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Acoustic modeling and speech parameter
generation for high-quality statistical
parametric speech synthesis*

Shinnosuke Takamichi

Abstract

Speech is one of the natural ways for people to communicate, and speech
synthesis is a technique to synthesize a speech waveform through a computer.
The field of speech synthesis studies includes Text-To-Speech (TTS) synthesis
in which speech is generated from arbitrary text and Voice Conversion (VC)
that converts the input speech into the another speech having desired non-/para-
linguistic information. Speech synthesis is used in many applications that are
very helpful for human-to-human and human-to-computer communication, such
as a speech-to-speech translation and spoken dialogue systems.

Thanks to developments in machine learning techniques and computational
environments, statistical approaches have come into the main stream of recent
speech synthesis research. Although many state-of-the-art methods have been
proposed, Hidden Markov Model (HMM)-based TTS and Gaussian Mixture Model
(GMM)-based VC have gained popularity thanks to their solid mathematical
foundation. However, they have a drawback; the quality of the synthetic speech
they produce is not high. That is, their synthetic speech often sounds muffied
and can be easily distinguished from natural speech. There are three main rea-
sons causing this problem; parameterization errors in the analysis/synthesis stage,
inaccurate modeling in the training stage, and over-smoothing in the synthesis
stage. This thesis mainly addresses the latter two reasons, which are more critical
than the parameterization errors.

In conventional HMM-based TTS and GMM-based VC, some speech segments
are averaged in order to construct the acoustic models, i.e., HMMs and GMMs.
Consequently, this modeling loses information on the individual speech segments,
and speech parameters generated from the models are also averaged. To address
these inaccuracies, this thesis introduces ideas of unit selection synthesis, which
directly uses speech waveform segments. The individual speech segments are first
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modeled with different acoustic models that are robust to the unseen input fea-
tures (called rich context models), and then they are used to construct a mixture
model (called Rich context GMM (R-GMM)). Preserving the information of the
individual speech segments in this way yields higher-quality speech than that of
basic HMM-based T'TS and GMM-based VC. Moreover, the proposed method has
the capability of directly utilizing the mathematical foundations of HMM-based
TTS and GMM-based VC.

The over-smoothing effect is a main cause of quality degradation in the synthe-
sis stage. This phenomenon is one in which the generated speech parameters are
overly smoothed compared with the natural speech parameters. One promising
approach to alleviating the over-smoothing effect is to extract a specific feature to
quantify the effect and to generate speech parameters so that their corresponding
features become more similar to those of natural speech parameters. Although
the Global Variance (GV) is a well-known such feature, the gap in quality between
natural and the synthetic speech it produces is still large. This thesis introduces
a new feature more sensitively correlated to the over-smoothing effect than the
GV, the Modulation Spectrum (MS). The MS of a speech parameter sequence is
defined as the power spectrum of the sequence, and can be regarded as a math-
ematical extension of the GV. This thesis also proposes a MS-based post-filter
that modifies the MS of the generated speech parameters. Because the process is
performed separately from the basic HMM-based TTS and GMM-based VC, the
post-filter has the capability of not only improving the quality of synthetic speech
but also having the portability to apply to various speech synthesis systems.

We further propose joint optimization algorithms for the basic acoustic mod-
els, HMMs and GMMs, and a statistical model of the MS. The proposed MS-based
post-filter improves the MS criterion, but the basic training and generation cri-
teria using HMMs and GMMs are degraded because the post-filtering process
completely ignores them. To address this issue, the algorithms jointly optimize
these criteria. This thesis first integrates the MS criterion into the speech pa-
rameter generation to directly alleviate the over-smoothing effect in the synthesis
stage. The objective function is iteratively updated to generate speech parame-
ters. Furthermore, this thesis integrates the MS criterion into the training stage to
perform high-quality and computationally-efficient speech synthesis. The training
algorithm trains trajectory HMMs and GMMs under the MS constraint. It makes
it possible to directly utilize the computationally-efficient basic parameter gener-
ation algorithm, while compensating the MS of the generated speech parameters.
We conducted several experimental evaluations on the proposed methods. The
results demonstrate that (1) our generation algorithm achieved higher quality
than that of the conventional generation algorithm considering the GV, and (2)
our training algorithm achieved the best quality while preserving computational
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efficiency, among the several training algorithms tested.
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I, ERENZEFINT A—2 OB Frabid, GEEICBT % 58S
{EOFEHERNTHS. TiEtEszea{bd 25 a2 ER ST A—2h 64 L,
TN HREFHINT A—Z DR EISE D FRICHHET 5T & T, T OEFERF
I EDOREIZEM S NS, ek, RYINZE) (Global Variance: GV) &FHIN

* 2= AR AR R 2B R TSR A R G, NAIST-1S-DD1361007, 2016 4 3 H
14 H.

v



BFREDLSFIHENTE D, K2, @R EEEOFZEITRE V. Kig
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Introduction




1.1 General background

1.1 General background

Objects in children’s dreams are bestowed with magical powers and no boundaries
(or limitations) exist between them, unlike objects in the real world. I believe
that research is an action toward blurring such boundaries between objects and
realizing the dreams. The target of this thesis is speech, and the boundaries
we want to remove are ones between humans and computers and ones between
human beings.

Speech is one of a natural medium for people to communicate. It is used
for not only delivering verbal information but also conveying non-verbal informa-
tion, such as emotions, characteristics, speaker individuality, and so on. Speech
plays the most important role in human communication. Moreover, thanks to
the development of Text-To-Speech (TTS) synthesis [4], which is a technique to
synthesize speech from arbitrary text, computers can now speak, and many dif-
ferent speech-based applications have been deployed as aids in human-to-human
and human-to-computer communication, including speech-to-speech translation
and spoken dialogue systems. In addition, Voice Conversion (VC) [5], which is a
technique to convert para-/non-linguistic information while keeping the linguistic
information unchanged, has an important role in such applications. VC makes
it possible to augment speech production beyond the physical constraints and
limitations of an individual human being, such as his/her skills of expression and
language knowledge.

Developments in machine learning and computational environments have en-
abled speech synthesis systems including TTS and VC to be automatically con-
structed using pre-recorded data. Generally, this type of speech synthesis is called
corpus-based speech synthesis [4]. The corpus-based approach has yielded dra-
matic improvements in synthetic speech quality because researchers have been
able to share the common knowledge, findings, and corpora. There are two
main synthesis techniques; unit selection synthesis (sample-based speech synthe-
sis) and statistical parametric speech synthesis. Unit selection synthesis directly
uses acoustic inventories selected from a speech corpus for synthesizing speech
waveforms. One of its main advantages is that high-quality speech keeping the
original voice characteristics can be synthesized by concatenating natural speech
segments. Here, the characteristics of the generated speech are fully dependent
on original voices.

On the other hand, statistical parametric speech synthesis [6], which utilizes
statistical models, was established in the 1990s [7, 5]. The input parameters (tex-
tual parameters for TTS and speech parameters for VC) are first extracted from
the input information in an analysis stage, and then the relationship between
the input parameters and output speech parameters are represented using the
statistical models in a training stage. Speech parameters corresponding to the
input parameters are generated from the trained models, and finally, the speech
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Figure 1. Problem definition and outline of the of this thesis. This thesis mainly
deals with the problems of inaccurate modeling and the over-smoothing effect.
The parameterization error is addressed in the appendices.

waveform is synthesized in a synthesis stage. Many state-of-the-art methods have
been proposed, but HMM-based TTS [8] and GMM-based VC [9] are widely used
in speech communication systems, thanks to their stability, strong mathematical
foundation, and flexibility. They have advantages in controlling the characteris-
tics of synthetic speech and having much more flexibility in how they can be used
in comparison with unit selection synthesis.

However, the drawback of HMM-based TTS and GMM-based VC is the poor
quality of the synthetic speech they produce. Their speech often sounds muffled,
it can be easily distinguished from natural speech. There are three main reasons
for this problem [6] as shown in Fig. 1: parameterization error in the analy-
sis/synthesis stage [10, 11, 12], inaccurate modeling in the training stage [13, 14],
and an over-smoothing effect in the synthesis stage [15, 16].

1.2 Thesis scope

This thesis addresses quality improvements of synthetic speech in HMM-based
TTS and GMM-based VC, mainly focusing on the latter two factors of the quality
degradation, which are often more critical than the parameterization error.
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1.2.1 Better acoustic modeling that preserves information of individ-
ual speech parameters

Statistical models are used in statistical parametric speech synthesis. Inaccu-
rate modeling here indicates that the modeling lacks several important aspects.
For example, a model may (1) lose the relationship between input and output
parameters: i.e., the acoustic model does not transmit the input parameters im-
portant for speech production. It may also put (2) unrealistic constraints on the
output speech: it produces speech that is improbable. Finally, it loses (3) the
information of the individual speech parameters. Unlike unit selection synthesis
that utilizes individual speech parameters, statistical modeling averages several
speech parameters are averaged, and loses information on the individual speech
parameters.

In an attempt to exploit the excellent quality of unit selection synthesis, some
hybrid methods have been proposed that combine HMM-based speech synthesis
and unit selection synthesis. Maximum Likelihood (ML)-based unit selection syn-
thesis [17] is a hybrid method to improve the quality of synthetic speech. Suitable
waveform segments are searched for and taken from a speech corpus to maximize
HMM likelihood. The use of waveform segments dramatically improves speech
quality compared with that in HMM-based TTS. A hybrid approaches having
more flexibility than unit selection is to develop rich context models that repre-
sent the individual waveform segments with probability distributions of individual
speech component parameters [18]. In the synthesis stage, the probability distri-
butions are jointly selected for all speech parameter components. Although these
methods yield significant improvements in quality, they lose the flexibility of the
original HMM-based T'T'S because their formulation is completely different.

This thesis proposes ML-based speech parameter generation methods using
rich context models as hybrid methods that preserve the flexibility of the HMM-
based TTS. The trained rich context models are used for constructing a Rich
context GMM (R-GMM). Furthermore, we extend this idea to GMM-based VC.
In the synthesis stage, given the input parameters, the speech parameter sequence
is iteratively generated by using R-GMMs. Because the proposed methods share
the formulation of the original HMM-based TTS and GMM-based VC, they have
more flexibility than the other hybrid methods. For initializing the iterative
generation, we generate a less-smoothed but highly discontinuous initial speech
parameter sequence from over-trained acoustic models and then refine out the
discontinuities through iterative generation.
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1.2.2 Better speech parameter generation using a metric quantifying
the over-smoothing effect

Speech parameters generated from trained statistical models tends to be over-
smoothed compared with natural speech parameters. One promising approach to
alleviating the over-smoothing effect is to extract a specific feature to quantify
the effect and to generate speech parameters so that their corresponding features
become more similar to those of natural speech parameters. One widely known
example of such a feature is the Global Variance (GV) [19, 9], which is defined as
a second-order moment of the speech parameter sequence. Considering the GV
during the speech parameter generation has been shown to alleviate the over-
smoothing effect and significantly improve the quality of the synthetic speech.
However, despite that the GV-based metric is widely used [20, 21, 22|, its use in
the parameter generation tends to generate artificial sounds [21] and the quality
gap between natural and synthetic speech is still large.

This thesis introduces a new feature more sensitively correlated to the over-
smoothing effect than the GV, the Modulation Spectrum (MS). The MS of a
speech parameter sequence is defined as the power spectrum of the sequence.
The linear-scaled MS is a second order moment of the parameter sequence, the
same as the GV, and can be regarded as a mathematical extension of it. This
thesis additionally proposes three methods using the MS.

MS-based post-filter A post-filter is the simplest way to compensate for over-
smoothing effect. It is performed after the standard speech parameter generation,
and it filters the generated speech parameters. The approach proposed in this
thesis modifies the generated speech parameter sequence so that its MS becomes
more similar to that of natural speech. The post-filter modifies the MS utterance
by utterance and can be automatically constructed using natural speech and syn-
thetic speech as training data. This utterance-level post-filter is further extended
to a segment-level post-filter to modify the MS segment by segment in order to
generate parameters without much delay. Because the post-filtering process is
independent from the original speech synthesis process, it can be applied to a
variety of speech synthesis systems.

Speech synthesis integrating the MS The post-filtering approach is effec-
tive but still limited because it possibly causes adverse effects due to it completely
ignores the basic criteria, i.e., the HMMs or GMMs. Moreover, integrating the
MS into speech synthesis procedures is straightforward to apply various useful
techniques such as model training and adaptation. Here, we propose to integrate
the MS into the HMM-based TTS and GMM-based VC.

First, we propose a speech parameter generation algorithm considering the
MS. The algorithm generates speech parameter trajectories by maximizing a novel
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objective function consisting of the basic criterion and the MS likelihoods. The
MS likelihood works as a penalty term to make the MS of the generated pa-
rameters close to that of natural ones. Although the algorithm recovers the MS
of the generated speech parameters, it loses the basic computationally-efficient
generation ability.

Consequently, we proposes a training algorithm as yet another MS approach
to improve the speech quality while preserving the computationally-efficient gen-
eration capability. Here, we implement trajectory HMM training [23] for GMM-
based VC, which is a training algorithm consistent with basic computationally-
efficient generation. Then, we integrate the MS into the trajectory training for
both HMM-based TTS and GMM-based VC. The HMMs or GMMs are trained
to recover the MS of the speech parameters generated from them. Because this
training algorithm is consistent to the basic generation algorithm and takes ac-
count of the MS in training, the basic generation method can be used without MS
compensation in synthesis. In addition, the training algorithm makes it possible
to perform input-parameter-dependent modeling of the MS.

1.3 Rest of this thesis

The rest of this thesis is organized as follows (see also Fig. 1.).

Chapter 2: We explain the basic frameworks of speech synthesis. After re-
viewing unit selection synthesis and statistical parametric speech synthesis, we
describe acoustic modeling and speech parameter generation algorithm of HMM-
based TTS and GMM-based VC. We also describe the conventional approaches
of better for better acoustic modeling and speech parameter generation, which
are hybrid approaches combining unit selection synthesis including conventional
rich context modeling for HMM-based T'T'S, trajectory HMM training, and global
variance.

Chapter 3: We propose statistical sample-based speech synthesis using rich
context models. After applying rich context modeling to GMM-based VC, we re-
formulate the models as R-GMMs. We describe the iterative generation algorithm
and its better initialization to generate speech parameters from the R-GMMs.
Moreover, we discuss the proposed methods with the conventional hybrid ap-
proaches in term of their flexibility, then, we demonstrate quality improvements

had by them in comparison with basic HMM-based TTS and GMM-based VC.

Chapter 4: We introduce the MS to quantify the over-smoothing effect ob-
served in the generated speech parameters. First, an utterance-level MS-based
post-filter is first proposed for the spectral, Fjy, and HMM-state duration; then, its
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process is localized at the segment level. We discuss the mathematical relation-
ship between the GV and MS and describe an experimental evaluation confirming
the quality gain had by using MS-based post-filters.

Chapter 5: We integrate the MS into the HMM-based TTS and GMM-based
VC. First, we propose the speech parameter generation algorithm considering
the MS, then, we propose an MS-constrained trajectory model training in HMM-
based TTS and GMM-based VC. The these methods are compared with the
conventional generation and training algorithms as to their effectiveness.

Chapter 6: We summarize this thesis and discuss the future directions of re-
search.
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2.1 Introduction
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Figure 2. Outline of speech production process by human being [1]. The voiced
excitation signal is given as a simple pulse signal in this figure, but in this thesis,
it is given as the signal mixing the pulse (periodic) and noise (aperiodic) signals.

2.1 Introduction

A message a human being wants to produce is first translated into movements
of articulators and organs. As shown in Fig. 2, air-flowing from the lungs gen-
erates vocal excitation signals containing periodic (by vocal cord vibration) and
aperiodic (by turbulent noise) components. By filtering the source signals with
time-varying vocal tract transfer functions controlled by the articulators, their
frequency characteristics are modulated. Finally, the filtered source signals are
emitted. The TTS [4] procedure mimics these actions with a computer. The
produced speech waveform contains time-varying components that control the
linguistic/para-linguistic features and time-invariant non-linguistic components
that incorporate physical characteristics such as the vocal tract length and shape
of the vocal cords. The VC [24] procedure dissociates these components and
converts the physical constraint components into others.

The TTS and VC processes are different in terms of their input type (see
Fig. 3.), a discrete-to-continuous value conversion for TTS and continuous-to-
continuous value conversion for VC, but some of their internal processes are the
same. Researchers in the past tried to synthesize speech based on their individual
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Figure 3. Speech synthesis techniques used in this thesis; Text-To-Speech (TTS)
and Voice Conversion (VC). TTS and VC do not use the same input types, but
they share in common certain internal processes.

rules [25], while modern speech synthesis systems usually take a corpus-based (or
data-driven) approach [4]. The training corpus consists a collection of pairs of
input raw texts and output speech waveforms for T'TS, and input/output speech
waveforms for VC!. The corpora approach has yielded dramatic improvements of
speech synthesis because it enables researchers to share the common knowledge,
findings, and corpora.

Currently, there are two main approaches to speech synthesis; unit selection
synthesis (also called sample-based speech synthesis) and statistical parametric
speech synthesis. Unit selection synthesis [28, 29, 4, 30] synthesizes speech cor-
responding to input text by concatenating small segments of speech waveform
stored the training corpora. One of the main advantages of concatenating nat-
ural speech segments is that it creates high-quality speech keeping the original
voice characteristics [31]. However, the characteristics of the generated speech
are fully dependent on the original voices.

On the other hand, statistical parametric speech synthesis [6] utilizes statis-
tical models trained to fit the training corpora. It was established in the 1990s
[7, 5], and has been used for about a decade. Nowadays, many technologies have
been studied within this basic framework, including speech synthesis using Hidden
Markov Models (HMMs) [8], Gaussian Mixture Models (GMMs) [9], Classifica-
tion And Regression Trees (CART) [32], and kernel regression [33, 34]. Whereas
unit selection synthesis directly uses waveform segments or natural speech pa-
rameter segments to synthesize a speech waveform, statistical parametric speech
synthesis collects statistics from the speech parameter segments and utilizes them
to generate the speech parameters used in waveform synthesis.

Many methods have been proposed, but HMM-based TTS [8] and GMM-
based VC [9] have the gained popularity thanks to its stability, mathematical
foundation and flexibility. These statistical modelings and synthesis frameworks
make it possible to build small footprint synthesizers [35], adapt existing voices
to other target voices by using only a small amount of speech data [36, 37], and
flexibly control the voice characteristics of synthetic speech [38, 39, 40]. Moreover,
the knowledge and techniques are easily applied from other research areas, such

L Corresponding raw texts are also required for text-dependent VC which converts voice
through speech-to-text encoding and text-to-speech decoding processes, such as [26, 27], but
we won’t discuss such approaches in this thesis.
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Figure 4. The rest of Chapter 2.

as HMM-based speech recognition [41] and GMM-based speaker verification [42].
In addition, HMM-based T'TS and GMM-based VC can be easily combined with
Deep Neural Net (DNN)-based speech synthesis [14, 43] which is a powerful but as
yet unstable approach. On the other hand, a serious drawback of these methods
compared with unit selection synthesis is the poor quality of the synthetic speech
they produce.

In this chapter, we first describe the basic speech synthesis frameworks and
review conventional approaches to high-quality speech synthesis. The rest of this
chapter is organized as shown in Fig. 4. Section 2.2 and Section 2.3 reviewed
the two approaches to speech synthesis, i.e., unit selection synthesis and statis-
tical parametric speech synthesis. Acoustic modelings for HMM-based TTS and
GMM-based VC are described in Section 2.4 and Section 2.5. The generation
of speech parameters from HMMs and GMMs is described in Section 2.6. Sec-
tion 2.7 and Section 2.9 explain the conventional approaches for better acous-
tic modeling and speech parameter generation. The hybrid approach in Section
2.7 introduces ideas of unit selection synthesis into the acoustic modeling using
HMMSs. Trajectory modeling in Section 2.8 is a way to remove inconsistencies
between training and synthesis in HMM-based TTS. The Global Variance (GV)
in Section 2.9 quantitatively captures the over-smoothing effect in the synthesis
stage. Section 2.10 is a summary of this chapter.
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2.2 Unit selection synthesis

2.2 Unit selection synthesis

Unit selection synthesis directly uses acoustic inventories selected from a speech
corpus for synthesizing a speech waveform. After predicting the target infor-
mation, the speech parameter sequence or waveform segments are selected so
as to minimize a defined cost. The speech waveform is synthesized by concate-
nating these selected segments. Although unit selection synthesis can produce
high-quality speech by directly using speech segments, the voice characteristics
are fully dependent on the original speech included in the acoustic inventories.
Note that text/speech analysis stages are done not only for statistical parametric
speech synthesis but also unit selection synthesis (we explain them in Section
2.3).

2.2.1 Target generation

The target information is predicted from the input. In TTS, prosodic features
such as the Fy contour, power contour, and phoneme duration are predicted from
the contextual information corresponding to the input text?. Fujisaki’s model
[44] effectively represents the Fy contour. This model decomposes the Fy contour
into two components, i.e., a phrase component that decreases gradually toward
the end of a sentence and an accent component that increases and decreases
rapidly at each accent phrase. The data-driven approach, e.g., HMM-based T'TS
[8], is also used to generate the target information [45]. For VC, input speech
parameters are used as the target information [30]. To eliminate the difference
between the input and output speech parameters, the input speech parameters
are modified using methods such as Vocal Tract Length Normalization (VTLN)
and pitch difference normalization [46].

2.2.2 Waveform segment selection

In waveform segment selection, an optimum set of waveform segments is selected
from a speech corpus by minimizing the degradation in perceived naturalness
caused by various factors, e.g., prosodic differences, spectral differences, and a
mismatches of phonetic environments. A target cost and a concatenation cost
are often used as standard selection measures as shown in Fig. 5. The optimum
set is selected to minimize a cost function C'") summarizing the target cost and
the concatenation cost as follows:

N N
CU) =3 w O™ (t, un) + 30wl CM (w1, u), (1)
n=1 n=2

2 Consequently, this stage for TTS is called prosody generation.
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Figure 5. Waveform segment selection in unit selection synthesis. Small wave-
form segments are selected to minimize the weighted sum of the target costs and
concatenation costs.

where t,, and u, are the n-th target and candidate waveform segments, respec-
tively, C{" (tn, un) and C (u,, 1, u,) are respectively the target cost function
evaluating the difference between ¢, and u,, and the concatenation cost function
evaluating the discontinuity at a joint point between u,_; and u,,, while wt(") and
w(™ are respectively the weight of target and concatenation cost function for the
n-th segment. The target cost captures the degradation in naturalness arising
from prosodic differences, spectral differences, and differences between phonetic
environments. The concatenation cost is an estimate of the quality of a joint
point between consecutive waveform segments, and this cost function captures
the degradation caused by concatenating waveform segments. The weight of each
cost function is often determined manually on the basis of the results of percep-
tual experiments [47]. The sum of these two costs is minimized using a dynamic
programming search.

2.2.3 Waveform synthesis

After waveform segment selection, an output speech waveform is synthesized by
concatenating the selected waveform segments. However, if the prosody of the
selected waveform segments is different from the predicted target information,
the naturalness of the synthetic speech is degraded. This degradation can be
alleviated by various methods such as Time-Domain Pitch-Synchronous OverLap-
Add (TD-PSOLA) [48]. Unit selection synthesis generally needs a larger training
corpus to alleviate the quality degradation caused by the signal processing.

13
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Figure 6. Statistical parametric speech synthesis procedures, e.g., HMM-based
TTS and GMM-based VC.

2.3 Statistical parametric speech synthesis

Whereas unit selection synthesis directly utilizes the acoustic inventories, the
speech waveforms of a speech corpus are first parameterized with text or speech
analyzers, and then, instead of selecting a speech waveform, we select the statis-
tical models trained to represent the relationship between the input and output
features. There are three main modules: the text/speech analysis module, train-
ing module, and speech parameter generation module, as shown in Fig. 6.

2.3.1 Text analysis

The target language in TTS has an individual language system that controls the
speech waveform, and the language-dependent contextual factors should be ex-
tracted from the text (for example, Japanese [49], English [51], and Chinese [52]).
There is a variety of prosodic and duration systems, for example, for tone lan-
guages such as Chinese, pitch accent languages such as Swedish and Japanese, and
intonation languages such as English [53, 54]. Japanese and English are also clas-
sified as mora-timed and stress-timed languages, respectively [55]. An example
of contextual factors for Japanese T'TS is shown in Fig. 7. The Japanese contex-

3 The most popular text analyzer for Japanese is MeCab [50].
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Figure 7. Example of contextual factors typically used in HMM-based Japanese
TTS. In addition to the kinds of phoneme, and part-of-speech, their numbers
within one phrase or utterance are also used as contextual factors.

tual factors include phoneme, mora, accent type, additionally, word, and breath
group. These hierarchical contextual factors are composed into the phoneme
level*. Consequently, there is an enormous number of combination of contextual
factors (called as context label), and basically, one context labels appears only
one time in the training corpora. This sparsity problem can be alleviated with
the tree-based context clustering described in Section 2.4 or dimensional reduc-
tion approaches [56, 57, 58]°. For a variety of prosodies, additional context labels
are used e.g., the autosegmental-metrical model (AM) model [53], ToBI (Tones
and Break Indices) labels ([62] for English and [63] for Japanese), para-linguistic
features [64, 65], and mixed-language features [66, 67].

2.3.2 Speech analysis

One of the aims of speech analysis is to dissociate the vocal tract characteristics
and excitation characteristics, and to efficiently represent them. The speech sig-
nals are first windowed with a window function; then, their spectral parameters
and excitation parameters are estimated. Fig. 8 shows an example of the observed
power spectra and speech parameters including the spectral parameters (spectral
envelopes) and excitation parameters (detailed spectra). According to the source-
filter model, the speech signals are represented as convolutions of spectral param-

4 Section A.1 describes the contextual factors of Indian languages that we designed for
Blizzard Challenge 2015.

® The incremental TTS [59, 60, 61] faces a similar problem. It aims at starting delivery of
the synthetic speech before the full sentence context becomes available, e.g. while a user is still
typing the text to vocalize.
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Figure 8. Examples of speech parameters extracted from the windowed raw
speech signal. The observed spectra consist of vocal tract characteristics and
excitation characteristics, and the spectral envelope corresponds to the vocal
tract characteristics. For clear illustration, we draw the observed spectrum of
speech synthesized by the STRAIGHT system instead of that of raw speech.
FFT indicates the Fast Fourier Transform.

eters and excitation parameters. In mixed excitation, the excitation parameters
are further decomposed into periodic factors (a.k.a., fundamental frequency or
Fy) and aperiodic factors (a.k.a., aperiodicity). Whereas the spectral parameters
and aperiodicity are the continuous variables, F{y is a multiple-dimensional fea-
ture as shown in Fig. 9. 1-dimensional Fj value is observed at the voiced frames
(V) and the 0-dimensional feature is observed at the unvoiced frames (U).

Basically, a spectral parameter is a high-dimensional feature®. The most-used
method to reduce dimensionality is to use the mel-cestral coeflicient (used in this
thesis) or mel-generalized coefficient [68], which considers the perceptual effects
of the lower frequency components. An alternative approach is a data-driven one
to extract the efficient parameters [69, 69, 43, 70]. Also, articulatory parameters,
such as such as Liljencrants-Fant (LF) and Fujisaki models, are used for better
modeling and generation of speech parameters [13, 71, 72, 73].

In order to dissociate and represent the vocal tract characteristics and exci-
tation characteristics, this thesis uses the STRAIGHT analysis-synthesis system
[10, 74], which performs the Fy-adaptive spectral envelope extraction and mixed
excitation modeling. The STRAIGHT system is often used in speech synthesis
[75, 12]7. [76, 77] in HMM-based TTS.

6 For example, in a 1024-tap DFT, the number of dimensions is 513.
" Section A.3 investigates the speech analysis-synthesis systems STRAIGHT and WORLD.
Whereas the STRAIGHT system is patented software, the WORLD system is BSD-licensed.
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Figure 9. Examples of observed F{, contours. Voiced frames (V) have an actual
1-dimensional Fj value, and unvoiced frames (U) have a 0-dimensional value
(discrete variable).
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Figure 10. Acoustic modelings and their developments in statistical parametric
speech synthesis.

2.3.3 Acoustic modeling

In the training stage, an acoustic model is trained to represent the relationship
y = f (x) between the input features & (contextual labels of input text for TTS
and speech parameters of input speech for VC) and the output speech parame-
ters y. The statistical models need to appropriately model the segmental (such
as spectral parameters) and suprasegmental (such as Fy parameters) speech pa-
rameters.

HMMs and GMMs (see Section 2.4 and Section 2.5). As we described
in Section 2.1, HMM-based T'TS and GMM-based VC have various advantages
over the other approaches. The frameworks based on the HMMs and GMMs

17



2.3 Statistical parametric speech synthesis

can be extended to a variety of formulation, such as the Continuous-State (CS)
HMM [78], Multi-Regressive (MR) model [39, 79|, Factor-Analyzed (FA) model
[80], and Eigen Voice (EV) [37, 81] model. In particular, there are several training
and modeling methods for GMM-based VC [82, 83] that efficiently transmit the
input speech information to output speech®.

F0 modeling (see Section 2.4 and Section A.2.) As shown in Fig. 9, the
observed Fj contour is a multiple-dimensional feature. Multi-Space probability
Density (MSD)-HMM and GMM [84, 85] have been proposed to efficiently model
the Fy contour with the mixture of the probabilities of the 1-dimensional space
for voicing and the 0-dimensional space for unvoicing. Continuous F modeling
has proposed [86, 87]°, as a way to alleviate the weakness of the Fy modeling with
MSD-HMM/GMM; it outperforms deep neural nets-based methods in terms of
quality of synthetic speech [88].

Temporal dependency (see Section 2.8.) The basic HMM/GMM frame-
works don’t appropriately capture the temporal dependency between speech pa-
rameters. Trajectory training [23, 89] have proposed trajectory modeling that
trains the acoustic models under the temporal-delta constraint. The Auto-Regressive
(AR) HMM [90] also considers the temporal dependency by assuming the speech
parameter sequence conforms to an AR process.

Multiple acoustic models (see Section 2.9.) Combining a number of acous-
tic models improve prediction accuracy. Product of Experts (PoE) [91] is applied
as a constraint of speech production, and the Global Variance (GV) in Section
2.9 is used one of the constraints. In addition, additive [92] or hierarchical [93]
acoustic models can be trained to capture the additive or suprasegmental features.

Deep Neural Nets (discussed in Section 6.) Inspired by the success of Deep
Neural nets (DNNs) in machine learning and automatic speech recognition [94],
researchers have attempted to use them in speech synthesis [95, 14]. The recurrent
structures of DNNs [96, 97] can capture temporal dependencies of speech, and
various systems can be written in a unified network [98, 99, 69].

Classification And Regression Trees (used in Section 4.6.) Whereas
HMM-based TTS ties the probability density functions over multiple frames with
the HMM-state-level probability density function, which is usually determined

8 Section A.8 discusses the implementation of the GMM-based VC with spectral differen-
tials [82] combining the methods proposed in this thesis.
9 Section A.2 describes our implementation of continuous Fy modeling for this thesis.
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Figure 11. Speech parameter generation and their developments in statistical
parametric speech synthesis. PF indicates Post-Filter.

by decision tree clustering, CLUSTERGEN [32] predicts the probability density
functions frame by frame in the Classification And Regression Trees (CART)
framework. The random forests algorithm [100] can be applied to this tree-based
synthesis method [101].

Hybrid (see Section 2.7.) DNN-based, non-parametric (such as histogram-
based method [102] and kernel regression [33, 103]), and unit selection synthesis
can benefit HMM-based T'TS and GMM-based VC. For example, the initial clus-
tering of the HMMs and GMMs can be used not only for reducing the compu-
tational costs of non-parametric speech synthesis [33, 103], but also for robustly
training model parameters for DNN-based speech synthesis [104, 105]. As far as
improving speech quality, hybrid methods combining HMM-based TTS and unit
selection synthesis have excellent capabilities [17, 18, 106, 107].

2.3.4 Speech parameter generation

The synthetic speech parameters are generated from the input parameters by us-
ing the statistics corresponding to the input features. Post-filtering processes are
also used to improve the quality of the synthetic speech. The speech waveform
is synthesized through a synthesis filter, such as the Mel-Log Spectrum Approx-
imation (MLSA) filter [108].

ML-based generation using Cholesky decomposition (see Section 2.6.)
The basic algorithm for generating speech parameters from HMMs was proposed
in [109, 7]. By considering the temporal delta feature features, this method gener-
ates temporally-smoothed speech parameters from HMMs under the determined
HMDM-state sequence. Toda et al. [9] utilized it in GMM-based VC. Nowadays,
most speech synthesizers use this method or improvements on it described be-
low. One of the successes of these algorithms is their ability to be extended into
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2.4 Acoustic modeling in HMM-based TTS

recursive forms [22, 7]. Using the Kalman filter, the speech parameters can be
generated frame by frame and used for real-time speech synthesis [22, 110].

ML-based generation using EM algorithm (see Section 3.4.) Tokuda et
al. and Toda et al. [109, 9] extended the basic algorithm for HMMs/GMMs with
hidden HMM states and GMM mixture components.

