitting error for the transfer function model
can easily be reformulated to a quadratic form and model estimation can be
accomplished element-wise, we have adopted the transfer function model as a
system representation. However, the transfer function model has the following

limitations:

1) It implicitly assumes that the system is initially relaxed (e.g., the initial
state of the system is zero). That is, the transient response is difficult to

capture.

2) A ‘biased’ estimation can be obtained if the model structure assumed is

different from supposed one. [21, Sec. 8.3].

When we apply input-output manifold learning to several applications, these
limitations may deteriorate the system identification performance. Therefore, in
this chapter, we propose an alternative approach, i.e., the input-output manifold
learning with state space models (IOMLSS), which can overcome the limitations

of the previously proposed IOMLTF by introducing a state space model as the
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system representation. The state space model obviously allows representation of
initially non-relaxed systems [26]. Moreover, sophisticated system identification
methods such as N4SID [27], which can treat more complicated system models
such as ARMAX models, can be utilized. Therefore, a better system identification
performance can be expected.

The remainder of this chapter is organized as follows. In section 4.2, we explain
our problem setting. Then, IOMLSS is described in section 4.3. A numerical
simulation for validating IOMLSS is shown in section 4.4. The summary and

future work are presented in section 4.5.

4.2. Problem setting

In this section, we explain the problem setting of IOMLSS.
Let us consider an unknown linear time-invariant discrete-time dynamical

system Y with the following input and output
u(t) := [u(t), ..., ug, ()" € R,
y(t) = [n(t), .., ya, ()" €RY,

which are referred to as the low-dimensional input and output of the system,
respectively. The objective is to determine this relationship from the high-
dimensional input p(t) € R%(d, > d,) and output n(t) € R¥(d, > d,). Here,
we assume that the dataset of the high-dimensional input and output from time
t=0tot=T-1,D={ut),nt)}

t=0"
and the dimensionality of the low-dimensional input d,, and output d, are given.

is available, and the system order n

Figure 4.1 illustrates this problem setting.

4.3. Proposed method: input-output manifold learn-

ing with state space model

In this section, we describe the IOMLSS. The formulation of the optimization
problem to determine the low dimensional representation with the state space
model is shown in Sec. 4.3.1. The derivation of solution methods for the iterative

optimization scheme is presented in Sec. 4.3.2.
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Figure 4.1. Problem setting of IOMLSS. The obtained data are the high-
dimensional input @ and output m. It is assumed that the features regarded as
low-dimensional input u and output y have a relationship of a linear dynamical

system Ygg, represented using the state space model.

4.3.1 Formulation with state space model

As in the previous chapter, let us define the matrices consisting of data from ¢t = 0
tot =T —1 as follows:

C W) T

U= : = [ul u udu},
u' (T —1) |
[ yT(0) ]

Y = : :i[h y2 - Ydy}-
Ly (T 1)

The system X can be identified from U and Y. However, all of U, Y and X are un-
known, and simultaneous estimation of all unknown variables is difficult. Hence,
we have proposed an efficient algorithm called input-output manifold learning,
as a solution method of two optimization problems. More concretely, assuming
that the system » is given, we first solve the manifold learning problem recon-

structed by adding the penalty term so that the low-dimensional data follow the
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dynamics*:
IIIJI%?( f(U,Y, 3, K, Ky, ) (4.1)
st.UTU=1,, Y'Y =1,
where

f(U, Y, ZSS, KH? KTI? ’}/)
= fl(UaYaKuaKn) - ’7f2(U7Y7ESS)- (42)

The function f1(U,Y,K,, K,) with the constraints in equation (4.1) is used to

determine the eigenvectors of K, and K,

(U Y K, K,) = CiTr(UTKMU) + clTr(YTK,,Y),

i "
which is the same as the original manifold learning method. Here, the matrices
K,, K, are defined by the gram matrix of Isomap for each, and the coefficients
with ¢, = Amax(K,) and ¢, := A\ax(K,)) are multiplied for stable computation
of numerical optimization. In addition, the function f, (U, Y, Ess) represents the
fitting error for the system. The weighting factor v > 0 is a free parameter to be
manually tuned.

Let us consider a state space model as a system representation:

- { x(t +1) = Ax(t) + Bu(t) + w(t)
- y(t) = Cx(t) + Du(t) 4+ v(t)

where x(t) € R” is the state vector with the initial state x(0) = xo € R" and

w(t) and v(t) are the system noise and observation noise respectively represented

p<w7v>:N(["VV”[g]’ [1\% ED

*Note that this formulation is slightly different from that in the IOMLTF. There is no

problem with using the previous definition in Eq. (3.1). However, this formulation is numerically

as follows,

more stable in the optimization.
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For the fitting error term, we utilize the following squared prediction error crite-

rion of 4SID proposed in [28],

£(U,Y,5ss) = £5(U,Y,L,, HY)
2
, (4.3)

F

Wp
Uy

Y- | L, Hf| [

The matrices Y, are parts of the following block Hankel matrices constructed

from y expressed as follows:

y(0) y(1) - y(T—2n)
y(1) y2) - y(T—-2h+1)
v y(h—=1) yh) - y(T—-h-1)
0]2h—1 =
y(h)  yh+1) -+ y(T—h)
yh+1) yh+2) -~ y(T—h+1)
| y(2h—1) y(2h) - y(T-1) |

vl

U, and Uy are defined in the same way as Y,.. In addition, W, is defined as

Y
W, = ” |. The matrices L,, and H{ contain the information of the system

p
Yss (see Appendix C) and these are correspond to the transfer matrix G(q) in

IOMLTF. An integer h is set to be larger than the system order n, i.e., h > n.
See Appendix C for a rough overview of how this relationship is obtained.
Based on this representation, the IOMLSS is constructed as shown in Al-
gorithm 2. In the following sections, detailed methods for obtaining the low-
dimensional input and output, in order to update the latent system and to realize

the system parameters are described.
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Algorithm 2: Input-Output Manifold Learning with State Space Models

Input : D= {pu(t),nt)}, // high dim. dataset
U yO), // Initial low-dim. rep.
0 // weighting factor
h // prediction horizon
n // system order

Output: U, Y, A, B,C,D, Q, R, N

Compute correlation matrices K, and K, from D.

Obtain {LY, HE®Y using Eq. (4.5) with {U©, YO,

140

repeat
Obtain { U Y+D1 by solving max¢ f(¢, K, R, ) with initial value
U®D, Y® and {L§ 1LY
Obtain {LE™ HETYY using Eq. (4.5) with {UGH), YD1,
141+ 1.

until convergence

U+ UD YYD,

Obtain estimates of system matrices A, B, C, D, Q, R, N by Eqs. (4.6)

and (4.7) with U and Y.

4.3.2 Solution methods
Obtaining low-dimensional input and output

Let us assume the matrices L,, and H{ are given. Now, the evaluation function
(4.2) can be optimized with respect to u and y. However, as the number of
variables to be optimized is (d, +d, )N, it might be costly to obtain the derivative
of the evaluation function (4.2) numerically. The objective is to determine the

quadratic form of f because its analytic gradient can be easily obtained.
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For fi, we can obtain the quadratic form
fl <U7 Y? Kﬂ? KTI)
B [ vec(Y)

ICn OdyNXduN ] [ VGC(Y) ]

VeC(U) OduNXdyN ]C“ vec(U)
e
where
1 1
K,= 1, 0K, K,=—I, 9K,
Cp Cpu

Next, to obtain a quadratic form of f5, we utilize the following property of a
Frobenius norm: ||A||i = ZZ”aZ”; where a; represents the -th column vector of

A. Let us define the matrix inside of the Frobenius norm in equation (4.3) as F,

F:w—“wﬂﬂlml

and its i-th column vector as f;. The squared norm of f; is as follows:

2
i Yilh+i-1
||fz||§ = | ¥Ynr+i2h+i—-1 — [ L. Hz Wi|hti-1 . (4.4)
Up4i|2h+i—1 9
1T
Here, a notation y,), := [ yT(p) .-+ yT(q) | is used. Let us split the matrix

L, into two matrices as
Lw:|:Lwy qu:|7

where L,, € RW>&h T, € Rih*duh Equation (4.4) can be reformulated as

T
”f‘HQ_ Yijgh+i—1 Ryy _Ryu Yij2h+i—1
2 — T

Wi|2n+i—1 —Ryu R Wi|2n4i—1
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where

[T T
Ryy = LwyLwy _Lwy )
L _Lwy Ihdy
i T T 17d
R Y= _Lwyqu _LwyTHh
Y —Lyu H¢ ’
| H'L,, H{'H!

Using this result, f; is reformulated into a quadratic form as

f3(UY, Ly, HY)

| vee(Y) ' Ry —Ryu vec(Y)
| vec(U) —Ry. Ruu vec(U)
=¢'RC,

where

T—-2h
Ry =Pl (z Rg;;) Pr,.

i=0
R(z —dlag{O 1)dy % (i-1)dy s Ryy, O(v —2h—i)dy><(N—2h—i)dy}v

T—2h
Ryu— Pl ( R;zz) Proa,

i=0
R(Z dlag{OZ 1)dy % (i—1)du » Ryur O(N—2n—i)dy x (N—2h— )du},

T—2h
Ruu T>< dy, 1:)T>< dy
=0

R = diag{ O (i—1)dux(i-1)du » Ruwr O (N—2h—i)du x (N—2h—i)da | »

and Py, is a pg X pg commutation matrix represented as

P, = Z Z EY (pxq) E(qXP)
g

=1 j=1

where Eg’ 9 is a matrix unit that is a p x ¢ matrix whose (i,7) entry is 1 and the

rest are 0. Finally, the quadratic form of the evaluation function and its gradient
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are obtained as follows

of
¢

where M = K — vR. The solution of the optimization problem (4.1) can be

FIC KR, y) = ¢ M, = 2MC,

obtained using a solver for quadratic programming with quadratic equality con-

straints such as SQP or an interior-point algorithm using this gradient.

