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Proportional Myoelectric Control of High-DOF Finger
Kinematics Using Synergistic Models∗

Jimson Gelbolingo Ngeo

Abstract

Proportional myoelectric control of multiple degrees-of-freedom (DOF) in active
finger joints is important in replicating dexterous hand motion in robotic prostheses
and orthoses. However, this is still difficult to achieve as current myoelectric control
strategies often require the separate control of each joint and do not consider the strong
correlations that exist between these joints. To address this problem, we propose using
a shared low-dimensional encoding based on synergistic models to represent both the
high-DOF finger joint kinematics and the coordination of muscle activities taken from
electromyographic (EMG) signals in the forearm. A Bayesian Gaussian Process Latent
Variable Model (GPLVM) is used to learn a shared latent structure model that not only
allows the automatic selection of the dimensionality but also captures the information
variance, both shared and specific to the observed EMG and hand kinematic data.

In the first part of this study, we show how using features obtained from an EMG-
to-Muscle Activation is not only suitable for continuous and simultaneous estimation
of finger kinematics, but is also shown to perform better than time-domain based fea-
tures. In the next part, we demonstrate that the proposed shared model is able to
reconstruct the full-joint continuous finger kinematics from muscle activation inputs,
whose results are inferred from a shared latent manifold. We show that the proposed
method outperforms commonly used simultaneous regression and linear dimension-
ality reduction methods. The proposed approach not only presents a viable solution
for a myoelectric strategy for handling high-DOF finger control, but also aims to open
new avenues in developing novel myoelectric interfaces for synergy development and
long-term control and adaptation.

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1361020, March 14, 2016.
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Chapter 1

Introduction

Robotic hand assistive and tele-manipulation devices are developing technologies that
hold great promise in revolutionizing modern hand rehabilitation and prosthetic appli-
cation. It is expected that such technologies will play a significant role in improving the
lives and functionality of people with hand injuries and impairments. There are many
dexterous robotic hands and powered prostheses that exist today. The number of active
controllable joints in these devices are substantially increasing to give them capabili-
ties to perform complex movements involving simultaneous control of large degree-of-
freedoms (DOFs), very much similar to the human hand. Roughly about 30% to 50%
of these devices are operated via myoelectric control. However, the myoelectric capa-
bilities of these devices have not yet reached its full potential due to the limited control
strategies offered by using surface electromyographic (EMG) signals. The deploy-
ment of simultaneous and proportional control for multiple degrees-of-freedom (DOF)
remains a major challenge in improving next-generation prosthetic systems. Thus, in-
creasing current myoelectric control capabilities and providing a good framework for
generating human-like dexterous finger kinematic movement from EMG signals can
significantly improve current myoelectric robotic hand devices and interfaces.
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1.1. Research motivation

Given the dominant role of the human hand, where many everyday functional tasks
(e.g. touch, grasp, manipulation and gesture communication) are achieved by our
hands. The loss of hand function can greatly impede daily human activities and mo-
bility. Upper-limb myoelectric prostheses, hand/finger exoskeletons, and other neuro-
rehabilitation devices are some common solution to rehabilitate and restore some func-
tionality to the lost or impaired hands. As such, the use of neural signals has been
very popular in controlling tele-operated devices as these can give unconstrained and
precise movement control in a highly dynamic environments. Among the many po-
tential options, however, muscle interfacing using surface electromyographic (EMG)
signals is still currently the only viable noninvasive biological signal that can be used
for control [1] as these signals have been shown to represent movement kinematic and
dynamic information very well.

There are many dexterous robotic hand and upper-limb powered prostheses that ex-
ist [2–7], but the difficulty in controlling all the available degree-of-freedom (DOF) via
myoelectric control has motivated many researchers to focus on more limited control
mechanisms. To this date, the functionality achieved by both commercial and clinical
systems that uses surface electromyograhic (EMG) signals has been somewhat lim-
ited. Clinically available EMG-based controllers are only able to control a few DOFs
at a time [8]. Multiple dimensions have to be controlled sequentially, requiring slow
mode-switching mechanisms initiated by different muscle co-contractions. To this end,
realizing a more intuitive, seamless and natural myoelectric control scheme based on
proportional and simultaneous control of multiple DOF is one of the goals of this study.

While many have mapped surface EMG signals to upper and lower limb kine-
matics and dynamics, very few have focused on mapping to continuous multi-finger
movements. This is because dexterous hand manipulation remains to be one of the
most complex biological movement to model, and has been proven to be very diffi-
cult to replicate even in robots [9]. The human hand not only has a highly articulated
mechanical system, with possibly more than 20 kinematic DOFs, but also has a com-
plex muscular system involved in the motor control. Indeed a large part of the human
brain is shown to be devoted to controlling the hand and its complex musculotendon
network [10].
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In neurophysiology, it is argued that synergies control the coordination of mus-
cle recruitment and the modulation of muscle forces for the control of human pos-
ture [11–14]. The muscle synergy hypothesis claims that the human motor system di-
rectly initiates movement through flexible combinations of control modules recruited
by the central nervous system to simplify control. Similarly, the concept of synergies
have also been widely used in the field of robotics, where robot control laws are ex-
pressed in low-dimensional space to drive forces applied on the higher dimensional
robot space. In motion planning for example, synergies can often reduce complexity,
where searching for an adequate kinematic configuration can increase exponentially
with the dimensionality of the structure [14]. For hand grasping, it has also been con-
sistently shown that functional human hand postures operate in a configuration space
of much smaller dimensions, often referred to as postural synergies, than what the
kinematic structure would suggest [15].

Estimating finger kinematics from EMG input signals usually involves highly cor-
related patterns and high dimensionality in both the input and output domains. This
study is inspired by studies in the motor control community that claims that synergis-
tic patterns can be observed in both the muscle coordination and kinematic posture
space. Thus, the use of synergies can provide a natural modeling paradigm to model
correlations that exists in either the muscle coordination system, or in the finger kine-
matic configuration, or in both spaces simultaneously. This study aims to incorporate a
shared latent space model, where both muscle activation and high-dimensional finger
kinematics information are embedded on a low-dimensional space where synergistic
features are shared.

Although, few studies have given attention in considering such correlations in do-
ing simultaneous and proportional control of the high dimensional finger kinematics
from EMG signals. It is important that such correlations must be considered in the re-
alization of an estimation model that can map from EMG or muscle activation signals
to the corresponding complete full joint finger kinematic configuration. To the best of
the author’s knowledge, no method or framework in the EMG-applications literature
has yet to give a s straightforward way of fully recreating the continuous movement of
a high-dimensional full 23-joint hand model from EMG inputs, considering that many
of the dimensions are redundant and highly correlated.
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1.2. Overview of the problem

In the past 30 years, discrete classification of hand gestures from EMG signals has been
successful, consistently reaching decoding accuracies of above 95% and classifying up
to more than six different hand gestures [16–20]. However, classification approaches
have been limited to use in controlled laboratory conditions and have not been used
by any current commercial myoelectric prosthesis [21]. Despite the success of pattern
classification approach to using EMG signals, this type of control strategy is inadequate
for actuating all the functions offered by the robotic devices as it uses a sequential-
based strategy where usually only one class of movement is active at a time. Natural
hand movements are not limited to a number of discrete finger configurations but are
continuous, coordinated and have simultaneous control of multiple DOFs.

The first problem presented in this research work is how to improve the current
limited control offered by pattern recognition-based myoelectric control. To realize a
more intuitive and natural myoelectric control scheme, control strategies based on pro-
portional and simultaneous control are preferred over pattern recognition-based con-
trol. The previous studies have also focused training and testing only on simple finger
movements and no combinations or variations of multi-finger and random freely move-
ments were considered. Also, in considering continuous or proportional myoelectric
control, time delays between the onset of the EMG signal and the exerted movement
were present and observed in the previous studies [22–24]. This time delay is called
hysteresis or electromechanical delay (EMD) and is a natural phenomenon that occurs
in the relationship between muscles force and the output kinematics or dynamics. The
EMD can vary depending on many different anatomical factors such as the type of
muscle fiber, muscle shortening velocities and fatigue [25]. The previous studies did
not consider any dynamical relation, such as the EMD, between EMG and the exerted
force in the finger movement.

Even with proportional myoelectric control, this still falls short in only being able
to control a few number of DOFs [26,27], with among many other existing limitations
listed in [1]. Another problem that we consider in this study is how to consider the cor-
relations that exists in both the hand kinematic configuration and muscle organization
for control. Deployment of simultaneous and proportional control that can consider
all DOFs available in the hand, although highly redundant and correlated, remains a
very challenging task. In all the previous studies, the number of estimated DOFs were
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not only limited, but selection of dimensionality were heuristic. Where many previous
studies have studied individual synergy representations for muscle and hand configu-
ration separately [14, 26–28], we consider using a nonlinear synergistic model where
information and correlation from both muscle activation and finger kinematics are em-
bedded in a shared low-dimensional latent space. Human hand movement is not only
high-dimensional but also nonlinear. Previous studies have showed that using linear
synergy models failed to represent motion correlation in simple hand movements, such
as in a simple hand reach-grasp-retreat task [14]. To fully maximize the functionality
of current myoelectric-based hand controllers and interfaces, recovering and mapping
information to as many DOFs available as possible are essential.

1.3. Research contribution

This study aims at overcoming the limitations of pattern recognition-based control and
proportional myoelectric control of only a few DOFs available in the hand. The main
contributions of this study are as follows: (1) we describe a method for improving the
estimation of simultaneous finger kinematics from inputs obtained from an EMG-to-
Muscle Activation model that parameterizes electromechanical delay (EMD), which
has been observed by numerous investigators. In this part, we compare between the
use of different EMG time-domain based features and different regression methods, to
show which method gives the better performance. In the second part of this study: (2)
we describe a new strategy, using a generative model coupled with a nonlinear dimen-
sion reduction method, to reconstruct the kinematics of a full 23-joint skeletal hand
model. Where studies have shown individual synergy models for muscle activation
and kinematics, (3) we present the use of a shared model between these two different
but highly correlated data. We employ the use of a Bayesian Gaussian Process Latent
Variable Model (GPLVM) with automatic relevance determination (ARD) to learn this
shared latent space. We also analyze how a synergistic model can be useful and inter-
preted in the context of myoelectric control of high-DOF finger kinematics. Finally, (4)
we present the combined use of an EMG-to-Muscle Activation model coupled with a
Bayesian inference method for estimating high-DOF finger kinematics from EMG. We
provide the experimental evaluation that shows how the proposed method outperforms
standard techniques, in terms of reconstructing finger kinematics using EMG inputs.
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1.4. Thesis overview

This thesis is organized and divided into six chapters. Chapter 2 gives the related lit-
erature and works. The chapter introduces the terminologies used in the myoelectric
control literature, conventional techniques used, and a thorough introduction of con-
cepts such as synergies in the context of our work. Chapter 3 presents the first part
of our work, where we propose an improved method for continuous and simultaneous
estimation of finger kinematics from surface EMG signals. We show in this chapter
how features obtained from an EMG-to-Muscle Activation model is not only suitable
for proportional myoelectric control but is also shown to give better estimation perfor-
mance that using conventional EMG time-domain based features. Chapter 4 presents
the second part of our work, where we present a new framework for proportional myo-
electric control of high-DOF finger kinematics using a nonlinear synergistic model. In
this chapter, we present how different synergistic models can be used and interpreted
in the context of myoelectric estimation of high-DOF finger kinematics. Chapter 5
draws some conclusions to our work on in the overall context of myoelectric control
and applications. Lastly, Chapter 6 gives our recommendation and perspective for the
future direction of this study.
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Chapter 2

Related work

Myoelectric control has the potential to significantly change human-robot interaction
due to its ability to non-invasively measure human motion intent. However, current
control schemes have struggled to achieve the robust performance needed to seamlessly
operate myoelectrically controlled devices in commercial and daily life applications.
The trend in myoelectric control recently has gone towards simultaneous multifunc-
tional control from discrete pattern recognition as this gives more functionality and
mobility for users. This chapter reviews the related work in the past 5 years that has
progressed in the field of myoelectric control for robotic hand applications. We also
briefly introduce the concepts of synergies, as used both in the field of robotics and mo-
tor control, which has recently gained a following and popularity due to the potential
role it may play in improving the current state-of-the-art myoelectric control schemes.
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2.1. Myoelectric control of robotic hands

According to the World Health Organization (WHO), about 15 million people world-
wide suffer stroke every year. About 5 million of them experience major upper-limb
loss or long term hand impairments and are no longer able to participate in Activities
of Daily Living without some form of assistance. Providing rehabilitation for impair-
ments and prostheses for amputees are often the solution to help restore functions and
some degree of normalcy but are costly, time-consuming and usually need sufficient
access to therapists and equipments available only in special places. Robotic hand
devices, for example, are developing technologies that hold great promise in revolu-
tionizing modern hand rehabilitation and prosthetic application. Today, many such
robotic hand supports, powered prostheses and orthoses with high degrees-of-freedom
(DOF) are continuously being developed. Roughly about 30% to 50% of the available
prostheses today are based on myoelectric control [29].

The control of such assistive devices is often achieved by man-machine interfac-
ing [1]. When the neuromuscular information system is probed for information ex-
traction, the interfacing can be realized at the level of the brain, peripheral nerves or
muscles. Among many potential options, muscle interfacing is still currently the only
noninvasive viable biological signal that can be used to control assistive devices in
commercial and clinical systems [1, 29–31]. Although other signals such as brain and
nerve signals are promising for direct neural interfacing, these usually require inva-
sive procedure which makes their practical applicability quite limited in the clinical
setting [1].

The use of the electromyographic (EMG) signal as a control source for robot in-
terfacing has received considerable attention, because the idea of restoring function by
bridging natural neural pathways is a compelling pursuit [31]. Despite not recording
directly from neural cells, the surface electromyogram (EMG) signal contains informa-
tion on the neural drive to muscles, i.e., the spike trains of motor neurons. Using this
property, myoelectric control consists of the recording of EMG signals for extracting
control signals to command external devices, such as hand prostheses.

Presently, some existing robotic devices that can support hand and finger assistance
and rehabilitation are shown in Figure 2.1. Figure 2.1a shows a robot manipulator
being controlled by a transradial amputee. Such a manipulator system has been shown
to be capable of assisting subjects perform some basic desktop work such as pointing,
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(a) Robot Manipulator [32] (b) HK Polytech’s University Hand
Exoskeleton [34]

(c) Bebionic’s Robot Hand [33, 35]

Figure 2.1: Examples of robotic devices that uses myoelectric control.

touching and grasping objects [32]. In Figure 2.1b is a patented hand rehabilitation
exoskeleton created by Hong Kong’s Polytech University. This device is made for
patients with hand impairments or those recovering from stroke to wear, to assist them
in doing simple hand opening and closing functional tasks. Lastly, figure 2.1c shows
a more modern commercial robot hand prosthesis created by Bebionic [33] which has
good dexterity comparable to the human hand. All the devices shown in the figure are
controlled using myoelectric signals.
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2.1.1 The EMG as a control signal

Basmijian and De Luca described electromyography or more commonly known as
EMG as an experimental technique concerned with the development, recording, and
analysis of myoelectric signals. Myoelectric signals are formed by physiological vari-
ations in the state of muscle fiber membranes [36].

Movement planning is done by the brain after integration of all sensory informa-
tion. Motor commands are then generated and transmitted to the muscles by means of
motor neurons (also called alpha-motor neurons) located in the spinal cord or brain-
stem. These motor neurons travel to the muscle fibers, where it then branches out.
Due to this branching, each axon in a nerve innervates several muscle fibers which
causes the muscles to contract (see Figure 2.2a to visualize this information flow). The
contraction then generates the muscle forces needed to execute the movement task. It
is the role of the primary motor cortex, through the motor neurons, that determines
how much force each muscle group must exert and sends this information down to
the muscles for them to actuate different joints in the body to generate the planned
movement.