Product of Experts (PoE) (see Section 2.9.) The concept of PoE can be
used to address the over-smoothing effect in speech parameter generation. A
promising approach to alleviating the over-smoothing effect is to extract a spe-
cific feature to quantify the effect and to generate speech parameters so that their
corresponding features become more similar to those of natural speech parame-
ters. One widely known example of such a feature is the Global Variance (GV)
[19, 9], and speech parameter generation taking account of the GV is widely used
[111, 112].

Post-filter (see Section 4.5.) A post-filtering process is a very simple but
very effective way of alleviating the over-smoothing effect. Typically, it is done
between the speech parameter generation and waveform synthesis. The post-
filtering takes into account perceptually-effective features, such as GV [22, 113],
cepstrum emphasis [49], and peak-to-valley (p2v) [114]. An alternative approach
is to use automatically-constructed powerful statistical models to map the gen-
erate speech parameters [115, 116].

2.4 Acoustic modeling in HMM-based TTS

A Hidden Markov Model (HMM) is a statistical time series model that is widely
used in various fields. Here, several refinements to the HMM idea have been
used to great success by speech recognition systems. Similarly, speech synthesis
has made substantial progress by using the excellent framework of HMMs. In
training, the speech parameters that have been extracted from the output speech
waveform in the training corpus are modeled with context-dependent HMMs.
Note that the corresponding variables, e.g., the contextual labels of the input
text in HMM-based TTS (in this section) and speech features of input speech in
GMDM-based VC (see the next section), are shared between TTS and VC.

2.4.1 Hidden Markov Model (HMM) definition

An HMM is a finite state machine that generates a sequence of discrete time
observations. At each frame, the HMM changes states in accordance with a
state transition probability that satisfies the Markov property, and generates
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Figure 12. A three-state left-to-right HMM. The ¢-th HMM state (¢ € {1, 2, 3})
has an individual output probability density function b, (-) and transition matrix
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the observed data in accordance with the output probability distribution of the
current state. In TTS, HMMs that depend on a contextual label sequence X is
used to model a speech parameter sequence Y .

A Q-state HMM is defined by the state transition probability A = {aqp}gpzl,

the output probability distribution B = {b, (-)}qQ:l, and the initial state proba-
bility IT = {Wq}qul. For notational simplicity, we denote the HMM parameter set

A as follows:
A={A, B, II}, (2)

where ¢ and p are HMM state indexes. A standard left-to-right HMM is shown
in Fig. 12. The state index simply increases or stays equal as time processes, and
this property is often used to model speech parameter sequences since they can
appropriately model signals whose properties successively changes.

In HMM-based TTS, the spectral parameters and excitation parameters are
jointly modeled using continuous HMMs and MSD-HMMs.

Continuous HMM: Spectral parameters (also, aperiodic parameters extracted
by the STRAIGHT system) are modeled with a continuous HMM, in which its
state output probability is given by

bq (Yt) = N (Yt7 uq(]Y‘X)a 22Y|X)> ) (3)
where p,((IY‘X) and E((IY|X) are the mean vector and covariance matrix for state q.

((]Y|X ) and covariance matrix 3 1X)

A Gaussian distribution with a mean vector p J

is denoted as N/ (-; pl 0, Egy\x))’ and given by

1
N (Y “(YIX)’ »YIX)) =
( q q ) \/(QW)NWD ‘EgY|X)|

exp <_; (Yt _ pl((lY|X)>T Egywx)—l (Yt _ “éYIX))> . (4)
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2.4 Acoustic modeling in HMM-based TTS

where Ny D is the number of dimensions of Y;. The dimensions of VIX) and

E(SY'X) are Ny, D and Ny D-by-N, D, respectively. In HMM-based TTS, a feature
T

vector is defined as Y; = [y: WANTANVAVAY TR ] , which includes the D-dimensional

static feature, y, = [y (1), -,y (d), -,y (D)]T, and dynamic features, Ay,,
and AAy,. These dynamic features are computed from y, by using

Lt

Ay, = Z Wg)yt+—ra (5)
T=7L(71)
LY

AAy, = Z WS-Q)yt-s-w (6)
T:—L(E)

where w(™, L , and L (1 < n < Ny) are n-th order weight coefficients used
to calculate the dynamlc features. HMM-based T'TS often sets Ny, = 3.

MSD-HMM: As we described in Section 2.3, an Fj contour is modeled with
MSD-HMMs [84]'0. Tts state output probability is given by

b vy = [ N (Va0 S =V (7)
e 1 — wlV1%), lL,=U"

where [; is a discrete voicing label that is either voiced V or unvoiced U at frame
t, and w§Y|X ) is the weight of the voiced space in state ¢, respectively. Note that
l; is observable together with Y. In HMM-based TTS, y,, Ay, and AAy, are
modeled with each corresponding MSD-HMM.

When a T-frame state sequence, ¢ = [q1, ", ¢, -, qr|, is determined for
the input context label sequence X, the probability of outputting the feature

"
vector sequence Y = {YIT, Y ,Yﬂ given the HMM parameter set X is

calculated by multiplying the output probabilities for each HMM-state, which is
given as:

PYIX.a.X) = [0 (Vo) ®)

where ¢; is the state index at frame ¢. The probability of such a state sequence q
can be calculated by multiplying the state transition probabilities,

(| X, A) Hafh 1qt3 9)

19 "When the continuous Fy modeling [86] is used, the continuous Fy contour is modeled with
a continuous HMM.
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2.4 Acoustic modeling in HMM-based TTS

where a,,,, is given by the initial state probability m,,. Hence, the probability of
the observation Y given A is calculated by marginalizing over g, i.e., by summing
P (Y ,q|X, ) over all state sequences q,

P(Y|X,A) = Y P(Y|X,q,\) P (g X, (10)
all q
= Z Hathfwtbth (Yt) (11)
all q t=1

Considering that the state sequences have a trellis structure, the probability of
the observation sequence can be transformed as follows:

Y‘X A ZP Y1> thqt:q|X7A)P<Yt+17"'7YT|X7q75ZQ7A)'(]‘2)

Therefore, we can efficiently calculate the likelihood of the observation sequence
by using a forward probability a; (¢) and a backward probability f; (¢) defined as

a(q) = P(Y1, - Yi,q=qX,A) (13)
- immm4mn» (14)
b)) = PPEYt, YalX,a = 0N (15)
=Z% (¥eir) Buns () (16)

This algorithm to calculate the probablhtles is called the forward-backward algo-
rithm.

2.4.2 HMM training

In the training stage, the HMM parameter set A including p, (Y1X) EgY‘X), and

(gY|X) is optimized with an optimization criterion such as Max1mum Likelihood
(ML) as follows:

A = argmax L™ (17)
Y
Ly = P(Y|X,A) =Y P(Y,qX,\). (18)
all q

Since this problem is an optimization from incomplete data including a hidden
variable q, it is difficult to determine a A which globally maximizes the likelihood
P (Y| X, ) for the input context label sequence X and the speech feature vector
sequence Y in a closed form. However, the HMM parameter set A that locally
maximizes P (Y| X, A) can be obtained using an iterative procedure such as the

23



2.4 Acoustic modeling in HMM-based TTS

Expectation-Maximization (EM) algorithm which conducts the optimization on

an incomplete dataset [117]. This optimization algorithm is often referred to

as the Baum-Welch algorithm. The auxiliary function @ (-) is maximized by

iteratively updatlng the posterior probabilities of hidden variables given a current

estimate A? in the E-step, and estimating the new A (+1) while fixing the posterior
constant in the M-step.

Continuous HMM: The auxiliary function @ (-) for continuous HMMs is given
by:

0 (}‘(i)’ )\(i-i-l)) -y P (q|Y,X,)\(i)) log P (Y, q|X,)\(i+1))7 (19)
allq

where ¢ is an iteration index. The mean vector quY|X ) and the covariance matrix
E((]Y|X) of the g-th HMM-state are estimated to maximize @ (-), and are given by

(Y]X) tzllyt (@)Y (20)
1, = =,
t;% (q)
- (¥IX) (vX)
Eth'X) _ tgl%(q) (Yt 5q )(Y K ) ’ (21)
tgl% (Q)
v (a) = Qat(q)ﬁt . (22)
q; o (q) B (q)

where v; (¢) is the state occupancy probability of being in the ¢g-th HMM-state
at frame t.

MSD-HMM: The auxiliary function @ (-) for MSD-HMMs is the same as in

the case of the continuous HMM. The mean vector ugY|X), covariance matrix
E,(]Y|X) and weight of voiced space w(g”X) are estimated by maximizing @ (-) as
follows:
T
Y|X tg (@, V) Yy
po = S , (23)
Z (V)
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2.4 Acoustic modeling in HMM-based TTS

Figure 13. A three-state left-to-right HSMM. Compared with the standard HMM
shown in Fig. 12, each HMM-state has an individual duration model instead of
a state transition probability.

T T
Y|x) _ t; 7 (0, V) (Yt - 'u’(qY|X)) (Yt - “t(JY|X)>
B0 = . , (24)
tg:l Vi (Q7 v)
T
(Y]X) t; 7:(4;V)
w, = - : (25)

(e (¢, V) +7 (¢, U))

t=1

RACHEAC)) I, =V
Q ) t
Vi (q’ V) = ;at(q)ﬂt(q) ) (26)
0, lt = U
0 lt - V
v, (q7 U) _ Qat(Q)ﬁz((I) , lt =U ’ (27)
2 «t(@)Be(a)

where v, (¢, V) and v, (¢, U) are the state occupancy probability of being ¢-th
state at frame ¢ in the voiced space and that in the unvoiced space, respectively.

In order to perform the ML-based generation described in Section 2.6, HMM-
based TTS uses an explicit duration model. The HMM state duration distribu-
tions can be modeled using parametric probability density functions such as the
following Gaussian distributions:

P,(d) = —— exp <_(d_mq)2), (28)

\/2mo2 203

where m, and o, are the mean and variance of the duration model of state g. The
HMM including the output probability and state duration probability, which is
shown in Fig. 13, is called a Hidden Semi-Markov Model (HSMM) [23].
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2.4 Acoustic modeling in HMM-based TTS

Is a current phoneme ‘a’ ?

Leaf node ¢

A /\ Clustered models

Acoustic space of output speech features

Figure 14. A decision tree for HMM-based TTS. Basically, the variance of each
full context model is almost 0.

Description
length 1©
d&b Tree size
1© Increase ayp; -
Minimum &@6
pOint .................
Ist term ________________________________________________ d&b
"""""" Decrease aypy -
________________________________ o @ © B
"""" 2nd term

Total number of leaf nodes C

Figure 15. Description length used in tree-building with the MDL criterion. The
tree size varies as the MDL parameter aypr, changes.

2.4.3 Tree-based context clustering

Various contextual factors need to be considered to model speech parameters in
TTS. Because the combinations of contextual factors increase exponentially and
the number of them is enormous, one context label usually corresponds to only
one acoustic segment in the training data. Therefore, it is impossible to pre-
pare training data that covers all possible context-dependent HMMs. An HMM
corresponding to the individual context label is called a full context model. To ro-
bustly train context-dependent HMMs, different context labels are tied together
in a binary decision tree constructed from and by answering context related ques-
tions [49]. Each node (except for leaf nodes) has one context related question,
such as “L-silence?”” (“is the previous phoneme a silence ?”), and two child nodes
representing “yes” and “no” answers to the question. Fig. 14 shows an exam-
ple of the decision tree. The acoustic space is divided into sub-regions, and the
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2.5 Acoustic modeling in GMM-based VC

full context models are clustered in each sub-region. Generally, a decision tree
for context clustering is constructed in each HMM state and is based on the
Minimum Description Length (MDL) criterion [118], given by

1.6
1(©) = 3 Z [ (c)log ’E((]Z/IX)‘ + aypLC D logT' (0) (29)
c=1

where ¢ is the leaf node index, C' is the total number of leaf nodes, aympr, is a
parameter to control C', D is the number of feature dimensions, E((;C/'X) is the
covariance matrix of the c-th leaf node of the ¢g-th HMM state, and I'(¢) and
['(0) are state occupancy counts of the leaf node ¢ and root node, respectively.
The value of the first term decreases and that of the second term increases as the
total number of leaf nodes C' increases as shown in Fig. 15. The decision tree is
constructed according to the following process.

1. Define the root node.

2. Find the node and question that maximize the difference in the description
length before and after splitting.

3. If the difference is less than 0, stop splitting the nodes.
4. Split the node by using the question discovered in step 2.
5. Go to step 2.

After the tree-based context clustering, the output probability density function b,,
(clustered model) of the c-th leaf node of the ¢-th HMM-state and its parameters
(i.e., the mean vector p(Y'1%¥) | covariance matrix EEIi/'X), and a weight of the voice

ge
(Y1X)

space wy! 1)) are calculated for each leaf node.

2.5 Acoustic modeling in GMM-based VC

GMDMs have been widely used to solve many classification problems. In training,
the speech parameters extracted from the input and output speech waveforms
are modeled with the GMM as joint probability density functions. In synthesis,
a speech parameter sequence is generated from the GMMs by computing the
conditional probability given the input speech parameters. As we described,
some variables are shared with HMM-based T'TS.

2.5.1 Gaussian Mixture Model (GMM) definition

A GMM is a mixture model of Gaussian distribution as shown in Fig. 16. The Q-

mixture GMM is defined by the mixture weight A = {w((]Z )}22:1, and the mixture
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2.5 Acoustic modeling in GMM-based VC

—_ P(X¢|2) = wiN(X¢; g, Z1) + woN(Xy; pa, Z7)
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Figure 16. A 2-mixture GMM. The ¢-th GMM mixture component (¢ € {1,2})
has an individual output A (X t> Mg Eq> and mixture weight w,. Note that the
variables X, p,, and 3, should ideally be shown as scalar values here, but are
shown as vectors for the sake of generality in the description.

component B = {b, (-)}22:1. We denote the GMM parameter set A as follows:
A={A, B} (30)

In GMM-based VC, the spectrum is modeled with a multivariate GMM, as
shown in Fig. 17. F{ is typically modeled with a single Gaussian model. The
joint probability density is modeled with:

Q
P(ZX) = E_:P(QIA)P(Zth,AL (31)
P(gA) = w?, (32)
P(Zt’%)‘) = bq(Zt):N(Zt;y,gZ),EéZ)), (33>

-
where, Z; = {X tT , YtT } is the joint vector of the input spectral features X; and
the output spectral features Y, at frame ¢, and

(X) PXX) (XY)
z) _ | M »n@) —
0= o] 240 = S 3 |

(34)

.
Y, is given by N, D-dimensional joint static and dynamic feature vectors, [ytT Ayl } ,
where vy, is represented as a D-dimensional static feature vector. Ny, is often set
to 2 in GMM-based VC. The source feature vector X, is also given the same form

in this thesis. p(?) consists of the input and output mean vectors, pt*) and p{").

EgZ ) consists of the source and target covariance matrices, E((JXX ) and Egyy) and
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2.5 Acoustic modeling in GMM-based VC

P(X:,Y¢|2)
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Figure 17. A 2-mixture multivariate GMM and its conditional probability
and marginalized probability density function. Note that the conditional and
marginalized probability density function are scaled to illustrate them clearly.

cross-covariance matrices, E((]YX) and E((IXY)

2.5.2 GMM training

The GMM parameter set A is optimized with an optimization criterion as follows:

A = argmax L") (35)
A
(tm) T T Q
Lbasic = H P (Ztl)‘) = H Z P (Zt7 Q|A) (36)
=1 t=1q=1

This optimization problem can be solved using EM algorithm, the same as with
HMMs. The auxiliary function @ (+) for the spectral component is given by:

Q (AW, AY) = ZZP((AZt, "log P (Z1,q|AY), (37)

t=1qg=1

where ¢ is the iteration index. The mean vector p,((]Z), covariance matrix E((]Z)

and the mixture weight w[(IZ ) of the ¢g-th GMM mixture component are estimated
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Mixture component Mixture component
q=1 q=2

/\ /\ Clustered models
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Acoustic space of joint speech features

Figure 18. Hard clustering for GMM-based VC. Basically, the variance of each
individual model (Gaussian distribution for the individual speech feature) is al-

most 0. The structure is very similar to that of the decision tree clustering in
HMM-based TTS (Fig. 14).

in order to maximize @) (), and are given by

T
>N (Q) -2y
=1

p? = S (38)
> Y (q)
t=1
ZT: Ve (q) - (Zt - IJ’((IZ)) (Zt - N((]Z))T
5@ - & . , (39)
> e (q)
t=1
T
) L (a)
wp = = (40)
N (Zy: p®) 52
vl(e) = (Zin?, =) : (41)

Q
> wi N (Ze i 27)
q:

where v; (¢) is the mixture occupancy probability of being in mixture ¢ at frame
t.

Using the optimal mixture having the biggest 7; (¢), the acoustic space can be
divided into sub-regions by using Eq. (41), and each sub-region can be modeled
with a GMM mixture component as shown in Fig. 18.

2.5.3 Conditional probability and marginalized probability

The conditional probability P (Y| X, A) and the marginalized probability P (X |A)
shown in Fig. 17 are analytically derived from Eq. (31), and they are used in the
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2.6 Speech parameter generation

speech parameter generation stage.
As derived in Section A.4, the conditional probability of the ¢g-th mixture
component, P (Y| X, q, A), is given as a Gaussian distribution:

P(Yt|Xt7Qﬂ A) :N(YtaIJ’gY|X)7E((IY|X))a (42)
where,
Y|X YY YX) 5 (XX) s (XY
VX = ) YR (43)
Y|X Y YX) s (XX)~1 X
R S N S (44)
The conditional probability P (Y| X, A) is given as a GMM mixing Eq. (42):
Q
P(Yt|Xt,A) = ZP(Q|Xt,A)P(Yt|q,Xt,A) (45)
q=1
N (X ;M(X),E(XX)
P(qlXiA) = (X, 2) (46)

g :
>N (X pg, 200)
q=1

Next, we derive the marginalized probability. P (X¢|A) is calculated by
marginalizing over all Y:

PXA) = [P(X.YiNaY, (47)
Q

= PN [ P(X.Yilg N dY (48)

= f:wéZ)P(Xt\q,A)- (49)

We omit the derivation, but the g-th GMM mixture component can be derived
as intuition would lead us to expect:

P(Xlg,A) = N (X3 p{0, 20N, (50)

q

Eq. (46) is the posterior probability of this marginalized probability.

2.6 Speech parameter generation

We generate synthetic speech parameters from the input parameters X. X
denotes the contextual label sequence of the input text for HMM-based TTS,
or the speech feature vector sequence of the input speech for GMM-based VC.
After determining the optimal HMM state and GMM mixture sequence ¢ =
[G1,"*,qe, -+, Gr], the output speech parameter sequence Qq =19y, 9, Up

is done by maximizing the likelihood, where ¢; and g, are the optimal HMM state

]T
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2.6 Speech parameter generation

or GMM mixture and output speech parameters at frame ¢.

2.6.1 optimal HMM state and GMM mixture sequence

In HMM-based TTS, state duration models (Eq. (28)) corresponding to X are
determined through the use of the decision tree. The optimal state duration of the
g-th HMM state is determined by roughly maximizing the duration probability
as follows:

d, = argmax P, (d|q, A) = m,, (51)
d

The optimal HMM state sequence is determined by the state duration.
In GMM-based VC, the optimal mixture component of frame ¢ is determined
by maximizing the posterior probability of the marginalized GMM (Eq. (46)):
DN (X0, A
w ) 7
G = argmax — ! (Xig,A) : (52)
! Zl wf(IZ)N (X459, M)
q:

where X, is the input speech feature vector at frame ¢.

2.6.2 Maximum likelihood-based generation

Given the optimal HMM state and GMM mixture component sequence ¢, the
output speech parameter sequence Qq is generated by maximizing the objective

function L using the HMM likelihood or GMM likelihood, as follows:

basic

9g = argmax i), (53)
Lyl = P(Y|X.4X) =P(Wy|X,G\) =N (Wy; Eg; D), (54)

T .
where E(j = [M’qu,la T 7/"';,15’ T 7I-L(—er,T} and Dq = Cha“gNWD [2417 ) Eézv M) 2DQT]
are an N, DT-dimensional mean vector and N, DT-by-Ny, DT covariance matrix,
respectively, and

(Y1X)
[ om (FIMM)
llfq,t - {Aq)q(t‘f‘bq (GMM) ’ (55)

» X (HMM)
¥, = . , (56)
‘ {zgm_qugXXm; (GMM)
A, = E((]YX)EEIXX)_17 (57)
by = py — A, (58)

where the notation diagy, p denotes the construction of a block diagonal matrix
that has N, D-by-Ny, D diagonal elements. This derivation is illustrated in Fig.
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q Ea -1

“Sample” e Mg, 1| (2]
s

Text : .
analysis ; : N

X @ Pt 23
N Y : x
Eo.0:0. Y
~

HMM parameter set A Mean vector Covariance matrix

b as D Tpg 1| |25
L S>> g, 2 z;!

Speech
analysis

X T fg, ¢ b
@ @@ Bq.T o

v
GMM parameter set A

Figure 19. Output probabilities used to generate the speech parameters. The
components of the mean vector and the covariance matrix are derived from the

HMM state and GMM mixture.

19. W in Fig. 20 is the weighting matrix for calculating the dynamic features

[109]; it is given by

T
W = [wlv e ,’lUT] )
_ (0) (Nw—1)
wt — |:wt 9 wt 3
w"” = 0.0 w I.---,w oI, o,---
t Ist’ s Uy —L(_n) 3 5 _Lxl ) Uy C Tt
(t—L™)—th (t—L{")~th

where —L', —LSS) and w©® (0) = 1.
The logarithm of Eq. (54) can be transformed as:

1
In P (Wy:q, %) = —3

(Wy — Eq)T Dél (Wy — Eq) + Const.,
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Figure 20. Delta matrix used to calculate the static and delta feature vector
sequence. In this figure, N, = 2, L™ = —0.5, LS:L) = 0.5.

where Const. indicates a value constant to y. Thus, by setting
Jln P (Wylg, A)

oy =0, (63)
the following equations are obtained.
WTD;jlWQq — WTDélEq, (64)
Jg = R(‘jqu, (65)
§ = WTD(‘jlW, (66)
T = WTD(‘leq. (67)

In the example shown in Fig. 21, the speech parameters are generated probabil-
ities considering dynamic features.
The generated speech parameter sequence gq can be efficiently calculated

sequence by sequence using Cholesky decomposition [109], but the result tends
to be over-smoothed.

2.7 Hybrid synthesis

Here, we describe the hybrid methods that combine the idea of unit selection
synthesis and HMM-based TTS. They include (1) hybrid synthesis with waveform
concatenation that uses HMMs to guide waveform segments [17], and (2) hybrid
synthesis with speech parameter generation that models the individual waveform
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Figure 21. Example of probability distributions and speech parameters generated
from the distributions in HMM-based TTS. Note that frames having the same
statistics correspond to the same HMM state.

segments with Gaussian distributions [18].

Whereas HMM-based TTS causes a quality degradation as a result of us-
ing averaged information (= statistical models) of the speech parameters, these
methods have the capability of improving synthetic speech quality by incorporat-
ing the ideas of unit selection synthesis. However, the flexibility of the original
HMM-based TTS is lost because their mathematical formulation is different from
that of HMM-based TTS.

2.7.1 Hybrid synthesis with waveform concatenation

ML-based unit selection synthesis [17] uses HMMs to guide speech segments.
In the synthesis stage after training the HMMs, the optimal set of waveform
segments is selected from a speech database to maximize the cost function com-
bining the HMM likelihoods, as shown in Fig. 22. The cost function C™ of this
approach is represented in the same form as that of unit selection, which is

N N
Ot =37 G (un) + 32 CE (w1, ), (68)
n=1 n=2

where C’t(ml) and O™ are the target cost and the concatenation cost, and they
are weighted sums of the HMM likelihoods.
The use of waveform segments dramatically improves speech quality!'. How-

11 Although unit selection synthesis makes it possible to generate high-quality speech wave-
form, the weights of the cost functions are difficult to set and it is necessary to manually tune
them. ML-based unit selection synthesis makes it possible not only to improve speech quality
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Figure 22. ML-based unit selection using HMMs. In this example, the spectrum,
Fy, and phoneme-duration statistics of the HMMSs are used to guide the waveform
segments.

ever, the waveform generation process with waveform concatenation loses the
advantage of HMM-based T'TS of being able to control the voice characteristics.

2.7.2 Hybrid synthesis with parameter generation

A hybrid approaches that has more flexibility than the standard unit selection
synthesis or ML-based unit selection synthesis is the use of rich context models
to represent each waveform segment with probability distributions of individual
speech component parameters, such as the spectrum and Fj [18]. In the synthesis
stage, the probability distributions of all components corresponding to one wave-
form segment are selected in each HMM state on the basis of the Kullback-Leibler
Divergence (KLD) and speech parameters are generated from these distributions.

Training of rich context models In the basic HMM-based TTS, a single
Gaussian distribution is used to model multiple acoustic segments belonging to
the same leaf nodes in the decision tree. Consequently, its mean vector is exces-
sively smoothed and becomes one of causes of the over-smoothing effect. On the
other hand, the use of multiple acoustic segments is essential for robustly estimat-
ing the model parameters, in particular its covariance matrix. To alleviate the
over-smoothing effect while preserving the robustness of the parameter estima-
tion, in rich context model, the mean vector is trained for each full context label

but also to automatically tune the weights by using the HMMs.
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Figure 23. Training of rich context models using the clustered models of HMM-
based TTS. The mean vector corresponding to the individual speech segments
are updated while tying the covariance matrix of the clustered model. M, is
the number of full context labels in the c-th leaf node of the ¢-th HMM state.
Compared with Fig. 14, the variances of the individual models are wider.

and the covariance matrix is tied among different full context labels belonging to
each leaf node of the decision tree [18], as shown in Fig. 23.

For continuous HMMs, the output probability density function b, ,, of the
rich context model for the m-th full context label in the c-th leaf node of the ¢-th
HMDM-state is given by

bgen (Y1) =N (Yt; H(Y‘X) 2(Y|X)> (69)

qc,m )

For MSD-HMMs, the mean vector of the Gaussian distribution in the voiced
space is updated as follows:

- W ON (Y 10, 5019) g, =
e (Y1) = 1- E,Y'X>, L=U"

The total number of different mean vectors in a tree is equivalent to the number of
full context labels in the training data. The total number of different covariance
matrices is equivalent to the number of leaf nodes in the decision tree.

In the training stage, the context-clustered probability density parameters are
estimated in the standard manner. Then, they are untied and only their mean
vectors are updated in each full context label by using the Baum-Welch algorithm
while tying the covariance matrices among full context labels in each leaf node.

(70)

Synthesis In the synthesis stage, the full context labels to be synthesized are
clustered with the decision trees and the clustered models at the corresponding
leaf nodes are determined to be the target g = {g1,- -+, gn} where g, represents
the clustered model in the n-th state. Then, a sequence of rich context models
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2.8 Trajectory modeling

r is selected that minimizes the following KLD, considering the spectral and Fj
components, where r,, represents the rich context model in the n-th state.

N

KLD (g,r) = ZKLD(gn,rn)Tn, (71)
n=1

KLD (g0, 70) = Dt (gus7n) + DR (G 7).+ (72)

where KLD (+) is the total KLD, DI&SS) (gn,rn) and D&FI?) (gn,rn) are KLDs for the
spectral and Fy components, respectively. This process is similar to unit selec-
tion, but each acoustic segment is represented by probability density functions in
individual components. Finally, speech parameter sequences are generated from
the selected probability density functions in the same manner as the original
HMM-based TTS.

In this method, rich context models for the spectral and F components are
simultaneously selected using a constraint among different components (spectrum
and Fp). This approach also yields significant improvements in speech quality.
However, flexibility of the original HMM-based T'TS gets lost by the use of the
strong constraint in the model selection.

2.8 Trajectory modeling

The weakness of the basic HMM-based TTS is the inconsistency between the
training criterion L") (Eq. (18)) and the synthesis criterion L (Eq. (54)),

basic basic
i.e., the likelihoods for the joint static and dynamic feature vectors in the train-
ing stage compared with those for only the static feature vectors in the synthesis
stage, as shown in Fig. 24. Trajectory HMM modeling [23] is a method that mod-

els static feature vector sequences under static and dynamic feature constraints.

2.8.1 Trajectory HMM definition

Here, we derive the probability density function of the trajectory HMM, P (y|W, X, 4, \),

(syn)

by transforming the basic synthesis criterion L The basic synthesis criterion

basic *
L™ can be written as the probability of :
(syn) _ S . _l cn . Pl
Lbasic _N(Y7Eq7Dq> - ZN (yayqu ) ) (73)

where Z is a normalization term, and

1 1 T
exp(—= (Y —Ez;) D (Y —E;)) (74)
\/(QW)NWDT|DqA’ < 2 ( Q) q ( q))

N (Y:EgDg) =
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Figure 24. Consistency of training and generation.

Conventional training of HMMs A

A =argmax P(Y|X,4)

Modeling of Y ]

Speech parameter generation
y = argmax P(Wy|X, 1)
= argmax P(y|W,X, 1)
Generation of y given W ]
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Trajectory HMM training Consistent

A = argmax P(y|W, X, 1)
Modeling of y given W }

Trajectory modeling can

remove the inconsistencies between the conventional HMM training and speech
parameter generation. Note that we have omitted the optimal HMM state or
GMM mixture sequence, §, for the sake of notational simplicity.

where Y = Wwy. The exponential part of this equation can be expanded as

follows:

2 q

1

—1(Y—EA)TD(‘11 (Y - B,

Q)

= TRy — O TDE A
= (y qu 2rqy+E Dq Eq>

2

S ( _ R )TR
- 2\t

1

q

— -1 -~ — TA _,\1 = —l: _Al -~
(y R(j rq) quq TG +Equ Eq>

1

= 5 (v-9g) Rg(v-9g) — 5 (riRyrq - BGDFEq).

2

Therefore, the basic criteria can be transformed as:

N(Y:Eq Dg) =

DT | p-1
(2m) ’Rq

1 R R
e (-5 (w-19g) Rg(v-1g))

(75)

((Wy)T D Wy~ (Wy)' D 'Ey— EgD; Wy + EqulEQ)(m)

(77)
(78)

(79)
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DT -1
JenT IRy
J@™"" Dg

DT
_ O (L (g g vimgey)
q

L/ Tp-1
exp (—2 (Equ Eg-riR; rq>) (80)

N (y; Y4 Rél) (81)
= N (vag Ry, (52)

where

(2m) " IR

- 7 exp (—1 (EIDTIEA—T—[R*TA>) (83)
A \/(QW)NWDT|D 2 qg-q 4 a9 9

(trn)
trj

The objective function for the trajectory training, L. ', is written as:

LYY = PylW. X.4.0) =N (y:94. B5) (34

The mean vector g}q is given by Eq. (65) and the inter-frame correlation is

effectively modeled with the temporal covariance matrix Rc_jl as shown in Fig.

25. In training, the HMM parameters are updated by maximizing ngn). Note

that the mean vector 9 4 is equivalent to the generated parameter sequence in the

q
traditional generation process. Therefore, ngn) can be regarded as the objective

function for not only the training stage but also the synthesis stage.
2.8.2 Trajectory HMM training

The HMM parameter set A is updated to maximize the objective function as
follows:

trj

A = argmax L™, (85)
A

Here, we let g and X7 be the joint parameters of ,u,gY‘X) and E((]Y|X)71 over all
HMM states:

y|x)T yix)T yvix)T1"
M [H“ ) 7"'7N((1| ) 7"'7/"’22| ) ) (86)
_ y|x)—1! x)—1 vix)-1] "
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2.8 Trajectory modeling
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Figure 25. Example of the mean vector gq and covariance matrix Rél of the

trajectory HMM. The mean vector is equal to the generated speech parameters.
The covariance matrix represents the temporal dependency and is generally the
full covariance.

The mean vector 2 g and precision matrix Dél are represented as:
Eg = Sgn, (88)
D;' = diagy,p 1S4=7'], (89)

where Sg = [S4,-+,84]" © In,p is a NoDT-by-N,,DQ matrix, S, is a Q-
dimensional vector whose g-th component is 1 when ¢ = ¢, and 0 otherwise, as
shown in Fig. 26, and Iy, p indicates the Ny D-by-Ny D identity matrix.

To optimize these model parameters for the trajectory HMM training, we use
the steepest descent algorithm, as follows:

dlog L™
o , (90)
a p=p®
where « is the learning rate, and i is the iteration index. The X' are optimized
in the same manner. The derivatives are:

dlog Liy" Tt -
o = Squ W (y - yq) : (91)
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Figure 26. Relationship between variables used in trajectory HMM training. The
activation matrix is determined by the tree-based clustering in HMM-based TTS.

dlog L)

trj

ox~!

2.9 Speech synthesis considering the global variance

The speech parameter generation described in Section 2.6 tends to generate
an over-smoothed speech parameter sequence. An intuitive way to alleviate the
over-smoothing effect is to consider the features that can capture the effect. The
Global Variance (GV) is a well-known examples of such a features, and it is used
as part of the PoE of HMM-based TTS and GMM-based VC.