Updating the latent system

In this section, we describe how to obtain the matrices L,, and H¢, which minimize
f5 for obtained U and Y. In the IOMLTF, the solution is easily obtained using
least squares estimation. Even in the IOMLSS, it seems that the solution might
be easily obtained as

]
W, ]

L, H;{}:Yf[Uf

where T stands for the pseudo inverse X7 = XT(XXT)~!. However, even H{ is
a block lower triangular matrix (see Appendix C), this simple solution method
does not have this structure. For a single-input single-output case, the solution
that holds the structure is shown in [29, Sec. 5.2] as an example. However, the
multi-input multi-output case is not shown explicitly. We here describe how to
obtain the appropriate solution.

First, we consider the vectorized form of equation (C.3) as follows:

vec(Yy) = ([ W, U} } ®Ihdy>/vec([ L, HY D,
Y

<

and define a matrix H constructed with the Markov parameters as:
T YT v "
H = [HO ur ... HT ] .
The relationship between vec(H$) and H can be easily determined as

vec(H?) = Nvec(H)
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where N is defined as

[ I;, ® Ny
I;, ® Ny

| Ly, ® N,

N, — OG-y x(h—i+nd,  O—1)dyx(i-1)d,
Lh—it1)a, O(h—it1)dy x(i-1)d,

Denoting

(| R —

= N¢,
and solving the optimization problem
2
min HT — ENCH
< 2

which is equivalent to the minimization problem of f;5 w.r.t. L, and H{, the
vector Vec<[ L, H¢ ]) yields

vee| L, H{ |) =N (V'E"EN) T NTETT. (4.5)
The updated matrices are obtained by reshaping this vector.

Estimation of the system parameters

After repeating the two optimization problems, the system parameters of ¥ are
estimated using the following algorithm based on [27]. First, we compute the
SVD of L, W,;:

L,W, =T,X, (from Egs. (C.1) and (C.2))

:USVT:[UI UQ][SO1 52”\/?],
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where S; is the n x n diagonal matrix. Using the components, the state sequence

Xh is estimated as:
Xpi= | %(h) %(h+1) - x(T—h) | =8V}

The system parameters A, B, C,D are obtained by solving the following least

squares problem:

_ 9 Xy A B X5
min e’ €= - ,
AB,C,D Y, C D U,
whose solutions is obtained by
A~ T
A B p c
A X Xh (4.6)
C D Y, Uy,
where
XV o= | x(h+1) %(h+2) (T —h) |,
X¢ = | %(h) %(h+1) X(T—-h-1) |,
Y= | y(h) y(h+1) y(T'=h=1) |,
U,=| u®) uh+1) - uT—h—1) ]

The estimations of each covariance matrix of w and v are obtained using €., =
arg min||€e||3,
Q N 1
[ SO Bl 49
The difference in the algorithms for the IOMLTF and IOMLSS is summa-

rized in Fig. 4.2. The main difference is in the parameters to be estimated after

obtaining the low-dimensional input and output data.

4.4. Experiment

In this section, we illustrate the effectiveness of our proposed method through sim-
ulations with synthetic data. We compare the following three methods: 1) ISOMAP

(with the system identified with low-dimensional data obtained by Isomap (same
as the initial values of IOML)), 2) IOMLTF [30], and 3) IOMLSS (proposed).
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Figure 4.2. Algorithmic flow of IOMLSS and IOMLTF. The difference between
the two is how the penalty term is updated. IOMLSS utilizes an extended ob-
servability matrix and Markov parameters, while IOMLTF utilizes the transfer
function model.
4.4.1 Simulation settings
Training dataset
Let us assume the following 3rd order system 3;:
. x(t+ 1) = A1x(t) + Byu(t) + w(t)
1 -
y(t) = Cix(t) + v(t)
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where

0.2338 0.2869 —0.1383
A= 02869 0.3525 0.2786 |,
—0.1383 0.2786 0.3917

B, — [ 0.7007 1.424 0 ]T,

C, — [ 0 0.629 —2.427},

and E{w(t)wT(t)} = 0.011, E{v?(¢)} = 0.01, and E{w(¢)v(t)} = 0.
As the high-dimensional input and output, we consider two dimensional vec-

tors obtained through the following nonlinear functions:

u(t) = [ uft) exp (~32) | +w0)
) = [ yt) exp (-220) |+

where v, (t) ~ N(0,0.09I) and v,(t) ~ N(0,0.091) are additional noises. The
high-dimensional dataset D = {u(t),n(t)}} with T = 1000 data point is
generated with the low-dimensional input, which follows a normal distribution
u(t) ~ N(0,1). We consider two conditions:

1) a non-zero initial state x(0) = x, where

T
Xo = | —0.1117 —0.0446 0.0264
2) a zero initial state x(0) =0
Following the procedure, we prepare five dataset Dy,..., D5 for each condition
because the low-dimensional input u and noises are random.
Evaluation criteria

In the evaluation, we focus on the output error with the filtered state estimated by
the steady state Kalman filter, as used in the evaluation of IOMLTF [30]. First,
two nonlinear functions, pu(t) — w(t) and n(t) — y(t), are obtained with e-SVR
implemented by LIBSVM [31]. The hyperparameters in e-SVR are optimized with
5-fold cross validation. Then, the new dataset D, with N; = 500 samples for the

47



test is generated with the same conditions as those when D is generated. Using
the SVRs, the low-dimensional input and output for the test data are computed.
Then, the state x(t) is estimated using the steady state Kalman filter, and the
difference between the low-dimensional output g(t) with the estimated state x(t)
and the actual observation y(t) is evaluated based on an FIT value defined as

follows:

FIT = max (0, 1— th]élﬁym — Q(TW) % 100[%),
Do (Y(T) — 1)

where §y = N% Zﬁgl y(7). If the value is large, it is possible that the obtained
low-dimensional input and output are more adapted to the linear system. In the
design of the Kalman filter, the covariance matrices of the noises are given by
Eq. (4.7) for IOMLSS and ISOMAP. As the matrices for IOMLTF are not given,

the matrices obtained for IOMLSS are utilized for IOMLTF'.

User parameter and initial value setting

The prediction horizon is set to h = 20. To set the weighting factor v, we
divide the dataset D; into the training data (first 800 points) and the valida-
tion data (remaining 200 points). The weighting factor v is selected from a set
{0.01,0.05,0.1,0.5,1} so that the FIT value of the validation data is maximum.
The iterative optimization in IOMLTF and IOMLSS is repeated for 1000 itera-
tions. The system order n = 3 is manually chosen.

The initial values U, Y©) are set as the solutions of Isomap [6], and the
matrices L, Hz(o) are obtained using U® and Y© with Eq. (4.5).

4.4.2 Results

First, we show the learning result of IOMLSS. Figure 4.3(a) shows the value of
the evaluation function f for each iteration in IOMLSS. Although the value at the
Oth iteration is small because the fitting to the linear system is worse, as shown
in Fig. 4.3(b), the evaluation function f monotonically increases by repeating
the optimizations because the fitting error term f; monotonically decreases. The

effectiveness of the iterative optimization is confirmed by this result.
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Figure 4.3. Values of the evaluation function and the fitting error term in
iterative optimization. In (a), o denotes the value after the optimization of
fo, f (U(i),Y(i),Lg) ,H‘,jl(i)), and x shows the value after the optimization of f,
FUGEH) 7y (1) LY, Hfl(i)). The value of f monotonically increases in each iter-

ation as the value of f, monotonically decreases.

Figure 4.4 shows a comparison of the average of the FIT values. In the figure,
the results of IOMLSS are better than those of IOMLTF and ISOMAP. The actual
output and estimated outputs in test are shown in Fig. 4.5. These results indicate
that IOMLSS can be used to obtain more suitable low-dimensional representa-
tions and the system for non-zero initial state, x(0) = xq. In addition, as opposed
to this case, there is a smaller difference between IOMLSS and IOMLTF for a
zero initial state, x(0) = 0. Nevertheless, it is confirmed that there is a significant
difference between IOMLSS and IOMLTF validated by two-sample t-tests (p <
0.05). We suppose that this is caused by the model difference because IOMLTF
uses the ARX model and the system >; and IOMLSS uses ARMAX. This dif-
ference may induce a ‘biased’ estimation [21, Sec. 8.3] which may deteriorate the
prediction performance. In other words, this result shows that IOMLSS can be
used to treat a more complicated noise model than IOMLTF. Consequently, the

effectiveness of the proposed method is confirmed.
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Figure 4.4. Average value of FIT value for test data. The y-axis shows the
average of FIT value for five datasets for each condition. IOMLTF and IOMLSS
are shown to make better predictions than ISOMAP. However, IOMLSS performs
better than IOMLTF for a case with a non-zero initial state case (IOMLTE:
96.5%, IOMLSS: 99.9%), which is validated by two-sample ¢-tests (p < 0.05).
The difference is smaller for a case with a zero initial state case (IOMLTF: 98.5%,

IOMLSS: 99.9%).