The EMG signal is the sum of the electrical activity of the muscle fibers, as trig-

(a) Neural information flow [37] (b) Neural information flow [1]

Figure 2.2: The EMG signals are generated as neural information passed down from
the brain to the muscles. (a) Neural control information pathway. (b) EMG from motor
neuron activities that trigger the generation of muscle fiber action potentials.

10



gered by the impulses of activation of the innervating motor neurons. As shown in
Figure 2.2b, compound action potential of the fibers innervated by each motor neuron
(motor unit action potential) is recorded at the skin surface and the interference activity
of all active motor units determines the surface EMG recording. As indicated by the
arrow, the interference surface EMG contains the original neural information. Features
extracted from the EMG are thus associated to the neural code of motion, although this
association has variability due to the influence of the shapes of the motor unit action
potentials on the signal characteristics [1].

An unfiltered and unprocessed signal detecting the superposed MUAPs is called a
raw surface EMG signal. Figure 2.3 shows a sample raw EMG recording done with
three static contractions of a muscle. When the muscle is relaxed, a more or less noise-
free EMG Baseline can be seen. Typically, we want the baseline to be approximately
or as much as possible near zero.

Another interesting feature of the raw EMG signal is that these signals are stochas-
tic in nature or that raw sEMG spikes follow random shape. This means that a raw
EMG recording cannot be reproduced in the exact shape. By applying a smoothing al-
gorithm or selecting a proper amplitude parameter (e.g. area under the rectified curve),
the non-reproducible contents of the signal is eliminated or at least minimized.

Raw EMG signals can range between +/- 5000 microvolts and typically the fre-
quency contents ranges between 6 and 500 Hz, showing most frequency power be-
tween 20 and 150 Hz. However, in practical applications, EMG signals are amplified
and typically read in the millivolts range.

Most myoelectric control schemes use macro-features of the surface EMG, that
depend on the neural and peripheral information contained in the signal, their perfor-

Figure 2.3: A sample raw EMG recording of 3 contraction bursts [38].
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mance is influenced by factors that can affect the motor unit action potential shapes [1].
Some of these factors that can influence surface EMG are the following:

1. Tissue Characteristics - the human body is a good electrical conductor, but un-
fortunately the electrical conductivity varies with tissue type, thickness, physio-
logical changes and temperature. These conditions greatly vary from subject to
subject which can prohibit a direct quantitative comparison of EMG amplitude
parameters calculated on the unprocessed EMG signal [38].

2. Crosstalk - neighboring muscles (not directly in contact with the electrode) may
also produce significant amount of EMG. This can contaminate the target muscle
under investigation with signals from other sources.

3. Electrode and Muscle Displacement - in any movement related studies, move-
ment of electrodes, cables and connectors are unavoidable. Any change in dis-
tance between the target muscle (signal origin) and the electrode (detection site)
will alter the EMG reading. Motion artifacts can also contribute to unwanted
noise in the low frequencies (less then 10 Hz).

4. External Noise - special care must be taken in noisy electrical environments.
One such noise is the 50 or 60 Hz noise coming from AC power outlets which
power many of the hardware and appliances. Incorrect or poor grounding of the
EMG devices or other external devices may also contribute as external noise.

5. Electrode and Amplifiers - the selection of the types of electrode and amplifiers is
very crucial. Internal amplifier noise should not exceed 5 Vrms. Many hardware
factors can be minimized or avoided by accurately preparing and checking the
given laboratory or room condition.

It is important to note, however, that factors influencing the EMG signal features
are not necessarily always detrimental for myoelectric control. For example, the ef-
fects of external known noises sources can be removed with proper filtering settings.
For crosstalk, as long as this is consistent across conditions, then its presence may not
necessarily be be detrimental. In pattern recognition, for example, a specific gesture to
be classified may be characterized by a set of EMG recordings from different muscles,
all influenced by a certain amount of crosstalk. Nonetheless, if the activity containing
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crosstalk is consistent across trials of the same task, task classification can be per-
formed correctly and actually crosstalk may even become a source of information to
better differentiate the tasks [1].

2.1.2 Myoelectric control strategies

Myoelectric control uses the EMG signal as the input control signal to command ex-
ternal devices, such as robot assistive devices and prostheses. The ideal condition for
myoelectric control is the availability of EMG signals that can be controlled indepen-
dently and concurrently in a sufficient number to match the number of DOFs to be
controlled (direct control). In this situation, each EMG channel is used as the only
control signal for one DOF each. For example, two EMG channels would be needed
for the bidirectional control of each DOF. This can controlled proportionally, such as
using the amplitude or power of the EMG, given the association between power or
intensity of muscle activity and the neural activation.

However, direct control is often not possible in vast majority of amputees or when
a large number of DOF needs to be controlled. Correspondence problem, where the
physical structure of the human hand (healthy or amputee) is vastly different from the
robot, is also an issue with direct control. Pattern recognition or other control strategies
are often the solution to dealing with this problem. These uses the full information of
the multi-channel EMG recordings and mapping it into predefined tasks.

We list some of the commonly available myoelectric control strategies:

1. On/Off Control - is achieved by mapping muscle activity to the required output
function (e.g. open and closing function of a prosthetic hand). In this method,
one function is assigned to one channel of surface EMG. For each processing
interval, the EMG amplitude is compared with a predefined threshold and, when
the threshold is exceeded, the corresponding function is actuated at a fixed speed,
or proportionally to a filtered-EMG amplitude. With the use of multiple sig-
nal sites, different functions are assigned to different channels, with the aim of
obtaining a direct control. This approach can provide intuitive control, as the
control sites can be selected so that the intended function corresponds to the
physiologically appropriate muscles. It is, however, impractical for high level
limb deficiencies and slow and counterintuitive in controlling multiple joints.
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2. Pattern Recognition-based Control - uses the full information of the multi-
channel EMG recordings and mapping it into predefined tasks. By using mul-
tiple EMG sites, effective feature extraction, and multidimensional classifiers,
control of several classes of motions can be achieved. The robustness of the re-
sulting control scheme is dependent on robust input features, type of classifiers
and and a training set representative of the full set of inputs used during inter-
action. However, despite the success of pattern recognition-based myoelectric
control, this type of strategy is inadequate for actuating all the functions offered
by the robotic devices as it uses a sequential strategy where only one class of
movement is active at a time [39]. Also, natural hand movements are not limited
to a set of discrete gestures but are continuous, coordinated and have simultane-
ous control of multiple DOFs.

3. Simultaneous and Proportional Control - when a user can control at least
one mechanical output quantity of an active joint (e.g., force, velocity, position)
within a finite, useful, and essentially continuous interval by varying the EMG
control input within a corresponding continuous interval [29]. This type of con-
trol is often times also called as regression-based myoelectric control, where
regression methods are often used to identify system parameters from a given
training set of continuous outputs. Multiple DOFs can be controlled at the same
time using EMG inputs in a continuous fashion.

4. Muscle Synergy-based Control - requires identification of complex interactions
between multiple muscles, commonly referred to as muscle synergies, in the
control of multiple DOFs using EMG inputs. Linear combinations of synergies,
for example, are capable of describing complex force and motion patterns in
reduced dimensions. Thus, robust representations of synergies within a multi-
functional control scheme contribute to reliable processing and robust outputs
consistent with a users intent [27].
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Figure 2.4: Illustrations of myoelectric control paradigms in a simple prosthetic task
[1]. (a) On/Off control. (b) Pattern recognition-based control. (c) Simultaneous and
proportional control.

A schematic illustration of three myoelectric control strategies when performing a
simple functional task with a powered prosthesis is shown in in Figure 2.4. This figure
was taken from [1]. The task consists of grasping a glass and drinking from it. In Fig-
ure 2.4a , two DOFs are controlled by only two EMG signals. The same two signals
are used for both DOFs and the system switches from one DOF to another by coacti-
vation of the two muscles. The task is performed in a sequential manner between two
DOFs and switching between them. The same task is shown in Figure 2.4b, but now
performed using pattern recognition-based control approach. A 2-dimensional feature
space is shown for easy visualization, with four classes corresponding to activating
in two directions the two DOFs. Figure 2.4c shows a simultaneous and proportional-
based control that allows combining DOFs (represented by the two axes) in any com-
bination and thus performing the task in a more natural and faster way.

The main problem with the pattern recognition-based control is that it is inher-
ently a control scheme that is quite different from natural control. In natural control,
movements are continuous and there is coordination among multiple DOFs across sev-
eral joints simultaneously. Most often times, the parameter space that models natural
movements in EMG, kinematics or kinetics studies is continuous. On the other hand,
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for pattern recognition-based control, the number of patterns are limited and are acti-
vated sequentially, only one at a time. This limitation underlines the need for methods
that can realize simultaneous and proportional control of multiple DOFs. In particu-
lar, deployment of simultaneous and proportional control strategies for multiple DOFs
remains one of the major challenges for next-generation prosthetic systems [30, 40].

There are studies that have tried to build continuous models to decode arm motion
from EMG signals. The Hill-based muscle model, for example, is often used to es-
timate muscle force from EMG and other muscle anatomical properties [25, 41, 42].
However, only a few DOFs (≤ 2) were analyzed, since the nonlinearity of the model
and the large numbers of unknown parameters for each muscle make the analysis quite
complex. Many of these muscle parameters also rely on anatomical and physiological
properties which may vary distinctively across subjects. As an alternative to this, a
data-fitting approach is often considered since parameters are obtained from the data.
Regression models such as using a neural-network model, is commonly used to extract
continuous upper-limb arm motion using EMG signals [43], however, movements were
quite restricted to single-joint, isometric motions. Only Artemiadis and Kyriakopoulos
have considered synergistic relationship between arm kinematics and muscle activation
by attempting to use a framework based on low-dimensional embeddings to control a
robotic arm end-effector position in 3D space using a 2D representation of EMG sig-
nals [44]. Even though the study in [44] have proposed using low-dimensional embed-
dings, the number of controllable DOFs have not exceeded 4 DOFs and coordinated
multi-finger joint movements have not been considered.

More closely related to the topic of this thesis, some studies considered modeling
the human hand along with simulating different hand motions and gestures. The human
hand consists of a remarkably complex musculotendon structure designed to maximize
power and dexterity while minimizing mass and bulk of the hand [45]. A total of 39
extrinsic and intrinsic muscle units control the movements of about 27 bones in each
hand [45], which about 25 DOFs are available to generate sophisticated finger and
wrist movements.

Anatomically realistic biomechanical models for the index finger and thumb have
been studied. Valero-Cuevas et al. modeled the finger as a series of kinematic chain and
whose intrinsic and extrinsic extensor muscles interconnection is viewed as a tendinous
network [46, 47]. Among some of their models include a 4-DOF and 7-muscle model
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for the index finger [48–50] and a 5-DOF and 8-muscle model for the thumb [51]. To
show how these seemingly simple model can be quite complex, it can take about 50
or more anatomical muscle parameters to generate a biomechanically realistic thumb
movement. These studies have made tremendous and critical advances towards under-
standing force transmission and coordination in the finger. However, due to the high
dexterity of the finger, a limited number of tasks have been assessed. This has led to
gaps in the ability to provide accurate predictions or estimations for the wide range of
manual tasks can be be performed with the hands.

In using such biomechanical models for myoelectric control, however, the forward
dynamics which are driven by the activation levels of each muscle, which computes a
muscle’s net force (e.g. using a Hill-based muscle model [52]) often requires knowl-
edge on anatomical properties. These properties which can be drawn from literature but
may not match well with a corresponding finger kinematic model [46] Optimization
over a large number of musculoskeletal parameters is also often done to find a good fit
of the model based on experimental measurements [51,53]. Not to mention, that many
of these finger musculoskeletal models do not consider muscle co-contractions or syn-
ergistic relationships. Because of the complexity of using biomechanical models of
the fingers, a data-fitting approach using machine learning is often preferred for real-
time myoelectric control and estimation of kinematics or dynamics. Using machine
learning techniques can do such good performance without knowing a large number of
physiological parameters.

Decoding finger movement from sEMG signals usually involves dealing with high-
dimensional signals in both the input and output domains [40] and the kinematics in-
volved are highly nonlinear [14]. In Chapter 2.3, we present some of the recent studies
more closely related on decoding finger kinematics from EMG signals.

2.1.3 Characteristics of an ideal myoelectric control system

Ideally, a system for upper limb myoelectric control should fulfill all the criteria shown
in Figure 2.5. Farina et el. recommended these criteria for robot prostheses as a guide
for improving design and control of such devices [1]. They enumerate that an ideal
upper limb myoelectric prosthesis or support should be intuitive, capable of multi-DOF
control, robust, adaptive to the user, easy to set-up, fast calibration, provide feedback,
limited computation complexity and reliably accurate. None of the current myoelectric
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Figure 2.5: Criteria of an ideal myoelectric controller as described by Farina et al. [1].

devices in the commercial and academic community possess all of these traits. In this
study, we have focused on satisfying some of these criteria. In particular, this study
attempts to explicitly satisfy some of the mentioned requirements or at least implicitly
discuss some of these issues in the later chapters.

To realize a more intuitive and easy-to-calibrate myoelectric control scheme, strate-
gies based on proportional and simultaneous control are preferred over other conven-
tional control scheme. Going into this direction, this thesis aims to estimate simultane-
ous and multiple finger kinematics from surface EMG signals, which is covered in the
next chapter. In the succeeding chapters, we put a special attention on estimating, map-
ping and recovering information to as many DOFs available in the hand. This gives
emphasis to the criteria of being natural, which has the potential to fully maximize the
functionality of many current myoelectric-based hand controller applications.

Recently, one myoelectric control strategy that has been quite popular is the so-
called synergistic control. We explain the notion of synergy in the next section and
present one more myoelectric control strategy as a subsection in the next part. In the
later chapters of this we present a new framework for myoelectric control using a new
nonlinear and shared synergistic representation of hand and finger movement approach.
In is shown in this thesis that using a shared synergistic approach can handle not only
the nonlinearities of human hand motion but also handle correlations that exists in the
hand and finger’s high DOF.
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2.2. Synergies

Muscle synergies are studied extensively in neurophysiology as a potential basis for
neural control. Multiple studies support the hypothesis that the human motor sys-
tem directly initiates movement through flexible combinations of muscle synergies
[11–13, 54–57]. The muscle synergy hypothesis claims that the human motor system
directly initiates movement through flexible combinations of control modules recruited
by the central nervous system to simplify control. Similarly, the concept of synergies
have also been widely used in the field of robotics, where robot control laws are ex-
pressed in low-dimensional space to drive forces applied on the higher dimensional
robot space. In motion planning for example, synergies can often reduce complexity,
where searching for an adequate kinematic configuration can increase exponentially
with the dimensionality of the structure [14]. For hand grasping, it has also been con-
sistently shown that functional human hand postures operate in a configuration space of
much smaller dimensions, often referred to as postural synergies, than what the kine-
matic structure would suggest [15]. Thus, synergies can provide a natural modeling
paradigm where muscle activation inputs and high-dimensional joint kinematics can be
represented in low-dimensional space, where common latent features are shared. Es-
timating finger kinematics from EMG input signals usually involves highly correlated
patterns and high dimensionality in both the input and output domains. Nevertheless,
few studies have given attention in considering such correlations in doing simultaneous
and proportional control of the high dimensional finger kinematics from EMG signals.

This thesis is inspired by studies in the motor control community that claims that
synergistic patterns can be observed in the muscle coordination and posture space.
Grinyagin et al. [58] presented different types of synergies. First, static postural syn-
ergies, that refer to correlated models between single kinematic poses. Second, kine-
matic synergies, that consider time dependent correlation during a motor action task
[59]. Lastly, muscle synergies that uses recruited muscle coordination patterns from
electromyographic (EMG) activity to address low level representations of motor con-
trol [12,13,60]. While only the third type of synergy have been largely used in the mo-
tor control community, the first two types have inspired a lot of work in robotics [14].
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2.2.1 Synergies in robot grasping

As the number of DOFs of robotic hands starts to approach the capabilities of the
human hand, effective autonomous algorithms that can handle high-dimensional con-
figuration spaces are required in order to take advantage of the new robot hand designs.
It has been pointed out in the field of robotics that if human-like grasping is intended to
be reproduced in robot hands, then it would seem natural to draw inspiration not only
from the hardware of the human hand but also from the software; that is, the way the
hand is controlled by the brain.