2.9.1 Global Variance (GV) definition

The GV [19, 9] is defined as the second moment of the parameter trajectory:

[’U(l),---,U(d),-“,U(D)]T, (93)

v (y)
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Figure 27. How to derive the Global Variance (GV). The scaling of the temporal
sequence are given as the scalar value.

0@ = F @ -7 (94)
T = 52 ) (95)

where v (y) is a D-dimensional GV vector of y. The GV of the generated speech
parameter trajectory tends to be smaller than that of a natural speech parameter
trajectory, as we will describe in Section 5.5. The probability density function
of the GV and the GV parameter set are N (v (y); gy, Xy) and A, = {p,, Xy},
respectively. The statistics of the GV are trained from the natural speech param-
eters. The following synthesis and training criteria can improve the quality of the
synthetic speech because the GV model alleviates the over-smoothing effect.

2.9.2 Speech parameter generation considering GV

The objective function of this generation algorithm combines the traditional gen-
eration criterion and the GV likelihood [19, 9] as follows:

9 = arg:lrlnaxLé%en) (96)

LEY = P(Wylq, X, )P (v(y)| )™, (97)

wy is the weight of the GV likelihoods. Because this function does not solved in
a closed form, an iterative generation algorithm is used to calculate it.

2.9.3 GV-constrained HMM/GMM training

Because the speech parameter generation taking accounts of the GV requires

iterations, the computational efficiency of the traditional generation algorithm

using Ll(;ys?c) is lost. Another approach [3, 2] defines the training criterion with
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2.10  Summary of this chapter

the GV in order to get a quality improvement while preserving computational
efficiency. The HMM/GMM parameter sets A are trained as:

A = argmax Lgvm) (98)
A

GV-constraint trajectory HMM training [3] has defined Lgfn) that integrates the

GV term into the trajectory HMM training as follows:

LE™ = P(y|W,X,4,X) P (v(y)|X,q X A)"". (99)

gv

We can utilize the basic generation criterion L,E)Zys?c) without the GV in the syn-
thesis stage because the generated GV is compensated in the training stage. As
Toda et al. [3] pointed out, this approach uses a unified criteria between training
and synthesis because the ML estimates of Lgvm) and L,(Dzyb?g are the same. This
approach also makes it possible to model a GV depending on the input parame-
ters. Similarly, GV-constraint GMM training [2] defines the training criterion in

GMM-based VC as:
LU — P (Wy|X,§,A) P (v(y)|X,q X A)""T (100)

gv
Note that this approach inconsistently performs training because it ignores the
relationship W between the static and dynamic features.

2.10 Summary of this chapter

This chapter described the various speech synthesis techniques as follows.

Section 2.2: We reviewed unit selection synthesis, which directly uses acous-
tic inventories selected from a speech corpus for synthesizing speech waveforms.
Unit selection synthesis can produce high-quality speech thanks to directly using
speech segments. However, the voice characteristics are fully dependent on the
original speech stored in the acoustic inventories.

Section 2.3: We reviewed statistical parametric speech synthesis. Here, the
speech waveforms of a speech corpus are first parameterized with text or speech
analyzers; then, instead of selecting a speech waveform, statistical models are
trained to represent the relationship between input and output features. HMM-
based TTS and GMM-based VC are examples of this kind of speech synthesis
method.

Section 2.4: We described how to model the speech parameters with the HMMs
for HMM-based TTS. The output probability density function models the static
and dynamic speech features, and the state duration density function explicitly
models the state duration. To avoid the sparsity problem with the full context
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2.10  Summary of this chapter

labels of the input text, tree-based clustering divides the acoustic space into sub-
regions and calculates the statistics for each leaf node. The clustering loses the
information of the individual context labels.

Section 2.5: We described how to model the speech parameters with the GMM
for GMM-based VC. The static and dynamic features of the input and output
speech are jointly modeled with the GMM. Each GMM mixture component mod-
els the sub-region of the joint acoustic space. Similarly to HMM-based TTS, this
modeling loses individual information.

Section 2.6: The speech parameters of synthetic speech are generated from
HMMs and GMMSs on the basis of the ML criterion under the constraints on the
static and dynamic features. This process is computationally efficient because it
can be analytically solved. However, the synthetic speech parameters tend to be
over-smoothed, and the synthetic speech sounds muffled.

Section 2.7: In order to alleviate the averaging effect in the modeling process
described in Section 2.4, we presented two approaches that incorporate the ideas
of unit selection synthesis into HMM-based T'TS. The quality of the synthetic
speech dramatically improves, but the flexibility of the original HMM-based T'T'S
is lost.

Section 2.8: The training and synthesis stages of the basic HMM-based TTS
are inconsistent with each other; i.e., the training stage uses the likelihoods for
the joint static and dynamic feature vectors, whereas the synthesis stage uses
only the static feature vectors. The trajectory HMM models the static feature
vector sequence in the same way as in the synthesis stage.

Section 2.9: The Global Variance (GV) can be used to quantify the over-
smoothing effect observed in Section 2.6. The GV is the second moment of
the speech parameter sequence, and is well integrated into the speech parameter
generation and training stage.
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Statistical sample-based speech synthesis
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3.1 Introduction

Section 2.7 described two hybrid methods combining unit selection synthesis
and HMM-based TTS, i.e., ML-based unit selection and KLD-based rich context
model selection. Although they exploit the ideas of unit selection synthesis to
make the modeling more accurate, they lose the flexibility of the original HMM-
based TTS.

In this chapter, we propose statistical sample-based approaches using rich
context models for speech synthesis that are both high quality and flexible (see
Fig. 28). First, we apply rich context modeling to GMM-based VC. Then,
we devise ML-based parameter generation methods using rich context models
that preserve the flexibility of the HMM-based TTS and GMM-based VC. The
trained rich context models are reformulated as a Rich context Gaussian Mixture
Model (R-GMM) in each sub-region corresponding to one leaf node in HMM-
based TTS and one GMM mixture component in GMM-based VC. The speech
parameter sequence in each speech parameter component is separately and iter-
atively generated from the selected rich context models of R-GMMs by using the
ML criterion. The methods presented here make it possible to use the probabil-
ity distributions of individual components from different waveform segments as
in the original HMM-based T'TS and GMM-based VC. Therefore, compared with
the other hybrid methods, they have more flexibility when it comes to modeling
speech features. An iterative algorithm is used to generate speech parameters us-
ing the rich context models selected from the R-GMMs. As for the initialization
of the iteration, we build over-trained acoustic models to generate a less-averaged
initial parameter sequence. Discontinuous transitions are observed in the initial
parameters, but they can be alleviated by using HMM/GMM likelihoods in the
iterative parameter generation.

This chapter is organized as follows (see Fig. 29). In Section 3.2, we describe
the method of training the rich context models'? for GMM-based VC. In Section
3.2, we reformulate the rich context models belonging to one sub-region as an
R-GMM in HMM-based TTS and GMM-based VC. In Section 3.4, we propose
two ML-based speech parameter generation methods; one uses the EM algorithm,
and the other one is an approximation with single Gaussian distributions. The
methods described in Section 3.5 are used to initialize these proposed generation
methods. In Section 3.6, we compare these methods with the conventional
hybrid methods in terms of the flexibility of their speech synthesis frameworks,
and compare them with the basic HMM-based TTS and GMM-based VC in terms
of the quality of the speech that they provide. We describe an experimental
evaluation of HMM-based TTS in Section 3.7 and GMM-based VC in Section

12 The defined name “rich context model” is not strictly accurate for GMM-based VC because
no context labels are used. However, we use this name to maintain consistency with the method
proposed for HMM-based TTS.
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Figure 28. Comparison of unit selection synthesis, conventional statistical ap-
proaches (HMM-based TTS and GMM-based VC), and the proposed statistical
sample-based approach. Whereas the acoustic model corresponds to a number
of speech segments in the conventional statistical approaches, it corresponds to
just one speech segment in the statistical sample-based approach. Note that the
individual acoustic models are calculated using individual speech segments, but
their covariance matrices are the same to those of the averaged acoustic models.

3.8, and summarize the chapter in Section 3.9.

3.2 Rich context modeling for GMM-based VC

As shown in Fig. 23, the rich context model of each sub-region in HMM-based
TTS is constructed by estimating the mean vector while tying the covariance ma-
trix of the clustered model. After the conventional training of GMM-based VC,
rich context models are trained for individual joint speech features, Z;, by updat-
ing the mean vector of the GMM mixture components while tying its covariance
matrix. The m-th rich context model of the g-th GMM mixture component is

P(Zilgm,\) = N(Z;pl2,2P), (101)

q’m
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Figure 29. The rest of Chapter 3.

(X)
Hegm

Hom = [ “M, (102)
q7m

where the mean vector ,u,((],Zn)l consists of the individual input and output mean
vectors, p,((]ff,z and Hg%- The individual mean vectors are estimated based on the
ML criterion, and each of them is equal to one joint feature vector. The mixture

component that Z; belongs to is determined as follows:
Gr = argmax P (q|Z, A) . (103)
q

This thesis performs discriminative GMM training [119] between the conventional
training and rich context model training in order to alleviate the mismatch be-
tween Eq. (103) and Eq. (52)'3. As described in the following section, the rich
context models are selected from the mixture components determined with Eq.
(52) in the speech parameter generation. Therefore, we expect that the discrim-
inative training can select better rich context models.

13 Whereas P (q|Z;,\) is used in the training stage, P (q|X¢, A) is used in the conversion
stage. The discriminative training algorithm [119] trains the GMM parameters to alleviate this
inconsistency.
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3.3 Reformulation of Rich context GMM (R-GMM)

After training the rich context models, the output probability density in each
sub-region is modeled using an R-GMM developed with all rich context models
belonging in the same sub-region. For continuous HMMs in HMM-based TTS,
the output probability density of the c-th leaf node of the ¢g-th HMM state is:

by, (Y1) = Z wl N (V35 {10, 501%0) (104)
where w(Y|X ) is the mixture component weight of the m-th rich context model,
and the total number of mixture components is M, . Similarly, the R-GMM for
MSD-HMMs is given as:

My,
3wl PON (Y10, 8500) 1= v
be. (Y1) = M, ’ (105)
- w0 li=U
1

The R-GMM of the ¢-th GMM mixture component in GMM-based VC is:

My
) = Z wON (Zi; pf), 2), (106)

where w( ) is the weight of the m-th rich context model of the g-th GMM mixture
component (not R-GMM), and M, is the total number of mixture components.
We can calculate the ML estimates of qu|X and wq from the occupancy counts
given by the EM algorithm, but in this thesis, we set them to equivalent values

as follows'

wYX) =1/M,, (continuous HMMs)
?Y|X> = w¥®) /M, (MSD-HMMs) : (107)
=1/M, (GMMs)
where wéY|X ) is the Weight of the voiced space. We have found this weight setting

yields small quality improvements in the synthetic speech. This point is described
in Section A.5.

3.4 Parameter generation methods

A speech parameter sequence is generated from rich context models selected from
the R-GMMs. As in the same as HMM-based TTS and GMM-based VC, it is

14 There are no duplicated joint speech features in GMM-based VC, but such features are
included in the training data because we use Dynamic Time Warping (DTW) to make the joint
feature vectors.
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Figure 30. How to construct a R-GMM using M, rich context models belonging
to the ¢-th leaf node of the ¢-th HMM state in HMM-based TTS. Comparing Fig.
14 and Fig. 18, we can see that this construction is similar to that of GMM-based
VC.

generated by maximizing the probability density function as follows'?

UG = arg;/naXP (Y|q, X, ) (108)
= arg?rJnaX P(Wylg, X, \) (109)
= argmax » P (Wyl|¢g,m,X,A)P(m|G, X, ) (110)
all T
where m = [mq,---,my, -+, my| is a mixture component sequence of R-GMM.

P(Wylg,m, X, ) is:

P(Wylgm,X,\) = N(Wuy;Eg,,;Dg) (111)
E(j,m = [“thl,lv T all’(jt,mt,t’ ) MQT,mT,T:| (112)
D(j = diagNWD [EQM Ty Eéta Ty EQT] (113)
(Y]X)
e l’l'q,m <HMM)
H‘q,m,t { Ath + bqym (GMM) (114)
B (HMM)

Y, = ‘ 11
A, = S{OsEOT (116)
by = Mg — Agpr) (117)

15 The optimal HMM state and GMM mixture component sequence are determined in the
standard manner (Eq. (51) for HMM-based TTS and Eq. (52) for GMM-based VC).
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P (m|g, X, ) is given as:

T
t=1
W1 (HMM)
P(m|X,q ) = am 119
mixean) = {0 G (119

The posterior probability P (m|X, g, A) of GMM-based VC is normally described
as:

wEN (X o; pG5); B
P(m| X q,A) =w =—= (X 10 2) (120)

M,
S winN (X il B0
m=1

However, we set the weight wg?;JLX) to constant to m in each component, like in
the case of HMM-based TTS. In practice, there are enormous numbers of candi-
dates for the rich context models in GMM-based VC'. Therefore, we calculate
P (my|q, X+, A) in a similar fashion to Eq. (52), and set P (m¢|q, X¢, A) = 1/M,;
for the rich context models having the M, ;-best posterior probabilities, and
P (my|q, X¢, A) = 0 otherwise, where M, (1 < M,; < M,) is the number of
candidates at frame ¢.

3.4.1 EM algorithm

The synthetic speech parameter sequence gjq is determined with the EM algo-

rithm. First, an initial static feature vector sequence y(g) is determined. Then,

the following auxiliary function is maximized by iteratively updating the poste-
rior probability P <m|Wyg), q, }\) given the current estimate yg) in the E-step

and the new estimate Qgﬂ), while keeping it constant in the M-step:

0 (y@,y(z'“)) -y r <m\Wy<£>,q,X,>\) In P (WyQ“),m\q,X,)\)(mn
q °q q q
allm
The parameter sequence is given by:

—1
Ug = (WTD;W) W' D.'E

i Eq (122)

16 Even if the training data is the same size as that of HMM-based TTS, the number of the
candidates will be bigger. This is because one rich context model corresponds to one speech

feature vector in GMM-based VC, whereas it corresponds to one speech segment in HMM-based
TTS.
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where
-1 ; -1 -1 —1
Dq‘ = dlagNwD {qu T eq T EQTJ ) (123)
0 = Do m(m) B (124)
-l -1, -1, ! P T
Dq Eg = {qu Paa 2 B 0 BgpBarr | (125)
- M‘Zt
o Hae = 2 (M) B g, (126)

3.4.2 Approximation with single Gaussian

We approximate the likelihood in Eq. (110) with a single mixture component
sequence as follows:

P(Y|¢gX,\) = > P(Wylgm, X X)P(m|GX, ) (128)
allm
~ P(Wylg,m, X A)P(m|g, X,\) (129)

After determining the initial static feature vector sequence yg), the single mixture

component sequence and the static feature vector sequence are iteratively updated
as follows:

. argmaxp(mwyg),q,x,)\), (130)
m

gg“) = argmax P (Wylm(*! ¢, X A) . (131)
y

Eq. (131) is solved in the same manner as the basic generation algorithm [109].
Fig. 31 shows the procedure. Eq. (130) and Eq. (131) correspond to model
selection and parameter generation, respectively.

3.5 Initialization method using over-trained acoustic mod-
els

We need to determine the initial parameter sequence. A reasonable way is to
use the parameter sequence generated by the clustered models in the manner of
HMM-based TTS and GMM-based VC. Although the transitions of this initial
parameter sequence are continuous, the parameter sequence is over-smoothed as
described in Section 2.6. The generated parameters are strongly influenced by
this over-smoothing effect, and the improvement in speech quality is slight [120].

To generate a less-smoothed initial parameter sequence, we propose an ini-
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Figure 31. Speech parameter generation using rich context models. The selection
stage and generation stage in this figure correspond to Eq. (130) and Eq. (131),
respectively. In the case of the EM algorithm, these stages correspond to the
E-step and M-step of the algorithm.

tialization with the over-trained acoustic models shown in Fig. 32. The original
sub-regions are further divided up and statistics calculated. Over-trained acoustic
models are calculated from only a few acoustic inventories in the sub-region. The
resulting initial speech parameter sequence is less-smoothed than one generated
by the conventional clustered model. It is expected that such an initial parameter
sequence will help the parameter generation process with rich context models to
select a less-smoothed model sequence. On the other hand, this approach causes
over-training problems. In particular, the initial parameter sequence suffers from
discontinuous transitions. This discontinuity problem can be addressed by the
use of tied covariance matrices in the rich context models and model selection
based on the likelihoods for both static and dynamic features.

In HMM-based TTS, we grow another larger decision tree by decreasing the
MDL parameter aypr,. Note that the sufficient statistics to build this tree are the
same as those used in calculating rich context models. Therefore, its tree structure
is slightly different from that of original decision tree for the conventional clustered
models. Examples of initial and generated parameter sequences are shown in Fig.
33. We can see that discontinuous transitions in the initial parameter sequence are
alleviated in the generated parameter sequence. For the Fj contour generation,
the voiced and unvoiced intervals are determined in initialization using the larger
decision tree.

We train the over-trained acoustic models for each sub-region as shown in Fig.
32. In GMM-based VC, the acoustic space is first divided into ) sub-regions by
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Figure 33. Example of initial and generated mel-cepstral coefficient sequences
and Fy contours in HMM-based TTS.
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Figure 34. Example of the conversion function within one GMM mixture compo-
nent. Whereas the basic function of GMM-based VC is linear, those yielded by
the rich context models are piece-wise linear.

using Eq. (103), then the acoustic models are trained to fit the training data of
each sub-region. This over-trained acoustic model is given as a GMM for each
sub-region, and is trained in the standard manner. The total number of over-
trained models is the sum of the number of mixture components of the GMMs.
The MDL criterion [118] can be utilized to determine the number of over-trained
models, but we determine it by using the Linde-Buzo-Gray (LBG) algorithm
[121]. After determining g, the over-trained models are selected in a manner
similar to that of Eq. (52), and the initial parameter sequence is generated in the
standard manner using the over-trained models.

3.6 Discussion

One rich context model usually corresponds to one speech segment or speech
feature vector. Therefore, the proposed processes are strongly related to unit
selection synthesis. In the parameter generation methods described above, the
HMM/GMM likelihood for the static features and that for the dynamic features
are regarded as a target cost and a concatenation cost, respectively [122, 123].
The synthesis process using the EM algorithm is similar to the process of
selecting multiple acoustic segments and mixing them to generate speech pa-
rameters [124]. On the other hand, the synthesis process with a single mixture
component sequence is similar to the process of selecting a single acoustic segment
sequence to generate the speech parameters [28]. Also, the model selection step
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3.7 Experimental evaluation in HMM-based TTS

can be applied to unit selection synthesis by replacing the selected rich context
models with the corresponding original speech parameters.

From the perspective of utilizing information on individual speech features,
the above synthesis process is the similar to that of kernel-based speech synthesis
[33, 103] and the use of a full-sized tree [120]. One of the advantages is that the
individual acoustic models can be re-selected in the iterative generation process
using the HMM/GMM likelihoods.

The parameter generation methods don’t have to use the constraint used in
the conventional selection method of rich context models as described in Section
2.7. Therefore, they preserve the flexibility of acoustic modeling provided by the
basic HMM-based TTS (and also GMM-based VC). For instance, it is possible to
separately search for the best rich context model sequences for different speech
component parameters to more widely cover a joint acoustic space in HMM-based
TTS.

The above parameter generation methods for HMM-based TTS selects the
rich context models frame by frame. We can also select them state by state by
using an additional constraint that the same rich context model must be selected
within the same state in HMM-based TTS. Also, whereas the conventional GMM
performs linear conversion within one mixture component, the method described
above can perform piece-wise linear conversion, as shown in Fig. 34.

Even if rich context modeling is used, we cannot avoid temporal smoothing
as a result of quantizing to the HMM state level because a decision tree is used
to tie the HMM states in HMM-based TTS!". To address this problem, we can
use a micro-level context such as a frame [120] and state level [125].

3.7 Experimental evaluation in HMM-based TTS
3.7.1 Experimental conditions

In the experiments on HMM-based TTS, we trained a context-dependent phoneme
HSMM [23] for a Japanese female speaker. We used 450 sentences for training
and 53 sentences for evaluation from 503 phonetically balanced sentences in-
cluding in the ATR Japanese speech database [24]. The speech signals were
sampled at 16 kHz. The shift length was set to 5 ms. The Oth-through-24th mel-
cepstral coefficients were extracted as spectral parameters and log-scaled Fj and
five band-aperiodicity [74] were extracted as excitation parameters by using the
STRAIGHT analysis system [10]. The feature vector consisted of spectral and
excitation parameters and their delta and delta-delta features. Five-state left-
to-right HSMMs were used. In the synthesis stage, GV [19] was not considered,
unless otherwise described.

17 In GMM-based VC, there is no such phenomenon because each rich context model corre-
sponds to one speech feature vector.
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Figure 35. Preference scores on speech quality for comparing two proposed gen-
eration methods. The use of a single Gaussian (“Single”) produces higher-quality
synthetic speech compared with the use of a GMM (“GMM?”).

We conducted five different experimental evaluations. In the first evaluation,
we compared the two parameter generation methods described in Section 3.4.
In the second evaluation, we compared frame-level and state-level model selection
to investigate the model selection unit. In the third evaluation, we investigated
the effects of the initial parameter sequence on the generated parameter sequence,
and we investigated the effectiveness of the proposed initialization method in the
fourth evaluation. In the last evaluation, we applied these methods to both spec-
tral and Fj components in order to evaluate the effectiveness of our methods
with rich context models. Conventional clustered models were used for the dura-
tion and aperiodic components in all the evaluations. The parameter generation
method using the approximation with a single mixture component sequence is
used in all experiments except the first evaluation. To clarify the effectiveness of
the methods in a better setting, natural state duration determined by the state-
level forced alignment with conventional context-clustered models was used in
the first and second evaluations.

3.7.2 Comparison of parameter generation methods

We compared the synthetic speech generated by the conventional clustered model
(Conv), our generation method with the EM algorithm (Proposed (GMM)), our
generation method using a single mixture component sequence (Proposed (Sin-
gle)), and a single mixture component sequence selected by the natural speech
parameters as a reference (Target). “Conv.” was used to generate the initial
parameter sequence in our generation methods. Note that our generation meth-
ods were applied to only the spectral component, and the clustered model was
used for the Fy component. A preference test (AB test) on speech quality was
conducted. Pairs of these four types of synthetic speech were presented to seven
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Figure 36. Example of the mixture component sequence selected by frame-based
and state-based model selection. Whereas the mixture component varies frame
by frame in the frame-based selection, it is tied during one HMM-state in the
state-based selection.

listeners in random order. The listeners were asked which sample sounded better
in terms of speech quality.

The results are shown in Fig. 35. Our methods significantly improve speech
quality. Moreover, the use of a single mixture component sequence yields better-
quality speech in comparison with the use of the EM algorithm. We can also
see that the likelihood measure has trouble selecting the best rich context model
sequence, which is approximated with “Target”.

3.7.3 Comparison of model selection unit

We investigate the effect of using different model selection units by comparing
synthetic speech generated by our method with a single mixture component se-
quence selected frame by frame (Proposed (Frame)) or state by state (Proposed
(State)) with the conventional clustered model (Conv). Our generation method
was applied to each spectral and F{, component, and the natural speech parame-
ter sequence was used as an initial parameter. In the Fy component, this initial
parameter sequence had both voiced parameters and unvoiced symbol in same
HMM-state. In the state-level model selection, we unified the Unvoiced /Voiced
(U/V) intervals in the HMM-state by comparing the number of frames of voiced
parameter and that of unvoiced symbols. A test involving seven listeners was
conducted to compare the spectral and Fy components of the different selection
methods in the same manner as Section 3.7.2. We found that the mixture com-
ponent sequences selected by the two methods were different, as shown in Fig.
36. Note that the selected mixture component index is normalized by the total
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Figure 37. Preference scores on speech quality with 95% confidence interval for
comparing the selection unit for spectrum and Fj in HMM-based TTS. We can
see that the frame-level and state-level have the same quality.

number of mixtures.

The results for the spectral and Fy components are shown in Fig. 37. We can
see that the spectral component shows no significant difference between frame-
based selection and state-based selection. Moreover, F;, components of different
U/V intervals show a similar tendency. These results indicate that state-based
selection is as effective as frame-based selection at improving the quality of the
synthetic speech in terms of in both spectral and Fj, components. We can also
see that the difference between “Conv” and “Proposed (Frame)” is larger in the
spectral component than in the Fjy component. This means that the improvement
in the spectral component is more significant than that in the Fy component.

3.7.4 Objective evaluation for investigating dependency on initial pa-
rameter sequence

To investigate the dependency on the setting of the initial parameter sequence on
the finally generated speech parameter sequence, we evaluated three settings of
the initial parameter sequence: 1) Rand: generated from rich context models ran-
domly selected in individual leaf nodes, 2) Clus: generated from the conventional
context-clustered models, and 3) Target: natural target speech parameters. The
initial and a final rich context model sequences were evaluated in terms of the
likelihoods for the generated speech parameters and natural speech parameters.
These evaluation is conducted for each spectral and Fy components under the
natural state duration.

The results of the HMM likelihood for the generated parameters in the spectral
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3.7 Experimental evaluation in HMM-based TTS

components are shown in Fig. 38(a); those for the natural parameters in the
spectral components are shown in Fig. 38(b), and those for the Fy component
are shown in Fig. 39(a) and Fig. 39(b). It is reasonable that the likelihood for
the generated speech parameters increases through iteration in both components,
as shown in Fig. 38(a) and Fig. 39(a). On the other hand, the likelihood for the
natural speech parameters does not always increase through the iteration and its
value strongly depends on the initial parameter sequence as shown in Fig. 38(b)
and Fig. 39(b). We can also see that the likelihood differences in Fig. 38(b) and
Fig. 39(b) are much larger than those in Fig. 38(a) and Fig. 39(a). These results
suggest that the HMM likelihood for the generated parameters increases through
iteration in every initial parameter setting. In contrast, the HMM likelihood for
the natural parameters does not change much. Therefore, these results show
that our generation method strongly depends on the choice of the the initial
parameters.

3.7.5 Subjective evaluation for investigating dependency on initial pa-
rameter sequence

To confirm the results of objective evaluations, we compared synthetic speech
under the generated duration: 1) Conv: generated from conventional clustered
models, 2) Proposed (Clus): generated using the parameter sequence of “Conv”
as the initial parameters in our generation method, 3) Target: generated us-
ing natural target speech parameters as the initial parameters in our generation
method. A preference test (AB test) by seven listeners on speech quality was
conducted in the same manner as in Section 3.7.2. Note that the proposed
method was applied to only spectral parameters.

The results of the preference test are shown in Fig. 40. The proposed gener-
ation method yields only slight improvements in synthetic speech. On the other
hand, we can find that the difference between “Proposed (Clus)” and “Target”
is large. Hence, there is a strong dependency on the initial parameters; an ap-
propriate setting is essential. Although we did not do a comparison using the Fj
component, we believe that would have shown similar results.

3.7.6 Alleviating discontinuous transitions arising in initialization

Before investigating the effectiveness of the initialization method, we conducted a
preliminary experiment to confirm whether or not the iterative parameter gener-
ation method effectively alleviates discontinuous transitions in the initial param-
eter sequence. We evaluated three settings: 1) Clus: initial parameters generated
from the conventional clustered models, 2) aypr, = 0.1: initial parameters gener-
ated with a large decision tree (aypr, = 0.1), and 3) Target: natural target speech
parameter sequence as a target reference. The difference in the HMM likelihoods
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Figure 40. Preference scores on speech

quality with 95% confidence interval Figure 41. HMM Likelihood differ-
for determining the dependency on the ences between before and after itera-
initial parameter sequence. We can see tion. The initialization (“aypr, = 0.17)
that the speech quality of “Proposed dramatically increases the likelihood of
(Clus)” is heavily degraded compared the temporal delta feature.

with “Target.”

for the generated parameters between the initially selected rich context model
sequence and the finally selected rich context model sequence was calculated for
each static and dynamic features in the spectral parameter.

Fig. 41 shows the result of the likelihood differences yielded by the iter-
ative parameter generation. Here, the HMM likelihood for dynamic features of
“ampr, = 0.17 increases more than that in other initial parameter sequences. This
means that iterative parameter generation alleviated the discontinuous transitions
in the initial parameter sequence. We can also see that the difference in HMM
likelihoods for the static feature of “aypr, = 0.17 is the smaller than that of the
dynamic feature,s whereas it is the largest for the other methods. These results
show that “aypr, = 0.17 better alleviates discontinuous transitions than other
methods do.

3.7.7 Objective evaluation of initialization method

To investigate the tree size used to generate the initial parameter sequence, we
evaluated three settings of the initial parameters: 1) Clus: initial parameters gen-
erated from the conventional clustered models, 2) Proposed: initial parameters
generated with a large decision tree (ayprp = 0.1,0.2,---,1.0), and 3) Target:
natural target speech parameter sequence as a target reference for each spectral
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and Fy component. The rich context model sequences selected by the parame-
ter generation method were evaluated with the HMM likelihood for the natural
speech parameters. Moreover, the parameter sequences generated by the selected
rich context models (i.e., those generated by the proposed parameter generation
method) were evaluated with both the GV likelihood [19] and U/V error rate.
The U/V error rate for the F component was calculated as the percentage of
U/V mismatched frames in the generated parameter sequence compared with the
natural parameter sequence.

Fig. 42(a) shows the results of the HMM likelihood for the spectral compo-
nent, while Fig. 42(b) shows those of the GV likelihood for the spectral compo-
nent. Fig. 43(a) and Fig. 43(b) show the results for the F{y component. Moreover,
Fig. 44 shows the size of the decision trees used in our initialization method, and
Fig. 45 shows the resulting U/V error rate. From Fig. 42(a), we can see that the
HMM likelihood of “Proposed” very slightly increases as the parameter aypy, de-
creases from 1.0 to 0.5, and it rapidly decreases as the parameter aypr, decreases
in the spectral components. We can see that the HMM likelihood at aypr, = 0.5
is almost the same as that of “Clus” but it is significantly lower than that of
“Target.” The result for the Fj component shown in Fig. 43(a) are similar,
except that no peaks appear as the parameter aypr, decreases. On the other
hand, Fig. 42(b) indicates the GV likelihood of “Proposed” rapidly increases as
the parameter aypr, decreases, and its value at aypr, = 0.1 is higher than that
of “Target” in the spectral component. Regarding the Fy component, the GV
likelihood of “Proposed” rapidly increases as the parameter aypy, decreases from
1.0 to 0.6, and it rapidly decreases beyond 0.6. Moreover from Fig. 45, we can
see that the U/V error rate increases as the parameter aypy, decreases. From
these results, it is cleared that the HMM likelihood and GV likelihood change as
a result of having a tree whose is size controlled by the parameter aypr,.

3.7.8 Subjective evaluation of initialization method

Two preference tests (AB test) by seven listeners were conducted in the same
manner as in Section 3.7.2. The synthetic speech was generated from the rich
context models by using 1) “Clus”, 2) “Proposed (ampr, = 0.1)”, 3) “Proposed
(appr, = 0.5)7, and 4) “Target” as the initial parameter for the spectral pa-
rameter. For the Fy component, they were 1) Conv: speech generated from
conventional clustered model and generated from the rich context models with
using 2) Clus, 3) Proposed (ampr, = 0.6), and 4) Target as the initial parameter.

The results of the preference test as to the spectral component are shown in
Fig. 46(a), and those for the F, component are shown in Fig. 46(b). From Fig.
46(a), we can see that our initialization method significantly improves speech
quality over that of the conventional initialization method “Clus.” We can also
see that the score of “Proposed (aypr, = 0.1)” is higher than that of “Proposed
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(apprL = 0.5).” This tendency is the same as the one for the GV likelihood shown
in Fig. 42(b). From Fig. 45 and Fig. 46(b)(b), although the setting of the
parameter aypr, to maximize the GV likelihood slightly increases the U/V error
rate, it still improves speech quality, even in terms of the F;, component.

3.7.9 Evaluation in full synthesis

To investigate the effectiveness of all of proposed methods, we evaluated five kinds
of synthetic speech listed in Table 1. A preference test (AB test) on speech quality
was conducted by eight listeners in the same manner as in Section 3.7.2. Note
that “Target” was generated by parameter generation with rich context models
using the natural speech parameter sequence as the initial parameters.

Next, we investigated the effectiveness of methods considering the GV. Here,
the spectral and Fj sequences were generated considering the GV. A preference
test (AB test) on speech quality was conducted by seven listeners in the same
manner as described in Section 3.7.2.

Fig. 47(a) shows the result of the preference test in full synthesis, and Fig.
48 and Fig. 49 show the spectrograms and the Fj contours of “Conventional,”
“Proposed,” and natural speech. It is clear that applying the proposed method
yields a larger improvement in the spectral component than in the F{y component.
Moreover, applying it to both the spectral and Fj components (“PP”) improves
the speech quality to the point that it is close to the target (“T'T”). From this
result, we can see that the proposed parameter generation with rich context
models for the spectral and Fy components improves the quality of synthetic
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Figure 46. Preference scores on speech quality with 95% confidence interval for
investigating the effectiveness of the initialization method. Our initialization
method improves the quality the most for both the spectral and F components.

speech.

