
NAIST-IS-DD1361008

Doctoral Dissertation

Manifold Learning from High-Dimensional Data

for System Modeling, Prediction and Robot

Tactile Perception

Daisuke Tanaka

March 14, 2016

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Daisuke Tanaka

Thesis Committee:

Professor Kenji Sugimoto (Supervisor)

Professor Tsukasa Ogasawara (Co-supervisor)

Associate Professor Takamitsu Matsubara (Co-supervisor)

Assistant Professor Yuki Minami (Co-supervisor)

Professor Kentaro Hirata (Okayama University)



Manifold Learning from High-Dimensional Data

for System Modeling, Prediction and Robot

Tactile Perception∗

Daisuke Tanaka

Abstract

Recently, systems that employ various sensors have been constructed, and

thus the amount of the sensor data in electronic form is growing. The combined

data could be high dimensional, and modeling from this data may output poor

models since it is difficult to fill the high-dimensional space. If we use the model

constructed with high dimensional data, the prediction of the model with new

data may be irrelevant. That is, the curse of dimensionality could be a problem.

Meanwhile, since the high-dimensional data often lies on a lower-dimensional

manifold intrinsically, the low-dimensional manifold can be extracted by apply-

ing the manifold learning techniques, also known as nonlinear dimensionality

reduction methods. Then, we provide a better model, thus avoiding the curse of

dimensionality. However, the model constructed with the low-dimensional data

obtained with such a method may deteriorate the task performance or can lead

to task failure since the method does not consider the task.

Thus, in this dissertation, we propose task-relevant manifold learning methods

through construction of new criteria by adding constraints induced from the task

such as prediction or control. By introducing this criterion, we achieve both

manifold learning and modeling simultaneously, and the model is constructed

that ameliorates the task performance. The proposition is validated through the

following two problems.

∗Doctoral Dissertation, Graduate School of Information Science, Nara Institute of Science

and Technology, NAIST-IS-DD1361008, March 14, 2016.
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First, we consider the linear system identification method using high dimen-

sional input and output data. We assume that the input and output data lie on

manifolds respectively, and each manifold relates dynamically. In this study, we

propose a new criterion to obtain a model for accurate prediction by considering

the error of fitting to the linear dynamics. Using this criterion, we achieve both

the dimensionality reduction of the input and output data, and the system iden-

tification. We experimentally validate the effectiveness of the proposed method

by experimenting with synthetic data.

Next, a partial manifold learning method is considered. We consider a two-

factor generative model whose one factor is known and the other is unknown. In

order to obtain an unknown factor considering the effect of both factors to the

observation, we propose a manifold learning method that uses a prior informa-

tion of the model structure as the constraints for optimization of the criteria. The

proposed method is used for modeling for the object recognition problem using

a robot hand with tactile sensors. The object recognition is achieved by esti-

mating the inherent parameter of objects allocated in advance, by executing the

exploratory action by the robot to the object. In order to achieve the recognition

efficiently, we need a sensor model, which represents the relationship among the

sensor data, the exploratory action, and the object being touched, to determine

the informativeness of the resulting sensor data of the action. It is better to use

the smooth model to make the recognition easier. Thus, we apply the proposed

method in order to estimate the parameter so that a smooth model is obtained.

The effectiveness of the proposed methods is validated through the numerical

simulation and the experiments with the actual robot.

Keywords:

Manifold Learning, System Identification, Optimal Control, Isomap, Gaussian

Process Latent Variable Models, Multi-Eigenvalue Problem
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システムモデリング・予測・ロボットの触知覚のための

高次元データからの多様体学習 ∗

田中 大介

内容梗概

近年、多様なセンサにより構成されたシステムが構築されている。予測や制御
を目的として、システムから得られるデータからモデリングを行う際、センサか
ら得られる全てのデータをまとめると高次元になり、次元の呪いが問題になる。
一方、高次元データは本質的には低次元の多様体上に偏って存在していることが
多いため、これを抽出する非線形次元削減法である多様体学習法を適用すること
で、次元の呪いを回避しながらモデリングを達成できる。しかし、このように得
た低次元データから得たモデルによりタスクを実行した場合には、タスクのこと
を考慮した次元削減が行われていないため、タスクが成功しない場合がある。
そこで本論文では、従来多様体学習法で用いられる評価基準に、予測や制御な

どの目的に起因する制約を加え、新たな評価基準を構築することでタスクに適し
た多様体学習法の構築を試みる。また、これにより多様体学習とモデリングを同
時に達成し、タスク達成度を高める。この提案法の検証を以下の 2つの課題を通
して行う。
まず、高次元入出力データから線形システムを同定する手法を検討する。ここ

では得られた入出力データがそれぞれある多様体上に拘束され、また多様体間に
は線形システムで表される動的な関係が存在すると仮定する。本研究では予測精
度の高いモデルを得るため、低次元表現間の線形ダイナミクスへの当てはめ誤差
を同時に考慮する新たな評価基準を提案する。この評価基準を用いることで、入
出力データの次元削減と線形システムの同定を同時に達成する。提案手法の有効
性は人工データを用いて実験的に検証し確認した。

∗奈良先端科学技術大学院大学 情報科学研究科 博士論文, NAIST-IS-DD1361008, 2016年 3月
14日.
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次に、2因子生成モデルに対する部分多様体学習を考える。ここでは 2因子の
うち 1つが既知でもう 1つが未知の因子の生成モデルを考える。未知の因子を求
めるために、本研究では、多様体学習の低次元表現を求める最適化問題に対して、
事前に得られているモデル構造を制約条件として加える事で未知の因子を求める
手法を提案する。本研究では、提案手法を触覚センサ付きロボットハンドによる
物体認識問題に対するモデリングに対して適用する。物体認識は、各物体に予め
割当てられた固有のパラメータを、探索行動により得られるセンサデータから推
定することで達成する。効率的な認識を達成するためには、センサデータの有益
さを測るためのセンサデータと行動と物体との関係を表すセンサモデルが必要と
なるが、推定問題を簡単にするためには、モデルが滑らかであることが必要であ
る。本研究では、提案手法を適用することで、滑らかなモデルを得られるような
各物体のパラメータ割当を達成する。提案手法は人工データと実機ロボットによ
る検証により有効性を確認した。

キーワード

多様体学習, システム同定, 最適制御, 等長特徴写像, ガウス過程潜在変数モデル,

多変量固有値問題
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3.2 Experiment 1: Initial parameter of the transfer function vs. NRMSE

fitness value in percentage . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Experiment 2: Identification error of Ĝ(q) . . . . . . . . . . . . . 33
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Chapter 1

Introduction

This chapter introduces the overview of the dissertation. The research back-

ground is described in section 1.1. Next, the research motivation and the ob-

jective is presented in section 1.2. Then, the outline of this thesis is shown in

section 1.3.

1.1. Background

Recently, various data from sensors are available in electronic form, and an in-

telligent system with these sensors is constructed to achieve many tasks. For
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Figure 1.1. Robot as an example of a system. Since the amount of the data in one

sample obtained from external sensor such as an image sensor (camera), a tactile

sensor (pressure) and an auditory sensor (microphone) is large, the vectorized

data will be high dimensional.
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example, to enable automatic driving with intelligent mobility or to achieve ef-

ficient use of energy with a smart living environment, these systems (i.e., a car

or a house) are employed with many sensors. Further, a robot is used for the

assembly of parts, and it can be regarded as one of these systems. The robot is

composed of external sensors such as camera, microphone, and pressure sensors

in order to obtain the information around the robot (Fig. 1.1). In addition, the

robot contains the internal sensors such as encoders, tachogenerators, and torque

sensors in order to obtain the information that is related to the inside of the robot

body. The sensor data of the robot is utilized for help in the nursing care and

welfare units, and can be used to control the robot autonomously.

The obtained data is first used for modeling the generative models. For exam-

ple, to achieve the assembly of parts with robots, the robot should be controlled

accurately, and the robot should be able to recognize the required parts in order

to pick up the part. The model-based control can be applied if the dynamical

model of the robot is made available. Moreover, the classification of parts can be

achieved with the generative model of the sensor model. However, the obtained

data from the system is high dimensional. More concretely, since the amount

of data in one sample is large, it will be high dimensional if whole data of each

sample is vectorized. Modeling with such high-dimensional data is affected by the

curse of dimensionality. To avoid the curse, the dimensionality reduction meth-

ods are proposed in the machine learning field, and the effectiveness is shown in

many applications.

The dimensionality reduction methods reduce the dimensionality of the data

without loss of the information under some assumptions. The principal com-

ponent analysis (PCA) [3] is a well-known algorithm in multivariate statistics,

and it is used for the visualization of the high-dimensional data. In PCA, it

is assumed that the (observed) high-dimensional data is a linear projection of

the low-dimensional data. The methods that can be regarded as similar meth-

ods to PCA are MultiDimensional Scaling (MDS) [4] and Probabilistic Principal

Component Analysis (PPCA) [5].

However, if the assumption is not held (e.g. the nonlinear projection), applying

a linear method such as PCA loses information. This deteriorates the task per-

formance with the low-dimensional data. In contrast with the linear method, the

2



nonlinear dimensionality reduction methods, sometimes called manifold learning

methods, were proposed in 2000s. As typical methods, Isometric Feature Mapping

(Isomap) [6], Locally Linear Embeddings (LLE) [7], and Laplacian Eigenmaps [8]

are well known. One of the assumptions in Isomap is that the observation process

is isometric, which is embedded in high dimensions. This assumption leads to

failure in reduction of dimensionality without loss of information, if the manifold

in the high-dimensional space is nonconvex. However, such a nonlinear dimen-

sionality reduction method leads to success in reducing the dimensionality in

many applications. Moreover, these manifold learning methods can be regarded

as the kernel principal component analysis with a data-driven kernel. In the late

of 2000s, the Gaussian Process Latent Variable Models (GPLVMs) [2] have been

proposed as an extension of PPCA to nonlinear projection, and they successfully

achieve the reduction of dimensionality even if the observation is noisy.

1.2. Research motivation and objective

Most of the dimensionality reduction methods are classified as unsupervised learn-

ing methods. The high-dimensional observation is only available when the low-

dimensional data is computed. The criterion to find the low-dimensional data

is based on some a prior knowledge (e.g. the observation was generated through

linear generative model, or the space is convex). If the prior knowledge correctly

fits to the data, the low-dimensional data can be obtained without information

loss. However, the obtained low-dimensional data is not supposed to be used for

system modeling for the task that is to be executed later, and so there is an open

question, “are these criteria always the best for obtaining the low-dimensional

data used for the task?”. If the obtained low-dimensional data is not suitable for

the task, then, the task fails (Fig. 1.2(a)).

In this dissertation, we propose task-relevant manifold learning methods. The

task to be executed later is considered when the manifold is learned. The require-

ment is, for example, the model is linear or smooth. This requirement is con-

verted into a new criterion or some additional constraints (Fig. 1.2(b)). Then,

by solving the new optimization problem, the task-relevant manifold learning is

achieved. Both the modeling and manifold learning are simultaneously achieved.

3
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(b) Proposed: with a task-relevant manifold learning

Figure 1.2. Illustration of the contribution of this dissertation

The proposition is validated through the following two problems.

First, we consider modeling using the high-dimensional data. The obtained

model is useful for the analysis, or prediction. Particularly, we consider modeling

of the linear dynamical systems represented using transfer function models. Thus,

the task to be considered is to estimate the transfer function model using the

high-dimensional data. In order to obtain an accurate model, we propose input-

output manifold learning with transfer function models (IOMLTF) constructed by

changing the criterion in the manifold learning. Through numerical simulations

with synthetic data, the effectiveness of the proposed method will be validated.

Next, in order to consider the non-zero initial state of the system, we study

another version of input-output manifold learning. Our solution is to use the

state space model for the system representation. We call the proposed method

input-output manifold learning with state space models (IOMLSS). That is, the

state space model allows us to assume non-zero initial state. Additionally, more

complicated noise models can be identified. The effectiveness of the proposed

4



method will be validated with numerical simulations.

Lastly, a partial manifold learning method is considered in order to determine

a suitable manifold to obtain the desired model structure. We consider a two-

factor generative model whose one factor is known and the other is unknown. In

order to obtain the unknown factor considering the effect of both factors to the

observation, we propose a partial manifold learning method using the observa-

tion and the known factor. The method is based on GPLVMs and constructed

by adding a constraint related to the desired model structure to the optimization

problem. Further, this method is applied to obtain the suitable sensor model for

object recognition using robots with tactile sensors. We call the proposed method

object manifold learning in this particular application. The object recognition is

achieved by sequential parameter estimation: first, a suitable parameter is allo-

cated for each object, and the parameter is sequentially estimated by the sensor

data obtained through an exploratory action of the robot. The requirements

are 1) an intrinsic parameter should be allocated for each object since multiple

observations are obtained by executing multiple exploratory actions to only one

object, and 2) the model should be smooth to make the problem easier. Thus,

the first consideration is to estimate the suitable parameter for each object from

the observation considering the effect of the action and the smoothness of the

parameter in the model. The proposed manifold learning method will be applied

to this problem to extract the object manifold which lies on the tactile sensor

space. In addition, particularly considering the object recognition problem, the

quality of the obtained data affects to the quickness of the recognition. In other

words, the informativeness of the obtained data is important. Simultaneously, the

compliance of the exploratory action should be considered to avoid breaking the

object and the robot. Hence, we additionally need to consider obtaining informa-

tive and compliant exploratory action. To achieve this, we propose information

maximization control. The information maximization control then generates the

informative and compliant action based on the optimal control framework. The

effectiveness of the proposed methods is validated through the numerical simula-

tion with the synthetic data and obtained data from the actual robot.
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1.3. Dissertation layout

This dissertation is composed of chapters as described below. The flow of the

chapters is shown in Fig. 1.3.

Chapter 2 provides an overview of the manifold learning methods, which form

the base of the proposed method as shown in Fig. 1.3. The dimensionality

reduction schemes with linear generative models such as PCA and MDS

are described. Then, Isomap, which is a nonlinear dimensionality reduction

scheme, is explained as an extension of MDS. Finally, the dimensionality

reduction methods with probabilistic generative models such as PPCA and

GPLVMs are described.

Chapter 3 describes modeling from high dimensional data, namely input-output

learning with transfer function model (IOMLTF). First, the manifold learn-

ing method is reformulated as a quadratic programming problem with

quadratic constraint condition. Then, the changed criterion for the ac-

curate model is described. The numerical simulation with synthetic data

and image data (Fig. 1.4) used to validate the criterion is shown.

Chapter 4 describes the extension of the IOMLTF to capture the transient re-

sponse, namely input-output learning with state space model (IOMLSS).

The numerical simulation with synthetic data for validation is shown.

Chapter 5 describes a partial manifold learning method for two-factor genera-

tive models. In this chapter, we particularly consider the object recognition

problem using a robot hand with tactile sensor shown in Fig. 1.5 as the ap-

plication of the method. In this application, we call the proposed method

object manifold learning. The proposed method is applied to obtain the

probabilistic sensor model and suitable parameters of each object. In ad-

dition, to consider the compliance of the exploratory action, information

maximization control is proposed. The proposed methods are validated

through the numerical simulations with synthetic data and the obtained

data from the actual robot hand.

Chapter 6 concludes this dissertation with discussion.
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Figure 1.3. Flow of the chapters of this dissertation.

Figure 1.4. Image used for validation in

Chapter 3.

Figure 1.5. Anthropomorphic robot

hand used in Chapter 5.
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Chapter 2

Manifold Learning

In this chapter, we describe the dimensionality reduction methods based on gen-

erative models. We consider the following function

y = f(x), (2.1)

where y ∈ Rdy is the (known) dy-dimensional observation, and x ∈ Rdx is the

(unknown) dx-dimensional latent variable. This model assumption indicates that

the observation y is obtained as a function value of x. Thus, such a model is

called a generative model. Assuming dy > dx, the operation to find suitable x

corresponding y is regarded as the dimensionality reduction of y. Note that the

function f is also unknown. Hence, it is important to determine a suitable function

f . We assume N > dy data set {yi}Ni=0 is available, and its mean ȳ = 1
N

∑N
i=1 yi

is assumed to be zero. In this chapter, we consider the datasets shown in Fig. 2.1.

2.1. Linear dimensionality reduction

Let us assume a linear generative model:

y = Wx, (2.2)
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Figure 2.1. The two datasets used in this chapter. (Left): true low-dimensional

data x. (Upper Middle) and (Upper Right): observation using linear generative

model and the observation with additional noise, respectively (dataset 1, noisy 3

dimensional data). (Lower Middle) and (Lower Right): observation using non-

linear generative model and the observation with additional noise, respectively

(dataset 2, noisy swissroll dataset).

where W is a dy× dx orthogonal matrix: WTW = Idx . Then, let us consider the

average of the squared reconstruction error E:

E =
1

N

N∑
i=1

∥yi − ŷi∥22 , (2.3)

where ŷi = Wxi. The model with the orthogonal matrix W and the correspond-

ing latent variables xi that minimize the error E defined by Eq. (2.3) is called

(classical) principal component analysis (PCA).

