
NAIST-IS-DD1301021

Doctoral Dissertation

Conclusion Stability on Performance of

Analogy-Based Software Effort Estimation

Passakorn Phannachitta

February 4, 2016

Department of Information Science

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Passakorn Phannachitta

Thesis Committee:

Professor Kenichi Matsumoto (Supervisor)

Professor Akito Monden (Co-supervisor)

Professor Hajimu Iida

Assistant Professor Jacky Keung City University of Hong Kong

Associate Professor Arnon Rungsawang Kasetsart University



Conclusion Stability on Performance of

Analogy-Based Software Effort Estimation∗

Passakorn Phannachitta

Abstract

Analogy-based estimation (ABE) is one of the most successful methods to

estimate the required amount of effort for a new software development project.

According to our literature review, the excellent estimation accuracy of ABE is

strongly associated with approaches adopted in its 5 essential components: nor-

malization of software project features, feature subset selection, similarity mea-

sures, solution adaptation, and the number of analogues. Being a very successful

effort estimation method, researchers have continually proposed new approaches

to these 5 essential components, combined the approaches, and tailored them to

the ABE models mainly for performance improvements. To date, it has been re-

ported that over thousands of combinations of approaches are existed; however,

to the best of our knowledge, no one could successfully determine the best one.

The problem persists mainly due to conflicting research conclusions frequently

shown in past studies of ABE, where different studies often produced divergent

performance results. On the contrary, being able to solve this problem is impor-

tant for a wide range of scientific and industrial processes, that is, unless a stable

conclusion on the performance can be drawn, it would be difficult for industrial

practitioners to be able to access a sufficiently accurate model, resulting in in-

creasing risk of failed software project. Also for the research community, lack of

sufficiently effective models may limit the potential improvement of future model

proposals, since any new approaches maybe evaluated with inadequate standard.

This brings to mind that being able to determine a stable conclusion on the
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performance of the estimation models is a key instrument of the software effort

estimation activities.

This thesis comprises multiple studies to conclude the performance of ABE.

The series of studies began with an attempt to improve a stable ranking method

to produce a more trustworthy assessment of the performance. Then, this Im-

proved stable ranking method was adopted to evaluate 2,304 combinations of

approaches generated from those commonly selected from the 5 essential compo-

nents. Leveraged by this Improved stable ranking method, we were able to draw

the performance conclusion of these approaches and recommend those superior

ones. Then, as a continuation study, the results were further analyzed for sug-

gesting general hypotheses. This study is where we could successfully introduce

a very simple and easy-to-use solution adaptation technique, whose performance

was shown to be outstanding. Taken all the findings together, we coined ABE-

Best as the ABE model tailoring with the best approaches in each of its 5 essential

components determined in the studies of this thesis, and compared it with 7 other

common machine-learning effort models (NNet, LReg, SWReg, PCReg, PLSReg,

CART(yes), and CART(no)). The results of this comparison were conclusive

that this ABE-Best model outperformed the other 7 commonly adopted effort

models by all means of overall performance, generalized performance, stability,

and robustness. Hence, we strongly recommend ABE-Best to be the standard

benchmark effort estimation model for research, and to be the model of choice

for the software industry.

Keywords:

software development effort estimation, analogy-based estimation, model-based

software effort estimation, empirical software engineering, robust statistical method
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Chapter 1

Introduction

1.1. Overview

Estimation of software development effort is one of the most important processes

in software development because an accurate estimation is non-trivial strongly as-

sociated with the success rate of software development projects [1]. For example,

either underestimation or overestimation of the required effort is an underlying

cause of unsuccessful projects [2]. Consequently, new methodologies to obtain ac-

curate effort estimates have been continually proposed and research studies based

on them have been frequently revisited [3–5].

Analogy-based software effort estimation (ABE) is one of the most widely

adopted effort estimation method in both the industry and research communi-

ties. It derives an estimated effort value from the total amounts of effort used

on completed similar software projects, following a hypothesis: projects with sim-

ilar characteristics will require similar amounts of effort to complete develop-

ment [6, 7]. Despite being an estimation method developed from an intuitively

easy to understand hypothesis, an estimation accuracy based on ABE has been

ranked among the best model-based software effort estimation methods [8,9]. In

other word, ABE is an effort estimation method being excellent in both terms of

estimation performance and the intuitive ability in practice [7].

Improving the accuracy of ABE is an active research topic in the field of em-

pirical software engineering [7, 10–17]. For over two decades, researchers have

continually proposed new approaches as an extension to ABE models to improve

1



either their maximum achievable accuracy or generalized accuracy. Our litera-

ture review provided in Chapter 2 reported that (1) normalization of software

project features, (2) feature subset selection, (3) similarity measures, (4) solution

adaptation to the effort, and (5) the number of analogues are approaches being

continually proposed to improve the accuracy of ABE during the past decade.

Elsewhere, Kocaguneli et al. [1] reported that more than thousands of combi-

nations of these approaches have been accumulated since the proposal of ABE;

however, a single study always focuses on single specific components of ABE,

and an evaluation of the proposed approaches often configured other components

with very simple approaches. For example, a research study aims to improve

the process that retrieves similar projects to the new case often paid no atten-

tion on the solution adaptation of the estimated effort values [18], even though

both of which are imperative processes of ABE [15,16,19]. Furthermore, studies

that focused on the same essential components of ABE tend to evaluate the pro-

posed approaches with different performance measures [17, 20–22], and thus the

performance conclusions were often contradictory in different studies. Hence, to

the best of our knowledge, no one has successfully defined a standard procedure

which is sufficiently reliable to systematically assess the estimation accuracy of

ABE models extended with thousands of the existing combinations of approaches

commonly adopted to improve the process of ABE. Without this review and as-

sessment available, it seems to be impossible to know the actual performance

of ABE models, also an apparent answer to the question which combinations of

approaches would be best in general situations? is yet available.

Speaking of evaluation and assessment, divergent performance results com-

monly appeared in different studies indicate clearly that conclusion instabil-

ity [9, 23] is one major problem in software effort estimation research studies.

According to our survey of the literature on software effort estimation, only sin-

gle study focused mainly on this issue and proposed a method to overcome it.

A method named Stable ranking method was proposed by Keung et al. [9] based

on the suggestions by Menzies et al. [23] that the precise and stable results re-

quire the well-controlled experimental conditions of (1) the method to generate

training/test instances, (2) the performance evaluation criteria used, and (3) the

datasets. Leveraged by the Stable ranking method tailoring with well-controlled
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evaluation procedures, results from that study show that this method can over-

come the conclusion instability problem in model-based effort estimation meth-

ods, where precise ranking of 9 simple effort models, such as linear regression, in

combination with 10 data preprocessing techniques were successfully determined.

However, several components of the Keung et al.’s Stable ranking method, such

as the selected performance measures and the power of the selected statistical

test method, are still questionable upon their validity. Elsewhere, Foss et al. [24]

concerned the validity of many performance measures based on relative error,

such as MMRE and MMER, the measures being used in part of the Stable ranking

method. Also, Mittas and Angelis [25] concerned a simple pairwise comparison,

the essence of Stable ranking method, as it can easily mislead the comparison

results due to lack of statistical power when applied in general situations. This

motivated us to improve the validity of the Keung et al.’s Stable ranking method

and use the improved method to perform performance assessment of thousands

of combinations of approaches that commonly adopted to improve the accuracy

of ABE models.

Our studies for the past 3 years composing into this thesis has been aimed

to search for the maximum achievable performance of ABE models over the con-

figuration variants of the models that commonly adopted in practice. We first

discussed the Stable ranking method with an aim to improve the validity of the

method. Our improvements to the method were empirically evaluated by finding

the stable performance conclusion of approaches in the 5 essential components

of ABE, being known as components strongly associated with its performance.

In totals of 2,304 combinations of approaches were examined, it is conclusive to

suggest approaches for all the 5 components, and the ABE model adopted based

on the suggested combination of approach has proved to be consistently better

than many other common software effort models.

Furthermore, a study in this thesis successfully proposed a new approach fol-

lowing a more comprehensive understanding of theoretical concepts underpinned

by an analysis over the conclusive performance results with stable ranking. In

that study, we proposed a very simple solution adaptation technique. It is a tech-

nique being very easy to compute and use, as well as being excellent in terms of

estimation performance. Up to this point, we can suggest the conclusively best
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combination of approaches of choice for the ABE models, selected from the most

commonly discussed approaches in the literature. In addition, a study of this the-

sis evaluated 6 data quality improvement techniques (LTS, CD, Kmeans, BP,

LM, and TEAK [14, 26]), which are techniques originally proposed for ABE

or commonly adopted with it in the literature. Our results strongly suggested

to apply any of the these techniques to datasets before estimating effort using

them. However, our results could not suggest the one single technique signifi-

cantly outperformed the others, due to their different theoretical and practical

behaviors. Hence, given a local dataset, we suggest to fit ABE models with that

dataset prior to its application as long as there is no selection guideline of the

data quality improvement techniques available. In the final study of Chapter 7,

we reviewed the best ABE model we discovered in the study of the earlier chapter,

with 7 other commonly adopted model-based effort estimation methods (NNet,

LReg, SWReg, PCReg, PLSReg, CART(yes), and CART(no) [2]), the re-

sults showed that this ABE model yielded the best performance in all terms of

overall performance, generalized performance, stability, and robustness.

1.2. Contributions

The contributions of the studies composing into this thesis are mainly in three-

fold:

• The main contribution of this thesis is to provide empirical evidence on the

success of our Improved stable ranking method to draw stable conclusions

for many studies of the thesis. We hope that this will encourage researchers

or industrial practitioners to seek for a robust and consistent methodology

when carrying out an assessment of any problems.

• The performance factors of ABE and the list of approaches compared in

all the studies of the thesis are derived from a limited systematic literature

review, carried out to cover the recent 10 years of journals, magazines, and

conference papers from two common digital libraries: IEEE Xplore digital

library and the ACM digital library. Summary of the approaches selected in

our studies are provided in a review manner with their theoretical concepts,
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along with their mathematical formulas. These can be considered as one of

the most complete reviews of approaches in different components of ABE

so far. We believe that this systematic literature review and the review of

approach will be useful for the readers towards a future replication of our

studies.

• The last but not least is all the findings from all the studies of the thesis, the

experimental results of the earliest study in Chapter 4 answered the ques-

tion which combinations of approaches would be best in general situations.

Next, a continual study of Chapter 4 suggested a new and very easy to use

solution adaptation technique in Chapter 5. More importantly, proposing

this new technique can be considered as an evidence to suggest that an anal-

ysis of results obtained from a more robust and comprehensive evaluation

methodology can greatly contribute to future direction of researches in the

field of empirical software engineering. In Chapter 6, our results suggested

that poor data quality is still a major and terrifying problem in our com-

munities, where are still a long ways away from being able to appropriately

handle it. Finally, the study of Chapter 7 concluded that the ABE model

tailoring with the best combination of approaches indicated in the earlier

chapters of this thesis significantly outperformed 7 other machine learning-

based effort models, which were also commonly appeared in the literature

on empirical software engineering.

1.3. Structure of this Thesis

This thesis is structured as follows: Chapter 2 shares common materials on back-

ground notes of software effort estimation and ABE. This chapter explains the 5

essential components of ABE models, commonly referred to as performance fac-

tors of the model, as well as the approaches commonly extended to each of the 5

components of ABE to increase its maximum achievable estimation performance.

Chapter 3 explains the Keung et al.’s Stable ranking method and our improve-

ments to the components of the method which are still being questionable, such

as its performance measures and the statistical test method. Then, the detailed

explanation on the application of our Improved stable ranking method adopted in
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all the experiments of this thesis is provided along with other common materials

regarding the evaluations, such as datasets. The research studies of this thesis

begin in Chapter 4, where we evaluated the validity of the Improved stable rank-

ing method and the performance of 2,304 combinations of approaches adopted in

each of the 5 essential components of ABE models. Analyses of the results of this

chapter allowed us to propose a new solution adaptation technique, one of the

most imperative components of ABE models in Chapter 5. Next, we examined

6 data quality improvement techniques with the superior ABE model concluded

from earlier chapters in Chapter 6. In this chapter, we also defined ABE-Best

as the ABE model built from the conclusively best combination of approaches

in the 5 essential components of the model, concluded in earlier chapters. The

final chapter for the research studies of this thesis is Chapter 7. It is where we

compared this ABE-Best with 7 other commonly adopted model-based software

effort estimation methods. From Chapter 4 to Chapter 7, where research studies

were presented, the structure of these chapters are as given below:

These chapters begin with the introduction of the study corresponding to the

chapter, followed by motivation and the hypothesis. If a chapter has its specific

background knowledge required, materials for the background will be provided

here. Next, a small section is presented to explain the evaluation procedure of

each chapter. This small chapter only briefly explains how the study of each

chapter adopted and utilized the Improved stable ranking method, where its the

detailed explanations were provided earlier in Chapter 3. Then, experimental

results are presented in the result section, followed by the discussion, which are

presented along with interesting future works. The final section of these 4 chapters

are the conclusion of each individual study.

For the final part of this thesis, the validity threats of all the 4 studies of

this thesis are elaborated in Section 8. Finally, we discuss the worth highlighting

future directions of ABE and conclude the thesis in Chapter 9.
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Chapter 2

Background of Software

Development Effort Estimation

Chapter 2 explains the common materials that are shared by later chapters. In

this chapter, we mainly focus on the general concept of software effort estimation,

and analogy-based effort estimation and its components. For materials related

to the evaluation procedures, such as datasets and performance measures, they

will be explained in the next chapter along with the explanation of our Improved

stable ranking methods, the evaluation methods mainly used across studies of

this thesis. All these materials are presented upfront to avoid repeating of the

information as many later chapters frequently refer to these materials. For a more

specific background that may be only required by an individual chapter, we will

provide them later in those chapters.

2.1. Software Effort Estimation (SEE)

Software effort estimation (SEE) is a process to acquire the total amount of ef-

fort required by a new software project to complete development. Estimating

the necessary effort to develop software projects is one of the most vital software

process because either underestimation or overestimation of the required effort is

an underlying cause of unsuccessful projects [2]. Therefore, software project man-

agers always seek for accurate and reliable estimation methodologies for allowing

them to control the development project to completion of desired objectives and
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goals. The challenge towards facilitating an accurate estimation is that the infor-

mation sources available in the early stage of development is frequently limited

in amount and being uncertain, where as inaccurate estimation involving high

risk that possibly affects the project quality and may end up as worst as project

cancellation due to resource shortage.

Several previous studies suggested a strong association established between

successful software project and accurate software development effort estimation

[2,6,14]. Consequently, a large number of methodologies to obtain accurate esti-

mates have been continually proposed in software engineering research communi-

ties [3, 4, 27, 28]. If a researcher or an industrial practitioner reads the literature

on SEE, many taxonomies to classify the SEE methods are possibly encounters.

Kocaguneli et al. [2] reported several taxonomies commonly referred to in the

literature. One of the most comprehensive taxonomy divided the SEE methods

into 3 classes, suggested by Shepperd et al. [29].

Based on this taxonomy, methods are classified into expert-based methods,

model-based methods, and analogy-based methods. Expert-based estimation

methods seek for the consensus of human experts; thus, the estimation accuracy

of this the method may rely heavily on explicit domain experts. Model-based

estimation methods involves the application of mathematical models [30] or ma-

chine learning models [31] to summarize historical project data as references to

estimate the required effort for a new software project. Analogy-based estima-

tion methods also make prediction based on historical project data; however,

their procedure are divergent. Analogy-based estimation is mainly a data-driven

method that finds similar historical projects, and then reuses the effort values of

these projects for the new project cases.

Suggested by Nagpal et al. [32], expert judgements are prominent as long as

it is clear that the estimation is made by the real expert. However, in practice, it

is difficult to ensure that every single software company can procure the real ex-

pert. This possibly becomes more challenging for small-size enterprises where the

SEE processes are being responsible by only a few employees because knowledge

based on individual employee is difficult to completely transfer to others [29].

Regarding this concern, model-based and analogy-based methods are generally

more preferable in practice. In addition, according to a systematic literature
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review by Jorgensen and Shepperd [3], machine learning model-based estima-

tion and analogy-based estimation were found to be the most commonly applied

estimation methods in both the software industry and research communities.

2.2. Analogy-Based Software Effort Estimation

(ABE)

An analogy-based estimation (ABE) is a widely used approach to estimate the

amount of software development effort required for a software project develop-

ment. This approach is more preferable mainly because of its excellent estimation

performance and its intuitive ability in practice [7]. ABE derives an estimated

effort value for a new software project from the total amount of effort used on

already completed similar software projects, following a hypothesis: projects with

similar characteristics will require similar amounts of effort to complete develop-

ment [6, 7]. Following this essential hypothesis, an effort estimation framework

based on ABE commonly consists of two main processes: a retrieval of the past

similar projects to the new case, and an adaptation to effort of the retrieved

projects to the new case.

Using ABE to estimate the software development effort involves a 4-stage

case-based reasoning process [33], consisting of:

Retrieve the project cases most similar to the new case;

Reuse the information from the retrieved past cases to propose a solution to the

new case;

Revise the proposed solution to better adapt to the new case;

Retain the solved case for future problem solving.

In practice, this 4-stage process is commonly viewed as an incremental process.

Fig. 2.1 graphically explains the process.

Adopting this 4-stage process as an effort estimation framework, the com-

puting process considers software project cases as having two parts [6]: the de-

scription and the solution. The solution part holds information of required effort
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Figure 2.1. The effort estimation process based on ABE

for developing each project, and the description part consists of features that

describe the project. Following the 4-stage cycle, similar cases are measured by

similarity of the description parts between project case pairs. The solution part

retrieving from the similar cases are then reused and revised to calculate the

estimated effort of the new software project. Finally, the entire description and

solution part of the new case will be recorded for future problem solving.
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2.2.1 Influential Factors on the Estimation Performances

of ABE

As we mentioned earlier in this thesis that there are more than thousands of

combinations of approaches commonly tailored the basic ABE model (i.e., ABE0)

[9] to improve either its maximum achievable accuracy or its generalized accuracy,

the beginning of this section is devoted to a limited systematic literature review

to show which are approaches commonly referred to or discussed as the essences

of ABE by means of being its influential factors on its estimation performance.

The review covered journals, magazines, and conference proceedings published

between January 2006 and August 2015 (a timeframe of 10 years) in the IEEE

Xplore digital library and the ACM digital library. The review was carried out

with the procedures used by Kitchenham and Mendes in one of their prominent

studies [34], where we decided to follow up only the references related to the

performance factors of ABE. If the references are obviously being relevance, we

followed them up even if they were published before 2006. However, we did not

extend the search to cover either more digital libraries nor any offline libraries.

The search was performed in August 2015 using the query: “(Software) AND

(cost OR effort) AND (analogy OR reason*) AND (estimat* OR predict*)”.

The search retrieved 302 relevant papers. Of which, 10 papers reviewed the

performance factors of ABE [7, 10–17, 19]. Summarized from these 10 papers,

7 distinct performance factors are listed in Table 2.1 along with the frequency

counts of the appearance of each factor in these 10 papers.

Table 2.1 shows that similarity measure was the factor most frequently referred

to as performance factors of ABE models, followed closely by feature subset se-

lection, number of analogues, and solution adaptation. The bottom-end of this

table reported that data quality, feature weighting, and case subset selection were

also the performance factors of ABE, but were less frequently considered than

the 5 other factors. Based on this summary, we consider the 5 factors located on

the top ranks of Table 2.1 as essential components of ABE, which will be later

discussed throughout this thesis.
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Table 2.1. Range and diversity of the performance factors of the ABE method.