Fig. 47(b) shows the results of the preference test in full synthesis considering
the GV. Here, our method improves speech quality for the F{, component even
when considering the GV. We can also see that the score of “PC (GV)” is lower
than that of “CC (GV).” Thus, although most of the discontinuous transitions
of the initial parameter are alleviated, some of them are slightly emphasized
as a result of considering the GV, and this causes a quality degradation in the
synthetic speech. Since the tree for the spectral component is larger than that
for the Fjy component, the over-emphasis effect affects the spectral parameter.

3.8 Experimental evaluation in GMM-based VC

3.8.1 Experimental conditions

We selected 450 parallel sentences of subsets A-through-I from the 503 phoneti-
cally balanced sentences included in the ATR Japanese speech database [126] for
training, and the 53 sentences of subset J for evaluation. We trained female-to-
male GMMs. Speech signals were sampled at 16 kHz. The shift length was set to
5 ms. The Oth-through-24th mel-cepstral coefficients were extracted as spectral
parameters and log-scaled Fj and five-band aperiodicity [74, 127] were extracted
as excitation parameters. The STRAIGHT analysis-synthesis system [10] was
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Table 1. Synthetic speech samples used for full synthesis evaluation using rich
context models in HMM-based TTS.

Method Spectrum £y
cC Conventional Conventional
CP Conventional Proposed (anmpr, = 0.6)
PC Proposed (aypr, = 0.1) Conventional
PP Proposed (ampr, = 0.1) | Proposed (aypr, = 0.6)
TT Target Target

used for parameter extraction and waveform generation. The feature vector con-
sisted of spectral and excitation parameters and their delta and features. We
built a 128-mixture GMM for spectral parameter conversion and a 16-mixture
GMM for band-aperiodicity conversion. Our method was applied to the spectral
parameters. The log-scaled F{y was linearly converted. The band-aperiodicity was
converted using the conventional GMM. The total number of rich context models
was 590, 745. In the parameter generation, we selected the 128-best candidates
for each frame. GV [9] was not considered in speech parameter generation.
We compared the following approaches:

Cnv: conventional GMM-based VC!®
Pro: our approach using rich context models
Tar: rich context models selected by reference data

In the initialization for “Tar,” the best rich context models were selected by using
the target reference speech parameters. We first calculated the misclassification
rate for the training data to see the effect of discriminative training [119]. Then,
after determining the number of over-trained models for initialization, subjective
evaluations were conducted to confirm effectiveness of our method.

3.8.2 Effect of discriminative training

We evaluated the effect of the discriminative training done after the conventional
joint density model training. The misclassification error rates were calculated
for the training algorithms. The error rate was calculated as the number of
misclassified training data divided by the number of the training data. Here
“misclassified data” indicates the joint speech feature that the mixture component
determined with Eq. (103) is different from the one determined with Eq. (52).

18 The discriminative training [119] was performed.
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Figure 47. Preference scores on speech quality with 95% confidence intervals
for full synthesis in HMM-based TTS. When the GV is not considered, the pro-
posed method for the spectral and F, components matches the target in quality.
However, the results deteriorate when the GV is considered.

The error rates are shown in Fig. 50. The 1.4% reduction in error rates means
that discriminative training [119] makes it possible to select better rich context
models.

3.8.3 The number of the over-trained models

We calculated the GV likelihoods!® for the generated speech parameters in order
to determine the number of the over-trained models. In each sub-region, we
increased the number with the LBG algorithm until we could not estimate the
model parameters. Although we can change the number sub-region by sub-region,
the number was the same among the sub-regions®.

The GV likelihood is shown in Fig. 51. We can see that the GV likelihood
of “Pro” is the biggest around the compression ratio of 0.6 (3616 over-trained

models). Therefore, we determine the number of over-trained models to be 3616.

19 We did not calculate the GMM likelihood because we have demonstrated that the number
of over-trained models is determined by the GV likelihood rather than by the HMM likelihood
in HMM-based TTS.

20 Except we cannot estimate the GMM parameters of the sub-region.
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Figure 49. Example of Fy contours of synthetic speech for the sentence fragment
“sorewa taitei.” “Natural” represents the spectrograms of natural speech.
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Figure 51. GV likelihoods for the finally generated speech parameter sequence.
The compression ratio (x-axis) is the number of over-trained models divided by
the number of training data.

3.8.4 Evaluation in speech quality and speaker individuality

A preference test (AB test) was conducted in the perceptual evaluation. We
presented every pair of generated speech of the three algorithms in random order,
and we made the listeners to select the better-quality speech sample. Similarly, an
XAB test on speaker individuality was conducted using the analysis-synthesized
speech as reference “ X.” Eight listeners participated in each evaluation.

The results of the preference tests are shown in Fig. 52(a) and Fig. 52(b).
We can see that our method achieves higher scores in both speech quality and
speaker individuality compared with the conventional GMM-based VC (“Cnv”).
This demonstrates the effectiveness of our method. The score of “Tar” is lower
than that of “Pro” in speech quality. We found some speech samples of “Tar”
sound discontinuous, and it is expected that small training data size caused this
phenomenon. Whereas “Pro” can alleviate the discontinuity by using slightly
averaged initial speech parameters, “Target” uses non-averaged initial speech
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Figure 52. Preference scores with 95% confidence intervals for examining the
effectiveness of rich context modeling for GMM-based VC.

parameters?!. We expect that this degradation using non-averaged parameters
can be avoided by increasing the size of the training data®?. An alternative
solution is to perform the iterative generation after the “Tar” initialization, but
this is not an aim of this study.

3.9 Summary of this chapter

This chapter described statistical sample-based speech synthesis using rich con-
text models to address the problem of inaccurate modeling causing quality degra-
dation.

Section 3.2: We applied the rich context modeling originally proposed in HMM-
based TTS [18] to GMM-based VC. The rich context models were trained for each
joint speech feature vector belonging to each GMM mixture component.

Section 3.3: The rich context models belonging to one sub-region were gath-
ered to construct the R-GMM in both HMM-based TTS and GMM-based VC.
The mixing weights were tied instead of using the ML estimates.

21 Section 3.7.1 and this section used the same amount of training data, but Section 3.7.1
did not show such a result. We think that this is because the rich context models used in
Section 3.7.1 are temporally averaged, but those of this work are not.

22 This solution is known in unit selection synthesis.
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Section 3.4: We proposed two ML-based speech parameter generation meth-
ods; the use of EM algorithm and approximation with single Gaussian distribu-
tions. The speech parameter generation with the hidden variable [109] have been
utilized in the EM-based generation, and the likelihood is approximated with the
single Gaussian distributions having the highest posterior probability.

Section 3.5: The iterative generation algorithms were initialized using a less-
smoothed parameter sequence. Each subspace, which corresponds to one leaf
node in HMM-based TTS and one mixture component in GMM-based VC, was
further divided, and over-trained acoustic models were built to fit the training
data of each sub-region. The initial speech parameter sequence in synthesis is
generated from the over-trained acoustic models.

Section 3.6: We compared our methods with the conventional approaches.
Compared with basic HMM-based TTS and GMM-based VC, our methods pro-
duce higher-quality synthetic speech by modeling individual speech features.
Moreover, compared with the conventional hybrid methods combining unit se-
lection synthesis, our methods retain the flexibility of the basic HMM-based T'TS
and GMM-based VC because it doesn’t have the constraints used in the conven-
tional hybrid methods.

Section 3.7: We conducted several experiments to confirm the effectiveness
of our methods in HMM-based TTS. The results demonstrated: (1) the use of
an approximation with a single Gaussian component sequence yields synthetic
speech higher in quality than that produced by the EM algorithm, (2) the state-
based model selection yields quality improvements at the same level as the frame-
based model selection, (3) the use of the initial parameters generated from the
over-trained speech probability distributions is very effective at improving speech
quality, and (4) our methods for spectral and F components yield significant
improvements in quality compared with the use of basic HMM-based TTS.

Section 3.8: We conducted experiments proving the effectiveness of our meth-
ods in GMM-based VC. In particular, our methods achieved better scores in
speech quality and speaker individuality in comparison with basic GMM-based
VC.
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Chapter

Modulation spectrum-based post-filter
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4.1 Introduction

4.1 Introduction

The Global Variance (GV) [19, 9] in Section 2.9 is a well-known example to
capture the over-smoothing effect. However, the use of this metric in the param-
eter generation tends to additionally generate artificial sounds [128, 21] and the
quality gap between natural and synthetic speech is still large.

In this chapter, we first propose a new feature more sensitively correlated to
the over-smoothing effect than the GV, the Modulation Spectrum (MS). The MS
of a speech parameter sequence is given as the power spectrum of the sequence.
The linear-scaled MS is a second order moments of the parameter sequence as the
same as the GV, and can be regarded as a mathematical extension of the GV. The
effectiveness of the MS in capturing speech properties has been noted in other
research areas, such as spectral cues of speech perception [129], the use as acoustic
features in HMM-based speech recognition [130] and acoustic signal classification
[131], and as a counter-measure to discriminate synthetic speech from natural
speech in speaker verification [132]. Related to the perceptual effect, [133, 134]
investigated the effect of the MS (especially, lower modulation frequency band)
on the perceptual intelligibility. Because generated speech parameter sequences
tend to be temporally smoothed by the statistical generation process, the MS of
synthetic speech tends to be degraded compared to that of natural speech. This
MS degradation is still observed even when GV is used in parameter generation.

Furthermore, we also propose the post-filtering processes based on the MS. As
we described in Section 2.3, the post-filtering process is very simple, portable,
and effective approach to alleviate the over-smoothing effect, and it is done be-
tween speech parameter generation and waveform generation, as shown in Fig. 53.
The post-filtering approach proposed in this chapter remedies the over-smoothing
problem by modifying the generated speech parameter sequence so that its MS
becomes more similar to that of natural speech. The proposed post-filter modifies
the MS utterance by utterance and can be automatically constructed using natu-
ral speech and synthetic speech as training data. This utterance-level post-filter
is further extended to a segment-level post-filter to modify the MS segment by
segment in order to achieve low-delay parameter generation [135, 96].

In the experimental evaluation, we first evaluate the proposed post-filters in
HMM-based TTS [8] from various perspectives. Then, we evaluate them in other
speech synthesizers to confirm the high portability of the MS-based post-filters:
the utterance-level post-filter in GMM-based VC [9] and the segment-level post-
filter in CART-based TTS (a.k.a., CLUSTERGEN) [32].

The rest of this chapter is organized as follows, and shown in Fig. 54. In
Section 4.2, We define the MS in this section, and we analyze the difference be-
tween natural and generated speech parameters, including spectral parameters,
Fy contours, and HMM-state duration sequences. The MS-based post-filters are
proposed in Section 4.3 and Section 4.4. We first describe the basic process
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Original procedures are done in the standard manner.
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that modifies MSs of the generated parameters.
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Figure 53. The proposed MS-based post-filter added in statistical parametric
speech synthesis procedures. The post-filter is automatically constructed using
speech database, and its process is independent on the original speech synthesis
procedure.

of the MS-based post-filter, which is performed utterance by utterance. Then,
the utterance-level post-filtering process is further modified into the segment-
level process. In Section 4.5, We discuss about several terms, such as (1) the
relationship between the conventional GV and the proposed MS, and (2) intu-
itive understandings of the effect of the MS-based post-filter. Section 4.6 and
Section 4.7 are the experiments and summary.

4.2 Modulation Spectrum (MS) analysis
4.2.1 MS definition

Roughly speaking, in the HMM-based TTS framework, the context-dependent
HMM averages the corresponding natural speech parameters in the training stage,
and then outputs the averaged parameters in the synthesis stage. In practice,
this averaging has a similar effect to low-pass filtering applied to the speech
parameter sequence. Therefore, we expect that frequency characteristics of the
speech parameters can measure the difference between natural and generated
speech parameter sequences. In this chapter, we focus on the MS as a such
quantitative measure of these frequency characteristics.

Though the MS is traditionally defined as a value calculated using the Fourier
transform of the parameter sequence [136], this chapter defines the MS as its
log-scaled power spectrum. The temporal fluctuation of the parameter sequence
is modeled as power values of individual modulation frequency components of the
parameter sequence. The MS s (y) of the parameter sequence y is calculated as:

s(y) = [sM' - s@" - s(D)] (132)
s(d) = [34(0), - ,5a(f), ,sa(Ds)]", (133)
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Figure 54. The rest of Chapter 4.

2

sq(f) = log ((Z Y (d) cosmt) + <Z Yt (d) sinmt) ) , (134)

where f is a modulation frequency index, m = —x f /Dy is a modulation frequency,
and Dy is one half of the Discrete Fourier Transform (DFT) length. The MS is
calculated from zero-padded parameter sequences so its length is 2D;. As shown
in Fig. 55, s(y) is given as a super vector consisting of the MSs corresponding
to individual feature dimensions.

4.2.2 Over-smoothing effect quantified by MS

To demonstrate how the MS allows us to capture relevant frequency characteris-
tics, we first demonstrate some characteristics of the MS of natural and synthetic
speech. Figure 56 shows the MS mean of the mel-cepstral coefficient sequences
generated using Eq. (54) (“HMM”) and Eq. (97) (“HMM+GV?”) in HMM-based
TTS. Additionally, the MS mean of a natural speech parameter sequence (“natu-
ral”) is shown in the same figure for comparison. It can be observed that the MS
of “HMM?” is markedly degraded compared to that of “natural.” This is because
temporal fluctuation observed in the natural speech parameter sequences is lost
in the HMM framework. We can also find that the MS of “HMM+GV” is closer
to natural speech in lower modulation frequency bands but there is still a large
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Figure 55. Graphic representation of how to derive the MS s (y) from the speech
parameter sequence y. Note that a zero-padding process is skipped in this figure.

gap between the MSs of “HMM+GV” and “natural speech” in higher modulation
frequency bands (more than 10 Hz). From these results, we can expect that fur-
ther quality improvements will be yielded by compensating for these differences
in the MS.

In addition, we consider the spectral tilt of the MS (defined as “MS tilt”)
which indicates the power difference between the lower and the higher modula-
tion frequency components in Fig. 56. We can observe that the MS tilt of the
natural mel-cepstrum tends to increase in the higher order mel-cepstral coeffi-
cients. On the other hand, the MS tilt of the generated mel-cepstrum is similar
among different order mel-cepstral coefficients. Even when using the GV in the
parameter generation “HMM-+GV,” the MS is just shifted and the MS tilt is not
changed. These results show that the parameter generation process shown by Eq.
(54) or Eq. (97) tends to constrain the MS tilt of the generated speech parameter
sequence to be almost constant.

In addition to the cepstral coefficients, we can also calculate the MSs of the
other features. as described in the following section. The MS of the F, contour
shown in Fig. 57 is also degraded by the statistical process. Higher modulation
frequency components of the generated MS are almost the same as those of nat-
ural speech, but lower components are slightly different. HMM-state duration
determined by Eq. (51) is also affected by the over-smoothing effect due to the
statistical averaging process implicit in conventional parameter generation, as in
the spectrum and Fj components [49, 112]. Figure 58 shows the MS mean of
phoneme duration sequences. We can see that the generated MS is generally
smaller than that of natural speech.
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Figure 56. Averaged log-scaled MSs of the 1st, 9th and 15th mel-cepstral co-
efficient sequences from above in HMM-based TTS. Note that the modulation
frequency (vertical axis) is in a log-scale. We didn’t draw the MSs generated
using the rich context models proposed in Chapter 3, but they are plotted in the
middle between “HMM” and “natural.”
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Figure 57. Averaged log-scaled MSs of the log-scaled FO contours in HMM-
based TTS. Note that the Nyquist frequency is 100 Hz similarly to the spectral
parameters, but only < 10 Hz components are shown.
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Figure 58. Averaged log-scaled MSs of the phoneme-level duration in HMM-based
TTS. Note that the pseudo Nyquist frequency is set to 100 Hz because we cannot
define the Nyquist frequency for duration.

4.3 Utterance-level post-filter

This section proposes post-filters to modify the MS of the generated parameter
sequence. Figure 59 shows a schematic diagram of the proposed method. Param-
eters of the proposed post-filter are automatically trained using natural and gen-
erated speech parameter sequences in the training data. The speech parameters
are generated by an individual speech synthesizer. First, the utterance-level MS-
based post-filter is described for spectrum, Fy, and HMM-state duration. Then,
the segment-level MS-based post-filter is derived by localizing the utterance-level
post-filtering process.

4.3.1 Basic processes

The MS is calculated from a parameter sequence that is zero-padded to set its
sequence length to 2D.

Training process The following probability distribution function is estimated
from natural speech parameter sequences:

P(s(y)|A) =N (s (y);ul,5V), (135)

where p™ and £ are the mean vector and the diagonal covariance matrix of
the MS,

T T 7
IJ’éN) = [IJ’EN) y T al-'l’t(iN) y "0 7”’%\1) :| ; (]‘36)
EgN) = dlag [EgN)’ e EEIN)’ s 2%\1)} , (137)
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Figure 59. A schematic diagram of the proposed MS-based post-filter to modify
the MS of the generated parameter sequence in the case of HMM-based TTS.
When the post-filter is applied to GMM-based VC, the statistics of the generated
MS are calculated using the speech parameters generated through the GMM-
based conversion process.

N N N N) 1T
g’ = [ S (138)
2 2 2
500 = ding ol oo 0. (139

where ,ugy\l) and 03})2
is the parameter set of the MS. ('; e, EgG)) is also estimated in the same
manner using the speech parameter sequences generated as described in Chapter
2. To avoid the effect of the duration difference between natural and gener-
ated speech parameter sequences in HMM-based TTS, the parameter sequence
is generated using the natural speech duration. In the case of GMM-based VC,
temporally-aligned input speech parameter sequence X is used to generated the
speech parameter sequence g G

are the mean and the variance of sy (f), respectively. Ag

Synthesis process The following filter is applied to the generated speech pa-
rameter sequence g g (see Fig. 60.):

(N)
04, G N
i () = (L= k)sa(F) +k | = (sa(F) = pis?) + 157 | (140)
where k is a post-filter emphasis coefficient between 0 and 1. If £ = 1, the MS
will be modified to be close to the MS of natural speech parameter sequences. On
the other hand, if £ = 0, the filtered sequence will be the same as the non-filtered
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Figure 60. An example of the MS conversion in the synthesis stage. Note that
the MS envelope (“Generated MS” and “Filtered MS”) is drawn instead of the
MS itself for clear illustration. The MS envelope is calculated by liftering the
cepstrum of the MS.

sequence. The filtered parameter sequence is calculated from the modified MS
and original phase characteristics of the parameter sequence before filtering. The
detailed procedure is listed below,

Zero-pad the original parameter sequence.

Take the DFT and store the phase characteristics.
Calculate the log-scaled power spectrum (= MS).

Apply the post-filter to the MS.

Compute the power and add the original phase.

Take the inverse DFT.

Truncate the resulting signal to have an appropriate length.

N Ot W=

4.3.2 Application to FO contour

While the proposed post-filter can be directly applied to the spectral component,
additional processing is required for its application to the Fjy component because
observed Fj contours are not a continuous sequence. To solve this problem, we
use continuous Fy modeling [86] which also estimates Fj values at the unvoiced
frames. Following [137], F, values of the unvoiced frames are estimated with
spline-based interpolation. Because the effect of micro prosody on speech quality
is small [53] but the effect on the MS is not negligible, we remove it with a
Low Pass Filter (LPF). Moreover, the utterance-level Fy mean is subtracted from
original Fj values before estimating continuous Fi contours to avoid discontinuous
transitions in the zero-padding process. These procedures are shown in Fig. 61.
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Figure 61. An illustration of the pre-processing procedures to calculate the con-
tinuous F, contour from the original Fy contour. A low pass filter is used for
removing the micro prosody.

Because spline-based methods are inappropriate for extrapolation, i.e., silence
frames, we calculate the MS from the non-silence frames?.

In the synthesis stage, the utterance-level mean and unvoiced/voiced regions
of the generated Fy contour are extracted before applying the proposed post-
filter. First, the filtered continuous Fy contour is calculated in the same manner
as the spectral component. Then, the filtered Fy contour is calculated by adding
the mean to the filtered continuous Fy contour and restoring the unvoiced/voiced
regions.

4.3.3 Application to HMM-state duration

The proposed utterance-level post-filter modifies the MS of the phoneme-level
duration calculated from the state-level duration determined by Eq. (51). The
phoneme-level duration sequence is filtered after excluding silence and its mean
value is normalized as with the Fj parameters. After restoring the utterance-level
mean, the phoneme-level duration is revised if it is smaller than the number of
states of the phoneme HMM. Finally, the HMM-state duration is updated by
maximizing the state duration while fixing the phoneme duration to the filtered
values.
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Figure 62. Procedures of the segment-level MS-based post-filter in HMM-based
TTS. The window length and DFT length must be determined in this filtering
process. The shift length is a half of the window length.

4.4 Segment-level post-filter

Because the proposed utterance-level MS-based post-filter calculates the MS ut-
terance by utterance, the DFT length needs to be set large enough to cover various
lengths of utterances. This MS calculation causes some problems: if the length
of an utterance to be synthesized is longer than the previously determined DF'T
length, the MS can not be calculated accurately, and thus it is difficult to apply
the utterance-level filtering process to a low-latency speech synthesis framework
[135, 96] and a incremental speech synthesis framework [59, 60, 61] where frame-
level or segment-level processing based on the recursive parameter generation is
essential [7].

In order to handle these cases, we propose a segment-level post-filter that is
effective on shorter segments. The segment-level post-filter is derived by localizing
the post-filtering process as illustrated in Fig. 62. A part of the speech parameter
sequence that is windowed by a triangular window with constant length is used
as a segment to calculate the MS and its statistics. The window shift length is set
to a half of the window length. The MS-based post-filtering process is performed
segment by segment in the same manner as the trajectory-level post-filtering
process. The filtered speech parameter sequence is generated by overlapping and
adding the filtered segments. The Hanning window may also be used instead of

23We also considered simple approaches to estimate Fy of silence such as the use of the
utterance-level mean of F or the use of the Fy value in the nearest voiced frame. However, we
have confirmed that the current method is better to model the MS.

84



4.5 Discussions

the triangular window. Note that for the spectrum parameters, silence frames are
removed in calculating the MS statistics to alleviate the over-fitting problem [14].
The segment-level post-filtering can be applicable to low-delay speech waveform
generation. Moreover, it is possible to further implement context-dependent post-
filtering.

4.5 Discussions

The proposed post-filters can be automatically constructed in a data-driven man-
ner. Whereas conventional post-filtering processes [49, 114, 115, 116] requires the
rule-based design [49], or manual tuning [114], the proposed post-filters enable
automatic design and tuning.

Another data-driven approach is the post-filtering process to maintain the GV
of the generated parameter sequence [22]. The generated speech parameters are
linearly converted as follows:

(GV.N)
X 0
(@) = | ey @)~ 0 @)} + (0 @) (141)
d
where pJEZGV’N) and ,u((iGV’G) are the GV mean of the d-th dimension of the natural

and synthetic speech parameters in the training data, respectively, and (y; (d))
is the mean of the d-th dimension of the synthetic speech parameters. In this
method, since only the variance of the sequence is considered, the MS degradation
is not completely recovered. Thus, temporal fluctuation of the generated speech
parameters after filtering is still very different from that of natural speech. On
the other hand, the proposed post-filters can recover this fluctuation because we
directly consider the MS itself.

According to the Parseval’s theorem, the power of a temporal sequence is
preserved during a DFT. The GV defined in Eq. (94) represents the power of the
sequence except the bias component. Because the utterance-level MS is defined
as the power spectrum of the sequence, the sum of the MS over all modulation
spectra except the bias component (frequency zero) is equal to the GV?*. As
the another interpretation, MS can be regarded as the frequency-domain GV as
shown in Fig. 63. The temporal sequence are decomposed into the frequency
components, and GV of one frequency component is given as one of the MS
component.

In the GV-based post-filtering process, MSs of all modulation frequencies
other than the bias are converted in the same way. Namely, the GV-based post-
filtering process is a special case of the proposed MS-based post-filtering process

24Properly described, the sum of linear-scaled MS except the bias is equivalent to GV.
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Figure 63. The relationship between Global Variance (GV) and Modulation Spec-
trum (MS). The MS can be regarded as the frequency-dependent GV.

under the following conditions:

iy = logp @V (f > 0), (142)
N G
uig = pi) (f=0), (143)
N G
Jc(l,f) = Uc(l,f) ’ (144)

in which the post-filter emphasis coefficient is set to 1. Namely, the GV-based
post-filtering process only causes the unnatural MS shift as shown in Fig. 56%.
On the other hand, the proposed methods can directly convert the MS compo-
nents at individual modulation frequencies.

Figure 64 draws an example of the filtered /non-filtered mel-cepstral coefficient
sequences. It is observed that the proposed post-filter generates the fluctuated
parameter sequence, and the effect is larger in the higher order of the mel-cepstral
coefficients. This is because the MS difference between natural and generated
parameter sequences is larger in higher-order mel-cepstral coefficients as shown
in Fig. 56. Similarly, Fig. 65 and Fig. 66 show the Fy contour and duration. We
can also find the fluctuated parameter sequences are generated by the proposed
post-filter.

As the another implementation of the MS-based post-filters, we can also
consider the use of frequency-delta MS as used in the GV [111] and the non-
parametric MS modeling such as [140].

%In Fig. 56, the parameter generation algorithm considering the GV rather than the GV-
based post-filter is used. Although it tends to make the GV of the generated speech parameter
sequence almost equal to the GV mean p, [138, 139], it still causes only a MS shift in practical
effect, although the amount of the MS shift changes utterance by utterance.
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Figure 64. An example of the filtered and non-filtered 1st, 9th, and 15th mel-
cepstral coefficient sequences from above in HMM-based TTS. We can see that the
effect of the post-filter is larger in the higher order of the mel-cepstral coefficients.
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Figure 65. An example of the filtered and non-filtered Fjy contours in HMM-based
TTS.
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Figure 66. An example of the filtered and non-filtered phoneme-level duration in
HMM-based TTS.

Note that although these fluctuated parameter sequences are effective for im-
proving naturalness of synthetic speech, they sometimes make synthetic speech
warbling. It is expected that this problem will be addressed by incorporating the
MS metric into the metric for the parameter generation as done in the GV-based
parameter generation [19, 9]. We will confirm it in the next chapter.

4.6 Experimental evaluation

First, we investigate the effects of the proposed utterance-level and segment-level
post-filters from various perspectives in HMM-based TTS. Then, we evaluate
them in other statistical parametric speech synthesis frameworks: the effect of
the utterance-level post-filter in GMM-based VC and the effect of the segment-
level post-filter in CLUSTERGEN.

4.6.1 Experimental conditions for evaluation in HMM-Based TTS

We trained a context-dependent phoneme Hidden Semi-Markov Model (HSMM)
[141] for a Japanese female speaker for evaluation in HMM-based TTS. We used
450 sentences for training and 53 sentences for evaluation from the 503 phonet-
ically balanced sentences included in the ATR Japanese speech database [24].
Speech signals were sampled at 16 kHz. The shift length was set to 5 ms. The
Oth-through-24th mel-cepstral coefficients were extracted as spectral parameters
and log-scaled Fyy and 5 band-aperiodicity [74, 127] were extracted as excitation
parameters. The STRAIGHT analysis-synthesis system [10] was employed for
parameter extraction and waveform generation. The feature vector consisted of
spectral and excitation parameters and their delta and delta-delta features. Five-
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state left-to-right HSMMs were used. The proposed post-filter was trained in a
context-independent manner. A 10 Hz-cutoff LPF was used to remove the micro
prosody from the continuous F, contours?®.

We conducted evaluation with the following systems:

HMM: The spectrum and Fy are generated with Eq. (54), and the HMM-state
duration is determined with Eq. (51).

HMM+MS: The proposed post-filter is applied to “HMM.”

HMM+GV: The spectrum and Fy are generated with Eq. (97).

HMM+GV+MS: The proposed post-filter is applied to “HMM+GV.”

Note that the post-filter of “HMM+GV+MS” was trained using parameter se-
quences generated with the GV. The “HMM?” system was used for the components
that the proposed methods were not applied to. The post-filters were not applied
to the aperiodicity component because there is no quality gain achieved by the
post-filters®7.

4.6.2 Coefficient tuning for utterance-level post-filter

We investigate the effectiveness of the proposed utterance-level post-filter in
HMM-based TTS. The filter emphasis coefficients for spectrum, Fy and dura-
tion are first tuned by the likelihoods. The synthetic speech quality is then
evaluated using the tuned emphasis coefficients. The DFT length to calculate
MS (= 2D,) was set to 4096, which is over the maximum frame length in training
and evaluation data.

Here, in order to determine the filter emphasis coefficients, we calculated the
HMM likelihood, GV likelihood, and MS likelihood for filtered spectrum, Fj, and
HMM-state duration for settings of the emphasis coefficient from 0 to 1. The
duration likelihood was calculated instead of the HMM likelihood when tuning
the coefficient for duration. For comparison, the likelihood for natural speech
parameter sequences was calculated, which was labeled as “natural.” Note that
the HMM likelihood and the MS likelihood were normalized by the total number
of frames 7" and one half of the DFT length Dy, respectively.

Figure 67 shows the likelihoods for the filtered spectral parameters. It is
observed that the HMM likelihoods of “HMM+MS” and “HMM+GV+MS” de-
crease as the emphasis coefficient increases. Nevertheless, their values are always
higher than that of “natural.” In the GV likelihood, we can see that these like-
lihoods cross that of “natural speech” at £ = 0.85. On the other hand, MS

26We evaluated training accuracy of MS likelihood for various cutoff frequencies, and con-
firmed that this setting was the best.

2TThe same tendency is reported in the parameter generation algorithm considering the GV
[127].
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Figure 67. HMM, GV, and MS likelihoods for the spectral parameter sequences

filtered by the proposed utterance-level post-filter in HMM-based TTS.

I
o ot

Log-scaled likelihood
DN
s N

NS}
e}

2.

Hl}V[M1 like}liho}od 36 (?V l%keli}hoold 078 MS l%keli}hoold
RN ey T e S
ol phengetatsheadalad Corm T e =1 0791 .. . HMM+MS..
[ amveavims| 34 uvigyems ] 0 MMM g
w320 080 ‘
‘ 3ob ] —0.81
2.8 —0.82
"""" 2.6 —0.83 :
777777 natural : | ././3 oo
: ; 24 —0.84}/ HMM+GV+MS B

00204060810 >0

Emphasis coef.

Emphasis coef.

002040608 1.0°%

Emphasis coef.

00204 06 08 1.0

Figure 68. HMM, GV, and MS likelihoods for the F{ contours filtered by the
proposed utterance-level post-filter in HMM-based T'TS.
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Figure 69. Duration and MS likelihoods for the phoneme-level duration sequences
filtered by the proposed utterance-level post-filter in HMM-based TTS.

likelihoods increase as the coefficient increases but their values always lower than
“natural speech.” Considering these results, we determined the filter emphasis
coefficient for spectral component to be 0.85.

Figure 68 shows the likelihoods for the filtered Fj contour. The change of
these likelihoods as the coefficient varies show the same tendency as those for the
spectral components except the relation with the likelihoods of “natural speech.”
We can find that all likelihoods of “HMM+MS” and “HMM~+GV+MS” are higher
than “natural speech” when setting the emphasis coefficient over k = 0.75, and
we can also find that the coefficient £ = 1.0 is the highest point of MS likelihood.
From these results, we set the coefficient to 1.0.

Figure 69 shows the likelihoods for the filtered phoneme-level duration. The
tendency of the likelihood change is similar to those of the spectrum and Fj, and
the MS likelihood is the highest at k = 1.0. Therefore, we set the coefficient
k = 1.0. We can also see discontinuous transitions of the MS likelihood. We
expect that this was caused by the effect of rounding the filtered duration values
into integer values after filtering.

4.6.3 Subjective evaluation for utterance-level post-filter

To investigate whether or not quality improvements are yielded by applying the
proposed post-filter to the spectrum, Fjy, and duration components, we conducted
a preference AB test on speech quality. Every pair of these types of synthetic
speech was presented to listeners in random order. Listeners were asked which
sample sounded better in terms of speech quality. Evaluation for spectrum, Fjp,
and duration was conducted by 8, 8, and 6 listeners, respectively.

Figure 70 shows the preference test for the spectrum, Fj, and duration. For
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Figure 70. Preference scores on speech quality with 95% confidence interval for
confirming the quality gain by the proposed utterance-level post-filter in HMM-
based TTS.

spectrum, we can see that the score of the “HMM+MS” system dramatically in-
creases over the “HMM?” system, and achieves a similar score to the ”HMM+GV”
system. Additionally, further improvement can be observed by applying the pro-
posed method to “HMM-+GV.” From these results, the effectiveness of the pro-
posed method for the spectral component is confirmed. For Fj, “HMM-+MS” and
“HMM+GV+MS” achieve a better score than “HMM,” but there are not addi-
tional gains over when GV is considered. The reason why the score differences
among conventional and proposed methods are smaller than those in the spectral
components is that the MS of the generated F, contours is quite close to that of
the natural Fy contours, as shown in Fig. 57, even if not applying the proposed
post-filter. Finally, we can also see a slight improvement in quality for dura-
tion. These results demonstrate a quality gains by the proposed utterance-level
post-filter for spectrum, F and duration.