The optimal solution of W is obtained by setting W = Vdx , where Vdx is

composed of with the eigenvectors of the covariance matrix Σyy =
1
N

∑N
i=1 yiy

T
i

associated with dx eigenvalues in decreasing order. Let us describe the derivation.

Firstly, we define the matrix Y ∈ RN×dy as

Y =
[
y1 y2 · · · yN

]T
.

9



Then, the matrix can be decomposed by singular value decomposition as follows:

Y = UY SYV
T
Y

where UY is the N × N matrix with orthogonal columns (UT
YUY = IN), SY is

the N ×dy matrix, VY is the dy×dy orthogonal matrix (VT
YVY = VYV

T
Y = Idy),

and SY is the N ×dy matrix whose (i, i)-entry contains the singular values si ≥ 0

for i = 1, . . . , dy. It can be shown that UY is associated with the eigenvectors

of YYT. Using this decomposition, we can obtain a rank dx approximation as

follows:

Y ≈ Ŷ = ÛY ŜY V̂
T
Y

where

ÛY = UY ( : , 1: dx) (2.4)

ŜY = SY (1 : dx, 1: dx) (2.5)

V̂Y = VY ( : , 1: dx).

The generative model (2.2) indicates that the relationship between all observation

and corresponding latent variables is represented by Y = XWT. Then, using the

approximated matrix Ŷ, the latent variables X and the matrix W are obtained

as follows

X̂ = ÛY ŜY , (2.6)

Ŵ = V̂Y . (2.7)

It can be shown that the matrix V̂ is equal to Vdx .

Let us introduce another method of using the linear generative model. We

consider a matrix DY whose (i, j)-entry consists of the Euculid distance between

the observations,

DY,ij = ∥yi − yj∥2 = ∥yi∥2 + ∥yj∥2 − 2yT
i yj

= KY,ii +KY,jj − 2KY,ij, (2.8)

where KY,ij is the (i, j) entry of KY . Since the mean of the observations ȳ is 0,

the following relationship is satisfied:

N∑
i=1

yT
i yj = 0,

10



for j = 1, . . . , N . Using this equation and Eq. (2.8), the matrix KY can be

obtained using D as follows:

KY = −1

2
HDYH, (2.9)

where H is the centering matrix H = IN − 1
N
1N1

T
N . We can rewrite the expres-

sion as KY = YYT = XWTWXT = XXT. Then, the low-dimensional latent

variables are obtained through the eigen decomposition of KY = UKY SKYU
T
KY

,

X̂ = ÛKY Ŝ
1/2
KY
, (2.10)

where ÛKY and ŜKY are composed of dx eigenvectors and the corresponding dx

eigenvalues of KY in decreasing order respectively. This is same as Eq. (2.6). The

result indicates that the low-dimensional latent variables can be obtained from

the distance among observations, and this method is called MultiDimensional

Scaling (MDS). Note that the MDS does not output the matrix W. Also note

that the latent variables X can be obtained from the eigen decomposition of KY

without scaling.

The results for the datasets are shown in Fig. 2.2. As shown in the figure,

Figure 2.2. Dimensionality reduction results with PCA. (Left) Results for

dataset 1. (Right) Results for dataset 2. PCA determines the low-dimensional

structure well for dataset 1. However, the roll structure is squashed for dataset 2.

Hence, the nonlinear structure cannot be found by PCA.

PCA determines the low-dimensional structure well for dataset 1. However, the

roll structure is squashed for dataset 2. Hence, the nonlinear structure is difficult

to determine using PCA.
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Figure 2.3. Comparison of the distances. The black line shows a one-dimensional

manifold in two-dimensional space. The objective is to determine the appropriate

one-dimensional representation from the obtained samples. MDS can be used

to determine the low-dimensional representation such that the Euclid distance

among high-dimensional samples holds as much as possible. Isomap focuses on

the geodesic distance instead, as the original structure is nonlinear. The geodesic

distance is approximated using the graph distance.

2.2. Nonlinear dimensionality reduction

Additionally, let us consider the feature vector of y as follows,

z = ϕ(y).

Hence, the relationship between x and z is nonlinear. When we construct KZ

similar to Eq. (2.9), we need to consider the distances between ϕ(yi) and ϕ(yj).

By defining ϕ so that the distance among {ϕ(yi)}Ni=1 corresponds to a graph

distance among {yi}Ni=1, which is the approximation of the geodesic distance (see

Fig. 2.3, and see Appendix A for the computation method of the graph distance),

we can determine {xi}Ni=1, and the method is known as isometric feature mapping

(Isomap).

We can find a nonlinear structure using Isomap even it is difficult to find using

PCA and MDS. Isomap can be regarded as an extension of MDS. It is assumed

that the squared graph distance between the i-th sample and j-th sample d2z(i, j)

12



for i, j = 1, . . . , N is stored in the N ×N matrix Dz as follows:

(Dz)ij = d2z(i, j).

Then, with an assumption that the samples are centered (zero-mean), the matrix

Kz can be constructed using Dz in a similar way to Eq. (2.10) as

Kz = −
1

2
HDzH

where H is the centering matrix H = IN − 1
N
1N1

T
N . The only difference is the

distance used for D. MDS is regarded as a special case where ϕ(y) = y. With

both distances, the low-dimensional representation can be obtained by solving the

eigenvalue decomposition problem. The nonlinear mapping can be successfully

found with Isomap as shown in Fig. 2.4. However, some data points are mixed

because of the observation noise.

Figure 2.4. Dimensionality reduction results with Isomap. (Left) Results for

dataset 1. (Right) Results for dataset 2. For both dataset 1 and dataset 2,

Isomap can be used to determine the suitable low-dimensional representation.

2.3. Dimensionality reduction with probabilistic

model

To take the observation noise into account, let us consider the following generative

model:

y = Wx+ ϵ (2.11)
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where ϵ is the Gaussian noise ϵ ∼ N (0, σ2I). Let us represent this model using

a probability distribution as follows,

p(y|x) = N (Wx, σ2I) (2.12)

The prior of the latent variable p(x) is set to a Gaussian p(x) = N (0, I). Then,

the marginal distribution p(y) can be obtained as

p(y) =

∫
p(y|x)p(x)x

= N (0,C)

where the covariance matrix C is defined as

C = WWT + σ2I.

Let us determine W and σ2 using the maximum likelihood method. The

corresponding log-likelihood is obtained as

ln p(Y|W, σ2) =
N∑
i=1

ln p(yi|W, σ2)

= −Ndy
2

ln(2π)− N

2
ln detC− 1

2

N∑
i=1

xT
i C

−1xi

= −N
2
{D ln(2π) + ln detC+ Tr(C−1KY )}.

The optimal W and σ2 are obtained as follows:

WML = ÛY (ŜY − σ2I)1/2

σ2
ML =

1

dy − dx

dy∑
i=dx+1

si

where ÛY and ŜY are defined by Eqs. (2.4) and (2.5) respectively. This is known

as probabilistic PCA (PPCA). By setting σ2 → 0, the maximum likelihood solu-

tion of the PPCA is reduced to the solution of PCA.

Let us consider a dual problem: obtain X instead of W. First, we define the

prior over W as follows

p(W) =

dy∏
j=1

N (wj|0, I).

14



Then, the log-likelihood of the marginal distribution p(y) =
∫
p(y|W)p(W)dW

becomes

ln p(Y|X, σ2) = −N
2
{D ln(2π) + ln detKX + Tr(K−1

X YYT)},

where

KX = XXT + σ2I. (2.13)

Now, let us consider other representation of KX as follows,

KX = K+ σ2I.

If K = XXT, it is same as Eq. (2.13). In this case, the (i, j)-entry of K is xT
i xj.

Replacing xi with ψ(xi) and defining k(xi,xj) = ψT(xi)ψ(xj), the (i, j)-entry

of K is replaced with k(xi,xj). The function k(x,x′) is called a (Mercer) kernel

function. The vector ψ is implicitly determined by the function k. In the case of

Eq. (2.13), as k(xi,xj) = xT
i xj, the kernel is called a linear kernel. One of other

selections is a squared exponential kernel function expressed as:

k(x,x′) = α2 exp

(
−1

2
(x− x′)TM−1(x− x′)

)
where M is a diagonal matrix with positive elements. The likelihood function

with this kernel function is determined with γ = {α2,M, σ2}. Thus, γ is called

a hyperparameter. The maximum likelihood solution is no longer obtained by

eigen decomposition. Instead, we can obtain the solution via numerical opti-

mization methods, e.g. maxX,γ ln p(Y|X, γ). The dimensionality reduction result

with GPLVMs is shown in Fig. 2.5. The initial low-dimensional data are obtained

through Isomap, and the hyperparameters and low-dimensional data are simulta-

neously optimized using a quasi-newton algorithm. The data points have enough

distance against with the observation noise, as shown in the figure.

2.4. Summary

We described the manifold learning methods. The properties of each method are

summarized in Table 2.1. A comparison of the methods can be found in [9, 10].
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Figure 2.5. Dimensionality reduction results with GPLVMs. (Left) Results for

dataset 1. (Right) Results for dataset 2. Each point of low-dimensional data is

separated, as shown in the left figure of Fig. 2.1.

Table 2.1. Comparison of the methods described in this chapter.

Method Generative model Criterion

PCA Deterministic, linear Reconstruction error

MDS Deterministic, linear Euclid distance error

Isomap Deterministic, nonlinear Graph distance error

PPCA Probabilistic, linear Marginal log-likelihood

GPLVM Probabilistic, nonlinear Marginal log-likelihood
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Chapter 3

Linear System Identification from

High-dimensional Data

3.1. Introduction

The sensor data such as image, sound and tactile can be easily obtained given

that good and cheap sensors are available nowadays. The obtained data are use-

ful for many objectives such as recognition, prediction, and control. By analyzing

multiple data sets simultaneously, we can find the latent relationship among the

data sets. These data are often obtained as high-dimensional vectors. For ex-

ample, a 128 × 128 pixel RGB image is regarded as a 49,152 (= 128 × 128 × 3)

dimensional vector. This study focuses on the system identification problem that

arises when applying such high-dimensional data for both input and output.

In general, the raw data obtained from the sensors may not be used directly

owing to its high dimensionality, which induces high computational cost. In-

stead, a suitable feature is extracted from data for the purpose of dimensional-

ity reduction of data. As a hand-tuned feature, for the tracking objective, the

centroid position of a specific area in the obtained image is calculated. As a

data-driven feature, SIFT or HOG features are used for image-based recognition

tasks (e.g. [11, 12]). Manifold learning methods such as Isomap [6], LLE [7], or

GPLVM [2] can be used as data-driven feature extractors for more general ob-

jectives. The effectiveness of these schemes for various applications such as the

video image [13], and motion capture data [14] has been shown.
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Figure 3.1. Problem setting of IOMLTF. The obtained data are high-dimensional

input µ and output η. It is assumed that the features regarded as low-dimensional

input u and output y have the relationship represented as a linear dynamical

system ΣTF, represented using a transfer function model.

Let us assume that the relationship between the features extracted from two

high-dimensional data is represented as a linear time-invariant dynamical system.

The approach to estimate the system based on from input and output data will

first require the application of the manifold learning method individually for two

data, and then the system is estimated by using a system identification method.

However, given that the manifold learning methods are unsupervised, the features

extracted from the data cannot be exactly the same as the true features: therefore,

the estimated latent relationship between them may not be represented by a LTI

system anymore. This means that a simple linear system identification problem

is undesirably converted to complex nonlinear system identification problem.

To resolve this issue, we propose a paradigm that simultaneously considers

the feature extractions by manifold learning and linear system identification on

the extracted feature space. To realize this concept, we propose the input-output

manifold learning with transfer function model (IOMLTF). Figure 3.1 illustrates

this problem setting. First, the IOMLTF assumes the linear system is represented

using a transfer function model. The features (referred to as low-dimensional

input and output) of high-dimensional data (referred to as high-dimensional input
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and output) are extracted by Isomap [6] with a regularization term that considers

the fitness for the linear system. Then, linear system identification is applied to

update the transfer function model. Repeated application of these optimization

steps converges to a locally optimal solution.

The remainder of this chapter is organized as follows. Firstly, the related work

is listed in Section 3.2. Our proposition, IOMLTF is described in Section 3.3.

The numerical simulation for validating IOMLTF is shown in section 3.4, and the

summary and the scope for future work are discussed in Section 3.5.

3.2. Related works

With regard to related works, Weight Determination by Manifold Regulariza-

tion [15] has been proposed. This method regards the system identification prob-

lem as a regression problem between the input and output, and it finds the low

dimensional input considering the regression performance. However, finding the

low dimensional output is not discussed in the method. Our problem setting is

difficult to be applied. In addition, Gaussian process dynamical models [16] or

variational Gaussian process dynamical systems [17], which are the methods to

find the latent dynamics in the observations, seem to be applicable to our problem

settings. Nevertheless, the exogenous input is not considered in the methods. In

addition, the linear dynamical system may not be considered directly.

3.3. Proposed method: input-output manifold learn-

ing with transfer function model

3.3.1 Problem settings

Now, let us consider an unknown linear time-invariant discrete-time dynamical

system Σ with the following input and output

u(t) := [u1(t), . . . , udu(t)]
T ∈ Rdu ,

y(t) := [y1(t), . . . , ydy(t)]
T ∈ Rdy ,
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which are referred to as the low-dimensional input and output of the system,

respectively. The objective is to find this relationship from the high-dimensional

input µ(t) ∈ Rdµ(dµ > du) and output η(t) ∈ Rdη(dη > dy). Here, we assume that

the dataset of the high-dimensional input and output from time t = 0 to t = T−1,
D =

{
µ(t),η(t)

}T−1

t=0
, is available, and the system order n and the dimensionality

of the low-dimensional input du and output dy are known. Figure 3.1 illustrates

this problem setting.

3.3.2 Iterative optimization scheme

Let us define the matrices comprising the data from t = 0 to t = T −1 as follows:

U =

 uT(0)
...

uT(T − 1)

 =:
[
u1 u2 · · · udu

]
,

Y =

 yT(0)
...

yT(T − 1)

 =:
[
y1 y2 · · · ydy

]
.

The system Σ could be identified from U and Y. However, all of these variables

are unknown, and simultaneous estimation of all unknown variables can pose

a difficulty. Therefore, we propose the solution methods of two optimization

problems called input-output manifold learning as an efficient algorithm.

Obtaining the low-dimensional representation

Assuming that the system Σ is given, we first solve the manifold learning problem,

which is reconstructed by adding the penalty term so that the low-dimensional

data follow the dynamics:

min
U,Y

f(U,Y,Σ,Kµ,Kη, γ) s.t. UTU = Idu , Y
TY = Idy (3.1)

where

f(U,Y,ΣTF,Kµ,Kη, γ) := γf1(U,Y,Kµ,Kη) + (1− γ)f2
(
U,Y,ΣTF

)
. (3.2)
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The function f1(U,Y,Kµ,Kη) with the constraints in equation (3.1) is a

function to find the eigenvectors ofKµ andKη which corresponds to the maximum

eigenvalue,

f1(U,Y,Kµ,Kη) :=

[
vec
(
U
)

vec
(
Y
) ]T [ Idu ⊗K−1

µ

Idy ⊗K−1
η

][
vec
(
U
)

vec
(
Y
) ]

which is identical to the original manifold learning methods. Here, the matrices

Kµ,Kη are defined by the gram matrix of Isomap for each, and these are as-

sumed to be positive definite. If the matrix is not positive definite, the following

operation can be applied: K∗ ← K∗ − λmin(K∗)I.

In addition, the function f2
(
U,Y,Σ

)
represents the fitting error for the sys-

tem. We consider a transfer function model as the system representation of ΣTF,

ΣTF : y(t) = G(q)u(t).