Performance factors Studies Counts

1 Similarity measures [7, 10–17,19] 10

2 Feature subset selection [7, 10, 11,13–17,19] 9

3 Number of analogues [7, 10,11,14–17,19] 8

4 Solution adaptation [7, 10,11,13–16,19] 8

5 Normalization or scaling [11,12,14,15,17,19] 6

6 Data quality [12–14,19] 4

7 Feature weighting [10,16,17] 3

8 Case subset selection [14] 1

2.2.2 The Common Baseline ABE Model: ABE0

The name ABE0 was coined by Keung et al. [9] as a basic and standard form of an

ABE model. ABE0 adopts Euclidean distance function [35] to calculate the level

of similarity between project cases, and uses k nearest neighbor (kNN) technique

to select the k software project cases that are most similar to the new case. The

default solution adaptation technique of ABE0 is an unweighted mean of the

effort values of the k software projects selected by kNN. The k parameter value

is commonly fixed as a static value in the literature. For example, Walkerden

and Jeffery [13] set the number statically to 1 in their experiment. Kirsopp and

Shepperd observed k = 2 in [36]. Mendes et al. examined the number in a range

from 1 to 3 in [37] to be appropriate. And Baker [38] tuned the k parameter

value by a method called wrapping and used the best-k value that fits the best

to the training set.
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2.2.3 Tailoring ABE0 with Combinations of the Five Es-

sential Components of ABE models

This section describes the approaches that were proposed to improve performance

of ABE models and were commonly discussed in the literature. The combinations

of these approaches generated numerous variants of ABE models. The following

in this section explains 5 components of ABE models, commonly referred to as

their performance factors:

• 3 Normalization approaches

• 4 Feature subset selection methods

• 6 Similarity measures

• 8 Solution adaptation techniques

• 4 Approaches to determine the number of analogies

Combining all the 5 components being listed above, there are 2,304 combina-

tions of approaches of ABE models to be examined.

Three Normalization Approaches

Feature normalization is commonly applied to continuous features (quantitative

variables) of effort estimation datasets before their applications. Two main pur-

poses of the feature normalization are (1) to assure the equal influence of all the

individual continuous features, and (2) to transform each feature to a more closely

approximated normal distribution. Our experiments explore three schemes to in-

terpret the continuous features as given below.

1) None leaves all data values unadjusted.

2) Interval0-1 normalizes each feature attribute value xi of a continuous feature

x by:

Interval0-1(xi) =
xi −min(x)

max(x)−min(x)
, (2.1)
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where xi is the ith value of x. This procedure commonly applied in the software

effort estimation research studies, such as in [1, 9, 39, 40], to assure the equal

influence of all the features.

3) Log transforms all continuous features in a dataset to a natural logarithmic

scale. This transformation procedure is suggested in a study by Kitchenham and

Mendes [34] as a simple procedure to approximate a normal distribution.

Four Feature Subset Selection Methods

1) All selects all the features in a dataset.

2) Sfs (Sequential forward selection [31]) is a greedy algorithm that continually

adds features one by one into an initially empty candidate subset, until there is

no further improvement from the remaining features. The criteria we used to

evaluate the improvement of the Sfs method is the MATLAB’s default objective

function of Sfs. This function reports the mean-square error of a simple linear

regression on the training set.

3) Swvs (Stepwise variable selection - configured with bidirectional elimina-

tion [31]) iteratively adds or removes features from the feature set based on the

statistical significance of a multilinear regression model in explaining the objec-

tive variable. In each iteration it builds two models that include and exclude one

selected feature. The process is repeated until there is no additional improve-

ment by either adding or removing a feature from the list of selected features.

The estimated target value from Swvs is the regression result subject to the list

of features, selected by the last step of the feature subset selection process.

4) Pca (Principal component analysis [40]) is frequently used as a feature di-

mension reduction method in a field of machine learning. The procedure of Pca

applies a transformation function to the entire dataset and map it to a new

lower-dimensional space, where remaining values are uncorrelated and retain the

essential variance of the original dataset.
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Six Similarity measures

1) Euclidean distance:

The function of the original Euclidean distance [35] is defined as:

δoriginal Euclidean(x, y) =

√√√√ m∑
i=1

(xi − yi)2, (2.2)

where m is the total number of project features, and x and y are vectors repre-

senting two input cases e.g., a pair of two software project cases with m features.

A lower value of Euclidean distance yields the lower degree of difference between

x and y, and thus indicates a higher level of similarity. In software development

effort estimation, input data often contain both continuous (e.g., software size)

and categorical (e.g., development language) feature types; however, the original

Euclidean distance as depicted in Eq. 2.2 can handle only continuous-type fea-

tures. To compensate for cases where categorical-type features are comprised in

the input cases, the Hamming distance is commonly combined with the original

Euclidean distance [7,35]. The combined distance function between the Euclidean

and the Hamming distances is defined as:

δEuclidean(x, y) =



√
m∑
i=1

(xi − yi)2 i is continuous

0 i is nominal and xi = yi

1 otherwise

(2.3)

This combined function is formally called Heterogenous Euclidean-overlap

metic (HEOM ) in other fields [35, 41], while it is commonly referred to only

as Euclidean distance in the field of software development effort estimation [7].

This notion also applies to the other distance functions discussed in area of study.

For example, the combined distance function between Manhattan and Hamming

distances is only called as Manhattan in software effort estimation study [20,22].

The following 4 similarity measures commonly discussed in the literature on

ABE are also based on the Euclidean space [10,18].
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2) Manhattan distance:

δManhattan(x, y) =
m∑
i=1

|xi − yi| (2.4)

3) Minkowski distance:

δMinkowski(x, y) = (

m∑
i=1

|xi − yi|3)1/3 (2.5)

4) Maximum distance:

δMaximum(x, y) =
m

max
i=1
|xi − yi| (2.6)

5) Mahalanobis:

δMahalanobis(x, y) =
√

(x− y)′S−1(x− y), (2.7)

where S is the covariance matrix of the vector x and y.

6) Grey rational analysis (GRA):

Grey rational analysis (GRA) [42] is one of the essences of Grey system theory [43]

which is a system accounted for interpreting incomplete information. The purpose

of GRA is aimed for a better similarity measurement of uncertain or incomplete

small datasets, which are difficult to be analyzed or modeled. By using the

GRA method, a considerable accurate model can be effectively built when the

available datasets can provide only a small number of project cases, which may

be insufficient for some other types of model to produce a robust estimate.

The method of GRA enables a more comprehensive interpretation of incom-

plete data through its specific normalization procedure, which considers the dif-

ference of values across all cases and features of a dataset, instead of normalizing

one feature at one time as done by many other similarity measurements. To cal-

culate the level of similarity between a pair of input project cases x and y, GRA

specifically denotes x as a new case and considers y as a small component ya of

the entire training set Y = y0, y1, y2, ..., yn, where x @ Y . Then, GRA normalizes

the level of difference between x and y following the formula of Eq. 2.8.
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δGRA(x, y) =
m∑
i=1

|wi ·
∆min + ξ ·∆max

∆(i) + ξ ·∆max
|,where (2.8)

∆(i) =

{
δManhattan(xi, yai) i is continuous;

δHamming(xi, yai) i is nominal,

∆min = min
x

min
Yargmin(x)

∆(i),

∆max = max
x

max
Yargmin(x)

∆(i)

Eight Solution Adaptation Techniques

Compared with an analogy-based estimation process without any adaptation ap-

plied, an effort value estimated by a process in which the estimated effort value

was adjusted by any adaptation technique is on average more robust and reli-

able as shown by a number of studies, such as in [13, 40, 44, 45]. This is be-

cause the effort consumed in similar retrieved projects often deviate from the

new project. In this study we replicate 8 solution adaptation techniques, often

appeared in analogy-based estimation studies [13, 21, 36, 40, 44–46]. Note that

there are other techniques that are not included in this study. The list of 8 tech-

niques are the choices of our study because they were recently replicated in the

study by Azzeh [45], in which several inconsistent behaviors among the adapta-

tion techniques were observed. In the study of Azzeh [45], these 8 techniques were

evaluated based on 7 datasets, and the author concluded that solution adapta-

tion techniques for ABE are still a long way from reaching the optimal solutions,

because their behaviors are inconsistent with those techniques that performed

well in certain selected studies, but did not consistently performed well in other

studies. A detailed explanation of the 8 techniques is as follows:

1) Unweighted average of the effort (UAVG) is a primitive adaption tech-

nique to adjust the effort value for the basic ABE0-kNN [6,9]. UAVG aggregates

effort values of the selected k analogues (neighbors) by using an unweighted mean:

Effort(Pnew) = Mean( Effort(Panalogs) ), (2.9)
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where Effort (Pnew) is the estimated effort for the new case.

2) Inverse-rank weighted mean (IRWM ) applies different weight values to

different project analogues. The weight used in IRWM is based on the similarity

ranking between each project analogue and the new case, as the technique assumes

that project analogues that are closer to the new case are more important [37].

The IRWM formula is depicted in Eq.2.10.

Effort(Pnew) =
1∑k
i=1 i

k∑
i=1

(
(k − i+ 1)× Effort(Panalogi)

)
(2.10)

3) Linear size adaption (LSA) is based on the linear extrapolation between a

software size variable of the new case and of its retrieved similar projects [13]. The

software size variable is, for example, Adjusted Function Points, Raw Function

Points, and Lines of code. Walkerden and Jeffery [13], based on their observations,

suggested that adjusting the effort using a size variable can provide a robust

estimate because size always has a strong correlation with the effort variable.

Furthermore, adjusting the effort value using size allows the estimation to scale

the retrieved effort value up or down to the expected size of the new case, if the

new case is planned to be developed in a different size from that of its similar

projects. Eq.2.11 depicts the formula of the LSA technique.

Effort(Pnew) =
SS(Pnew)×Mean( Effort(Panalogs) )

Mean( SS(Panalogs) )
, (2.11)

where SS indicates a single software size variable, and Effort indicates an

effort value. Note that in the case where a dataset consists of multiple features

that indicate size, we selected the one single feature which has the strongest

correlation coefficient value between it and the effort.

4) Multiple size adaptation (MSA) extends the LSA technique to handle the

case in which size is described by multiple arbitrary attributes. These cases are

commonly seen in web application development [36]. MSA aggregates multiple
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size variables using a mathematical mean, and then applies the mean of the size

variables to the SS terms in Eq.2.11.

5) Regression toward the mean (RTM ) calibrates the productivity of project

cases in which the productivity value may not consistent with each of the other

project cases [46] before applying the calibrated productivity to adjust the effort.

The essential hypothesis for the productivity calibration follows the statistical

phenomenon, known as Regression toward the mean, stating that, any extreme

instance on its first measurement will tend to move toward the population mean

on its second measurement. In the estimation process, projects are divided into

groups by a single categorical variable, selected prior to the estimation. Then,

the productivity of the similar retrieved projects are adjusted towards the aver-

age productivity among projects in the same group. The adjusted productivity is

then calculated into the estimated effort by following the triangular relation of the

Effort = Size× Productivity [13]. The entire formula for the RTM technique

is depicted in Eq.2.12.

Effort(Pnew) = SS(Pnew)×
(
Mean( Pr(Panalogs) ) + (M −Mean( Pr(Panalogs)) )× (1− r)

)
,

(2.12)

where M is the mean productivity of the projects in the same coherence group,

and r is the correlation between the productivity of the project analogues and

the actual productivity of the projects in the same group.

6) Similarity-based adaptation (AQUA) [40] adjusts the estimated effort

value by the aggregated degree of similarity between pairs of project features of

the new case and its retrieved similar projects. The degree of similarity is an

inverse of distance, which is used in identifying similar projects of the new case.

The aggregation formula involves the sum of the product of the normalized Global

similarity degree as depicted in Eq.2.13. Note that the term Global similarity

refers to the similarity between the paring of the new case and its analogues,

measured based on all project features. In addition, Global similarity is the

product of the sum of the Local similarity, which is referred to as the similarity

between paring of the new case and its similar projects, measured based on only

a single project feature.
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Gsim(Pnew, Panalogi) =

f∑
j=1

Similarity
(
Featurej(Pnew), Featurej(Panalogi)

)
Effort(Pnew) =

1

k
×
∑k

i=1

(
Gsim(Pnew, Panalogi)× Effort(Panalogi)

)∑k
i=1Gsim(Pnew, Panalogi)

, (2.13)

where Gsim is the Global similarity, Featurej(Pnew) is the value of feature j of

the new case, and k is the number of project analogues of the new case.

7) Adaptation based on Genetic algorithm (GA) proposed by Chiu and

Huang [21] adopts a Genetic algorithm method to adjust the effort values retrieved

from project analogues. The adaptation mechanism is similar to AQUA, which

is based on the similarity degrees between the new case and its similar past

projects. One genetic algorithm model is adopted for one single project feature

to derive a suitable linear model that approximates the effort difference by Local

similarity (i.e. the same notion as described in AQUA). Then GA aggregates each

optimized linear models by the sum of its products into a single linear equation

for adjustment, and applies the aggregated model to effort in additive form as

shown in Eq.2.14.

e(Pnew, Panalogi) =

f∑
j=1

βj × Similarity
(
Featurej(Pnew), F eaturej(Panalogi)

)
Effort(Pnew) =

1

k

k∑
i=1

(
Effort(Panalogi) + e(Pnew, Panalogi)

)
, (2.14)

where e(Pnew, Panalogi) is an aggregation of the optimized linear models, each of

which is optimized by a Genetic algorithm based on one single project feature,

and βj is the coefficient of Featurej and Effort which is learned by the Genetic

algorithm. According to the replicated study by Azzeh [45], this adaptation

techniques is on average the most accurate.

8) Non-linear Adaptation based on neural networks (NNet) proposed by

Li et al. [44], trains a neural network to capture the degree of difference of project

features between pairs of project cases. Then the degree of difference is converted
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to the amount of effort difference in the adjustment process. The main benefit

of adopting a neural network is that it is considerably an optimal solution for

datasets which do not have underlying Gaussian distribution. The adaptation

mechanism is also in an additive form the same as in the GA technique. The

formula of the NNet technique is depicted as:

Effort(Pnew) =
1

k

k∑
i=1

(
Effort(Panalogi) + f(Pnew, Panalogi)

)
, (2.15)

where f(Pnew, Panalogi) is an output value from the neural network model, trained

to tell the effort difference of a pair of project cases, given their difference in

project features. The main difficulty in adopting this adaptation technique is

due to a very large configuration possibility for its optimization. This possibly

requires many parameter optimizations such as a number of hidden layers and

learning procedures. Therefore, neural network approaches in many studies were

not seen to be simply replicable with the same conclusion. For example, while

many replicated results from the Azzeh study [45] were in agreement with the

original proposed studies, the results based on neural networks were contradicted

with the original proposed by Li et al. [44].

Four Approaches to Select the Number of Analogues

The number of analogues, commonly referred to as a parameter k of ABE models,

is commonly assigned as a static value or a range of static values [47, 48]. For

example, Walkerden and Jeffery [13] fixed k=1 in their experiments. Kirsopp

and Shepperd observed k=2 in [36]. Mendes et al. examined the number in

a range from 1 to 3 in [37] to find the appropriate value of k. More recently,

several studies such as the study by Keung et al. [8] suggested a use of a dynamic

selection method to determine the appropriate k value for a given dataset. One

of the accepted approaches is the Baker’s [38] Best-k method, which tuned the k

parameter value to fit the best with the training set and use that k value on the

test set. The experiments in all studies of this thesis examine k=1, k=2, k=3,

and Best-k.
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2.3. Summary

This chapter explains the overview of the process of software development effort

estimation and why successful estimations of software effort is very important.

Then, it introduces ABE as one of the most successful effort estimation methods

being increasingly used in both the industry and research communities. Follow-

ing the explanations of the processes of ABE, explanations of the performance

factors of ABE are presented in detail through a systematic literature reviews un-

dertaken with over 300 papers published between January 2006 and August 2015.

A summary of these papers suggests 25 approaches classified into 5 dimensions

as the approaches commonly adopted with ABE model to improve its maximum

achievable estimation performance. ABE models tailored with these approaches

can be cross generated up to more than 2,000 combinations of model variants,

where the performance of all these models will be evaluated in the later chapters

of this thesis.

22



Chapter 3

Improvements to the Stable

Ranking Method

3.1. Conclusion Instability Issues in the Litera-

ture on ABE

Conflict results regarding comparisons of multiple effort estimation methods (a.k.a.

ranking instability) were an issue subject to debate in SEE research studies [2].

This debate existed because if a researcher or an industrial practitioner read the

literature of available estimators, divergent conclusions regarding the performance

or superiority of a selected method are commonly found. For example, Shepperd

et al. [6, 29] and Mendes et al. [49] suggested that analogy-based method consis-

tency provided higher estimation accuracy; however, Myrtveit and Stensrud [50]

and Braind et al. [51] found that analogy-based method was not significantly

better than other model-based methods.

If one investigates further in the literature on the selection of approaches

to tailor ABE, such as similarity measures and approaches to perform solution

adaptations, conflict results regarding the comparison of multiple approaches were

also commonly seen. For example, our survey for the literature review explained

in Chapter 2 show controversial conclusions of the choice of similarity measures.

In our review, 8 out of the 302 retrieved papers provide comparison results of

multiple similarity measures adopted in the case retrieval process of ABE [10,
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Table 3.1. Examples of conflict results in previous studies on ABE

Studies Results Performance measures

Compare between ABE and other models

Shepperd et al. [29] ABE performed better than Linear regression and Step-

wise regression.

MMRE

Mendes et al. [49] ABE performed better than Stepwise regression. MMRE and Pred(25)

Myrtveit and Stensrud [50] Multiple regression models performed better than ABE. MMRE, MdMRE, SD,

and MAXMRE

Braind et al. [51] CART performed the best among ABE, Stepwise regres-

sion, Stepwise anova models.

MMRE, MdMRE, and

Pred(25)

Chiu and Huang [21] ABE was superior to the CART model. MMRE, MdMRE, and

Pred(25)

The choice of similarity measures

Rashid et al. [52] Euclidean distance performed slightly more accurate

than Manhattan distance.

MMRE

Paikari et al. [16] Manhattan distance performed slightly more accurate

than Euclidean distance.

MMRE and Pred(25)

Liu et al. [22] Conflict results produced among Manhattan, Euclidean,

Minkowski, Maximum, and Mahalanobis distances when

using different performance measures.

MMRE and Pred(25)

Khoshgoftaar et al. [18] Manhattan distance performed better than Euclidean

and Mahalanobis when feature subsets were selected by

Principle component analysis.

AAE and ARE

The choice of solution adaptation techniques

Azzeh [45] Solution adaptation based on Neural networks were con-

sistently the worse among 8 common techniques.

MMRE, AR

Li et al. [44] Solution adaptation based on Neural networks outper-

formed 5 other common techniques, all of which were

later replicated by the study by Azzeh. [45].

MMRE, MdMRE, and

Pred(25)

16–18, 20–22, 52]. Rashid et al. [52] reported that the most commonly-adopted

similarity measure, the Euclidean distance performed slightly more accurate than

Manhattan distance when the performance was measured in terms of MMRE

[24]; however, this finding was not fully in agreement with other studies where

performance was measured in terms of Pred(0.25), such as a study by Paikari et al.

[16]. Conflicting results as a consequence of using different performance measures

were also often produced in the comparison between Euclidean and Minkowski,

Maximum, and Mahalanobis distance functions such as in [17,18,20–22].
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Among these 8 selected studies, only the study by Khoshgoftaar et al. [18]

performed statistical significant tests. However, their results indicated that there

was no significant performance difference between the Euclidean, Manhattan,

and Minkowski distance functions. However, this study can be criticized upon

inappropriate use of performance measures [24]. Therefore, a lack of empirical

evidence and conclusion instability make it still be inconclusive to state which

similarity measure is more appropriate for the process of ABE.

Also, in the literature on the solution adaptation, the performance of many

techniques were reported variably in different studies. For example, in a recent

replicated study by Azzeh [45] covering 8 most commonly adopted techniques

in practice, the replicated evaluation of a technique based on neural networks

produced contradictory results with another proposed study by Li et al. [44].

Azzeh also suggested based on his experimental results that there is no single

best technique; most of the techniques are still a long way from reaching real

optimal solutions.