Attempts to formalize human tendency to simplify the space of possible grasps can
be traced back as early studies involving grasp taxonomy work in robotics [61]. While
the configuration space of dexterous hands is high-dimensional and very difficult to
search directly, these studies show that most useful grasps can be found in the vicinity
of a small number of discrete points. These points can be thought of as pre-grasp
shapes, or starting positions for finding a good grasp for a new object.

Ciocarlie et al. proposed the use of low-dimensional posture subspace for the au-
tomated grasp synthesis in complex robotic hands [62]. They presented an intuitive
approach by replacing the discrete set of pre-grasp shapes with a continuous subspace
derived from analysis of human hand motion during grasping. In their work, they de-
scribe that any hand posture is fully specified by its joint values, and can therefore be
thought of as a point in a high-dimensional joint space. If d is the number of DOF of
the hand, then a posture p can be defined as:

p = [θ1 θ2 · · · θd] ∈ Rd (2.1)

where θi is the value of the i-th DOF.
As what has been suggested in previous studies, most grasping postures derive from

a relatively small set of discrete pregrasp shapes. This would imply that the range of
postures used in everyday grasping tasks will exhibit significant clustering in the d-
dimensional DOF space. Santello et al. [59] verified this hypotheses by collecting a
large set of data containing grasping poses from subjects that were asked to shape their
hands as if they were grasping a familiar object. Principal component analysis (PCA)
of their data revealed that the first two principal components account for more than
80% variance, suggesting that a very good characterization of the recorded data can be
obtained using a much lower dimensionality approximation of the joint space.
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In Ciocarlie et al.’s work [62], they referred to the Principal Components of these
postures as eigengrasps. Each synergies or eigengrasp ei is a d-dimensional vector
which can be thought of as direction of motion in the joint space. Motion along one
eigengrasp direction will usually imply motion along all DOFs of the hand.

ei = [ei,1 ei,2 · · · ei,d] (2.2)

By choosing a basis comprising b eigengrasps, a hand posture placed in the subspace
defined by this basis can be expressed as a function of the amplitudes ai along each
eigengrasp direction:

p =
b

∑
i=1

aiei (2.3)

which is completely defined by the amplitude vector a = [ai · · · ab] ∈ Rb.
Synergies have also been used as a representation that transcends differences in

embodiments, which is also called the correspondence problem. This problem, also
referred to as Mapping in Figure 2.6, deals with transferring postures or movements
from one agent to another. This can be viewed as mapping human postural space Yh

to robot space Yr. This can also be viewed as the eigengrasp to robot correspondences
X→Yr. This type of synergistic representation are often used to address inherent
problems related to high-dimensional representation.

Figure 2.6: Low-dimensional representation of human posture data has been used for
control of dynamic movement in robots (Control), search for suitable poses (Planning),
and transferring kinematic actions (Mapping) [14].
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2.2.2 Synergies in myoelectric control

Control schemes associating synergies with control outputs can generally be grouped
into two approaches: pattern recognition and motor learning. In pattern recognition-
based control, estimation models are trained via pattern recognition techniques to
mimic intent based on existing synergies. While in motor learning-based control, the
motor system is trained to develop and refine synergies associated with system dynam-
ics of a specific mapping function relating EMG inputs with control outputs. The user
learns the system dynamics via feedback while interacting with the control interface
(see Figure 2.7).

Figure 2.7: Myoelectric control schemes based on synergy representations [27]. Re-
gression and classification schemes decode outputs based on existing synergies, disre-
garding any adaptations due to feedback. On the other hand, motor learning schemes
incorporate feedback into the development of new muscle synergies to generate robust
controls.

There is an ongoing debate between the two theories [63], and perceived mus-
cle synergies cannot currently be proven or disproven to have a neural origin [64].
Regardless of neurological origin, muscle synergies are influential in myoelectric con-
trol schemes due to EMG inputs directly encoding muscle activation timing, shape
and intensity. Synergy features extract information from multiple EMG channels si-
multaneously to depict time-invariant synergies representing the underlying muscle
coordination behind various motor tasks. By identifying relative activations between
synergistic muscles, synergy features have been shown to be inherently robust to single
channel electrode shift and amplitude cancellation [39, 65].
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Although time-variant synergies have been widely used and discussed to model
complex movements, in this section we only discuss about time-invariant synergies.
Further discussion about time-variant synergies is given in [66]. Two common types of
time-invariant synergy extraction methods are based on linear decomposition methods
such as using the Non-negative matrix factorization and Principal component analysis.

1. Non-negative matrix factorization (NMF) - is the most common method for ex-
tracting time-invariant synergies. NMF prescribes a synergy subspace restricting
expressible data points to combinations of each non-orthogonal component [27].
Synergy components are constrained to be non-negative, which physiological
represents neural and muscle output, since neurons are either firing action po-
tentials (positive) or else in a resting state (zero).

2. Principal component analysis (PCA) - describes the major orthonormal activa-
tion patterns without imposing constraints within the space defined by the com-
ponents. A similar explanation is given in Chapter 2.2.1, but instead of getting
eigengrasps, here muscle synergies based on linear combinations of EMG chan-
nels are obtained.

Although NMF and PCA are similar in their underlying concept and mathemat-
ical representations, NMF has a much stricter nonnegative constraint imposed on it.
Both methods, however, are linear decomposition techniques that assume that the set
of measured EMG data is composed of linear combinations of a smaller number of
underlying elements called synergies. This linear representation can be modeled as:

m =
N

∑
i=1

ciwi (2.4)

where m is a vector that represents multiple EMG channels, w contains the synergies
or basis functions and c represents each activation of each component to the measured
muscle activation patterns. See Figure 2.8 to visualize this relationship.

An example of simultaneous control of multiple DOFs was shown by Jiang et al.
using muscle synergy strategies extracted from a modified NMF algorithm to estimate
the torque [28] and kinematics [26, 67] of multiple DOFs produced at the wrists.
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Figure 2.8: Time-invariant synergies capture spatial regularities in the motor output.

Nazarpour et al. [68] analyzed motor learning in the context of muscle synergies us-
ing cursor position control tasks. They defined a task space that requires simultaneous
control of a pair of muscles to achieve a task, and test subjects on different combina-
tions of biomechanically independent and antagonistic muscles. By examining user
reactions to virtual perturbations in cursor position, they demonstrated the ability of
humans to learn flexible control through the formation of dynamic, task-specific mus-
cle synergies. They quantified these synergies in terms of inferred muscle correlation
structure from variance in cursor position.

Ison and Artemiadis [65] analyzed synergy development during long term control
of cursor velocities via two biomechanically independent pairs of antagonistic mus-
cles. The synergy development was evaluated by analyzing changes in PCA across
trials. Unlike in [68], redundant velocity control did not force specific synergy devel-
opment in order to accomplish a task. Therefore, the resulting population-wide conver-
gence to a common synergy space indicated the natural evolution of synergies while
interacting with a particular mapping function. The synergies proved to be robust to
potential electrode shifts and time off during the multi-day evaluation, and correlated
with enhanced control efficiencies during interaction with the myoelectric interface.

In relation to synergistic representation in finger movements, in Ingram et al’s [69]
study on natural hand movement, they found that a substantial part of variation in daily
hand activities (60% variance) could be explained by a 2D manifold using PCA on the
finger joint angular velocity data.
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2.3. Mapping finger kinematics from EMG

Many studies have shown that regression-based myoelectric control methods can be
used to estimate simultaneous and proportional finger kinematics from EMG. Afshar
and Matsuoka were able to estimate the index finger joint angles from fine-wire EMG
embedded inside seven muscles that control the index finger [70]. Similarly, Shrirao
et al. were able to decode one index finger joint angle from surface EMG signals. The
finger motions involved in their study were periodic flexion-extension movements at
three different velocities. They evaluated different groups of artificial neural network
but failed to get a consistent robust optimal configuration. Furthermore, Smith et al.
[23] were able to asynchronously decode individual metacarpophalangeal (MCP) joint
angles of all five fingers using an artificial neural network (ANN). Their study extracted
time-domain features from 16 general muscle locations in the forearm from healthy
subjects.

In more recent developments, Hioki et al. [24] estimated five proximal interphalan-
gael (PIP) joint angles using only 4 EMG channels while also considered some dyy-
namical relationship between EMG and the finger actuation by adopting time delay
factors and feedback stream into an ANN. Their method, however, has complex pa-
rameter configuration that drastically varies across different EMG and subject settings.
In other recent EMG-based estimation of finger movements, Krasoulis et al. [40] eval-
uated different regression methods to find superior performance in decoding multiple
DOF finger movement from EMG.

In the previous studies mentioned [22–24], a time delay between the onset of the
EMG signal and exerted movement was present and observed. This time delay is called
hysteresis or electromechanical delay (EMD). In doing regression to map the muscle
activation to the corresponding joint actuation, introducing EMG-tapped delay lines,
which makes use of all the immediate and past values of the EMG can consider for
this delay. However, doing so greatly increases the dimension of the inputs and thus
exponentially increases the number of parameters of the regressor used. The EMD can
vary depending on many different factors such as muscle shortening velocity, type of
muscle fiber, and fatigue [25].

In the next chapter, we present our method and results where our study aims to over-
come the above limitations by introducing EMD as a parameter, by using a so-called
EMG-to-muscle activation model [25,71], which is determined along other system pa-
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rameters through optimization. Very few studies have continuously estimated more
than five finger positions. Here, we present a method for the continuous extraction of
control information during finger movements which involves simultaneous activation
of 15 DOFs provided by all five finger joints. We concurrently recorded kinematics of
all five fingers in one hand and the surface EMG signals from muscles in the forearm
while the subjects performed both individual and simultaneous finger flexion and ex-
tension tasks. Simultaneous estimation of the finger kinematics is done and evaluated
using both a fast feedforward artificial neural network and a nonparametric Gaussian
Process regression [72], with the latter having the potential to give better estimation
performance.

In Chapter 4 we present a proposed framework based on synergistic representation
to overcome the limitations of simultaneously estimating only a few DOFs. As previ-
ously mentioned, the use of synergies in myoelectric control is not new and have been
used to estimate wrist torque [28] and kinematics [26,73] and shown to be inhererently
robust to single channel electrode shift and amplitude cancellation [27, 39]. However,
in all the previous studies, the number of estimated hand DOFs were limited, selec-
tion of dimensionality were heuristic and linear models still failed to represent motion
correlation even in simple reaching and grasping movements [14]. No method has yet
to give straightforward way of fully recreating the continuous movement of a high-
dimensional full 23-joint hand model from EMG inputs, knowing that many of the
dimensions are redundant and highly correlated.

To handle the nonlinear, high-dimensional and dynamic nature of finger kinematic
posture and EMG, we resort to using a nonlinear dimensional reduction method, which
is the Bayesian Gaussian Process Latent Variable Model (Bayesian GPLVM). In ear-
lier studies, the use of a standard shared GPLVM framework has been successful
in mapping between human silhouette and 3D poses [74], speech to facial motion
data [75], and non-humanoid animation from human motion data [76]. In our earlier
work [77], we modeled dynamic finger movement from surface EMG using a standard
shared latent space representation method, however, the selection of dimensionality
was heuristic. In Chapter 4, we describe a new strategy for handling the nonlinear,
high-dimensional and automatic selection of dimensionality involved in the mapping
of EMG inputs to hand pose kinematics.
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Chapter 3

Continuous and simultaneous
estimation of finger kinematics

Surface electromyography (EMG) signals are often used in many robot and rehabili-
tation applications because these reflect motor intentions of users very well. Despite
the success of pattern recognition-based control of the hand, natural hand movement
is continuous, coordinated and offers an infinite number of fine movement variations.
Studies for proportional myocontrol of finger movements has been comparatively few.
Though the use of time-domain EMG features have been tremendously successful in
classifying hand gestures, these may not give optimal estimation performance in the
case of proportional estimation because of inherent problems such as electromechani-
cal delays (EMD). In this chapter, we present the use of an EMG-to-Muscle Activation
model that parameterizes EMD for estimating simultaneous and multiple finger kine-
matics from multi-channel surface EMG signals.

Simultaneous and multiple finger joint positions, namely the metacarpophalangeal
(MCP), proximal interphalangael (PIP) and the distal interphalangeal (DIP) joints of
all 5 fingers in a hand are mapped from EMG signals using a data driven approach
using machine learning regression techniques. In this chapter, we have compared both
the performance of using a fast feed-forward artificial neural network (ANN) and a
nonparametric Gaussian Process (GP) regressor to estimate complex finger joint kine-
matics from muscle activation inputs. The results presented in this chapter demon-
strates a potential myoelectric control strategy that can be applied for simultaneous
and continuous control of multiple finger DOF(s) in robotic devices.
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3.1. Inherent problems of electromechanical delay

For any intended motor action, it is known that there occurs a time delay, which is
known as the electromechanical delay (EMD), between the onset of the EMG signals
and the exerted mechanical output such as force and tension produced in the move-
ment. EMD is also termed motor time or motor execution time in researches related to
fractionated reaction time [78].

(a) (b)

Figure 3.1: Examples of the electromechanical delays are shown as the time difference
between EMG and the onset of force or actuation. (a) Time delay between the root-
mean-square windowed EMG and the normalized recorded finger joint angle. (b) The
EMG and force are measured from the soleus and achilles tendon of a cat, respectively.
A delay of about 70 ms was found between the two measurements.

The EMD was originally found in locomotion studies in animals that used EMG
measurements. Figure 3.1b shows the EMG signal from the soleus of a cat during
gait. The force was measured directly from the achilles tendon. Notice that the EMG
starts about 70 ms prior to force and that the EMG ends about 70 ms before the force
ends. EMD has also been presented and observed by previous studies in EMG related
studies involving human leg and arm motions [22, 25]. A sample is shown in Figure
3.1a. The normalized filtered EMG signal (pink) leads the recorded joint angle (blue),
as EMG occurs first before force production of the task. EMD has been reported to
range from 10 ms to about 150 ms, but varies differently depending on the muscle fiber
type, muscle length, fatigue, training, and speed of the intended task [79].

EMD presents a challenging problem that must be resolved if valid and meaningful
relationships between EMG and force, moment, or movement patterns are to be estab-
lished [79]. Studies have shown that EMD varies differently and changes with certain
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pathology. Relatively short EMD has been observed in patients with cerebral palsy,
while prolonged EMD were seen in anterior cruciate ligaments or more commonly
known as ACL reconstructions [78]. However for cases under normal conditions, or in
studies with healthy subjects, constant EMD values has often been used to temporally
align EMG and force or movement related time profiles during recorded activities.

Vint et. al. concluded in their study that EMD approached a relatively constant
value regardless of initial tension levels and rate of force requirements [79]. They
suggested that the temporal alignment of the EMG and force or kinetic data is mainly
influenced by the state of pretension and the rate of force development. They suggests
that incorporating a constant temporal offset to align EMG and kinetic data may be
reasonable if the actions of interest are performed from nonresting conditions or if the
rate of force development is relatively fast. The value of the assumed EMD should be
determined in a manner that seeks to replicate the conditions under which the kinetic
data will be collected.

Thus, EMD cannot be ignored in EMG studies involving motor actions, and must
be considered accordingly.

3.2. EMG-to-muscle activation model

To learn a suitable filtered signal that automatically considers EMD, we introduce the
use of a so called EMG-to-Muscle Activation model. EMG is a measure of electrical
activity that spreads across muscles, which causes the muscles to activate. This results
to the production of force, to which the model used transforms the EMG signals to a
suitable force representation. A raw EMG signal is a voltage that is both positive and
negative, whereas muscle activation is expressed as a number between 0 and 1, which
is smoothed or filtered to account for the way EMG is related to force [25].