Here, q is the shift operator q−1y(t) = y(t − 1), G(q) is the transfer function

matrix, and (i, j) entry of the matrix is the transfer function from the j-th input

to the i-th output:

Gij(q) =
b
(i,j)
0 + b

(i,j)
1 q−1 + · · ·+ b

(i,j)
n q−n

1 + a
(i,j)
1 q−1 + · · ·+ a

(i,j)
n q−n

,

for i = 1, 2, . . . , dy and j = 1, 2, . . . , du. The squared fitting error to this system

is represented as follows:

f2
(
U,Y,ΣTF

)
= f t2

(
U,Y,G(q)

)
(3.3)

:=

dy∑
i=1

du∑
j=1

∥∥W(i,j)
y yi −W(i,j)

u uj
∥∥2 . (3.4)

where the matrices W
(i,j)
y and W

(i,j)
u are asymmetric Toeplitz matrices repre-

sented as follows,

W(i,j)
y =

[
a
(i,j)
m−n

]T−1

m,n=0
, W(i,j)

u =
[
b
(i,j)
m−n

]T−1

m,n=0
,

with a
(i,j)
0 = 1, a

(i,j)
k = b

(i,j)
k = 0 for k < 0 or k > n.
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The weighting factor γ, (0 < γ ≤ 1) is a free parameter, which can be manually

modified. The function f can be represented in the quadratic form as follows:

f(U,Y,Σ,Kµ,Kη, γ) =

[
vec
(
U
)

vec
(
Y
) ]T (γK + (1− γ)W)

[
vec
(
U
)

vec
(
Y
) ]

where

K :=

[
Idu ⊗K−1

µ O

O Idy ⊗K−1
η

]
,

W :=

[
Wuu −Wuy

−WT
uy Wyy

]
,

Wuu =


W

(1,1)
u

T
W

(1,1)
u · · · W

(1,1)
u

T
W

(du,du)
u

...
. . .

...

W
(du,1)
u

T
W

(du,1)
u · · · W

(du,du)
u

T
W

(du,du)
u

 ,

Wuy =


W

(1,1)
u

T
W

(1,1)
y · · · W

(1,dy)
u

T
W

(1,dy)
y

...
. . .

...

W
(du,1)
u

T
W

(du,1)
y · · · W

(du,dy)
u

T
W

(du,dy)
y

 ,

Wyy =


W

(1,1)
y

T
W

(1,1)
y · · · W

(1,dy)
y

T
W

(1,dy)
y

...
. . .

...

W
(dy,1)
y

T
W

(dy,1)
y · · · W

(dy,dy)
y

T
W

(dy ,dy)
y

 .
If we assume a SISO system (du = dy = 1), this optimization problem can be

reformulated as a Multi-Eigenvalue Problem (MEP) [18] (see Appendix B). First,

the optimization problem (3.1) is represented in the following quadratic form,

min
u1,y1

[
u1

y1

]T [
γK−1

µ + (1− γ)Wuu −(1− γ)Wuy

−(1− γ)WT
uy γK−1

η + (1− γ)Wyy

][
u1

y1

]
(3.5)

s.t.uT
1 u1 = 1,yT

1 y1 = 1

We apply the method of Lagrange multiplier. Let us introduce the auxiliary
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function,

L(u1,y1, λu, λy)

=

[
u1

y1

]T [
γK−1

µ + (1− γ)Wuu −(1− γ)Wuy

−(1− γ)WT
uy γK−1

η + (1− γ)Wyy

][
u1

y1

]
− λu(uT

1 u1 − 1)− λy(yT
1 y1 − 1) (3.6)

where λu and λy are the Lagrange multipliers. Then, ∂L/∂u1 = 0 and ∂L/∂y1 =

0 are reformulated as follows,[
γK−1

µ + (1− γ)Wuu −(1− γ)Wuy

−(1− γ)WT
uy γK−1

η + (1− γ)Wyy

][
u1

y1

]

=

[
λuI O

O λyI

][
u1

y1

]
. (3.7)

The determination of the vectors u1 and y1 and the constants λu and λy, which

satisfy this equation, is called the multi-eigenvalue problem. The solution of the

problem (3.1) corresponds to the vector associated with the minimum value of

λu + λy. As a numerical solver of the MEP, the Horst-Jacobi method shown in

Algorithm 4 can be applied.

Updating the latent system

Second, we update the system Σ using the obtained low-dimensional data U,Y.

This problem is then defined as an optimization problem as follows:

min
G(q)

f t2
(
U,Y,G(q)

)
. (3.8)

The solution for the optimization problem (3.8) forG(q) is obtained entrywise.

Regarding the system as ARX model, the least square solution of the fitting error

to Gij is obtained as follows:

θ̂ij =
(
ΨT
ijΨij

)−1

ΨT
ijyi, (3.9)
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where, with yi(t) = uj(t) = 0 for t < 0,

θ̂ij =
[
â
(i,j)
1 · · · â

(i,j)
n b̂

(i,j)
0 · · · b̂

(i,j)
n

]T
,

Ψij =
[
−Yi Uj

]
,

Yi =


yi(−1) yi(−2) · · · yi(−n)
yi(0) yi(1) · · · yi(1− n)
...

...
. . .

...

yi(T − 2) yi(T − 3) · · · yi(T − n− 1)

 ,

Uj =


uj(0) uj(−1) · · · uj(1− n)
uj(1) uj(0) · · · uj(2− n)
...

...
. . .

...

uj(T − 1) uj(T − 2) · · · uj(T − n)

 ,
for i = 1, . . . , dy and j = 1, . . . , du. The optimal G(q) is obtained using the

coefficients θij for all i and j.

Algorithm 1 shows the summarized algorithm of IOMLTF.

Convergence

Here, we give the following theorem that the value of f will be monotonically

decreasing.

Theorem 1. Let us utilize the following representations: u(k),y(k) and G(k)(q)

as the solutions at k-th iteration, W
(k)
u and W

(k)
y as Wu and Wy associated with

G(k)(q) respectively, and f (k) as the value of function at k-th iteration. Then f (k)

converges to a local optimal when k →∞.

Proof. Let us drop Kµ,Kη and γ from the input arguments of f, f1, and f2 for

the sake of simplicity. The following two steps are executed at each iteration: 1)

Obtain the updated low-dimensional representations u(k+1),y(k+1), 2) Estimate

the transfer function G(k+1)(q).

At Step 1, f is minimized with the fixed G(k)(q). Then, f t2, which is the

second term of f , is minimized at Step 2. Note that this operation (i.e. obtaining

G(k+1)(q) from U(k+1) and Y(k+1)) does not effect the first term of f . As a result,

24



Algorithm 1: Input-Output Manifold Learning with Transfer Function

Models

Input : D =
{
µ(t),η(t)}T−1

t=0 , // high dim. dataset

U(0), Y(0), // Initial low-dim. rep.

G(0)(q), // initial transfer function.

γ // weighting factor

h // prediction horizon

Output: Û, Ŷ, Ĝ(q)

Compute correlation matrices Kµ and Kη from D.
i← 0

repeat

Obtain
{
U(i+1), Y(i+1)

}
by solving the problem (3.1) with initial value

U(i),Y(i) and G(i)(q).

Obtain G(i+1)(q) by Eq. (3.9) with
{
U(i+1), Y(i+1)

}
.

i← i+ 1.
until convergence

Û← U(i), Ŷ ← Y(i).

Obtain estimates of the transfer function model Ĝ(q) by Eq. (3.9) with Û

and Ŷ.

the following inequality is satisfied.

f(U(k+1),Y(k+1),G(k+1)(q))

≤ f(U(k+1),Y(k+1),G(k)(q))

≤ f(U(k),Y(k),G(k)(q))

⇔ f (k+1) ≤ f (k) (3.10)

Consequently, f (k) monotonically decreases. Since f (k) > 0, it converges to a local

optimal. As a result, the repeat of two steps converge f .

3.4. Experiment

In this section, we evaluate the proposed method using two numerical simulations.

First, the simulation settings are described in Sec. 3.4.1. Second, the parameter
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settings of the proposed method are shown in Sec. 3.4.2. Section 3.4.3 explains

the comparison methods for showing the effectiveness of the proposed method,

and the criterion in the evaluation is shown in Sec. 3.4.4. The results of each

experiment are shown in Sec. 3.4.5.

3.4.1 Settings of experiments

Experiment 1 is designed such that the dimension of the high-dimensional in-

put and output is controllable in order to validate the robustness of the pro-

posed method for high dimensionality. Now, let us consider the SISO system,

and change the dimension of the high-dimensional input and output from 2 to

5. This high-dimensional data are generated by the following procedure: the

low-dimensional input u(t) is generated by the value which follows the uniform

distribution in [−0.5 0.5], and the output y is obtained through the following

transfer function,

G(q) =
0.7− 0.3q−1 + 0.2q−2

1− 0.5q−1 − 0.1q−2
(3.11)

Then, the high-dimensional input µ and output η are generated by the following

procedure: Let us set the same dimension dµ = dη. The j-th entry of µ for

j = 1, . . . , dµ is represented as follows,

µj(t) = u(t) sin

(
u(t) +

j − 1

du
π

)
+ ϵ(t), ϵ(t) ∼ N (0, 0.052)

We apply the same procedure for η. Figure 3.2 illustrates an example of two

dimensional input and output.

Experiment 2 is designed with the image data, which is known as the effective

data, for applying the manifold learning in order to validate the effectiveness for

real data. In this experiment, the identification problem for the system shown

in Fig. 3.3 is considered. In this experiment, the functions between u and µ,

and between y and η are unknown. Nevertheless, this is a more realistic problem

setting as compared to Experiment 1. First, the smooth angle sequence of the left-

turntable {u(t)}500−1
t=0 , and the angle sequence of the right-turntable {y(t)}500−1

t=0

through the transfer function (3.11) are determined. The image corresponding

to each angle has been generated from COIL-100 [19] data-set, and it is used

as the high-dimensional input and output (dµ = dη = 49, 152). Note that we
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Figure 3.2. Input and output data used in experiment 1 (two dimensional case)
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Figure 3.3. Problem setting using image data as input and output in experiment

2

have utilized kernel regression with the squared exponential kernel to generate

the image from angle information since COIL-100 is associated with the image

for each 5 degrees of rotation. It is expected that this image sequence will be lie

on 1-dimensional manifold corresponding to the angle information. The image

data for validation is newly generated in u(t) ∈ [0, 90].

We also note that the system order n = 2 is assumed to be known.

3.4.2 Parameter settings for the proposed method

In Experiment 1, the number of the nearest neighbor in ISOMAP is set to 20, and

the weighting factor γ is set to γ = 0.1 in a trial-and-error manner. We continue

the iterative optimization nmax = 50 times. Horst-Jacobi method [18] is used to

solve MEP. The nonlinear regression in Step 6 is done with LS-SVM [20] whose
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Figure 3.4. Pole-Zero map of G1, G2, G3 and G. × represents the pole, and ◦
represents the zero.

hyperparameters are determined by the leave-one-out cross validation. The initial

transfer function is selected from the following three transfer functions.

G1 =
−0.29 + 0.73q−1 − 0.84q−2

1− 1.2q−1 + 0.27q−2

G2 =
−0.04q−1 + 0.02q−2

1 + 1.72q−1 + 0.78q−2

G3 =
0.14q−2

1− 0.48q−1 + 0.22q−2

The pole-zero map of these transfer functions and the transfer function (3.11) is

shown in Fig. 3.4.

In Experiment 2, the weighting factor γ is set to γ = 0.01 in a trial-and-

error manner, and the maximum number of iterations nmax is set to 10. The

nonlinear regression in Step 6 is done with the kernel regression with the squared

28



exponential kernel, and the initial transfer function is selected as

Ginit =
1.0− 1.0q−1 + 1.0q−2

1.0 + 0.05q−2
.

The other settings are the same as those in Experiment 1.

3.4.3 Comparison methods

In Experiment 1, we utilize the following five methods (four for comparison, and

our proposed method).

(a) Linear subspace system identification method (4SID)

(b) Nonlinear system identification method 1 (NLHW)

(c) Nonlinear system identification method 2 (KCCA+LS-SVM， [20])

(d) Applying the manifold learning method for the input and output separately,

then identifying the system (Isomap). This is the same as the γ = 1 case

in the proposed method)

(e) Proposed method (Proposed)

Method (a) is applied because the system to be identified is a linear system.

Next, this identification problem can be deemed as the identification problem

of a Hammerstein-Wiener system because the observed (high-dimensional) input

and output can be regarded as the data through a nonlinear function; therefore,

method (b) is applied. We also utilize method (c) that regards the system as

a nonlinear dynamical system and reduce the dimensionality using the kernel

canonical correlation analysis. Method (d) is applied to validate the penalty term

which represents the fitting error to the dynamics. For methods (a) and (b), we

use MATLAB System Identification Toolbox with default settings. In method

(b), the nonlineality is estimated with a piecewise linear function. In method (c),

the Gaussian kernel is utilized, and its hyperparameters are determined by 4-fold

cross validation. The hyperparameters of the SVM are determined by the 10-fold

cross validation.

In Experiment 2, Only method (d) is applied since methods (a), (b), and (c)

are computationally complex.
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3.4.4 Evaluation criteria

In Experiment 1, the fitting rate (FIT) of y with the filtered state with the Kalman

filter is used for the evaluation∗. Note that the Unscented Kalman Filter (UKF)

is used because of the nonlinear dynamics. In Experiment 2, the correlation

coefficient between the images is used for the evaluation.

3.4.5 Results and discussion

Experiment 1: with synthetic data

By using 500 data points for identification data and 500 data points for validation

data, we apply five methods with the transfer function G1 as the initial transfer

function. The result for the varied dimensionality (average of 20 trials) is shown

in Fig. 3.5.

Let us discuss Fig. 3.5. First, the FIT value decreases with high dimensional

data in method (a). On the other hand, methods (b), (c), (d), and (e) keep

the FIT value. However, the value of methods (b) and (c) is relatively small.

Moreover, the FIT value in method (d) is larger than the FIT value in method

(e). From these results, it is validated that the performance of the system is

accumulated with the proposed method. Note that the significant difference

between methods (d) and (e) is indicated by 2-sample t-test (p < 0.05).

Next, the fitting error to the linear system is shown in Table 3.1. Table 3.1

shows that the error of (d) is 1000 times larger than (e); therefore, it can be

indicated that method (e) can find the suitable low-dimensional representation

for the identification of linear dynamics. That is, the penalty term decreases

the fitting error. The higher FIT value of (e) may be attributed to this, and

∗FIT (%) is given as

FIT =

1−

√∑N−1
t=0 (ŷ(t)− y(t))2√∑N−1
t=0 (y(t)− ȳ)2

× 100

where ŷ(t) is the actual data of y(t) [21]. ȳ represents the sample mean of y(t). The FIT value

varies from −∞ to 100, however we utilize FIT = 0 if FIT < 0. For MIMO cases, the average

of the FIT value is utilized as the FIT value.
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Figure 3.5. Normalized root mean square (NRMSE) fitness value in percentage

vs. the dimension of input-output data

the penalty term with the fitting error ameliorates the linear transfer function

estimation.

In addition, we confirm the effect of the initial transfer function. Using the

2-dimensional data as the high-dimensional input and output, we vary the initial

transfer function in G2, G3, G. The mean and standard deviation of the FIT value

is shown in Table 3.2. The two-sample t-test (p¿0.05) shows that a significant

difference for G1 is not observed. Consequently, the proposed method can achieve

the accurate identification independently of the initial transfer function.

Experiment 2: with image data

The images for validation and the prediction are shown in Fig. 3.6. Also the

fitting error to the linear system is shown in Table 3.3.

Let us discuss this result from the point of view of the penalty term. The

value of (d) is smaller than (e), and it is more significant than Experiment 1

(Fig. 3.5). Moreover, Table 3.3 shows that the fitting error is significantly reduced

by method (e). We suppose that this can be attributed to the fact that the higher

dimensionality of the image deteriorates the performance of the manifold learning,
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Table 3.1. Experiment 1: Identification error of Ĝ(q). This means the squared

norm of ě, ∥ě∥2, which defined by Eq. (3.4).　Numbers within brackets indicate

standard deviations.
m = p (d) Isomap (e) Proposed

2 3.086e+00 (2.804e+00) 3.855e-03 (8.173e-04)

3 3.424e+00 (2.855e+00) 1.005e-03 (2.192e-04)

4 3.505e+00 (2.938e+00) 3.493e-03 (5.490e-05)

5 3.701e+00 (2.830e+00) 1.632e-04 (2.531e-05)

Table 3.2. Experiment1: Initial parameter of the transfer function vs. NRMSE

fitness value in percentage. Numbers within brackets indicate standard devia-

tions.
G1 G2 G3 G

FIT 81.7879 81.8390 81.5149 81.8645

(7.1854) (6.9840) (6.7578) (6.9236)

which is an unsupervised learning method. Therefore, the proposed method is

valid for high dimensional data such as images.

3.5. Summary

In this chapter, we consider the system identification problem from high-dimensional

input and output, and we propose the input-output manifold learning based on

the manifold learning method considering the fitting error to the transfer function

model. To show the effectiveness of the proposed method, we perform the system

identification using synthetic data.