The summary of these conflict results in previous studies on ABE are shown

in Table 3.1. Based on these conflict results and inconsistent behaviors observed

in the recent studies, we believe that a more comprehensive experimental design

than that of the existing studies may be required to reach a more stable conclu-

sion of the overall performance of ABE models and of all extensional approaches

commonly adopted to improve the performance of the models

3.2. The Original Stable Ranking Methods

A recent study by Keung et al. [9] revisited the issue of conclusion instability

in model-based SEE, and proposed a Stable ranking method as an evaluation

framework to provide stable performance conclusion through a stable ranking of

multiple methods. Evaluating multiple methods by using ranking, the output

ranks indicate the estimation performance of an effort estimators among many

other methods by means of relative performance, where higher ranks indicate

higher expectable performance in general situations.

An additional important feature of the Stable ranking method is that it can be

used to assess the stability in performance of the methods being evaluated. This
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can be done by analyzing the agreements between multiple rankings of methods

generated by different performance measures subject to a statistical significant

test. The importance of the statistical test is to determine whether the perfor-

mance results are sufficiently significant to draw stable performance conclusion.

The Stable ranking method was developed following a guideline suggested in

a study by Menzies et al. [23], where 3 conditions were suggested to be carefully

controlled for a stable ranking result when undertaking experiments to compare

multiple estimation methods. The 3 conditions are as given below:

• Variants of dataset instances are sufficient to draw a stable conclusion;

• The procedure to sample the training/test instances is logical and replicable;

• The performance evaluation criteria are sufficient in amount and are valid.

The use of large variants of dataset mainly contributes for obtaining a sta-

tistically significant results. In the past, an absent of the statistical test over

the performance conclusion was one of the main reasons for the issue of rank-

ing instability. Without statistical evidence, it is difficult to justify whether one

method does significantly outperforms the others. The procedure to sample the

training/test instances is an issue often addressed as a validity threat in empir-

ical software engineering studies [1]. This is because, different sample methods

based on different theoretical hypotheses can produce largely different results.

Fortunately, even if there seems to be no single best method to fit all kinds of

studies, a recent study by Kocaguneli et al. [53] was able to conclude that the

leave one out is the sampling methods most suitable with SEE studies. For the

last condition, performance evaluation criteria is non-trivial an important factor

associated with stable conclusion. The use of biased or unreliable performance

measures would made the results difficult to interpret, potentially resulting in an

instability performance conclusion.

Following these 3 conditions, this evaluation framework adopted from the

Stable ranking method is proceeded in 5 steps as depicted in Fig.3.1:

In the proposed study of the Stable ranking method, Keung et al. selected

11 industrial datasets from the tera-PROMISE repositories and decomposed 3 of

which into 9 homogenized datasets [6]. Thus, the Stable ranking method was orig-

inally evaluated using 20 datasets. The next step was to sample the training/test
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instances. Keung et al. selected the leave-one-out approach as the sampling

method mainly because that it does not rely on a random selection of train-

ing/test split [54]. The third step was to generate effort estimation methods to

be evaluated. Keung et al. [9] evaluated the evaluation framework adopted fol-

lowing the proposed Stable ranking method using 90 variants of software effort

predictors commonly appeared in the literature on SEE. Next, Keung et al. se-

lected 7 error measures to be the performance measures of the proposed Stable

ranking method. These 7 error measures were also frequently appeared in the

literature on SEE [2, 6, 14, 45]. At the final step, the performance in terms of

estimation error recorded from the previous step were then used as sources to

perform statistical test. Keung et al. selected the win-tie-loss statistics subject

to Wilcoxon rank-sum test as the statistical test method of choice. The main

reason to select this method was that it is a non-parametric test that does not

Select the evaluation dataset

Keung et al. evaluate 9 effort models x 10 data 

preprocessing methods. Thus there are 90 variants of 

effort estimators being compared in the study.

Generate estimator variants 

Sample training/test instances 
using Leave-one-out approach

Measure the estimation performance

Error measures

• MAR        • MMRE     • MdMRE    • MMER

• Pred(25)                    • MBRE       • MiBRE

Pairwise compare the variants using 
win-tie-loss statistic, subject to the Wilcoxon test

Figure 3.1. The Evaluation Framework Adopted from the Original Stable Rank-

ing Method
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require the test input to be normally distributed.

The successful of the study by Keung et al. [9] provided an empirical evidence

to that these 3 conditions are necessary to consider when a stable performance

conclusions are the main goal of a study.

3.3. The Improved Stable Ranking Method

Even though there exists empirical evidence showing the success of the Stable

ranking method, we see 2 main areas of concern being existed: the reliability of

the performance measures and the power of the statistical test method selected in

proposed study of the Stable ranking method. Elsewhere, Foss et al. [24] concerned

the validity of many performance measures based on relative error, such as MMRE

and MMER, the measures being used in part of the original Stable ranking method.

Also, Mittas and Angelis [25] concerned a simple pairwise comparison, the essence

of Stable ranking method, as it may not have sufficiently high statistical power

and may have high chances of committing the statistical type I error in general

situations. A more detail on theoretical discussion of the inappropriate used of

this type of statistical test methods is available in a study by Zimmerman [55].

Our improvements on the performance measures are to replace the list of error

measures being used in the Stable ranking method with more stable measures

suggested by Foss et al. [24], who reviewed and evaluated many commonly-used

error measures based on statistical methods. In the study of Foss et al., many

well-known measures that are based on relative difference between the actual and

the estimated efforts such as MMRE and Pred(25) were proofed as biased and

suggested to be no longer used. We therefore dropped those error measures from

our choices of performance measures, and rather used the measures guaranteed

by Foss et al. [24] in multiple studies of this thesis. Fig.3.2 provides a detailed

explanation of the 5 error measures selected in this study.

For the component related to statistical test methods, we replaced the test

method from the Wilcoxon rank-sum test to be based on the Brunner test [56].

Wilcox [57] and Kitchenham [58] recommended the Brunner test over the Wilcoxon

rank-sum test to be the non-parametric test of choice in general situations. For

the main concern of the Wilcoxon rank-sum test, Zimmerman [55] pointed out
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Figure 3.2. A summary of the 5 error measures selected in this study

Mean Absolute Residual (MAR): Standard Deviation (SD):

MAR = mean(all|Ei − Êi|) SD =

√∑n
i=1(Ei−Êi)2

n−1

Median Absolute Residual (MdAR): Relative Standard Deviation (RSD):

MdAR = median(all|Ei − Êi|) RSD =

√∑n
i=1

(
Ei−Êi
SSi

)2
n−1

Logarithmic Standard Deviation (LSD):

LSD =

√∑n
i=1

(
ei−
(
− s2

2

))2
n−1

where Ei is the actual effort, Êi is the estimated effort, n is the total number of project cases,

SS is a single software size variable, and s the estimated variance of ln(Ei/Êi))

that unequal variance can greatly reduce the power of any test based on the

Wilcoxon test, even if the two sample groups being tested have equal sample

sizes. To avoid such invalid statistical inferences, we followed the guidelines pro-

vided by Wilcox [57] and applied the Brunner test, which can be considered as

the Wilcoxon test based on the confidence interval of the p-hat metric. This

p-hat metric considers a probability of random observations instead of a direct

ranking comparison as done by the conventional Wilcoxon test, where the direct

ranking comparison was considered as the main causes of problem suggested by

Zimmerman [55]. Overall, the use of the p-hat metric contributes to the Brunner

test as to significantly improve the statistical power in testing and reduce the

chance of committing the statistical type I error, compared with the other com-

mon pairwise test methods such as the Wilcoxon rank-sum test, the main points

being criticized by Mittas and Angelis [25]. In addition, Kitchenham [58] also

suggested that this Brunner test is more suitable than the convention Wilcoxon

test when the samples’ size is small e.g., less than 300 data points, where the

datasets commonly appeared in the literature on SEE are this size [2, 6, 14,45].

We named our modified Stable ranking method as Improved stable ranking
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method. We believe that using more stable error measures subject to a more

robust statistical test method will increase the validity of the experimental results,

thus leading to a valid performance’s conclusion of approaches being reviewed and

evaluated throughout this thesis.

3.4. Application of the Improved Stable Ranking

Method in the Studies of this Thesis

Select the evaluation dataset

For example, 2304 combinations of ABE models were 

examined in Chapter 4. These combination were 

generated from 3 normalization approaches x 4 feature 

subset selection methods x 6 similarity measures x 8 

solution adaptation methods x 4 approaches to 

determine the k parameter values

Generate estimator variants 

3 x 4 x 6 x 8 x 4 = 2,304 variants

Sample training/test instances 
using Leave-one-out approach

Measure the estimation performance

Error measures

• MAR   • MdAR   • SD   • LSD   • RSD

Pairwise compare the variants using 
win-tie-loss statistic, subject to the Brunner test

Figure 3.3. The evaluation procedure used in all the experiments of this thesis.

Since the original Stable ranking method could overcome the long standing

debates of the choices of effort models, we positively believe that its 5-step eval-

uation procedure depicted in Fig.3.1 is sufficiently excellent. Hence, we decided

to retain the 5-step procedure in our Improved stable ranking method and used
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this evaluation procedure as the main procedure for all the experiments carried

out in this thesis. Fig. 3.3 shows the overview of the 5-step procedure after the

core evaluation methodology is changed to Improved stable ranking method. The

detailed explanation of each step is given as below.

3.4.1 Select the Evaluation Datasets

Table 3.2 lists 12 industrial software development project datasets used in all the

studies of this thesis. Of which, 9 datasets are available in the tera-Promise soft-

ware engineering repository (Accessible through [67]), where datasets are made

available and commonly used in software development effort estimation stud-

ies [2,6,9,14]. The 3 other datasets are subsets of the standard benchmark ISBSG

dataset (Release 9) [62], which is a large and divergent collection of industrial soft-

ware projects. These 3 datasets namely ISBSG-banking, ISBSG-insurance, and

ISBSG-communication were selected as subsets from the ISBSG following the pol-

icy used to generate the ISBSG-banking datasets in a recent prominent study of

Kocaguneli et al. [14] and the guideline to interpret the ISBSG dataset suggested

by Mendes and Lokan [68]. Specifically, the criteria to select the ISBSG-banking

are as follows:

• Project cases indicated both organization type and business type as bank-

ing.

• Project cases were being rated A in both terms of data quality and UFP

integrity.

• Project features that had more than 40% of their values missing were ex-

cluded.

• Project features contained redundant information were excluded.

For the ISBSG-insurance, we used the criteria as described above to select

project cases having both organization type and business type described as in-

surance projects. For ISBSG-communication, we selected project cases hav-

ing organization type and business type indicated as communication and tele-

communication, respectively.
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If one reads the literature on SEE, the use of homogenized datasets (a.k.a.,

decomposed dataset) from the tera-Promise source are often encountered [1,2,6,

9, 14, 53, 69]. However, we decided to use only full datasets from this source in

all the experiments of this thesis because, in the majority of our experiments, we

summarized the overall results by aggregating the performance results across all

datasets. In this way, the use of both full and homogenized datasets at the same

time will mislead the performance conclusion based on the win-tie-loss statistic.

To explain in short, the win-tie-loss statistics used throughout this thesis is based

on counting. Its procedure counts the number of times a test variant significantly

outperforms the other test variants regrading all performance measures and all

datasets used in the experiments. Interpreting this statistic with both full and

homogenized datasets would make them counts the same samples twice, and

resulting in wrong performance conclusion produced.

3.4.2 Sample the Training/Test Instances

All the studies of this thesis used leave-one-out approach [53, 54] to sample the

training/test instances for the performance evaluation. For a dataset with n

project cases, one project at a time becomes a test instance of a model built

from all the remaining n-1 cases. The estimated effort values for n different

training/test instances will produce n estimated effort outcomes. In contrast to

its alternative choice of N-way cross-validation approach, the estimation outcomes

produced by the leave-one-out will be the same in every single run because it

does not depend on any randomization. A recently study by Kocaguneli et al.

[53] systematically compared the leave-one-out and the N-way cross-validation

approaches for SEE studies and recommended the leave-one-out. The superiority

of the leave-one-out for SEE studies is that it often generates the lower estimation

bias and is more robust when experimenting on small and medium-sized datasets

[53, 70] (i.e., less than 300 samples), where most of the available effort datasets

are within this range [67].
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3.4.3 Generate Estimator Variants of ABE Models

As suggested by Keung et al. [9] and Kocaguneli et al. [69], a performance evalu-

ation based on an aggregation of multiple configuration variants of an estimation

model will offer a better generalization of results. In Chapter 4, we generated

2,304 variants of ABE models based on a combination of approaches commonly

adopted in 5 essential components of ABE (i.e., feature normalization, feature

subset selection, similarity measures, solution adaptation, and number of ana-

logues), and had them evaluated with the Improved stable ranking method. In

Chapter 5, we selected only more successful approaches determined in Chapter 4

and had them reviewed with our proposed new approach. In short, we generated

and reviewed 36 variants of ABE models in Chapter 5. Next, in Chapter 6, we

evaluated the single best variants of ABE models determined in Chapter 4 and

Chapter 5 (we named it ABE-Best) with 6 additional data quality improvement

techniques. Thus, we generated and reviewed 7 models in Chapter 6. In the

final chapter, we evaluated the ABE-Best model with 7 other variants of machine

learning model-based effort estimators cross generated with 4 feature subset se-

lection methods × 3 normalization approaches. Thus, in Chapter 7 we generated

and reviewed 85 variants of SEE models in total.

3.4.4 Measure the Estimation Performance

Estimation errors are the commonly used performance measures in software de-

velopment effort estimation studies [9,14,24,69,71]. Suggested by Keung et al. [9],

an agreement established among many error measures would greatly contribute

towards a more intuitive and more trustworthy performance’s conclusion. Hence,

for performance evaluation of the configuration variants of ABE models exam-

ined throughout this thesis, we selected 5 error measures from a list of more

stable measures suggested by Foss et al. [24], as described earlier in Fig.3.2 of

this chapter.
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3.4.5 Pairwise Comparisons of the ABE Variants using

Win-tie-loss Statistics, Subject to the Brunner Test

In our experiments, the overall performance of a single combination of approaches

commonly tailored ABE models is determined by the number of times it statisti-

cally outperforms the other variants or being outperformed by the other variants,

aggregated from all of its possible pairwise comparisons. This performance evalu-

ation approach is known as win-tie-loss statistics [2,9,69]. The common criteria to

determine whether a combination statistically outperforms or being outperformed

other combinations is the Brunner test [56]. Fig. 3.4 describes the procedure of

the win-tie-loss statistics based on the Brunner test.

Figure 3.4. Comparing the performance between two configuration variant i and

j of an ABE model, on their single error measure Erri and Errj. Lower values

indicate better performance for all the 5 error measures selected in this study.

1: wini = tiei = lossi = 0

2: winj = tiej = lossj = 0

3: if Brunner test(Erri, Errj, 0.95) says they are the same then

4: tiei = tiei + 1

5: tiej = tiej + 1

6: else

7: if better(Erri,Errj) then

8: wini = wini + 1

9: lossj = lossj + 1

10: else

11: winj = winj + 1

12: lossi = lossi + 1

13: end if

14: end if

Using the statistics, the results are measured through three counters, wins,

ties, and losses. The statistic counts the results of pairwise comparisons of all
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pairs of ABE variants for each error measure. The procedure shown in Fig. 3.4

tests one pair of techniques for one error measure, and for example, it will test

all pairs of 2,304 combinations and all error measures at the test completion

in the study of Chapter 4. When the Brunner test shows that the estimation

performance of a pair of ABE variants are not significantly different i.e., p-value

> 0.05, the tie counters of these two variants will increment. Otherwise, the win

counter of the variant with lower error will increment, and the loss counter of

the other variant will increment. If a variant i totally outperforms a variant j

in terms of all 5 error measures, its total wins will increase by 5, while the total

losses of variant j will increase by 5.

Interpretation of the Win-Tie-Loss Statistics

The overall estimation performance based on the win-tie-loss statistics is com-

monly presented as the total counts of wins, losses, or wins-losses (i.e., wins

minus losses). According to Demšar [72] and Kocaguneli et al. [2], there is no

generally accepted method among these three counters. In this thesis, our com-

parison results interpreted wins - losses as the main results because their values

can obviously distinguish high-performed and poor-performed variants of estima-

tion models. That is the variants having the value of wins-losses less than 0, i.e.,

losses more than wins are non-trivial a poor-performed ABE variants. For the

other two counters, we interpreted them as measures to observe robustness of the

ABE variants being observed. Specifically, robustness was observed by that ABE

variants with high wins and low losses are more robust than other variants with

high wins, but their losses are also high. Finally, we summarized results based

on all the three counters to observe the overall ranking stability. This is done

by calculating the average ranks of the ABE variants being observed across the

three ranking lists in regards to the three different counters.

3.5. Summary

Conclusion stability has continually been one of the major problems in SEE re-

search studies [2], where divergent results were frequently generated from dif-

ferent replications of the same methods. The studies of this thesis revisit this
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problem and suggest improvements to a method named Stable ranking method,

originally proposed by Keung et al. [9], to be the evaluation method of choice for

assessments of estimation models used in the activities in software engineering

processes, such as SEE. Two main suggestions for improvements of the original

Stable ranking method are in two parts: the performance measures and the statis-

tical test method, where the measures and the test method adopted in the origi-

nal Stable ranking method can be questionable upon their validity. Explained in

details, we selected 5 performance measures from the list of more robust and reli-

able measures evaluated by Foss et al. [24] and selected the statistical test method

that is assumed to be most suitable for the distribution and the characteristics

of the commonly used effort estimation datasets, following the recommendations

by Wilcox [57] and Kitchenham [58]. The successful evidence of adopting this

evaluation method will be presented from the next chapter.
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Chapter 4

Identifying Best Combinations of

Approaches in the 5 Essential

Components of ABE

The motivation of this study is that we frequently encountered unstable conclu-

sions and conflicting results in many existing research studies in ABE [18,44,45].

We speculated that a various use of evaluation methodologies undertaken among

existing works were the major causes of conclusion instability. For example, we

found that biased performance measures such as MMRE [24] were chosen in many

existing studies. Furthermore, a massive number of studies that relied on such

bias performance measures rarely carried out statistical significant test to validate

their results. Therefore, without a more robust and reliable evaluation method

being able to draw a stable performance conclusion exists, the problem related

to conclusion instability and conflicting results will be continually reproduced in

this area of study.

In this chapter, we evaluated our Improved stable ranking method to show

that the method is very reliable and should be used in an evaluation of any

future studies in this area of research. At the same time, we sought for the

superior approaches from the existing approaches in the 5 essential components

of ABE.

The 2,304 combination of approaches evaluated in this study are all the pos-

sible combinations being cross generated from:
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• 3 Normalization approaches: None, Interval0-1, Log;

• 4 Feature subset selection methods: All, Sfs, Swvs, and Pca;

• 6 Similarity measures: Euclidean, Manhattan, Minkowski, Maximum,

Mahalanobis, and GRA;

• 8 Solution adaptation techniques: UAVG, IWRM, LSA, MSA, RTM,

AQUA, GA, and NNet;

• 4 Approaches to determine the number of analogies: k=1, k=2, k=3,

Best-k.

4.1. Research Questions and Hypothesis

In this study, experiments and analyses of results are organized to answer the

following research questions:

RQ1 How stable is the ranking list of 2,304 combinations of ABE variants iden-

tified by the Improved stable ranking method?

RQ2 Which approaches could be concluded as being superior than other ap-

proaches in the same components of ABE models?

For RQ1, even if we improved the Keung et al.’s Stable ranking method [9] with

a more robust and reliable statistical test method, we may still need empirical

evidences to show that our Improved stable ranking method can provide stable

results and conclusions. For RQ2, after we validated the Improved stable ranking

method, the results and analyses based on it would provide a better comprehension

of the approaches selection to tailor ABE models in practice. An available of this

knowledge will be an important step towards better facilitate an effort estimation

framework based on the concept of ABE.