—ISOMAP

——IOMLTF |
TIOMLSS

—-=-True

150 152 154 156 158 160
step ¢

Figure 4.5. Estimated output sequence in the test with non-zero initial state case
from ¢t = 150 to t = 160. The output of IOMLSS is close to the true output y.

4.5. Summary

In this paper, we extend input-output manifold learning to use the state space

model for the system representation. This extension allows us to consider a
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non-zero initial state and a more complicated model structure. The simulation
result demonstrates that the extended method results in better low-dimensional
representations if the initial state of the obtained dataset is non-zero.

By using the state space model for system representation, the subspace identi-
fication method can be implemented. We determine the system order n manually
in the experiment. However, the system order can be determined from the iden-
tification data using this method. In addition, the number of parameters to be
identified for the MIMO system can be reduced with the state space model. It
is deemed that the performance will be better for MIMO system cases, However,
IOMLTF can be a potential choice for certain systems because the number of
parameters to be identified is less than that for the IOMLSS in specific cases.

In future, we will consider the use of nonlinear dynamical systems. In addition,

we will also consider applying this method to the actual data in future.
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Chapter 5

Partial Manifold Learning for
Two Factor Models and Its
Application to Active Robot

Perception on Learned Manifolds

5.1. Introduction

In this section, a manifold learning method with a two-factor model is considered.
In previous studies, the manifold learning methods for an one-factor model are
proposed such as PCA [3], Isomap [6], and GP-LVMs [2]. The generative model
considered in such a study is one factor models, which shows that the observa-
tion is explained by one factor, namely y = f(X) where y is the observation,
and the X is the latent factor (Fig. 5.1(a)). In this section, we consider models
with two-factors, namely y = g(x,0). The two (or more) factor model is capable
capturing variations in the data which is described in the problem of style-content
separation. Such a model is applied to spoken vowel classification [32], and pre-
diction of human motions [33]. In this study, we assume that one factor x is
known (Fig. 5.1(b)). Obtaining both factor is considered in the previous studies
(e.g. [32, 33]). However, the method can not be directly applied to the problem

to be considered in this study. The situation would be happen in the sensor
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(a) Single-factor generative model (b) Two-factor generative model whose one

factor is known and the other is unknown

Figure 5.1. Problem setting comparison. (a) Find X for given Y. (b) Fing © for
given Y and X.

model construction in the object recognition tasks (see Sec. 5.3). To cope with
the problem, we propose a partial manifold learning method based on Gaussian
Process Latent Variable Models (GP-LVMs) [2], which allows us to consider the

effect of a known factor to the observation and other factor.

5.1.1 Layout of this chapter

Section 5.2 describes proposed manifold learning method, and its connection to
object recognition problem is shown in section 5.3. Section 5.3 also describes
the information maximization control, which is the collateral proposed method
for exploratory action planning in object recognition task. The performance
validation of object manifold learning and information maximization control is
shown in section 5.4 and section 5.5, respectively. This chapter is summarized in

section 5.6 with discussions.

5.2. Proposed method

We now start to model the relationship among the observation, known factor and

unknown factor. As described above, the following nonlinear observation function
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g is assumed:
y =g(x,0) +e¢ (5.1)

where y is the observation, x is the known factor, and 6 is the unknown factor.

5.2.1 Observation modeling using GPs

Firstly, the nonlinear function g is modeled using GPs. The observation model
(5.1) is supposed to be modeled using Gaussian Process Regression [34] for each

dimension of y: y, = g4(x,0) + ¢, fora=1, 2, ..., d, as follows:
9a(z) ~ GP(0,ku(z,2)), (5.2)

where k,(z,2') is the kernel function. z = [XT, OT]T € R% where d, = d, + dj is
defined for simple representation.

For given N-sample training data set D = {x®, 00 y®}N (Note that € is
not given at this moment), the predictive distribution of y, is given as a Gaussian

distribution:

P(¥alx,6,X,0,y,)
- N(MQ(X, 0? Xa 67 ya)a Si(xa 0; X7 87 Ya)>

where X, ©® and y, are the training data set corresponding to x,60 and y,, re-

2

spectively. The predictive mean p, and variance s;

are given as follows:

1a(2;Z,y,) = ki (Ko + 021) "y,
s2(2,Z,ya) = ko(z,2) — k& (K, + 021) 'k,

The vector k, is denoted as k, = [k,(z™"),2), ..., ko(z™), z)]". The matrix K, is
the kernel matrix with K, ;; = k,(z®,2")) as (i, j) entry. In this paper, the kernel
function defined for the calculation of u, and s? is assumed to be the following

squared exponential kernel function:

ko(z,2') = o2 exp (—%(z — )" (H2) " (z - z))

where o2 is the variance of g,. This selection of the kernel function allows us

to obtain the Gaussian predictive distribution with approximation in sense of
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the 1st and 2nd order moments. Here, x and @ are assumed to be independent,
accordingly H? is defined as a block diagonal matrix H? = diag{H?* H’}, and
H? and HY are diagonal matrices with positive elements which adjust the scale
of each dimension of x and 6, respectively. Note that this model is classified
to Multifactor Gaussian Process Models [33]. Hyperparameters to be learned is
Yo = {a2 o2 Hg,Hg}.

a’ ~a’l

5.2.2 Parameter extraction by manifold learning

Here, we consider the following structure. The unknown factor 0 is same for N,-
sample in the training data: only one vector 8% is used to represent the dataset
{y(j ), xU )} for the subset of index j. Here, we consider separated training data set
D ={Dy,...,Dr}, D, = {x"), y*9 }j.vzll, where L is the number of vectors to be
learned. We consider to extract the unknown vector set @ = [0V ... 08F)] using
the GP model (5.2) with a similar way to the GPLVMs. For our model (5.2), the

log-likelihood function is defined as,

1 1 1
log p(ya|X, ©,7a) = —5 log det (K, + oll) — §y3(Ka +00) . — 5 log(27),
(5.3)

where z(® corresponds to the i-th column of the matrix Z € R%*Y defined as,

o ... o ... L) ... o)
Z:[ ]’

1,1) 1,N7) L)1) L,Np) <54)

x! x! x( x(

where N = ZEL=1 Ny. X is a dy x N sub-matrix of Z, which is a part of x in Z,
and y, € RY is defined as,

T
) N L, L,N,
yom [ W gy e ]

and v, = {HZ HY a2 02} is a hyperparameter set. Note that 6 is the only
unknown variable in the latent variable z, and 8 is N, times included in Z. With
holding this structure, ® and v = {71, ...,74,} are optimized simultaneously by

maximizing the sum of the log-likelihood function for all dimensions of y as

dy
(©",7") + arg max Y log p(ya|X, ©, 7). (5.5)
Oy a=1
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5.2.3 Relationship with other methods

Let us discuss the relationship with other methods, Saal et al. [1] and GPLVM
2], by comparing those problem settings. The differences of the problem settings
are summarized in Table 5.1. From the point of view of model learning, the
true-object parameter @ is known as training data in Saal et al [1], however, its
equivalent parameter @ is unknown in our problem setting. Next, our model (5.1)
seems to be the same model as considered in GPLVM with defining one latent
variable z, however, x which is a part of latent variable z is known and included
in training data. In addition, we have N training data, however, the number
of the recognition target objects is L, and generally L < N. Accordingly, the
structure of latent variables corresponding to the observation variable should be
fixed as shown in Eq. (5.4).

5.3. Application to object recognition

The proposed method is applicable for the modeling of the observation model
in tactile object recognition. In this section, it is described how to apply the

proposed method to the tactile object recognition problem.

5.3.1 Background

Object recognition using a robot hand based on tactile information such as pres-
sure, vibration and temperature is a crucial problem (Fig. 5.2). To recognize an
object by such a robot, the following procedures are executed: (1) an action to be
applied to the object is designed, (2) the robot performs the action to the object,
(3) the recognition task is accomplished with the obtained tactile information.
For the efficient recognition, the most important procedure may be (1): we
need to plan and execute clever actions (referred to as exploratory actions) se-
quentially so that the resulting sensor data become sufficiently informative (we
refer to the action which carries the informative sensor data as an informative
action). In contrast with the poorly designed (e.g., random or hand-tuned) ac-
tions, if we could collect sample data by sequentially performing informative

actions, i.e. active learning, the required time to accomplish the task would be
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Figure 5.2. Tactile object recognition by a robot hand

drastically reduced. The effectiveness of active learning has been investigated in
(e.g. [1, 35, 36, 37, 38, 39, 40]).

5.3.2 Application of the proposed method to object recog-
nition

Active learning requires the observation model that relates the observed data to
the action and the object to seek informative actions. We consider to learn such
a model from training data using Gaussian Processes (GPs) [41], that relates the
observed tactile sensor data to the continuous object and action parameters, to
enjoy the compatibility of GPs with the active learning based on mutual infor-
mation, as well as in [1]. However, in the object recognition task, the suitable
representations of the objects for the object parameters in the model are not
given a priori and they might be strongly task-dependent, unlike in [1]. Besides,
using unsuitable object parameters may deteriorate the task performance.