4.6.4 Coefficient tuning for segment-level post-filter

We evaluate the effectiveness of the segment-level post-filter in HMM-based T'TS.
The window length and window shift length were set to 125 ms (25 samples)
and 60 ms (12 samples) [142]. A 64-taps DFT was used to calculate the MS.
The tuning step and evaluation step were conducted in the same way as the
evaluation of the proposed utterance-level post-filter. Note that the post-filter
was not applied to the duration because we could not observe a large difference
between filtered and non-filtered sequences.

The HMM likelihood, GV likelihood, and MS likelihood for the filtered spec-
tral parameters and F{ contours were calculated. The results are shown in Fig.
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Figure 71. HMM, GV, and MS likelihoods for the spectral parameter sequences
filtered by the proposed segment-level post-filter in HMM-based TTS.
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Figure 72. HMM, GV, and MS likelihoods for the F{ contours filtered by the
proposed segment-level post-filter in HMM-based TTS.
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Preference score

Figure 73. Preference scores on speech quality with 95% confidence interval for
confirming the quality gain by the proposed segment-level post-filter in HMM-
based TTS.
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Figure 74. Preference scores on speech quality with 95% confidence interval for
comparing the proposed utterance-level and segment-level post-filters in HMM-
based TTS.

71 and Fig. 72. Their tendencies are similar to those of the utterance-level post-
filter. Although the segment-level post-filtering process causes a degradation of
the HMM likelihoods, they are still greater than those of natural parameters.
Almost all likelihoods tend to increase as the filter coefficient approaches 1. We
observed a degradation of the MS likelihood for F{, but it is always greater than
that of natural parameters. From these results, we tuned the emphasis coefficient
to 1.0 for both spectrum and Fj. As the general tendency, the change of the MS
likelihoods is smaller than that in the utterance-level post-filter.

4.6.5 Subjective evaluation for segment-level post-filter

The preference AB test on speech quality by 7 listeners was conducted in the
same manner as in the previous section. The post-filtering was applied to both
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Figure 75. GMM, GV, and MS likelihoods for the spectral parameters filtered by
the proposed utterance-level post-filter in GMM-based VC.

spectrum and Fj.

The preference score is shown in Fig. 73. It is observed that a significant
quality gain is yielded by “HMM+MS” compared to “HMM,” and it is comparable
to that yielded by “HMM+GV.” Furthermore, we can see that an additional gain
is yielded by “HMM+GV+MS” compared to “HMM+GV.” This tendency is
similar to that observed in the utterance-level post-filter. Note that the segment-

level post-filter is applicable to speech parameter sequences of various lengths but
the utterance-level post-filter is not.

4.6.6 Comparison of utterance-level and segment-level post-filters

We compare the proposed utterance-level and segment-level post-filters that are
applied to “HMM-+GV” for spectrum and Fy. We used the emphasis coefficients
tuned in this and the previous section. The preference AB test on speech quality
by 8 listeners was conducted.

Fig. 74 shows the result. Because there is no significant difference between two
post-filters, we can find that the proposed post-filters have the same capability
in the speech quality improvement.

4.6.7 Evaluation in GMM-Based VC

The proposed utterance-level post-filter was applied to GMM-based VC. the tun-
ing step and evaluation step are conducted in the same manner as the evaluation
for HMM-based TTS. Here, “HMM+GV” and “HMM+GV-+MS” were relabeled
as “GMM+GV” and “GMM+GV+MS,” respectively. The systems correspond-
ing to “HMM” and “HMM+MS” were not used in the evaluation.
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We prepared speech from two Japanese male and female speakers®®. We se-
lected 50 parallel sentences of subset A from the 503 phonetically balanced sen-
tences included in the ATR Japanese speech database [126] for training, and 50
sentences of subset B for evaluation. We trained female-to-male GMMs. The
speech features were the same as in the evaluations for HMM-based TTS. The
spectral parameters and aperiodic components were converted with a 64-mixture
GMM and a 16-mixture GMM, respectively. The log-scaled F{ was linearly con-
verted. The DFT length to calculate MS was set to 2048, which is over the max-
imum frame length in the training and evaluation data. The proposed utterance-
level post-filter was applied to the spectral parameters.

The GMM likelihood, GV likelihood, and MS likelihood for the filtered spec-
tral parameters were shown in Fig. 75. From this result, we can see that the
tendency of the likelihood changes is almost the same as that in Fig. 67, but the
GV likelihood of “GMM+GV-+MS” starts to fall below “natural” at the emphasis
coefficient k£ = 0.90. Therefore, the emphasis coefficient is set to 0.90.

We conducted a preference AB test on speech quality, and a preference XAB
test on speaker individuality. We first presented an analysis-synthesized reference
speech as ”X”, then we presented random-ordered synthesized speech. 7 listeners
participated in each evaluation. Fig. 76 shows the results. In term of speech
quality, a significant quality gain is observed. However, there is no significant
difference in the preference score on speaker individuality. We expect that no
cues for individuality are at higher modulation frequencies that are recovered by
the MS-based post-filter.

4.6.8 Evaluation in CLUSTERGEN

The proposed segment-level post-filter was also applied to CLUSTERGEN. We
also tuned the emphasis coefficient as in the previous experiments. We observed
that the likelihoods didn’t vary very much as shown in Figs. 71 and 72. We
also confirmed that a quality gain was yielded by setting k£ to 1.0. Here, the
methods corresponding to “HMM” and “HMM+MS” were relabeled as “CNV”
and “CNV+MS,” respectively.

We prepared an English female speaker. 418 and 46 sentences of news reader
speech were used for training and evaluation, respectively. The speech features
were the same as those in the evaluation for HMM-based T'TS, but they were
extracted by Speech signal Processing ToolKit (SPTK) [143] and the aperiodicity
component was not used. The window length and window shift length of the
segment-level post-filter were set to 125 ms (25 samples) and 60 ms (12 samples).
A 64-taps DFT was used to calculate the MS. The segment-level post-filter was
applied to both spectrum and Fj. parameters.

28The female speaker here is a different person from the speaker we used in the evaluation
for HMM-based TTS.
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Figure 76. Preference scores on speech quality with 95% confidence interval in

GMM-based VC and CLUSTERGEN

A preference AB test on speech quality was conducted by 6 listeners on the
Amazon Mechanical Turk service [144]. Because many listening environments are
expected, a no preference option was prepared. The right side of Fig. 76 shows
the result. We can see that large improvements are yielded by the segment-level
post-filter.

The results presented in this section suggest that the proposed MS-based
post-filters are effective for a variety of statistical parametric speech synthesis
frameworks.

4.7 Summary of this chapter

This chapter have introduced the Modulation Spectrum (MS) of speech parameter
trajectory as a new feature to effectively quantify the over-smoothing effect, which
is cause of the synthetic speech quality degradation. We have further proposed
the MS-based post-filters for high-quality speech synthesis.

Section 4.2: We have defined the MS, and compared the natural speech param-
eters and synthetic speech parameters that are over-smoothed by the statistical
processing. We have found the MS degradation caused by the over-smoothing
effect in not only spectral parameters but also other speech parameters.

Section 4.3: We have proposed the MS-based post-filter. The post-filter is
automatically trained using the natural and synthetic speech parameters included
in the training data. In the synthesis stage, the generated speech parameters have
been filtered utterance by utterance to make the MS close to natural MS.
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4.7 Summary of this chapter

Section 4.4: We have extended the filtering processes to the segment level to
support the low latency speech synthesis. The generated speech parameters are
windowed and filtered by the proposed segment-level MS-based post-filter.

Section 4.5: We have discussed about the MS and the MS-based post-filter
and have described: (1) the MS is the mathematical extension of the GV, and (2)
the MS-based post-filter generates the fluctuating speech parameter sequence.

Section 4.6: We have conducted experimental evaluation to confirm the effec-
tiveness of the proposed post-filters, and have demonstrated: (1) the proposed
utterance-level post-filter achieves better quality for spectrum, Fj, and HMM-
state duration in HMM-based TTS, (2) the proposed segment-level post-filter
capable of achieving low-delay synthesis also yields significant improvements in
synthetic speech quality, (3) the proposed utterance-level and segment-level post-
filters have the capability in the speech quality improvement, and (4) the proposed
post-filters are also effective in not only HMM-based TTS but also GMM-based
VC and CLUSTERGEN.
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5.1 Introduction

5.1 Introduction

In Chapter 4, we have introduced the Modulation Spectrum (MS) as the features
that can quantify the over-smoothing effect. Because generated speech parameter
sequences tend to be temporally smoothed by the statistical generation process,
we could find that the MS of synthetic speech tends to be degraded compared to
that of natural speech. We have also proposed the MS-based post-filter in Chap-
ter 4, which modifies the generated speech parameter sequences so that its MS
gets closer to that of natural speech. Although the post-filtering approaches can
improve the synthetic speech quality, this framework based on the post-filtering
possibly causes adverse effects due to completely ignoring the basic criteria. More-
over, it is expected that the use of the MS model as one of the acoustic models
is straightforward to apply various useful techniques of the original HMM-based
TTS and GMM-based VC.

In this chapter, we integrate the MS into the speech synthesis criteria as sim-
ilar as in Section 2.9. Integrating into the speech parameter generation is a
straightforward way to alleviate the over-smoothing effect observed in the syn-
thesis stage. The speech parameters of synthetic speech is generated to consider
both the basic criterion and the additional criterion. However, we should avoid
the use of such a generation algorithm for speech-based systems that require the
computationally-efficient speech synthesis when the generation algorithm loses
the basic computationally-efficient generation ability as described in Section 2.6.
Yet another way avoiding the high computational cost is to integrating into the
acoustic model training. The acoustic model are trained to generate the speech
parameters that satisfy the additional criterion.

In this chapter, we first propose a speech parameter generation algorithm con-
sidering the MS. The proposed algorithm generates the parameter trajectories by
maximizing a novel objective function consisting of the traditional criterion and
the MS likelihoods. The MS likelihood works as a penalty term to make the MS of
the generated parameters close to that of natural ones. Furthermore, we proposes
a training algorithm considering the MS as yet another approach with the MS
to improve the speech quality while preserving the traditional computationally-
efficient generation. After implementing the trajectory GMM training for GMM-
based VC as the same as the trajectory HMM in Section 2.8, we integrate the
MS into the trajectory training for both HMM-based TTS and GMM-based VC.
The HMM or GMM are trained to recover the MS of the generated speech pa-
rameters, and the proposed training algorithm gives a unified framework for both
training and generation which provides both a consistent optimization criterion
and a closed form solution for parameter generation considering the MS. Also,
the proposed training algorithm makes it possible to perform the MS modeling
depending on the input parameters. The objective functions listed in Table 2
are compared in this chapter. The experimental results demonstrate the pro-
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Figure 77. The rest of Chapter 5.

posed approaches achieved the best in synthetic speech quality. Summarizing the
proposed methods based on the MS, the post-filter, parameter generation, and
trajectory training have the following advantages.

Post-filter (Chapter 4) has the high portability meaning it can be easily used
in the various speech synthesis system.

Parameter generation (This chapter) can generate the most high-quality
speech parameters by directly alleviating the over-smoothing effect observed
in the parameter generation stage.

Trajectory training (This chapter) performs the computationally-efficient
and high-quality speech synthesis.

We further discuss this in Section 5.4.

The rest of this chapter is organized as follows and shown in Fig. 77. In
Section 5.2, we slightly fix the MS definition to consider the perceptual effect.
In Section 5.3 and Section 5.4, We integrate the MS into the speech parameter
generation algorithm and the training algorithm.

Section 5.5 and Section 5.6 are the experimental evaluation and summary
of this chapter.
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5.2  Modulation spectrum re-definition

Table 2. Objective functions L) compared in Chapter 5. The training criterion
L) is maximized to estimate the HMM/GMM parameter set A, and the synthe-
sis criterion L) is maximized to generate a synthetic speech parameter sequence
§g- Note that the objective function L) of [2] and [3] are obviously different

as described in Section 2.9, but we use the same notation for simplicity.

Training Synthesis
Basic L™ (Section 2.4 and Section 2.5) | LY (Section 2.6)
GV LU (Section 2.9) L&Y (Section 2.9)
Trajectory tgn (Section 2.8)
MS LY 4R

5.2 Modulation spectrum re-definition

As [133, 134] reported?®, the lower modulation frequency components are domi-
nant in speech perception. Therefore, we re-define the MS s (y) of the parameter
sequence y as the following form considering speech perception,

sty) = [s@ - s@,,s(D)], (145)
S<d) = [Sd(0)7"'7Sd(f>7'”7sd(D;_1)]T7 (]‘46)
T 2 T 2
sq(f) = (Z Yt (d) cos mt) + (Z Yt (d) sin mt) , (147)
t=1 t=1
where f is the modulation frequency index, m = —n f/D; is a modulation fre-

quency, and Dy is one half of the DFT length. The MS is calculated from zero-
padded parameter sequences so its length is 2D;. D! is the fixed number of
dimension of MS. As shown in Fig. 78, the re-defined MS consists of only lower
modulation frequency components where the originally-defined MS in Chapter 4
have consisted of all the components. Also, we calculate the linear-scaled MS in
this chapter because we find that there is no significant difference between the
linear- and log-scaled MS in synthetic speech quality.

5.3 Parameter generation algorithm considering MS

This section describes the speech parameter generation algorithm that maximizes
a function L™ combining the basic criteria LbaSIC and the MS likelihood.

ms

29 Whereas [133, 134] have investigated the effect of the MS on intelligibility, Section A.10
have investigated it on the speech quality. We have found that there was no significant quality
difference between analysis-synthesized speech samples with/without the MS components over
50 Hz for mel-cepstrum.
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Figure 78. Re-defined Modulation Spectrum (MS) s (y) of the speech parameter
sequence y. Compared to the original definition in Section 4.2, only the lower
modulation frequency components are used. In this figure, we assume that the
shift length of speech parameter sequence is 5 msec (Nyquist frequency is 100 Hz.)
and the modulation frequency components lower than 50 Hz are used.

5.3.1 Objective function

Let the MS likelihood be N (s (y) ; p, 3s) where p, and X are a D D.-by-1 mean
vector and a DD’-by-D D! covariance matrix, respectively. X! is represented as

[ng, co i@ ,pgD)} where p{® is DD!-by-D! matrix whose columns corre-
spond to s (d). The MS is calculated utterance by utterance and its mean vector
and covariance matrix are calculated from the whole utterances of the training
data.

The objective function is as follows:

NyT
LM = P(Wy|X,4,A) P (s(y)|A)" (148)
we NwTl
= N (Wying Zg) N (s (y); 1, =) 71 (149)
o T
= L) (L) (150)

where wy denotes the MS weight for controlling the balance between the tradi-
tional and MS likelihoods, and

L™ = N (s (y) s . ) (151)

is the MS likelihood. The basic likelihood and the MS likelihood are normalized
when w, = 1.
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5.3 Parameter generation algorithm considering MS

5.3.2 Parameter generation

The speech parameter sequence Qq is generated by maximizing the proposed

objective function L™ as follows:

U4 = argmax L™, (152)
Yy

Because the proposed objective function has a 4-order form like that in the al-
gorithm considering the GV, it is hard to analytically solve its maximization
problem. Instead, we use the steepest descent algorithm to iteratively update the
generated parameter trajectory as follows:

. (syn)
~(i41) ~(7) 8 log Lms
gith) = g o LB (153)
q q oy y:gg
The logarithm function of L&Y is given by:
N, T
log L™ = log LE 4 log L™, (154)

basic D/

where o and ¢ are the learning rate and the iteration index, respectively. Referring
Eq. (65), the first derivative of log LB i Rgy — 74, and the first derivative of

basm q’
log L™ is calculated as:

(syn)
algy — [SQT’...,SQT,...’SL‘FT}T7 (155)
sy = [se(1). s (d) s (D)) (156)
se(d) = (s(y)— us) Pl f, (d), (157)
Fild) =[fea(0)- foa(f) - foa(DL= D))" (158)
ft,d (f) = -2 (Rd’f cosmt + [d,f sin mt) . (159)

This derivation is graphically shown in Fig. 79. In this chapter, D./Dj is set
to 1.0.3° Instead of controlling this ratio, we apply 50 Hz-cutoff low pass filter
(LPF)3! to the generated parameter trajectories in after iteration in order to
avoid slightly artificial sounds caused by enhancing the high modulation frequency
components.

5.3.3 Initialization

For initialization, we basically use the same idea in the conventional algorithm
considering the GV, i.e., first generating the parameter trajectory by maximizing

30 We set it to 0.5 for spectrum in Section A.1. Also, we remove in advance the < 50 Hz
MS components of the spectral parameters in the training data.
31 This cutoff frequency corresponds to D’/Dg = 0.5.
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Figure 79. Graphical representation of how to derive the first derivative used in
the proposed speech parameter generation considering the MS. We can find that
all modulation frequency components are considered to calculate the derivative
of one speech parameter.

only the traditional criterion Ll(;ys?c) and then transforming it further by maxi-

mizing the other likelihood. To transform the parameter trajectory so that the
MS likelihood increases, we use the MS-based post-filter proposed in Chapter 4,
which is given by

sa(f) = jjj (50 (f) = ptay) + 1l (160)

where 1145 and o4 are the mean and standard deviation of s, (f), respectively.
ty, s and oy ¢ are those of the MS of the generated trajectories. We estimate p;
and oy ; using the generated trajectories included in the training data. Finally,

the initial parameter trajectory yg) is determined using the filtered MS and the

original phase components of the parameter trajectory before the filtering.

105



5.3 Parameter generation algorithm considering MS

5.3.4 Application to FO component

The proposed parameter generation is also applied to the Fj, components mod-
eled with MSD-HMM [84]. In this case, after unvoiced/voiced determination,
Iy values at only voiced frames are generated from the corresponding probabil-
ity density functions, while the precision matrices (inverse matrix of the covari-
ance matrix) at the unvoiced/voiced boundaries are set to zero matrices to allow
discontinuous transitions®?. Therefore, the MS is calculated from the concate-
nated voiced frames in this chapter. Moreover, we reform y; (d) of Eq. (147)
as y; (d) — y(d) as pointed out in [145]. The MS is directly affected by the
discontinuous transitions at the unvoiced/voiced boundaries. This causes some
adverse effects in the post-filtering process. To avoid them, we use the initializa-
tion method of the conventional GV-based algorithm rather than the MS-based
post-filtering.

5.3.5 Discussions

Although we can also integrate the GV term into the proposed objective func-
tion, i.e., a product of the HMM/GMM, GV, and MS likelihoods, the proposed
objective function effectively recovers the GV likelihood without it because the
MS involves the GV, as we described. Figures 80 and 81 illustrate examples of
the GV and the MS of the generated parameter trajectories. “HMM,” “GV,” and
“MS” indicate the results of the generated parameter trajectories of the tradi-
tional generation algorithm using Lgs?c), conventional generation algorithm with
the GV using Lgvy“), and the proposed algorithm with the MS using L&Y in
HMM-based TTS, respectively. “nat” indicates those of natural speech parame-
ter trajectories. We can see that the proposed generation algorithm well recovers
not only the MS but also the GV. On the other hand, “GV” cannot recover the
MS appropriately. Although it makes the MS slightly larger, the resulting MS
is still very different from the natural one. This is because the GV models only
average values of the MS components over the modulation frequencies.

The footprint of the synthesis system using the proposed algorithm is slightly
larger than that of the one using the algorithm with the GV because the MS
is DD!-dimensional vector, whereas the GV is D-dimensional vector. We may
reduce the footprint by considering only low modulation frequency components
which have a larger effect on speech perception [129].

We can localize the MS constraint that captures the segment-level fluctuation,
but we can’t find any difference in synthetic speech quality between the proposed
method considering utterance-level MS and segment-level MS.

32 When we apply the proposed parameter generation to the continuous Fy modeling [86], it
is applied as the same as the spectral parameters.
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Figure 80. An example of the GV of the generated mel-cepstral coefficients.
We can find that not only “GV” (conventional generation considering GV) but
also “MS” (proposed generation algorithm) are close to “nat” (natural speech).
This is because the MS involves the GV, and the proposed generation algorithm
considering the MS implicitly recover the GV.

Finally, the MS-based post-filter proposed in Chapter 4 tends to generate
over-transformed trajectories and synthesize over-emphasized speech because it
completely ignores the traditional criterion, e.g., the HMM/GMM likelihood.
On the other hand, the proposed algorithm effectively generates naturally fluc-
tuated parameter trajectories by jointly maximizing the HMM/GMM and MS
likelihoods. Fig. 82 shows an example of the final speech parameter trajectory
(“After iteration”) and initial speech parameter trajectory (“Before iteration”)
determined by applying the MS-based post-filter to the trajectory generated from
HMMs. We can see that over-fluctuated transition is alleviated by iterating with
the HMM and MS likelihood.

5.4 MS-constrained trajectory training

This section proposes a novel trajectory training algorithm that maximizes the
novel function L™ combining the traditional criterion and the MS likelihood.
Before defining L™ we reform the basic GMM in Section 2.5 as the trajectory
GMM as the similar as the trajectory HMM in Section 2.8, and define the
trajectory training criterion L™ for GMM-based VC.

trj

5.4.1 Trajectory GMM training

The trajectory GMM training has been implemented for the joint probability
density modeling [6] in GMM-based VC. In this section, we present another im-
plementation by reformulating the conditional probability density function by
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Figure 81. An examples of the MS of the generated 9-th mel-cepstral coefficient.
As we described, conventional parameter generation algorithm considering the
GV performs bias-like effect in the MS domain, but the proposed generation
algorithm efficiently recovers the MS.

imposing the explicit relationship between the static and dynamic features.
The objective function L(J " is the same as Eq. (84). Similarly to Eq. (87),

the joint parameters of A, and b, over all GMM-mixture components are defined
as:

EA:[AT,~--,AT,~~-,A$}T, (161)
T
Eb:[bf,~~',b;,--~,bg} : (162)
and the mean vector E g is represented as:
E4 = diagy, p [Sgéa] X + Sg¢s- (163)

D(_jl is represented as the same as Eq. (89). We use the steepest descent algorithm

-1
to optimize A,, b, and 2((}Y|X) 33 and the first derivatives with respect to A,
and b, are

dlog LESH Tq:. —1 —1 N T

T = Sq‘dlagNwD [D(j w (y a y(j) X (164)

dlog Lttjm) T 1

=l 0 S SAD‘AW Y—9gs) 165
L (v-1g 169

The traditional joint density training using LbaSIC is performed first in order to
estimate A. Then, the proposed algorithms updates {&,,&,, % Y|X) } while

33Closed form solutions also exist for £, and ;.
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Figure 82. Examples of mel-cepstral coefficient sequences before and after itera-
tion of the proposed speech parameter generation algorithm. Whereas the initial
parameters generated using MS-based post-filter causes unnatural changes of the
sequence, we can see that it is alleviated by the iteration.

keeping {w(?), pu{*), E((JX X1 constant. Note that the sub-optimum GMM-mixture
component sequence ¢ never changes.

5.4.2 Objective function

Because the lower modulation frequency components mainly affect speech per-

ception [129], it is better to train the HMM/GMM parameters with only the lower

modulation frequency components. Therefore, we redefine s (d) as [sq (0),---,sa(f), -+, sa (D, —1)
D! is the fixed number of MS dimensions in each feature dimension, where

D! < D,. Note that the numbers of dimension of s(y), p,, X5, and p'? are

fixed to DD., D.D-by-1, D.D-by-D.D, and D.D-by-D, respectively.

We integrate the MS likelihood into the trajectory training as follows:
LU = P(yIX. 4. 0) P (s () [ X.4. A )77 (166)

P(s ()X, a2 A) =N (s(y):5(9g) .5 (167)

The MS likelihood works as a penalty term to reduce the temporal fluctuation of
the generated parameter sequence.

5.4.3 Model parameter estimation

The HMM/GMM parameter sets A are estimated in the same way as in the
trajectory training. Let L{" be the MS likelihood N (s (y);s (gq) ,ES>. The
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logarithm of L{™) is

T
log L = log Ly + wy . log LE™, (168)
and the gradients of log L{"™ are given as
dlog Lgtm) Tqs. —1 -1 -1 T
e = Sgdialy [Dq WRsaX|. (169)
0 log Lgtrn) 0 log Létrn) T ~—1 —1
e = T oa = SiDgWRysg (170)
0 log Lgtrn) T4 -1 1 ~
Sl —Sgdingilp [WR(j sq(Bq - qu)} , (171)
where
.
SG = {S&T,-",SQT,---,SITT} : (172)
sy = [sc(1),-ys0(d), s (D) (173)
T .
si(d) = 2f, (@)pl? (s(y) —s(9)), (174)
Fo(d) = [fia(0) foa(f), oo fra (D= 1)) (175)
fra(f) = Rgjcoskt+ I,ssinkt, (176)

]:Ed7 5 and fd7 s are calculated using the d-th dimensional components of ¢ g

We perform the basic training algorithm using L](at;;()z first, then the trajectory
training algorithm using LESH). Finally, we update the model parameter sets with

the proposed training algorithm.

5.4.4 Application to FO component

MSD-HMM ([84] is unsuitable for MS modeling as described in Section V-D.
Therefore, we decided to use continuous F modeling [86]. Moreover, we refor-
mulate y; (d) of Eq. (147) as y; (d) — ¢ (d) in the same way as in the proposed
parameter generation.

5.4.5 Discussions

It is unnecessary to consider the MS in parameter generation because the HMM /GMM
parameters are optimized to make the MS of the generated parameter sequence
close to the natural one. Consequently, the basic parameter generation using

the L™ algorithm can be straightforwardly employed. If the proposed objec-

basic
tive function L{*"™ is used in the parameter generation, the generated parameter

ms

sequence to maximize it is equivalent to gq which can be solved analytically.
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5.4 MS-constrained trajectory training

Therefore, the proposed training algorithm can also be regarded as a unified
framework of the training and generation processes. Also, the proposed training
algorithm makes it possible to the context-dependent MS modeling because the
mean vectors of the MS model are calculated from the input parameters. This
also enables one to avoid a large footprint, as discussed above.

Fig. 83 plots the output probabilities at each frame in HMM-based TTS.

We can see that the variance of the trajectory training using ngn) (“TRJ”) is

slightly larger than that of the traditional training using L (“BSC”), and

basic
the mean of the GV-constrained trajectory training using Lg,m) (“GV”), or MS-
constrained trajectory training using L{™ (“MS”), is significantly changed com-
pared to “TRJ,” Moreover, the mean of “MS” tends to move far from the neigh-
boring HMM-state*.

We didn’t investigate the quality difference between the proposed generation
algorithm and the proposed training algorithm, but we expect that the generation
algorithm will achieve higher quality as the similar result in GV has been reported
in [146]. One of the reasons is the limitation of the model structures. To explain
this, we assume that there is one HMM-state having too long duration. The
MS tries to fluctuate a speech parameter sequence generated from HMMs. The
proposed generation allows such a transition varying frame by frame. However,
the HMMs trained by the proposed training algorithm can not produce such the
parameter sequence because one HMM-state have only one output probability.
The same problem occurs in GMM-based VC because the conversion function
within one GMM-state must be a linear function®.

Table 3 summarizes three proposed methods using the MS. The MS-based
post-filter has the best portability because the process is independent on the orig-
inal speech synthesis procedures. Comparing L&™ and L™ it is cleared that
the proposed training algorithm is strongly constrained with the model structures
compared to the generation algorithm. In term of quality, the proposed gener-
ation algorithm is the best as discussed above®. Finally, the proposed training
algorithm makes it possible to perform real-time speech generation. It is im-
possible for the post-filter to perform the real-time process, but it is possible to
perform low-delay process. The proposed generation algorithm needs iterations

in synthesis.

34 Note that the frames that have same statistics correspond to the same HMM-state.

35 However, the effect in GMM-based VC is expected to be less than that in HMM-based
TTS because the output probability varies frame by frame in GMM-based VC.

36 However, as described in Section 5.5, the post-filtering process after parameter generation
taking account of GV is the similar in quality compared to the parameter generation taking
account of the MS.
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Figure 83. Example of statistics of the 10th mel-cepstral coefficient of the HMMs
trained by the several training algorithms in HMM-based TTS. Note that the
frames having same statistics correspond to the same HMM-state. We can see
that the statistics by the proposed training algorithm (“MS”) varies more than
the other algorithms.

5.5 Experimental evaluation

5.5.1 Experimental conditions for speech parameter generation algo-
rithm

We used an English male speaker “RMS” and an English female speaker “SLT”
from the CMU ARCTIC database [147]. Speech signals were sampled at 16
kHz. The shift length was set to 5 ms. The Oth-through-24th mel-cepstral co-
efficients were extracted as spectral parameters and log-scaled Fj and 5 band-
aperiodicity [74, 127] were extracted as excitation parameters. The STRAIGHT
analysis-synthesis system [10] was employed for parameter extraction and wave-
form generation. The DFT length used to calculate the MS was set to 8192.
Diagonal covariance matrices were used in the context-independent GV models
and context-independent MS models. The GV weight w, and MS weight ws were
set to 1.0.

For HMM-based TTS, we trained a five-state context-dependent phoneme
Hidden Semi-Markov Model (HSMM) [141] for the speakers RMS and SLT. Di-
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Table 3. Comparison of three proposed methods using the MS in term of portabil-
ity, speech quality, and computation time in synthesis. 120 ms is the computation
time when the segment-level post-filter is used!.

Portability Speech quality Computation time
Post-filter Best Better Better (120 ms)T
Parameter generation Better Best Worse *
Training Worse Better Best (5 ms)

agonal covariance matrices were used in the HSMM. We used 593 sentences from
subset A for training and 100 sentences from subset B for evaluation. The feature
vector consisted of spectral and excitation parameters and their delta and delta-
delta features. MSD-HMM was used for modeling Fj contours. For GMM-based
VC, we trained a 64-mixture and 16-mixture GMMs for spectrum and aperiod-
icity, respectively. The covariance matrices and cross-covariance matrices were
diagonal matrices. Fy was linearly converted. The GMMs were for RMS-to-SLT
and SLT-to-RMS conversion. We used 50 sentences from subset A for training
and 100 sentences from subset B for evaluation. The feature vector consisted of
spectral and excitation parameters and their delta features.

We evaluated the following systems:

BSC: generation using L)

GV: generation using Lésvy“)
MS: proposed generation using L™
nat: natural speech parameters

We first conducted an objective evaluation with the likelihoods used in the al-
gorithms®?. Then, we conducted subjective evaluations on speech quality. The
traditional training using L}(E;Z was performed. These systems were used to gen-
erate the spectrum and Fjy of the synthetic speech. The “GV” system was used

to generate the aperiodicity of the synthetic speech.

5.5.2 Objective evaluation for parameter generation algorithm

The generation algorithms were evaluated using the HMM/GMM, GV, and MS
likelihoods for the generated trajectories. Additionally, we estimated the log-MS
log sq (f) probability density function and also calculated its likelihood to deeply
discuss the results. Note that the HMM/GMM likelihood was normalized by
the total number of frames 7', and the MS and log-MS likelihoods were similarly

37 The 50 Hz LPF was not applied to the parameters in the objective evaluation.
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Figure 84. HMM/GMM likelihoods for parameter sequences generated by the
several training algorithms.
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Figure 85. GV likelihoods for parameter sequences generated by the several
training algorithms.
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Figure 86. MS likelihood for parameter sequences generated by the several train-
ing algorithms.
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Figure 87. Log-MS likelihood for parameter sequences generated by the several
training algorithms.
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Figure 88. Results of subjective evaluation on speech quality and speaker indi-
viduality for confirming the effectiveness of the proposed speech parameter gen-
eration algorithm considering the MS (“MS”). We can find that “MS” achieved
the best scores.

normalized by the number of dimension Dy. Figures 84-87 show these four types
of likelihoods. Note that these results are the averages of the two speakers.

HMM/GMM and GV likelihoods: We can see in Fig. 84 that the
HMM /GMM likelihoods for both the spectral and Fy components in the proposed
algorithm (“MS”) are lower than those of the traditional algorithm (“BSC”) and
algorithm with the GV (“GV”), but higher than those of natural speech param-
eter trajectories (“nat”). For the GV likelihoods shown in Fig. 85, “MS” can
effectively recovers the GV likelihood as in the “GV.” These results demonstrate
that the proposed generation algorithm preserves the conventional criteria.

MS and log-MS likelihoods: Fig. 86 shows that the MS likelihood of
“MS” is larger than that of “BSC” and “GV” in both HMM-based TTS (left)
and GMM-based VC (right). Regarding the Fy component, the MS likelihood of
“MS” is larger than that of the “GV.” A comparison of the results for “MS” and
“GV,” which use the same initial parameter trajectories but different objective
functions, reveals that the proposed objective function is effective at recovering
the MS likelihood. In contrast, in both the spectral and Fy components in HMM-
based TTS, the MS likelihoods of “BSC” are higher than those of “nat”3®. These
results are hard to interpret. To analyze them, the Fig. 87 illustrates log-MS
likelihoods. They show more reasonable results implying that the probability
density of the MS is well modeled by the Gaussian distribution in the logarithm
domain. Nevertheless, we found that there was no perceptual quality difference

38 The MS likelihood of “BSC” is lower than that of “nat” in GMM-based VC. This is because
the overall likelihood of “BSC” of GMM-based VC tends to be lower than that of HMM-based
TTS.
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between the MS modeling and the log-MS modeling in the proposed parameter
generation algorithm.