In general, the manifold is embedded to the high-dimensional data space. This

can induce the interpretation that this system identification problem is a sys-

tem identification problem of the Hammerstein-Wiener model, which is a block-

oriented model with input and output with nonlinear function. Previously, many

system identification methods for the Hammerstein-Wiener model [22, 23, 24]

were proposed. However, these methods do not consider the high dimensionality,

therefore an accurate model may not be obtained, as seen in Section 3.4.
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(e) Proposed

(d) Isomap

Output

Input

Frame No. 50 90 130 170 210 250 290 330 370 410 450

Figure 3.6. An example using image data for both the input and the output. From

top to bottom, the image as the input for validation, the image as the output for

validation, the one-step prediction result with Isomap, and the one-step prediction

result with proposed input-output manifold learning. In particular at Frame No.

370, (e) makes a better prediction compared to (d). The correlation coefficient

between the output and (d) is 0.8895, and between the output and (e) is 0.9949.

Table 3.3. Experiment 2: Identification error of Ĝ(q)

∥ě∥2

(d) Isomap 8.0921

(e) Proposed 4.1134× 10−12

Next, let us describe the scope for our future works. First, we describe a

theorem (Theorem 1) that shows that the error will decrease monotonically, and

converge to a local optima. In addition, the solver for MEP used here (Horst-

Jacobi method) or the quadratic programming problem (such as the interior-point

method) is the local solver. Thus, obtaining the global solution is not clear as of

now. Given that the global solver for the MEP has been recently proposed [25],

application of these methods can be regarded as our future work.

We have assumed the transfer function model as the system representation.

However, if the initial state of the system is non-zero when the high-dimensional

data is obtained, it is difficult to obtain an accurate transfer function model. In
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the next chapter, we consider changing the system representation.
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Chapter 4

Modeling of Non-relaxed System

using High-dimensional Data

4.1. Introduction

In the previous chapter, we proposed input-output manifold learning with transfer

function models (IOMLTF). Since the fitting error for the transfer function model

can easily be reformulated to a quadratic form and model estimation can be

accomplished element-wise, we have adopted the transfer function model as a

system representation. However, the transfer function model has the following

limitations:

1) It implicitly assumes that the system is initially relaxed (e.g., the initial

state of the system is zero). That is, the transient response is difficult to

capture.

2) A ‘biased’ estimation can be obtained if the model structure assumed is

different from supposed one. [21, Sec. 8.3].

When we apply input-output manifold learning to several applications, these

limitations may deteriorate the system identification performance. Therefore, in

this chapter, we propose an alternative approach, i.e., the input-output manifold

learning with state space models (IOMLSS), which can overcome the limitations

of the previously proposed IOMLTF by introducing a state space model as the
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system representation. The state space model obviously allows representation of

initially non-relaxed systems [26]. Moreover, sophisticated system identification

methods such as N4SID [27], which can treat more complicated system models

such as ARMAXmodels, can be utilized. Therefore, a better system identification

performance can be expected.

The remainder of this chapter is organized as follows. In section 4.2, we explain

our problem setting. Then, IOMLSS is described in section 4.3. A numerical

simulation for validating IOMLSS is shown in section 4.4. The summary and

future work are presented in section 4.5.

4.2. Problem setting

In this section, we explain the problem setting of IOMLSS.

Let us consider an unknown linear time-invariant discrete-time dynamical

system Σ with the following input and output

u(t) := [u1(t), . . . , udu(t)]
T ∈ Rdu ,

y(t) := [y1(t), . . . , ydy(t)]
T ∈ Rdy ,

which are referred to as the low-dimensional input and output of the system,

respectively. The objective is to determine this relationship from the high-

dimensional input µ(t) ∈ Rdµ(dµ > du) and output η(t) ∈ Rdη(dη > dy). Here,

we assume that the dataset of the high-dimensional input and output from time

t = 0 to t = T − 1, D =
{
µ(t),η(t)

}T−1

t=0
, is available, and the system order n

and the dimensionality of the low-dimensional input du and output dy are given.

Figure 4.1 illustrates this problem setting.

4.3. Proposed method: input-output manifold learn-

ing with state space model

In this section, we describe the IOMLSS. The formulation of the optimization

problem to determine the low dimensional representation with the state space

model is shown in Sec. 4.3.1. The derivation of solution methods for the iterative

optimization scheme is presented in Sec. 4.3.2.
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Low-dim.

input

Low-dim.

output

High-dim.

input

High-dim.
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Linear dynamical 

system represented 

using state 

space model

(hidden)

µ η

u yΣSS

Figure 4.1. Problem setting of IOMLSS. The obtained data are the high-

dimensional input µ and output η. It is assumed that the features regarded as

low-dimensional input u and output y have a relationship of a linear dynamical

system ΣSS, represented using the state space model.

4.3.1 Formulation with state space model

As in the previous chapter, let us define the matrices consisting of data from t = 0

to t = T − 1 as follows:

U =

 uT(0)
...

uT(T − 1)

 =:
[
u1 u2 · · · udu

]
,

Y =

 yT(0)
...

yT(T − 1)

 =:
[
y1 y2 · · · ydy

]
.

The system Σ can be identified fromU andY. However, all ofU,Y and Σ are un-

known, and simultaneous estimation of all unknown variables is difficult. Hence,

we have proposed an efficient algorithm called input-output manifold learning,

as a solution method of two optimization problems. More concretely, assuming

that the system Σ is given, we first solve the manifold learning problem recon-

structed by adding the penalty term so that the low-dimensional data follow the
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dynamics∗:

max
U,Y

f(U,Y,ΣSS,Kµ,Kη, γ) (4.1)

s.t.UTU = Idu , Y
TY = Idy .

where

f(U,Y,ΣSS,Kµ,Kη, γ)

:= f1(U,Y,Kµ,Kη)− γf2
(
U,Y,ΣSS

)
. (4.2)

The function f1(U,Y,Kµ,Kη) with the constraints in equation (4.1) is used to

determine the eigenvectors of Kµ and Kη,

f1(U,Y,Kµ,Kη) :=
1

cµ
Tr
(
UTKµU

)
+

1

cη
Tr
(
YTKηY

)
,

which is the same as the original manifold learning method. Here, the matrices

Kµ,Kη are defined by the gram matrix of Isomap for each, and the coefficients

with cµ := λmax(Kµ) and cη := λmax(Kη) are multiplied for stable computation

of numerical optimization. In addition, the function f2
(
U,Y,ΣSS

)
represents the

fitting error for the system. The weighting factor γ ≥ 0 is a free parameter to be

manually tuned.

Let us consider a state space model as a system representation:

ΣSS :

{
x(t+ 1) = Ax(t) +Bu(t) +w(t)

y(t) = Cx(t) +Du(t) + v(t)

where x(t) ∈ Rn is the state vector with the initial state x(0) = x0 ∈ Rn and

w(t) and v(t) are the system noise and observation noise respectively represented

as follows,

p(w,v) = N

([
w

v

]∣∣∣∣∣
[

0

0

]
,

[
Q N

NT R

])
.

∗Note that this formulation is slightly different from that in the IOMLTF. There is no

problem with using the previous definition in Eq. (3.1). However, this formulation is numerically

more stable in the optimization.
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For the fitting error term, we utilize the following squared prediction error crite-

rion of 4SID proposed in [28],

f2
(
U,Y,ΣSS

)
= f s2

(
U,Y,Lw,H

d
h)

:=

∥∥∥∥∥Yf −
[
Lw Hd

h

] [ Wp

Uf

]∥∥∥∥∥
2

F

, (4.3)

The matrices Y∗ are parts of the following block Hankel matrices constructed

from y expressed as follows:

Y0|2h−1 =



y(0) y(1) · · · y(T − 2h)

y(1) y(2) · · · y(T − 2h+ 1)
...

...
. . .

...

y(h− 1) y(h) · · · y(T − h− 1)

y(h) y(h+ 1) · · · y(T − h)
y(h+ 1) y(h+ 2) · · · y(T − h+ 1)

...
...

. . .
...

y(2h− 1) y(2h) · · · y(T − 1)


=:

[
Yp

Yf

]
.

Up and Uf are defined in the same way as Y∗. In addition, Wp is defined as

Wp :=

[
Yp

Up

]
. The matrices Lw and Hd

h contain the information of the system

ΣSS (see Appendix C) and these are correspond to the transfer matrix G(q) in

IOMLTF. An integer h is set to be larger than the system order n, i.e., h > n.

See Appendix C for a rough overview of how this relationship is obtained.

Based on this representation, the IOMLSS is constructed as shown in Al-

gorithm 2. In the following sections, detailed methods for obtaining the low-

dimensional input and output, in order to update the latent system and to realize

the system parameters are described.
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Algorithm 2: Input-Output Manifold Learning with State Space Models

Input : D =
{
µ(t),η(t)}T−1

t=0 , // high dim. dataset

U(0), Y(0), // Initial low-dim. rep.

γ // weighting factor

h // prediction horizon

n // system order

Output: Û, Ŷ, Â, B̂, Ĉ, D̂, Q̂, R̂, N̂

Compute correlation matrices Kµ and Kη from D.
Obtain

{
L

(0)
w ,Hd

h
(0)}

using Eq. (4.5) with
{
U(0), Y(0)

}
.

i← 0

repeat

Obtain
{
U(i+1), Y(i+1)

}
by solving maxζ f(ζ,K,R, γ) with initial value

U(i),Y(i) and
{
L

(i)
w ,Hd

h
(i)}

.

Obtain
{
L

(i+1)
w ,Hd

h
(i+1)}

using Eq. (4.5) with
{
U(i+1), Y(i+1)

}
.

i← i+ 1.
until convergence

Û← U(i), Ŷ ← Y(i).

Obtain estimates of system matrices Â, B̂, Ĉ, D̂, Q̂, R̂, N̂ by Eqs. (4.6)

and (4.7) with Û and Ŷ.

4.3.2 Solution methods

Obtaining low-dimensional input and output

Let us assume the matrices Lw and Hd
h are given. Now, the evaluation function

(4.2) can be optimized with respect to u and y. However, as the number of

variables to be optimized is (du+dy)N , it might be costly to obtain the derivative

of the evaluation function (4.2) numerically. The objective is to determine the

quadratic form of f because its analytic gradient can be easily obtained.
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For f1, we can obtain the quadratic form

f1(U,Y,Kµ,Kη)

=

[
vec(Y)

vec(U)

]T [
Kη OdyN×duN

OduN×dyN Kµ

][
vec(Y)

vec(U)

]
= ζTKζ,

where

Kη =
1

cη
Idy ⊗Kη, Kµ =

1

cµ
Idu ⊗Kµ.

Next, to obtain a quadratic form of f s2 , we utilize the following property of a

Frobenius norm:
∥∥A∥∥2

F
=
∑

i

∥∥ai∥∥22 where ai represents the i-th column vector of

A. Let us define the matrix inside of the Frobenius norm in equation (4.3) as F,

F := Yf −
[
Lw Hd

h

] [ Wp

Uf

]

and its i-th column vector as fi. The squared norm of fi is as follows:

∥fi∥22 =

∥∥∥∥∥∥∥yh+i|2h+i−1 −
[
Lw Hd

h

]
[

yi|h+i−1

ui|h+i−1

]
uh+i|2h+i−1


∥∥∥∥∥∥∥
2

2

. (4.4)

Here, a notation yp|q :=
[
yT(p) · · · yT(q)

]T
is used. Let us split the matrix

Lw into two matrices as

Lw =
[
Lwy Lwu

]
,

where Lwy ∈ Rdyh×dyh,Lwu ∈ Rdyh×duh. Equation (4.4) can be reformulated as

∥fi∥22 =

[
yi|2h+i−1

ui|2h+i−1

]T [
Ryy −Ryu

−RT
yu Ruu

][
yi|2h+i−1

ui|2h+i−1

]
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where

Ryy =

[
LT
wyLwy −LT

wy

−Lwy Ihdy

]
,

Ryu =

[
−LT

wyLwu −LT
wyH

d
h

−Lwu Hd
h
T

]
,

Ruu =

[
LT
wuLwu LT

wuH
d
h

Hd
h
T
Lwu Hd

h
T
Hd
h

]
.

Using this result, f s2 is reformulated into a quadratic form as

f s2
(
U,Y,Lw,H

d
l

)
=

[
vec(Y)

vec(U)

]T [
Ryy −Ryu

−RT
yu Ruu

][
vec(Y)

vec(U)

]
= ζTRζ,

where

Ryy = PT
T×dy

(
T−2h∑
i=0

R(i)
yy

)
PT×dy ,

R(i)
yy = diag

{
O(i−1)dy×(i−1)dy ,Ryy,O(N−2h−i)dy×(N−2h−i)dy

}
,

Ryu = PT
T×dy

(
T−2h∑
i=0

R(i)
yu

)
PT×du ,

R(i)
yu = diag

{
O(i−1)dy×(i−1)du ,Ryu,O(N−2h−i)dy×(N−2h−i)du

}
,

Ruu = PT
T×du

(
T−2h∑
i=0

R(i)
uu

)
PT×du ,

R(i)
uu = diag

{
O(i−1)du×(i−1)du ,Ruu,O(N−2h−i)du×(N−2h−i)du

}
,

and Pp×q is a pq × pq commutation matrix represented as

Pp×q =

p∑
i=1

q∑
j=1

E
(p×q)
ij ⊗ E

(q×p)
ji ,

where E
(p×q)
ij is a matrix unit that is a p× q matrix whose (i, j) entry is 1 and the

rest are 0. Finally, the quadratic form of the evaluation function and its gradient
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are obtained as follows

f(ζ,K,R, γ) = ζTMζ,
∂f

∂ζ
= 2Mζ,

where M = K − γR. The solution of the optimization problem (4.1) can be

obtained using a solver for quadratic programming with quadratic equality con-

straints such as SQP or an interior-point algorithm using this gradient.

Updating the latent system

In this section, we describe how to obtain the matrices Lw andHd
h, which minimize

f s2 for obtained U and Y. In the IOMLTF, the solution is easily obtained using

least squares estimation. Even in the IOMLSS, it seems that the solution might

be easily obtained as

[
Lw Hd

h

]
= Yf

[
Wp

Uf

]†
.

where † stands for the pseudo inverse X † = XT(XXT)−1. However, even Hd
h is

a block lower triangular matrix (see Appendix C), this simple solution method

does not have this structure. For a single-input single-output case, the solution

that holds the structure is shown in [29, Sec. 5.2] as an example. However, the

multi-input multi-output case is not shown explicitly. We here describe how to

obtain the appropriate solution.

First, we consider the vectorized form of equation (C.3) as follows:

vec(Yf )︸ ︷︷ ︸
Υ

=
([

WT
p UT

f

]
⊗ Ihdy

)
︸ ︷︷ ︸

Ξ

vec
([

Lw Hd
h

])
,

and define a matrix H constructed with the Markov parameters as:

H =
[
HT

0 HT
1 · · · HT

h−1

]T
.

The relationship between vec(Hd
h) and H can be easily determined as

vec(Hd
h) = Nvec(H)
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where N is defined as

N =


Idu ⊗N1

Idu ⊗N2

...

Idu ⊗Nh

 ,

Ni =

[
O(i−1)dy×(h−i+1)dy O(i−1)dy×(i−1)dy

I(h−i+1)dy O(h−i+1)dy×(i−1)dy

]
.

Denoting

vec
([

Lw Hd
h

])
= diag

{
I(du+dy)dyh2 ,N

}[ vec(Lw)

vec(H)

]
= Nζ,

and solving the optimization problem

min
ζ

∥∥∥Υ−ΞNζ
∥∥∥2
2

which is equivalent to the minimization problem of f s2 w.r.t. Lw and Hd
h, the

vector vec
([

Lw Hd
h

])
yields

vec
([

Lw Hd
h

])
= N

(
NTΞTΞN

)−1NTΞTΥ. (4.5)

The updated matrices are obtained by reshaping this vector.

Estimation of the system parameters

After repeating the two optimization problems, the system parameters of Σ are

estimated using the following algorithm based on [27]. First, we compute the

SVD of LwWp:

LwWp = ΓhX̂h (from Eqs. (C.1) and (C.2))

= USVT =
[
U1 U2

] [ S1 0

0 S2

][
VT

1

VT
2

]
,
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where S1 is the n×n diagonal matrix. Using the components, the state sequence

X̂h is estimated as:

X̂h :=
[
x̂(h) x̂(h+ 1) · · · x̂(T − h)

]
= S

1/2
1 VT

1

The system parameters A,B,C,D are obtained by solving the following least

squares problem:

min
A,B,C,D

∥ϵ∥2F , ϵ :=

[
Xp
h

Yh

]
−

[
A B

C D

][
Xc
h

Uh

]
,

whose solutions is obtained by[
Â B̂

Ĉ D̂

]
=

[
Xp
h

Yh

][
Xc
h

Uh

]†
(4.6)

where

X̂p
h :=

[
x̂(h+ 1) x̂(h+ 2) · · · x̂(T − h)

]
,

X̂c
h :=

[
x̂(h) x̂(h+ 1) · · · x̂(T − h− 1)

]
,

Yh :=
[
y(h) y(h+ 1) · · · y(T − h− 1)

]
,

Uh :=
[
u(h) u(h+ 1) · · · u(T − h− 1)

]
.