The primary hypotheses of this study are given below.

H1: With thorough comparisons of the approaches commonly tailored to ABE

models to improve the overall performance, undertaken by a comprehensive

evaluation method, we will be able to assess a stable ranking list of ABE

variants being examined.
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H2: If we are able to rank the combinations of approaches for ABE correctly,

we would be able to observe similar behavior between approaches being

ranked closely. For example, solution adaptation techniques with similar

adaptation mechanisms should produce similar estimation performances.

4.2. Evaluation Methodologies

The evaluation procedures of the study of this chapter adopted the procedure

explained in Chapter 3 to evaluate the 2,304 variants of ABE models, afore-

mentioned earlier in this chapter. After all the 2,304 variants of ABE models

were executed using the leave-one-out approach, their performance were recorded

with 5 error measures. Then, pairwise comparisons were carried out between each

of the 2,304 variants × 2,303 others, using the win-tie-loss statistics. Finally, the

overall performance of each variant was aggregated by the total summations of

wins, losses, and wins-losses across all the selected datasets and the 5 robust

error measures.

To justify the validity of an issue possibly introduced when any pairs of the

approaches are being dependent with each other (i.e., not being fully orthogo-

nal), we design the methodology of this study, which is the fundamental part

of this thesis, to exhaustively examine all the possible combinations of the se-

lected approaches. Adopting the evaluation procedure based on use of multiple

rankings followed by an analysis based on them in a manner of ranks agreement,

we strongly believe that the any validity issue regarding approaches in different

dimensions are being dependent will not be introduced.

4.3. Result

Fig.4.1 shows box plots of the ranking based on wins-losses of the approaches

compared in this study. Each plot shows the approaches belong to the same

essential components of ABE models. From this figure, we can indicate superior

approaches belong to feature subset selection, number of analogues, and solution

adaptation. On the other hand, we cannot see any single approach performed

differently than others in the other 2 components. In our view, their are two
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Figure 4.1. Box plots of the ranking of the approaches selected in this study,

appearing in the overall ranking of the 2,304 combinations in terms of wins-losses
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possible causes of this situation: (1) the Improved stable ranking method may not

sufficiently robust to draw stable conclusion, or (2) there are no actually best

approaches in these 2 components such that all the existing approaches belong to

these components are sensitive to shape, size, and distribution of local datasets.

4.3.1 Investigating Research Question 1

The first research question examines how robust is the Improved stable ranking

method. To answer this research question, we selected the approaches belong to

solution adaptation techniques and feature subset selection methods to perform a

more detailed analysis of the ranking results. Solution adaptation was selected as

a component with strongly conclusive ranking results, and feature subset selection

was selected as a component with somewhat uncertain performance conclusion.

Regarding this selection of components, if the performance ranking of this analysis

was conclusive, the results would be a strong evidence to support the stability

and robustness of the Improved stable ranking method.

Our analyses for this research question are in two-fold. The first is to observe

the ranking agreement across the three ranking lists based on wins, losses, and

wins-losses. Then, we discussed whether solution adaptation techniques with

similar theoretical concepts tended to be in very close ranks.

Ensure the stability of the extended ranking method based on analyses

of ranking agreement

Table 4.1 shows the ranking of solution adaptation techniques in combinations

with feature subset selection methods based on all the three terms of wins, losses,

and wins-losses, along with the average ranks summarized by all these three

ranking lists.

We divided the ranking of 32 combinations of solution adaptation techniques

× feature subset selection methods into 4 bands based on mean ranks and the

values of wins-losses. We decided to define the cut off between band #1 and

band #2, and between band #2 and band #3 based on the significantly different

values of wins-losses. For the cut off between band #3 and band #4, we decided

it based on the values of mean rank. Observing the 4 bands of solution adapta-

43



Table 4.1. Win-tie-loss ranking results from the experiments. Results for each

combination of configuration variants of feature selection methods and solution

adaption techniques are sorted by wins - losses.

Rank wins-losses Adapt FSS wins loss wins-losses mean rank

1 2482286 RTM Pca 1 1 1 1.0

2 2173850 RTM Swvs 2 2 2 2.0

3 1931752 RTM All 3 3 3 3.0

4 1870382 RTM Sfs 4 4 4 4.0

5 1213196 LSA Pca 5 5 5 5.0

6 1182229 MSA Pca 6 6 6 6.0

7 997004 MSA Swvs 8 10 8 8.7

8 991503 LSA Swvs 7 11 7 8.3

9 974632 LSA All 9 7 9 8.3

10 925706 MSA All 11 8 11 10.0

11 887245 LSA Sfs 10 12 10 10.7

12 826047 MSA Sfs 12 13 12 12.3

13 156078 IRWM Swvs 14 9 14 12.3

14 -60361 UAVG Swvs 15 14 15 14.7

15 -139083 GA Swvs 13 18 13 14.7

16 -580587 AQUA Swvs 21 17 21 19.7

17 -581496 IRWM Sfs 16 21 16 17.7

18 -596759 NNET Swvs 24 15 24 21.0

19 -688553 UAVG Sfs 17 22 17 18.7

20 -741886 IRWM All 18 23 18 19.7

21 -808048 UAVG All 19 27 19 21.7

22 -839483 IRWM Pca 20 25 20 21.7

23 -889918 UAVG Pca 23 24 23 23.3

24 -999817 GA Sfs 22 30 22 24.7

25 -1094188 GA All 25 31 25 27.0

26 -1165733 AQUA Sfs 28 26 28 27.3

27 -1176339 AQUA Pca 27 28 27 27.3

28 -1183944 NNET Sfs 31 16 31 26.0

29 -1215889 NNET All 30 20 30 26.7

30 -1251847 AQUA All 29 29 29 29.0

31 -1269609 GA Pca 26 32 26 28.0

32 -1328370 NNET Pca 32 19 32 27.7
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tion techniques × feature subset selection methods, we could see that the ranks

were more likely changed within the same bands, while they were very consistent

across different bands. For example, the top 4 combinations of Table 4.1 were

consistently ranked between rank #1 and rank #4 in all terms of wins, losses,

and wins-losses. Also for the second band, only the losses value of (MSA, Sfs)

was exceeded rank #12, and all the combinations in this band consistently had

their mean ranks between rank #5 and rank #12.

For remaining two bands i.e, rank #13 to rank #32, we found only 3 out of 60

ranking values of wins, losses, and wins-losses were not ranked in the within their

own bands. Based on this preliminary finding, we can suggest that the ranking

list of Table 4.1 was very stable and a further analysis based on it would be able

to draw performance conclusion of solution adaptation techniques.

Observe whether approaches with similar theoretical concepts tended

to be ranked closely

Solution adaptation techniques are the component ABE being most appropriate

for this analysis because many techniques compared in this study were clearly

based on similar theoretical concepts. Table 4.2 shows a summary of the proper-

ties of the 8 solution adaptation techniques, examined in this study.

From Table 4.2, it is clear that the theoretical concepts of UAVG and IRWM

are more similar than that of the other methods. Also, LSA, MSA, and RTM

were based on linear adaptation and made use of software size (and productivity)

in their adaptation procedures. For GA and NNet, they are the only two tech-

niques that adopt machine learning models for the adaptation. For AQUA, even

if it does not apply any machine leaning method in its adaptation procedure, the

concept behind AQUA are similar to techniques that based on applying machine

learning models such as NNet. Based on this brief summary of the theoretical

concepts of the 8 solution adaptation techniques, results in Table 4.1 clearly in-

dicated that adaptation techniques with similar theoretical concepts were ranked

very closes to each others in terms of wins-losses as well as of the average ranks

summarized across wins, losses, and wins-losses. Important and interesting re-

sults for here are that the conclusive ranks within the same bands shown in Table

4.1 strongly suggested that similarity measures with similar theoretical concepts
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Table 4.2. The 8 adaptation techniques selected in this study.

Abbrev. Adaptation Techniques
Adjustment Adjustment

function feature

1 UAVG [73] Unweighted mean of Mean Effort

the k analogues

2 IRWM [37] Inverse-rank weighted mean Mean Effort

of the k analogues

3 LSA [13] Linear size adaptation Linear Software size

4 MSA [36] Multiple size adaptation Linear Software size(s)

5 RTM [46] Regression towards the mean Linear Software size

6 AQUA [40] Similarity-based adaptation Linear All features

7 GA [21] Adaptation based on Linear All features

Genetic algorithm

8 NNet [44] Non-linear adaptation Non-linear All features

based on Neural network

were more likely to be in the same bands, where the bands were assigned based

on both performance ranking and ranking stability.

In summary the results of two analyses carried out to answer this research

question were sufficient to allow us to say that the Improved stable ranking method

is sufficiently robust to draw a stable conclusion on performance of multiple test

samples, if it does exist.

4.3.2 Investigating Research Question 2

The second research question examines which approaches commonly adopted in

ABE models are more superior than others. From the experiments and analyses

of the previous research question, Best-k and RTM were the conclusively su-

perior approaches for ABE, whereas the choices for approaches belong to other

components were remaining inconclusive. To suggest the approaches of choice

for those inconclusive dimensions, we further investigated the 2,304 combinations

of approaches by focusing only conclusively more superior combinations. The

rationale behind the investigation in this way is that, if we can correctly identify
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which combinations of the approaches are significantly superior than others, in

practice, only those superior configurations of approaches would be more likely

configured and used for the effort estimation process. Since we had been able to

ensure correctness and robustness of the Improved stable ranking method, we can

therefore say that ranking of these 2,304 combinations were also being accurate

and valid.
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Figure 4.2. The sum of wins, loss, and wins-losses values of 2,304 combinations

of common approaches selected in this study (over all error measures and all

datasets).

.

The experiment for this investigation began with an identification of the sig-

nificantly superior configurations of approaches. Fig.4.2 shows line plots of the

2,304 combinations. The x axis of this figure indicates the ranking of combina-

tions of approaches sorted by wins-losses in ascending order. The y axis indicates

the counts of wins, losses, and wins-losses. Based on Fig.4.2, we used the fol-

lowing criteria to consider the combinations falling on the top 5% i.e, ranked #1

to ranked #115, as high performers and the bottom 5% i.e, ranked #2,185 to

ranked #2,304, combinations as low performers:

• All the combinations ranked top 5% have wins twice as higher than losses.
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• All the combinations ranked bottom 5% consistently have losses higher

than wins.

To ensure whether the approaches falling the top 5% of the ranking list of

Fig.4.2 are definitely superior than others, we observed them with the bottom

5% combinations. Table 4.3 shows frequency counts per approach when they

appeared in the top 5% and the bottom 5% of the ranking based on wins-losses.

The frequency counts strongly suggested Best-k and RTM as approaches of

choices for solution adaption methods and approaches to determine the number

of analogue. These results are in broad agreement with the results of Fig.4.1.

Furthermore, the frequency counts could suggest that Log would be an approach

of choice for the feature normalization. This is because the counts clearly indi-

cated that Log was the most frequently appeared normalization approach on the

top 5% combinations, and it is also the least frequently appeared approach at the

bottom 5% combinations.

For feature subset selection methods and similarity measures, the results of

Table 4.3 indicate that Pca and Euclidean performed somewhat better than

other approaches. Pca performed better than others with the top 5 % combina-

tions; however, it also frequently appeared in the bottom 5% combinations. For

Euclidean, its performance was not clearly different than others for both the

top 5% combinations not the bottom 5% combinations. In our opinion, we would

suggested Pca to be approaches of choice when the ABE framework being used

was configured with all the other conclusively superior approaches suggested by

our earlier experiment, such as RTM and Best-k. For other situations, such

as for a study that proposes any new approach, we suggest to evaluate the new

proposed approach with the entire list of feature subset selection methods.

One the other hand, to suggest a similarity measures of choice, the results

of this experiment suggested that there was actually no single best similarity

measure out of the 6 commonly adopted measures. Hence, we would suggested to

continually adopt the Euclidean distance to be the similarity measure for ABE

as long as there is no new measure based on better theoretical concepts available.

In summary, our suggestion for the approaches of choice to be adopted practical

ABE models are as follows:

• Normalization approach: Log [34];
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Table 4.3. Frequency counts of approaches belong to the 5 essential components

of ABE, appearing at the top 5% ranks and the bottom 5% ranks of Fig.4.2

Approaches
# appeared in # appeared in

top 5% ranks bottom 5% ranks

Normalization

Log 60 18

Interval0-1 45 72

None 9 20

Feature subset selection

Pca 51 24

Swvs 30 8

Sfs 7 41

All 26 43

Similarity measures

Euclidean 32 24

Mahalanobis 25 16

Minkowski 18 15

Maximum 18 15

Manhattan 18 15

GRA 3 6

Solution adaptation

RTM 73 0

MSA 22 0

LSA 19 2

UAVG 0 2

IRWM 0 2

Nnet 0 44

GA 0 29

AQUA 0 26

Number of analogues

Best-k 68 4

k=2 18 33

k=3 16 10

k=1 12 50
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• Feature subset selection:

– Pca [40], if all the approaches suggested in this list were selected;

– otherwise, fit a local dataset with all the commonly adopted approaches;

• Similarity measure: Euclidean [7, 28];

• Solution adaptation technique: RTM [46];

• Approach to determine number of analogues: Best-k [38].

4.3.3 Sanity Check

Since this study is the fundamental part of the thesis, we carried out a sanity check

as an extended experiment to evaluate the rational of the results. In this extended

experiment, we repeated the experiment of our second research question but

fixed the best approaches in the dimensions of the parameter k and the solution

adaptation technique as RTM and Best-k, which had been earlier concluded as

the best approaches in preliminary experiment of this study. Hence, combinations

of approaches examined in this extended experiment are in total of 1 × 1 × 3 ×
4 × 6 = 72 combinations, being cross generated from:

• 1 Solution adaptation techniques: RTM;

• 1 Approaches to determine the number of analogies: Best-k;

• 3 Normalization approaches: None, Interval0-1, Log;

• 4 Feature subset selection methods: All, Sfs, Swvs, and Pca;

• 6 Similarity measures: Euclidean, Manhattan, Minkowski, Maximum,

Mahalanobis, and GRA;

Using the same procedure to generate Fig.4.2, Fig.4.3 shows line plots of the 72

combinations of approaches as described above. The x axis of this figure indicates

the ranking of combinations sorted by wins-losses in ascending order. The y axis

indicates the counts of wins, losses, and wins-losses. Since the distributions of

the wins, losses, and wins-losses are different from that of Fig.4.2 due to different
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Figure 4.3. The sum of wins, loss, and wins-losses values of 72 combinations of

approaches (over all error measures and all datasets).

.

sample sizes, the use of percentage to define the cutoff between the top and the

bottom does not seem to be fully appropriate. Hence, we decided to change the

criteria for this cutoff at the top ranks to be the point where both wins and losses

suddenly significantly increases after they have continually dropped, and for the

bottom ranks, we decide that point to be where both wins and losses suddenly

significantly drops after they have continually increased. In this way, the sudden

changes of the wins, losses may imply these points to be where the rankings in

terms of wins, losses, and wins-losses start to exhibit less agreement (i.e., less

stable ranking). Specifically, to perform the top-bottom analysis, we defined the

9 combinations having the highest values of wins-losses as the top ranks, and the

12 combinations having the lowest values of wins-losses as the bottom ranks.

Based on this criteria, the frequency counts of approaches classified into the

top and the bottom ranks, respectively, are presented in Table 4.4. Interestingly,

the results obtained from this table appear to be in broad agreement with that

of all the other experiments presented earlier in this chapter. That is, Log was

the non-trivial approach of choice to perform feature normalization. Both Pca

and Swvs were endorsed by the Improved Stable Ranking Method but they did

not have a significantly different performance. Also, all the similarity measures

compared in this study shown very similar performance, where Euclidean can be
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suggested as the one performed slightly better than the others. In summary, we

found no conflict between the earlier experiments and this extended experiment,

as Log and Euclidean are suggested for SEE based on ABE. In additional to the

somewhat uncertain conclusion on the performance of the feature subset selection

methods, we suggest to follow the results from the earlier experiments, where Pca

was recommended.

Table 4.4. Frequency counts of approaches appearing at the top ranks and the

bottom ranks of Fig.4.3

Approaches # in the top ranks # the in the bottom ranks

Normalization

Log 6 2

Interval0-1 3 3

None 0 7

Feature subset selection

Pca 4 3

Swvs 4 3

Sfs 0 4

All 1 2

Similarity mesures

Euclidean 2 0

Maximum 2 1

Manhattan 2 1

Minkowski 2 2

Mahalanobis 1 0

GRA 0 8

4.4. Discussion

4.4.1 The Improved Stable Ranking Method

The results achieved from the comprehensive experimental procedure used in

our study show that we can overcome the ranking instability issues [9] in ABE

research studies. The successful of this study allows us to identify the superior
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approaches in 4 out of the 5 essential components of ABE models, which are

(1) normalization techniques, (2) feature subset selection methods, (3) solution

adaptation techniques, and (4) number of analogues. The stability of the ranking

result indicated by the Improved stable ranking method was ensured by a broad

agreement established across multiple stable error measures that were used to

assess all the 2,304 combinations of the common approaches adopted belong to

these 4 essential components of ABE models.

According to the study by Keung et al. [9] that overcame ranking instability

issues in model-based effort predictions, Keung et al. suggested many factors

that would make changes to ranking of the effort estimators. The key factors are

(1) the use of different evaluation methodologies among different literatures (e.g.

using different sampling methods to generate the training/test set), and (2) an

inappropriate experimental design (e.g. the commonly seen misuse of a biased

MMRE error measure [24] and the absence of the statistical significant test).

From the analyses of the results in this study, we agree with the suggestion by

Keung et al. [9] that the use of a more superior evaluation method that mainly

considered the amount and diversity of datasets, amount and robustness of per-

formance measures, the robustness of statistical test method, and the agreement

among all measurements being used are the key success factors of this study.

The following in this section, we discuss successful approaches along with

opportunities of their future direction for the 5 essential components of ABE

models.

Feature Normalization Approaches

Since both Interval0-1 and Log showed higher performance than the None

method in Fig.4.1, this result suggested that feature normalizations are an impor-

tant preprocess of ABE. Between these 2 approaches, the results of 4.3 suggested

that Log performed better when all the other superior approaches were being

adopted. Regarding this finding, we recommend Log over the other approaches

in practice.

In our opinions, Log is considerably theoretically superior than the other two

approaches because it can also approximate a normal distribution in its trans-

formed space. However among the approaches examined in the experiment, the
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use of Log normalization was much less discussed in contexts of ABE than all

the other approaches. We hope that our results of this study would encourage

future studies to explore more on the application of Log transformation in the

process of ABE.

Other interesting future research direction for ABE with regard to data nor-

malization and data transformation is to further explore on the adoption of data

quality improvement techniques. In our opinion, research studies in this direction

are as important as a search for the superior effort models because it is difficult

to accurately model noisy and inconsistent data.

Similarity measures

This study evaluated 6 similarity measures appeared in more than one research

papers in IEEE xPlore and ACM digital library during this 10 years. The re-

sults from the experiments and the analysis of results suggested that there was

no significantly difference between Euclidean, Minkowski, Maximum, Man-

hattan, and Mahalanobis measures. We further investigated for the reasons

to explain why our robust evaluation methods showed that these measures were

no significantly different. In a study by Wilson and Martinez [35], the authors

noted that the theoretical concepts of these 5 similarity measures were almost the

same, as all of which are corresponding to the Euclidean space. Since our results

suggest no significant difference between these measures, and the Euclidean has

been continually adopted since ABE was introduced [6,7], we therefore suggest to

continual use the Euclidean for future studies and in practice, as long as there

is no totally new approaches adopted from a new theoretical concept available

with a consistent empirical evidence.