The sensor model is a two factor model: the observation is represented with
the exploratory action and the object. If the different exploratory actions are
applied to the same object, the observation will be different, and if the same
exploratory action is applied to the different objects, the observation will also be

different. Thus, the two factor model is suitable to represent the phenomenon.
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To train the Gaussian process models, we can obtain the observation and the
applied exploratory action as the training data. However, the parameters which
represent each object is unknown a priori. This is the situation that one factor
in a two factor model is known, and the object manifold learning will be a key to

learn this model.

5.3.3 Exploratory action planning

After the object parameters are allocated and the observation model is learned,
the informative exploratory action can be designed using the observation model.
In addition, let us consider the tactile recognition task using an anthropomorphic
robotic hand. Regarding the exploratory action design, to avoid such undesirable
situations that the robot might break the object being touched or might get
a damage, the compliance of the robot behaviors is important as well as the
informativeness of the resulting sensor data.

Thus, we propose to design the exploratory actions using the formulation of
the optimal control problem with the robot dynamics. The optimal control can
find a control law that minimizes the resulting cost function. We propose the
cost function that is composed of two terms: the informativeness and the energy
consumption that can promote resulting actions to be compliant. As a criterion
of the informativeness, we adopt the mutual information which can be measured

by the model obtained by the object manifold learning.

5.3.4 Related works

The object recognition problem is often treated using visual information ([42,
43, 44, 45]). However, the recognition based on visual information might be
unrobust because of effects such as occlusion, or the lightning condition in the
real environment. Also, the auditory information utilized in ([46, 47]) could
be effected in noisy environment. In contrast, the recognition based on tactile
information is more robust for such effects as also mentioned in ([48]).
Regarding the allocation of the object parameters, the differential geometry
based feature [49] and the force-distance profiles based feature [50] for tactile sen-

sor data could be used as the object parameters. Since these features are strongly
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related to the physical quantities such as a surface shape and hardness of the ob-
ject, the suitable features need to be selected for the task a priori. Data-driven
feature extraction methods based on dimensionality reduction methods such as
Principal Component Analysis [51], Self-Organizing Maps [52, 53], and Maxi-
mum Covariance Analysis [54] have also been explored; however, these methods
are limited in a single action and unclear how to use for computing informative
actions with the notable exception of [38].

Also, regarding the planning of the exploratory actions, most previous studies
cannot, consider the informativeness and compliance simultaneously since they
treat the planning problem of exploratory actions separately from the robot con-
trol problem (e.g. [40, 39, 1]). In some previous studies, however, similar methods
have attempted to solve different problems as an optimal control problem. The
active sensing problem (e.g. [55, 56]), such as field modeling of the environment
is addressed with a mutual information criterion. However, contactless sensor,
such as a laser rangefinder, or a vision sensor are targeted in those studies, in

other words, compliance is not considered in the exploratory action design.

5.3.5 Sequential active learning for object recognition

We treat the object recognition problem as a parameter estimation problem [1].
We assume that each object has the intrinsic parameter called object parameter,
and this parameter will be sequentially estimated using the tactile sensor data
obtained by the exploratory action.

Generally speaking, the procedure of the active object recognition is summa-

rized as follows:

Step 1: Set an initial guess of the object parameter for the (unknown) target

object using a probability distribution (called object’s belief).

Step 2: Design the optimal exploratory action based on the current object’s be-
lief.

Step 3: Obtain the observation (tactile sensor data) by executing the designed
action to the target object.

Step 4: Update the object’s belief based on the observation.
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Step 5: Repeat from Step 2 until the variance of the belief becomes sufficiently

small.

Step 6: Determine the result as the object which has the nearest object parameter

in the database.

5.3.6 Problem formulation

Let us assume the object list to be recognized O = {Oy, ..., Oy} is given. We also
assume that the robot and tactile sensor for the object recognition are represented

as the following the state transition and observation equations:
y = g(x, 0) T €, (51)

where y € R% is the d,-dimensional observation from the robot’s sensor, x €
R% is the d,-dimensional action parameter which parametrizes the exploratory
action, @ € R% is the dy-dimensional object parameter, and € ~ N'(0,X,), X, =
diag {o%,03, . .. ,agy} is the d,-dimensional Gaussian observation noise.

The problems we need to consider to solve the object recognition problem are

listed as follows:

Problem 1 Suppose that the object list O = {Oy, ..., O} is given. The prob-

lems are

(a) to find the suitable object parameter for each object @ =
01, ..., 0], and

(b) to obtain the observation model (5.1).

Problem 2 Suppose that the state transition model

Vi = (v, wy), (5.6)

where 1) € R% is the dy-dimensional (observable) state of the robot,
and u € R% is the d,-dimensional input to the robot with input
limits Uiy < u < Uy are given. Also, the observation model (5.1)
are given. The problem is to find the informative and compliant

action sequence.
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Figure 5.3. Overview of the proposed method. 1) Object manifold learning to
obtain a GP sensor model to calculate informativeness of the action, 2) Infor-
mation maximization with a controller that designs informative and compliant

actions, and 3) Object’s belief update from obtained observation.

For Problem 1, the object manifold learning can be applied. In the following
section (Section 5.3.7), we describe how to apply the object manifold learning
to the object recognition. Then, the solution for the Problem 2 is shown in
Section 5.3.8. The relationship of the methods is shown in Fig. 5.3.

5.3.7 Object manifold learning with action features

This model can be used in the following 2 cases:

As a Sensor-Action Model
Assuming the desired state sequence W? = {4} is parametrized by x,
that is ¥¢ = W(x), this model can be regarded as a Sensor-Action Model
with a tactile feature y which represents the compressed information of the

tactile sequence, y < {y:}iy

As a Sensor-State Model
Assuming the robot’s state as the instantaneous action, that is x = ), and

Y = ¥, this model can be regarded as a Sensor-State Model.

Even the meaning of x differs, the fundamental structure is same. Also, the

difference will not effect to the solution of Problem 1 with a priori defined x.
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Figure 5.4. Overview of our active object recognition system. We first set the
probability distribution of the object parameter po(0) = N (po, Xo) as initial
object’s belief. Based on the belief, the action x is computed and performed for
the recognition target and accordingly the observation y is obtained. Object’s

belief p(@) is updated using x and the obtained y.

Thus, we will not consider this difference in the following discussion.

Let us assume the training dataset D = {Ds,..., D}, D, = {XW), y(“)}l].\[:e1
is available. Dy is obtained by executing the exploratory action to the ¢-th object
Oy. Then, using the dataset, we can directly obtain the suitable object parameters

by applying the object manifold learning.

5.3.8 Exploratory action generation for active tactile ob-

ject recognition and belief update

Using the GP model by applying object manifold learning, we construct the active
tactile object recognition method, by following [1]. The overview of the whole
process is shown in Fig. 5.4.

We use the mutual information [57] as the criterion of informativeness for the
exploratory action. The informativeness of exploratory action for each update

depends on the current object’s belief represented as the probability distribution
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of an object parameter 8. The mutual information 1[0, y|x] evaluates the reduced
amount of the object parameter’s uncertainty when the observation y is obtained
at the state x. In other words, it represents the amount of obtained information.

We utilize the mutual information as the definition of the infomativeness of
the action. The mutual information is defined using Kullback-Leibrer Divergence
as follows [58],

1[0, y[x] = KL(p(0,y[x)[p(8)p(y|x))

// (6, y|x) log (<)’?|T))d ae, (5.7)

and it is also represented using the entropy H[-| as follows:

116, y|x| = H[6] — H[f|y, x|

We can obtain the effective observation for the parameter estimation by control-
ling the system to the state sequence that maximizes this quantity.

The active tactile object recognition will be achieved as follows: First, the ob-
ject’s belief is initialized as a probability distribution pg(0) = N (o, Xo). Next,
the exploratory action defined by the action parameter x is determined by max-
imizing mutual information, and it is executed for the target object. Object’s
belief p(@) is sequentially updated using the observation y and the action pa-
rameter x. Based on updated p(8), the next exploratory action x is determined.
This procedure is repeated until n,,., times updated or terminated if the update
of mean is sufficiently small, and then the recognition task is finally achieved by

the nearest-neighbor object on the extracted object manifold.

With Sensor-Action Models

If the compliance of the action is guaranteed by the hardware or the pre-designed
controller, our interest is only the informativeness.

We consider the probability distribution as object’s belief at the n-th update,
Pn(0) = N (pn, 2,), for n = 0,1,... nyax. We first set the initial belief po(0) =
N (10, o).

The joint distribution between @ and y given x is also given by a Gaussian
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distribution as follows [59]:

p(8,y|x) =N< o ” H ,E(X)> :
y m(x)
C'(x) ®(x,x)

Enjoying this result, the double integral in Eq. (5.7) can be evaluated analytically,

and it is represented using the training data and the hyperparameter as follows:

116, ylx] = —%10g< det %i(x) ) :

det ®(x,x) det X

See Appendix D for the definition of the vector and matrices. Using p,_1(0),
optimal exploratory action parameter at n-th update, x,,, is determined by max-
imizing the mutual information between @ and y defined by w,,_1, 3,1, and x.
Enjoying the compatibility of GPs, the mutual information can be evaluated ana-
lytically, and the optimal action is obtained by solving the following optimization
problem,

X, = arg max 1[6, y|x]

When the observation y,, is obtained, the updated belief p,41(0) is obtained
by,

/J'n—l—l = l'l'TL + C(Xn)(ﬁ(xnv Xn)il(yn - m(xn)),
2)nJrl = En - C<Xn)(b(xn7 Xn)_lc(xn)T

This is based on Bayes’ rule, and this is a Extended Kalman Filter like update.