The estimations of each covariance matrix of w and v are obtained using ϵopt =

arg min∥ϵ∥2F, [
Q̂ N̂

N̂T R̂

]
=

1

N − h− 2
ϵoptϵ

T
opt. (4.7)

The difference in the algorithms for the IOMLTF and IOMLSS is summa-

rized in Fig. 4.2. The main difference is in the parameters to be estimated after

obtaining the low-dimensional input and output data.

4.4. Experiment

In this section, we illustrate the effectiveness of our proposed method through sim-

ulations with synthetic data. We compare the following three methods: 1) ISOMAP

(with the system identified with low-dimensional data obtained by Isomap (same

as the initial values of IOML)), 2) IOMLTF [30], and 3) IOMLSS (proposed).
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Numerical Optimization
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Prior information

Figure 4.2. Algorithmic flow of IOMLSS and IOMLTF. The difference between

the two is how the penalty term is updated. IOMLSS utilizes an extended ob-

servability matrix and Markov parameters, while IOMLTF utilizes the transfer

function model.

4.4.1 Simulation settings

Training dataset

Let us assume the following 3rd order system Σ1:

Σ1 :

{
x(t+ 1) = A1x(t) +B1u(t) +w(t)

y(t) = C1x(t) + v(t)
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where

A1 =

 0.2338 0.2869 −0.1383
0.2869 0.3525 0.2786

−0.1383 0.2786 0.3917

 ,
B1 =

[
0.7007 1.424 0

]T
,

C1 =
[
0 0.629 −2.427

]
,

and E{w(t)wT(t)} = 0.01I, E{v2(t)} = 0.01, and E{w(t)v(t)} = 0.

As the high-dimensional input and output, we consider two dimensional vec-

tors obtained through the following nonlinear functions:

µ(t) =
[
u(t) exp

(
−1

2
u2(t)

) ]T
+ νµ(t),

η(t) =
[
y(t) exp

(
−1

2
y2(t)

) ]T
+ νη(t),

where νµ(t) ∼ N (0, 0.09I) and νη(t) ∼ N (0, 0.09I) are additional noises. The

high-dimensional dataset D = {µ(t),η(t)}T−1
t=0 with T = 1000 data point is

generated with the low-dimensional input, which follows a normal distribution

u(t) ∼ N (0, 1). We consider two conditions:

1) a non-zero initial state x(0) = x0 where

x0 =
[
−0.1117 −0.0446 0.0264

]T
2) a zero initial state x(0) = 0

Following the procedure, we prepare five dataset D1, . . . ,D5 for each condition

because the low-dimensional input u and noises are random.

Evaluation criteria

In the evaluation, we focus on the output error with the filtered state estimated by

the steady state Kalman filter, as used in the evaluation of IOMLTF [30]. First,

two nonlinear functions, µ(t) → u(t) and η(t) → y(t), are obtained with ϵ-SVR

implemented by LIBSVM [31]. The hyperparameters in ϵ-SVR are optimized with

5-fold cross validation. Then, the new dataset Dt with Nt = 500 samples for the
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test is generated with the same conditions as those when D is generated. Using

the SVRs, the low-dimensional input and output for the test data are computed.

Then, the state x(t) is estimated using the steady state Kalman filter, and the

difference between the low-dimensional output ŷ(t) with the estimated state x̂(t)

and the actual observation y(t) is evaluated based on an FIT value defined as

follows:

FIT = max

(
0, 1−

∑Nt−1
τ=0 (y(τ)− ŷ(τ))2∑Nt−1
τ=0 (y(τ)− ȳ)2

)
× 100[%],

where ȳ = 1
Nt

∑Nt−1
τ=0 y(τ). If the value is large, it is possible that the obtained

low-dimensional input and output are more adapted to the linear system. In the

design of the Kalman filter, the covariance matrices of the noises are given by

Eq. (4.7) for IOMLSS and ISOMAP. As the matrices for IOMLTF are not given,

the matrices obtained for IOMLSS are utilized for IOMLTF.

User parameter and initial value setting

The prediction horizon is set to h = 20. To set the weighting factor γ, we

divide the dataset Di into the training data (first 800 points) and the valida-

tion data (remaining 200 points). The weighting factor γ is selected from a set

{0.01, 0.05, 0.1, 0.5, 1} so that the FIT value of the validation data is maximum.

The iterative optimization in IOMLTF and IOMLSS is repeated for 1000 itera-

tions. The system order n = 3 is manually chosen.

The initial values U(0),Y(0) are set as the solutions of Isomap [6], and the

matrices L
(0)
w ,Hd

h
(0)

are obtained using U(0) and Y(0) with Eq. (4.5).

4.4.2 Results

First, we show the learning result of IOMLSS. Figure 4.3(a) shows the value of

the evaluation function f for each iteration in IOMLSS. Although the value at the

0th iteration is small because the fitting to the linear system is worse, as shown

in Fig. 4.3(b), the evaluation function f monotonically increases by repeating

the optimizations because the fitting error term f2 monotonically decreases. The

effectiveness of the iterative optimization is confirmed by this result.
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Figure 4.3. Values of the evaluation function and the fitting error term in

iterative optimization. In (a), ◦ denotes the value after the optimization of

f2, f(U
(i),Y(i),L

(i)
w ,Hd

h
(i)
), and × shows the value after the optimization of f ,

f(U(i+1),Y(i+1),L
(i)
w ,Hd

h
(i)
). The value of f monotonically increases in each iter-

ation as the value of f2 monotonically decreases.

Figure 4.4 shows a comparison of the average of the FIT values. In the figure,

the results of IOMLSS are better than those of IOMLTF and ISOMAP. The actual

output and estimated outputs in test are shown in Fig. 4.5. These results indicate

that IOMLSS can be used to obtain more suitable low-dimensional representa-

tions and the system for non-zero initial state, x(0) = x0. In addition, as opposed

to this case, there is a smaller difference between IOMLSS and IOMLTF for a

zero initial state, x(0) = 0. Nevertheless, it is confirmed that there is a significant

difference between IOMLSS and IOMLTF validated by two-sample t-tests (p <

0.05). We suppose that this is caused by the model difference because IOMLTF

uses the ARX model and the system Σ1 and IOMLSS uses ARMAX. This dif-

ference may induce a ‘biased’ estimation [21, Sec. 8.3] which may deteriorate the

prediction performance. In other words, this result shows that IOMLSS can be

used to treat a more complicated noise model than IOMLTF. Consequently, the

effectiveness of the proposed method is confirmed.
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Figure 4.4. Average value of FIT value for test data. The y-axis shows the

average of FIT value for five datasets for each condition. IOMLTF and IOMLSS

are shown to make better predictions than ISOMAP. However, IOMLSS performs

better than IOMLTF for a case with a non-zero initial state case (IOMLTF:

96.5%, IOMLSS: 99.9%), which is validated by two-sample t-tests (p < 0.05).

The difference is smaller for a case with a zero initial state case (IOMLTF: 98.5%,

IOMLSS: 99.9%).
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Figure 4.5. Estimated output sequence in the test with non-zero initial state case

from t = 150 to t = 160. The output of IOMLSS is close to the true output y.

4.5. Summary

In this paper, we extend input-output manifold learning to use the state space

model for the system representation. This extension allows us to consider a
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non-zero initial state and a more complicated model structure. The simulation

result demonstrates that the extended method results in better low-dimensional

representations if the initial state of the obtained dataset is non-zero.

By using the state space model for system representation, the subspace identi-

fication method can be implemented. We determine the system order n manually

in the experiment. However, the system order can be determined from the iden-

tification data using this method. In addition, the number of parameters to be

identified for the MIMO system can be reduced with the state space model. It

is deemed that the performance will be better for MIMO system cases, However,

IOMLTF can be a potential choice for certain systems because the number of

parameters to be identified is less than that for the IOMLSS in specific cases.

In future, we will consider the use of nonlinear dynamical systems. In addition,

we will also consider applying this method to the actual data in future.
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Chapter 5

Partial Manifold Learning for

Two Factor Models and Its

Application to Active Robot

Perception on Learned Manifolds

5.1. Introduction

In this section, a manifold learning method with a two-factor model is considered.

In previous studies, the manifold learning methods for an one-factor model are

proposed such as PCA [3], Isomap [6], and GP-LVMs [2]. The generative model

considered in such a study is one factor models, which shows that the observa-

tion is explained by one factor, namely y = f(X) where y is the observation,

and the X is the latent factor (Fig. 5.1(a)). In this section, we consider models

with two-factors, namely y = g(x,θ). The two (or more) factor model is capable

capturing variations in the data which is described in the problem of style-content

separation. Such a model is applied to spoken vowel classification [32], and pre-

diction of human motions [33]. In this study, we assume that one factor x is

known (Fig. 5.1(b)). Obtaining both factor is considered in the previous studies

(e.g. [32, 33]). However, the method can not be directly applied to the problem

to be considered in this study. The situation would be happen in the sensor
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(a) Single-factor generative model

Y

X

Y

x1 gplvm

Θ

(b) Two-factor generative model whose one

factor is known and the other is unknown

Figure 5.1. Problem setting comparison. (a) Find X for given Y. (b) Fing Θ for

given Y and X.

model construction in the object recognition tasks (see Sec. 5.3). To cope with

the problem, we propose a partial manifold learning method based on Gaussian

Process Latent Variable Models (GP-LVMs) [2], which allows us to consider the

effect of a known factor to the observation and other factor.

5.1.1 Layout of this chapter

Section 5.2 describes proposed manifold learning method, and its connection to

object recognition problem is shown in section 5.3. Section 5.3 also describes

the information maximization control, which is the collateral proposed method

for exploratory action planning in object recognition task. The performance

validation of object manifold learning and information maximization control is

shown in section 5.4 and section 5.5, respectively. This chapter is summarized in

section 5.6 with discussions.

5.2. Proposed method

We now start to model the relationship among the observation, known factor and

unknown factor. As described above, the following nonlinear observation function
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g is assumed:

y = g(x,θ) + ϵ, (5.1)

where y is the observation, x is the known factor, and θ is the unknown factor.

5.2.1 Observation modeling using GPs

Firstly, the nonlinear function g is modeled using GPs. The observation model

(5.1) is supposed to be modeled using Gaussian Process Regression [34] for each

dimension of y: ya = ga(x,θ) + ϵa for a = 1, 2, . . . , dy as follows:

ga(z) ∼ GP(0, ka(z, z′)), (5.2)

where ka(z, z
′) is the kernel function. z =

[
xT, θT

]T ∈ Rdz where dz = dx + dθ is

defined for simple representation.

For given N -sample training data set D̃ = {x(i),θ(i),y(i)}Ni=1 (Note that θ is

not given at this moment), the predictive distribution of ya is given as a Gaussian

distribution:

p(ya|x,θ,X,Θ,ya)
= N (µa(x,θ;X,Θ,ya), s

2
a(x,θ;X,Θ,ya))

where X,Θ and ya are the training data set corresponding to x,θ and ya, re-

spectively. The predictive mean µa and variance s2a are given as follows:

µa(z;Z,ya) = kT
a (Ka + σ2

aI)
−1ya,

s2a(z;Z,ya) = ka(z, z)− kT
a (Ka + σ2

aI)
−1ka.

The vector ka is denoted as ka = [ka(z
(1), z), . . . , ka(z

(N), z)]T. The matrix Ka is

the kernel matrix withKa,ij = ka(z
(i), z(j)) as (i, j) entry. In this paper, the kernel

function defined for the calculation of µa and s2a is assumed to be the following

squared exponential kernel function:

ka(z, z
′) = α2

a exp

(
−1

2
(z− z′)T

(
Hz
a

)−1
(z− z)

)
where α2

a is the variance of ga. This selection of the kernel function allows us

to obtain the Gaussian predictive distribution with approximation in sense of

54



the 1st and 2nd order moments. Here, x and θ are assumed to be independent,

accordingly Hz
a is defined as a block diagonal matrix Hz

a = diag{Hx
a,H

θ
a}, and

Hx
a and Hθ

a are diagonal matrices with positive elements which adjust the scale

of each dimension of x and θ, respectively. Note that this model is classified

to Multifactor Gaussian Process Models [33]. Hyperparameters to be learned is

γa =
{
α2
a, σ

2
a,H

x
a,H

θ
a

}
.

5.2.2 Parameter extraction by manifold learning

Here, we consider the following structure. The unknown factor θ is same for Nℓ-

sample in the training data: only one vector θ(ℓ) is used to represent the dataset

{y(j),x(j)} for the subset of index j. Here, we consider separated training data set

D = {D1, . . . ,DL}, Dℓ =
{
x(ℓ,i), y(ℓ,i)

}Nℓ
i=1

, where L is the number of vectors to be

learned. We consider to extract the unknown vector setΘ = [θ(1), . . . , θ(L)] using

the GP model (5.2) with a similar way to the GPLVMs. For our model (5.2), the

log-likelihood function is defined as,

log p(ya|X,Θ, γa) = −
1

2
log det(Ka + σ2

aI)−
1

2
yT
a (Ka + σ2

aI)
−1ya −

1

2
log(2π),

(5.3)

where z(i) corresponds to the i-th column of the matrix Z ∈ Rdz×N defined as,

Z =

[
θ(1) · · · θ(1) · · · θ(L) · · · θ(L)

x(1,1) · · · x(1,N1) · · · x(L,1) · · · x(L,NL)

]
, (5.4)

where N =
∑L

ℓ=1Nℓ. X is a dx ×N sub-matrix of Z, which is a part of x in Z,

and ya ∈ RN is defined as,

ya =
[
y
(1,1)
a · · · y

(1,N1)
a · · · y

(L,1)
a · · · y

(L,NL)
a

]T
,

and γa =
{
Hx
a,H

θ
a, α

2
a, σ

2
a

}
is a hyperparameter set. Note that θ is the only

unknown variable in the latent variable z, and θ(ℓ) isNℓ times included in Z. With

holding this structure, Θ and γ = {γ1, . . . , γdy} are optimized simultaneously by

maximizing the sum of the log-likelihood function for all dimensions of y as

(Θ∗, γ∗)← arg max
Θ,γ

dy∑
a=1

log p(ya|X,Θ, γa). (5.5)
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5.2.3 Relationship with other methods

Let us discuss the relationship with other methods, Saal et al. [1] and GPLVM

[2], by comparing those problem settings. The differences of the problem settings

are summarized in Table 5.1. From the point of view of model learning, the

true-object parameter θ is known as training data in Saal et al [1], however, its

equivalent parameter θ is unknown in our problem setting. Next, our model (5.1)

seems to be the same model as considered in GPLVM with defining one latent

variable z, however, x which is a part of latent variable z is known and included

in training data. In addition, we have N training data, however, the number

of the recognition target objects is L, and generally L ≪ N . Accordingly, the

structure of latent variables corresponding to the observation variable should be

fixed as shown in Eq. (5.4).

5.3. Application to object recognition

The proposed method is applicable for the modeling of the observation model

in tactile object recognition. In this section, it is described how to apply the

proposed method to the tactile object recognition problem.

5.3.1 Background

Object recognition using a robot hand based on tactile information such as pres-

sure, vibration and temperature is a crucial problem (Fig. 5.2). To recognize an

object by such a robot, the following procedures are executed: (1) an action to be

applied to the object is designed, (2) the robot performs the action to the object,

(3) the recognition task is accomplished with the obtained tactile information.

For the efficient recognition, the most important procedure may be (1): we

need to plan and execute clever actions (referred to as exploratory actions) se-

quentially so that the resulting sensor data become sufficiently informative (we

refer to the action which carries the informative sensor data as an informative

action). In contrast with the poorly designed (e.g., random or hand-tuned) ac-

tions, if we could collect sample data by sequentially performing informative

actions, i.e. active learning, the required time to accomplish the task would be
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Figure 5.2. Tactile object recognition by a robot hand

drastically reduced. The effectiveness of active learning has been investigated in

(e.g. [1, 35, 36, 37, 38, 39, 40]).

5.3.2 Application of the proposed method to object recog-

nition

Active learning requires the observation model that relates the observed data to

the action and the object to seek informative actions. We consider to learn such

a model from training data using Gaussian Processes (GPs) [41], that relates the

observed tactile sensor data to the continuous object and action parameters, to

enjoy the compatibility of GPs with the active learning based on mutual infor-

mation, as well as in [1]. However, in the object recognition task, the suitable

representations of the objects for the object parameters in the model are not

given a priori and they might be strongly task-dependent, unlike in [1]. Besides,

using unsuitable object parameters may deteriorate the task performance.