For GRA, despite no review study being available at the time of writing, we

see that its functions can also be considered as an Euclidean distance with a

normalization function applied to its formula. However, it performed consistently

less accurate than the combination between Euclidean and Log. Other impor-

tant note in regards to GRA is that, even if GRA performed accurately in other

area of studies, it did not performed successfully with ABE. One of the possible

reasons is related to the somewhat unique characteristics of SEE datasets. Koca-

guneli et al. [1] commented on SEE datasets that sparse data is one of the main
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reasons that successful approaches in other fields did not necessarily perform suc-

cessfully with SEE datasets. This points out the same direction of future study

to consider more on the data attributes, the same direction that we discussed

earlier with the future directions for the normalization approaches.

Solution adaptation techniques

Our results clearly endorsed LSA, MSA, and RTM as superior solution adapta-

tion techniques than other techniques. The common theoretical concept of these

3 techniques are that they make use of the software size variable in their adaption

procedures following the triangular relationship between size, productivity, and

effort: Effort = Size × Productivity [30]. This mean that these 3 successful

solution adaptation techniques exploit the productivity in their adaption pro-

cedure by calibrating the productivity of the new case before adjust the effort.

For a future research direction of solution adaptation techniques, our results are

encouraging to suggest a more detail analysis and further exploration of produc-

tivity variable in solution adaptation process as well as in any other processes of

ABE.

Methods to determine the number of analogues and Feature subset

selection methods

The Best-k method was also strongly recommended by several studies by Koca-

guneli et al. such as [2,14] to be an approach of choice. Compared with methods

that statically assign the number of analogues to local datasets such as k = 1 or

k = 3, Best−k is far more theoretical superior. Our results of this study provided

an empirical evidence to conclude that an analysis of local datasets to find the

appropriate number of k using the Best−k method will produce a better estima-

tion performed ABE model. In our view, one concern of adopting the Best − k
method in practice is that it is considerably more compute intensive than any

method that heuristically assigns the number of analogues to local datasets. In

a very large dataset, the search space of the best k value will become very large,

and will demand powerful technologies to facilitate the search.

A demand of more powerful technology may also be addressed in future to con-

duct a search for the most fit feature subset selection method to a local dataset.
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The results of Fig.4.1, Table 4.1, and Fig.4.2 indicated that there was no single

best feature subset selection method and a search of methods that would per-

formed best for a given local dataset should be performed in every single run.

Hence, we see that the future direction for these two dimensions are considerably

in common. That is they both demand more powerful technologies to facilitate

the search for the best possible approaches of choice in every single run. We

therefore suggest a future direction for these two components of ABE models to

explore the possibility of harnessing high performance computing technologies to

facilitate the exhaustive search when the search space become very large.

4.5. Conclusion

Motivated by instability performance results frequently encountered across vari-

ous research studies on ABE, in this study, we revisited approaches being com-

monly adopted with the ABE models in practice to improve the achievable per-

formance. The selected approaches being evaluated in this study were cross-

generated from the 5 essential components of ABE models to be in total of 2,304

variants of ABE models.

Compared with the existing assessments of many variants of ABE models, our

experiments of this study were performed on a more comprehensive experimental

setup by using a greater number (12) of datasets coming from 2 distinct sources,

using a greater number (5) of performance measures (MAR, MdAR, SD, LSD, and

RSD [24]) which were all proved as stable measures, and more robust statistical

methods (i.e., the Brunner test [56]). Based on this comprehensive evaluation

study, the following findings have been concluded:

• A more comprehensive evaluation method consisting of stable error mea-

sures and a robust statistical test method enabled us to assess the stable

rankings of approaches commonly adopted to improve the performance of

ABE models.

• Solution adaptation techniques that linearly adapted the effort by using a

few relevant features based on size and productivity, such as Linear size
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adaption (MSA) and Regression toward the mean (RTM) were both high

performers and have stable ranks consistently.

• A method that dynamically assigned number of analogues such as the

Baker’s Best-k are more likely produce a better overall estimation per-

formance for ABE models.

• Feature normalization is an important preprocess of ABE. Based on our

results, we endorsed Log transformation as a method being both theoretical

superior supported by empirical evidences.

• There seems to be no single best similarity measure exist, we therefore sug-

gested to practitioners to continue using the commonly-adopt Euclidean

distance in the context of ABE.

• For feature subset selection, we suggested Pca as the method of choice if

ABE models were configured using all the approaches being listed above;

otherwise, we rather suggested to fit a local dataset with all the common

feature subset selection methods before performing an effort estimation.
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Chapter 5

Exploiting Productivity Factors

in Linear Size Adaptation for

ABE

The study in the previous chapter concluded that solution adaptation techniques

that exploit software size and productivity in their adaption procedures, such

as LSA and RTM, consistently produced higher accuracy than any techniques

based on other theoretical concepts. This finding motivated us to further exploit

productivity and its factor variable in the solution adaptation process of ABE.

The study of this chapter proposed a new technique named eX tended Linear

S ize Adaptation (LSA-X ). LSA-X extends one adaptation phase of the LSA

technique by exploiting productivity factors, project variables having the highest

value of correlation (r) with productivity, in its adaptation procedure. Specifi-

cally, LSA-X first determines the productivity factor for a given dataset. It then

calibrates the productivity value based on a linear extrapolation between produc-

tivity and the productivity factor. Finally, it applies the productivity function

to the calibrated productivity and software size to produce the estimated effort

value. Our results show that in circumstances where productivity factors are

being useful (r ≥ 0.30), the maximum achievable estimation accuracy can be

further improved than adopting any existing solution adaptation techniques. In

other circumstances, our results suggest using the RTM technique to compensate

for the limitations of the LSA-X technique.

59



5.1. Essential Hypothesis

The essential hypotheses behind LSA-X are that:

H1: If a dataset exhibits a high correlation between productivity and its factor

variable, we will be able to precisely refine the estimated productivity of

the new case prior to adjusting its effort.

H2: Calibrating the productivity prior to adjusting the effort will produce a

more robust estimate, as shown by the RTM technique in the previous

chapter and also in previous a study by Azzeh [45].

H3: Calibrating the productivity using linear extrapolation with its factor vari-

able will generate a more significant estimate, in the same way that linear

extrapolation was successfully performed between software size and effort

in the LSA technique [45].

5.2. The Proposed LSA-X Technique

Recall the equation of LSA:

Effort(Pnew) =
SS(Pnew)×Mean( Effort(Panalogs) )

Mean( SS(Panalogs) )
, (5.1)

where SS indicates a single software size variable, and Effort indicates an ef-

fort value. This equation can be explained as a function of Productivity =

Effort/Size, where Pr(Panalogs) is the productivity values of the analogue projects:

Effort(Pnew) = SS(Pnew)×Mean( Pr(Panalogs) ), (5.2)

In other word, LSA estimates the term Effort/Size as the objective variable

of the ABE model in its procedure, instead of the effort, which is commonly done

by simple ABE model such as ABE0-1NN [2, 9]. Then LSA applies a linear

adjustment based on a software size variable of the new case to produce its final

estimated effort value.
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As an extension to the LSA technique, the proposed LSA-X technique intro-

duces a procedure to utilize productivity (Pr) and an influential factor variable

(PrFactor) in the solution adaptation stage of ABE. LSA-X adds one more adap-

tation step to LSA by calibrating the productivity of the retrieved similar project

cases before adjusting the effort using a software size. Specifically, LSA-X applies

a basic analogy-based estimation framework to estimate the term Pr/PrFactor

as well as Effort/Software size for the new case using the PrFactor and soft-

ware size of the new case to produce the required effort value.

5.2.1 The Procedure of LSA-X

LSA-X is proceeded in three adaptation steps as follows:

Step 1 is a search for the PrFactor. We define the PrFactor as any single

continuous project variable of a dataset that has the highest positive degree of

Pearson correlation with the productivity (Pr). This single criteria is extended

from the essence of the LSA technique, where software size is its adaptation vari-

able of choice because software size commonly exhibits the highest correlation

to the effort, as empirically observed in the proposed study by Walkerden and

Jeffery [13]. In addition, since the Pearson correlation assumes a normal distribu-

tion, we apply a logarithmic transformation to all the continuous variables prior

to perform the correlation test, as suggested by Kitchenham and Mendes in [34].

In Step 2, after the PrFactor is identified, the Pr of the new case is calibrated

using linear adjustment:

Pr′(Pnew) = PrFactor(Pnew)×
(

Mean( (Pr(Panalog) )

Mean( PrFactor(Panalog) )

)
(5.3)

where Pr′ is the calibrated productivity.

In Step 3, LSA-X adjusts the term Pr′ using a software size variable of the new

case. This is done by replacing the term Pr in Eq.5.2 of the LSA technique with

the Pr′, calculated in Step 2. Eq.5.4 depicts the third adaptation step of LSA-X.

Effort(Pnew) = SS(Pnew)× Pr′(Pnew) (5.4)
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5.2.2 Example

This section provides an example of the 3-step procedure of LSA-X, by showing

an estimation process for the effort required by the first project case (Case #1 ) of

the Cocomo-sdr dataset. This case was completed with 3,000 LOC and consumed

1.2 man-months effort, thus its productivity is equal to 0.0004 man-months per

LOC. Note that we configured k=2 to in this example.

Step 1 Table 5.1 shows the correlation coefficient values between all the contin-

uous variables of the Cocomo-sdr dataset and its productivity. This table shows

that the Sced feature has the highest positive value of correlation coefficient with

the productivity of this dataset.

Step 2 Without any feature subset selection method applied i.e., use all features,

Case #2 is the closest analogue of Case #1, followed by Case #3. The values of

PrFactor (the Sced feature), Software size, and Effort of the Case #1 and

its three closest analogues are shown in Table 5.1.

Software project cases
Software

Sced
Actual

size effort

Pnew(Case1) 3,000 3 1.2

Panalog1(Case2) 2,000 4 2

Panalog2(Case3) 4,250 4 4.5

Average 3,125 4 3.25

Estimated Effort

UAVG LSA LSA-X

3.25 3.25× 3,000
3,125

= 3.12 3.25× 3,000
3,125
× 3

4
= 2.34

Figure 5.1. Estimating Case #1 of the Cocomo-sdr dataset using UAVG, LSA,

and LSA-X

Following Eq.5.2.1, Pr′Case1 is equal to PrFactorCase1 × (PrCase1/

Mean(PrFactorAnalogues) = 3×(3.25/3, 125)/4 = 0.00078 man-months per LOC.
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Table 5.1. Correlation coefficient between continuous project features and oro-

ductivity of Cocomo-sdr dataset

Features Description r(Pr, PrFactor)

Prec Precedentedness 0.198

Flex Development Flexibility 0.460

Resl Arch/Risk Resolution -0.320

Team Team Cohesion 0.516

Pmat Process Maturity -0.206

Rely Required Software Reliability 0.463

Data Database Size -0.275

Cplx Product Complexity 0.085

Ruse Required Reusability -0.108

Docu Documentation match to life-cycle needs -0.061

Time Execution Time Constraint -0.051

Stor Main Storage Constraint -0.047

Pvol Platform Volatility 0.033

Acap Analyst Capability 0.180

Pcap Programmer Capability -0.276

Pcon Personal Continuity 0.240

Aexp Applications Experience 0.369

Pexp Platform Experience -0.009

Ltex Language and Tool Experience 0.547

Tool Use of Software Tools 0.388

Site Multisite Development -0.343

Sced Development Schedule 0.582

Loc Lines of Code -0.733

Step 3 At this final step, LSA-X adjusts Pr′Case#1 using its software size and

estimates the effort value for Case#1 as 0.00078× 3, 000 = 2.34 man-months. In

this example, the estimated effort value using LSA-X produces a more accurate

estimate than that of UAVG and LSA, which are equal to 3.25 and 3.125 man-

months, respectively.
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5.2.3 The Rationale behind the LSA-X Technique

Compared with the UAVG technique, LSA generally produces higher accuracy

[13, 36, 37] mainly because it can capture and exploit the degrees of difference

between project cases with similar features, but different in software sizes. LSA

applies the information captured with degree of the difference in software size to

the estimated effort value by scaling the estimated effort to match the expected

software size of the new case.

Following the adaptation mechanism of LSA that the effort value will be more

realistic after being adjusted by other variables to match the characteristics of

the new case, the proposed LSA-X technique further adjusts the estimated effort

value by exploiting one additional variable from the software size. In other word,

the proposed LSA-X technique can further identify and exploit the productivity

differences between a new project case and its analogues by first adjusting the

productivity, followed by the software size. As showed in the example case of the

Cocomo-sdr dataset, this extension to the adaptation procedure makes LSA-X

better adapt the effort value, and thus produces more accurate estimation.

5.3. Evaluation

The experiments of this study also fully utilized the experimental procedure ex-

plained in Chapter 3. Since the study in the previous chapter had already con-

cluded the superior approaches for the 5 essential components of ABE models,

the experiments of this study therefore only adopted the ABE models with all

those superior approaches, excepted the dimension of solution adaptation. We

included all the 8 solution adaption techniques examined in the previous chapter

in this study to fully evaluate the LSA-X technique. Specifically, the ABE models

adopted in this study are based on the combinations of the following approaches:

• Similarity measure: Euclidean;

• Approach to identify number of analogues: Best-k;

• Normalization method: Log;

• Feature subset selection: All, Sfs, Swvs, Pca.
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Best-k, Log, and Euclidean were chosen as being the approaches recom-

mended by our study of Chapter 4. However, we decided to examine all the 4

common feature subset selection in this study because the experiments of the

previous chapter suggested to examine all of which when evaluating any now ap-

proaches deviated from the best approaches of choices concluded in the previous

chapter. In short, this study evaluated ABE models built with 4 feature selection

methods × 9 solution adaptation techniques = 36 variants in total.

After all the 36 combinations of ABE models were executed using the leave-

one-out approach, their performances were recorded with 5 error measures. Then,

pairwise comparisons were carried out between each of the 36 variants × 35

others, using the win-tie-loss statistics. Evaluated the performance in terms of

wins, losses, and wins-losses, the maximum wins or losses of (solution adaptation

technique, feature selection method) per single dataset is 35 × 5 error measures

= 175. Finally, we determined the overall performance of each single solution

adaptation technique by calculating the median values of wins, losses, and wins-

losses of feature selection methods over the same solution adaptation techniques.

For a more detailed result showing the ranking of feature subset selection methods

× solution adaptation techniques, we will show the wins, losses, and wins-losses

values without having any aggregation applied.

5.3.1 PrFactor of the Experimental Datasets

The evaluation of LSA-X was performed over the 12 datasets used in the study of

the previous chapter. Table 5.2 presents the PrFactor along with its description

and the value of r(Pr, PrFactor) for each of the selected datasets. Even though

the characteristics of the 12 datasets were greatly diversified, we can categorize

the variables selected as their PrFactor in two groups, all of which are known to

be influential factors of Pr:

• Size, complexity and constraints of the software project, e.g., Envergure,

DevelpmentType, ResourceLevel, Sced, Time, T08;

• Developers team and experience, e.g., AverageTeamSize;

In the case where a PrFactor was selected with a very low value of r(Pr, PrFactor),

e.g. r(Pr, PrFactor) < 0.30, such as the top 4 datasets of Table 5.2, we specu-
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Table 5.2. Productivity factors, their descriptions, and the values of

r(Pr, PrFactor) of the 12 selected datasets

Dataset PrFactor PrFactor Description r(Pr, PrFactor)

Desharnais Envergure Complexity adjustment factors 0.10

ISBSG-insurance DevelopmentType Development type 0.24

Miyazaki94 File Number of different record formats 0.28

Finnish Co N/A 0.30

ISBSG-Banking ResourceLevel Resource level 0.34

Maxwell T08 Requirement volatility 0.38

Kemerer Hardware Type of hardware 0.44

ISBSG-

communication

AverageTeamSize Average team size 0.49

Cocomo-sdr Sced Schedule constraint 0.59

Cocomo81 Time Time constraint for cpu 0.62

Nasa93 Time Time constraint for cpu 0.67

Albrecht Output Number of external outputs 0.68

late that these datasets may not contain any real PrFactors. This may be due

to their data collection or data processing prior to their publicly available. We

therefore hypothesize that the proposed LSA-X technique will not perform well

for these datasets since the PrFactor seems not to be useful.

5.4. Results

Table 5.3 shows the comparison results of between the 9 adaptation techniques. In

this table the win-tie-loss statistic are summarized by the number of wins-losses.

The highlighted entries in this table indicate the solution adaptation technique

with the highest number of wins-losses for the dataset in their corresponding

row. Rows of this table are sorted by the Pearson correlation strength between

productivity and productivity factor (r(Pr, PrFactor)). The results show that

the LSA-X technique performed best in terms of wins-losses for 6 out of the

13 datasets. LSA was next with 4 datasets, followed closely by RTM with 3

datasets. According to the results of this experiment, LSA-X performed the best

by means of general performance.

When we look closely at the value of r(Pr, PrFactor) in Table 5.3, we can

divide the datasets into 2 bands based on r(Pr, PrFactor) with regard to the
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accuracy achieved by the LSA-X technique:

Band 1: datasets with r(Pr, PrFactor) < 0.30;

Band 2: datasets with r(Pr, PrFactor) ≥ 0.30.

It seems to be clear that LSA-X was the method of choice for datasets with

r(Pr, PrFactor) equal to or greater than 0.30. In this band, LSA-X had the

best performance for 6 out of the 9 datasets. Also for 1 of the other 3 datasets

where LSA-X did not show the best performance, LSA-X performed almost

well as the best performers. On the other hand, LSA-X performed poorly for the

datasets with r(Pr, PrFactor) less than 0.30. In these cases, the LSA technique

performed well for 3 out of the 4 datasets, while RTM performed best for the

other one dataset.

As suggested by Keung et al. [9] and the study of our previous chapter, ranking

agreement between results based on wins, losses, and wins-losses are necessary to

draw performance conclusion. Hence, we aggregated the wins, losses, and wins -

losses for each band using the mathematical mean and presented them in Table

5.4. The highlighted entries in Table 5.4 show the best techniques in each band

in terms of wins, losses, and wins - losses.

Table 5.4. A summary of the results of Table5.3 in the 2 bands of datasets. The

highlighted entries show the best-performing techniques.
Datasets Measures UAVG IRWM LSA MSA LSA-X RTM AQUA GA NNet

Band 1
wins 64.00 51.67 107.00 99.67 60.00 86.17 49.33 69.33 40.33

(r < 0.30)
losses 86.67 98.83 27.83 40.33 74.17 47.17 97.50 84.33 92.33

wins-losses -22.67 -47.17 79.17 59.33 -14.17 39.00 -48.17 -15.00 -52.00

Band 2
wins 43.22 42.72 72.11 68.56 82.44 70.44 32.11 39.33 30.94

(r ≥ 0.30)
losses 61.17 67.39 41.50 41.39 28.50 47.83 75.67 49.50 67.22

wins-losses -17.94 -24.67 30.61 27.17 53.94 22.61 -43.56 -10.17 -36.28

Table 5.4 provides strong evidence that the LSA-X consistently performed

best for datasets with r(Pr, PrFactor) equal to or greater than 0.30, as its wins,

losses, and wins-losses in this table are better than all other techniques examined

in this study. On the other hand, the datasets with r(Pr, PrFactor) less than

0.30 are clearly a limitation of the LSA-X technique. For this band of datasets,
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Table 5.4 shows that LSA performed better than all other techniques. Hence,

for this band of data sets, we suggest LSA to compensate for the limitation of

LSA-X.