Zajac modeled this muscle activation dynamics using a first-order recursive fil-
ter [80]. Although a first-order differential equation does a fine job of characterizing
activation, Buchanan et. al. created a second-order model filter that works efficiently to
model the relationship between EMG and muscle activation [25]. Because the muscle
fiber is activated by a single action potential, the muscles generate a twitch response
and this type of response is well represented by a critically damped linear second-order
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differential system to determine neural activation u(t):

u(t) = M
de2(t)

dt2 +B
de(t)

dt
+Ke(t) (3.1)

where M, B, and K are constants that define the dynamics of the second-order system.
Because in the lab setting, the data are sampled at discrete time intervals, we make use
of their filter in its approximate discrete version given by:

u j(t) = αe j(t−d)−β1u j(t−1)−β2u j(t−2) (3.2)

where u j(t) is the so-called neural activation, and e j(t) is the normalized, rectified
and filtered EMG of muscle j at time t. In this model, α , β1, β2 are recursive coeffi-
cients of the filter and d is the EMD. Filter stability is guaranteed by putting constraint
conditions on α , β1, and β2.

β1 = γ1 + γ2 (3.3)

β2 = γ1 · γ2 (3.4)

|γ1|<1, |γ2|< 1 (3.5)

α−β1−β2 = 1 (3.6)

In the filter model, neural activation depends not just on the current level of EMG,
but also on its recent history, or the last values of u j(t) . Here, the value for the neural
activation is contrained from 0 to 1.

Also because studies have also shown that while some muscles have linear iso-
metric EMG-to-force relationship, the relationship for other muscles is nonlinear. To
model this nonlinearity between neural activation and muscle activation, the transfor-
mation to the muscle activation v j is then given by:

v j =
eA ju j(t)−1

eA j −1
(3.7)

where A j is a parameter that introduces the nonlinearity between EMG and muscle
activation, and is constrained between −3 and 0, with −3 being highly exponential
and 0 being linear. The effect that the parameter A j has on the muscle activation in
terms of the neural activation is described by Figure 3.2.
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Figure 3.2: The parameter A introduces nonlinearity between the neural activation and
muscle activation.

Using the model discussed, the pre-processed EMG is transformed to its muscle
activation dynamics, the converted signal is now suitable and can be used as a contin-
uous input to a regressor. The transformation from the raw EMG to its pre-processed
filtered form then to its muscle activation is seen in Figure 3.3.

The EMG-to-Muscle Activation model not only solves the EMD of the muscle,
but also requires only a few parameters. The parameters of this filter, γ1, γ2, d, and
A are obtained by using constrained nonlinear programming in Matlab’s Optimization
Toolbox to minimize a mean-square error cost function:

1
N ∑

t
(θest−θtarget)

2 (3.8)

where N is the total number of samples, and θest and θtarget are the estimated and mea-
sured finger joint angles, respectively. Aside from the constraints given in equations
3.3 to 3.6, the time delay parameter d is also constrained within its physiological limits,
which is between 10 and 150 ms.

If we only want to map the EMG signals to a single finger’s joint angles and if the
training time needs to be really fast, then a linear estimation of the joint angles to ob-
tain θest would suffice. However, EMG features were found to be nonlinearly related to
kinematics. In Hahne et. al’s work they showed that a polynomial fitting is needed to
model the variance of EMG and the radial trajectories of a wrist movement [8]. They
confirmed that using nonlinear regression methods or using nonlinear transformations
of well established EMG features gave a superior wrist angle estimation performance
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Figure 3.3: A sample raw EMG recording is low-pass filtered and converted to its
muscle activation form.

compared to linear methods. Building on from their work and because there is no
model that can clearly define the relationship between muscle activation and finger
joint kinematics, in this study, we use a data fitting approach based on machine learn-
ing regression models. Namely, we resort to using an artificial neural network and a
Gaussian Process as the nonlinear estimator.

3.3. Regression models

3.3.1 Artificial neural network

In general, artificial neural networks (ANN or NN, used interchangeably in this study)
are considered to be attractive for nonlinear modelling because of their ability to ap-
proximate any arbitrary functions [81]. Because of this, we estimated all 15 joint
angles of the fingers simultaneously and continuously using an ANN:

θest(t) = NN(v(t),w) (3.9)

where θest(t) ∈ R15×1 is the estimated finger joint angle, v(t) ∈ R8×1 is the muscle
activation input, and w are the weight parameters which represent the links between
the nodes or neurons.
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In our study, a multilayer feed forward network was used. The network is made
up of an input layer, a hidden layer(s), and a single linear output layer (see Figure
3.4). Generally, the use of this type of ANN belongs to a class in machine learning
called supervised learning. It is called in such a way because the training phase of the
learning is carried out in a way that the ANN regressor has to learn how to associate
each training input vector sample to an associated label called a target output.

Figure 3.4: The architecture of a multilayer feedforward artificial neural network.

An ANN consists of a topological graph of neurons, with each neuron computing
the activation function of the inputs and sends the result in the output layer. Suppose a
set of input features is denoted by x, then the first step to feedforward neural network is
to transform the inputs corresponding to the weights and shift by a bias factor specific
to each neuron given by a j:

a j =
D

∑
i=1

w(1)
ji xi +w(1)

j0 (3.10)

where the w ji are the given weights of each neuron. Here we assume that we have a
dataset D of n observations, denoted by D = {(xi,yi) | i = 1, ...,n}. Then a j is trans-
formed using a select activation function such as sigmoid or tan-sigmoid activation
function. In this thesis, a tan-sigmoid activation function given by z j was used.

z j = h(a j) =
ea j − e−a j

ea j + e−a j
(3.11)
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Then the elements of the output (or target) vector y is computed as:

ak =
M

∑
i=1

w(2)
k j z j +w(2)

k0 (3.12)

yk = ak (3.13)

It has been shown that for certain neural network topologies, with the right set of
weights and biases, any continuous function can be accurately approximated [81].

The use of an ANN has two phases; a training phase and a test phase. During
the training phase, the ANN is trained to return a specific output given a specific in-
put. Training is done by presenting the ANN a set of training data and adjusting the
parameters between each layer. The learning problem consists of finding the optimal
combination of weights w ji so that the network output approximates a given target
output as closely as possible. To achieve this, the training algorithm tries to minimize
a mean-square error between the target t and estimated output y values given by:

E =
1
N ∑

i
(yi− ti)2 (3.14)

In the test phase, the ANN returns the output based on the propagation of the input
through all the layers.

In the scope of the thesis, the input layer had 8 nodes coming from the muscle
activation of the each muscle, while the output has 15 nodes consisting of the finger
joint angles. To train the network, we input a set of training data to the neural network
and minimize a mean square error function. The most common way to minimize the
error is through the use of a backpropagation algorithm. But since another method,
such as the Levenberg Marquardt (LM) algorithm, appears to be the fastest method for
training moderate-sized feedforward neural networks. In this thesis, we used the LM
algorithm in Matlab’s Neural Network Toolbox to train the model.

We evaluated the network’s performance with various number of neurons in the
hidden layer, ranging from 5 to 250. Using a fixed training set, we chose the spe-
cific number of neurons in the hidden layer based on which solution gave the smallest
average error on an unseen test set. To avoid overfitting, total data set was divided
into a training and a validation set and apply an early stopping method during training
iterations [82].
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3.3.2 Gaussian process for regression

In this study, we also evaluated the finger joint angle estimator performance when
another general nonlinear estimator was used. We used a nonparametric Gaussian
Process (GP) regressor shown in equation below:

y = GP(m(x),k(x,x′)) (3.15)

where x is the input, y is the estimated output coming from the dataset denoted by
D = {(xi,yi) | i = 1, ...,n} and the GP is determined by a mean function m(x) and
covariance function k(x,x′). Relating this to the goal of estimating finger joint angles
from EMG signal, we can substitute x with v which is the muscle activation input, with
target y with joint angle estimate θest .

The main reason why we introduced the use of another regressor, in the form of
a more popular nonparametric Bayesian approach using Gaussian Process, is that we
wanted to see if estimation of the small finger joint angles, namely the PIP and DIP
finger joint angles, can be improved.

Gaussian processes regression is fundamentally different from feedforward net-
works. Rather than capturing regularities in the training data via updating neuron
weights, it applies a Bayesian inference to explicitly compute a posterior distribution
over possible output values y given all the data and the new input x [72, 83].

Formally, a GP generates data located throughout some domain such that any fi-
nite subset of the range follows a multivariate Gaussian distribution [84]. From an n
observations in an arbitrary dataset, y = y1, ...,yn, can always be imagined as a single
point sampled from some multivariate Gaussian distribution. Hence, such a data can
be partnered with a GP.

Very often, it is assumed that the mean of this partner GP is zero everywhere:

m(x) = 0 (3.16)

What relates one observation to another in such cases is just the covariance function
k(x,x′). A popular choice is a Gaussian or a squared exponential covariance function
given by:

k(x,x′) = σ
2
f exp

[
−(x−x′)2

2 l2

]
(3.17)
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where the maximum allowable covariance is defined as σ2
f . Here, σ f and l are called

hyperparameters. If x ≈ x′, then k(x,x′) approaches the maximum covariance value,
meaning the underlying function f (x) is nearly perfectly correlated with f (x′). Now
if x is distant from x′, then k(x,x′)≈ 0. So, for example, during interpolation at new x
values, distant observations will have negligible effect. The hyperparameter l controls
the effect of the separation between f (x) and f (x′).

Data are often treated with the consideration of noise. So each observation y can be
thought of as related to an underlying function f (x) through a Gaussian noise model:

y = f (x)−N (0,σ2
n ) (3.18)

Generally, the problem defined for a regression is the search for the underlying function
f (x) that can best model the data D. To consider the noise into the covariance function,
we can rewrite k(x,x′) as:

k(x,x′) = σ
2
f exp

[
−(x−x′)2

2l2

]
+σ

2
n δ (x,x′) (3.19)

where δ (x,x′) is the Kronecker Delta Function. So given n observations of y, the
objective is to estimate y∗ and not the actual f∗, whose expected values are identical but
with different variance due to the observational noise. To prepare the GP regression,
the covariance function among all the possible points are calculated which we denote
as the following:

K =


k(x1,x1) k(x1,x2) · · · k(x1,xn)

k(x2,x1) k(x2,x2) · · · k(x2,xn)
...

... . . . ...
k(xn,x1) k(xn,x2) · · · k(xn,xn)

 (3.20)

K∗ =
[
k(x∗,x1) k(x∗,x2) · · · k(x∗,xn)

]
(3.21)

K∗∗ = k(x∗,x∗) (3.22)

In GP modelling, the key assumption is that the data can be represented as a sample
from a multivariate Gaussian distribution,[

y
y∗

]
∼N

(
0,

[
K K>∗
K∗ K∗∗

])
(3.23)
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To estimate y∗, we are interested in the conditional probability p(y∗|y), which means
that given the training data y, how likely is a certain estimation for y∗ is. As explained
more in [72, 84], the probability follows a Gaussian distribution:

y∗|y∼N (K∗K−1y , K∗∗−K∗K−1K>∗ ) (3.24)

The predictive value for y∗ is the mean of the probability distribution:

ȳ∗ = K∗K−1y (3.25)

and the uncertainty in the estimate is capture by its variance:

var(y∗) = K∗∗−K∗K−1K>∗ (3.26)

The reliability of the GP regression is highly dependent on the chosen covari-
ance function. A maximum posterior estimate of the hyperparameters w (e.g. w ={

σ f ,σn, l
}

) occurs when the posterior probability p(w|x,y) is at its greatest. Baye’s
theorem tells us that, assuming there is little prior knowledge about what w should be,
this corresponds to minimizing the negative log likelihood given by:

ln p(y|x,w) =−1
2

y>K−1y− 1
2

ln|K|− n
2

ln 2π (3.27)

Running a multivariate optimization algorithm (e.g. conjugate gradients), good choices
for w can be obtained [72].

In this thesis, GP regression was implemented using the Gaussian Process Regres-
sion and Classification Toolbox [85]. The EMG data was re-normalized and standard-
ized to have the mean value of each feature equal to 0 and the standard deviation equal
to 1. The input feature that we used was the 8-dimensional muscle activation feature
vector as discussed previously in Section 3.2. The GP configuration used an assumed
mean function of 0. The likelihood function was assumed to be Gaussian (with one
hyperparameter σn), and the covariance function to be a squared exponential function,
which takes two additional hyperparameters (a characteristic length-scale, l and unit
signal standard deviation, σ f ) [72]. An exact inference method was used, and we op-
timize over the hyperparameters by minimizing the negative log marginal likelihood
w.r.t. to the hyperparameters.

Unlike in the use of the ANN where one network produced all 15 joint angle out-
puts simultaneously, a dedicated GP regressor was created for each DOF. In the training
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stage, 15 GP regressors were individually trained and then used to estimate simulta-
neous movements of all 15 DOFs. Also, because the learning from the log-likelihood
involves the computation of the inverse of K, which is the covariance matrix whose
complexity grows as the size of the input or output matrix increases.We used a fixed
interval sampling to reduce the number of training samples which significantly reduces
the hyperparameter learning and training time needed.

3.4. Methods

3.4.1 Experimental setup

The system is mainly composed of a wireless multi-channel surface electromyograph
and a 3D optical motion capture device. Surface EMG signals, as well as the kinemat-
ics of unrestrained and continuous hand and finger movements, were simultaneously
recorded.

Participants

Similar to contemporary studies that proposed new EMG-based control strategies for
hand control [22–24, 26, 39, 40], healthy, able-bodied subjects participated in the ex-
periments, which can be an initial basis before testing with disabled or amputated
subjects. Ten healthy participants (7 male, 3 female, aged 27±4 years), who gave
informed consent to participate in the experiment protocol, volunteered in this study.
The participants had no previous experience with myoelectric control nor with any 3D
motion capture experiments.

EMG recording

For all the subjects, surface EMG signals were extracted from eight extrinsic muscles
of the forearm that are known to contribute to wrist and finger movements. Four flexor
muscles and four extensor muscles in the forearm were targeted. These target muscles
along with their corresponding function related to any hand or finger movements are
listed in Table 3.1.
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Channel 1
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(a) EMG Placement (b) Camera Setup

Figure 3.5: Experimental setup. (a) The surface EMG setup and the general view of
EMG placement on a subject. The corresponding target muscle for each channel is
shown in Table 3.1. (b) Overview of the 3D motion camera system.

Eight bipolar active-type Ag-AgCl electrodes from Ambu, with an average inter-
electrode distance of 20 mm were placed on the the subjects as shown in Figure 3.5.
The target muscles were mostly found by palpation, anatomical landmarks described
in [86], and by visual inspection of the signal that gave the best response to describe
the movements listed in Table 3.1. A single electrode was also placed on the subjects
olecranon to serve as a ground and reference electrode. The surface electrodes were
connected to a BA1104 pre-amplifier with a telemetry unit TU-4 (Digitex laboratory
co. ltd.). The hardware provided a low-pass filter with cut-off frequency of 1 kHz
during the EMG data acquisition process. The EMG signals were sampled at 2 kHz,
and were digitized by an A/D converter with 12-bit precision. The EMG signals were
displayed on a real-time monitor and visually inspected to ensure quality of the signal.

Finger kinematics recording

While finger movements were made, the hand and finger motion were recorded si-
multaneously using a MAC3D motion capture system (Motion Analysis Corp.). The
camera set-up using the mounted Eagle cameras is shown in Figure 3.5b. Twenty-two
passive reflective markers for motion capture were attached on the subject’s hand, with
a marker located on each joint of the finger and three in the wrist area (see Figure
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Table 3.1: Selected EMG channels and the target muscles
Channel Target Muscle Hand/Finger

1 Abductor pollicis longus Thumb abduction
2 Flexor carpi radialis Wrist, hand flexion and abduction
3 Flexor digitorum superficialis 2-5th finger PIP flexion
4 Flexor digitorum profundus 2-5th finger DIP flexion
5 Extensor digitorium 2-5th finger extension
6 Extensor indices Index finger
7 Extensor carpi ulnaris Wrist extension and abduction
8 Extensor carpi radialis Wrist and thumb

Source: Anatomy and Kinesiology of the Hand [86].