The sensor model is a two factor model: the observation is represented with

the exploratory action and the object. If the different exploratory actions are

applied to the same object, the observation will be different, and if the same

exploratory action is applied to the different objects, the observation will also be

different. Thus, the two factor model is suitable to represent the phenomenon.
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To train the Gaussian process models, we can obtain the observation and the

applied exploratory action as the training data. However, the parameters which

represent each object is unknown a priori. This is the situation that one factor

in a two factor model is known, and the object manifold learning will be a key to

learn this model.

5.3.3 Exploratory action planning

After the object parameters are allocated and the observation model is learned,

the informative exploratory action can be designed using the observation model.

In addition, let us consider the tactile recognition task using an anthropomorphic

robotic hand. Regarding the exploratory action design, to avoid such undesirable

situations that the robot might break the object being touched or might get

a damage, the compliance of the robot behaviors is important as well as the

informativeness of the resulting sensor data.

Thus, we propose to design the exploratory actions using the formulation of

the optimal control problem with the robot dynamics. The optimal control can

find a control law that minimizes the resulting cost function. We propose the

cost function that is composed of two terms: the informativeness and the energy

consumption that can promote resulting actions to be compliant. As a criterion

of the informativeness, we adopt the mutual information which can be measured

by the model obtained by the object manifold learning.

5.3.4 Related works

The object recognition problem is often treated using visual information ([42,

43, 44, 45]). However, the recognition based on visual information might be

unrobust because of effects such as occlusion, or the lightning condition in the

real environment. Also, the auditory information utilized in ([46, 47]) could

be effected in noisy environment. In contrast, the recognition based on tactile

information is more robust for such effects as also mentioned in ([48]).

Regarding the allocation of the object parameters, the differential geometry

based feature [49] and the force-distance profiles based feature [50] for tactile sen-

sor data could be used as the object parameters. Since these features are strongly
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related to the physical quantities such as a surface shape and hardness of the ob-

ject, the suitable features need to be selected for the task a priori. Data-driven

feature extraction methods based on dimensionality reduction methods such as

Principal Component Analysis [51], Self-Organizing Maps [52, 53], and Maxi-

mum Covariance Analysis [54] have also been explored; however, these methods

are limited in a single action and unclear how to use for computing informative

actions with the notable exception of [38].

Also, regarding the planning of the exploratory actions, most previous studies

cannot consider the informativeness and compliance simultaneously since they

treat the planning problem of exploratory actions separately from the robot con-

trol problem (e.g. [40, 39, 1]). In some previous studies, however, similar methods

have attempted to solve different problems as an optimal control problem. The

active sensing problem (e.g. [55, 56]), such as field modeling of the environment

is addressed with a mutual information criterion. However, contactless sensor,

such as a laser rangefinder, or a vision sensor are targeted in those studies, in

other words, compliance is not considered in the exploratory action design.

5.3.5 Sequential active learning for object recognition

We treat the object recognition problem as a parameter estimation problem [1].

We assume that each object has the intrinsic parameter called object parameter,

and this parameter will be sequentially estimated using the tactile sensor data

obtained by the exploratory action.

Generally speaking, the procedure of the active object recognition is summa-

rized as follows:

Step 1: Set an initial guess of the object parameter for the (unknown) target

object using a probability distribution (called object’s belief).

Step 2: Design the optimal exploratory action based on the current object’s be-

lief.

Step 3: Obtain the observation (tactile sensor data) by executing the designed

action to the target object.

Step 4: Update the object’s belief based on the observation.
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Step 5: Repeat from Step 2 until the variance of the belief becomes sufficiently

small.

Step 6: Determine the result as the object which has the nearest object parameter

in the database.

5.3.6 Problem formulation

Let us assume the object list to be recognized O = {O1, . . . , OL} is given. We also

assume that the robot and tactile sensor for the object recognition are represented

as the following the state transition and observation equations:

y = g(x,θ) + ϵ, (5.1)

where y ∈ Rdy is the dy-dimensional observation from the robot’s sensor, x ∈
Rdx is the dx-dimensional action parameter which parametrizes the exploratory

action, θ ∈ Rdθ is the dθ-dimensional object parameter, and ϵ ∼ N (0,Σϵ),Σϵ =

diag {σ2
1, σ

2
2, . . . , σ

2
dy
} is the dy-dimensional Gaussian observation noise.

The problems we need to consider to solve the object recognition problem are

listed as follows:

Problem 1 Suppose that the object list O = {O1, . . . , OL} is given. The prob-
lems are

(a) to find the suitable object parameter for each object Θ =

[θ1, . . . , θL], and

(b) to obtain the observation model (5.1).

Problem 2 Suppose that the state transition model

ψt+1 = f(ψt,ut), (5.6)

where ψ ∈ Rdψ is the dψ-dimensional (observable) state of the robot,

and u ∈ Rdu is the du-dimensional input to the robot with input

limits umin ≤ u ≤ umax are given. Also, the observation model (5.1)

are given. The problem is to find the informative and compliant

action sequence.
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pn(θ)

u0:T−1

y0:T

 

ψt+1 = f(ψt,ut)

y = g(x,θ) + ǫ

ψ0:T

Figure 5.3. Overview of the proposed method. 1) Object manifold learning to

obtain a GP sensor model to calculate informativeness of the action, 2) Infor-

mation maximization with a controller that designs informative and compliant

actions, and 3) Object’s belief update from obtained observation.

For Problem 1, the object manifold learning can be applied. In the following

section (Section 5.3.7), we describe how to apply the object manifold learning

to the object recognition. Then, the solution for the Problem 2 is shown in

Section 5.3.8. The relationship of the methods is shown in Fig. 5.3.

5.3.7 Object manifold learning with action features

This model can be used in the following 2 cases:

As a Sensor-Action Model

Assuming the desired state sequence Ψd = {ψd
t }T−1

t=0 is parametrized by x,

that is Ψd = Ψd(x), this model can be regarded as a Sensor-Action Model

with a tactile feature y which represents the compressed information of the

tactile sequence, y← {yt}T−1
t=0 .

As a Sensor-State Model

Assuming the robot’s state as the instantaneous action, that is x = ψt and

y = yt, this model can be regarded as a Sensor-State Model.

Even the meaning of x differs, the fundamental structure is same. Also, the

difference will not effect to the solution of Problem 1 with a priori defined x.
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µ,Σ

p0(θ)

Figure 5.4. Overview of our active object recognition system. We first set the

probability distribution of the object parameter p0(θ) = N (µ0,Σ0) as initial

object’s belief. Based on the belief, the action x is computed and performed for

the recognition target and accordingly the observation y is obtained. Object’s

belief p(θ) is updated using x and the obtained y.

Thus, we will not consider this difference in the following discussion.

Let us assume the training dataset D = {D1, . . . ,DL}, Dℓ =
{
x(ℓ,i), y(ℓ,i)

}Nℓ
i=1

is available. Dℓ is obtained by executing the exploratory action to the ℓ-th object

Oℓ. Then, using the dataset, we can directly obtain the suitable object parameters

by applying the object manifold learning.

5.3.8 Exploratory action generation for active tactile ob-

ject recognition and belief update

Using the GP model by applying object manifold learning, we construct the active

tactile object recognition method, by following [1]. The overview of the whole

process is shown in Fig. 5.4.

We use the mutual information [57] as the criterion of informativeness for the

exploratory action. The informativeness of exploratory action for each update

depends on the current object’s belief represented as the probability distribution
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of an object parameter θ. The mutual information I[θ,y|x] evaluates the reduced
amount of the object parameter’s uncertainty when the observation y is obtained

at the state x. In other words, it represents the amount of obtained information.

We utilize the mutual information as the definition of the infomativeness of

the action. The mutual information is defined using Kullback-Leibrer Divergence

as follows [58],

I
[
θ,y|x

]
≜ KL(p(θ,y|x)∥p(θ)p(y|x))

=

∫∫
p(θ,y|x) log p(θ,y|x)

p(θ)p(y|x)
dydθ, (5.7)

and it is also represented using the entropy H[·] as follows:

I
[
θ,y|x

]
= H[θ]− H[θ|y,x].

We can obtain the effective observation for the parameter estimation by control-

ling the system to the state sequence that maximizes this quantity.

The active tactile object recognition will be achieved as follows: First, the ob-

ject’s belief is initialized as a probability distribution p0(θ) = N (µ0,Σ0). Next,

the exploratory action defined by the action parameter x is determined by max-

imizing mutual information, and it is executed for the target object. Object’s

belief p(θ) is sequentially updated using the observation y and the action pa-

rameter x. Based on updated p(θ), the next exploratory action x is determined.

This procedure is repeated until nmax times updated or terminated if the update

of mean is sufficiently small, and then the recognition task is finally achieved by

the nearest-neighbor object on the extracted object manifold.

With Sensor-Action Models

If the compliance of the action is guaranteed by the hardware or the pre-designed

controller, our interest is only the informativeness.

We consider the probability distribution as object’s belief at the n-th update,

pn(θ) = N (µn,Σn), for n = 0, 1, . . . , nmax. We first set the initial belief p0(θ) =

N (µ0,Σ0).

The joint distribution between θ and y given x is also given by a Gaussian
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distribution as follows [59]:

p(θ,y|x) = N

([
θ

y

]∣∣∣∣∣
[

µ

m(x)

]
, Σ̃(x)

)
,

Σ̃(x) =

[
Σ C(x)

CT(x) Φ(x,x)

]

Enjoying this result, the double integral in Eq. (5.7) can be evaluated analytically,

and it is represented using the training data and the hyperparameter as follows:

I
[
θ,y|x

]
= −1

2
log

(
det Σ̃(x)

detΦ(x,x) detΣ

)
.

See Appendix D for the definition of the vector and matrices. Using pn−1(θ),

optimal exploratory action parameter at n-th update, xn, is determined by max-

imizing the mutual information between θ and y defined by µn−1, Σn−1, and x.

Enjoying the compatibility of GPs, the mutual information can be evaluated ana-

lytically, and the optimal action is obtained by solving the following optimization

problem,

xn = arg max
x

I
[
θ,y|x

]
When the observation yn is obtained, the updated belief pn+1(θ) is obtained

by,

µn+1 = µn +C(xn)Φ(xn,xn)
−1(yn −m(xn)),

Σn+1 = Σn −C(xn)Φ(xn,xn)
−1C(xn)

T

This is based on Bayes’ rule, and this is a Extended Kalman Filter like update.

Although the Monte Carlo sampling-based updating method is shown in [1], we

use the analytical Gaussian updating method for its simplicity.

With sensor-state models: information maximization control

To obtain the informative and compliant exploratory action, we formulate the

exploratory action design using the finite horizon optimal control framework [60].

Note that the informativeness needs to be maximized as described for exploratory

action design, while the optimal control problem is generally formulated as a
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minimization problem of the cost. The mutual information is converted into a

cost to be minimized as shown later.

Approximate optimal control

We consider the optimal control problem:

Find the control law ut = π(t,ψt) which minimizes the cost function for

the system (5.6), that is,

minimize
π

JT

s.t. ψt+1 = f(ψt,ut), umin ≤ u ≤ umax

where

JT = h(ψT ) +
T−1∑
t=0

ℓ(t,ψ,u)

is the accumulated cost function, h(ξT ) ≥ 0 is the terminate cost, and

ℓ(t,ψ,u) ≥ 0 represents the running cost. For the exploratory action de-

sign, we set the cost function associated by the informativeness and the

energy consumption as follows:

ℓ(t,ψ,u) = q(ψt) + r(ut),

where the first term q(ξt) is related to the informativeness, and the second

term r(ut) represents the energy consumption.

We utilize the iterative Linear Quadratic Regulator (iLQR, [61]) as a com-

putational efficient and scalable optimal control solver: the linearized sys-

tem around the initial state sequence ψ̄0:T corresponds to the initial input

sequence ū0:T−1 are constructed, and the local LQR problem is solved for

the linearized system. The iLQR also gives a local feedback gains Lt along

ū0:T−1, therefore, the control law can be given by π(t,ψt) = ūt+Lt(ψt−ψ̄t)
[61].

Mutual information-based state cost function

Since larger value of the mutual information indicates more informative,
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the term q(ξ) in the running cost is defined using a certain monotonically

decreasing function v(ψ) ≥ 0 as:

q(ψ) = v
(
I
[
θ,y|ψ

])
.

Belief update based on state sequence

The optimal action is planned based on the present belief pn(θ) = N (µn,Σn)

as described before, and then the state sequence ψn
0:T and observation yn0:T

are obtained by executing the action for the target object. Based on Bayes’

rule

pn+1(θ) =
p
(
yn0:T |ψn

0:T ,θ
)
pn(θ)

p
(
yn0:T |ψn

0:T

)
and Gaussian approximation of the marginal distribution p

(
yn0:T |ψn

0:T

)
, the

mean and the covariance are updated as follows:

µn+1 = µn + CnS−1
n (Yn −Mn),

Σn+1 = Σn − CnS−1
n CTn

where Cn ∈ Rdθ×(T+1)dy , Sn ∈ R(T+1)dy×(T+1)dy , Yn ∈ R(T+1)dy , and Mn ∈
R(T+1)dy are defined as follows:

Cn =
[
C(ξn0 ) · · · C(ψn

T )
]
,

Sn =

 Φ(ψn
0 ,ψ

n
0 ) · · · Φ(ψn

0 ,ψ
n
T )

...
. . .

...

Φ(ψn
T ,ψ

n
0 ) · · · Φ(ψn

T ,ψ
n
T )

 ,
Yn =

[
(yn0 )

T · · · (ynT )
T
]T
,

Mn =
[ (

m
(
ψn

0

))T
· · ·

(
m
(
ψn
T

))T ]T
where Cn and Sn are the cross-covariance matrix between yn0:T and θ, and

the covariance matrix of yn0:T , respectively. This is an extension of the

one-sample belief update law described in [1].

The object recognition is achieved by repeating the optimal action planning

and belief updating as described previously. The terminate condition is
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set by threshold e.g. ∥Σn∥2F < ϵ with the suitable threshold ϵ, or after

nmax times repeat. Finally, the recognition result is obtained as the object

corresponding to the nearest object parameter θ in the database.

5.4. Performance validation of object manifold

learning

5.4.1 Experiment 1: synthetic data

Setting

We considered the following nonlinear function,

y = h(θ, x) + ϵ, (5.8)

h(θ, x) =

 exp
(
−(x− θ)2

)
exp
(
−(x− θ2)2

)
exp
(
−(x− θ3)2

)
 ,

ϵ ∼ N (0, diag {0.1, 0.1, 0.1}),

where y ∈ R3 is the observation, θ ∈ R is the true-object parameter (which will

be the target of the estimation of object parameter θ̂), and x ∈ R is the action

parameter.

By setting θ = −0.5, 0, 0.2, 0.5, and x as following normal distributionN (0, 1),

we generated Nℓ = 100 training samples for each θ using Eq. (5.8). Therefore,

the total number of training samples N is 400.

The object parameter set Θ was extracted and the GP model was simul-

taneously learned under the following condition: the dimension of the object

parameter was set as dθ = 1 manually, and initial values of Θ were randomly

chosen, and initial hyperparameters γa for all a were manually selected and then

optimized numerically. In the recognition task, the belief update was executed

for nmax = 10. The optimal action parameter x on each update was determined

by numerically maximizing the mutual information.
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θw

θ

θt

Figure 5.5. Comparison along (a) true-object parameter θt, (b) extracted object

parameter θ, and (c) randomly-set object parameter θw.

Result of object manifold learning

The extracted object manifold from the training data is shown in Fig. 5.5. The

parameter θt stands for the true-object parameter, and the parameter θ indicates

the extracted object parameters by our method. Since the manifold learning has

an ambiguity of the extracted object parameters for its scaling and shifting, we

verify the accuracy by the correlation coefficient between θt and θ, and the value

was 0.9995. Thus, the effectiveness of our object parameter extraction method

was confirmed.

Result of Active Object Recognition Simulation

To verify the suitability of the extracted manifold and learned model for active

object recognition, we compared its performance of the proposed method for the

active object recognition task to that with a GP model using randomly-set object

parameter θw. The hyperparameters of this model is optimized in the same way

as the model with θ. The correlation coefficient between θt and θw was 0.3449.

The mean and covariance of initial belief were set as µ0 = θ̄, where θ̄ is the mean

of Θ, and Σ = 5, respectively.