Although the Monte Carlo sampling-based updating method is shown in [1], we

use the analytical Gaussian updating method for its simplicity.

With sensor-state models: information maximization control

To obtain the informative and compliant exploratory action, we formulate the
exploratory action design using the finite horizon optimal control framework [60].
Note that the informativeness needs to be maximized as described for exploratory

action design, while the optimal control problem is generally formulated as a
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minimization problem of the cost. The mutual information is converted into a

cost to be minimized as shown later.

Approximate optimal control

We consider the optimal control problem:

Find the control law u; = (¢, ;) which minimizes the cost function for
the system (5.6), that is,

minimize Jr
T
s.t. ¢t+1 = f<¢t7 ut)u Umin <u< Upax

where

T-1

Jr = h(tpr) + Y Ut )
t=0
is the accumulated cost function, h(£7) > 0 is the terminate cost, and
((t,1p,u) > 0 represents the running cost. For the exploratory action de-
sign, we set the cost function associated by the informativeness and the

energy consumption as follows:

€<t7 '¢7 u) = q<¢t> + T<ut)7

where the first term ¢(&;) is related to the informativeness, and the second

term r(u;) represents the energy consumption.

We utilize the iterative Linear Quadratic Regulator (iILQR, [61]) as a com-
putational efficient and scalable optimal control solver: the linearized sys-
tem around the initial state sequence 1o.; corresponds to the initial input
sequence Uy are constructed, and the local LQR problem is solved for
the linearized system. The iLQR also gives a local feedback gains L; along
.71, therefore, the control law can be given by (¢, ;) = 0, +L; (v — ;)
[61].

Mutual information-based state cost function

Since larger value of the mutual information indicates more informative,
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the term ¢(&) in the running cost is defined using a certain monotonically

decreasing function v() > 0 as:
aw) = v(1[6.19]).

Belief update based on state sequence
The optimal action is planned based on the present belief p,,(0) = N (p, X,)
as described before, and then the state sequence 1., and observation y{.,-
are obtained by executing the action for the target object. Based on Bayes’

rule

p(Yg:T|w(T)L:T’ 9)pn(9)
n 0) =
Put(0) p(yng‘t/’g;T)

and Gaussian approximation of the marginal distribution p(y3:T|1b&T), the

mean and the covariance are updated as follows:

Hn+1 = Hn + Cnsgl(yn - Mn)7
Y0 =%,-CS,'ct
where Cn c Rdgx(T—i-l)dy’ Sn c R(T—H)dy><(T—&—1)dy7 Y, € R(T—i—l)dy’ and Mn c
RT+dy are defined as follows:
Co=| C&y) |

®(yg,¢y) - 2(Yg,r)

e O Y ]T,
Mo=[ (m(ep)) - (m(a) |

where C,, and §,, are the cross-covariance matrix between y{., and 8, and

T

the covariance matrix of yg.,, respectively. This is an extension of the

one-sample belief update law described in [1].

The object recognition is achieved by repeating the optimal action planning

and belief updating as described previously. The terminate condition is
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set by threshold e.g. ||X,]|2 < e with the suitable threshold €, or after
Nmax times repeat. Finally, the recognition result is obtained as the object

corresponding to the nearest object parameter @ in the database.

5.4. Performance validation of object manifold

learning

5.4.1 Experiment 1: synthetic data
Setting

We considered the following nonlinear function,

y =h(0,z) + ¢, (5.8)
exp(—(z — 0)?
h(t,z) = | exp(—(z —6%)?) |,
exp(—(z — 6°)?)
€ ~ N(0,diag {0.1,0.1,0.1}),

where y € R3 is the observation, # € R is the true-object parameter (which will
be the target of the estimation of object parameter é), and x € R is the action
parameter.

By setting # = —0.5,0,0.2,0.5, and z as following normal distribution N (0, 1),
we generated N, = 100 training samples for each 6 using Eq. (5.8). Therefore,
the total number of training samples N is 400.

The object parameter set ® was extracted and the GP model was simul-
taneously learned under the following condition: the dimension of the object
parameter was set as dy = 1 manually, and initial values of ® were randomly
chosen, and initial hyperparameters ~, for all a were manually selected and then
optimized numerically. In the recognition task, the belief update was executed
for nyax = 10. The optimal action parameter x on each update was determined

by numerically maximizing the mutual information.
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Figure 5.5. Comparison along (a) true-object parameter 6;, (b) extracted object

parameter #, and (c) randomly-set object parameter 6,,.

Result of object manifold learning

The extracted object manifold from the training data is shown in Fig. 5.5. The
parameter 6, stands for the true-object parameter, and the parameter ¢ indicates
the extracted object parameters by our method. Since the manifold learning has
an ambiguity of the extracted object parameters for its scaling and shifting, we
verify the accuracy by the correlation coefficient between 6; and 8, and the value
was 0.9995. Thus, the effectiveness of our object parameter extraction method

was confirmed.

Result of Active Object Recognition Simulation

To verify the suitability of the extracted manifold and learned model for active
object recognition, we compared its performance of the proposed method for the
active object recognition task to that with a GP model using randomly-set object
parameter ,,. The hyperparameters of this model is optimized in the same way
as the model with 6. The correlation coefficient between 6, and 6,, was 0.3449.
The mean and covariance of initial belief were set as 119 = 8, where 0 is the mean
of ®, and X = 5, respectively.

The recognition results are shown in Fig. 5.6. In this recognition simulation,

the true object was O3 represented by the orange dashed line in the figure. As the
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1.0 True object: O ( y 3.0r True object: O3 ( )

‘ _ -4.0 ‘ ‘
5 10 0 5 10
Number of Updates Number of Updates
(a) With extracted object parameter 6 (b) With randomly-set object parameter 6,

Figure 5.6. Recognition result with the extracted and the randomly-set object
parameter ¢ and 6, shown in Fig. 5.5. In this simulation, the true object is set to

O3 and its corresponding object parameter is drawn using orange dash-dot line.

result, in the proposed method the estimated object parameter 0 successfully and
quickly converged to the true value, however, in the comparison the estimated
parameter s,, was slower and converged to a wrong value at the end. Let us
investigate why this difference occurred by comparing the learned two models.
The both models for the 1st dimension of the observation ¢; are shown in Fig. 5.7.
In this figure, the vertical axis (7;) shows the mean of the prediction distribution
for the pair (s, x). Asyou can see, the model with randomly-set object parameters
does not have much smoothness in terms of the coordinate z. This would make
updating the parameters in active learning difficult since its update law described
in Section 3 involves local linearization.

Consequently, the suitability of our proposed object’s belief update method
and model learning method for active object recognition was verified with the

synthetic data.
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(a) With extracted object parameter ¢ (b) With randomly-set object parameter 6,

Figure 5.7. Comparison of the GP model of §; which is the 1st dimension of

observation.

5.4.2 Experiment 2: active tactile object recognition
Setting

We prepared L = 4 objects as recognition targets shown in Fig. 5.8(a). This
experiment was done with the robot hand (Shadow Dexterous Hand by Shadow
Robot Company), and the tactile sensor mounted on its fingertip (BioTac by
SynTouch) shown in Fig. 5.8(b). The whole flow of the experiment is shown
in Fig. 5.9. While this robot hand has 12 DoF's, in this experiment we focused
on 2 DoF, FFJ3 and FFJ4, as shown in Fig. 5.8(b). These joints can generate
actions that correspond to inflective and horizontal movements of the index finger,
respectively. This robot hand with the sensor is controlled using Robot Operating
System (ROS) [62]. Its control rate and sensor data collection frequency were
both 1000 [Hz]. We developed the automated object switching system (1DoF)
as shown in Fig. 5.10, that can mount 10 objects at maximum and its angular
resolution is 0.2 [deg]. Therefore, the system allowed to automatically collect
training data for different objects.

We describe below the details of the action parameter, tactile sensor data,

and the setting of model learning and recognition simulation.

Action parameters We defined the action parameter based on Dynamic Move-

ment Primitives (DMPs). DMPs represent the trajectory ) using nonlinear
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Oq: Paper Cup O>: Glass Cup

O3: Clear Cup

(a) (b)

Figure 5.8. Settings for Experiment 2 of object manifold learning. (a) Recognition
target objects. O;: disposable paper cup. Oy: bumpy glass cup. Os: disposable
clear cup. Oy: stainless cup. (b) 12DoF robot hand and tactile sensor. We use
2 DoF, FFJ3 and FFJ4 corresponding to inflective and horizontal movements of
the index finger, respectively. On its fingertips, the BioTac sensor is mounted to

obtain the tactile information.
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function e.g. Y = F(w,P), where w is the parameter which defines the
shape of trajectory, and P is the hyperparameter set containing time con-

stants, goal state, basis functions, and so on. See [63] for the details.