3.5a). Small 6-mm diameter markers were used to reduce switching marker errors and
to avoid getting the markers too close to each other. The optical cameras were po-
sitioned and calibrated to capture a volume (500× 700× 500 mm) space that would
be able to effectively see and measure the small markers. The Cortex software from
Motion Analysis was used to concurrently record the EMG and motion data. A sample
skeleton model used in the marker data acquisition is shown in Figure 3.6b.

The marker trajectories were sampled at 200 Hz with measurement units in mil-
limeters, having residual errors of less than 0.5 mm (as indicated during the Cortex
calibration procedure). With the x, y, z positions of each marker continuously recorded,
the joint positions, namely the MCP, PIP, and DIP joint angles, were calculated. Be-
cause the thumb does not have a DIP joint, the carpometacarpal (CMC) joint was
considered before the MCP joint.

Figure 3.6: Marker placement and sample skeletal model of the hand.
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3.4.2 Data collection

The participants, seated with their hand and elbow comfortably positioned on a flat
surface table, were asked to do basic continuous finger movements. A demonstration
of target finger movements as shown in Figure 3.7 were shown and instructed to the
subjects. Because the main aim of the kinematic data is for estimation of continuous
movement, all the subjects were asked to produce the movement rather than on exert-
ing high forces. In this study, the set basic finger movements were different indivudual
and multiple finger flexion and extension movements. These were selected from hand
taxonomy and rehabilitation literature that primarily targets continuous finger move-
ments [87–89]. Set of movements that involve static postures and object handling were
not included since these motions had little kinematics and larger forces involved.

The subjects were tasked to do the following tasks shown in Figure 3.7. Task A
(blue) consists of periodic flexion-extension movements from each individual finger.
Task B (green) involves moving all fingers simultaneously in the flexion-extension
plane. This motion resembled the opening and semi-closing of the hand. Full closing
of the hand was not possible as some markers at the tip of the fingers would not be seen
by the motion capture system. Task C (red) involved moving any finger/s freely in any
direction. Irregular movements and random finger combinations of flexion-extension
movements were encouraged from the subject. The inclusion of Task 3 was motivated
to introduce non-periodicity and some degree of randomness into the dataset.

Figure 3.7: Finger movements divided according to task.
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Figure 3.8: Experimental procedure in sequential order for Task A, B and C.

In the first two tasks, the subjects mainly did MCP flexion and extension, in which
the PIP and DIP followed the movements of the MCP joint. The first task consisted
of 5 sets of movement, one for each finger. While the remaining tasks consisted of 1
set each. Each set consisted of 5 trials with each trial lasting 20 seconds. All the trials
were sequentially done and the participants were allowed to rest anytime throughout
the experiment. This experimental protocol is shown in Figure 3.8. The subjects could
make as many movements but were instructed to move in their own perceived normal
velocity (≤ 2 cycles of movement per second) and to maintain the least amount of wrist
ulnar/radial angle deviation. All the movements were limited to finger flexion and
extension movements while the rest of the arm (e.g. wrist, elbow, etc.) maintained a
fixed position upon instruction. Markers on the wrist joint were also recorded to ensure
that the wrist maintained in a fixed position, with minimal ulnar/radial angle deviation.
This dataset can be downloaded in the Dynamic Brain Platform database [90].

After collecting the EMG data along with the motion capture of the finger move-
ments, separate trials were also done to obtain a maximum voluntary contraction
(MVC) of each muscle. The subjects were asked to flex their hands and fingers in
all possible planes of movement to try and induce maximum contractions for all the
targeted muscles in the forearm. However, it is very hard to obtain the true maximum
EMG values, so we instead obtained the maximum rectified EMG value from all the
trials including the separate trials for obtaining the MVC of each muscle.

Eighty percent of all the recorded data were used for training and validation and
the remaining twenty percent were used for testing. All the data in each task were
concatenated together to form a larger training and test dataset. However, the data
were separated and were analyzed separately for each subject.
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Table 3.2: Finger joints normal range of motion.
Finger Joint DOF Type of Motion Theoretical Range Measured Range

Thumb CMC 1 Hyperextension/Flexion −10/55 deg 9.86/50.06 deg
Thumb MCP 2 Hyperextension/Flexion −10/55 deg −3.05/56.51 deg
Thumb IP 3 Hyperextension/Flexion −15/80 deg −4.52/57.27 deg
Index MCP 4 Extension/Flexion −45/90 deg −39.97/62.29 deg
Index PIP 5 Extension/Flexion 0/100 deg −14.95/72.55 deg
Index DIP 6 Extension/Flexion 0/80 deg −16.96/45.51 deg
Middle MCP 7 Extension/Flexion −45/90 deg −34.07/69.39 deg
Middle PIP 8 Extension/Flexion 0/100 deg −16.87/80.07 deg
Middle DIP 9 Extension/Flexion 0/80 deg −15.15/57.07 deg
Ring MCP 10 Extension/Flexion −45/90 deg −26.35/62.51 deg
Ring PIP 11 Extension/Flexion 0/100 deg −15.34/88.58 deg
Ring DIP 12 Extension/Flexion 0/80 deg −14.52/58.94 deg
Little MCP 13 Extension/Flexion −45/90 deg −14.31/69.27 deg
Little PIP 14 Extension/Flexion 0/100 deg −14.66/72.94 deg
Little DIP 15 Extension/Flexion 0/80 deg −10.09/84.54 deg

Dataset: Technical Validation

The range of motion given for each of the 15 DOFs is presented in Table 3.2 taken from
the average of all the subjects. These were based from the minimum and maximum
value of the computed joint angle kinematics. Table 3.2 reflects the variability in range
of finger motions that the subjects are capable of. Attributes such as the physical
lengths and widths of the finger joints contributed to the change in range of motions.

To ensure the quality of the dataset obtained, we evaluated the effect of experimen-
tal conditions (Task Movement, Trial Repetitions and Subject) on the recorded signals.
In particular, we consider the amplitude of the finger kinematics (Fig. 3.9a-c) and of
the pre-processed surface EMG (Fig. 3.9d-f). The test was performed with a one-way
Multivariate Analysis of Variance (MANOVA) using Matlab similar to [89].

Many factors can affect the amplitude of the kinematic signals such as acquisition
setup, subject execution strategy and some degree of choice of multi-finger move-
ments. Significant differences were found across different task movements (P < 0.01)
and subjects (P < 0.05). In particular, Task 6 and 7 had larger variance compared
to other tasks as these corresponded to all finger movement and random multi-finger
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selection, respectively. Task 1 to 5, on the other hand, corresponded to single finger
flexion-extension movement. Tasks 2 and 3 (index and middle finger) and Tasks 4 and
5 (ring and little finger) were found to be statistically similar. To check for consisten-
cies across the data, no significant differences were across trial repetitions (P > 0.05).

Similar findings were found in the analysis of sEMG amplitudes across varying
groups. Significant differences across different subjects (P < 0.01) are acceptable as
they can be characterized by different anatomical features and execution strategies.
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Figure 3.9: Experimental conditions’ effect on the recorded data. The x-axis corre-
spond to different conditions: task movement, trial repetitions and subject. The y-axis
correspond to normalized kinematic and sEMG values.
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3.4.3 Data processing

EMG signal

The raw EMG signals were first preprocessed into a form, that after further manipu-
lation, can be used to estimate muscle activation [25]. The EMG signals were then
rectified, normalized by dividing by the peak rectified EMG obtained, and low-pass
filtered (4 Hz cut-off frequency, zero-phase 2nd-order Butterworth filter). This is done
prior to obtaining the muscle activations, which are highly related to muscle force
found in low frequencies [25]. The muscle activation parameters were then obtained
through the process explained in Chapter 3.2. The obtained muscle activation features
were then downsampled to 200 Hz to match that of the motion data.

For comparison, well established and commonly used time-domain EMG features
were extracted and evaluated with the proposed muscle activation features. To show
that the finger kinematic estimation performance was better using the proposed muscle
activation model that considers electromechanical delay, we used four conventional
time domain (TD) features, namely the Mean of the Absolute Value (MAV), Waveform
Length (WL), Willison Amplitude (WA) and Variance (VAR) [91, 92].

• Mean of the Absolute Value (MAV):

MAV =
1
N

N

∑
i=1
|xi| (3.28)

• Waveform Length (WL):

WL =
N

∑
i=1
|xi− xi−1| (3.29)

• Willison Amplitude (WA):

WA =
N

∑
i=1

f (|xi− xi−1|) (3.30)

where f (x) is 1 if x > threshold, or 0 if otherwise.

• Variance (VAR):

VAR =
1

N−1

N

∑
i=1

(x(i)2)) (3.31)
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Figure 3.10: Schematic overview of the data processing and model training.

These features provide different information such as those pertaining to signal am-
plitude, frequency, extent of muscle contraction, and extent of the firing of motor unit
action potentials. The length of the sliding window was 200 ms with a 25 ms overlap.
In the preliminary investigation (not reported) of this study, other time and frequency
domain features gave high correlation with the four features used and did not pro-
vide better estimation performance. These features were also used by most of the
previous studies that performed finger joint kinematic and dynamic estimation from
EMG [22–24, 70].

Finger kinematics

Each of the five fingers produced all three joint angles of interest. The tasks were
constrained to moving the fingers only in the flexion and extension plane, thus, a total
of 15 DOFs were considered. The joint angles were computed from the recorded
marker trajectories. A low-pass filter with cut-off frequency of 10 Hz was also applied
on the motion data, to remove any noise and jitters in the signal.

In the regression step, however, to standardize and scale all the joint angle values,
we normalized each finger DOF to show a scaled value from 0 to 1. Normalization
of each joint angle data was done by subtracting the minimum of the joint angle to
each sample and dividing it by the difference between the maximum and minimum
measured joint angle. The whole data processing and model training is shown in Figure
3.10.
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3.4.4 Statistical analysis

A five-fold cross validation procedure was used to evaluate the overall statistical per-
formance of the two different estimators and when different input features were used.
Two performance indices were chosen to evaluate how accurately each finger DOF
was estimated. The Pearson’s correlation coefficient or the R-value index describes the
total variation between the actual and estimated samples, while the normalized root-
mean square error (NRMSE) describes the total residual error. These two performance
indices are defined as the following:

Ri =
∑

N
t=0(θact−µact)(θest−µest)√

∑
N
t=0(θact−µact)2

√
∑

N
t=0(θest−µest)2

(3.32)

NRMSEi =

√
∑

N
t=0(θact−θest)2

N
(3.33)

where θact and θest are the normalized actual measured and estimated DOFs, respec-
tively, µ represents the mean and Ri and NRMSEi are the correlation coefficient and
normalized root-mean-square error of the ith DOF, respectively.

Three different statistical analysis procedures were made in this study. A three-way
analysis of variance (ANOVA) was done to compare the effects of different factors on
the global estimation performance when NN regression was used. The different factors
that we considered were the subject (S1-S10), the finger DOFs (15 DOF) and the type
of input feature (filtered EMG, TD-based or muscle activation) used. When significant
interaction was detected, focused ANOVA was conducted by fixing the levels of one
of the interacting factors [73]. When no interaction was detected, a reduced ANOVA
model with only the main factor was performed. Tukey-Kramers post-hoc comparison
test was performed when significance was detected. The second procedure was a one-
way ANOVA followed by the same post-hoc comparisons, which was used to compare
any significant differences in the obtained parameters, such as the EMD between sub-
jects. The third and final one was to investigate the effects of using different regression
models or methods (such as GP versus NN) on the global estimation performance.
Separate t-tests and ANOVA were used for this procedure. The significance level was
set to 95% and all the procedures mentioning the global estimation performance were
performed on results of the test sets.
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3.5. Results

The main motivation in using an EMG-to-Muscle Activation model as input features
in estimating continuous finger joint angles as discussed in Chapter 3.2 was that it
considered electromechanical delay as a parameter.

Figure 3.11b and Figure 3.11c show two estimation results of a single index finger
joint angle movement in a periodic flexion and extension task, one using low-pass
filtered EMG, and the other using Muscle Activation inputs. Here, the estimator was an
ANN trained from processed inputs shown in Figure 3.11a. Using the proposed EMG-
to-Muscle Activation model is not only biologically plausible but it also determined an
optimal estimate of the EMD, and requires only a few parameters for the input features.
By considering EMD, we can see in Figure 3.11a that this shifts the muscle activation
signal almost suitably aligning with the motion data.

With the neural network and Gaussian Process regressors trained, all 15 finger
DOFs were estimated simultaneously.
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Figure 3.11: Single joint angle estimation using different EMG inputs.
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Figure 3.12 shows a representative estimation result taken from 1 test trial from
a subject. In this result, the subject performed simultaneous joint flexion and exten-
sion of all finger joints. Though only the MCP finger joint angles are shown in the
figure, the PIP and DIP angles showed consistent results with the MCP angles since
this task involved the flexion and extension of all joints simultaneously. The NN and
GP regressors were trained with 4800 samples. The average correlation coefficient of
the GP-estimated results were significantly higher than the NN-estimated results (R,
0.84± 0.0378 versus 0.71± 0.0981; P < 0.001). With more training samples used,
correlations between the actual and estimated value for a single DOF reached as high
as 0.92 for the MCP joint angle estimation. While the DOFs for the smaller finger PIP
and DIP joints reached as high as about 0.85 and 0.79 in correlation, respectively.

The results in Figure 3.13 and 3.14 show that using muscle activation input features
not only parameterizes and considers EMD, but also gives better overall estimation re-
sult. The global estimation performance between three types of input: filtered EMG
without EMD considerations, TD-based features and the proposed muscle activation
inputs are shown. The figure shows the overall mean correlation coefficients and mean
normalized root-mean-square error (NRMSE) of the actual and estimated joint kine-
matics of all the test data. In figure 3.13, the proposed model using the muscle activa-
tion inputs, shown in red, performed better than other features shown in blue and green
(averaging 7.38%± 1.64% better than TD features and 13.13%± 2.04% better than
filtered EMG features). Significant differences were found when the correlation value
using the muscle activation inputs was compared to the TD-based features (P < 0.006)
and to the filtered EMG inputs (P < 0.001).

In figure 3.14, the estimated finger kinematics using the muscle activation inputs
across all DOFs had an average root-mean-square error of 11.53%± 1.76%. Signifi-
cant differences were also found when NRMSE using the muscle activation inputs was
compared to the TD-based features (P(R3,L2,L3) < 0.05; P(others) < 0.03) and to
the filtered EMG inputs (P(L3)< 0.05; P(others)< 0.01).
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Figure 3.12: One representative estimation result. 5 out of the 15 normalized finger
joint angles are shown in blue solid lines, while the NN and GP estimated results are
shown in green and red, respectively. Below are the 8-channel processed EMG which
includes the following: rectified EMG (green), low-pass filtered EMG (blue) and the
transformed muscle activations (red). In this test data, the parameters obtained for the
muscle activation model were: A =−3, d = 0.045, γ1 = γ2 =−0.9539. The labels on
the y-axis of the plots correspond to the target EMG channels (in Table 3.1).
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Figure 3.13: The mean correlation coefficient between the measured and estimated
finger joint angle. The left figure shows the result for the MCP joints, and the right
figure shows the PIP and DIP joints. The x-axis letter labels represent the thumb,
index, middle, ring, and little finger.
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A three-way ANOVA testing the effects of different factors such as across different
input features, across subjects and across finger DOFs showed significant differences
in the correlations of the resulting estimation performance between the factor groups.
Across the different input features used, the use of the proposed muscle activation
features had significant differences, performing consistently better than other types
of features used. Significant differences were also found between the different mean
correlation coefficients across subjects and the finger DOF groups (P < 0.001). Sig-
nificant interactions were found for the Subject-Finger DOF and Subject-InputFeature
pairs (P < 0.001), while no significant interaction was found in the Finger DOF-Input
Feature interaction (P= 0.110). Tukey-Kramers comparison test found that the estima-
tion performance among the three different input features used were different (correla-
tion coefficient: muscle activation > TD-based > filtered EMG and NRMSE: muscle
activation < TD-based < filtered EMG).