Table 5.5. A comparison of the 3 most accurate adaptation techniques in terms

of the 4 feature subset selection methods

Datasets Measures
LSA LSA-X

All Pca Sfs Swvs All Pca Sfs Swvs

Band 1
wins 109.00 105.67 109.00 85.00 58.33 87.33 58.33 59.33

(r < 0.30)
losses 28.00 35.67 28.00 63.00 75.67 50.33 75.67 73.00

wins-losses 81.00 70.00 81.00 22.00 -17.33 37.00 -17.33 -13.67

Band 2
wins 68.78 77.44 68.44 68.78 83.44 77.33 82.67 75.67

(r ≥ 0.30)
losses 41.33 26.00 41.33 46.78 27.00 31.44 28.44 35.11

wins-losses 27.44 51.44 27.11 22.00 56.44 45.89 54.22 40.56

The win-tie-loss results of Table 5.3 and Table 5.4 calculated the mean of the

accuracy results to demonstrate the generalized performance of each adaptation

technique. As we discussed in the previous chapter that the choices of feature

subset selection methods were remaining inconclusive, a search for the best fit

method given different setup and datasets may be required in every single estima-

tion. To examine more specific results regarding the use of different feature subset

selection methods, Table 5.5 shows the performance in regard to all 4 common

feature selection methods. To focus only on the superior techniques, Table 5.5

only presents the best 2 solution adaptation techniques ranked by performance

as in Table 5.4. These more specific results indicate that for the datasets with

r(Pr, PrFactor) equal to or greater than 0.30, LSA-X performed best when the

feature subset selection was selected by the All or Sfs method. Also for the

datasets with r(Pr, PrFactor) less than 0.30, these two feature subsets selection

methods were also suggested to be adopted with LSA method to produce a more

accurate estimate.

5.5. Discussion

This study introduces a solution adaptation technique named LSA-X for ABE.

LSA-X adds one more adaptation step to the Linear Size Adaptation (LSA)

technique by exploiting the productivity factor variables (PrFactor) in its effort
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adjustment procedure. The highlighted benefits of the LSA-X technique are

described below.

Benefit 1: We can see from the highlighted entries in Table 5.3 that LSA-X

achieved the best generalized performance. Even though we later found that

the LSA-X was consistently less accurate than other techniques with datasets

that exhibit a value of r(Pr, PrFactor) below 0.30, such case are a minority of

datasets and may be unlikely to arise in practice (i.e., only found in 3 out of the

12 datasets used in this study).

Benefit 2: LSA-X does not require a high computational power. Compared

with more complex adaptation techniques such as the GA and NNet techniques,

LSA-X is significantly more straightforward, such that even a spreadsheet ap-

plication can handle the necessary computation.

Benefit 3: It is easy to decide when to use LSA-X. As we observed, a Pear-

son correlation coefficient between Pr and PrFactor can simply determine the

accuracy of the LSA-X technique:

• LSA-X is a very robust and accurate technique for datasets with r(Pr, PrFactor)

equal to or greater than 0.30;

• LSA-X is consistently inaccurate for datasets with r(Pr, PrFactor) less

than 0.30.

Hence, we recommend the LSA-X technique as the adaptation technique of choice

in circumstances where a dataset exhibits r(Pr, PrFactor) equal or greater than

0.30. For the other less common cases, we suggest LSA to compensate for the

limitation of LSA-X.

5.5.1 And Why does it Work?

To provide a clear justification as to why exploiting the productivity factors

using LSA-X is an improvement, further quantitative analysis may be required.

However, this section discusses some possible reasons.

The first reason concerns the exploitation of productivity. The benefit of pro-

ductivity exploitation in predictive modeling is well recognized in various research
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areas such as Economics, because productivity is one of the important factors to

analyze to improve the throughput of a work process [74, 75]. Among the ex-

isting solution adaptation techniques that consider the degrees of difference of

both software size and productivity between the new case and its analogues, only

the LSA-X, LSA and RTM techniques also calibrate the productivity values in

their adaptation procedures. Our results showed the LSA and RTM techniques

were also high performance techniques.

The second reason concerns the use of the PrFactors in addition to produc-

tivity. This is possibly the main reason that LSA-X outperforms all the other

techniques when PrFactors are useful, i.e., r(Pr, PrFactors) ≥ 0.30. Based on

our observations, productivity is considered the second most influential factor on

the effort next to the software size. That is, when the influence of the software

size is removed from the dataset, productivity then becomes the most dominant

factor of the effort. Therefore, when considering adaptation, we first need to

consider the difference in software size among analogues, and next, we need to

consider the difference in productivity among analogues. The use of PrFactors

plays the main role in better measuring and adapting productivity differences

among analogues.

Specifically, the use of PrFactors allows the LSA-X technique to focus the

productivity adjustment based only on the difference in PrFactors between the

new case and a few of its analogues, rather than requiring the adjustment to be

based on the entire coherence group of projects as performed in RTM. A recent

study by Kocaguneli et al. [14] concluded that an estimation that relies on a

smaller number of more relevant analogues will result in better estimation perfor-

mance than relying on a larger number of less relevant analogues. Our results are

in agreement with Kocaguneli et al. as LSA-X achieved significantly improved

estimation performance. This finding thus allows us to suggest interesting future

studies to consider exploitation of the degree of relevance between new cases and

their analogue as well as to further exploit productivity.

5.5.2 Findings

We further discuss ways to compensate for the limitation of LSA-X when a given

dataset has r(Pr, PrFactor) less than 0.30. This summarizes our findings based
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on all tables and results in this paper.

Finding 1: Results regarding the RTM techniques were deviated from the study

of the previous chapter, where RTM were consistently the best techniques among

all the 8 techniques selected in this study. We speculated that the reduced per-

formance were mainly because of the possibly high number of tie results achieved

between LSA-X and RTM. Indicated in Table 5.3 where the performance of

LSA-X stood out with datasets r(Pr, PrFactor) equal to or greater than 0.30,

RTM also performed well in several datasets.

Finding 2: According to Table 5.4 and Table 5.5, for datasets with r(Pr, PrFactor)

less than 0.30, the LSA technique performed the best. Table 5.3 showed that

LSA performed as well as LSA-X for some specific datasets with r(Pr, PrFactor)

greater than 0.30. This finding shows that in SEE, exploitation of r(Pr, PrFactor)

contributed to accuracy.

Finding 3: Results from all tables show that the solution adaptation techniques

utilizing linear adjustment functions, e.g. LSA-X, are consistently more accurate

than those using non-linear functions e.g. NNet. The results also show that

and adaptation techniques that exploit productivity are more accurate than any

other techniques. This finding supports the usefulness of exploiting productivity

in software development effort estimation.

5.6. Conclusion

The study of this chapter explores the possibility of exploiting productivity (Pr)

and its influential factor (PrFactor) in the solution adaptation stage of ABE.

Productivity is one of the essential factors to analyze to estimate software devel-

opment effort, and it is widely studied in many areas of expertise [74, 75]. Our

results showed strong evidence that the proposed LSA-X adaptation technique,

which exploits both Pr and PrFactor in its adaptation procedure, is a successful

technique to generate a robust and accurate effort estimate. In an evaluation sub-

ject to a robust statistical test method using the Brunner test (95% confidence),

the proposed LSA-X technique outperformed 8 techniques commonly adopted in

the literature and in practice [45], for datasets that exhibit a high correlation
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(r ≥ 0.30) between Pr and PrFactor. For the other less common cases, our

results showed that LSA-X has limited accuracy, and we suggest using another

adaptation technique that also based on software size and productivity such as

the LSA and the RTM techniques to compensate for this limitation.

Based on our detailed experiment evaluated both adaptation techniques and

feature selection methods in this study, we suggest an estimation with ABE model

to use all features (i.e. no feature subset selection is performed) and adapted to

the effort by:

• For a dataset with r(Pr, PrFactor) ≥ 0.30, using the LSA-X technique;

• For a dataset with r(Pr, PrFactor) < 0.30, using the LSA technique.

With solution adaption technique and feature subset selection method selected

by the suggestion mentioned above, other components that performed the best

with this configured became:

• Similarity measure: Euclidean;

• Approach to identify number of analogues: Best-k;

• Normalization method: Log;

• Feature subset selection: All.
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Chapter 6

Review Data Quality

Improvement Techniques for

ABE

The results of the study of Chapter 4 suggested that data normalization ap-

pears to be an important process of ABE. Despite no empirical evidence showing

that data normalization is strongly associated with estimation performance im-

provement for all the situations, our experimental results shown in Chapter 4

suggested that a normalization using Log consistently performed better than not

performing normalization at all or using the most commonly adopted Interval0-

1 method. The benefit of applying Log transformation to a dataset is not only

that it assures the equal influence of all the project features of the datasets, but

it also approximates normal distribution of the data. The more successful of ap-

plying the Log normalization motivated us to question whether the attributes or

quality of data are actually associated with estimation accuracy. Therefore, the

study of this chapter revisits 6 data quality improvement techniques, 5 of which

are techniques to improve data purity recently empirically reviewed by Seo et

al. [26]. The other one is a technique to filter inconsistent data from software

effort datasets, proposed by Kocaguneli et al. [14].
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6.1. Hypothesis, Motivations, and Research Ques-

tions

A recent empirical study Seo et al. [26] reviewed 5 common outlier elimination

techniques with Linear regression model and ABE0, and suggested that applying

outliers elimination before an application of a dataset did not consistently pro-

duce a better accurate estimation in every situation. However, the study in the

previous chapter of this thesis revealed that some successful configuration such

as Log normalization only performed outstandingly with some combinations of

other standout approaches such as LSA-X. Hence, we hypothesize that apply-

ing outliers elimination to a dataset before performing an estimation with the

ABE model built the combinations of only more successful approaches may re-

sult differently than that of based on ABE0, discussed in the study by Seo et

al. [26].

In this study, experiments and analyses of results are organized to answer

these following research questions:

RQ1 In terms of maximum performance, is there any single best data quality

improvement techniques among the commonly adopted techniques?

RQ2 In terms of generalized performance, which are the techniques most fre-

quently improved the estimation performance from applying no techniques?

RQ3 Which are the techniques provide less desirable performance than others?

For the first research question, we speculate that there may be no single best

technique that fit all the dataset. This is because the procedure of each data

quality improvement technique are stemmed from different theoretical concepts

and each of which seems to fit for different purposes. For example, LTS is based

on a theoretical concept related to linear regression, while Kmeans is based

on the concepts of exploiting the level of similarity between project cases. The

second research question is motivated by that if there is no single best technique,

at least, it would be helpful if we can find a technique that generally improves

the estimation accuracy in most situations, compared with estimating using full

datasets.
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6.2. Background of Data Quality

Many empirical studies and reviews suggest a strong association between data

quality improvement and estimation accuracy improvement of software effort

models [26, 76–79]. Based on a taxonomy of data quality issues in empirical

software engineering study proposed by Bosu and MacDenell [77], where issues

were summarized from prominent empirical software engineering research papers

published between 2004 and 2013, data quality issues were classified into three

main issues: accuracy, relevance, and provenance. These three main issues can

be further divided into sub-issues as follows:

Accuracy: outliers, noise, inconsistency, incompleteness, redundancy;

Relevance: amount of data, heterogeneity, timeliness;

Provenance: commercial sensitivity, accessibility, trustworthiness.

As we mainly focus on accuracy, this study selects 6 common methods to

handle outliers and data inconsistency for the evaluation. The following are the

detail explanation and the parameters we configured for all the 6 method selected

in this study:

6.2.1 Five Outlier Elimination Methods

These 5 methods (LTS, CD, Kmeans, BoxPlot, and LM) were selected as

being method most commonly studied and adopted in practice, suggested in the

recently empirical study by Seo et al. [26].

1) Least trimmed squares (LTS) [80,81], minimizes the sum of squared residuals

of the simple LReg model given:

min

h∑
i=1

AR2
i | n

2
< h ≤ n (6.1)

where i is the order of project cases sort in ascending order, n is the number

of cases, h is the number of data points in the subset of n, and AR is the ab-

solute difference between Ei and Êi. LTS can be considered as a subset search
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method, where the final subset yield the minimum AR. In our experiment, h was

configured to 0.75n based on the suggestion in many previous studies [26,80,81].

2) Cook’s distance (CD) [68], measures if the changes as results of a deletion of

each single project case from the training set will result the changes of the overall

residual of the entire training set. The Cook’s distance Di of a casei is calculated

by:

Di =

∑n
j=1(Êj − Êj(i))

2

p×MSE
| MSE =

1

n

n∑
k=1

(Ek − Êk)2 (6.2)

where Êj(i) is the estimated effort of casej using the simple LReg model trained

without casej, and p is the number of parameters in the model. In this experiment

we consider a casej as an outlier if its Di is greater than 3 × ( 4
n
), as suggested

by a study by Mendes and Lokan [68].

3) K-Means Clustering (Kmeans) adopts an idea that outlier cases should be

classified into same group of a very few number of cases. Seo et al. [26] adopted

silhouette index in their reviewed study to identify the number of clusters being

most fit with a local training set. The formula of the silhouette index is given

below:

Si =
b(i)− a(i)

max(a(i), b(i))
(6.3)

where a(i) is the mean distances between casei and all the other cases in the same

cluster, and b(i) is the average distance from casei to all other clusters where a

case that is closest to casei represented that cluster. The higher silhouette value

indicates more appropriate clustering results. Using this approach Seo et al. [26]

suggested any case with Si less than 0 or being clustered into groups of less than

3 cases as being outliers.

4) Box plot (BP) is one of the most simple statistical-based method to identify

outliers. Using BP, outliers are identified using the components of box plots,

which are the lower quartile (Q1), the median, the upper quartile (Q3), and the

inter-quartile range (i.e., IQR = Q3-Q1). The simple rule commonly adopted to

detect outliers based on the components of BP is to consider any feature value
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with a value higher than Q3 + 1.5 × IQR or lower than Q1 - 1.5 × IQR as

outliers. Since BP examines each feature independently, we treated any casei as

an outlier case if more than one features had been indicated by BP to be the

outliers.

5) Mantel Leverage Metric (LM) [8] is based on generating the Mantel correlation

on every single training instance, sampled by the leave-one-out approach. Each

resulting sample LMi ∈ LM1 to n indicates how much does casei influence the

Mantel correlation of the overall dataset. LMi is calculated by:

LMi = Ri − R̂i | R̂i =

n∑
i=1

Ri/n (6.4)

where n is the total number of cases, Ri is the Mantel correlation of all cases

excluding casei, and R̂i is the overall Mental estimation of the entire dataset. One

important property of R̂i is that it approximates normal distribution of overall

resampled Mantel correlations, with S2 approximates to
∑n

i=1(Ri − R̂i)
2/n − 1.

Exploiting this property, any casei with |LMi/S| greater than 2 can be validly

considered as an outlier at significance level of 0.05.

6.2.2 Adopting TEAK as an Inconsistency Elimination

Method

TEAK or Test Essential Assumption Knowledge is a method originally proposed

by Kocaguneli et al. [14] to built ABE models based only on project cases that

do not violate its essential assumption i.e., similar software project should require

similar amount of effort for development. In other word, the procedure of TEAK

is to filter project cases with similar characteristic with each other but were

completed with diversified amount of efforts, which clearly indicates inconsistent

cases.

The essential hypothesis behind TEAK is that locality implies homogeneity.

Adopted by this essential hypothesis, TEAK is proceeded with the following

procedures:

1. Generate a binary tree, which:
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(a) Leaf nodes represent the effort value;

(b) Branches are formed by similarity values between pairing of project

cases;

(c) The higher-level subtrees merge the lower-level subtrees using their

median of similarity values within the same subtrees.

2. Remove all height=1 subtrees in which the project cases in that subtree

have σ2 greater than 10% of the maximum σ2 among all the height=1

subtrees [14].

Project cases in the same subtree are more likely to be relevant with each other

than any project cases in any other disjoint subtrees, and project cases in the lower

level of the same subtree should be more relevant with each other than being in

its supertree. This is because subtrees are formed by level of similarity. Based

on the locality implies homogeneity hypothesis, TEAK prunes all subtrees with

height=1 where their σ2 values are significantly higher than all the other subtrees

with height=1. Project cases in these subtrees are assumed inconsistent because

high σ2 values detected in any subtree with height=1 means that those cases

are very similar projects but they were completed with significantly diversified

amount of effort.

For the technical detail, the generated binary tree is the greedy agglomerative

clustering (GAC ) tree. It is one of the most simple method to generate a data

structure to represent hierarchical clusters [82]. GAC is built bottom up, in a

manner of greedy algorithm. Its procedure is terminated when the all tree nodes

are connected to at least one nodes and the full GAC tree is completely built.

Kocaguneli et al. [14] suggested based on their experimentations to remove all the

height=1 subtrees which have the value of σ2 greater than 10% of the maximum

σ2 observed in all the height=1 subtrees of the full GAC tree. In their study,

the suggestion of this 10% parameter value was confirmed the validity by 20

randomized trials across various performance measures and various experimental

datasets.
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6.3. Evaluation

Based on the results of the study of Chapter 5, we updated the superior ap-

proaches for the 5 essential components of ABE models as follows:

• Normalization approach: Log;

• Feature subset selection: All;

• Similarity measure: Euclidean;

• Solution adaptation techniques: LSA-X for datasets for datasets with

r(Pr, PrFactor) equal to or greater than 0.30, and LSA for datasets with

r(Pr, PrFactor) less than 0.30;

• Approach to determine number of analogues: Best-k.

Let ABE-Best denote this ABE model. In this study we evaluate this ABE-

Best model with before and after having each of 6 data quality improvement

technique (LTS, CD, Kmeans, BP, LM, and TEAK) applied. Thus there are

7 variants of ABE models compared in this study. The experiments for this study

are in two-fold. First we performed the pairwise comparisons as done in all the

studies of this thesis. The other part is to examine the effect of applying each of

the data quality improvement method by comparing each of which directly with

ABE-Best.

For the first part of the experiments, the comparison between these 7 variants

utilized the procedure explained in Chapter 3 that begins with the leave-one-out

approach experiments, followed by recording the performance using the 5 robust

error measures. The pairwise comparisons were carried out between 7 variants ×
6 others. Thus, the maximum values of wins and losses per single variant and

single dataset were 6 × 5 = 30. Finally, the overall performance of each variant

was determined in terms of overall wins, losses, and wins-losses, and the stability

of the ranking results were determined by observing the ranking agreement across

these 3 ranking lists.

For a second part of the experiments, where we compared each of the 6 data

quality improvement techniques head to head with ABE-Best, we compared the

rawMAR andMdAR performance as the main results along with the wins, losses,
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and wins-losses. Note that since this comparison were not in terms of ranking,

we did not examine whether stability between wins, losses, and wins-losses were

established in this experiment.

6.4. Results

6.4.1 Investigating Research Question 1

The first research question examines whether there is any single best data quality

improvement techniques among the commonly adopted techniques, in terms of

maximum achievable performance.

Table 6.1. Total summations of wins, losses, and wins-losses results of the com-

parisons between adopting ABE-Best with full datasets and adopting it with

each of the 6 selected data quality improvement techniques. The results were

aggregated across the 12 datasets used throughout this thesis

Total ABE-Best LTS CD Kmeans BP LM TEAK

wins 99 146 140 131 106 138 144

losses 90 126 143 144 154 120 139

wins-losses 9 20 -3 -13 -48 18 5

Table 6.1 shows the wins, losses, and wins-losses results of the comparisons

between ABE-Best and other 6 variants of this model, each of which was built

after applying each of the 6 common data quality improvement techniques to the

datasets. The aggregated results of Table 6.1 show that LTS, CD, and TEAK

were best in terms of wins. Our of these three techniques, LTS also performed

best in terms of wins-losses. However, in terms of losses, ABE-Best yielded the

best accuracy. Since we have assured the robustness and stability of the evaluation

method being used, we speculated from lesson learned in the earlier chapters for

this circumstance that each data quality improvement technique may performed

accurately with only some limited situations, while not for all the datasets. Also,

some datasets may not need any consideration of case eliminations.