In this experiment, we first obtained the basic parameter wie,. from a
teaching trajectory, and generated the new trajectory using the new pa-
rameter W = Wieach + X, Where x is set as the action parameter. The
detail is as follows: by using a cyberglove as the master system, we con-
trolled the robot hand as the slave system so that the fingertip pushed
into the object, and then started to slide the object subsequently using
FFJ3 and FFJ4. The duration of each action is around 14.4 [sec]. Then,
the recorded robot trajectories were approximated by two DMPs with 25
basis functions, and each basic parameter wil’ € R* and willl € R?
were learned using a least square method. To reduce the dimension of the
action parameter, we selected three dominant parameters out of 25 pa-
rameters, w23 € R? and wilt € R3| respectively. Finally, we obtained
Wicach = [(WEbdH) T (WEEIHT]T € RE. Therefore, the dimension of the ac-

tion parameter turned into d, = 6.

Tactile information BioTac sensor gives pressure, vibration, and temperature
as tactile information. In this experiment, d, = 5 dimensional tactile feature
was used; vibrations (2 dimensional)*, pressure, heat flux, and temperature,
all of which were obtained by using ROS. Since one action parameter cor-
responds to one trajectory (time series), we defined y as the mean of the

time series of tactile sensor data and used for the following experiments.

Model learning and recognition simulation We collected N, = 100 train-
ing data from each target object for constructing a model using the actual
robot hand. Using N = 400 training data in total, the object parameter
set © were extracted and the GP model was simultaneously learned with
dp = 2 which was manually selected. In this model learning, a differential

evolution scheme [64] was used since the marginal likelihood function has

*Note that this tactile sensor has only 1 vibration sensor, however, the measurement fre-
quency of vibration data is 2000 [Hz], while the collection frequency is 1000 [Hz]. The 2nd

dimension of the vibration data contains 0.5 [ms] late behind the 1st data.
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PD Controller

Modeled using GPs

Tactile Data

Figure 5.9. Overview of recognition experiment with the real robot hand shown
in Fig. 5.8(b).
The robot follows the desired joint angle in the converted trajectory using a PD

controller. Consequently, the tactile data y is obtained. Remaining parts are

3

. . » Object
Opélg:‘zzlr;cg:’on K, Parameter
Updater
!

po(e)

same as described in Fig. 5.4.

local maxima, and this problem is more serious as compared to Experiment
1 that has less parameters to be optimized. Other settings in model learn-
ing were the same as in Experiment 1. To execute the recognition task, the
observation y was sampled from the constructed GP model, and the mean
and covariance of initial belief were set to pg = @ where 8 is the average
of ®, and ¥ = diag {5,5}, respectively. The belief update was executed

for nuax = 15. The optimal action parameter x on each update is set by

numerical maximization.

Result of object manifold learning

Fig. 5.11 shows the extracted object manifold.
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1
Stepping Motor ~ Belt and Pulley Systems

(a) Overview (b) Cross section by its CAD model

Figure 5.10. Object switching system for obtaining training data. The turntable
(wooden round table) turns by the stepping motor and it is controlled using
the same computer for the robot hand. The torque from the stepping motor is

transferred to the turntable through a belt and pulley systems to amplify it.

Figure 5.11. Extracted object parameters of 4 objects
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Figure 5.12. Transitions of mean and standard deviation of object’s belief at n-th
update, p,(0) = N (u,, X,,) during learning. True object in this simulation is O,
(paper cup, represented using blue dash-dot line). The black line represents the
mean of u,, and the gray area around the black line corresponds to the standard

deviations (the square root of diagonal elements of X,,).

Let us discuss the result; O (stainless cup) is located far from other three
objects since its heat characteristic is particularly different. O; (paper cup) and
O3 are located nearly based on their similar hardness. The appropriateness of

these placement will be thoroughly validated with more objects in the near future.

Result of active object recognition simulation

The recognition simulation result and the trajectories corresponding to the com-
puted action parameters at each update are shown in Figs. 5.12 and 5.13, re-
spectively. In Fig. 5.12 the estimation result of both active learning and pas-
sive learning are shown and first 5 trajectories are also shown in Fig. 5.13 be-
cause of limited space. By using active learning, the recognition is successfully
achieved since the mean of p(@) is converging to the true object O; as you can
see in Fig. 5.12(a). Comparing the result of active learning, passive learning
(Fig. 5.12(b)) does not converge to the true object parameter. We consider this
is because of high dimensionality of action space. Fig. 5.13 shows the generated

trajectories of exploratory actions on each update. Regarding the result of active

76



learning, in the first update, the movement of FFJ4 is a bit stronger and of FFJ3
is a bit weaker as compared to the teaching trajectory. The difference between the
generated movement and the teaching trajectory, however, this movement dras-
tically reduces the variance of 6, (related to the uncertainty of the estimation).
The following movements gradually reduce the variance of 6,. The movements
are larger in passive learning as opposed to active learning, however, these move-
ments did not make the variance small. As a result, active learning generates the
proper movements to obtain the most informative observation.

From these results, it was confirmed that the model constructed by our pro-
posed method works well for the active object recognition problem even with a

real robot data.

5.5. Performance validation of information max-

imization control

5.5.1 Experiment 1: with physical simulator
Simulation settings

We verify the effectiveness of our proposed scheme using the one link robot arm
model shown in Fig. 5.14. The joint range is limited to —7/2 < ¢ < 7/2,
and its equation of motion are discretized in a Euler integration manner with
the sampling time At = 0.01[s]. We assume that the 2 DoF pressure sensor is
mounted on the tip of the arm in order to obtain the observation. The reaction
force model f; with the spring K and the damper D for the object as shown in
Fig. 5.14 is supposed for the horizontal axis, and the dynamic friction model f,
with the coefficient of dynamic friction y' is also assumed for the vertical axis as

follows:

fi=—(K& + DE,),
fo = —sign(&,)1' fi

where & = [¢,,&,|" is the tip position of the arm.

In this experiment, the object recognition problem is regarded as the damper
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Figure 5.13. Generated trajectories of exploratory actions on each update in
recognition. Blue and green lines represent the trajectory generated using
Wieach + X¢, and black lines represent the trajectory generated using wieaen. Time
is on the x-axis and the joint angles on the y-axis. The movements in passive
learning are larger as opposed to active learning, however, these movements are

not informative.
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coefficient estimation problem: the object parameter § = D is estimated using
the exploratory action.

Let us describe how to learn the GP observation model. The spring coefficient
and the dynamic friction coefficient are fixed as K = 1 and y’ = 0.5, respectively,
and we prepare 3 target objects D € {1,3,5}. The observation y = [fl, fQ}T
and the state ¥ = [q,q’]T are defined, and the training data D is constructed
as follows: the range of state is set to —7/2 < ¢ < 7/2 and —15 < ¢ < 15,
and a 15 x 15 grid is arranged at equal intervals on the range. We obtain the
observation y for each grid point. The total number of training data is N = 675.
The object’s belief update is executed n,., = 10 times.

Next, let us explain the settings for the information maximization control. The
initial state is fixed to ¥y = [—ﬂ/ 2, O] T, and the length of the exploratory action
is set to T' = 100. The initial input sequence is set tou; = 3 fort =0,1,...,T—1.
The running cost based on the belief p,, () is defined as

1t ) =xp (18 1)) +
+ 1000 exp(—10(15 — ¢))
+ 1000 exp(—10(15 + ¢))

where p(™ > 0 is a constant in order to change the maximization problem of
the mutual information to the minimization problem, and experimentally p™ =
10 exp(—0.2n?) is used since the magnitude of mutual information will decrease
by belief’s updates. The 3rd and 4th terms in the running cost play a role of the
penalty term as the angle velocity does not exceed the range of training data.
The terminate cost is set to h(v) = ¢,,(T,1,0). The initial object’s belief is given
po(0) = N(3,5?), where its mean is equal to the mean of the object parameter in

the training data.

Result

Firstly, the mutual information distribution based on the initial object’s belief
po(6) computed using the GP observation model is shown in Fig. 5.15. The force
from the damper depends on the velocity in the direction of the horizontal axis

€,. The velocity &, is gotten zero when the angle ¢ = 0 and larger force from
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Figure 5.14. Problem setting for Experiment 1 of Information Maximization
Control. A tactile sensor is mounted on the tip of 1 DoF robot arm. As the
object model, the spring-damper model is assumed for the horizontal direction,

and the dynamic friction model is also assumed for the vertical direction.

Figure 5.15. Distribution of the mutual information based on the initial object’s
belief po(#) = N (3,5%).

the spring is observed. Accordingly, the information about the damper could be

buried in other information. Whereas, more information could be obtained when

the absolute value of the angle |g| is close to /2. Consequently, we regard this
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distribution as appropriate.

Secondly, the recognition result is shown in Fig. 5.16. The input torque
sequences obtained at n = 0 by our method are shown in the upper row of
Figs. 5.16(a)-(b). For both cases with different values in r, the energy efficient
and compliant exploratory actions are generated by the proposed method and
the object recognition is successfully achieved. The balance in between the in-
formativeness and energy efficiency is adjusted by the r: the larger value in r
(Fig. 5.16(b)) generated energy-efficient actions, however, it is less informative
as evidenced with the slower convergence of the belief updates than the smaller
value (Fig. 5.16(a)). It was also confirmed that all the elements of local feedback
gains L were relatively small for all the cases. Therefore, the generated controllers
are compliant.

As the comparison, we implemented the PD controllers which generate the
control input for achieving the desired state 1p; = [r/2,15]T, and here this plan-
ning has done separately from control problem. The most informative action
is obtained using the high gain PD controller as shown in Fig. 5.16(c) but the
obtained action is energy inefficient since the large torque sequence is generated.
In contrast, a more energy efficient action is obtained using the lower gain PD
controller as shown in Fig. 5.16(d); nevertheless the convergence of the belief is
slower as compared to the other methods since the planed action is infeasible by
the controller.