In Figure 3.15, the obtained EMD parameter across the 10 subjects in different
experiment trials are plotted. The optimized EMD value ranged from 39.6 ms to 75
ms. No significant difference was found among the mean of the EMD values obtained
across the 10 subjects (P= 0.24). This supports our assumption that the obtained EMD
across the subjects did not drastically change as the subjects tried to do the target tasks
at constant velocity or at their normal and consistent pace across the trials. Obtaining
an optimal value for the EMD using the optimization method described in the paper is
important and can significantly improve the estimation performance compared to when
no EMD is considered.
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Figure 3.15: The EMD parameters obtained across all the subject participants. The
electromechanical delay parameter obtained through optimization across different tri-
als ranges from 39.6 ms to 75 ms, with a mean of 42 ms.
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Figure 3.16: The correlation coefficient (R) and the normalized root-mean-square error
(NRMSE) of the measured and estimated finger DOFs are shown when the NN and GP
regressors were used.

In Figure 3.16, the estimation performance is shown between the two regression
methods used, namely using the NN and GP regressors. The estimation performance
comparing the results in NN and GP regression averaged over 10 subjects are shown

53



0 500 1000 1500 2000 2500

Training set size (samples)

0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
R

M
S

E

NN Training Set Error
NN Test Set Error
GP Training Set Error
GP Test Set Error

Figure 3.17: Learning curves of the neural network and Gaussian Process Regressor.
The y-axis shows the mean NRMSE while the number of training samples was varied.
The number of test data samples remained fixed across all the subjects.

in this figure. For these results, the GP performed consistently better in all the subjects
than the NN specially when training samples were sufficient. GP showed an average
of 7.18% higher correlation performances than NN regression between the actual and
estimated finger kinematics and when trained with 4800 samples. There was also sig-
nificant differences in the obtained correlation coefficients between GP and NN regres-
sion (P < 0.001). Overall, estimation of the MCP joint angles performed consistently
better than the PIP and DIP estimation.

As the size of the training sample increases, NN performs better or much closer
to GP with no significant increase in computation time, while GP computation suffers
with the increase. Figure 3.17 shows the global performance of the estimators that we
used, plotting the average RMSE of all the joint angles when the number of training
samples was varied. As few as 250 samples for GP can give almost equal or even better
performance as when more than 1800 samples are used to train a neural network.
With more and more training samples available that captures more variability in the
EMG and kinematics data, the neural network performs better reaching to the point
where estimation performance is very close to GP as shown in Figure 3.12, where the
estimation results showed the NN and GP performance over 4800 training samples.
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3.6. Discussion

In this chapter, we presented a feasibility of estimating all finger joint kinematics using
surface EMG that even considers electro-mechanical delay present in EMG-to-motion
estimation applications and analysis. Compared to the use of pattern classification
techniques used previously by many studies, we have presented results in doing si-
multaneous and proportional control of multiple finger DOFs comparing two different
regression methods using EMG.

This chapter presented results taken from the smaller finger PIP and DIP joint an-
gles, which have been rarely reported in any previous studies. Overall, our proposed
method, which used the EMG-to-Muscle activation model, showed comparable, and in
some instances, a more superior performance compared to that of the previous studies.

From the results of the ANOVA tests, we have shown that there are significant dif-
ferences in mean estimation performance across difference factor groups such as across
different types of input features used, across different subjects and across the finger
DOFs. As mentioned previously, the use of the proposed muscle activation inputs gave
a consistently better estimation performance compared to when other types of features
were used. For the subject group used in this study, the 7 subjects’ estimation perfor-
mances, both correlation coefficients and RMSE between the estimated and measured
DOFs, were slightly, significantly better than the other 3 remaining subjects. It is not
clear why some of the subjects performed poorly than the others, although the choice
of random finger movements in the free movement task set across the subjects were
different. Some of the subjects chose to do periodic flexion and extension movements
in the free moving task while others chose to do more random, nonperiodic and more
varying simultaneous and multiple finger movements. As for the differences across the
finger DOF group, this can be attributed to the better performance achieved in estimat-
ing the MCP joint DOFs than in the PIP and DIP joint DOFs. The MCP DOFs have
more independent movements than the PIP and DIP, which are more closely coupled
and have dependent movements.

3.6.1 On using the EMG-to-Muscle activation model features

Processing the raw EMG signals into its muscle activation dynamics was straightfor-
ward. Training was fast and requires only a few parameters which is suitable for prac-
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tical applications. For most trials, the EMD obtained ranged from 45 to 65 ms, suitably
aligning the EMG onset to the motion data. We hypothesize that this model works very
well for motion with constant velocities, as EMD has been known to change with the
velocity and frequency of the task movement [78]. In the paper [93], the authors pre-
sented the time constants of the filters used in analyzing surface EMG, which ranged
from 10 to 150 ms. It was also mentioned that the time constant should be changed
adaptively to the data. In our method, the appropriate filter parameters, including the
EMD in the muscle activation model were obtained through an iterative optimization
procedure that minimized reconstruction error.

In our previous study, for periodic motion, the PIP and DIP angles followed move-
ments similar to the MCP angles, but for random motions, it may totally differ. The
input feature sets that we used do not give an explicit feature that relates the angles
to one another [94]. However, compared to feature sets used by previous studies, the
proposed set of muscle activation features performed better.

Furthermore, compared to reported EMD values in the other studies, the range
obtained is comparatively smaller compared to those taken from the lower limb during
cycling tasks [78] or from the upper limb during object-carrying tasks [71]. This can be
attributed to observations such as the tasks involved in this experiment are faster, have
smaller deviation in movement trajectories, and that the targeted muscles in the forearm
are physically smaller. However, it is hypothesized that as the frequency or velocity
of the finger movement tasks increases, then the EMD values may also significantly
change.

3.6.2 Neural network versus gaussian process regression

Currently, there is no existing model that can best describe the relationship between
EMG and finger joint kinematics. This is the main reason why we chose an artificial
neural network and a Gaussian Process regressor, as these give a model-free approach
in mapping the EMG signals to the corresponding finger kinematics.

Using artificial neural networks has been the primary choice in mapping the EMG
to kinematics application, however, in this study we present the use of a nonparametric
Bayesian approach through the use of a GP regressor. GP can give better estimation of
the joint angles using fewer training samples as shown in Figure 3.16 and 3.17. This
advantage is particularly important in not only reducing the amount of training time
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but in potentially reducing the amount of experiment protocol needed to capture large
variations in the training data. In many myoelectric control strategies that are based on
supervised learning, subjects have to retrain day after day as EMG signals are highly
variable. With GP regressors, higher estimation accuracy compared to using neural
networks can be achieved using fewer training data. Although not shown, using GP
outperformed any neural network configuration, such as single output or multi-output
network configurations [95], in the case of only few training samples available.

However we should point out that, though GP can handle missing data more readily
than neural networks, the computation time becomes significantly higher in the former
as the size of the training data increases. It took about 10 times longer to train the GP
than the ANN. But with increasing computing capabilities of CPUs and computers, it
will be but a matter of time before Bayesian regressors can be fully realized in practical
applications. Also, in this study, the choice of covariance function was a standard
Gaussian function. Other suitable choices for the covariance and mean functions may
exist that can better improve the estimation performance, however, these have not been
explored in this study. For this work, using GP regressors gave promising results in
terms of getting better estimation using fewer training samples.

Also, in this study, we are estimating 15 finger joint kinematics simultaneously
from eight muscle activation inputs. However, a dimensionality analysis on the hand
kinematic data suggests that the effective dimension is less than the total DOFs avail-
able anatomically on the hand. By applying a Principal Component Analysis (PCA)
on the finger kinematics data, the analysis showed that only the first 4 to 6 principal
components explained the vast majority of the variance in hand posture. PCA was
performed not only on the joint angular position data, but also on the joint angular
velocities data because these are said to be more closely related to the motor com-
mand’s driving moment [15]. This is consistent with earlier studies, where it was
shown that despite the hand having more than 20 DOFs, the effective dimensionality
is much lower [69]. This can be attributed to factors such as mechanical constraints in
the structure of the hand, high correlations of movements between joints and possibly
the existence of synergies [66, 69]. However, the extent to which each of these DOFs
is independently controlled during movement is still not completely understood.
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3.6.3 Application: control of a finger exoskeleton

Most of the analysis has been done offline, in this section, we show that the proposed
method is also suitable in real-time applications. In using the proposed muscle ac-
tivation model, training and optimization is fast as there are only a few parameters
needed in the transformation of the input features. Simultaneous and proportional es-
timation of multi-finger DOFs with the neural network regressor can be done real-time
with delays of less than 100 ms. A practical real-time application using the proposed
method in controlling a custom-built one-finger exoskeleton is presented in our previ-
ous study [96].

The design construction of an optimal 3-DOF index finger exoskeleton using a
four-bar linkage design is presented in [96]. This customized finger exoskeleton shown
in Figure 3.18c was designed to be portable and low-powered, easily adjusted for both
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Figure 3.18: An application showing an EMG-based control of an index finger ex-
oskeleton. The recorded EMG on both left and right hand are shown and the robot was
controlled with input commands coming from the estimated joint angles.
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Table 3.3: Performance of the nonlinear estimator and the actuation of finger exoskele-
ton across the three DOFs.

Estimator Exoskeleton

Joint Angle R-value RMSE R-value RMSE
MCP 0.93 3.44 0.88 4.10
PIP 0.85 8.16 0.76 9.69
DIP 0.80 9.10 0.71 10.44

clinical or personal use. The linkages were customized to the users according to their
own motion data and were then synthesized using rapid prototyping. To actuate and
control the finger exoskeleton, an inexpensive Arduino Mega micro-controller was
used to send the processed EMG motor commands to the exoskeleton. To actuate the
MCP, PIP and DIP joints using the current prototype, a GWS Micro-MG and two Mi-
niS RB90 mini RC servo with rated torques of 5.4 kg-cm and 1.6 kg-cm, respectively,
was used due to its high power-to-weight ratio. To help support the exoskeleton, which
weighed about 50 grams, an external support was added.

In the previous work [96], training was done using a mirror training scheme where
the EMG data were obtained from a contra-lateral hand and were used to actuate the
finger exoskeleton on the opposite hand. A subject was asked to move his left index
finger in the flexion and extension plane while the right index finger was actuated by
the exoskeleton using EMG inputs from the left side (Figure 3.18a). No exerted EMG
effort came from the right finger to show that it was indeed assisted by the exoskeleton
(Figure 3.18b).

The joint angle test prediction result is shown in Figure 3.18d, when the EMG was
transformed into its muscle activation and used as input to predict the index finger
joint angle. The blue plot shows the measured joint angle obtained from the left index
finger, while the red plot shows the predicted joint angle from the regressor. The green
plot shows the actuated motion of the finger exoskeleton on the right index finger. The
performance of the estimator and as well as the actuation of the exoskeleton is shown
in Table 3.3. Correlation as high as 0.9 and root-mean-square percentage error of less
than 5 degrees were obtained between the predicted and estimated index finger MCP
joint angles. Prediction of the PIP and DIP joint angles also gave reasonable results
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with correlations of above 0.75 and 0.7, respectively. One way to increase estimation
performance for the PIP and DIP joint angles is to explicitly consider correlations
between these joints.

Overall, the predicted finger joint angles were enough to actuate the exoskeleton
and to continuously assist finger flexion and extension movement. The subject felt
that enough support was given to his right index finger and that the actuation of the
exoskeleton was almost about the same time as the movement execution of the left
index finger.

3.6.4 Implementation and limitations

The current subjects have been limited to healthy, able-bodied subjects to test the fea-
sibility of our approach. This can be used as a benchmark for future implementation
and validation for training amputees or subjects with hand impairments. The estima-
tion of finger joint kinematics has also been confined to a static wrist and arm position.
Changing the wrist’s position may influence finger joint estimation from EMG similar
to those observed by Jiang et al. [97]. One possible solution is to increase the amount
of training data by adding finger joint information at different positions of the arm and
wrist. However, getting this amount of data may be impractical to apply in the real
application setting. So there is a need to check if the GP can handle variations in the
arm and wrist position. If dynamic arm and wrist position are to be considered, some
form of hierarchical model may be considered. Currently, only the neural network has
been fully tested on a real-time application. Other works are currently ongoing, which
includes implementing other regression models in real-time.
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Chapter 4

Using nonlinear synergistic model for
proportional myoelectric control of
high-DOF finger postures

Proportional myoelectric control of multiple degrees-of-freedom (DOF) in active fin-
ger joints is important in replicating dexterous hand motion in robotic prosthesis. This
is still difficult to achieve as current myoelectric control strategies often require the sep-
arate control of each joint and do not consider the high-DOF and strong correlations
that exist between these joints. To address this problem, in this chapter, we propose us-
ing a shared low-dimensional representation based on nonlinear synergies to represent
both the high-DOF finger joint kinematics and the coordination of muscle activities
taken from electromyographic (EMG) signals in the forearm. A Bayesian Gaussian
Process Latent Variable Model is used to learn a shared latent structure model that not
only allows the automatic selection of the dimensionality of the shared information
variance observed in EMG and hand kinematic data.

We demonstrate that dexterous finger movements can be represented in a small
dimensional space using nonlinear synergistic representations and that the proposed
method outperforms commonly used simultaneous regression and linear dimension-
ality reduction methods such as principal component analysis. Finally, we show that
the proposed method is able to reconstruct the full-joint continuous finger kinematics,
where data is generated from an inferred latent manifold.
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This chapter presents a novel myoelectric strategy for overcoming the limitations of
simultaneously estimating only a few DOFs available in the hand using muscle activa-
tion inputs. A generative model coupled with a nonlinear dimension reduction method
is presented, to reconstruct the kinematics of a full 23-joint skeletal hand model. Where
studies have shown individual synergy models for muscle activation and finger kine-
matics, we present the use of a shared model between these two different but highly
correlated data. An overview of this framework is shown in Figure 4.1. We show
that by using of a Bayesian Gaussian Process Latent Variable Model (GPLVM) with
automatic relevance determination (ARD), a shared latent space can be learned. We
also analyze how a synergistic model can be useful and interpreted in the context of
myoelectric estimation of high-DOF finger kinematics. Building from our previous
work [98], the combined use of an EMG-to-Muscle Activation model coupled with
a Bayesian inference method can be used for estimating high-DOF finger kinematics
from EMG.

𝑋 𝑌 𝑍 
EMG 

Finger 
Kinematics 

GP-LVM GP-LVM 

Figure 4.1: Schematic overview of the proposed shared latent representation method.
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4.1. Bayesian GPLVM for multi-observation

Gaussian processes (GPs) are powerful models that can be used for classification or re-
gression that incorporates numerous classes of function approximators [72]. In a previ-
ous study, Lawrence proposed the Gaussian Process latent variable model (GPLVM) as
a new technique for nonlinear dimensionality reduction that uses GPs to find a nonlin-
ear manifold to preserve the variance of the data in a latent space representation [99].

Several studies have been proposed to handle multiview learning. For example,
Shon et al. proposed a generalization of the GPLVM that represents multiple obser-
vation spaces that are linked via a single shared latent variable model [100]. Ek et al.
presented a factorized latent variable model where the shared and individual variances
of two correlated observation data were represented in separate subspaces [74]. In
these previous methods, however, the dimensionality of the latent spaces was heuristi-
cally set, and inference for new test data points had to rely on maximum a posteriori
(MAP) search in the latent space. To overcome these limitations, Damianou et al. [101]
proposed a full Bayesian factorized latent variable model based on GPLVM that allows
for the automatic estimation of dimensionality of the latent space (also called Manifold
Relevance Determination or MRD), and provides an approximation to the full posterior
of the latent points given the data. In this study, we follow the same approach.

A latent model representation is learned from a multi-observation data coming from
EMG signals in the forearm and finger posture kinematics. Applying a dimensional
reduction method on each data individually, gives us some similar notion of extracting
a form of muscle synergy or postural synergy, respectively. In fact, a study has shown
that muscle synergy is linked to the kinematic synergy during a hand reaching, grasping
and pulling task [60]. This motivates us to use a latent variable model that assumes that
a portion of the data variance is shared between these two different synergy models,
while remaining variance correspond to private information contained in each data.