5.5.3 Subjective evaluation for speech parameter generation algorithm

We conducted a preference test (AB test) on speech quality with eight listeners.
Synthetic speech pairs of “GV” and “MS” were presented to the listeners in ran-
dom order®. The listeners were asked which sample sounded better in terms of
speech quality. Similarly, an XAB test on speaker individuality was conducted
with six listeners, wherein the analysis-synthesized speech was used as the ref-
erence “X.” Because the results for the two speakers were similar [148], we here
show only the results for one speaker.

The results of the preference test is illustrated in Fig. 88. We can see that
the score of “MS” is higher than that of “GV.” This means that the proposed
algorithm can generate better-quality synthetic speech than the conventional al-
gorithm using GV can. However, unfortunately, there is no significant difference
in the preference test on speaker individuality. We suppose that there were no
cues for individuality at the higher modulation frequency recovered by the MS.

5.5.4 Comparison of the post-filter and speech parameter generation
with the MS

We conducted a preference test (AB test) on speech quality in order to compare
a MS-based post-filter (Chapter 4) and speech parameter generation considering
the MS. The speaker, training/evaluation data, and speech parameters were the
same to those used in Section 4.6. The proposed segment-level MS-based post-
filter was used, and filter-related parameters (e.g., window length) were the same
to those in Section 4.6.4.

The following systems in HMM-based T'T'S were evaluated:

GV+MSPF: MS-based post-filter after speech parameter generation using
L, (sym)

gv
MS: proposed speech parameter generation using Lffgn)

Note that "GV+MSPFE” in this evaluation is equal to “HMM-+GV-+MS” labeled
in Section 4.6. We applied 50 Hz cut-off LPF to generated and filtered speech
parameter sequences. Because the effect of the MS compensation is significant for
spectral parameters, we have used these methods for only spectral parameters.
GV and MSs were not used in speech parameter generation and post-filtering
process for other speech parameters.

39 We didn’t use “BSC” in the subjective evaluation because it is known that “GV” is better
in quality than “BSC.”
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Figure 89. Results of subjective evaluation on speech quality for comparing the
post-filter (“GV+MSPF”) and speech parameter generation ("MS”) using the
MS. There is no difference between their scores.

Fig. 89 shows the result of the preference AB test by six listeners. Because
there is no significant difference, these two methods have the same capability in
quality improvements.

5.5.5 Experimental conditions for training algorithm

The speech features were the same as those used in the previous evaluation, but
the length of the DFT used to calculate the MS was 2048. The likelihood weight
wy was set to 0.5 [3] for HMM-based TTS and 1.0 [2] for GMM-based VC. w;
was set to 1.0. D, for the spectrum and F, were set to Ds/2 (= 50Hz) and
D, /10 (= 10Hz) [145], respectively.

We trained HSMMs with continuous Fy modeling for speaker RMS in HMM-
based TTS, and SLT-to-RMS GMMs in GMM-based VC. The training and eval-
uation data were the same as in the previous experiment.

We compared the following training algorithms:

(trn)
basic
TRJ: training using ngn)

(trn)
gv

MS: proposed training using L

BSC: training using L

GV: training using L
(o

The evaluation was conducted in a similar way to the previous one. The systems
were used to train the HMM /GMM for the spectrum and Fy. The “BSC” system
was used to train for aperiodicity. The traditional generation algorithm using

Lg;;l was used in the synthesis stage. Note that the voiced/unvoiced regions of

the Fy contour never changed in all the training algorithms.
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Figure 90. Trajectory likelihoods for natural speech parameters in HMM-based

TTS or GMM-based VC trained using the several training algorithms.

Blue

bars indicate the proposed training algorithm. The trajectory training algorithm
(“TRJ”) for GMM-based VC is also the proposed in this thesis, but the bar is

gray-colored.
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Figure 91. MS likelihoods for natural speech parameters in HMM-based TTS or
GMM-based VC trained using the several training algorithms. Blue bars indicate
the proposed training algorithm.
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Figure 92. Results of subjective evaluation on speech quality and speaker in-
dividuality for confirming the effectiveness of the proposed training algorithm
constraint with the MS (“MS”). The trajectory training algorithm (“TRJ”) for
GMM-based VC is also proposed in this thesis, but the bar is gray-colored. We
can find that “MS” achieves the best scores.

5.5.6 Objective evaluation of training algorithms

Fig. 90 and Fig. 91 illustrate the trajectory likelihood and the MS likelihood
for the natural parameter trajectories of the evaluation data. The trajectory
likelihood is normalized by the total number of frames 7. In GMM-based VC,
the trajectory training (“TRJ”) slightly improves the MS likelihood as well as
the trajectory likelihood compared with the basic training (“BSC”). This result
shows that the proposed trajectory training models the parameter trajectories
more accurately than the traditional training.

The MS-constrained trajectory training (“MS”) improves the MS likelihood
more than the other algorithms do in HMM-based TTS and GMM-based VC.
This result demonstrates that “MS” recovered the MS of the generated parameter
trajectory. By comparison, the conventional GV-constrained training (“GV”)
significantly degraded the trajectory likelihood in GMM-based VC.

5.5.7 Subjective evaluation of training algorithm

We conducted the subjective evaluations in the same manner as above. Six
listeners participated in each evaluation.

The results are illustrated in Fig. 92. IN GMM-based VC, it is observed that
“TRJ” has higher scores than “BSC” in term of both the speech quality and the
speaker individuality. Therefore, we can confirm the quality improvements by
the proposed trajectory GMM training in GMM-based VC. Moreover, we can see
that “MS” achieves the best scores than others in term of the speech quality in

120



5.6 Summary of this chapter

both HMM-based TTS and GMM-based VC. This result demonstrates that the
proposed MS-constrained trajectory training yields the best performance among
the training methods.

5.6 Summary of this chapter

This chapter integrated the Modulation Spectrum (MS) into speech synthesis
framework to jointly optimize the basic criteria and the proposed MS criterion
that is effective to alleviate the over-smoothing effect.

Section 5.2: We have re-defined the MS to consider only the lower modulation
frequency components that are dominant in speech perception.

Section 5.3: The MS was straightforwardly integrated into the speech param-
eter generation stage that causes the over-smoothing effect. The synthetic speech
parameter sequences were generated by iteratively maximizing the weighted sum
of the HMM/GMM likelihoods and the MS likelihood. Because the MS is ex-
tension of the GV, the proposed generation algorithm can perform not only the
explicit MS compensation but also implicit GV compensation.

Section 5.4: Instead of integrating the MS into the parameter generation, we
have integrated it into the training stage in order to produce high-quality speech
with adopting the basic computationally-efficient generation algorithm. The tra-
jectory GMM have been proposed in advance as the same as the trajectory HMM.
The HMM/GMM parameter sets have been trained by maximizing the weighted
sum of the trajectory HMM/MGM likelihoods and the MS likelihood. Because
they are trained so that the synthetic speech parameter sequence generated us-
ing the basic generation algorithm has the compensated MS, we don’t need to
consider the MS term in the synthesis stage but the quality gain by the MS is
benefited.

Section 5.5: We have conducted the several experimental evaluation. The
experimental results for the proposed generation algorithm have demonstrated
the quality gain overcoming the conventional parameter generation considering
the GV. Also, the results for the proposed training algorithm have demonstrated
that the proposed training algorithm overcomes the several training algorithms
in synthetic speech quality.
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6.1 Contribution

In this thesis, we have addressed improvements of the synthetic speech quality in
statistical parametric speech synthesis including Hidden Markov Model (HMM)-
based Text-To-Speech (TTS) and Gaussian Mixture Model (GMM)-based Voice
Conversion (VC). They have the promising techniques to control the characteris-
tics of the synthesized speech beyond the limitations of unit selection synthesis,
but the critical drawback in the statistical parametric speech synthesis is signifi-
cant degradation in synthetic speech quality. The synthetic speech often sounds
muffled, and we can still distinguish the synthetic speech from natural speech.
There are three main reasons causing the quality degradation: parameterization
errors in the analysis/synthesis stage, insufficient modeling in the training stage,
and over-smoothing effect in the synthesis stage.

Chapter 2 has described the basic speech synthesis frameworks and the con-
ventional methods for better training and synthesis. We have explained that there
is a trade-off between unit selection synthesis and statistical parametric speech
synthesis on the synthetic speech quality and the flexibility. In order to allevi-
ate the averaging effect in the modeling process, we have presented 2 approaches
that introduced the idea of unit selection synthesis into HMM-based TTS. The
speech quality in synthetic speech are dramatically improved, but the flexibility
of original HMM-based TTS is lost. A trajectory HMM has been presented to
train the HMM parameters considering the temporal dependency as the similar
as in the synthesis stage. Finally, Global Variance (GV) have been introduce to
quantify the over-smoothing effect observed in the synthesis stage.

In Chapter 3, we have proposed statistical sample-based speech synthesis with
rich context models to address the insufficiency modeling causing the quality
degradation in synthetic speech. We first have applied the rich context modeling
originally proposed in HMM-based TTS to GMM-based VC, then, the have refor-
mulated the Rich context GMM (R-GMM) using the rich context models belong-
ing to the same acoustic sub-space. The synthetic speech parameter sequences
have been generated by iteratively maximizing the likelihood. The generation
process have been initialized by the use of the less-smoothed speech parameters
generated from the statistics of the further divided sub-space. Compared to the
basic HMM-based TTS and GMM-based VC, the proposed methods can improve
the quality in synthetic speech by introducing the modeling of the individual
speech feature segments. Also, compared to the conventional hybrid methods
combining unit selection synthesis and HMM-based TTS, the proposed methods
have preserved the advantage of flexible acoustic modeling provided by the basic
HMM-based TTS and GMM-based VC because the proposed methods don’t have
any constraint used in the conventional methods. We have conducted several ex-
periments to confirm the effectiveness of the proposed methods in HMM-based
TTS. The experimental results have demonstrated: (1) the use of approximation
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with a single Gaussian component sequence yields better synthetic speech quality
than the use of EM algorithm, (2) the state-based model selection yields qual-
ity improvements at the same level as the frame-based model selection, (3) the
use of the initial parameters generated from the over-trained speech probability
distributions is very effective to further improve speech quality, and (4) the pro-
posed methods for spectral and F{, components yields significant improvements
in synthetic speech quality compared with the basic HMM-based TTS.

Chapter 4 has introduced the Modulation Spectrum (MS) of speech parameter
trajectory as a new feature to effectively quantify the over-smoothing effect, which
is cause of the synthetic speech quality degradation. We have further proposed
the MS-based post-filters for high-quality speech synthesis. We have defined the
MS as the log-scaled power spectrum of the speech parameter sequence, have
used it to find the over-smoothing effect. 2 types of the MS-based post-filters
(utterance- and segment-level post-filters) have been proposed. In the synthesis
stage, the generated speech parameters have been filtered utterance by utterance
to make the MS close to natural MS. In discussion, we have clarified that (1)
the MS is the mathematical extension of the GV, and (2) the MS-based post-
filter generates the fluctuating speech parameter sequence. We have conducted
experimental evaluation to confirm the effectiveness of the proposed post-filters,
and have demonstrated: (1) the proposed utterance-level post-filter achieves bet-
ter quality for spectrum, F, and HMM-state duration in HMM-based TTS, (2)
the proposed segment-level post-filter capable of achieving low-delay synthesis
also yields significant improvements in synthetic speech quality, (3) the proposed
utterance-level and segment-level post-filters have the capability in the speech
quality improvement, and (4) the proposed post-filters are also effective in not
only HMM-based TTS but also GMM-based VC and CLUSTERGEN.

Chapter 5 has integrated the Modulation Spectrum (MS) into speech synthe-
sis framework to jointly optimize the basic criteria and the proposed MS criterion
that is effective to alleviate the over-smoothing effect. Before the integration, we
have re-defined the MS to consider only the lower modulation frequency com-
ponents that are dominant in speech perception. The MS was first straightfor-
wardly integrated into the speech parameter generation stage that causes the
over-smoothing effect. The synthetic speech parameter sequences were generated
by iteratively maximizing the weighted sum of the HMM/GMM likelihoods and
the MS likelihood. Because the MS is extension of the GV, the proposed gen-
eration algorithm can perform not only the explicit MS compensation but also
implicit GV compensation. Then, we have integrated it into the training stage in
order to produce high-quality speech with adopting the basic computationally-
efficient generation algorithm. The trajectory GMM have been proposed in ad-
vance as the same as the trajectory HMM. The HMM /GMM parameter sets have
been trained by maximizing the weighted sum of the trajectory HMM /MGM like-
lihoods and the MS likelihood. Because they are trained so that the synthetic
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speech parameter sequence generated using the basic generation algorithm has
the compensated MS, we don’t need to consider the MS term in the synthesis
stage but the quality gain by the MS is benefited. We have conducted the several
experimental evaluation to confirm the quality gain by the proposed methods.

6.2 Future work

As mentioned in Section 1, research is an action toward blurring such boundaries
between objects. Fully developed high-quality speech synthesis can remove the
boundaries between a human and a computer, or between human beings. In the
future, every object (not only human beings but also computers) living in such
future will not aware of differences between each others’ speech production, and
speech synthesis will be a black box or a magic. The final goal for high-quality
speech synthesis is to realize such future.

Toward the future, this thesis addressed high-quality speech synthesis. The
quality gain was confirmed by preference AB tests, and we have observed 1.0 MOS
gain (by the MS-based post-filters) as shown in the experimental evaluation in
Section A.3. However, the real quality of synthetic speech is still far from that
of natural speech. For example, assuming the 5-point MOS scores of natural
speech is 5.0, the scores of synthetic speech using all methods proposed in this
thesis will be lower than 4.0 4°. Consequently, there are many issues to be solved
for high-quality speech synthesis.

What are the meaningful factors that are still different between natu-
ral/synthetic speech? In this thesis, we have found that the MSs are different
between natural and synthetic speech parameters. Its effect in quality was con-
firmed but it is still uncleared why the MS causes such the effects. We should
investigate more from the perspectives of the physical constraint of the speech
production and the auditory characteristics. Also, we should investigate how
the MS is modeled. In this thesis, we modeled power spectra of each modula-
tion frequency bin. This is too much strong to constrain the speech parameter
sequence,

As described in Section 4.5, even if the MSs are compensated, something
is still different between natural speech and synthetic speech. Inefficient way to
find the difference is to take account of an anti-spoofing technique. An anti-
spoofing technique [149, 150] is to detect the spoofing attack by speech synthesis.
As we described in Chapter 4, the modulation spectrum is originally used to
distinguish natural speech from synthetic speech in the anti-spoofing, but it have
became a non-meaningful feature when we consider it in the speech synthesis

40 The score using the MS-based post-filter is around 3.5, as described in Section A.3.
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side. Similarly, other features found in the anti-spoofing side will be effective for
training the better speech synthesis system.

The use of better acoustic models As demonstrated in Section A.6 and
also reported in [120], we observe quality degradation even if we can select the best
rich context models in HMM-based T'TS. This is caused by the HMM state-level
temporal quantization and the use of macro-level context labels. Also, HMM-
based TTS and GMM-based VC frameworks are insufficient for integrating the
MS as discussed in Section 5.4.

DNNSs have a capability of solving these limitation. For example, frame-level
contexts are acceptable in DNN-based acoustic modeling. Also, we can integrate
the MS into the DNN training by several methods, such as minimum generation
error training [151], multi-task learning [152] and trajectory modeling [153].

Adaptation using rich context models and MS models This thesis con-
firmed quality gain by rich context models or MS models, but we need to investi-
gate their adaptation methods in order to benefit of statistical parametric speech
synthesis.

For rich context models, it is impossible to estimate the individual adaptation
rules for each rich context models. Therefore, what we need to consider is how
we apply the standard adaptation techniques with the suitable constraints.

Because the MS is the higher-ordered feature strongly depending on the
speaker, it is inappropriate to perform the MS-integrated algorithms using the
few amounts of the speech data. We need to propose the MS model adaptation
technique and the HMM/GMM (and DNN) adaptation techniques constrained
with the MS.

Where is the upper bound in quality in the real situation? I have
noted that the perceptual quality of synthetic speech is lower than that of natural
speech. However, it is resulted in silence and sound-only environments that are
not real environment for speech synthesis. Especially, I'm curious of the use of
speech synthesis in multimedia including visual information. Visual information
is dominant in human perception, and sound perception tends to be excessively
affected by the visual information. We need to investigate the upper bound of
speech quality in such situation, which means what extent we should improve the
quality.

As the related topic, one of the reasons why we can distinguish synthetic
speech from natural speech is that synthetic speech includes errors human beings
never do. Using the better modeling and synthesis methods is, of course, an
effective way, and the another way is to allow the errors but make it close to
human-like errors.

126



Publication, Reference, and Appendix

127



Publication

Journal papers

1. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, Graham Neubig, Sakriani Sakti
and Satoshi Nakamura, " Post-Filters to Modify the Modulation Spectrum for Statistical
Parametric Speech Synthesis,”

IEEE Transactions on Audio, Speech and Language Processing.
(accepted, corresponds to Chapter 4)

2. Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Sakriani Sakti, Graham Neubig,
and Satoshi Nakamura,
”Parameter Generation Methods with Rich Context Models for High-Quality and Flex-
ible Text-To-Speech Synthesis,”
IEEE Journal of Selected Topics of Speech Processing, 2014.
(corresponds to Chapter 3)

International conferences

1. Shinnosuke Takamichi, Kazuhiro Kobayashi, Kou Tanaka, Tomoki Toda, and Satoshi
Nakamura,
"The NAIST Text-to-Speech System for the Blizzard Challenge 2015,”
Proc. of Blizzard Challenge Workshop, Berlin, Germany, Sep., 2015.
(corresponds to Appendix)

2. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, and Satoshi Nakamura,
”Modulation Spectrum-Constrained Trajectory Training Algorithm for HMM-Based Speech
Synthesis,”

Proc. of INTERSPEECH, pp. 1206-1210, Dresden, Germany, Sep., 2015.
(corresponds to Chapter 5)

3. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, and Satoshi Nakamura,
" Parameter generation algorithm considering modulation spectrum for HMM-based speech
synthesis,”
Proc. of ICASSP, pp. 4210-4214, Brisbane, Australia, Apr., 2015.
(corresponds to Chapter 5)

4. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, and Satoshi Nakamura,
”Modulation Spectrum-Constrained Trajectory Training for GMM-Based Voice Conver-
sion,”

Proc. of ICASSP, pp. 4859-4863, Brisbane, Australia, Apr., 2015.
(corresponds to Chapter 5)

5. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, and Satoshi Nakamura,
”"Modulation Spectrum-based Post-filter for GMM-based Voice Conversion,”

Proc. of APSIPA, Siem Reap, Cambodia, Dec., 2014.
(corresponds to Chapter 4)

6. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, and Satoshi Nakamura,
"Modified Modulation Spectrum-based Post-filter for HMM-based Speech Synthesis,”
Proc. of GlobalSIP, pp. 710-714, Atlanta, U.S.A., Dec., 2014.

(corresponds to Chapter 4)
7. Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti, and Satoshi Naka-

mura,

128



” A Postfilter to Modify The Modulation Spectrum in HMM-based Speech Synthesis,”
Proc. of ICASSP, pp. 290-294, 2014.
(corresponds to Chapter 4)

Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Graham Neubig, Sakriani Sakti,
and Satoshi Nakamura,

"Improvements to HMM-based Speech Synthesis Based on Parameter Generation with
Rich Context Models,”

Proc. of INTERSPEECH, pp. 364-368, 2013.

(corresponds to Chapter 3)

. Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Hisashi Kawai, Sakriani Sakti,

and Satoshi Nakamura,
” An Evaluation of Parameter Generation Methods with Rich Context Models in HMM-
Based Speech Synthesis,”

Proc. of INTERSPEECH, Portland, U.S.A., Sep., 2012.
(corresponds to Chapter 3)

Technical reports

1.

Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, Satoshi Nakamura,

”Quality Improvements Approaches Based on the Modulation Spectrum to Statistical
Parametric Speech Synthesis,”

IPSJ SIG Tech. Rep., 2015-MUS-107, pp. 1-4, Mar., 2015.

(in Japanese, corresponds to Chapter 4 and 5)

. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, Satoshi Nakamura,

"Modulation Spectrum-Constrained Trajectory Training Algorithm for Statistical Para-
metric Speech Synthesis,”

IEICE Tech. Rep., SP2014-140, pp. 31-36, Mar., 2015.

(in Japanese, corresponds to Chapter 5)

. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, Satoshi Nakamura,

”Speech Parameter Generation Algorithm Considering Modulation Spectrum for Statis-
tical Parametric Speech Synthesis,”

IPSJ SIG Tech. Rep., 2015-SLP-105, No. 1, pp. 1-6, Feb., 2015.

(in Japanese, corresponds to Chapter 5)

Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti, Satoshi Naka-
mura,

"Postfilter Based on Modulation Spectrum in HMM-Based Speech Synthesis,”

IEICE Tech. Rep., SP2013-74, pp. 19-24, Nov., 2013.

(in Japanese, corresponds to Chapter 4)

Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Sakriani Sakti, Graham Neubig,
Satoshi Nakamura,

”"F0O Contour Generation Using Rich Context Models in HMM-Based Speech Synthesis,”
IEICE Tech. Rep., SP2012-104, pp. 37-42, Jap., 2013.

(in Japanese, corresponds to Chapter 3)

. Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Sakriani Sakti, Graham Neubig,

Satoshi Nakamura,

"Improvements of HMM-based Speech Synthesis Using Rich Context Models,”
IEICE Tech. Rep., SP2012-78, pp.37-42, Nov., 2012.

(in Japanese, corresponds to Chapter 3)

129



7.

Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Hisashi Kawai, Sakriani Sakti,
Graham Neubig, Satoshi Nakamura,

”A Study on HMM-Based Speech Synthesis Using Rich Context Models,”

IPSJ SIG Tech. Rep., SLP-10, No. 10, pp. 1-6, Jul., 2012.

(in Japanese, corresponds to Chapter 3)

Domestic conferences

1.

Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, Satoshi Nakamura,

"Modulation Spectrum-Constrained Trajectory Training Algorithm in Statistical Para-
metric Speech Synthesis,”

Proc. of Spring Meeting, Acoust. Soc. Jpn., 2-2-3, 2015.

(in Japanese, corresponds to Chapter 5)

. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, Satoshi Nakamura,

”Parameter Generation Algorithm Considering Modulation Spectrum in Statistical Para-
metric Speech Synthesis,”

Proc. of Spring Meeting, Acoust. Soc. Jpn., 2-2-2, 2015.

(in Japanese, corresponds to Chapter 5)

. Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti, Satoshi Naka-

mura,
"HMDM-based speech synthesis considering modulation spectrum,”
Proc. of Autumn Meeting, Acoust. Soc. Jpn., 2-7-10, 2013.

(in Japanese, corresponds to Chapter 4)

Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Sakriani Sakti, Graham Neubig,
Satoshi Nakamura,

”Quality Improvements with Rich Context Models for Spectral and FO Components in
HMM-based Speech Synthesis,”

Proc. of Spring Meeting, Acoust. Soc. Jpn., 2-7-10, 2013.

(in Japanese, corresponds to Chapter 3)

. Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Sakriani Sakti, Graham Neubig,

Satoshi Nakamura,

7 A Study on a Selection Method of Rich Context Models in HMM-based Speech Syn-
thesis,”

Proc. of Autumn Meeting, Acoust. Soc. Jpn., 2-2-1, 2012.

(in Japanese, corresponds to Chapter 3)

. Shinnosuke Takamichi, Tomoki Toda, Yoshinori Shiga, Hisashi Kawai, Sakriani Sakti,

Satoshi Nakamura,

”A Study on the Effectiveness of Full-context Models with Tied-covariance Matrices in
HMM-based Speech Synthesis,”

Proc. of Spring Meeting, Acoust. Soc. Jpn., 1-11-4, 2012.

(in Japanese, corresponds to Chapter 3)

Awards
1. 2014 TEICE ISS Young Researcher’s Award in Speech Field, Aug., 2015.

Ll

30th TELECOM System Technology Award for Students from TAF, Mar., 2015.
IEEE Kansai Section Student Paper Award, Feb., 2015.
APSIPA ASC 2014 Best Paper Award, Dec., 2014.

130



5. The 8th IEEE Japan SPS Outstanding Student Paper Award, Nov., 2014.
6. The 35th Awaya Prize Young Researcher Award of ASJ, Mar., 2014.
7. Award of Campus Venture Grand Prix in Osaka, Jan., 2014.
8. The 7th Best Student Presentation Award of ASJ, Sep., 2013.
9. The Best Student of Nara Institute of Science and Technology, Jul., 2013.
Articles
1. Shinnosuke Takamichi, Tomoki Toda, Alan W. Black, and Satoshi Nakamura,
”Post-Filter Using Modulation Spectrum as a Metric to Quantify Over-Smoothing Effects
in Statistical Parametric Speech Synthesis,”
APSIPA newsletter, No. 9, pp. 14-16, 2015. (Invited article, corresponds to Chapter 4)
2. Shinnosuke Takamichi,
" Coffee break, Q&A,”
Acoustical Science and Technology, Vol.70, No. 8, Aug., 2014.
(in Japanese)
Software
1. HMM-based Speech Synthesis System (HTS) [1]

(I provided the segment-level MS-based post-filter proposed in Chapter 4 to HTS ver.
2.3 beta)

Research talks

1.

Shinnosuke Takamichi,

”High-quality Statistical Parametric Speech Synthesis Considering the Modulation Spec-
trum,”

ICS Research Seminar, Technical University Munich, Sep., 2015.

. Shinnosuke Takamichi,

”Modulation Spectrum-based Approaches for High-Quality Speech Synthesis,”
IEEE MileStone Pre-Event, Kyoto, Japan, May, 2015.

. Shinnosuke Takamichi,

"Modulation Spectrum-based Approach to High-quality Statistical Parametric Speech
Synthesis,”

Techtalk, Google London, UK, Nov., 2014.

Shinnosuke Takamichi,

"Modulation Spectrum-based Approach to High-quality Statistical Parametric Speech
Synthesis,”

CUED seminars, Univ. of Cambridge, UK, Nov., 2014.

. Shinnosuke Takamichi,

"Modulation Spectrum-based Approach to High-quality Statistical Parametric Speech
Synthesis,”
Speech! Meeting, Edinburgh Univ., UK, Nov., 2014.

. Shinnosuke Takamichi,

”Modulation Sectrum (MS) in HMM-based speech synthesis,”
Sphinx lunch, Carnegie Mellon Univ., U.S.A., Mar., 2014.

131



Related publications

International conferences

1.

Yuri Nishigaki, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakti Sakriani,
and Satoshi Nakamura,

”Prosody-Controllable HMM-Based Speech Synthesis Using Speech Input,”

Proc. of 2015 First Workshop on MLSLP, Aizu, Japan, Sep., 2015.

. Quoc Truong Do, Sakriani Sakti, Shinnosuke Takamichi, Graham Neubig, Tomoki Toda,

and Satoshi Nakamura,

”Preserving Word-level Emphasis in Speech-to-speech Translation using Linear Regres-
sion HSMMs,”

Proc. of INTERSPEECH, pp. 3665-3669, Dresden, Germany, Sep., 2015.

. Yuji Oshima, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti, and

Satoshi Nakamura,

”Non-native Speech Synthesis Preserving Speaker Individuality Based on Partial Cor-
rection of Prosodic and Phonetic Characteristics,”

Proc. of INTERSPEECH, pp. 299-303, Dresden, Germany, Sep., 2015.

Nozomi Jinbo, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
and Satoshi Nakamura,

”A Hearing Impairment Simulation Method Using Audiogram-based Approximation of
Auditory Characteristics,”

Proc. of INTERSPEECH, pp. 490-494, MAX Atria, Singapore, Sep., 2014.

. Takatomo Kano, Shinnosuke Takamichi, Sakriani Sakti, Graham Neubig, Tomoki Toda,

and Satoshi Nakamura,

”Generalizing Continuous-space Translation of Paralinguistic Information,”
Proc. of INTERSPEECH, pp. 2614-2618, 2013.

. Takatomo Kano, Sakriani Sakti, Shinnosuke Takamichi, Graham Neubig, Tomoki Toda,

and Satoshi Nakamura,
” A Method For Translation of Paralinguistic Information,”
Proc. of IWSLT, pp. 158-163, 2012.

Technical reports

1.

2.

Shinya Kura, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,

”Evaluation and Analysis of Duration Correction for Non-Native Speech Based on Wave-
form Modification,”

IEICE Tech. Rep., Dec., 2015. (in Japanese)

Yuji Oshima, Shinnosuke Takamichi, Tomoki Toda, Sakriani Sakti, Graham Neubig,
Satoshi Nakamura,

”English-Read-By-Japanese Speech Synthesis Preserving Speaker Individuality Based on
Partial Correction of Prosody and Phonetic Sounds and Effects of English Proficiency
Level on Its Performance,”

IPSJ SIG Tech. Rep., SLP-105, pp. 1-6, Feb., 2015. (in Japanese)

. Shinnosuke Takamichi, Yuji Oshima, Tomoki Toda, Graham Neubig, Sakriani Sakti,

Satoshi Nakamura,

”A Study on Computer Assisted Language Learning Using English-Read-By-Japanese
Speech Synthesis Techniques,”

JSIiSE research report, Vol. 29, No. 5, pp. 111-116, Jan., 2015. (in Japanese)

132



4.

Yuri Nishigaki, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,

"HMM-Based Speech Synthesis System with Prosody Modification Based on Speech
Input,”

IEICE Tech. Rep., SP2014-115, pp. 81-86, Dec., 2014. (in Japanese)

Yuji Oshima, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,

”Prosody Correction Preserving Speaker Individuality in English-Read-By-Japanese Speech
Synthesis Based on HMM,”

IEICE Tech. Rep., SP2014-112, pp. 63-68, Dec., 2014. (in Japanese)

. Nozomi Jinbo, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,

Satoshi Nakamura,

"Hearing Impairment Simulation using Audiogram-based Approximation of Auditory
Filter and Loudness Compensation,”

IEICE Tech. Rep., SP2013-96, pp. 1-6, Jan., 2014. (in Japanese)

Domestic conferences

1.

Truong Do, Shinnosuke Takamichi, Sakriani Sakti, Graham Neubig, Tomoki Toda, and
Satoshi Nakamura,

”Word-level Emphasis Transfer in Speech-to-speech Translation,”

Proc. of Spring Meeting, Acoust. Soc. Jpn., 2016. (to appear)

. Shinya Kura, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,

Satoshi Nakamura, ” Analysis of quality degradation caused by duration correction of
non-native speech using direct waveform modification,”
Proc. of Spring Meeting, Acoust. Soc. Jpn., 2016. (in Japanese, to appear)

. Shinnosuke Takamichi, Keita Higuchi, Satoshi Nakamura,

”Identity reflection using speech synthesis into avatar,”
23-th Workshop on Interactive Systems and Software, 1-R-16, 2015. (in Japanese)

. Shinnosuke Takamichi, Tomoki Toda, Masanori Morise, Satoshi Nakamura,

7 STRAIGHT vs. WORLD, Comparison of Speech Anaylysis-Synthesis Systems in
HMM-Based Speech Synthesis,”
Proc. of Autumn Meeting, Acoust. Soc. Jpn., 1-Q-27, 2015. (in Japanese)

. Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti, Satoshi Naka-

mura,
”An Evaluation of HMM-Based English-Read-by-Japanese Speech Synthesis Using En-
glish Speech Read by Japanese Junior High School Students,”

Proc. of Autumn Meeting, Acoust. Soc. Jpn., 2-5-8, 2015. (in Japanese)

. Truong Do, Shinnosuke Takamichi, Sakriani Sakti, Graham Neubig, Tomoki Toda, and

Satoshi Nakamura,
”Study on Word-Level Emphasis Across English and Japanese,”
Proc. of Autumn Meeting, Acoust. Soc. Jpn., 3-1-6, 2015.