These experimental results show that our proposed method can generate en-

ergy efficient and compliant exploratory behaviors.

5.5.2 Experiment 2: with actual robot
Experimental settings

The effectiveness of our proposed scheme is validated by the robot hand system
shown in Fig. 5.10 as used in previous section. We prepared L = 4 objects as
recognition targets shown in Fig. 5.17(a). This experiment was done with the
robot hand (Shadow Dexterous Hand by Shadow Robot Company), and the tac-
tile sensor mounted on its fingertip (BioTac by SynTouch) shown in Fig. 5.17(b).
While this robot hand has 12 DoF, in this experiment we focused on 2 DoF, FFJ3
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Oq: Paper Cup O5: Bumpy Cup

O3: Sponge

(a) Target objects (b) Robot hand and tactile sensor

Figure 5.17. Experimental settings for Experiment 2 of Information Maximiza-
tion Control. (a) Target objects in this experiment. (b) 12 DoF robot hand
and tactile sensor. Each joints are driven by pneumatic artificial muscles placed
antagonistically. We use 2 DoF corresponding to inflective (pushing) and hori-
zontal (rubbing) movements of the index finger, respectively. The tactile sensor

is mounted on the fingertip.

and FFJ4, as shown in Fig. 5.17(b) because of the limitation of the scalability.
These joints can generate actions that correspond to inflective and horizontal
movements of the index finger, respectively.

The dynamics model (5.6) of this robot hand is difficult to derive analyti-
cally because of the complex properties of the pneumatic artificial muscles. In-
stead, we identified it from training data using a nonlinear discrete-time ARX
model whose nonlinearity is wavelet network and one-layer sigmoid network and
whose sampling period is set to 0.01s. This are implemented in the MAT-
LAB System Identification Toolbox. The state 1 here is d;, = 4 dimensional
¥ = [qrris, Grris, qErae, QFFJ4}T; where gppy3 and gppys are the joint angle of
FFJ3 and FFJ4, respectively, and ¢ stands for each joint velocity. The joint an-
gle ranges of FFJ3 and FFJ4 are 0 < gppy3 < 7/2 and —7/9 < qppys < 7/9,
respectively. Here, each input u;,j € {FFJ3,FFJ4} is defined as the difference
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Figure 5.18. Object parameters obtained by object manifold learning. In this

experiment, the object parameters for all the objects are identified.

between the desired angle q;-i and the actual angle g;, u; = q;.i —¢;. In the training
data collection, the desired angle was set to their maximum and minimum joint
angles alternatively. The independency between joints are assumed, therefore,
two dynamics models are separately learned for those joints. The total number
of training data is 26,765.

The BioTac sensor gives pressure, vibration, and temperature as tactile in-
formation. In this experiment, d, = 3 dimensional tactile feature was used; 1-
dimensional pressure data and 2-dimensional impedance data, all of which were
obtained by using ROS. We collected 100-sample training data for each objects
and the number of whole training data was 400. This data collection was done
as follows: We design a random trajectories for each joint, and tens of thousands
data is collected. And then, 100 data for each object is selected randomly. The
object parameters were given by the object manifold learning scheme as shown
in Fig. 5.18.

Here, the initial state was fixed to ¥y = [7T/12,0,0,O]T, and the length of

the exploratory action was set to 7" = 100. The initial input sequence is set to
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Time [s]

Figure 5.19. Input of obtained action in Experiment 2 of Information Maximiza-
tion Control. Positive values indicate that the joint moves a direction which
increases the joint angle. The joint FFJ3 (blue) generates pushing movements,
and the joint FFJ4 (green) generates rubbing movements. This input sequence
lets the robot push and rub the object simultaneously.

u; = [0.2,0.3]T for t =0,1,...,T — 1. The running cost was set to
((t,p,u) = 10 exp(—pI [G,yhﬂ) +u/Ru,

4
+ > (eXP(=10(jamax — 1)) + exP(=10(~Vjmin — 1)) )
j=1

where p = 30, R = 0.11, ¥ max and 9 min stand for the maximum and minimum
values of the j-th entry of the state in the training data for GP model construction,
respectively.

The object’s belief pg(0) = N (mo, Xo) was given by pg = [0.8,0.5]7 and
¥y = 0.22I, which means that it is uncertain whether the target object is Oy

(Dumpy Cup) or O (Sponge). The exploratory action is designed under the
conditions.
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Results

The computed input sequence u is shown in Fig. 5.19. Here, the joint moves to a
direction which increases its joint angle if the positive values are inputed, because
u; stands for u; = qf — ¢;. As you can see in Fig. 5.19, the robot starts to push
and rub simultaneously. Intuitively speaking, to discriminate dumpy cup and
sponge, the finger should push the object to confirm its stiffness, and also rub the
object to check the dumpiness. The obtained action is shown in Fig. 5.20. The
upper row of Fig. 5.20 shows the action sequence at ¢ = 0,20,...,100 and the
lower row shows the pose difference from the pose at t = 0. Inflective movements
were firstly observed (t = 0 to t = 40) due to hardware properties and the initial
state; the joint’s movement gets slower if its angle is close to its limit, and the
margin between the initial state and the angle limit of FFJ3 is wider than FFJ4.
And then horizontal movements are observed (¢t = 40 to ¢ = 100). It was also
confirmed that the generated controllers are compliant since all the elements of
local feedback gains L were relatively small. This movement can be interpreted
as a suitable exploratory action to reduce the uncertainty in between the objects
Oy and Os. The further investigation is required, but these results suggest that
the effectiveness of our proposed method for exploratory action design in real

environment.

5.6. Summary

We proposed a partial manifold learning method. It is the manifold learning
method for two factor models whose one factor is unknown. The proposed method
can extract the unknown factor considering the effect of known factor and obser-
vation. The method is applied to the object recognition tasks. Then, we call the
proposed method object manifold learning. To solve the recognition task quickly,
we need to construct a model for the action optimality evaluation. The object
manifold learning obtains the suitable object parameters (corresponds to the un-
known factor), and GP sensor model is obtained as the result. Our contributions

in the point of view of object recognition are summarized as follows:

(1) a data-driven approach for obtaining the object parameters is proposed, i.e.

86



Figure 5.20. Obtained action in Experiment 2 for Information Maximization
Control. Intuitively speaking, to discriminate dumpy cup and sponge, the finger
should push the object to confirm its stiffness, and also rub the object to check
the dumpiness. The upper row shows the action sequence at ¢t = 0,20,...,100
and the lower row shows the pose difference from the pose at ¢ = 0. The robot
starts to push and rub simultaneously. Inflective movements are firstly observed
(t = 0 tot = 40) due of hardware properties and the initial state, and then

horizontal movements are observed (¢ = 40 to ¢ = 100).

object manifold learning with action features.

(2) With the object manifold learning, generalization of the GP based active

learning method proposed in [1] is achieved for object recognition problems.

(3) An optimal control formulation is proposed for the exploratory action design
considering both the informativeness and the compliance. The method is

called information maximization control.

The effectiveness of our proposed method was verified through experiments with
synthetic and real robot data.

Let us discuss several directions for future work. We validated our method
using 4 actual objects, We are now conducting the experiments with more objects
for more concrete validation of our method. In addition, continuous actions are
considered in our method in contrast with using discrete actions [35, 36, 39, 40|
(e.g. grasp, shake). Comparison between these methods and our method with an
action-sensor model would be interesting for future work.

An extension of scalability of the method is also our future work. The high
dimensional action space could make the model learning and the optimal action

search intractable since a huge number of training data are required. Applying
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a concept of muscle synergies [65] or other dimensionality reduction scheme [66]
for the action space can be considered. Other approach for a huge number of
training data is to reduce the number of training data. One of approaches is to
use a sparse Gaussian process regression model (e.g. [67, 68]) as used in Saal et
al. [69]. Another approach is to select the dominant training data for the model-
ing. We have proposed a subset selection method called Sparse Greedy Quadratic
Minimization (SGQM) for multi-dimensional problems [70], originally proposed
in [71] for one-dimensional problem. The fundamental concept is to sequentially
select a data point from the training set in a greedy manner to minimize the
approximation error of the maximum a posteriori probability (MAP) estimate of
output y. Algorithm 3 shows the selection algorithm (see Appendix E for the
definition of functions), and it has been successfully applied to the sequential
intention estimation for intelligent driving assistance. To apply this approach
would also be our future work. Moreover, we may use the information from two
or more sensors in the feature extraction as treated in e.g. [54, 39]. Such an
extension of our method to multimodal sensors (e.g. image and sound sensors)

will also be addressed in the near future.
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Algorithm 3: Sparse Greedy Quadratic Minimization for Multi-

dimensional GP Regression

input : Training data sets D, and hyperparameter sets ~, for
a=1{1,2,...,d,}, Precision p or Maximum size of subset 7, Size
of randomized subset x

output: Set of indices &

Initialize index sets Z,7* = {1,2,...,N}; §,8* = ¢

Set P :=[,P* :=].

repeat

Choose k elements randomly from index sets M C Z, M* C T*.

Find arg min ) | Q.([P, e:i]x.([P,ei])).
ieM

Find arg min ) Q! ([P*, e;:|x.([P*, e])).
*eM*

Move ¢ from Z to S, i* from Z* to §*.