To investigate further on whether different techniques performed well with

only a few distinct datasets, Table 6.2 shows the results by datasets in terms
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Table 6.2. Total counts of wins, losses, and wins-losses results per dataset, of

the comparisons between adopting ABE-Best with full datasets and adopting

it with each of the 6 selected data quality improvement techniques.
Datasets Measures ABE-Best LTS CD Kmeans BP LM TEAK

Albrecht

wins 2 10 9 17 4 14 15

losses 8 11 16 3 14 10 11

wins-losses -6 -1 -7 14 -10 4 4

Cocomo-sdr

wins 19 14 19 7 0 17 9

losses 6 6 6 20 20 8 19

wins-losses 13 8 13 -13 -20 9 -10

Cocomo81

wins 0 2 6 6 8 11 1

losses 1 1 10 10 8 5 1

wins-losses -1 1 -4 -4 0 6 0

Desharnais

wins 1 14 16 8 16 8 7

losses 14 7 7 5 1 13 23

wins-losses -13 7 9 3 15 -5 -16

Finnish

wins 16 19 13 9 18 24 1

losses 14 10 17 21 12 5 27

wins-losses 2 9 -4 -12 6 19 -26

ISBSG-
wins 18 8 16 9 14 3 11

Banking
losses 4 21 14 12 8 7 13

wins-losses 14 -13 2 -3 6 -4 -2

ISBSG-
wins 8 16 15 13 7 8 19

Communication
losses 16 10 11 10 15 17 7

wins-losses -8 6 4 3 -8 -9 12

ISBSG
wins 0 14 12 9 5 11 13

Insurance
losses 0 10 9 14 13 13 5

wins-losses 0 4 3 -5 -8 -2 8

Kemerer

wins 26 16 9 18 8 0 22

losses 0 13 21 12 22 28 5

wins-losses 26 3 -12 6 -14 -28 17

Maxwell

wins 0 16 3 13 5 21 13

losses 0 9 18 11 20 2 11

wins-losses 0 7 -15 2 -15 19 2

Miyazaki94

wins 2 2 11 9 19 15 19

losses 9 24 6 16 6 10 6

wins-losses -7 -22 5 -7 13 5 13

Nasa93

wins 7 15 11 13 2 6 14

losses 18 4 8 10 15 2 11

wins-losses -11 11 3 3 -13 4 3

Total best ranks

wins 3 2 1 1 2 3 1

losses 6 1 1 1 2 1 3

wins-losses 3 3 1 1 2 3 3
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of wins, losses, and wins-losses, along with the number of times each technique

achieved the higest rank for each dataset. The highlighted entires of this table

clearly indicated that there were no single techniques performed best with all

datasets. Also, in quite a number of datasets, applying no technique yielded

better estimation performance. In terms of highest achieved ranks, ABE-Best

and LM performed best in terms of wins, ABE-Best also performed outstandinly

in terms of losses. However, in terms of wins-losses, all the techniques almost

showed no difference in performance.

In summary, the answer to the first research question is that there is no

single best data quality improvement techniques among the commonly adopted

techniques. Different datasets appeared to prefer different techniques, and some

datasets do not need any data quality improvement techniques.

6.4.2 Investigating Research Question 2

The second research question searches for the techniques that most frequently

improve the estimation performance than applying no techniques. The results

and analyze for this study would suggested techniques with better generalized

performance.

Table 6.3 show results in terms of MAR for all the 7 variants of ABE mod-

els examined in this study. Entries highlighted with bold text represent the

datasets where applying a technique in its corresponding column has improved

the estimation performance from applying no technique (i.e., ABE-Best). En-

tires highlighted in grey represent the technique that performed the best for the

dataset in each of their corresponding rows. The total number of datasets where

each technique did improve the performance from applying no single technique

are summarized at the bottom of the table, along with the total number of the

times that each technique has achieved the best performance.

The results showing in this table strongly indicate that, in general situations,

applying any of data quality improvement techniques before an application of

datasets do not necessarily produce a better estimation performance. That is,

apart from LTS and LM, which seem not to not produce much improvement

to ABE-Best, applying any other techniques more likely produce a fallback in

performance. Furthermore, in terms of the number of datasets that a technique
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Table 6.3. Raw results in terms of MAR from comparing the ABE-Best model and

this model built after applying LTS, CD, Kmeans, BF, LM, or TEAK techniques

to the datasets before performing an effort estimation

Datasets ABE-Best LTS CD Kmeans BP LM TEAK

Albrecht 9.25 7.66 7.61 5.04 10.50 6.54 5.31

Cocomo-sdr 2.05 2.41 2.05 6.86 7.17 1.78 2.99

Cocomo81 807.17 366.66 451.94 460.39 396.52 440.30 920.60

Desharnais 1989.61 1630.53 1712.13 1901.30 1511.38 1709.15 1863.40

Finnish 3873.87 3786.03 3898.67 3910.89 3894.22 3651.13 4506.29

ISBSG-banking 1991.49 3007.31 2068.30 2911.90 2906.88 3395.05 3031.90

ISBSG-communication 2744.47 2256.95 2868.75 2829.96 3612.22 2870.87 2493.20

ISBSG-insurance 9526.99 3223.14 3606.08 3833.43 4324.25 3659.01 2813.89

Kemerer 92.23 109.59 122.51 110.04 115.28 124.78 110.46

Maxwell 2455.13 3494.24 3790.51 3652.44 4472.87 3405.14 3545.10

Miyazaki94 55.73 49.54 44.48 50.35 45.01 47.18 47.25

Nasa93 311.19 214.68 232.22 241.87 346.46 250.43 227.72

#improve from ABE-Best - 8 6 6 4 8 6

#best 3 3 2 1 1 2 1

perform the best in MAR, applying no technique performed as good as LTS,

which is considered to be better than the other selected techniques. This means

that, for all the datasets in which ABE-Best performed the best, all the tech-

niques compared in this study produced a fallback in performance after they are

applied to these datasets.

In summary, the results of Table 6.3 suggest that applying any of the com-

monly adopted data quality improvement techniques before applications of datasets

can improve the accuracy of ABE models, but not always and consistent. Among

the 6 commonly adopted techniques selected in this study, there is no sufficient

evidence to conclude that applications of these techniques would be beneficent to

the SEE process based on ABE.

6.4.3 Investigating Research Question 3

Apart from seeking for successful techniques, being able to determine the less de-

sirable techniques is hugely important for the real-world SEE processes. That is,
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Figure 6.1. Box plots of the ranking of data quality improvement techniques

whether we are reluctant to definitely say whether there is a single best technique

to recommend for the purpose of data quality improvements, it would helpful if

at least we can suggest which are the commonly-adopted techniques that may not

be needed to examine, since, on average, they produce lower performance than

others.

Fig. 6.1 shows box plots of the rankings in terms of wins-losses summarized

from the 12 selected datasets. A technique exhibits higher values of wins-losses

achieves better ranks. For example, as shown in Table 6.1, Kmeans achieves

rank #1 for the Albrecht and the Deshanais datasets, while it achieved very poor

rank, i.e., rank #6 for the ISBSG-Insurance dataset. This plot is similar to the

Dem̌sar’s significance plot [72], with the main difference being that the ranking of

this plot is based on the Brunner test rather than Nemenyi test. The modification

of the test method is mainly because the Nemenyi test was strongly concerned

by Mittas and Angelis [25] mainly because it can easily mislead the comparison

results due to a lack of statistical power.

The results of Fig. 6.1 are in agreement with that of our investigation for the

second research question, and more plausibly, the results of this figure appear to

be more obvious to state that most of the commonly-adopted data quality im-

provement techniques are not fully suitable for ABE. Fig. 6.1 illustrates that only

Kmeans more frequently produce better generalized performance than applying

any other techniques nor applying no technique.
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6.5. Discussion

The results based on the Improved stable ranking method suggested that applying

the commonly adopted data quality improvement techniques to datasets before

their applications did not consistently improve the estimation performance when

estimating the software effort using ABE. However, in our opinion, the possibility

to improve the performance is intuitive to suggest ones who are going to carry

out an SEE with abundant computing resources and timescale to fit their data

with ABE-Best and many data quality improvement techniques, such as those

selected in this study. Even if an attempt to do that would be costly, we strongly

feel that it is worthwhile because of the importance of successful SEE is clearly

associated with the success rate of software development projects.

On the other hand, when the computing resources and timescale appear to be

constraint, we rather suggest that it is not worthwhile to allocate more resources

or budgets to facilitate a search for the most-fit data quality improvement tech-

nique for a given dataset. Based on the results of Fig. 6.1, fitting the data

with Kmeans and seeing whether there will be any performance improvement

seem to be sufficient for SEE in the situations when the computing resources and

timescale very limited.

6.5.1 On the Quality Improvement of Software Effort Es-

timation Datasets

The results of all the tables belong to this study say in common that all the

selected techniques produced almost the same performance. This may imply that

both outliers and inconsistent cases are commonly contaminated in SEE datasets.

For the reason that these issues are commonly seen, we strongly believed that

it is mainly due to the data collection process. For example, even though the

ISBSG datasets are commercially available, we found massive amount of project

cases containing a very high amount of missing values even if they were labelled

in ranked A in both terms of quality and UFP integrity. Also in other tera-

PROMISE datasets, we found many datasets lacked the meta-information to

describe themselves. These could cause much difficulty in practice. Without

such meta-information available, it is very difficult to know the actual level of
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quality of a data set and to further interpret those data to improve the estimation

process.

In a different direction, we expect software effort dataset to provide structure

of metadata along with the attributes of dataset. This availability will greatly

benefit to the more comprehensive and accurate estimation. For instance, the

well-structured data such as protein sequences greatly contribute to the more

comprehensive and accurate protein function prediction [83]; even though; the

estimation technique commonly used in protein function prediction seems to be

very similar to the ABE0 model. Furthermore, data sets commonly used in SEE

as well as other empirical research studies were less likely to provide sufficient

information to understand the numerous changes that occur over time (e.g. tech-

nologies and people). Since prediction models are based on historical data, any

model would produce a more accurate estimate if the entire set of data being used

is sufficiently relevant. We believe that an available of filtering technique or any

approach that is able to maintain the level of relevance will greatly contribute to

software industries.

6.6. Conclusion

It has been widely accepted that data quality is one of the important factors

associated with the estimation accuracy of SEE methods [26, 76, 79]. However,

according to our survey conducted in Chapter 2 and several previous studies in

this area, the quality of data was much less focused than on developing effort

estimation methods [77, 78]. The study of this chapter revisited the review and

evaluation of 6 data quality improvement techniques. 5 out of the 6 techniques

are the commonly adopted outlier elimination techniques, and the other one is

an inconsistent data elimination technique.

Using the Improved stable ranking method, where its credibility was empirically

proofed by the study of Chapter 4, we can rather conclude that applying any of

the common data quality improvement techniques to a training dataset before its

application does not necessarily produce a higher accuracy, compared with using

full training datasets. Even though some results of this study reported that some

techniques may be able to improve the quality of data, we see them as minority
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cases that will be less likely occur in practice. Hence, unless having abundant

computing resources and timescale, we do not suggest ones to fit their model and

data to optimize their estimation processes with any of the commonly-adopted

data quality improvement techniques examined in this study.

Since our main findings of this study are contradictory with many of the

previous research, we therefore highly suggest future studies to replicate this

work or to further investigate these techniques in other areas of application. We

strongly believe that a more comprehensive understanding regarding the level

of data quality is hugely important for the research communities of empirical

software engineering as well as the industry practices.
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Chapter 7

Comparing ABE-Best with Other

Well-Known SEE Models

In the previous chapter, we coined ABE-Best as the ABE model built from

best combination of approaches, concluded from all the earlier chapter of this

thesis. In this chapter, we compared this ABE-Best model with other 7 machine

learning models that were commonly adopted as software effort estimators. Even

though the study by Keung et al. [9], where the original Stable ranking method

was proposed, concluded that several variants of ABE0 was ranked among the

most accurate model-based effort estimation methods, However, those variants

of ABE0 examined in the study by Keung et al. [9] were only ranked among the

moderate performers in our studies in the previous chapters. For example, all

the variants examined in the study by Keung et al. adopted UAVG as solution

adaptation technique, where the results of Chapter 4 shows that ABE models

adapted with this adaptation technique consistently performed worse than many

other techniques. Furthermore, our proposed LSA-X in 5 was conclusively the

best techniques in general situations. This therefore motivated us to revisit the

ranking of ABE models built with knowledge discovered in our studies with other

well-known model-based software effort estimators.
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7.1. Background of the Effort Estimators based

on Machine Learning Model being Compared

with ABE in this Study

Machine learning models examined in this study were the same set of models

examined in the study of Keung et al. [9]. Specifically, we compared ABE-Best

with the following 7 machine learning models:

1. Four regression-based methods: LReg, SWReg, PCReg, and PLSReg;

2. Two decision tree-based methods: CART(yes) and CART(no);

3. One neural networks-based method: NNet.

LReg is a simple linear regression algorithm. It is commonly used for mod-

eling linear relationship between a target variable and one or more descriptive

variables. SWReg or stepwise regression is a process of determining the best

fit regression model with its corresponding best fit feature subset from a given

dataset. The procedure of SWReg is to continually add project features to a

collection that represents the best feature subset, or remove them from the col-

lection, until there is no additional improvement after any feature is added to

the collection nor is removed from the collection. PCReg or principle compo-

nent regression is a regression method based on principle component analysis

(Pca) [40]. It is similar to the simple linear regression, but it uses the Pca tech-

nique to extract components of independent variables and used information based

on the extracted variables for estimating the unknown regression coefficients in

the regression model. PLSReg or partial least squares regression is another re-

gression method based on principle component analysis [40]. PLSReg is similar

to PCReg but PLSReg utilized information of the target variable in its calcu-

lation. Therefore, its objective function can include the minimizing of the errors

between the descriptive variables and the target variable. As reported by Keung

et al. in [9] PLSReg generally provides better accuracy than PCReg.

CART(yes) and CART(no) are two commonly seen configuration variants

of the classification and regression tree CART algorithm. The procedure of the
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CART algorithm is to recursively partition the training set based on GINI index,

and its goal is to generate a binary decision tree that best explains the target

variable. After a full CART is generate from the given training set, CART(yes)

prunes the generate tree using cross-validation to find the subtree that produces

the minimum error rate, the this subtree is then used as the resulting model. On

the other hand, CART(yes) used the full CART without any pruning applied.

NNet or neural networks is a learning model that mimics the functions of

human nervous system. Artificial neurons called units are placed in layers and

each unit in the contiguous are fully connected across the layers to form the

network. Input units and output units are at the different ends of the network,

and there are one or more layers called hidden layers separate the two ends. The

task of neural networks is to learn the weight value assigned to each edge in the

network that produce the output value as closest to the expected output.

7.2. Evaluation Procedure

The variants of software effort models compared in this study are listed as fol-

lowed:

1. ABE-Best, an ABE model being tailored with:

• Similarity measure: Euclidean;

• Feature subset selection: All;

• Approach to identify number of analogues: Best-k.

• Normalization method: Log;

• Solution adaptation techniques: LSA-X for datasets for datasets with

r(Pr, PrFactor) equal to or greater than 0.30, and LSA for datasets

with r(Pr, PrFactor) less than 0.30;

2. 7 machine learning models (LReg, SWReg, PCReg, PLSReg, CART(yes)

and CART(no), and NNet) configured with:

• Feature subset selection: All, Sfs, Swvs, Pca;
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• Normalization method: None, Interval0-1, Log;

Thus, 1 ABE-Best + (7 × 4 × 3 variants of machine learning models) = 85

effort models compared in this study. The comparison procedures are the same

as done in Chapter 4, where 2,304 variants of ABE models were evaluated and

compared. That is after the 85 variants of software effort models were executed

by the leave-one-out approach, their estimation errors were recorded in terms

of MAR, MdAR, SD, LSD, RSD. Then, pairwise comparisons were carried out

between each of the 85 variants × 84 others, using the win-tie-loss statistics.

Finally, the overall performance of each similarity measure was aggregated by the

total summations of wins, losses, and wins-losses across all the selected datasets

and the 5 robust error measures.

7.3. Result

Table 7.1 shows the ranking results of the 85 effort models examined in this

study. The ranking is sorted by the values of wins-losses in descending order.

The results of this table show that ABE-Best significantly outperformed all the

84 other models in terms of losses and wins-losses. With 393 losses, ABE-Best

performed approximately 3 times better than the second rank. Also in terms of

wins-losses, leading the second rank by over 400 wins-losses was the largest gaps

among the gaps between any other two models whose values of wins-losses are

positive.

In contrast from the results in terms of losses and wins-losses, the values of

wins of ABE-Best was not the best. The wins value of 1,930 was ranked #22

out of the 85 models. However, when we only focused on the wins column of

this table, we see that almost the entire list of models with positive values of

wins-losses had the values of wins between 1,800 and 2,100. In other word, this

result indicates that there was no significant cut off threshold in terms of wins.

Hence, it appears to be valid to focus and interpret only the ranking lists based

on losses and wins-losses to distinguish superior models from others. Based on

the ranking agreement established between the ranking based on losses and wins-

losses, we concluded that ABE-Best outperformed all the 85 models examined

in this study, in terms of overall performance.
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Table 7.1. Results of the comparison between ABE-Best and 84 combinations

of 7 effort models × 4 feature subset selection methods (FSS) × 3 normalization

approaches (Norm), sorted by the sum of their wins-losses seen in all performance

measures and all data sets.

Rank Wins Losses
Wins-

FSS Norm Model Rank Wins Losses
Wins-

FSS Norm Model
Losses Losses

1 1937 393 1544 ABE-Best 44 1493 1537 -44 Pca Interval0-1 LReg

2 2210 1108 1102 Pca Log SWReg 45 1448 1528 -80 Pca Interval0-1 PCReg

3 2084 990 1094 Swvs Interval0-1 SWReg 46 1315 1440 -125 Sfs None CART(no)

4 2082 992 1090 Swvs None SWReg 47 1315 1440 -125 Sfs None CART(yes)

5 2180 1099 1081 Swvs None PCReg 48 1285 1435 -150 All Log CART(no)

6 2215 1177 1038 Swvs None PLSReg 49 1285 1435 -150 All Log CART(yes)

7 2100 1089 1011 Swvs Interval0-1 LReg 50 1281 1439 -158 All None CART(no)

8 2100 1089 1011 Swvs None LReg 51 1281 1439 -158 All None CART(yes)

9 2045 1061 984 Sfs Interval0-1 SWReg 52 1365 1547 -182 Pca Log PCReg

10 2130 1256 874 Swvs Interval0-1 PLSReg 53 1268 1466 -198 All Interval0-1 CART(yes)

11 1984 1165 819 Sfs None SWReg 54 1268 1466 -198 All Interval0-1 CART(no)

12 1986 1171 815 All Interval0-1 SWReg 55 1536 1738 -202 Pca Log CART(no)

13 1973 1199 774 All None SWReg 56 1536 1738 -202 Pca Log CART(yes)

14 1988 1259 729 All Log SWReg 57 1551 1772 -221 Pca Interval0-1 CART(no)

15 2029 1336 693 Swvs Log SWReg 58 1551 1772 -221 Pca Interval0-1 CART(yes)

16 1952 1351 601 Sfs Log SWReg 59 1526 1748 -222 Pca None CART(no)

17 2015 1445 570 All None PLSReg 60 1526 1748 -222 Pca None CART(yes)

18 1889 1332 557 Swvs Log LReg 61 1374 1713 -339 Swvs Log NNet

19 1939 1388 551 Swvs Log PLSReg 62 1474 1902 -428 Sfs Log LReg

20 1999 1449 550 Sfs None PLSReg 63 1401 1856 -455 Pca Log LReg

21 1894 1396 498 Swvs Interval0-1 PCReg 64 1302 1758 -456 All None LReg

22 1858 1385 473 Swvs None CART(yes) 65 1239 1780 -541 Sfs None LReg

23 1871 1398 473 Swvs Interval0-1 CART(no) 66 1259 1802 -543 All Interval0-1 LReg

24 1858 1385 473 Swvs None CART(no) 67 1253 1805 -552 Sfs Interval0-1 LReg

25 1871 1398 473 Swvs Interval0-1 CART(yes) 68 999 1625 -626 All Interval0-1 PCReg

26 1732 1267 465 Pca Interval0-1 SWReg 69 1423 2059 -636 All Log LReg

27 1954 1498 456 Sfs None PCReg 70 952 1614 -662 Sfs Interval0-1 PCReg

28 1926 1477 449 Swvs Log PCReg 71 1120 1961 -841 Swvs Interval0-1 NNet

29 1721 1277 444 Pca None SWReg 72 1016 1865 -849 Pca Interval0-1 NNet

30 1945 1504 441 Pca None PCReg 73 1061 1933 -872 Pca Log NNet

31 1924 1545 379 All None PCReg 74 1000 1881 -881 Pca None NNet

32 1900 1526 374 Pca None PLSReg 75 1100 1981 -881 Swvs None NNet

33 1693 1396 297 Swvs Log CART(no) 76 1218 2118 -900 Sfs Log PLSReg

34 1693 1396 297 Swvs Log CART(yes) 77 855 1791 -936 All None NNet

35 1713 1501 212 Pca Interval0-1 PLSReg 78 1212 2166 -954 All Log PLSReg

36 1769 1645 124 All Interval0-1 PLSReg 79 844 1802 -958 All Interval0-1 NNet

37 1631 1584 47 Pca Log PLSReg 80 765 1728 -963 Sfs Log PCReg

38 1503 1488 15 Pca None LReg 81 767 1780 -1013 All Log PCReg

39 1483 1499 -16 Sfs Interval0-1 CART(no) 82 871 1917 -1046 Sfs None NNet

40 1483 1499 -16 Sfs Interval0-1 CART(yes) 83 883 2076 -1193 Sfs Interval0-1 NNet

41 1342 1370 -28 Sfs Log CART(yes) 84 784 2370 -1586 All Log NNet

42 1342 1370 -28 Sfs Log CART(no) 85 760 2542 -1782 Sfs Log NNet

43 1769 1808 -39 Sfs Interval0-1 PLSReg
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To conclude whether ABE-Best was also performed the best in terms of

robustness and had the best generalized performance, we further examined the

results by datasets. In this investigation, we only focus on the superior models

by assuming them all as the candidates model that would performed the best.