Yuri Nishigaki, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,

"Improvements to HMM-Based Speech Synthesis System with Prosody Modification
Based on Speech Input,”

Proc. of Spring Meeting, Acoust. Soc. Jpn., 2-2-4, 2015. (in Japanese)

133



8. Yuji Oshima, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,
”Prosody Correction Preserving Speaker Individuality in English-Read-By-Japanese Speech
Synthesis and Effects of English Proficiency Level,”
Proc. of Spring Meeting, Acoust. Soc. Jpn., 1-2-9, 2015. (in Japanese)

9. Shinya Kura, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,
” An Evaluation of Duration Correction for Non-Native Speech,”
Proc. of Spring Meeting, Acoust. Soc. Jpn., 1-2-8, 2015. (in Japanese)

10. Yuji Oshima, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,
”Prosody Correction Preserving Speaker Individuality in English-Read-By-Japanese Speech
Synthesis,”
Proc. of Autumn Meeting, Acoust. Soc. Jpn., 2-7-5, 2014. (in Japanese)

11. Yuri Nishigaki, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,
"HMM-Based Speech Synthesis System with Speech-driven Prosody Modification,”
Proc. of Spring Meeting, Acoust, Soc. Jpn., 3-6-1, 2014. (in Japanese)

12. Nozomi Jinbo, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,
7 Audiogram-based Approximation of Loudness and Auditory Filter Characteristics in
Hearing Impairment  Simulation,”
Proc. of Spring Meeting, Acoust, Soc. Jpn., 2-Q-7, 2014. (in Japanese)

13. Yasuhiro Hamada, Keisuke Imoto, Shinnosuke Takamichi,
”"How to survey and manage research papers,”
The 4th acoustic seminar, 2013. (in Japanese)

14. Daisuke Morikawa, Yoji Ishii, Shinnosuke Takamichi, Jorge Trevino,
”History of 3D Sounds Techniques,”
The 4th acoustic seminar, 2013. (in Japanese)

15. Nozomi Jinbo, Shinnosuke Takamichi, Tomoki Toda, Graham Neubig, Sakriani Sakti,
Satoshi Nakamura,
”Hearing Impairment Simulation System with Audiogram-Based Auditory filter approx-
imation,”
16th Young Researchers’ Interactive Meeting of ASJ Kansai Section, 2013. (in Japanese)

Award

1. ASJ Kansai Section Young Researchers’ Interactive Meeting Encouragement Award
(Awardee: Nozomi Jinbo)

Research talks

1. Shinnosuke Takamichi,
”Hearing impairment simulation to assist hearing-impaired people,”
Sphinx lunch, Carnegie Mellon Univ., U.S.A., Sep., 2014.

134



Master’s thesis

1. Shinnosuke Takamichi,
"Hybrid Approach to High-Quality and Flexible Text-To-Speech Synthesis,”
Master’s thesis, Graduate School of Information Science, Nara Institute of Science and
Technology, Mar., 2013.

135



REFERENCES

References

1]
2]

“HMM-based speech synthesis system (HTS) http://hts.sp.nitech.ac.jp/.”

H. Hwang, Y. Tsao, H. Wang, Y. Wang, and S. Chen, “Incorporating global variance
in the training phase of GMM-based voice conversion,” in Proc. APSIPA, Kaohsiung,
Taiwan, Oct. 2013, pp. 1-6.

T. Toda and S. Young, “Trajectory training considering global variance for HMM-based
speech synthesis,” in Proc. ICASSP, Taipei, Taiwan, Aug. 2009, pp. 4025-4028.

Y. Sagisaka, “Speech synthesis by rule using an optimal selection of non-uniform synthesis
units,” in Proc. ICASSP, New York, U.S.A., Apr. 1988, pp. 679-682.

Y. Stylianou, O. Cappe, and E. Moulines, “Continuous probabilistic transform for voice
conversion,” IEEE Trans. Speech and Audio Processing, vol. 6, no. 2, pp. 131-142, Mar.
1988.

H. Zen, K. Tokuda, and A. Black, “Statistical parametric speech synthesis,” Speech Com-
mun., vol. 51, no. 11, pp. 1039-1064, 2009.

K. Tokuda, T. Kobayashi, and S. Imai, “Speech parameter generation from HMM using
dynamic features,” in Proc. ICASSP, Detroit, U.S.A., May 1995, pp. 660-663.

K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura, “Speech synthesis
based on hidden Markov models,” Proceedings of the IEEE, vol. 101, no. 5, pp. 1234-1252,
2013.

T. Toda, A. W. Black, and K. Tokuda, “Voice conversion based on maximum likeli-
hood estimation of spectral parameter trajectory,” IEEE Trans. on Audio, Speech and
Language Processing, vol. 15, no. 8, pp. 2222-2235, 2007.

H. Kawahara, I. Masuda-Katsuse, and A. D. Cheveigne, “Restructuring speech represen-
tations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-
based FO extraction: Possible role of a repetitive structure in sounds,” Speech Commun.,
vol. 27, no. 34, pp. 187-207, 1999.

M. Morise, “An attempt to develop a singing synthesizer by collaborative creation,” in
Proc. SMAC, Stockholm, Aug. 2013.

Y. Agiomyrgiannakis, “Vocaine the vocoder and applications in speech synthesis,” in
Proc. ICASSP, Brisbane, Australia, Apr. 2015, pp. 4230-4234.

P. K. Muthukumar, A. W. Black, and H. T. Bunnell, “Optimizations and fitting pro-
cedures for the Liljencrants-Fant model for statistical parametric speech synthesis,” in
Proc. ICASSP, Vancouver, Canada, May 2013.

H. Zen and A. Senior, “Deep mixture density networks for acoustic modeling in statistical
parametric speech synthesis,” in Proc. [CASSP, Florence, Italy, May 2014, pp. 3872-3876.

S. King and V. Karaiskos, “The blizzard challenge 2011,” in Proc. Blizzard Challenge
workshop, Turin, Italy, Sept. 2011.

Y. Stylianou, “Voice transformation: A survey,” in Proc. ICASSP, Taipei, Taiwan, Apr.
2009, pp. 3585-3588.

Z. Ling, L. Qin, H. Lu, Y. Gao, L. Dai, R. Wang, Y. Jiang, Z. Zhao, J. Yang, J. Chen,
and G. Hu, “The USTC and iflytek speech synthesis systems for blizzard challenge 2007,”
in Proc. Blizzard Challenge workshop, Bonn, Germany, Aug. 2007.

136



REFERENCES

[18]

[19]

Z. Yan, Q. Yao, and S. K. Frank, “Rich context modeling for high quality HMM-based
TTS,” in Proc. INTERSPEECH, Brighton, U.K., Sept. 2009, pp. 1755-1758.

T. Toda and K. Tokuda, “A speech parameter generation algorithm considering global
variance for HMM-based speech synthesis,” IEICE Trans., vol. E90-D, no. 5, pp. 816-824,
2007.

T. Nose, V. Chunwijitra, and T. Kobayashi, “A parameter generation algorithm using
local variance for HMM-based speech synthesis,” IEEE Journal of Selected Topics in
Signal Processing, vol. 8, no. 2, pp. 221-228, 2014.

M. Shannon and W. Byrne, “Fast, low-artifact speech synthesis considering global vari-
ance,” in Proc. ICASSP, Vancouver, Canada, May. 2013, pp. 7869-7873.

T. Toda, T. Muramatsu, and H. Banno, “Implementation of computationally efficient
real-time voice conversion,” in Proc. INTERSPEFECH, Portland, U.S.A., Sept. 2012.

H. Zen, K. Tokuda, and T. Kitamura, “Refomulating the HMM as a trajectory model
by imposing explicit relationships between static and dynamic feature vector sequences,”
Computer Speech and Language, vol. 21, no. 1, pp. 153-173, Jan. 2007.

M. Abe, Y. Sagisaka, T. Umeda, and H. Kuwabara, “ATR technical repoart,” no. TR-I-
0166M, 1990.

D. Klatt, “Review of text-to-speech conversion for English,” J. Acoust. Soc. Am., vol. 82,
no. 3, pp. 737-793, 1987.

T. Nose and T. Kobayashi, “Speaker-independent hmm-based voice conversion using
adaptive quantization of the fundamental frequency,” Speech Commun., vol. 53, no. 7,
pp. 973—985, 2011.

Y. J. Wu, Y. Nankaku, and K. Tokuda, “State mapping based method for cross-lingual
speaker adaptation in HMM-based speech synthesis,” in Proc. INTERSPEFECH, Brighton,
U. K., 2009, pp. 528-531.

N. Iwahashi, N. Kaiki, and Y. Sagisaka, “Speech segment selection for concatenative
synthesis based on spectral distortion minimization,” IEICE Trans., Fundamentals, vol.
E76-A, no. 11, pp. 1942-1948, 1993.

A. J. Hunt and A. Black, “Unit selection in a concatenative speech synthesis system using
a large speech database,” in Proc. ICASSP, Atlanta, U.S.A., May 1996, pp. 373-376.

T. Dutoit, A. Holzapfel, M. Jottrand, A. Moinet, J. Perez, and Y. Stylianou, “Towards
a voice conversion system based on frame selection,” in Proc. ICASSP, Hawaii, U.S.A.,
Apr. 2007, pp. 513-516.

A. K. Syrdal, C. W. Wightman, A. Conkie, Y. Stylianou, M. Beutnagel, J. Schroeter,
V. Strom, K.-S. Lee, and M. Makashay, “Corpus-based techniques in the AT&T NextGen
synthesis system,” in Proc. ICSLP, Beijing, China, Oct 2000, pp. 410-415.

A. W. Black, “CLUSTERGEN: A statistical parametric synthesizer using trajectory mod-
eling,” in Proc. INTERSPEECH, Pittsburgh, U.S.A., Sep. 2006.

T. Koriyama, T. Nose, and T. Kobayashi, “Statistical parametric speech synthesis based
on gaussian process regression,” IEEE Journal of Selected Topics in Signal Processing,
vol. 8, no. 2, pp. 173-183, Apr. 2014.

137



REFERENCES

[34]

[35]

[46]

[47]

[48]

E. Helander, T. V. H. Silen, and M. Gabbouj, “Voice conversion using dynamic kernel par-
tial least squares regression,” IEEE Trans. on Audio, Speech, and Language Processing,
vol. 20, no. 3, pp. 806-817, Mar. 2012.

K. Oura, H. Zen, Y. Nankaku, A. Lee, and K. Tokuda, “An investigation of implemen-
tation performance analysis of DNN based speech synthesis system,” in Proc. INTER-
SPEECH, Brighton, U. K., 2014, pp. 577-582.

J. Yamagishi and T. Kobayashi., “Average-voice-based speech synthesis using HSMM-
based speaker adaptation and adaptive training,” IEICE Trans., Inf. and Syst., vol.
E90-D, no. 2, pp. 533-543, 2007.

T. Toda, O. Ohtani, and K. Shikano, “One-to-many and many-to-one voice conversion
based on Eigenvoices,” in Proc. ICASSP, Hawaii, U.S.A., Apr. 2007, pp. 1249-1252.

T. Yoshimura, T. Masuko, K. Tokuda, T. Kobayashi, and T. Kitamura, “Speaker in-
terpolation for HMM-based speech synthesis system,” J. Acoust. Soc. Jpn. (E), vol. 21,
no. 4, pp. 199-206, 2000.

T. Nose, J. Yamagishi, T. Masuko, and T. Kobayashi, “A style control technique for
HMM-based expressive speech synthesis,” IEICE Trans., Inf. and Syst., vol. E90-D, no. 9,
pp- 1406-1413, 2007.

L. Chen, M. J. F. Gales, L. Chen, K. Chin, K. Knull, and M. Akamine, “Exploring rich
expressive information from audiobook data using cluster adaptive training,” in Proc.
INTERSPEECH, Portland, U.S.A., Sep. 2012.

F. Jelinek, Statistical methods for speech recognition. MIT press, 1997.

N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end factor anal-
ysis for speaker verification,” IEEE Trans. on Audio, Speech, and Language Processing,
vol. 14, no. 4, pp. 788-798, 2011.

T. Nakashika, R. Takashima, T. Takiguchi, and Y. Ariki, “Voice conversion in high-order
Eigen space using deep belief nets,” in Proc. INTERSPEECH, Lyon, France, Aug. 2013,
pp. 369-372.

H. Fujisaki and K. Hirose, “Analysis of voice fundamental frequency contours for declar-
ative sentence of Japanense,” J. Acoust. Soc. Jpn. (E), vol. 5, no. 4, pp. 233-242, 1984.

H. Kawai, T. Toda, J. Ni, M. Tsuzaki, and K. Tokuda., “XIMERA: a new TTS from
ATR based on corpus-based technologies,” in Proc. 5th ISCA Speech Synthesis Workshop
(SSWS5), Pittsburgh, USA, June 2004, pp. 179-184.

Y. Qian, J. Xu, and F. K. Soong, “A frame mapping based HMM approach to cross-lingual
voice transformation,” in Proc. ICASSP, Prague, Czech Republic, 2011, pp. 5120-5123.

T. Toda, H. Kawai, and M. Tsuzaki, “Optimizing sub-cost functions for segment selection
based on perceptual evaluations in concatenative speech synthesis,” in Proc. ICASSP,
Montreal, Canada, May 2004, pp. 657-660.

E. Moulines and F. Charpentier, “Pitch-synchronous waveform processing techniques for
Text-To-Speech synthesis using diphones,” Speech Commun., vol. 9, no. 5-6, pp. 453-467,
1990.

T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura, “Simultaneous
modeling of spectrum, pitch and duration in HMM-based speech synthesis,” in Proc.
EUROSPEECH, Budapest, Hungary, Apr. 1999, pp. 2347-2350.

138



REFERENCES

[50]

T. Kudo, K. Yamamoto, and Y. Matsumoto, “Applying conditional random fields to
Japanese morphological analysis,” in Proc. EMNLP, Barcelona, Spain, Jul. 2004, pp.
230-237.

K. Tokuda and H. Z. adn A. W. Black, “An HMM-based speech synthesis system applied
to English,” in Proc. IEEE SSW, 2002, pp. 227-230.

Y. Qian, F. Soong, Y. Chen, and M. Chu, “An HMM-based Mandarin Chinese text-to-
speech system,” in Proc. ICSLP, 2006, pp. 223-232.

P. Taylor, Text-To-Speech Synthesis. Cambridge Univ. Press, 2009.

D. Hirst and A. D. Cristo, Intonation Systems: A Survey of Twenty Languages. Cam-
bridge Univ. Press, 1998.

G. Esther and E. L. Low, “Durational variability in speech and the rhythm class hypoth-
esis,” Papers in laboratory phonology 7, pp. 515-546, 2002.

H. Lu and S. King, “Factorized context modeling for Text-to-Speech synthesis,” in Proc.
ICASSP, Vancouver, Canada, May 2013.

S. Yokomizo, T. Nose, and T. Kobayashi, “Evaluation of prosodic contextual factors for
HMM-based speech synthesis,” in Proc. INTERSPEECH, Chiba, Japan, Sept. 2010, pp.
430-433.

S. L. Maguer, N. Barbot, and O. Boeffard, “Evaluation of contextual descriptors for
HMM-based speech synthesis in French,” in Proc. SSW8, Barcelona, Spain, Aug. 2013.

F. Eyben and Y. Agiomyrgiannakis, “Decision tree usage for incremental parametric
speech synthesis,” in Proc. ICASSP, Florence, Italy, May 2014, pp. 3819—-3823.

T. Baumann, “Partial representations improve the prosody of incremental speech synthe-
sis,” in Proc. INTERSPEECH, MAX Atria, Singapore, May 2014, pp. 2932—2936.

M. Pouget, T. Hueber, G. Bailly, and T. Baumann, “Hmm training strategy for incre-
mental speech synthesis,” in Proc. INTERSPEECH, Dresden, Germany, Sep. 2015, pp.
1201-1205.

K. Silverman, M. E. Beckman, J. F. Pitrelli, M. Ostendorf, C. Wightman, and P. Price,
“ToBI: A standard for labeling English prosody,” in Proc. ICSLP, Banff, Alberta,
Canada, Oct. 1992, pp. 867-870.

M. Kikuo, K. Hideaki, and I. Yosuke, “X-JToBI: An intonation labeling scheme for
spontaneous Japanese,” in Technical Report of IEICE, vol. SP2001-106, Lyon, France,
Dec. 2001, pp. 25-30.

K. Morizane, K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano, “Emphasized speech
synthesis based on hidden Markov models,” in Proc. Oriental COCOSDA, Urumgqi, China,
Aug. 2009, pp. 76-81.

Q. T. Do, S. Sakti, S. Takamichi, G. Neubig, T. Toda, and S. Nakamura, “Preserving
word-level emphasis in speech-to-speech translation using linear regression HSMMs,” in
Proc. INTERSPEFECH, Dresden, Germany, Sep. 2015, pp. 3665-3669.

S. Sitaram, G. Anumanchipalli, J. Chiu, A. Parlikar, and A. W. Black, “Text to speech in
new languages without a standardized orthography,” in Proc. SSWSE, Barcelona, Spain,
Aug. 2013.

139



REFERENCES

[67]

[68]

[69]

[74]

H. Liang, Y. Qian, F. K. Soong, and L. Gongshen, “A cross-language state mapping
approach to bilingual (Mandarin-English) TTS, year = 2008,,” in Proc. ICASSP, Las
Vegas, U. S. A., Apr., pp. 4641-4644.

K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, “Mel-generalized cepstral analysis - a
unified approach to speech spectral estimation,” in Proc. ICSLP, Yokohama, Japan, Sep.
1994, pp. 410-415.

S. Takaki, Z. Wu, and J. Yamagishi, “A function-wise pre-training technique for con-
structing a deep neural network based spectral model in statistical parametric speech
synthesis,” in Proc. MLSLP, Aizu, Fukushima, Sep. 2015.

N. Hojo, K. Yoshizato, H. Kameoka, D. Saito, and S. Sagayama, “Text-to-speech synthe-
sizer based on combination of composite wavelet and hidden Markov models,” in Proc.
SSWS, Barcelona, Spain, Aug. 2013.

K. Yoshizato, H. Kameoka, D. Saito, and S. Sagayama, “Statistical approach to Fujisaki-
model parameter estimation from speech signals and its quantitative evaluation,” Speech
Prosody, vol. 1, pp. 175-178, 2012.

Z.-H. Ling, K. Richmond, J. Yamagishi, and R.-H. Wang, “Articulatory control of HMM-
based parametric speech synthesis driven by phonetic knowledge,” in Proc. INTER-
SPEECH, Brisbane, Australia, Sep. 2008, pp. 573-576.

P. L. Tobing, T. Toda, G. Neubig, S. Sakti, S. Nakamura, and A. Purwarianti, “Articula-
tory controllable speech modification based on statistical feature mapping with Gaussian
mixture models,” in Proc. INTERSPEECH, Max Atria, Singapore, Sep. 2014, pp. 2298-
2302.

H. Kawahara, J. Estill, and O. Fujimura, “Aperiodicity extraction and control using
mixed mode excitation and group delay manipulation for a high quality speech analysis,
modification and synthesis system STRAIGHT,” in MAVEBA 2001, Firentze, Italy, Sept.
2001, pp. 1-6.

H. Banno, H. Hata, M. Morise, T. Takahashi, T. Irino, and H. Kawahara, “Implementa-
tion of realtime STRAIGHT speech manipulation system: Report on its first implemen-
tation,” J. Acoust. Soc. Jpn. (E), vol. 21, no. 3, pp. 79-86, 2000.

M. Morise, H. Kawahara, and H. Katayose, “Fast and reliable FO estimation method
based on the period extraction of vocal fold vibration of singing voice and speech,” in
Proc. AES 35th International Conference, London, United Kingdom, Feb. 2009.

M. Morise, “CheapTrick, a spectral envelope estimator for high quality speech synthesis,”
Speech Commun., vol. 67, pp. 1-7, 2015.

G. E. Henter, M. R. Frean, and W. B. Kleijn, “Gaussian process dynamical models for
nonparametric speech representation and synthesis,” in Proc. ICASSP, Kyoto, Japan,
Mar. 2012.

K. Ohta, T. Toda, Y. Ohtani, H. Saruwatari, and K. Shikano, “Adaptive voice-quality
control based on one-to-many Eigenvoice conversion,” in Proc. INTERSPEECH, Chiba,
Japan, Sept. 2010, pp. 2158-2161.

K. Kazumi, Y. Nankaku, and K. Tokuda, “Factor analyzed voice models for HMM-based
speech synthesis,” in Proc. I[CASSP, Dallas, Texas, U.S.A., Apr. 2010, pp. 4234-4237.

140



REFERENCES

[81]

[82]

Y. Ohtani, Y. Nasu, M. Morita, and M. Akamine, “Emotional transplant in statistical
speech synthesis based on emotion additive model,” in Proc. INTERSPEECH, Dresden,
Germany, Sep. 2015, pp. 274-278.

K. Kobayashi, T. Toda, G. Neubig, S. Sakti, and S. Nakamura, “Statistical singing voice
conversion with direct waveform modification based on the spectrum differential,” in
Proc. INTERSPEECH, Max Atria, Singapore, Sep. 2014, pp. 2514-2518.

H.-T. Hwang, Y. Tsao, H.-M. Wang, Y.-R. Wang, and S.-H. Chen, “A study of mutual
information for GMM-based spectral conversion,” in Proc. INTERSPEECH, Portland,
U.S.A.; Sep. 2012.

K. Tokuda, T. Masuko, B. Miyazaki, and T. Kobayashi, “Multi-space probability distri-
bution HMM,” IEICE Trans., Inf. and Syst., vol. E85-D, no. 3, pp. 455-464, 2002.

K. Yutani, Y. Uto, Y. Nankaku, A. Lee, and K. Tokuda, “Voice conversion based on
simulatenous modeling of spectrum and f0,” in Proc. INTERSPEECH, Brighton, U. K.,
2009, pp. 3897-3900.

K. Yu and S. Young, “Continuous FO modeling for HMM based statistical parametric
speech synthesis,” IEEE Trans. Audio, Speech and Language, vol. 19, no. 5, pp. 1071—
1079, 2011.

J. Latorre, M. J. F. Gales, S. Buchholz, K. Knill, M. Tamura, Y. Ohtani, and M. Akamine,
“Continuous f0 in the source-excitation generation for HMM-based TTS: Do we need
voiced /unvoiced classification?” in Proc. ICASSP, Prague, Czech Republic, 2011, pp.
4724-4727.

Z. Chen and K. Yu, “Tying covariance matrices to reduce the footprint of HMM-based
speech synthesis systems,” in Proc. ICSP, Zhejiang, China, 2009, pp. 1759-1762.

H. Zen, Y. Nankaku, and K. Tokuda, “Continuous stochastic feature mapping based on
trajectory HMMs,” IEEE Trans. on Audio, Speech, and Language processing, vol. 19, pp.
417-430, Jan. 2011.

M. Shannon, H. Zen, and W. Byrne, “Autoregressive models for statistical parametric
speech synthesis,” IEEE Trans. on Audio, Speech, and Language processing, vol. 21, no. 3,
pp. 587-597, 2013.

G. Hinton, “Product of experts,” in Proc. ICANN, 1999, pp. 1-6.

S. Takaki, Y. Nankaku, and K. Tokuda, “Contextual additive structure for hmm-based
speech synthesis,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 2,
pp- 229-238, 2014.

Y. Wu and F. Soong, “Modeling pitch trajectory by hierarchical HMM with minimum
generation error training,” in Proc. ICASSP, Kyoto, Japan, Mar. 2012.

G. Hinton, L. Deng, D. Yu, G. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke,
P. Nguyen, T. Sainath, and B. Kingsbury, “Deep neural networks for acoustic model-
ing in speech recognition: The shared views of four research groups,” Signal Processing
Magazine of IEEFE, vol. 29, no. 6, pp. 82-97, 2012.

H. Zen, A. Senior, and M. Schuster, “Statistical parametric speech synthesis using deep
neural networks,” in Proc. ICASSP, Vancouver, Canada, May 2013.

H. Zen and H. Sak, “Unidirectional long short-term memory recurrent neural network
with recurrent output layer for low-latency speech synthesis,” in Proc. ICASSP, Brisbane,
Australia, Apr. 2015, pp. 4470-4474.

141



REFERENCES

[97]

[98]

[99]

[100]
[101]

[102]

[103]

104]

[105]

[106]

[107]

[108]

109

[110]

[111]

[112]

S. Fan, Y. Qian, and F. Soong, “T'TS synthesis with bidirectional LSTM based recurrent
neural networks,” in Proc. INTERSPEECH, Max Atria, Singapore, Sep. 2014, pp. 1964
1968.

K. Tokuda and H. Zen, “Directly modeling speech waveforms by neural networks for
statistical parametric speech synthesis,” in Proc. I[CASSP, Brisbane, Australia, Apr. 2015,
pp. 4215-4219.

O. Watts, Z. Wu, and S. King, “Sentence-level control vectors for deep neural network
speech synthesis,” in Proc. INTERSPEECH, Dresden, Germany, Sep. 2015.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.

A. W. Black and P. K. Muthukumar, in Proc. INTERSPEECH, Dresden, Germany, Sep.,
pp. 1211-1215.

7Z.-7. Wu, T. K. E.-S. Chng, and H. Li, “Text-independent F0 transformation with non-
parallel data for voice conversion,” in Proc. INTERSPEECH, Chiba, Japan, Sept. 2010,
pp. 1732-1735.

H. Z. N. C. V. Pilkington and M. J. F. Gales, “Gaussian process experts for voice con-
version,” in Proc. INTERSPEECH, Florence, Italy, Jul. 2011.

L.-H. Chen, Z.-H. Ling, Y. Song, and L.-R. Dai, “Joint spectral distribution modeling
using restricted Boltzmann machines for voice conversion,” in Proc. INTERSPEECH,
Lyon, France, Sep. 2013, pp. 3052-3056.

B. Chen, Z. Chen, J. Xu, and K. Yu, “An investigation of context clustering for sta-
tistical speech synthesis with deep neural network,” in Proc. INTERSPEFECH, Dresden,
Germany, Sep. 2015, pp. 2212-2216.

Y. Qian, Z. Yan, Y. Wu, and F. K. Soong, “An HMM trajectory tiling (HTT) approach
to high quality T'TS,” in Proc. INTERSPEECH, Chiba, Japan, Sept. 2010, pp. 422-425.

T.-N. Phung, C. M. Luong, and M. Akagi, “A hybrid TTS between unit selection and
HMM-based TTS under limited data conditions,” in Proc. SSW$, Barcelona, Spain, Aug.
2013.

S. Imai, K. Sumita, and C. Furuichi, “Mel log spectrum approximation (MLSA) filter for
speech synthesis,” Electronics and Communications in Japan, vol. 66, no. 2, pp. 1018,
1983.

K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura, “Speech parame-
ter generation algorithms for HMM-based speech synthesis,” in Proc. ICASSP, Istanbul,
Turkey, June 2000, pp. 1315-1318.

T. Moriguchi, T. Toda, M. Sano, H. Sato, G. Neubig, S. Sakti, and S. Nakamura, “A
digital signal processor implementation of silent/electrolaryngeal speech enhancement
based on real-time statistical voice conversion,” in Proc. INTERSPEECH, Lyon, France,
Aug. 2013, pp. 3072-3076.

S. Pan, Y. Nankaku, K. Tokuda, and J.Tao, “Global variance modeling on the log power
spectrum of Isps for HMM-based speech synthesis,” in Proc. ICASSP, Prague, Czech
Republic, 2011, pp. 4716-4719.

S. Pan, J. Tao, and Y. Wang, “A state duration generation algorithm considering global
variance for HMM-based speech synthesis,” in Proc. APSIPA ASC, Xi’an, China, 2011.

142



REFERENCES

[113]

[114]

[115]

[116]

[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

H. Silen, E. Helander, J. Nurminen, and M. Gabbouj, “Ways to implement global variance
in statistical speech synthesis,” in Proc. INTERSPEECH, Portland, U.S.A., Sep. 2012.

F. Eyben and Y. Agiomyrgiannakis, “A frequency-weighted post-filtering transform for
compensation of the over-smoothing effect in HMM-based speech synthesis,” in Proc.
ICASSP, Florence, Italy, May 2014, pp. 275-279.

K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda, “The effect of neural networks
in statistical parametric speech synthesis,” in Proc. ICASSP, Brisbane, Australia, Apr.
2015, pp. 4455-4459.

L.-H. Chen, T. Raitio, C. V.-Botinhao, J. Yamagishi, and Z.-H. Ling, “DNN-based
stochastic postfilter for HMM-based speech synthesis,” in Proc. INTERSPEECH, MAX
Atria, Singapore, May 2014, pp. 1954-1958.

G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions. John Wiley &
Somns, 1977.

K. Shinoda and T. Watanabe, “MDL-based context-dependent subword modeling for
speech recognition,” J. Acoust. Soc. Jpn.(E), vol. 28, no. 3, pp. 140-146, 2007.

H.-T. Hwang, Y. Tsao, H.-M. Wang, Y.-R. Wang, and S.-H. Chen, “Alleviating the
over-smoothing problem in GMM-based voice conversion with discriminative training,”
in Proc. INTERSPEECH, Lyon, France, Sep. 2013, pp. 3062-3066.

T. Merritt, J. Yamagishi, Z. Wu, O. Watts, and S. King, “Deep neural network con-
text embeddings for model selection in rich-context HMM synthesis,” in Proc. INTER-
SPEECH, Dresden, Germany, Sep. 2015, pp. 2207-2211.

Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design,” IEEFE
Trans. on communications, pp. 84-95, 1980.

S. Kataoka, N. Mizutani, K. Tokuda, and T. Kitamura, “Decision tree backing-off in
HMM-based speech synthesis,” in Proc. INTERSPEECH, vol. 2, Jeju, Korea, Oct. 2004,
pp- 1205-1208.

Z. Ling and R. Wang, “HMM-based unit selection using frame sized speech segments,”
in Proc. INTERSPEECH, Pittsburgh U.S.A., Sept. 2006.

T. Mizutani and T. Kagoshima, “Concatenative speech synthesis based on the plural unit
selection and fusion method,” IEFICE Trans. on Inf. and Syst., vol. E88-D, no. 11, pp.
2565-2572, 2005.

K. Oura, Y. Nankaku, and K. Tokuda, “The use of state-level contexts in HMM-based
speech synthesis,” in Proc. spring meeting of ASJ 2014, Tokyo, Japan, Mar. 2014 (In
Japanese), pp. 341-342.

Y. Sagisaka, K. Takeda, M. Abe, S. Katagiri, T. Umeda, and H. Kuawhara, “A large-scale
Japanese speech database,” in ICSLP90, Kobe, Japan, Nov. 1990, pp. 1089-1092.

Y. Ohtani, T. Toda, H. Saruwatari, and K. Shikano, “Maximum likelihood voice con-
version based on GMM with STRAIGHT mixed excitation,” in Proc. INTERSPEECH,
Pittsburgh, U.S.A., Sep. 2006, pp. 2266-2269.

S. Takamichi, T. Toda, Y. Shiga, S. Sakti, G. Neubig, and S. Nakamura, “Parameter
generation methods with rich context models for high-quality and flexible text-to-speech
synthesis,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 2, pp. 239—
250, 2014.

143



REFERENCES

[129]

[130]

[131]

[132]
[133]
[134]

[135]

[136]

[137]

[138]

[139)

[140]

[141]

[142]

[143]
[144]
[145]

R. Drullman, J. M. Festen, and R. Plomp, “Effect of reducing slow temporal modulations
on speech reception,” J. Acoust. Soc. of America, vol. 95, pp. 2670-2680, 1994.

S. Thomas, S. Ganapathy, and H. Hermansky, “Phoneme recgnition usng spectral envelop
and modulation frequency features,” in Proc. ICASSP, Taipei, Taiwan, April 2009, pp.
4453-4456.

S. Gergen, A. Nagathil, and R. Martin, “Reduction of reverberation effects in the MFCC
modulation spectrum for improved classification of acoustic signals,” in Proc. INTER-
SPEECH, Dresden, Germany, Sep. 2015, pp. 1992-1995.

Z. Wu, X. Xiao, E. S. Chng, and H. Li, “Synthetic speech detection using temporal
modulation feature,” in Proc. ICASSP, Vancouver, Canada, May. 2013, pp. 7234-7238.

R. Drullman, J. M. Festen, and R. Plomp, “Effect of temporal envelope smearing on
speech perception,” J. Acoust. Soc. of America, vol. 95, pp. 1053-1064, 1994.

T. Arai, M. Pavel, H. Hermansky, and C. Avendano, “Intelligibility of speech with filtered
time trajectories of spectral envelopes,” in Proc. ICSLP, vol. 4, 1996, pp. 2490-2493.

T. Muramatsu, Y. Ohtani, T. Toda, H. Saruwatari, and K. Shikano, “Low-delay voice
conversion based on maximum likelihood estimation of spectral parameter trajectory,” in
Proc. INTERSPEFECH, Brisbane, Australia, Sep. 2008, pp. 1076-1079.

L. Atlas and S. A.Shamma, “Joint acoustic and modulation frequency,” EURASIP Jour-
nal on Applied Signal Processing, vol. 7, pp. 668-675, 2003.

K. Tanaka, T. Toda, G. Neubig, S. Sakti, and S. Nakamura, “A hybrid approach to
electrolaryngeal speech enhansement based on spectral subtraction and statistical voice
conversion,” in Proc. INTERSPEECH, Lyon, France, Sep. 2013, pp. 3067-3071.

H. Zen, M. J. F. Gales, Y. Nankaku, and K. Tokuda, “Product of experts for statistical
parametric speech synthesis,” IEEE Trans. on Audio, Speech, and Language processing,
vol. 20, no. 3, pp. 794-805, Mar. 2011.

T. Nose and A. Ito, “Analysis of spectral enhancement using global variance in HMM-
based speech synthesis,” in Proc. INTERSPEECH, MAX Atria, Singapore, May 2014,
pp. 2917-2921.

Y. Ohtani, M. Tamura, M. Morita, T. Kagoshima, and M. Akamine, “Histogram-based
spectral equalization for HMM-based speech synthesis using mel-LSP,” in Proc. INTER-
SPEECH, Portland, U.S.A.; Sept. 2012.

H. Zen, K. Tokuda, T. K. T. Masuko, and T. Kitamura, “Hidden semi-Markov model
based speech synthesis system,” IEICE Trans., Inf. and Syst., E90-D, no. 5, pp. 825-834,
2007.