The recognition results are shown in Fig. 5.6. In this recognition simulation,

the true object was O3 represented by the orange dashed line in the figure. As the
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(b) With randomly-set object parameter θw

Figure 5.6. Recognition result with the extracted and the randomly-set object

parameter θ and θw shown in Fig. 5.5. In this simulation, the true object is set to

O3 and its corresponding object parameter is drawn using orange dash-dot line.

result, in the proposed method the estimated object parameter θ̂ successfully and

quickly converged to the true value, however, in the comparison the estimated

parameter sw was slower and converged to a wrong value at the end. Let us

investigate why this difference occurred by comparing the learned two models.

The both models for the 1st dimension of the observation ŷ1 are shown in Fig. 5.7.

In this figure, the vertical axis (ŷ1) shows the mean of the prediction distribution

for the pair (s, x). As you can see, the model with randomly-set object parameters

does not have much smoothness in terms of the coordinate x. This would make

updating the parameters in active learning difficult since its update law described

in Section 3 involves local linearization.

Consequently, the suitability of our proposed object’s belief update method

and model learning method for active object recognition was verified with the

synthetic data.
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Figure 5.7. Comparison of the GP model of ŷ1 which is the 1st dimension of

observation.

5.4.2 Experiment 2: active tactile object recognition

Setting

We prepared L = 4 objects as recognition targets shown in Fig. 5.8(a). This

experiment was done with the robot hand (Shadow Dexterous Hand by Shadow

Robot Company), and the tactile sensor mounted on its fingertip (BioTac by

SynTouch) shown in Fig. 5.8(b). The whole flow of the experiment is shown

in Fig. 5.9. While this robot hand has 12 DoFs, in this experiment we focused

on 2 DoF, FFJ3 and FFJ4, as shown in Fig. 5.8(b). These joints can generate

actions that correspond to inflective and horizontal movements of the index finger,

respectively. This robot hand with the sensor is controlled using Robot Operating

System (ROS) [62]. Its control rate and sensor data collection frequency were

both 1000 [Hz]. We developed the automated object switching system (1DoF)

as shown in Fig. 5.10, that can mount 10 objects at maximum and its angular

resolution is 0.2 [deg]. Therefore, the system allowed to automatically collect

training data for different objects.

We describe below the details of the action parameter, tactile sensor data,

and the setting of model learning and recognition simulation.

Action parameters We defined the action parameter based on Dynamic Move-

ment Primitives (DMPs). DMPs represent the trajectory Y using nonlinear
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Figure 5.8. Settings for Experiment 2 of object manifold learning. (a) Recognition

target objects. O1: disposable paper cup. O2: bumpy glass cup. O3: disposable

clear cup. O4: stainless cup. (b) 12DoF robot hand and tactile sensor. We use

2 DoF, FFJ3 and FFJ4 corresponding to inflective and horizontal movements of

the index finger, respectively. On its fingertips, the BioTac sensor is mounted to

obtain the tactile information.
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function e.g. Y = F (w,P), where w is the parameter which defines the

shape of trajectory, and P is the hyperparameter set containing time con-

stants, goal state, basis functions, and so on. See [63] for the details.

In this experiment, we first obtained the basic parameter wteach from a

teaching trajectory, and generated the new trajectory using the new pa-

rameter w = wteach + x, where x is set as the action parameter. The

detail is as follows: by using a cyberglove as the master system, we con-

trolled the robot hand as the slave system so that the fingertip pushed

into the object, and then started to slide the object subsequently using

FFJ3 and FFJ4. The duration of each action is around 14.4 [sec]. Then,

the recorded robot trajectories were approximated by two DMPs with 25

basis functions, and each basic parameter w̃FFJ3
teach ∈ R25 and w̃FFJ4

teach ∈ R25

were learned using a least square method. To reduce the dimension of the

action parameter, we selected three dominant parameters out of 25 pa-

rameters, wFFJ3
teach ∈ R3 and wFFJ4

teach ∈ R3, respectively. Finally, we obtained

wteach = [(wFFJ3
teach)

T, (wFFJ4
teach)

T]T ∈ R6. Therefore, the dimension of the ac-

tion parameter turned into dx = 6.

Tactile information BioTac sensor gives pressure, vibration, and temperature

as tactile information. In this experiment, dy = 5 dimensional tactile feature

was used; vibrations (2 dimensional)∗, pressure, heat flux, and temperature,

all of which were obtained by using ROS. Since one action parameter cor-

responds to one trajectory (time series), we defined y as the mean of the

time series of tactile sensor data and used for the following experiments.

Model learning and recognition simulation We collected Nℓ = 100 train-

ing data from each target object for constructing a model using the actual

robot hand. Using N = 400 training data in total, the object parameter

set Θ were extracted and the GP model was simultaneously learned with

dθ = 2 which was manually selected. In this model learning, a differential

evolution scheme [64] was used since the marginal likelihood function has

∗Note that this tactile sensor has only 1 vibration sensor, however, the measurement fre-

quency of vibration data is 2000 [Hz], while the collection frequency is 1000 [Hz]. The 2nd

dimension of the vibration data contains 0.5 [ms] late behind the 1st data.
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Figure 5.9. Overview of recognition experiment with the real robot hand shown

in Fig. 5.8(b). The action parameter x is converted to a trajectory via DMPs.

The robot follows the desired joint angle in the converted trajectory using a PD

controller. Consequently, the tactile data y is obtained. Remaining parts are

same as described in Fig. 5.4.

local maxima, and this problem is more serious as compared to Experiment

1 that has less parameters to be optimized. Other settings in model learn-

ing were the same as in Experiment 1. To execute the recognition task, the

observation y was sampled from the constructed GP model, and the mean

and covariance of initial belief were set to µ0 = θ̄ where θ̄ is the average

of Θ, and Σ = diag {5, 5}, respectively. The belief update was executed

for nmax = 15. The optimal action parameter x on each update is set by

numerical maximization.

Result of object manifold learning

Fig. 5.11 shows the extracted object manifold.
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(a) Overview
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)$(**+#,-./$/" 0('$-%#1-2!''(3-)34$(54

(b) Cross section by its CAD model

Figure 5.10. Object switching system for obtaining training data. The turntable

(wooden round table) turns by the stepping motor and it is controlled using

the same computer for the robot hand. The torque from the stepping motor is

transferred to the turntable through a belt and pulley systems to amplify it.
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Figure 5.11. Extracted object parameters of 4 objects
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Figure 5.12. Transitions of mean and standard deviation of object’s belief at n-th

update, pn(θ) = N (µn,Σn) during learning. True object in this simulation is O1

(paper cup, represented using blue dash-dot line). The black line represents the

mean of µn, and the gray area around the black line corresponds to the standard

deviations (the square root of diagonal elements of Σn).

Let us discuss the result; O4 (stainless cup) is located far from other three

objects since its heat characteristic is particularly different. O1 (paper cup) and

O3 are located nearly based on their similar hardness. The appropriateness of

these placement will be thoroughly validated with more objects in the near future.

Result of active object recognition simulation

The recognition simulation result and the trajectories corresponding to the com-

puted action parameters at each update are shown in Figs. 5.12 and 5.13, re-

spectively. In Fig. 5.12 the estimation result of both active learning and pas-

sive learning are shown and first 5 trajectories are also shown in Fig. 5.13 be-

cause of limited space. By using active learning, the recognition is successfully

achieved since the mean of p(θ) is converging to the true object O1 as you can

see in Fig. 5.12(a). Comparing the result of active learning, passive learning

(Fig. 5.12(b)) does not converge to the true object parameter. We consider this

is because of high dimensionality of action space. Fig. 5.13 shows the generated

trajectories of exploratory actions on each update. Regarding the result of active
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learning, in the first update, the movement of FFJ4 is a bit stronger and of FFJ3

is a bit weaker as compared to the teaching trajectory. The difference between the

generated movement and the teaching trajectory, however, this movement dras-

tically reduces the variance of θ̂2 (related to the uncertainty of the estimation).

The following movements gradually reduce the variance of θ̂1. The movements

are larger in passive learning as opposed to active learning, however, these move-

ments did not make the variance small. As a result, active learning generates the

proper movements to obtain the most informative observation.

From these results, it was confirmed that the model constructed by our pro-

posed method works well for the active object recognition problem even with a

real robot data.

5.5. Performance validation of information max-

imization control

5.5.1 Experiment 1: with physical simulator

Simulation settings

We verify the effectiveness of our proposed scheme using the one link robot arm

model shown in Fig. 5.14. The joint range is limited to −π/2 ≤ q ≤ π/2,

and its equation of motion are discretized in a Euler integration manner with

the sampling time ∆t = 0.01[s]. We assume that the 2 DoF pressure sensor is

mounted on the tip of the arm in order to obtain the observation. The reaction

force model f1 with the spring K and the damper D for the object as shown in

Fig. 5.14 is supposed for the horizontal axis, and the dynamic friction model f2

with the coefficient of dynamic friction µ′ is also assumed for the vertical axis as

follows:

f1 = −(Kξx +Dξ̇x),

f2 = −sign(ξ̇y)µ′f1

where ξ = [ξx, ξy]
T is the tip position of the arm.

In this experiment, the object recognition problem is regarded as the damper
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Figure 5.13. Generated trajectories of exploratory actions on each update in

recognition. Blue and green lines represent the trajectory generated using

wteach+xt, and black lines represent the trajectory generated using wteach. Time

is on the x-axis and the joint angles on the y-axis. The movements in passive

learning are larger as opposed to active learning, however, these movements are

not informative.
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coefficient estimation problem: the object parameter θ = D is estimated using

the exploratory action.

Let us describe how to learn the GP observation model. The spring coefficient

and the dynamic friction coefficient are fixed as K = 1 and µ′ = 0.5, respectively,

and we prepare 3 target objects D ∈ {1, 3, 5}. The observation y =
[
f1, f2

]T
and the state ψ =

[
q, q̇
]T

are defined, and the training data D is constructed

as follows: the range of state is set to −π/2 ≤ q ≤ π/2 and −15 ≤ q̇ ≤ 15,

and a 15 × 15 grid is arranged at equal intervals on the range. We obtain the

observation y for each grid point. The total number of training data is N = 675.

The object’s belief update is executed nmax = 10 times.

Next, let us explain the settings for the information maximization control. The

initial state is fixed to ψ0 =
[
−π/2, 0

]T
, and the length of the exploratory action

is set to T = 100. The initial input sequence is set to ut = 3 for t = 0, 1, . . . , T−1.
The running cost based on the belief pn(θ) is defined as

ℓn(t,ψ, u) = exp
(
−ρ(n)I

[
θ,y|ψ

])
+ ru2

+ 1000 exp(−10(15− q̇))
+ 1000 exp(−10(15 + q̇))

where ρ(n) > 0 is a constant in order to change the maximization problem of

the mutual information to the minimization problem, and experimentally ρ(n) =

10 exp(−0.2n2) is used since the magnitude of mutual information will decrease

by belief’s updates. The 3rd and 4th terms in the running cost play a role of the

penalty term as the angle velocity does not exceed the range of training data.

The terminate cost is set to h(ψ) = ℓn(T,ψ, 0). The initial object’s belief is given

p0(θ) = N (3, 52), where its mean is equal to the mean of the object parameter in

the training data.

Result

Firstly, the mutual information distribution based on the initial object’s belief

p0(θ) computed using the GP observation model is shown in Fig. 5.15. The force

from the damper depends on the velocity in the direction of the horizontal axis

ξ̇x. The velocity ξ̇x is gotten zero when the angle q = 0 and larger force from
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Figure 5.14. Problem setting for Experiment 1 of Information Maximization

Control. A tactile sensor is mounted on the tip of 1 DoF robot arm. As the

object model, the spring-damper model is assumed for the horizontal direction,

and the dynamic friction model is also assumed for the vertical direction.
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Figure 5.15. Distribution of the mutual information based on the initial object’s

belief p0(θ) = N (3, 52).

the spring is observed. Accordingly, the information about the damper could be

buried in other information. Whereas, more information could be obtained when

the absolute value of the angle |q| is close to π/2. Consequently, we regard this
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distribution as appropriate.

Secondly, the recognition result is shown in Fig. 5.16. The input torque

sequences obtained at n = 0 by our method are shown in the upper row of

Figs. 5.16(a)-(b). For both cases with different values in r, the energy efficient

and compliant exploratory actions are generated by the proposed method and

the object recognition is successfully achieved. The balance in between the in-

formativeness and energy efficiency is adjusted by the r: the larger value in r

(Fig. 5.16(b)) generated energy-efficient actions, however, it is less informative

as evidenced with the slower convergence of the belief updates than the smaller

value (Fig. 5.16(a)). It was also confirmed that all the elements of local feedback

gains L were relatively small for all the cases. Therefore, the generated controllers

are compliant.

As the comparison, we implemented the PD controllers which generate the

control input for achieving the desired state ψd = [π/2, 15]T, and here this plan-

ning has done separately from control problem. The most informative action

is obtained using the high gain PD controller as shown in Fig. 5.16(c) but the

obtained action is energy inefficient since the large torque sequence is generated.

In contrast, a more energy efficient action is obtained using the lower gain PD

controller as shown in Fig. 5.16(d); nevertheless the convergence of the belief is

slower as compared to the other methods since the planed action is infeasible by

the controller.

These experimental results show that our proposed method can generate en-

ergy efficient and compliant exploratory behaviors.

5.5.2 Experiment 2: with actual robot

Experimental settings

The effectiveness of our proposed scheme is validated by the robot hand system

shown in Fig. 5.10 as used in previous section. We prepared L = 4 objects as

recognition targets shown in Fig. 5.17(a). This experiment was done with the

robot hand (Shadow Dexterous Hand by Shadow Robot Company), and the tac-

tile sensor mounted on its fingertip (BioTac by SynTouch) shown in Fig. 5.17(b).

While this robot hand has 12 DoF, in this experiment we focused on 2 DoF, FFJ3
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(b) Robot hand and tactile sensor

Figure 5.17. Experimental settings for Experiment 2 of Information Maximiza-

tion Control. (a) Target objects in this experiment. (b) 12 DoF robot hand

and tactile sensor. Each joints are driven by pneumatic artificial muscles placed

antagonistically. We use 2 DoF corresponding to inflective (pushing) and hori-

zontal (rubbing) movements of the index finger, respectively. The tactile sensor

is mounted on the fingertip.

and FFJ4, as shown in Fig. 5.17(b) because of the limitation of the scalability.

These joints can generate actions that correspond to inflective and horizontal

movements of the index finger, respectively.

The dynamics model (5.6) of this robot hand is difficult to derive analyti-

cally because of the complex properties of the pneumatic artificial muscles. In-

stead, we identified it from training data using a nonlinear discrete-time ARX

model whose nonlinearity is wavelet network and one-layer sigmoid network and

whose sampling period is set to 0.01s. This are implemented in the MAT-

LAB System Identification Toolbox. The state ψ here is dψ = 4 dimensional

ψ =
[
qFFJ3, q̇FFJ3, qFFJ4, q̇FFJ4

]T
, where qFFJ3 and qFFJ4 are the joint angle of

FFJ3 and FFJ4, respectively, and q̇ stands for each joint velocity. The joint an-

gle ranges of FFJ3 and FFJ4 are 0 ≤ qFFJ3 ≤ π/2 and −π/9 ≤ qFFJ4 ≤ π/9,

respectively. Here, each input uj, j ∈ {FFJ3,FFJ4} is defined as the difference
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A.obj1_tumbler = A.obj1_tumbler(500:end-500, :);
    A.obj2_sponge = A.obj2_sponge(500:end-500, :);

    A.obj3_papercup = A.obj3_papercup(500:end-500, :);
    A.obj4_bumpycup = A.obj4_bumpycup(500:end-500, :);

θ1

θ2

Figure 5.18. Object parameters obtained by object manifold learning. In this

experiment, the object parameters for all the objects are identified.

between the desired angle qdj and the actual angle qj, uj = qdj −qj. In the training

data collection, the desired angle was set to their maximum and minimum joint

angles alternatively. The independency between joints are assumed, therefore,

two dynamics models are separately learned for those joints. The total number

of training data is 26,765.

The BioTac sensor gives pressure, vibration, and temperature as tactile in-

formation. In this experiment, dy = 3 dimensional tactile feature was used; 1-

dimensional pressure data and 2-dimensional impedance data, all of which were

obtained by using ROS. We collected 100-sample training data for each objects

and the number of whole training data was 400. This data collection was done

as follows: We design a random trajectories for each joint, and tens of thousands

data is collected. And then, 100 data for each object is selected randomly. The

object parameters were given by the object manifold learning scheme as shown

in Fig. 5.18.