The problem is formulated as follows: Given that we have two observation data
Y ∈RN×DY and Z∈RN×DZ , the goal of the model is to find a factorized latent variable
parameterization in a space X ∈RN×Q that relates corresponding pairs of observa-
tions from different spaces Y and Z. It is assumed that the two datasets are generated
from a low dimensional manifold mapped from smooth functions { fY

d }
DY
d=1 : X→Y and
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Figure 4.2: Graphical model of the Bayesian GPLVM. A distribution for latent space X
is learned and the hyperparameters wY,Z and θY,Z are the ARD weights that determine
the dimensionality and the function model parameters, respectively.

{ f Z
d }

DZ
d=1 : X→Z (Q<D), corrupted by noise:

yid = fY
d (xi)+ ε

Y
id (4.1)

zid = f Z
d (xi)+ ε

Z
id, (4.2)

where {y,z}id represents dimension d of sample point i and εY
id, εZ

id are sampled from
a zero mean Gaussian distribution. This leads to the likelihood under the model,
P(Y,Z|X ,θ), where θ = {θY ,θ Z} contains the parameters of the mapping functions
and noise variances. Finding the latent representation X and mapping functions fY

and f Z is an ill-constrained problem. Lawrence provided a solution by placing GP
priors over the mapping and the resulting model is the Gaussian Process Latent Vari-
able Model (GPLVM) framework [99]. In this framework, each generative mapping
is modeled as a product of independent GP’s parametrized by the kernel or covariance
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function K = {KY ,KZ} evaluated over the latent variable X , so that

P(FY |X ,θY ) =
DY

∏
d=1
N (fYd |0,KY ), (4.3)

where FY = {fYd}
DY
d=1 with fY

id = fY
d (xi), and similarly for FZ . This allows the general

nonlinear mapping function F to be marginalized out leading to a likelihood function
in the form of a product of Gaussian densities:

P(Y,Z|X ,θ) = ∏K={Y,Z}

∫
p(K|FK)p(FK|X ,θK)dFK (4.4)

Integration over (4) is then done by variationally marginalizing out X by using vari-
ational approximation techniques used for standard GPLVMs. A non-standard but
analytical solution through variational learning techniques and using induced variables
is described in [101–103]. Another goal of the model is also to recover the factorized
latent structure composed of three subspaces, representing the shared and private vari-
ance for each observation data, X = {XY ,XS,XZ}. Bayesian training automatically
allocates the dimension of this factorized latent space using automatic relevance de-
termination (ARD) priors [101]. In the automatic allocation of the dimensionality, the
dimensions DY and DZ of the latent functions fY and f Z , respectively, are selected to
be independent draws of a zero-mean GP with an ARD kernel or covariance function
with the following form:

k{Y,Z}(xi,x j) = (σ
{Y,Z}
ard )2e−

1
2 ∑

Q
q=1 w{Y,Z}q (xi,q−x j,q)

2
. (4.5)

where w{Y,Z}q = α(l{Y,Z}q )−2, with α a constant positive scale value and length scales
l. Although a common distribution for X is learned, two sets of ARD weights W =

{wY ,wZ} are obtained to automatically infer the relevance of each latent dimension for
generating points in the Y and Z spaces respectively. The latent shared subspace XS∈
RN×QS is then defined by the set of dimensions q∈ [1, · · · ,Q] for which wY

q ,w
Z
q > δ ,

with δ close to zero and QS ≤ Q. As for the two private spaces, XY and XZ , these are
also inferred automatically along with their corresponding dimensionalities, QY and
QZ , respectively. More specifically:

XY = {xq}QY
q=1 : xq ∈ X ,wY

q > δ ,wZ
q < δ . (4.6)

and analogously for XZ . This model is summarized in the graphical model shown in
Figure 4.2.
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Model training

The training procedure of the Bayesian GPLVM model requires the maximization of
the joint marginal likelihood,

P(Y,Z|θ) =
∫

P(Y,Z|X ,θ)P(X)dX (4.7)

where an assumed prior distribution is placed on X , typically a standard Gaussian
distribution. Damianou et al. [101] provides a non-standard but analytical solution by
maximizing instead a variational lower bound Fv(q,θ) on the true marginal likelihood,
by relying on a variational distribution on which factorizes as q(Θ)q(X), where q(Θ) =

q(ΘY )(ΘZ) and q(X) ∼ N (µ,S). This lower variational bound1 is described as the
following:

Fv(q,θ)≤ logP(Y,Z) (4.8)

Fv(q,θ) =
∫

q(Θ)q(X) log
(

P(Y |X)P(Z|X)

q(Θ)

P(X)

q(X)

)
dX

= LY +LZ−KL[q(X)||P(X)] (4.9)

where L{Y,Z} = ∫ q(Θ{Y,Z})q(X) log P(Y |X)

q(Θ{Y,Z})
dX . More details of this type of varia-

tional learning of inducing variables for further tractability is described in [101–103].
This objective function is then jointly maximized with respect to the latent space pa-
rameters W = {wY ,wZ}, and the variational parameters. This optimization procedure
gives an approximation of P(X |Y,Z), which is the posterior distribution over the la-
tent space. Instead of relying on a fixed point MAP estimate of X , here, the Bayesian
GPLVM gives the approximate posterior distribution which adds extra robustness to
the model [101]. The Bayesian GPLVM Matlab library [104] was modified and used
to implement the model training and dimensionality relevance determination in this
study.

1A mean field method and Jensen’s inequality is used to derive this variational lower bound, the
derivation is given in [101]
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4.2. Methods

4.2.1 Data collection

The same data collection process is used as that explained from Chapter 3.4.1 to 3.4.3.
Surface EMG signals were extracted from eight extrinsic muscles of the hand that are
known to contribute to wrist and finger movements. These are the Abductor Pollicis
Longus (APL), Flexor Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS),
Flexor Digitorum Profundus (FDP), Extensor Digitorium (ED), Extensor Indices (EI),
Extensor Carpi Ulnaris (ECU), and Extensor Carpi Radialis (ECR) shown in Table 3.1.

A portion of total dataset used in this chapter included those of 4 healthy and intact
participants (3 Male, 1 Female, aged 26-31 years old). All subjects were seated with
their dominant hand and elbow comfortably positioned on a flat surface table as shown
in Figure 3.5 and tasked to do the same finger movements shown in Figure 3.7 and 3.8.
This dataset can be downloaded in the Dynamic Brain Platform database [90].

4.2.2 Data processing

EMG-to-Muscle activation model

The raw EMG signals were first preprocessed into a form, that after further manipula-
tion, can be used to estimate muscle activation [25, 80]. An EMG-to-Muscle Activa-
tion model as explained in Chapter 3.2 is again used as the input EMG features for this
chapter. It has been shown in previous studies, that using this feature works very well
in estimating muscle force [71] and kinematics [98].

Finger kinematics

The motion data, on the other hand, were also low-pass filtered (4 Hz cut-off fre-
quency) to remove any jitters. In this study, a shared latent representation X is ex-
tracted from the 8-channel muscle activation input Y ∈RN×8 and from the 23-marker
finger posture Z∈RN×69. We considered all the 3D information on each marker which
summed up to a total of 69 dimensions in the hand kinematic space. Separately, we
also reconstructed and estimated finger kinematics based on the joint angle space,
ZANGLE∈RN×15, considering 15 joint angles in the flexion and extension plane.
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4.2.3 Inference and estimation

In this study, we also demonstrate the model’s reconstruction of the new finger pose
kinematic Z∗ from X∗ which is obtained using shared information involving new mus-
cle activation inputs Y ∗. Given the trained shared latent model which jointly repre-
sent Y and Z with a factorized latent space X , we infer a new set of outputs Z∗ given
some new unseen test points Y ∗. Estimation is done by first predicting a set of latent
points X∗ most likely to have generated Y ∗ using the approximation of the posterior
p(X∗|Y ∗,Y ). This posterior has the same form as for the standard Bayesian GPLVM
model [102] and is given by a variational distribution q(X ,X∗), which is found by op-
timizing on the marginal likelihood P(Y,Y∗). This step involves a computationally
expensive operation as it requires optimization over a ratio of marginal likelihoods that
has the same form in (4.9). The next step involves finding training latent points XNN

which are closest to X∗ in the shared latent space by using Nearest Neighbors. In the
final step, we find the outputs Z from the likelihood P(Z|XNN). This returns the set of
training points Z which best match the observed test points Y∗.

The procedure relies on intensively exploring a solution in the shared latent space.
To evaluate a lower bound test performance, we also use a 2nd decoding scheme (la-
beled as Test-constrained in Figure 4.7) where we constrain the search in the latent
space. This is done by assuming that we know the test Z∗ for the first few frames.
Because these first few frames are assumed to be good solutions, then we can con-
strained the search for the solutions of the succeeding frames by nearest neighbors of
the previous solutions. This can be a good initialization for finding the new X∗.

4.2.4 Cross-validation

The data were separately analyzed and latent models were separately trained for each
subject. Four trials from each set of tasks (giving a total of 28 trial data) were concate-
nated together and used for training. The training data was further downsampled by a
factor of 20 to make the training of the model feasible. This was done because train-
ing a GPLVM model is computationally expensive for large samples, but handles data
with large dimensions very well. The remaining trials were used for testing purposes
(7 trial data). A five-fold cross validation procedure was used to evaluate the overall
finger kinematic reconstruction performance across subjects.
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Figure 4.3: PCA projection and dimensional analysis on the observation data. (a) 2D
projection on the muscle activation data. (b) 2D projection on the kinematics data. (c)
Accumulated data variance comparison at each principal dimension.

The quality of finger kinematic reconstruction and estimation performance was
evaluated using the root-mean-square error (RMSE):

RMSEi =

√
∑

N
t=0(ZTARGET−ZEST)2

N
(4.10)

where ZTARGET and ZEST are the target and estimated DOFs, respectively. The RMSE
performance index gives the square root of the mean of the square of all of the error.
Compared to other similar error metrics, RMSE amplifies and severely punishes large
errors.

4.3. Results

4.3.1 Synergistic representation

In this section, we discuss how the high-dimensional finger posture observation is qual-
itatively distributed in the low-dimensional space. We briefly discuss the kind of syner-
gies extracted from commonly used dimensional reduction technique such as Principal
Component Analysis (PCA), synergies from a GPLVM and shared synergies from the
proposed method using the Bayesian GPLVM with ARD model. The dataset obtained
from subject 1 (S1) is used to for visualization of the projected data points using dif-
ferent synergistic models.
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Principal component analysis

Principal Component Analysis (PCA) is a linear decomposition technique that assumes
that the set of measured data is composed of linear combinations of a smaller number
of underlying elements [105]. It finds a low-dimensional hyperplane which maximizes
the variance of the data projected onto this hyperplane. PCA applies well to data whose
underlying intrinsic elements are correlated in a linear subspace. To view the synergies
extracted from PCA, we obtain a 2D manifold in Figure 4.3, where the data points are
plotted as red dots, for easy visualization. Figure 4.3a shows the space created from
the muscle activation Y , while Figure 4.3b shows the space created from the finger
kinematics X .

The number of reduced dimensions or principal components is selected based on
90% total accumulated data variance. Based from this criteria, five and nine principal
components were needed to explain most of the data variance in the EMG and finger
kinematics data, respectively. Figure 4.3c shows the variance contribution of each
principal component for each data observation. Projecting the hand kinematic data
onto the two largest PC contributors, would give linear effects, such as, scaling the
size and translating positions of the hand model. Using a linear model, may represent
most hand kinematics data variance, for example using 9 components, but may still
fail to generate nonlinear multi-finger movements.

Gaussian process latent variable model

Each point in latent space is mapped to a corresponding point in high-dimensional
space via a GP. A predictive mean and variance is obtained from this functional GP-
mapping. While the predictive mean corresponds to the reconstruction in the high-
dimensional space, the variance gives the confidence of the model in generating the
reconstructed point. How fast the variance increases while moving away from data
points gives a hint on the belief of the model to generalize to previously unseen points.
Figure 5 shows the data points projected onto the GPLVM latent space 2D manifold.
The red dots correspond to the posterior estimate data points, while the gradient of the
background correspond to the posterior variance (white for low variance and black for
high variance).

70



(a) (b)

Figure 4.4: The GPLVM 2D-projections on the (a) EMG data and (b) kinematic data.

The points in the GPLVM space as shown both in Figure 4.4a and Figure 4.4b
are more spread out and form different clusters. By exploring the projected points in
the different clusters, different modes of finger kinematics can be reconstructed. Even
in this 2D projection, a large variation of finger postures is captured in this space,
such as those seen in the training data. Similarly, Romero et al. [14] showed that 2 to
3 GPLVM dimensions were enough to reconstruct 31 different grasping movements.
The nonlinear character of GPLVM allows it to spread the finger kinematics, as shown
in Figure 4.4b, to have better and finer differentiation between different modes. For
estimating a new point using the standard GPLVM model, current methods have to rely
on a single point MAP estimate for which the posterior over the latent points can be
multi-modal [99].

In the proposed shared latent space model using the Bayesian GPLVM with ARD,
the number of relevant dimensions is automatically obtained. Figure 4.5a shows the
optimized weights for each dimensions, where the latent space is segmented according
to the shared and private components for each observation data. In this figure, the
shared dimensions {7,8,9} contain the muscle activation synergistic features coupled
with the finger movement information. Figure 4.5b shows a 2D projection onto the
shared space given by dimensions {7,8}. While, Figure 4.5c and Figure 4.5d show the
projection onto the private spaces for muscle activation and finger kinematics, given
by dimensions {1,2} and {11,12}, respectively.
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Figure 4.5: Discovered latent spaces with the Bayesian GPLVM with ARD compo-
nents. (a) The optimized weights associated with each dimension. Sample 2D projec-
tion of (b) the shared space in dim{7,8}, (c) private space to the muscle activation in
dim{1,2}, and (d) private to the kinematics in {11,12}.

The relevance weight parameters {wY ,wZ} determine the contribution of each di-
mension associated with observation data and is responsible for the automatic selection
of dimensions and pruning of the model. A higher value of the weight implies more
relevance or contribution from the dimension. While, a zero or close to zero weight
value implies no relevance by that dimension and can be disregarded.

As can be seen in Figure 4.5a, dimensions {7,8,9} have high shared relevance be-
tween muscle activation and finger kinematic spaces. Dimensions {7,8,9} in Figure
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4.5a correspond to multi-finger flexion and extension movements, coupled finger (Lit-
tle/Ring and Ring/Middle) movements and thumb movement, respectively. It can be
seen that these shared spaces contain information about specific fingers that are either
coupled or largely independent (see also Figure 4.8a). Incidentally, the blue bars in
Figure 4.5a may show some synergies in the muscle activation space. For dimensions
{7,8,9}, these would correspond to synergies found to contribute to specific finger
movements mentioned earlier. For weakly shared dimensions {10,11}, these syner-
gies were found to correspond to movements associated with the ring and index finger.
Almost all variations of finger kinematics poses presented in the training data were
found to be embedded onto the shared spaces.

The background on Figure 4.5a-4.5d also show the posterior variance and the red
dots correspond to the posterior mean of each training data point projected onto a 2D
space. As we explore points further away from the projected training points, novel
finger kinematic postures unseen from the training dataset are also generated.

4.3.2 Estimation and reconstruction

With the Bayesian GPLVM with ARD components model trained, all finger DOFs in
terms of joint marker positions and joint angles were estimated. Figure 4.6 shows the
estimation and reconstruction of a representative trajectory from one trial involving
a multi-finger flexion-extension movement. The projected path in Figure 4.6a shows
the trajectory plotted onto a 2D shared space (dimension {7,8}). The blue square
dot shows three sample data points obtained in the estimated trajectory. Figure 4.6b
and Figure 4.6c show the ground truth obtained from the motion capture data and
the estimated finger postures, respectively. The corresponding mean errors are 0.52,
0.63 and 0.83 mm, respectively for each frame in Figure 4.6c. This shows very high
resemblance between the estimated and the original given finger kinematic posture.