V. Tyagi, I. McCowan, H. Misra, and H. Bourlard, “Mel-cepstrum modulation spectrum
(MCMS) features for robust ASR,” in Proc. ASRU, MAX Atria, Singapore, Nov. 2003,
pp- 399-404.

“Speech signal processing toolkit (SPTK) http://sp-tk.sourceforge.net/.”
“Amazon mechanical turk https://www.mturk.com/.”

S. Takamichi, T. Toda, G. Neubig, S. Sakti, and S. Nakamura, “A postfilter to modify
modulation spectrum in HMM-based speech synthesis,” in Proc. I[CASSP, Florence, Italy,
May 2014, pp. 290-294.

144



REFERENCES

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153)]

[154]

[155]
[156]

[157]

[158]

159
[160]

Y. Koretake, T. Toda, Y. Kisaki, H. Saruwatari, and K. Shikano, “An evaluation of
modeling methods of global variance in HMM-based speech synthesis,” in IPSJ SIG
Technical Report, vol. 2010-SLP-84, no. 29, Dec. 2010 (In Japanese), pp. 1-6.

J. Kominek and A. W. Black, “The CMU ARCTIC speech databases for speech synthesis
research,” in Tech. Rep. CMU-LTI-03-177, Language Technologies Institute, Carnegie
Mellon University, Pittsburgh, U.S.A.; 2003.

S. Takamichi, T. Toda, A. W. Black, and S. Nakamura, “Parameter generation algorithm
considering modulation spectrum for HMM-based speech synthesis,” in Proc. ICASSP,
Brisbane, Australia, Apr. 2015.

Z. Wu and H. Li, “Voice conversion versus speaker verification: an overview,” APSIPA
Transactions on Signal and Information Processing, vol. 3, 2014.

Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilci, M. Sahidullah, and A. Sizov,
“ASVspoof 2015: the first automatic speaker verification spoofing and countermeasures
challenge,” in Proc. INTERSPEECH, Dresden, Germany, Sep. 2015, pp. 2037-2041.

Z. Wu and S. King, “Minimum trajectory error training for deep neural networks, com-
bined with stacked bottleneck features,” in Proc. INTERSPEECH, Dresden, Germany,
Sep. 2015, pp. 309-313.

Z. Wu, C. Valentini-Botinhao, O. Watts, and S. King, “Deep neural networks employ-
ing multi-task learning and stacked bottleneck features for speech synthesis,” in Proc.
ICASSP, Brisbane, Australia, Apr. 2015.

K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda, “Trajectory model training con-
sidering global variance for speech synthesis based on neural network,” in Proc. autumn
meeting of ASJ 2015, Fukushima, Japan, Sep. 2015 (In Japanese), pp. 237-238.

A. W. Black and K. Tokuda, “The blizzard challenge-2005: Evaluating corpus-based
speech synthesis on common datasets,” in Proc. INTERSPEFECH, Lisbon, Portugal, Sep.
2005.

“Blizzard challenge http://www.synsig.org/index.php/blizzard_challenge/.”

H. A. Patil, T. B. Patel, N. J. Shah, H. B. Sailor, R. Krishnan, G. R. Kasthuri, T. Na-
garajan, L. Christina, N. Kumar, V. Raghavendra, S. P. Kishore, S. R. M. Prasanna,
N. Adiga, S. R. Singh, K. Anand, P. Kumar, B. C. Singh, S. L. B. Kumar, T. G. Bhad-
ran, T. Sajini, A. Saha, T. Basu, K. S. Rao, N. P. Narendra, A. K. Sao, R. Kumar,
P. Talukdar, P. Acharyaa, S. Chandra, S. Lata, and H. A. Murthy, “A syllable-based
framework for unit selection synthesis in 13 indian languages,” in Proc. O-COCOSDA,
Gurgaon, India, Nov. 2013, pp. 1-8.

K. Sawada, S. Takaki, K. Hashimoto, K. Oura, and K. Tokuda, “Overview of NITECH
HMM-based text-to-speech system for Blizzard Challenge 2014,” in Proc. Blizzard Chal-
lenge, Singapore, Sep. 2014.

A. Suni, T. Raitio, D. Gowda, R. Karhila, M. Gibson, and O. Watts, “The Simple4All
entry to the Blizzard Challenge 2014,” in Proc. Blizzard Challenge, Singapore, Sep. 2014.
“Festvox http://festvox.org/download.html.”

S. S. Nair, R. C. R, and C. S. Kumar, “Rule-based grapheme to phoneme converter for
malayalam,” International Journal of Computational Linguistics and Natural Language
Processing, vol. 2, no. 7, pp. 417-420, Jul. 2013.

145



REFERENCES

[161]

[162]
[163]

[164]

[165]

[166]

S. Kang and H. Meng, “Statistical parametric speech synthesis using weighted multi-
distribution deep belief network,” in Proc. INTERSPEECH, Max Atria, Singapore, Sep.
2014, pp. 1959-1963.

C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proc.
AISTATS, Lauderdale, U.S.A., Apr. 2011, pp. 315-323.

D. Kingma and B. Jimmy, “Adam: A method for stochastic optimization,” in arXiv
preprint arXiv:1412.6980, 2014.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929-1958, Apr. 2014.

“Chainer: A powerful, flexible, and intuitive framework of neural networks
http://chainer.org/.”

146



A.1 Text-to-speech of Indian languages for Blizzard Challenge 2015

Appendix

A.1 Text-to-speech of Indian languages for Blizzard Chal-
lenge 2015

In order to better understand different speech synthesis techniques to develop
a corpus-based text-to-speech (TTS) system using a common dataset, Blizzard
Challenge was devised in January 2005 [154] and has been held every year since
then [155]. Blizzard Challenge 2015 has two tasks, 1) a mono-lingual speech
synthesis task (IH1 hub task) for 6 Indian languages consisting of Bengali, Hindi,
Malayalam, Marathi, Tamil, and Telugu, and 2) a multi-lingual speech synthesis
task (IH2 spoke task) for Indian language and English. The Indian datasets [156]
provided in the challenge consist of speech waveform and the corresponding texts
only. The size of the speech data in each Indian language is about 4 hours for
Hindi, Tamil and Telugu, and 2 hours for Bengali, Malayalam, and Marathi.
They are sampled at 16 kHz. The text data is provided in UTF-8 format. As
only the plain text data is provided without any additional information, such as a
phoneme set, syllable definition, and prosodic labels, participants need to develop
a natural language processing module (front-end) as well as a speech waveform
generation module (back-end) to develop their own TTS systems.

To submit a T'TS system from our group to the Blizzard Challenge 2015, we
have developed our own system, the NAIST TTS system based on a statistical
parametric speech synthesis technique using hidden Markov model (HMM) [8].
To improve quality of synthetic speech, two techniques are newly implemented
for the traditional HMM-based speech synthesis framework, 1) pre-processing
for producing smooth parameter trajectories to be modeled with HMM and 2)
speech parameter generation considering the modulation spectrum (MS) of speech
parameters [145][148]. The developed system has been submitted to the mono-
lingual task and its performance has been demonstrated from the results of large-
scaled subjective evaluations.

A.1.1 HMM-based TTS for mono-lingual task

The NAIST TTS system has 4 main modules; a text processing module, a speech
processing module, a training module, and a speech synthesis module, as shown
in Fig. 93. Context labels used for HMM training are generated using the existing
toolkit or our developed rule-based grapheme-to-phoneme converter and syllable
estimator in the text processing module. Smoothly varying speech parameter
sequences are extracted in the speech processing module. The context-dependent
phoneme HMMs and the MS probability density functions are trained using the
context labels and the speech parameters in the training module. Finally, a speech
waveform is generated from these trained models corresponding to a given text
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to be synthesized in the synthesis module.

Text processing module Because the provided Indian datasets do not include
any linguistic information, such as a phoneme set and prosodic labels, which is
usually needed to describe speech parameters corresponding to a given text, it is
indispensable to predict these in- formation from the given text. In the last year’
s challenge, some participants used several techniques to cope with this issue,
e.g., the use of an existing speech recognizer for a different language to extract
auxiliary linguistic information [157] or the development of a fully data-driven
text analyzer [158].

we used hand-crafted text analyzers. We used text analyzers developed with
language-specific recipes distributed by Festvox [159] for Bengali, Hindi, Tamil,
and Telugu. Additionally, we also developed a text analyzer for Marathi with the
recipe for Hindi because Marathi has a certain similarity to Hindi. For Malayalam,
we developed a rule-based grapheme-to-phoneme converter [160] dealing with
chillus and a rule-based syllable estimator considering specific characteristics of
Malayalam, such as dependent vowel signs.

In the context generation stage, the context labels are required to train the
context-dependent phoneme HMMs. Our context labels were designed on the
basis of the contextual factors used in HTS speaker adaptation/adaptive training
demo for English [1]. An example of the contextual factors used in our context
label definition is shown as follows:

e phoneme, syllable structure, and stress

e vowel/consonant, articulator position, and voicing/unvoicing
e position of phoneme, syllable, and word

e the number of phonemes, syllables, and words.

Note that stress information is not used for Malayalam because it is not extracted
in our text analysis module.

Speech analysis module A high-quality speech analysis-synthesis system is
required to develop a high-quality TTS synthesizer. We conducted preliminary
evaluation to compare analysis-synthesized speech quality by STRAIGHT [10, 74|
and WORLD [77, 76] as a high-quality analysis-synthesis system. From the result
of this preliminary evaluation, we decided that spectral envelope and aperiodicity
were extracted with STRAIGHT, given F 0 extracted with WORLD. They were
parameterized into the Oth-through-60th mel-cepstral coefficients, band aperiod-
icity, and log-scaled F 0, where the band aperiodicity was calculated by averaging
aperiodicity of each frequency component in 5 frequency bands [127]. The shift
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Figure 93. An overview of the NAIST TTS system for the Blizzard Challenge
2015. The orange-colored boxes indicate 4 main modules, a text processing mod-
ule, a speech processing module, a training module, and a synthesis module. The
blue-colored items are techniques newly implemented for the traditional HMM-
based speech synthesis framework to improve synthetic speech quality, where
“cont. Fy” and “MS” indicate the continuous £y and the modulation spec-
trum, respectively.
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Figure 94. An example of the 20-th mel-cepstral coefficient sequences before and
after the low pass filtering that removes the MS components over than 50 Hz.
We can see that some fluctuation have been removed.

length was set to 5 ms. Moreover, the continuous F, contour [86] was addi-
tionally produced from the extracted Fy contour. The spline-based interpolation
algorithm was used to estimate £ values at unvoiced regions (see Section A.2.).

After the speech parameter extraction, we perform the speech parameter tra-
jectory smoothing. Many fluctuations are usually observed over a time sequence
of some speech parameters, such as mel-cepstral coefficients. They are represented
as the MS of the temporal parameter sequence, i.e., power spectrum of the param-
eter sequence. As described in Section A.10, we have found that the effect of the
MS components in high MS frequency bands on quality of analysis-synthesized
speech is negligible, e.g., more than 50 Hz MS frequency components for the mel-
cepstral coefficient sequence and more than 10 Hz MS frequency components for
the continuous F, contour*’. To make the HMMs focus on the modeling of only
auditory informal components, low-pass filter (LPF) was applied to each param-
eter sequence. The cutoff frequency of LPF was set to 50 Hz for the mel-cepstral
coefficients and 10 Hz for the continuous F 0 contour, respectively. An example
of this parameter trajectory smoothing for the mel-cepstral coefficients is shown
in Fig. 95.

Training module The context-dependent phoneme hidden semi-Markov mod-
els (HSMMs) were trained on the basis of a maximum likelihood criterion in
a unified framework to model individual speech components [141]. Five-state
left-to-right HSMMs were used for every Indian language. The feature vector
consisted of mel-cepstral coefficients (61 dimensions), continuous log-scaled Fj
contour (1 dimension), band aperiodicity (5 dimensions), and their delta and

41 Micro-prosody is captured by these components [53].
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Figure 95. An example of the 20-th mel-cepstral coefficient sequence generated
without considering the MS (“w/o MS”) and that with considering the MS (“w/
MS ™).

delta-delta features, and discrete log-scaled F 0 contour (1 dimension) consisting
of unvoiced symbols. The total dimensionality of the feature vector is 202. Only
for Hindi, we used the Oth-through-24th mel-cepstral coefficients as we found that
the spectral parameter because the 61-dimentional mel-cepstral coefficients were
not well modeled in the HSMMs. The spectrum, continuous Fp, band aperiod-
icity components were modeled with the multi-stream continuous distributions.
The discrete Fy contour was additionally modeled with the multi-space distribu-
tions [84] to determine the voiced/unvoiced region of the continuous Fj contour
in the synthesis module. The tree-based clustering with the minimum description
length (MDL) criterion [118] was employed. The stream weights were set to 1.0
(spectrum), 1.0 (continuous Fy), 1.0 (discrete Fp)*? | and 0.0 (aperiodicity).

Gaussian distributions were also trained as the context- independent MS mod-
els for the spectrum and continuous F 0 contour. The utterance-level mean was
first subtracted from the temporal parameter sequence, and then its MS was cal-
culated. The length of discrete Fourier transform to calculate the MS was set
to cover the maximum utterance length of the training data. These MS models
were used in the synthesis module to reproduce the MS components, which were
not well reproduced from the HSMMs only.

Synthesis module In the synthesis module, the context labels were first gener-
ated in the text processing module, and then the sentence HSMM corresponding
to the text to be synthesized were constructed to generate the spectrum, continu-
ous F 0, aperiodicity, and voiced /unvoiced regions. The spectral parameters were

42 This stream setting is similar to the duplicated feature training [161] and the stream
weights for continuous Fy and discrete Fjy should be determined. We informally evaluated
synthetic speech quality using some stream weight settings and chose this setting.
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generated based on the speech parameter generation algorithm considering the
MS components lower than 50 Hz. The other parameters were generated based on
the ML-based parameter generation [109]. Additionally, we applied the MS-based
post-filter (Chapter 4) to the generated continuous Fy contour.*> The MS was
not considered in the aperiodicity component because there was no quality gain
by the MS modification. An example of the generated mel-cepstrum sequences
is illustrated in Fig. 95. We can find that more fluctuations are observed on the
mel-cepstral sequence generated with the MS than that without the MS. Note
that the global variance (GV) is also recovered because the MS can also represent
the GV.

A.1.2 Experimental results

To submit the NAIST TTS system to the Blizzard Challenge 2015, we synthesized
50 reading texts (RD) and 50 semantically unpredictable sentences (SUS) in each
language. The following 3 subjective evaluations were conducted in the challenge:
(1) a mean opinion score (MOS) test on naturalness, (2) a degradation MOS
(DMOS) test on similarity to the original speaker, and (3) a manual dictation
test on intelligibility to calculate the word error rate (WER). Fig. 96-through-
Fig. 100 show the result. Alphabets “A” and “J” indicate natural speech and
our system, respectively. The other alphabets indicate the other participants ’
systems. We have found that our system was ranked in the highest group among
the submitted systems in terms of naturalness in most of Indian languages but
the gap between natural speech and synthetic speech was still large. Although
our system was evaluated as the best in terms of intelligibility in Marathi (which
was better than natural speech), such a result was not observed consistently over
the other languages. Finally, our system was usually ranked in the middle group
among the submitted systems in terms of similarity.

43 No significant quality difference was observed between the continuous Fyy contour generated
by speech parameter generation considering the MS and that filtered by the MS-based post-
filter.

152



A.1 Text-to-speech of Indian languages for Blizzard Challenge 2015

| B‘ve‘ngal‘i | 5.0 H1nd1 5.0 Malayalam
rrrrrrrrrrr pod 45
T 14.0

3.5
3.0
2.5
2.0
1.5
1.0

‘ il H Ift

CDEFGHIJ

MOS (naturalness)

ABCDEFGHI J

Marathi 5 Tamil .,  Telugu
e, 14.5/@ T {45/ .
'-; """ T = 4.0 """""""""" '-- 4.0 """""""""" r |

3.0H+4 || ST
2.5
2.0
1.5

MOS (naturalness)

BCDEFGHJ "CABCDEFGHIJ "C ABCDEF
A: natural speech, B-I: other participants, J: NAIST

Figure 96. A result of MOS test on naturalness in the RD task.
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A.2 Implementation of continuous FO contour

The continuous £ contour is estimated for the continuous £ modeling [86]. Fig.
101 shows the example of how to calculate the continuous F{ contour from the
original discrete Fj contour.

First, we apply the Low Pass Filter (LPF) to improve the performance of
spline-based interpolation. After the spline-based interpolation, the original Fj
values are restored in the voiced region. For the silence part, we first copy the
nearest Fy value, then, reply the LPF again to remove the discontinuity.

T
F(a)
A ‘ ;
z 1 1 A Spline
- - (b) : : : interpolation in U
=
-O L
ST
=
2
50 j(c)
)
A T T T T T T

- 1 |
- Copy the nearest FO
L (d)

\

Continuous FO

()

Time

Figure 101. How to calculate (e) the continuous Fy contour from (a) the discrete
Fy contour. V and U indicate the voiced /unvoiced regions, respectively.
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A.3 Comparison of STRAIGHT and WORLD in HMM-
based TTS

The STRAIGHT system, which we used in experimental evaluations, is high-
quality speech analysis-synthesis system. However, deployments of speech syn-
thesis systems with the STRAIGHT is limited because the system is patented.
Recently, a novel system WORLD has been proposed and provided as a BSD-
licensed system. This section investigates the effect of the WORLD in HMM-
based T'TS in order to accelerate the deployment.

A.3.1 Implementation of HMM-based TTS with WORLD

Speech parameters Parameter formats of spectrum and F{ is the same be-
tween STRAIGHT and WORLD, but that of aperiodicity is different. Whereas
STRAIGHT aperiodicity is extracted in each frequency bin and averaged in every
frequency bands [127] (Fig. 102 (a)), the WORLD extracts it through explicit
estimation of band-aperiodicity in voiced frames?!. The band-aperiodicity by the
WORLD is 0-dimensional vector in unvoiced frames. Therefore, it is appropriate
to model the WORLD band-aperiodicity with MSD-HMMs [84] as shown in Fig.
102 (b).

Continuous aperiodicity Yu et al. proposed a novel method to model a
“continuous” Fj sequence with continuous HMMs in order to avoid weakness of
the MSD-HMMs. To address the same problem with WORLD band-aperiodicity.
we first extract a continuous Fj sequence after the Fj extraction. Then, we
perform band-aperiodicity extraction given the continuous F, sequence®®. The

continuous band-aperiodicity is shown in Fig. 103, and the modeling is shown in
Fig. 102(c).

A.3.2 Experimental evaluation

We trained five-state left-to-right HSMM using 4 speakers (2 male and 2 female)
from CMU ARCTIC speech database [147]. The number of training and test
data are 593 and 100, respectively. Speech signals were sampled at 16 kHz. The
shift length was set to 5 ms. The Oth-through-24th mel-cepstral coefficients were
extracted as spectral parameters and log-scaled Fyy and band-aperiodicity were
extracted as excitation parameters. The stream weights are 1.0 for spectrum, 1.0
for Fy and 0.0 for aperiodicity. In synthesis, we adopted ML-based parameter
generation [109] and the MS-based post-filter described in Chapter 4. The frame

44 The band width is 3 kHz.
45 Note that both STRAIGHT and WORLD are Fy adaptive system, which means that spec-
tral parameters and aperiodicity parameters are estimated given the estimated F{; parameters.
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Figure 102. Stream structure for HMM-based TTS with WORLD. (-) is the
number of dimensions in the evaluation.

length, shift length, and DFT length for the segment-level post-filter are 25, 12,

and 64 frames, respectively.

In the preliminary evaluation, we didn’t observe differences in quality between
Fig. 102 (b) and (c). Therefore, we compare the synthetic speech quality of Fig.
102 (a) and (c). We conducted 5-scale MOS test on speech quality by 8 listeners.

The result is shown in Fig. 104. “*+MSPF” denotes that we applied the MS-
based post-filter. “NATURAL” indicates natural speech. Although the WORLD
system is worse than STRAIGHT system for the male speakers, there is no sig-
nificant difference in total.
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Figure 103. Continuous band-aperiodicity of the WORLD. It is extracted after
the continuous Fj estimation.
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Figure 104. Subjective evaluation using STRAIGHT and WORLD. There is no
significant difference in quality in total.
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A.4 Derivation of conditional probability of the GMM

First, we derive the conditional probability of ¢-th mixture component, P (Y| X, g, A),
which is given as Gaussian distribution as follows:

P (Y[ X1,q,A) =N (Y {0, 5010) (177)

where ugY‘X) and E((]Y‘X) are the N, D-dimensional mean vector and N, D-by-
Ny D covariance matrix of the conditional probability of ¢-th GMM-mixture,
respectively. The logarithmic probability is given as:

1 T -1
log P (Y| X1, q,A) = —§<Y pd ) SO (v, - p) (178)
1 _
= _QYIEEJY‘X) Yt—l—YtTE((]Y‘X) M((ZYIX)
+Const., (179)

where Const. is the value constant to Y;. Here, we define the precision matrix
-1
P'?) (inverse of the covariance matrix E(SZ) ) as follows:

q
$EXX) y(xy) ]! " PEX) p(XY)
rx =P = ’

()71 _
Eq - ) EEYY) P?]YX) PgYY)

(180)

where PgX T _ P((IYX ). The following formula holds between the previous equa-
tion [162].

AB]" [MA'+A 'BMCA™ —A'BM (181)
C D ~-MCA™' M ’
where
-1 -1
M=(D-CA™'B) . (182)
Logarithmic probability In P (Z;|q, A) are decomposed as:
1 T
WP (Zle.X) = — (2, - ) P, (2, — p{) + Const. (183)
1 )\ pxx X
= 73 ((Xt_“é )) P,S )(Xt—lit(l ))
T
+(X = pf) PO (v, — )
T
+ (Y = p?) POV (X, - ug /)
+ (Yt — ,u(gy)>T P((IYY (Yt )) + Const. (184)
Given the input speech feature X, it was expressed as:
1 T
log P (Y| X¢,q,A) = ) ((Yt Nq )> PEIYY) (Yt - M(IY))
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A.4  Derivation of conditional probability of the GMM

F(Yemu) PO (X )

(Xt <X>) P (Yt — p,g”)) + Const.(185)
= 1YTP(YY)Y
+Y] (PgYYng) P (X, — pf)) + Const (186)

Compared Eq. (42), Eq. (180) and Eq. (181), we can derive ué”x) and E(SY'X)
as follows:

RO P((IYY)_l =B EéYX)EéXX)_lngY)7 (187)
W (P () sy
= p{) = PPN (X, - ) (189)
_ ”gY) _ P((IYY)*l_P((]YY)E[(] )E((]XX)*1 (X NE]X)) (190)
- I (X =), 190

A conditional probability P (Y| X, A) are given as the following GMM mixing
Eq. (42):

P(Yt|Xt>)‘) = P(Q|Xt7>‘)P(Yt|Q>Xt7>‘)- (192)

5 Mo

o 1

X y; pf¥), B0
P(gXi,A) = (Xipg?. %, ). (193)

N (X g, 30)

Mo

1

q
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A.5 Comparison of mixture component weight for statistical sample-based
speech synthesis

A.5 Comparison of mixture component weight for statis-
tical sample-based speech synthesis

In general, The mixture component weight w,, of the GMM using rich context
Mec

models is calculated with the ML estimate, which is given by w,, = I' (¢,m) / > T (¢, m),
m=1

where I' (¢, m) is the occupancy count of the m-th mixture component in leaf node
c. However, we set the weight to w,, = 1/M.. The spectrogram is in Fig. 105.
“Conventional”, “Proposed (Occ)”, “Proposed (Same)”, and “Natural” repre-
sent spectrograms of generated parameters from conventional clustered model,
occupancy-weighted GMM, the GMM with identical weights, and parameters
of natural speech. Natural state duration was used. Parameters of “Proposed
(Occ)” and “Proposed (Same)” is generated with proposed parameter generation
with single Gaussian approximation, which is set initial parameter sequence to
natural speech parameter. We can find that further improvement is realized in
the generated parameter with GMMs of the same weight compared to that with
conventional clustered models and occupancy-weighted GMMs.

Conventional
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Figure 105. An example of spectrograms using Rich context-GMM (R-GMM)
with different settings of the mixture weight. We can see that the tied weight has
the structure similar to the natural speech parameters.
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A.6 Investigation of quality degradation caused by rich context modeling

A.6 Investigation of quality degradation caused by rich
context modeling

To confirm the degradation caused by the use of rich context models, we compared
4 kinds of synthetic speech shown in Table 4. “Target” is generated by rich context
models using natural speech parameter as a initial parameter, and “Natural” is
natural speech parameter. A opinion test on speech quality was conducted by 6
listeners. Natural state duration is used.

The result of mean opinion score in shown in Fig. 106. We can see that
the degradation caused in the Fy component is slightly where as that caused
in spectral components is larger. This is because the spectral feature changes
dynamically in the time domain.

Table 4. Synthetic speech samples used for investigating the quality degradation
by the rich context modeling in HMM-based TTS.

Method | Spectrum Ey
TT Target Target
TN Target | Natural
NT Natural | Target
NN Natural | Natural

+—95% confidence interval

Mean Opinion score

1

TT TN NT NN

Figure 106. Mean opinion scores on speech quality to confirm degradation. We
can find the degradation by the rich context modeling for the spectral component.
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A.7 Time-invariant MS-based post-filter

A.7 Time-invariant MS-based post-filter

As the yet another approach to the utterance-level MS-based post-filter, a time-
invariant post-filter is derived by assuming that agjc) is equal to au(li) in Eq. (140)

as follows:

p(F) = (U=k)sa(f)+k[sa(F) = u) + 15y
= sa(f)+k [nl] - uiP] (194)

Because the second term in R.H.S. is independent of s, (f), this conversion pro-
cess can be represented as a filtering process for the generated speech parameter
sequence with a time-invariant FIR filter.

The result of the preference test on speech quality by 6 listeners are shown
in Fig. 107. The experimental settings are the same to Section 4.6.3. “*4+MS”
indicates that we applied the utterance-level post-filter to the generated speech
parameters in HMM-based TTS. “*++MS(ti)” indicate the time-invariant post-
filter. We can see that a quality improvement is yielded by applying the time-
invariant post-filter to the generated speech parameters. Although the improved
quality is not comparable to that yielded by the utterance-level post-filter, the
time-invariant post-filter is applicable to various lengths of speech parameter
sequences.

1.00

T
L

0.75
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1

Preferece score on speech quality

0.00 —HMM HMM  HMM

+MS(t)) +MS

Figure 107. Preference scores on speech quality using time-invariant MS-based
post-filter.
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A.8 Modulation spectrum-based post-filter for GMM-based VC with spectral
differentials

A.8 Modulation spectrum-based post-filter for GMM-based
VC with spectral differentials

GMM-based VC with spectral differentials [82] is a novel VC technique with-
out vocoding (analysis-synthesis) processes. As explained in Section 2.5, a
GMM is trained using speech feature vectors of the input speech parameter se-
quence, © = [®y, -, &y, -+, x|, and output speech parameter sequence, y =
(Y1, Y yp)*® in conventional GMM-based VC. In synthesis, speech pa-
rameter sequence y’ is generated through the trained GMM. In GMM-based VC
with spectral differentials, spectral differential sequence, d' = y’' — @, is gener-
ated from a GMM, which is analytically derived from the original GMM used in
the conventional GMM-based VC. Because the input speech waveform is directly
filtered with d’, we can avoid parameterization errors.

A MS-based post-filter proposed in Chapter 4 is available in this conversion
framework as shown in Fig. 108. After generating d’ in the standard manner, x is
added to d'. Then, its MSs are converted by the post-filtering process in order to
make it close to natural MS of the output speech parameters. The filtered spectral
differential sequence is calculated by subtracting @ from the filtered d’ + x.

'MS-based post-filter for conventional GMM-based VC

' & — Speec_h
analysis

* y Speech
analysis

_. o Speech

: Waveform | | B o
analysis

synthesis

s@&y) - s(y)

‘:—MS-based post-filter for GMM-based VC w/ spectral differentials

x d(=y —x)
Speech
analysis
s(d +x)->s(y) d =W +x) —x
Waveform -
’“ synthesis b e

Figure 108. A MS-based post-filter for GMM-based VC with spectral differentials.
s (-) — s (-) indicates MS-based post-filtering process.

46 The delta feature is also used, but here we omit it.
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A.9 Modulation spectrum-based post-filter using deep neural nets

A.9 Modulation spectrum-based post-filter using deep neu-
ral nets

For MS-based post-filtering process, deep Neural Nets are used as more compli-
cated models than Gaussian distributions that are originally used in Chapter 4.
The data used for constructing the DNN is the same as that of the segment-level
post-filter (Section 4.4) using Gaussian distributions. As shown in Fig. 109,
temporally aligned natural and generated speech parameters?” are prepared first,
then, the MSs of the windowed parameter segments are used to train the DNNs.
From the result of initial investigations, instead of converting MSs of the gener-
ated parameter segment into those of the natural speech parameter segment, we
convert into those of a MS differential that means a difference between MSs of
the natural and generated speech parameter segments. Let y and Qq be natu-

ral and generated speech parameter segments®®, the MS differential is given as
s(y) —s (Qq), where s (y) is the MS of y. The DNNs are trained to predict

s(y)—s (ﬁq) from s (’gq), and The finally used MS is calculated by adding the

MS differential and the original non-filtered MS.

For evaluation, we built two post-filters, the original post-filter using Gaus-
sian distributions and that using DNNs. The speaker, training/evaluation data,
speech parameters, filter-related parameters (e.g., window length) were the same
to to those used in Section 4.6 and Section 4.6.4. The post-filters were ap-
plied to spectral parameters. The dimensionality of the MS was 425. For DNN
training, 1-hidden-layer feed forward neutral nets were constructed®®. The hidden
layer included 1275 nodes whose activation function was Relu [163]. The activa-
tion function of the output layer is linear function. The input and output features
were normalized to a range of [0.01,0.99]. The weights of the DNN were randomly
initialized, then optimized to minimize the mean squared error between output
features of the training data and the predicted values using a GPU implementa-
tion of mini-batch training. The number of epochs and mini-batch size were 50
and 500, respectively. The learning rate of the stochastic gradient descent-based
back-propagation was scheduled by Adam [164] algorithm. The dropout [165] rate
was set to 0.5. The DNN post-filter was implemented on Chainer [166]. We have
conducted a preference AB test on speech quality. 6 listeners have participated.

Fig. 110 shows the result of the preference test. We can find that the use
of DNNs causes slight improvements, but we have observed some partly buzzy
sounds. We expect the use of recurrent structures is required.

47 The generated speech parameters are generated using natural state duration.

48 Note that these variables were defined for the speech parameter sequences in Chapter
2-through-5, but here they indicate its segments.

49 We initially investigated the number of hidden layers, and the cost function using DNNs
with 1 hidden layer is smaller than others for the evaluation data.
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A.9 Modulation spectrum-based post-filter using deep neural nets
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Figure 109. A Modulation Spectrum (MS)-based post-filter using deep neural
nets. The training data is the same to the post-filter using Gaussian distributions.

1.0 ‘ Spectrum

HMM+ MSPF HMM+ MSPF
(Gaussian) (DNN)

Figure 110. A result of preference test on speech quality for comparing MS-based
post-filters using Gaussian distributions or DNNs. We can find that the use of
DNNSs causes slight improvements.
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A.10 Effect of the modulation spectrum on speech quality

A.10 Effect of the modulation spectrum on speech quality

Related work [129, 134] investigated impacts of lower modulation frequency com-
ponents on intelligibility, but the effect in speech quality is not yet investigated.
Therefore, we investigated perceptual effects of the modulation spectrum on
speech quality. We applied a Low Pass Filter (LPF) to remove the higher mod-
ulation frequency components of natural speech parameters, and conducted a
listening test using the LPFed analysis-synthesized speech samples.

We used an English male speaker “RMS” and an English female speaker
“SLT” from the CMU ARCTIC database [147]. Speech signals were sampled at
16 kHz. The shift length was set to 5 ms. The Oth-through-24th mel-cepstral
coefficients were extracted as spectral parameters and log-scaled Fy and 5 band-
aperiodicity [74, 127] were extracted as excitation parameters. The STRAIGHT
analysis-synthesis system [10] was employed for parameter extraction and wave-
form generation. We used 50 sentences from subset A for evaluation. We used
Butterworth LPF to remove higher modulation frequency components of the spec-
tral parameters. The cut-off frequency of the LPF is selected from 30, 40, 50,
60, and 70 Hz*. Additionally, non-filtered analysis-synthesized speech samples
(100 Hz cut-off) were used. We conducted a 5-scaled MOS test on speech quality
by 8 listeners using the LPFed analysis-synthesized speech samples.

Fig. 111 shows the result. We can see that there is no significant difference
in quality between speech samples of 50 Hz and 100 Hz (non-filtered analysis
synthesized speech).
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Figure 111. Mean opinion scores on speech quality with LPFed analysis-

synthesized speech samples. We can find that MOS scores of cut-off frequency

lower than 40Hz are significantly degraded compared to that of non-filtered sam-
ples.

50 We didn’t use speech samples with 80 and 90 Hz-cut-off LPFs because we expected that
there is no significant difference in quality between these samples and non-filtered samples.
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