From Table 7.1, we defined the cut off threshold at the models falling between

rank #9 and rank #10, and determined the models on the top 9 ranks as superior

models. This cut off was decided based on the performance in terms of losses

and wins-losses. All the effort models placing above this cut off threshold having

their values of losses and wins-losses consistently higher than all the other models

located below this cut off. That is, the values of losses of the models on the top

9 ranks were all lower than 1,200 and that of most of the other models were

higher than 1,200. Also in term of wins-losses, the gap between models at the

rank #9 and the rank #10 with the difference of 110 wins-losses was larger than

that of between other machine learning-based models whose values of wins-losses

were positive. Therefore, without any further analysis of the ranking agreement

performed, we believe that this cut off threshold between rank #9 and rank #10

is the most appropriate to suggest superior models over all others.

Fig.7.1 shows box plots of the ranking results and the values of wins-losses.

Each box aggregates the results from the 12 datasets being used in all the studies

of this thesis. The plots of this figure showed only the models on the top 9

ranks of Table 7.1. In the above box plot that indicates the ranking results,

ABE-Best was among the best models where SWReg-Pca-Log and SWReg-

Sfs-Interval0-1 also showed outstanding performance. These 3 models have

very close median ranks, and all of them has reached rank #1 for at least one

dataset. Slightly better performance of ABE-Best is showed by the its rank

at the upper quartile and its maximum ranks, where all two SWReg-Pca-Log

and SWReg-Sfs-Interval0-1 had clearly worse results. That is the two models

had their worse ranks fall at the ranks higher than 60. Therefore, the results of

this figure allow us to suggest that ABE-Best also performed best in terms of

stability.

For the other plot located at the lower part of Fig.7.1, this box plot indicate

that ABE-Best was clearly the best model of choice as all the values at its

upper quartile, its median and its lower quartile were higher than that of all
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Figure 7.1. Box plots of the ranking and the total values of wins-losses of the 9

superior models indicated from the results of Table 7.1. Each plots aggregate the

results across all error measures and all the 12 selected datasets.
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the other 8 models. More interestingly, in contrast to all the other models, the

minimum value of wins-losses of ABE-Best in all the 12 selected datasets were

above 0. This means that ABE-Best was never losses more than wins in all

the comparisons with any of the other 84 models. Therefore, this finding leads

to a strong conclusion that ABE-Best was also the best performer in terms of

generalized performance and robustness.

7.4. Discussion

All the results of this chapter strongly recommend our discovered ABE-Best to

be the estimation model of choice for SEE, whether the required performance

are expressed in terms of overall performance, generalized performance, stability,

or robustness. Incidentally, before proceeding to conclude ABE-Best as the

model most suitable for practical use, it may be necessary to address the costs of

applying it in the real-world application.

Using a simple time complexity analysis, we do not hesitate to say that ABE-

Best are among the most lightweight prediction models. This is because, using all

features, applying Log and adopting LSA are calculated at almost no computing

cost, the calculation for the Euclidean distance and the Best-k algorithm are

in a complexity of O(n2), and finally computation of the Pearson’s correlation

required by LSA-X is in O(n3), i.e., its formula shows the same complexity

as that of the linear regression, which is know to be an O(n3) algorithm. In

other word, the computation of all the components of ABE-Best are solvable

in a polynomial time. Compared among the other commonly-adopted machine

learning models, our observation suggests LReg, PCReg, and PLSReg are

more lightweight than the other 4 selected models. Based on this simple time

complexity analysis as described above, ABE-Best can also be classified into

this group of the lightweight predictive models. Taken together, the results of

this analysis of time complexity strongly suggest a role for ABE-Best in the real

world application.
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7.4.1 On the Successful of ABE-Best

The results of this study highlight that ABE-Best was conclusively better than

the other 7 common model-based SEE models by all means of overall performance,

generalized performance, stability, and robustness. In our opinion, the successful

of ABE-Best was mainly because of the Improved stable ranking method. With

an available of this stable ranking method, we were able to assess the approaches

commonly extended to ABE models to improve the estimation performance, and

determined the relative best approaches for each of the essential components of

ABE models.

In the past, one of the greatest difficulty to determine the superior approaches

or combination of approaches that commonly extended to ABE models was

mainly due to the existance of conclusion instability issue, where different studies

reported greatly diversified results. As a result, a replication of all approaches

seems to be the only valid option for such purpose. Furthermore, if one reads

through the literature on the approaches that improved the main components or

ABE models, somewhat inclusive results were also commonly encounters. This

can be observed by examining if approaches with very similar theoretical con-

cepts produced greatly diversified performance results. For example, in a study

by Azzeh [45], where the 8 commonly adopted solution adaption techniques were

reviewed and replicated, techniques with more similar theoretical concepts than

others did not performed with similar performance. For example, in contrast to

our results achieved by the Improved stable ranking method, RTM performed

more similar to GA than LSA in the replicated study by Azzeh [45]. Hence,

we strongly believed that the ABE-Best model was not discovered before the

studies of this thesis.

7.4.2 The 7 Common Model-Based Effort Estimation Meth-

ods

Based on the results of Table 7.1 and Fig.7.1, the findings and future directions

of the 7 commons effort estimation models are as follows:

Finding 1: SWReg was being both superior effort model and superior feature

selection method. If we observe it performance by excluding ABE-Best, 6 out
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of the 8 models on the top 9 ranks of Table 7.1 selected Swvs as feature subset

selection method, and 4 out of these 8 models were SWReg. Furthermore,

SWReg is the only model of the common 7 models where all its variants had

positive wins-losses values. Hence, we strongly recommend a more detailed study

on stepwise regression for the purposes of SEE to be an interesting continual

research topic in this the field.

Finding 2: In contrast to ABE, we could not recommend the single best normal-

ization method for any other models. Table 7.1 shows that all the 3 normaliza-

tion approaches examined throughout this thesis were almost equally distributed

across the ranking of 85 variants of software effort models. And for the superior

model, i.e., SWReg-Swvs, all of its 3 variants composing from the 3 normaliza-

tion approaches achieved high ranks in Table 7.1. This means that choosing the

right model and the right feature subset selection methods contributes more on

the achievable estimation performance when adopting all the other well-known

models. Hence, the cost of adopting those models in practice seems to be higher

than that of ABE-Best.

Finding 3: Fig. 7.1 shows that 8 out of the 9 superior models had reached

rank #1 for at least one dataset. This means that even if ABE-Best was con-

clusively the superior methods by all means of overall performance, generalized

performance, stability and robustness, there is also situations where it cannot

show outstanding performance. This finding suggests two important future di-

rections of SEE research studies to explore (1) a selection guideline for models

given different situations, and (2) a methods to build an ensemble of models [2]

based on the superior models concluded in this study. The two directions would

contribute greatly towards an improvement of the both the process and the max-

imum achievable accuracy of SEE in practice.

7.5. Conclusion

The study of this chapter compares ABE-Best i.e., the ABE model built with

the superior approaches concluded by the studies in earlier chapters, with 84

other variants of machine learning-model based effort estimation methods. These
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84 variants of effort models were cross-generated from 7 well-known effort esti-

mation models (NNet, LReg, SWreg, PCReg, PLSReg, CART(yes), and

CART(no) [2]) × 4 feature subset selection methods (All, Sfs, Swvs, and

Pca) × 3 normalization approaches (None, Interval0-1, and Log). All of fea-

ture subset selection methods and normalization approaches were examined with

ABE models earlier in this thesis.

Leveraged by our Improved stable ranking method, the superior approaches in

the 5 most important components of ABE were successfully identified and com-

posed into ABE-Best. The evaluation of this study showed that ABE-Best

consistently outperformed the 84 other variants of software effort models exam-

ined in this study by all means of overall performance, generalized performance,

stability, and robustness. Hence, we strongly recommend ABE-Best for the

process of SEE in practice.
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Chapter 8

Threats to Validity

8.1. Internal validity

Internal validity questions whether or not different conclusions can be drawn

with regard to the different parameter setups for the estimation. There are two

possible issues of internal validity in the studies of this thesis. One issue is the

single sampling method we used and the other is in regards to the use of pairwise

comparisons to determine the ranking results. In this study, we choose the leave-

one-out as the sampling method to generate training/test instances, over the other

widespread sampling method, N-way cross validation. Following Hastie et al. [84]

and Kocaguneli et al. [2], the leave-one-out approach was our approach of choice

for all the studies of this thesis because it generates lower bias estimates and

higher variance estimates than the cross validation. Most importantly, leave-one-

out is a deterministic algorithm so it does not rely on randomization in which

the N-way cross validation does. This will greatly contribute towards future

replications of all the studies of this thesis.

In regards to the use of pairwise comparisons to determine the ranking results.

Mittas and Angelis [25] strongly concerned a simple pairwise comparison based

on Nemenyi test, a commonly-used test method in software engineering studies,

because it can easily mislead the comparison results due to a lack of statistical

power. To avoid this undesirable effect, we adopted win-tie-loss statistics [72] in

all the experiments where the statistical tests were performed in our studies. For

the statistical test method adopted as the essence of the win-tie-loss statistics, we
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selected the Brunner test, one of the most robust alternative of the Wilcoxon rank-

sum test based on the confidence interval given Brunner et al.’s p-hat metric [56]

to produce the statistical significance.

Further than the performance results produced by the win-tie-loss statistics,

we also focused on finding agreement established across different interpretations

of the statistic. Currently and at the time of writing, research studies which

analyzed the agreement in pairwise comparisons based on this statistic have con-

tinually produced important research conclusions for the communities of SEE

such as in a study by Kocaguneli et al. [2]. Therefore, for the present studies of

this thesis, we believe that this threat did not impose a threat to the internal

validity of this study.

8.2. External validity

External validity questions whether the results can be generalized. In this study,

we used a wide range of datasets from two distinct sources which are the tera-

PROMISE software repository [67] and the ISBSG dataset [62]. In total of 582

software projects in 12 datasets, the selected datasets are varied in both size,

characteristic, and distribution, as they came from different organizations and

were developed in different periods of time. In a systematic review by Kitchenham

et al. [4], the median value of the samples commonly used in effort estimation

literature is only 186. Hence, we believe that both the number and diversity of

datasets used in this study offers a higher degree of validity than many other

studies in the area of SEE, and is sufficient to justify generalizing our results.

8.3. Construct validity

Construct validity questions whether or not we are measuring what we intend

to measure. SEE studies are often criticized for inadequate use of performance

measures such as error measures. For example, use of MMRE by itself is com-

monly seen in the literature [24], despite widespread criticism of MMRE as an

inappropriate and biased measure. To minimize the construct validity possible

introduced by this common issue, we used only the robust error measures sug-
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gested from a review study by Foss et al. [24] in our studies. Furthermore, as

suggested by Kitchenham et al. in [58], the solely use of the performance mea-

sures without an appropriate statistical test applied can mislead the comparison

results. Hence, we the Brunner test [56] as the essence of the robust evaluation

procedure adopted in all the studies of this thesis.
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Chapter 9

Final Remarks

9.1. Future Work

In this section, we emphasize the interesting and important future research di-

rections from our viewpoints, regarding the results and discussions from all the

previous chapters.

9.1.1 Future Directions of ABE

The name ABE-Best was coined as being the ABE model tailoring by the com-

mon approaches that perform best in general situations. In our opinion, there

is abundant room for further progress in improving ABE in many other possible

directions, such as to combine ABE with other machine learning-based predic-

tion models or to adopt other models as a part of ABE. Recently and at the time

of writing, building ensemble of multiple methods is strongly recommended by

Kocaguneli et al. [2] as a comprehensive and effective way to further increase the

maximum achievable estimation performance of the existing effort models. The

successful approaches suggested by Kocaguneli et al. [2] is to build an ensem-

ble of models by aggregating the estimated effort values from multiple successful

models, evaluated prior to the estimation. It is non-trivial that the ABE-Best

model determined in the studies of this thesis can further increase the achievable

performance of the ensemble of models, where successful ensemble models were

suggested be built from successful solo models.

107



To aim for greater possibility of the performance improvement, in our opinion,

we rather see that a more effective way to combine multiple models is to exploit

the main advantage of each individual. From the results of the study of Chapter

7, significantly different performance was clearly seen between ABE and any other

selected models, whereas the performance between those other models themselves

was not much different. This may have dropped a hint that ABE and any other

models maybe based on very different theoretical concepts. We see that the

process of ABE can be considered mainly as having two steps: similar project

cases retrieval and project cases adaptation. These two steps can also be viewed

as dissimilar project case filtering and following by the effort modeling. Compared

with other models, theoretically, the cases adaptation procedures commonly used

in the effort modeling step of ABE may not be much sophisticate as other machine

learning models; yet, ABE was proven to be a very successful effort estimator.

This can imply that filtering the dissimilar project cases have played a very

important role and contributed to the success of ABE. Based on this speculation,

it is very interesting for us to further exploit this mechanism with other effort

models. That is either applying the first step of ABE (the retrieval of similar

project cases) prior to adopt a successful effort model, such as SWReg, or to

adopt a successful effort model as a case adaptation method for ABE, have a

potential to significantly increase the maximum achievable performance of SEE.

9.1.2 On the Data Quality Improvement of Software Engi-

neering Predictive Modeling Data

Other important and interesting future direction stemmed from the studies of

this thesis is to further study the influence of data quality on the estimation

accuracy. Specifically, the results of the study in Chapter 6 indicated clearly

that we are still a long way from being able to define a standard methodology

to improve the data quality of empirical software engineering datasets. That is,

while applications of data quality improvement techniques have known to be one

of the performance factors of software engineering predictive modeling activities,

our findings were greatly deviated from this common belief. Two studies of Bosu

and MacDonell [77, 78] extensively reviewed other studies in empirical software
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engineering and suggested notes in agreement with our findings where data quality

problems can be addressed more generally. Implications derived from their studies

are that we not only lack the method to handle these contaminated data, but we

also lack the standard measure to quantify the level of the overall quality of a

dataset. This means that whether ones could suggest a procedure or method to

eliminate the data points being contaminated in the entire dataset based on one

main aspect such as being inconsistent, we would still unable to know whether

the overall level of quality of the entire dataset are also increased. In other word,

a definitive answer to a question “How can we know when the quality of data is

sufficiently high?” is yet available.

Fitting multiple estimation models with a dataset and comparing the esti-

mation performance before and after applying a data quality improvement tech-

nique [79,85], such as the procedure adopted in our study of Chapter 6, has been

one of the most common procedures to measure the performance of data quality

improvement techniques. However, we would hesitate to say that this evaluation

procedure is sufficiently reliable. This is because it still lacks an adequate the-

oretical basis as to justify whether the improved prediction performance is not

coincidental caused by any other factors. Moreover, based on a taxonomy of data

quality challenges in empirical software engineering study proposed by Bosu and

MacDonell [77], there are remaining many data quality issues yet explored in

SEE research studies. Hence, we suggest future works to further underline the

importance of the quality of data and to seek for adequate approach to measure

the overall quality of datasets. In our opinion, a better understanding of data on

its quality and a more availability of data quality improvement techniques will

greatly contribute to the SEE processes as well as any other domains related to

model-based prediction and estimation.

9.2. Conclusion

Many long-standing questions subject to a debate in SEE were mainly due to

instability performance conclusions, where various research studies reported di-

vergent performance results of different approaches proposed to improve the ac-

curacy. The research studies presented in this thesis are aimed at overcoming
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the instability of the performance conclusions. Leveraged by our improvement

to the “Stable ranking method” [9], by improving the theoretical validity of the

method and having it supported by empirical evidences, all the studies carried

out under this thesis were able to answer many important unanswered questions

in regard to ABE, such as “What are the essential components of ABE that are

strongly associated with its estimation performance?”, “In each dimension of the

essential components of ABE, which are the approaches being superior to oth-

ers?”, “Among all the possible combinations of approaches, can we determine

the best one?”, “What is the theoretical concepts that made ABE become more

accurate when the most similar case is deviated from the new cases?”, “Does

an application of data quality improvement techniques prior to performing an

estimation consistently improve the estimation accuracy of ABE model?”. Being

able to answer these questions would greatly contribute to both the industry and

research communities. For example, the importance of an effort estimation task

make it critical for industry practices to perform the estimation with the most

accurate and reliable effort model possible. Also, for the research communities,

an ability to indicate superior approaches from the existing studies would make a

better benchmark standard for any future proposals of software effort estimation

methods.

From all the studies throughout this thesis, the following findings are our

concluding remarks:

1. We strongly recommend our proposed Improved stable ranking method for

future research studies where multiple prediction/estimation methods are

reviewed and compared as well as for studies aiming to propose a new

method.

2. We recommend ABE-Best, which is a model adopted with the following

approaches to be a new standard benchmark for future research studies in

SEE, as well as to be the model of choice for industry practice:

• Apply Log transformation to all the continuous features of a dataset.

• Use all project feature i.e., no feature subset selection is needed.
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• Adopt the Euclidean distance function as the similarity measure in

the cases retrieval process.

• For solution adaptation process, use our proposed LSA-X technique

for datasets with r(Pr, PrFactor) i.e., the highest correlation strength

between productivity and its influential factor variable, equal to or

greater than 0.30; otherwise, use the simple LSA technique.

• Determine number of analogues by fitting a dataset using the Baker’s

Best-k approach [38].

3. Compared with 7 other common effort estimation models (NNet, LReg,

SWreg, PCReg, PLSReg, CART(yes), and CART(no)), ABE-Best

significantly outperforms by means of overall performance, generalized per-

formance, stability, and robustness.

4. Productivity plays an important role in giving success estimation. A further

study with more focus on Productivity is therefore suggested for ABE as

well as other model-based effort estimation methods.

5. Many well-known data quality improvement techniques appear not to be

suitable for ABE. Therefore, in our opinions, more extensive studies on this

topic needs to be undertaken before the association between data quality

and the estimation performance is more clearly understood. Notwithstand-

ing, we strongly believe that a more comprehensive understanding regarding

the level of data quality is hugely important for the research communities

of empirical software engineering as well as the industry practices.
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