Set P := [P, e;], P* := [P*, e;x].

until C1(P,P*) < £y (P,P*) or size(S) =1
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Chapter 6

Conclusion

6.1. Summary

In this dissertation, we have proposed task-relevant manifold learning meth-
ods. The manifold learning methods are successfully applied in many applica-
tions [13, 14]. However, the obtained low-dimensional representation is sometimes
not suitable for modeling. Based on the existing manifold learning methods,
we have first proposed the input-output manifold learning with transfer func-
tion model (IOMLTF), which is a system identification method using the high-
dimensional data (Chapter 3). The IOMLTF considers the fitting error to the
dynamics represented using the transfer function models for the criterion of the
manifold learning. The input-output manifold learning is achieved by solving the
quadratic programming problem with quadratic constraints. It can be regarded
as a multieigenvalue problem when the system is a single-input single-output sys-
tem. In contrast with (original) Isomap, this solver seems to be natural since we
solve two manifold learning problems simultaneously. Next, to capture the tran-
sient response, we have proposed the input-output manifold learning with state
space model (IOMLSS), which is an extension of IOMLTF (Chapter 4). The ex-
tension is done by replacing the fitting error to the state space model version, and
we show that the fitting error can be reformulated to the quadratic form. Then,
an algorithm similar to IOMLTF can be applied to obtain the low-dimensional
data and dynamics. Meanwhile, a partial manifold learning method is proposed.

We consider two-factor models whose one factor is known and the other is un-
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known. Considering the effect of the factors to the observation, the unknown
factor can be obtained suitably by the method. The method is applied to the
object recognition tasks in order to obtain a suitable object parameter. We call
the proposed method object manifold learning in this particular application. It
allows us to simultaneously obtain a probabilistic sensor model that determines
the informativeness of the exploratory action. In addition, to plan and execute
the informative and compliant exploratory action, information maximization con-
trol that solves the problem in the optimal control framework is proposed. The
proposed methods are validated through numerical simulations and experiments
with actual robot hand. The results in the chapters show the effectiveness of

proposed task-relevant manifold learning methods.

6.2. Future work

The effectiveness of our proposition is shown through the linear system modeling
and robot perception. However, the experiments have limitations. The actual
task with intelligent systems will be addressed. The sensor modalities addressed
in this dissertation are visual and tactile. The intelligent systems consist of other
modalities such as auditory or proximity. To treat or combine these sensor data,
the previous studies with manifold learning, such as the sensor data fusion [72]

or video sequence prediction [17], would be useful.

6.3. Future prospects

In the upcoming age of big data, the sensor data obtained from the intelligent
systems would be huge, and more complicated phenomena can be captured by
such a system. In order to tackle the modeling with such data, introducing deep
generative models [73, 74] will be interesting. Moreover, we aim to determine a
metric that is suitable for modeling. In this dissertation, we consider to add some
penalty terms or constraints to the evaluation function for realization of the meth-
ods. Alternative to this realization, a new metric could be used instead of graph
distances (Chapter 3 and 4) or Mahalanobis’ generalized distance (Chapter 5).

The previous studies [75, 76] will be useful for the realization.
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Appendix

A. Approximation of the geodesic distance using
graph

In this section, we describe how graph distance is computed as approximation of
the geodesic distance from the data. Let us assume that the dataset X = {x;}¥,
is available. The basic idea is that the Geodesic distance between the sample is
approximately equal to the Euclid distance in the neighborhood of the sample.
The Euclid distance among the samples can be calculated in a simple way,
and we can consider the k-nearest neighbor (k-NN) graph of samples as shown in
Fig. 6.1(a) based on the distance. To explain more concretely, let us consider the
three nearest neighbors (k = 3) of the black node shown in Fig. 6.1(b). For the
black node, five nodes are connected in total. Then, we can obtain the Euclid
distance for the five pair of the black node. In the three nearest neighbors method,
we cut the edges connected to the node except of the three nearest neighbors: the
edges shown using the dotted line are cut. Repeating this for all nodes, we can
construct the neighborhood graph like Fig. 6.1(a). By setting the length of the
edge to Euclid distance between the nodes, the graph distance can be computed

by solving the shortest path problem.

B. Multivariate eigenvalue problem

In this section, the setting of the multivariate eigenvalue problem (MEP) is de-
scribed based on [18]. Additionally, the Horst-Jacobi method which is one of
solvers for the MEP is shown.
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X

(a) Example of the neighborhood graph (b) Example of k-NN (k = 3)

Figure A.1. Example of the k-NN graph.

Let us assume that a n x n positive definite matrix A € R™" and a n-

dimensional column vector € R™ are given. Further, a positive integer set,
m
Pr = {n1,n2,...., 0}, E ny=mn
i=1

is assumed to be given. Then, we decompose A and x as follows:

All A12 T Alm
A _ 521 A‘ZQ : AQm
Aml Am2 e Amm
T
X = [ Xy e XH ]

where each matrix and vector is defined as A;; € R"*" [ x; € R™ respectively.
Define

A :=block diag{\L,,, -+, \nI,. },
using Aq,..., A\, € R, then, the multivariate eigenvalue problem is to find a set
(A, x) for Pp,.
Ax = Ax
||Xz'H2 = 1, X; € R™ (B].)

(i=1,2,---,m)
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Algorithm 4: The Horst-Jacobi method

input : matrix A € R, initial column vector x(© € R”, a set P,,

output: eigenvectors {x;}", and eigenvalues {\;}*, corresponding to the

(local) maximum value of Y"1 \;

for k=0,1,...,do
fori=1,2,...,m do
k m k
i)=Y Ayx
A = [y
(k+1) .y

i

X

end

end

It is known that there are [[;",(2n;) solutions.

Let us consider the problem to find the set (A, ) so that > " | A; is maximized.
Then, the problem of Eq. (B.1) can be represented as the following optimization
problem.

Maximize 7r(x):=xTAx
subject to  [[x[l2 =1, x; € R™
(1=1,2,--- ,m)
As a local solver for this optimization problem, the Horst-Jacobi method shown

in Algorithm 4 is known.

C. Prediction error criterion in 4SID

Ignoring the noise term, the output predictions for the system ¥ with given input

sequence {uy,...,ur_1} is given as

Y; =I,X; + HiU,
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where Xy = Xp,2,—1 is a Hankel matrix associated with the state sequences, and

C
r,= :
CAhfl

is called the extended observation matrix. The matrix,

H,
e e
H,. Hp2 --- Hp
is associated with the matrices
D (1 =0),

H; = .
CA™'B (i >0),

called Markov parameters. The term I',X; is used even though both matrices

are unknown. However, it can be estimated by the following oblique projection,

Y, /Wp — WX, (C.1)
Uy

A property of the oblique projection indicates that a matrix L, which satisfies

the following relationship exists,

Y, /Wp = L,W,, (C.2)
Uy

and finally Y 7 is obtained as follows,
Y; =L,W, + H{U;. (C.3)

From the relationship, it is obvious that updating the L, corresponds to the
update of the extended observability matrix and state vector. See [28] for the
details.
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D. Definition of the vectors and matrices for eval-

uation of mutual information

®,, which is the (a,b)-th element of ®(x,x’) € R¥*%  and C(x) € R%*% are
defined as follows:
Doy = By Aan(X,X') By — ma(X)1my(X)
+ Gedan (02 = Tr (Ko + 02) 7 Aga(x, %) )
C=¥(x) - pm(x)".
The a-th entry of m(x) € R% is m, = BI\,(x), and 3, is defined as B, =

(K, + o21) "y, € RV,
The i-th entry of the vector g, for i =1,2,... N is

1

2

Nai = o det (E (Hg)f1 + I)
<o~ n -0 (24 1) (u - 0) )

< exp (_%(x ) () (x x@)) |

The (i, j)-th entry of the matrix A, is represented as follows:

N|=

Aapij = 01(210(2 det(((HZ)l + (H2)71>E N I)

X exp (—

X exp

(69 — 0<J’>)T(H2b)*1 (69 — 9(j)>)
50— 1) "R 0% ) )

) () x)

(x' — x‘J'))T(H;f)‘l(x’ _ X(j))) ,

X exp

NI~ N~ N~ N

7~ N, " N~

X exp

where HY, = HY + HJ and
0, = Hj(H{,) 6" + H; (H;,)
R = ((H) ™+ (Hg)‘l)_1 + 3,

'g)
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are defined. The vector 1),, which is the a-th column of ¥ for a =1,2,...,dy is

defined as follows:
N —
o= Bun(0) (HD) "+ 27) T (HD) 00+ 2 ).
i=1

where [, is the i-th element of 3,.

E. Definition of the functions for subset selection

of the training data

Functions Qq, @, X4, C1, Cy in Algorithm 3 are defined as follows:
1
Qula) = —yIK,o + EaT(USKQ + K K,)a,

1
Qi a) = —yla+ §(XT(O'31 +K,)a,

X.(P) = (P*(0?K, + K'K,)P) 'P"Ky,,
C1(P.P*) = i(%(%@)) + 02Qi(P* X, (P"))
: + Slyal?).
Co(P, P*) = dZy(r@a<an<P>>|

a=1

+102Q0 (P xa(P)) + 3llyal’

).

and e; refers to the i-th column vector of N x N identity matrix.
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