Here, the initial state was fixed to ψ0 =
[
π/12, 0, 0, 0

]T
, and the length of

the exploratory action was set to T = 100. The initial input sequence is set to
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Figure 5.19. Input of obtained action in Experiment 2 of Information Maximiza-

tion Control. Positive values indicate that the joint moves a direction which

increases the joint angle. The joint FFJ3 (blue) generates pushing movements,

and the joint FFJ4 (green) generates rubbing movements. This input sequence

lets the robot push and rub the object simultaneously.

ut = [0.2, 0.3]T for t = 0, 1, . . . , T − 1. The running cost was set to

ℓ(t,ψ,u) = 10 exp
(
−ρI

[
θ,y|ψ

])
+ uT

t Rut

+
4∑
j=1

(
exp(−10(ψj,max − ψj)) + exp(−10(−ψj,min − ψj))

)
where ρ = 30, R = 0.1I, ψj,max and ψj,min stand for the maximum and minimum

values of the j-th entry of the state in the training data for GP model construction,

respectively.

The object’s belief p0(θ) = N (µ0,Σ0) was given by µ0 = [0.8, 0.5]T and

Σ0 = 0.22I, which means that it is uncertain whether the target object is O2

(Dumpy Cup) or O3 (Sponge). The exploratory action is designed under the

conditions.
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Results

The computed input sequence u is shown in Fig. 5.19. Here, the joint moves to a

direction which increases its joint angle if the positive values are inputed, because

uj stands for uj = qdj − qj. As you can see in Fig. 5.19, the robot starts to push

and rub simultaneously. Intuitively speaking, to discriminate dumpy cup and

sponge, the finger should push the object to confirm its stiffness, and also rub the

object to check the dumpiness. The obtained action is shown in Fig. 5.20. The

upper row of Fig. 5.20 shows the action sequence at t = 0, 20, . . . , 100 and the

lower row shows the pose difference from the pose at t = 0. Inflective movements

were firstly observed (t = 0 to t = 40) due to hardware properties and the initial

state; the joint’s movement gets slower if its angle is close to its limit, and the

margin between the initial state and the angle limit of FFJ3 is wider than FFJ4.

And then horizontal movements are observed (t = 40 to t = 100). It was also

confirmed that the generated controllers are compliant since all the elements of

local feedback gains L were relatively small. This movement can be interpreted

as a suitable exploratory action to reduce the uncertainty in between the objects

O2 and O3. The further investigation is required, but these results suggest that

the effectiveness of our proposed method for exploratory action design in real

environment.

5.6. Summary

We proposed a partial manifold learning method. It is the manifold learning

method for two factor models whose one factor is unknown. The proposed method

can extract the unknown factor considering the effect of known factor and obser-

vation. The method is applied to the object recognition tasks. Then, we call the

proposed method object manifold learning. To solve the recognition task quickly,

we need to construct a model for the action optimality evaluation. The object

manifold learning obtains the suitable object parameters (corresponds to the un-

known factor), and GP sensor model is obtained as the result. Our contributions

in the point of view of object recognition are summarized as follows:

(1) a data-driven approach for obtaining the object parameters is proposed, i.e.
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t = 0 t = 20 t = 40 t = 60 t = 80 t = 100

Figure 5.20. Obtained action in Experiment 2 for Information Maximization

Control. Intuitively speaking, to discriminate dumpy cup and sponge, the finger

should push the object to confirm its stiffness, and also rub the object to check

the dumpiness. The upper row shows the action sequence at t = 0, 20, . . . , 100

and the lower row shows the pose difference from the pose at t = 0. The robot

starts to push and rub simultaneously. Inflective movements are firstly observed

(t = 0 to t = 40) due of hardware properties and the initial state, and then

horizontal movements are observed (t = 40 to t = 100).

object manifold learning with action features.

(2) With the object manifold learning, generalization of the GP based active

learning method proposed in [1] is achieved for object recognition problems.

(3) An optimal control formulation is proposed for the exploratory action design

considering both the informativeness and the compliance. The method is

called information maximization control.

The effectiveness of our proposed method was verified through experiments with

synthetic and real robot data.

Let us discuss several directions for future work. We validated our method

using 4 actual objects, We are now conducting the experiments with more objects

for more concrete validation of our method. In addition, continuous actions are

considered in our method in contrast with using discrete actions [35, 36, 39, 40]

(e.g. grasp, shake). Comparison between these methods and our method with an

action-sensor model would be interesting for future work.

An extension of scalability of the method is also our future work. The high

dimensional action space could make the model learning and the optimal action

search intractable since a huge number of training data are required. Applying
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a concept of muscle synergies [65] or other dimensionality reduction scheme [66]

for the action space can be considered. Other approach for a huge number of

training data is to reduce the number of training data. One of approaches is to

use a sparse Gaussian process regression model (e.g. [67, 68]) as used in Saal et

al. [69]. Another approach is to select the dominant training data for the model-

ing. We have proposed a subset selection method called Sparse Greedy Quadratic

Minimization (SGQM) for multi-dimensional problems [70], originally proposed

in [71] for one-dimensional problem. The fundamental concept is to sequentially

select a data point from the training set in a greedy manner to minimize the

approximation error of the maximum a posteriori probability (MAP) estimate of

output y. Algorithm 3 shows the selection algorithm (see Appendix E for the

definition of functions), and it has been successfully applied to the sequential

intention estimation for intelligent driving assistance. To apply this approach

would also be our future work. Moreover, we may use the information from two

or more sensors in the feature extraction as treated in e.g. [54, 39]. Such an

extension of our method to multimodal sensors (e.g. image and sound sensors)

will also be addressed in the near future.
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Algorithm 3: Sparse Greedy Quadratic Minimization for Multi-

dimensional GP Regression

input : Training data sets Da and hyperparameter sets γa for

a = {1, 2, . . . , dy}, Precision p or Maximum size of subset η, Size

of randomized subset κ

output: Set of indices S

Initialize index sets I, I∗ = {1, 2, . . . , N}; S,S∗ = ϕ

Set P := [],P∗ := [].

repeat

Choose κ elements randomly from index setsM⊆ I,M∗ ⊆ I∗.
Find arg min

i∈M

∑
aQa([P, ei]χa([P, ei])).

Find arg min
i∗∈M∗

∑
aQ

∗
a([P

∗, ei∗ ]χa([P
∗, ei∗ ])).

Move i from I to S, i∗ from I∗ to S∗.

Set P := [P, ei], P
∗ := [P∗, ei∗ ].

until C1(P,P
∗) ≤ p

2
C2(P,P

∗) or size(S) = η
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Chapter 6

Conclusion

6.1. Summary

In this dissertation, we have proposed task-relevant manifold learning meth-

ods. The manifold learning methods are successfully applied in many applica-

tions [13, 14]. However, the obtained low-dimensional representation is sometimes

not suitable for modeling. Based on the existing manifold learning methods,

we have first proposed the input-output manifold learning with transfer func-

tion model (IOMLTF), which is a system identification method using the high-

dimensional data (Chapter 3). The IOMLTF considers the fitting error to the

dynamics represented using the transfer function models for the criterion of the

manifold learning. The input-output manifold learning is achieved by solving the

quadratic programming problem with quadratic constraints. It can be regarded

as a multieigenvalue problem when the system is a single-input single-output sys-

tem. In contrast with (original) Isomap, this solver seems to be natural since we

solve two manifold learning problems simultaneously. Next, to capture the tran-

sient response, we have proposed the input-output manifold learning with state

space model (IOMLSS), which is an extension of IOMLTF (Chapter 4). The ex-

tension is done by replacing the fitting error to the state space model version, and

we show that the fitting error can be reformulated to the quadratic form. Then,

an algorithm similar to IOMLTF can be applied to obtain the low-dimensional

data and dynamics. Meanwhile, a partial manifold learning method is proposed.

We consider two-factor models whose one factor is known and the other is un-
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known. Considering the effect of the factors to the observation, the unknown

factor can be obtained suitably by the method. The method is applied to the

object recognition tasks in order to obtain a suitable object parameter. We call

the proposed method object manifold learning in this particular application. It

allows us to simultaneously obtain a probabilistic sensor model that determines

the informativeness of the exploratory action. In addition, to plan and execute

the informative and compliant exploratory action, information maximization con-

trol that solves the problem in the optimal control framework is proposed. The

proposed methods are validated through numerical simulations and experiments

with actual robot hand. The results in the chapters show the effectiveness of

proposed task-relevant manifold learning methods.

6.2. Future work

The effectiveness of our proposition is shown through the linear system modeling

and robot perception. However, the experiments have limitations. The actual

task with intelligent systems will be addressed. The sensor modalities addressed

in this dissertation are visual and tactile. The intelligent systems consist of other

modalities such as auditory or proximity. To treat or combine these sensor data,

the previous studies with manifold learning, such as the sensor data fusion [72]

or video sequence prediction [17], would be useful.

6.3. Future prospects

In the upcoming age of big data, the sensor data obtained from the intelligent

systems would be huge, and more complicated phenomena can be captured by

such a system. In order to tackle the modeling with such data, introducing deep

generative models [73, 74] will be interesting. Moreover, we aim to determine a

metric that is suitable for modeling. In this dissertation, we consider to add some

penalty terms or constraints to the evaluation function for realization of the meth-

ods. Alternative to this realization, a new metric could be used instead of graph

distances (Chapter 3 and 4) or Mahalanobis’ generalized distance (Chapter 5).

The previous studies [75, 76] will be useful for the realization.
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Appendix

A. Approximation of the geodesic distance using

graph

In this section, we describe how graph distance is computed as approximation of

the geodesic distance from the data. Let us assume that the dataset X = {xi}Ni=1

is available. The basic idea is that the Geodesic distance between the sample is

approximately equal to the Euclid distance in the neighborhood of the sample.

The Euclid distance among the samples can be calculated in a simple way,

and we can consider the k-nearest neighbor (k-NN) graph of samples as shown in

Fig. 6.1(a) based on the distance. To explain more concretely, let us consider the

three nearest neighbors (k = 3) of the black node shown in Fig. 6.1(b). For the

black node, five nodes are connected in total. Then, we can obtain the Euclid

distance for the five pair of the black node. In the three nearest neighbors method,

we cut the edges connected to the node except of the three nearest neighbors: the

edges shown using the dotted line are cut. Repeating this for all nodes, we can

construct the neighborhood graph like Fig. 6.1(a). By setting the length of the

edge to Euclid distance between the nodes, the graph distance can be computed

by solving the shortest path problem.

B. Multivariate eigenvalue problem

In this section, the setting of the multivariate eigenvalue problem (MEP) is de-

scribed based on [18]. Additionally, the Horst-Jacobi method which is one of

solvers for the MEP is shown.
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xj

(a) Example of the neighborhood graph (b) Example of k-NN (k = 3)

Figure A.1. Example of the k-NN graph.

Let us assume that a n × n positive definite matrix A ∈ Rn×n and a n-

dimensional column vector x ∈ Rn are given. Further, a positive integer set,

Pm = {n1, n2, . . . , nm},
m∑
i=1

ni = n

is assumed to be given. Then, we decompose A and x as follows:

A =


A11 A12 · · · A1m

A21 A22 · · · A2m

...
...

. . .
...

Am1 Am2 · · · Amm


x =

[
xT
1 · · · xT

m

]T
where each matrix and vector is defined as Aij ∈ Rni×nj，xi ∈ Rni respectively.

Define

Λ := block diag{λ1In1 , · · · , λmInm},

using λ1, . . . , λm ∈ R, then, the multivariate eigenvalue problem is to find a set

(Λ,x) for Pm. 
Ax = Λx

∥xi∥2 = 1, xi ∈ Rni

(i = 1, 2, · · · ,m)

(B.1)
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Algorithm 4: The Horst-Jacobi method

input : matrix A ∈ Rn, initial column vector x(0) ∈ Rn, a set Pm
output: eigenvectors {xi}mi=1 and eigenvalues {λi}mi=1 corresponding to the

(local) maximum value of
∑m

i=1 λi

for k = 0, 1, . . . , do

for i = 1, 2, . . . ,m do

y
(k)
i :=

∑m
j=1 Aijx

(k)
j

λ
(k)
i := ∥y(k)

i ∥2
x
(k+1)
i :=

y
(k)
i

λ
(k)
i

end

end

It is known that there are
∏m

i=1(2ni) solutions.

Let us consider the problem to find the set (Λ,x) so that
∑m

i=1 λi is maximized.

Then, the problem of Eq. (B.1) can be represented as the following optimization

problem. 
Maximize r(x) := xTAx

subject to ∥xi∥2 = 1, xi ∈ Rni

(i = 1, 2, · · · ,m)

As a local solver for this optimization problem, the Horst-Jacobi method shown

in Algorithm 4 is known.

C. Prediction error criterion in 4SID

Ignoring the noise term, the output predictions for the system Σ with given input

sequence {uh, . . . ,uT−1} is given as

Ŷf = ΓhXf +Hd
hUf ,
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where Xf = Xh|2h−1 is a Hankel matrix associated with the state sequences, and

Γh =

 C
...

CAh−1


is called the extended observation matrix. The matrix,

Hd
h =


H0

H1 H0

...
...

. . .

Hh−1 Hh−2 · · · H0

 ,
is associated with the matrices

Hi =

D (i = 0),

CAi−1B (i > 0),

called Markov parameters. The term ΓhXf is used even though both matrices

are unknown. However, it can be estimated by the following oblique projection,

Yf

/
Uf

Wp = ΓhX̂f . (C.1)

A property of the oblique projection indicates that a matrix Lw which satisfies

the following relationship exists,

Yf

/
Uf

Wp = LwWp, (C.2)

and finally Ŷf is obtained as follows,

Ŷf = LwWp +Hd
hUf . (C.3)

From the relationship, it is obvious that updating the Lw corresponds to the

update of the extended observability matrix and state vector. See [28] for the

details.
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D. Definition of the vectors and matrices for eval-

uation of mutual information

Φab which is the (a, b)-th element of Φ(x,x′) ∈ Rdy×dy , and C(x) ∈ Rdθ×dy are

defined as follows:

Φab = β
T
aΛab(x,x

′)βb −ma(x)mb(x
′)

+ δxx′δab

(
α2
a − Tr

(
(Ka + σ2

aI)
−1Λaa(x,x

′)
))
,

C = Ψ(x)− µm(x)T.

The a-th entry of m(x) ∈ Rdy is ma = βT
a λa(x), and βa is defined as βa =

(Ka + σ2
aI)

−1ya ∈ RN .

The i-th entry of the vector ηa for i = 1, 2, . . . , N is

ηai = α2
a det

(
Σ
(
Hθ
a

)−1
+ I
)− 1

2

× exp

(
−1

2

(
µ− θ(i)

)T(
Σ+Hθ

a

)−1(
µ− θ(i)

))
× exp

(
−1

2

(
x− x(i)

)T(
Hx
a

)−1(
x− x(i)

))
.

The (i, j)-th entry of the matrix Λab is represented as follows:

Λab,ij = α2
aα

2
b det

(((
Hθ
a

)−1
+
(
Hθ
b

)−1
)
Σ+ I

)− 1
2

× exp

(
−1

2

(
θ(i) − θ(j)

)T(
Hθ
ab

)−1(
θ(i) − θ(j)

))
× exp

(
−1

2

(
θijab − µ

)T
R−1
ab

(
θijab − µ

))
× exp

(
−1

2

(
x− x(i)

)T(
Hx
a

)−1(
x− x(i)

))
× exp

(
−1

2

(
x′ − x(j)

)T(
Hx
b

)−1(
x′ − x(j)

))
,

where Hθ
ab = Hθ

a +Hθ
b and

θijab = Hθ
b

(
Hθ
ab

)−1
θ(i) +Hθ

a

(
Hθ
ab

)−1
θ(j),

Rab =
((

Hθ
a

)−1
+
(
Hθ
b

)−1
)−1

+Σ,
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are defined. The vector ψa, which is the a-th column of Ψ for a = 1, 2, . . . , dy is

defined as follows:

ψa =
N∑
i=1

βaiηai(x)
((

Hθ
a

)−1
+Σ−1

)−1 ((
Hθ
a

)−1
θ(i) +Σ−1µ

)
,

where βai is the i-th element of βa.

E. Definition of the functions for subset selection

of the training data

Functions Qa, Q
∗
a,χa, C1, C2 in Algorithm 3 are defined as follows:

Qa(α) = −yT
aKaα+

1

2
αT(σ2

aKa +KT
aKa)α,

Q∗
a(α) = −yT

aα+
1

2
αT(σ2

aI+Ka)α,

χa(P) =
(
PT(σ2

aKa +KT
aKa)P

)−1
PTKT

aya,

C1(P,P
∗) =

dy∑
a=1

(
Qa(Pχa(P)) + σ2

aQ
∗
a(P

∗χa(P
∗))

+ 1
2
∥ya∥2

)
,

C2(P,P
∗) =

dy∑
a=1

(
|Qa(Pχa(P))|

+
∣∣∣σ2
aQ

∗
a(P

∗χa(P
∗)) + 1

2
∥ya∥2

∣∣∣),
and ei refers to the i-th column vector of N ×N identity matrix.
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