In this study, we evaluate how well the proposed method is able to reconstruct the
full 23-joint finger movement across four different subjects. In Figure 4.7, the overall
test estimation performance across different subjects are shown. The figure shows the
root-mean-square error (RMSE) of the estimated and measure finger kinematics at the
training and test datasets. We evaluate on two different output spaces, one in the joint
marker space and the other in the joint angle space, shown in Figure 4.7a and Figure
4.7b, respectively. The overall estimation performance across subjects showed an aver-
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Figure 4.6: Sample finger kinematics inference of a simultaneous multi-finger flex-
ion and extension movement. (a) The red line indicates the trajectory plotted on a
2-dimensional shared latent space. (b) Ground truth. (c) Estimated finger kinematics.

age RMSE of 9.18±0.87 mm and 10.80±1.55 degrees, for the joint marker position
and angle, respectively. This result was from using only the shared information ob-
tained from the new test muscle activation inputs. In the test-constrained result where
partial information about the observed kinematics was used and exhaustively searching
in the shared and private kinematic space, a best case average RMSE of 3.11± 0.23
mm and 4.32±0.47 degrees were obtained for the two different output spaces, respec-
tively. By incorporating knowledge on the kinematics, this leads to better estimation.
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Figure 4.7: Overall estimation performance across subjects. (a) Mean square error
of the positional joint marker estimation. (b) Mean square error of the joint angular
estimation.

4.3.3 Synergistic representations

In Figure 4.8, the obtained optimized relevance weights of each trained model across
subjects (S1-S4) are shown. The same number of shared space dimension and sim-
ilar distribution are obtained even across different subjects. Below each of the bar
graph are synergy model interpretations about what kinematic posture contribution
does each dimensions contain. These are analyzed through visual inspection of each
dimensions. About 4 to 5 shared synergies were found from each subject that corre-
sponded to specific finger movements. Synergies that explained the most independent
finger movement, such as those from the thumb, were found in dimensions {9,11,11}
in subjects (S1,S2,S4), respectively. Synergies that corresponded to coupled finger
movements {8,8,10,8}, individual index finger {11,10,12,11}, and middle/ring fin-
ger {10,12,9,12} flexion-extension movements were also found in subjects (S1-S4),
respectively. Interestingly, a synergy in dimension {1} was found with more relevance
in the muscle activation space. In this dimension, subjects S1 and S2 maintained a
gripping movement exerting more force but with less kinematics (isometric force con-
traction). This dimension could have corresponded to a synergy that modulates force
contraction which reflects the muscle activation space rather well. It should be noted
that these synergy distributions can vary depending on the movements found in the
training data.
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     7: All finger flex-ext
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(a) S1

EMG(Y)
Kinematics (Z)

1       2      3      4       5      6       7      8       9     10    11    12

Dimension related to finger movement:
     7: All finger flex-ext
     8: Coupled: Ring + Little + Thumb
     9: Middle finger flex-ext

   10: Index finger flex-ext
   11: Thumb flex-ext
   12: Ring finger flex-ext

(b) S2

EMG(Y)
Kinematics (Z)

1       2      3      4       5      6       7      8       9     10    11    12

   10: Coupled: Ring + Little
       : Coupled: Index + Middle
   12: Index finger flex-ext

Dimension related to finger movement:
     7: All finger flex-ext
     8: Thumb flex-ext
     9: Middle finger flex-ext

(c) S3
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Kinematics (Z)

1       2      3      4       5      6       7      8       9     10    11    12

Dimension related to finger movement:
     7: All finger flex-ext
     8: Coupled: Middle + Ring
       : Coupled: Little + Thumb

11: Thumb and Index flex-ext
12: Ring finger flex-ext

(d) S4

Figure 4.8: Discovered shared and private latent space dimensions with the optimized
ARD components discovered across subjects. Below each plot are descriptions of
some of the shared dimensions that hold finger kinematic information.

Finally, aside from looking at the reconstruction error of the finger kinematics
and analysis of the extracted synergies, we show some results where we compare the
proposed method with some regression methods commonly used to estimate multiple
DOFs from EMG signals in the literature. We compare with regression methods such
as standard linear regression on the full output dimension and on the PCA-reduced
dimensions. We also compared against the performance of feedforward neural net-
works presented in [98] on the full and reduced output dimensions, respectively. In
the reduced output dimension setting, the estimated points are then projected back
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Table 4.1: The mean RMSE of the joint marker and joint angle space between the
estimated and original finger kinematics.

Pos. Err Ang. Err
Mean Training Pose 11.72 10.74
LR on Full Dimension 10.36 9.12
LR on PCA Dimension 10.67 8.76
NN on Full Dimension 10.18 8.26
NN on PCA Dimension 10.13 8.40
Proposed Method 8.82 7.84
Proposed Method (Test-constrained) 4.03 3.30

into the original output space. The benchmark regression methods were selected
since these were the commonly used methods for estimating hand kinematics from
EMG [8, 22, 23, 26, 28, 39, 40, 73, 98]. The mean RMS errors are shown in Table 4.1.
The proposed use of a Bayesian GPLVM model performs better than the other methods
in terms of estimating continuous finger kinematics from EMG.

4.4. Discussion

This paper is the first to demonstrate the feasibility of estimating and recreating a
full 23-joint high-DOF finger kinematics from surface EMG inputs using a generative
model. We showed how a Bayesian GPLVM model can be used to obtain shared
latent synergistic features that exists between EMG and kinematics data and provide a
principled probabilistic framework for generating proportional and simultaneous high-
DOF finger kinematics.

4.4.1 Shared synergistic features

Previous studies have often used different types of features or transformation of the
surface EMG signal to capture both the muscular and kinematic/dynamic activity in-
volved in particular tasks. Ideal feature extraction, such as extracting time, frequency
and time-frequency domain based features, converts a set of incoming EMG signals
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into distinguishable and repeatable descriptors [27]. Here in this study, we present
the extraction of new shared synergistic features that contain both correlation infor-
mation that exist in both EMG and the kinematic tasks. As discussed in [27], the use
of the synergy-based features have advantages in being robust to single channel elec-
trode shift and amplitude cancellation. Linear combinations of synergy features can
also form complex outputs capable of reconstructing even nonlinear models and out-
puts [12]. Here in this study, the use of the shared synergistic features not only also
offer these advantages but handle nonlinearity and high dimensionality very well. Us-
ing Bayesian techniques allowed the automatic determination of the dimensionality of
the latent space. The model automatically allocates the corresponding shared spaces
where synergies in the muscle activation and finger kinematic space are found.

The results reported in this paper also re-confirmed that the intrinsic dimensionality
of both EMG and full hand/finger kinematics are actually lower than the full original
data dimensionality [15, 40]. Four to six shared synergy modules that correspond to
specific finger movement tasks were found in Figure 4.8a-4.8d. Through the experi-
mental results, we also found that by using the information given by the shared space,
we are able to infer a good estimate and reconstruct the full finger kinematics with
good accuracy (Figure 4.5 and Figure 4.6).

Many muscle synergy models are presented in the EMG literature. Most of these
studies use synergy extraction methods based on linear decomposition methods, such
as extracting time-variant and time-invariant synergies that provide a biological plau-
sible model and interpretation of the neural control behind the muscle coordination
involved in motor tasks [11, 12]. Linear extraction methods, such as PCA or NMF,
which extracts synergy modules based on the weighted contribution of each EMG
channel can give a descriptive physiological interpretation. In the context of muscle
activation patterns, neurons are either firing action potential (positive signal or weights)
or are in resting state (zero signal) [105]. In this study, the use of a nonlinear synergy
model may be more difficult to give a physiological interpretation. Intuively, however,
we can inspect each dimension to correspond to specific finger kinematic movements
such as what we have shown in Figure 4.8. One advantage of using the proposed shared
synergistic model is its ability to consider nonlinear mappings using GPs with an ARD
covariance function shown in equation (4.5). This gives a data-driven approach to
address the compact representation of both the EMG and high-DOF finger kinematics.
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The overall performance of the extracted nonlinear synergies by the GPLVM model
show good results in terms of hand kinematic posture reconstruction error from EMG
inputs. As previously mentioned, human hand is generally nonlinear, therefore an
algorithm that can cope with nonlinearities is better suited for this problem. From the
best of our knowledge, this is also the first study where a shared latent model was
used to extract shared synergies from both muscle activation and finger kinematics
simultaneously.

4.4.2 Reconstruction and estimation for control

The experimental results in the previous section show that Bayesian GP-LVM with au-
tomatic dimensionality determination of the latent spaces is a good model for learning
the correlation that exists between EMG and finger kinematics. Although the dimen-
sions were highly redundant in the joint kinematic space, we showed that we were able
to retrieve back as large as 69 dimensions on the hand skeleton model. The choice of
operating in the output joint marker space was to induce high dimensionality in the
output space. One other advantage of the proposed method is that it can learn corre-
sponding latent space manifolds from any data representation or output spaces, such
as control commands in the joint angle (see Figure 4.7b), joint velocity or joint torque
and stiffness [106] space. Operating in these spaces is particularly useful since these
can be explicitly used as direct control signals for robotic devices.

A continuous finger movement trajectory can be reconstructed using information
from the shared space as seen in Figure 4.6. Smooth trajectories of other finger motions
(e.g. individual finger flexion-extension) can also be plotted. Different high-DOF
finger movements can be found in exploring different shared dimensions. Particular
finger movement should reside near corresponding cluster data points (modes) that
closely resemble that specific movement found in the training dataset. It was also seen
in Figure 4.7, that by using some kinematic knowledge led to better results. Searching
in the latent spaces can give multimodal solutions, thus, constraining the search space,
for example, considering information about the dynamics or intent may improve the
estimation performance.

Although not explicitly shown, the errors across the each finger joint angles were
consistent (3.71± 0.69 deg). Across varying tasks, however, estimation for Task (3),
where fingers freely and randomly, showed larger errors (6.23±0.44 deg) compared to
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the other tasks (3.28±0.84 deg). This was possibly due to new movement variations
found in the test data that did not resemble any similar movements in the training data.
This limitation can be improved by increasing the amount of training data to include
more variations of finger movement or to constrain the tasks further, for example,
by including only functional hand kinematic poses useful in activities of daily living
(ADL) such as those prescribed in [107, 108].

4.4.3 Implementation and limitations

This study is limited to offline analysis with data from healthy and able-bodied subjects
to test the feasibility of our approach. Though this can be used as an initial benchmark
for future implementations, further verification and validation has to be done for train-
ing different models using data from amputees or subjects with hand impairments. A
good candidate for this is to use large EMG and motion datasets obtained from both
healthy and impaired subjects such as those provided by the Ninapro database [89].
With our study evaluated on four able-bodied subjects, our results suggest that there is
large variability in how the subjects execute different finger movement tasks. Although
we found motion-specific synergies (see Figure 4.8) across subjects, we should also
investigate motion-invariant synergies that may exist across different subjects. More-
over, the main findings of our study is not limited to proposing the use of a new shared
synergistic representation of EMG and motor task, but is to also transfer joint control
commands in robots to produce dynamic finger movements.

The movement tasks used in this study was limited to basic (flexion-extension) of
individual and multi-finger movements. Some degree of randomness in the movement
was included where subjects could freely choose random finger movements of their
choice. Because the focus of this study was on simultaneous and proportional my-
oelectric control, then kinematic data of continuous finger movement were of more
importance than other hand configurations such as static postures or grasping objects
(where large forces are important than large movements). However, some insights can
be gained on how the proposed method of using a shared latent model may be adjusted
to consider different grasping and objects. When grasping postures of different objects
or profiles of finger forces are introduced in the training of the model, then additional
relevant latent dimensions may be obtained. These dimensions could correspond to
synergies representing different finger force profiles or different object information.
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This notion is quite similar to the results presented in Chapter 4.3.3 where latent di-
mensions describing different finger movements were obtained.

Also, similar to Santello et al.’s study [59], a study on a large dataset of 51 static
grasping poses showed that a large grasp data variance is contained in only 2 principal
components, while other dimensions contained object information. This type of multi-
view representation of information in grasp and object properties were also consistent
in [14,62]. In the long term, to give robotic hands true dexterity from myoelectric con-
trol, considering basic finger movements, different grasping configuration and object
manipulation should be considered.

Complexity

In practice, it is desirable for the controller to use as little calibration data as possible
and should generalize to movements for which exhaustive training data is not available
[8]. The complexity of the proposed method comes in two different parts: the training
and the testing. Most of the computational time (98%) is due to the training of the
shared Bayesian GPLVM model. The typical computational complexity of a sparse
implementation of a GPLVM is O(Nm2), where N is the number of data sample used,
and m is the number of inducing points. Testing with the Bayesian GPLVM is linear
in the number of data points O(N).

In all the experiments, the number of inducing points was set to 100. A runtime
evaluation conducted on a desktop machine with an Intel i7 2.8 GHz processor to
compare the computational time needed to train and test each model. This can give us
some indication of possible delays in the real-time estimation. An unoptimized Matlab
implementation of the proposed shared Bayesian GPLVM model was evaluated and
compared with other conventional methods. To standardize the comparison, a fixed
2200 samples was used for training and 1400 samples used for testing. The absolute
time and normalized time (i.e., absolute time divided by the total number of samples)
were used. Table 4.2 shows the comparison of computation time for both training and
testing.

Inference with optimization of a new variational distribution on a single test data
point took 1.3 seconds. Since an optimization step was involved in approximating
for the posterior, where the ratio between two marginal likelihoods were computed.
By replacing this optimization part to using nearest neighbor (NN) instead to find the
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Table 4.2: Computational time for training and testing using different models. NN:
nearest neighbor; Optim: optimization procedure.

Training Testing

AT (s) NT (ms) AT(s) NT(ms)
LR-Full 0.08 0.03 0.003 0.002
LR-PCA 0.02 0.009 0.001 0.0007
NN-Full 12.30 5.59 0.032 0.02
NN-PCA 12.08 5.49 0.039 0.03

Proposed Method - NN 11,580 5263 6.01 4.3
Proposed Method - Optim 1902 1358

closest neighbors in the training data, inference time improved to 0.004 seconds. This
makes real-time inference quite realizable.

The training time, however, can be quite prohibitive in many EMG applications
where re-calibration is often done to adapt to the time-varying nature of EMG. So in
the future work, we propose a slightly different approach in creating a new type of myo-
electric interface, where the latent space map is pre-trained and includes co-adaptation
from the users to intuitively learn the internal control dynamics to seamlessly control
a robot hand.
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Chapter 5

Conclusion

This study shows how proportional and simultaneous myoelectric control of multiple
degree-of-freedoms (DOFs) available in the hand can be achieved. In Chapter 3, we
presented an alternative and improved method in estimating simultaneous finger kine-
matics from surface electromyographic (EMG) signals using a muscle activation model
that parameterizes electromechanical delay, which has been observed by numerous in-
vestigators. Overall, the proposed method in this chapter captures the general trend
of finger movements and is able to estimate multiple finger DOFs with usable accu-
racies. We have shown that using a data-driven approach such as using an artificial
neural network and a nonparametric Gaussian Process for regression is suitable for
this application. Though neural networks are fast and perform robustly well when the
training data is sufficient, using a Gaussian Process regressor gives better performance
when the training samples are small. This shows much promise in being able to reduce
the amount of experiment training protocols substantially and can work better than us-
ing neural networks. Compared to the previous related studies, the dataset collected
introduced more variation and some degree of randomness between basic continuous
individual and multi-finger joint movement.

In Chapter 4, we presented an extension of the study presented in Chapter 3. We
extend the proposed model to handle not only the nonlinearity of finger movements but
also the high degrees-of-freedom and correlations that exists in the hand kinematics, in
the context of myoelectric proportional control. In this part, we present a more natural
view on how both the coordination of muscle activation and finger joint postures can
be viewed in terms of synergies. It is known that muscle activation coordination is
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highly correlated with finger kinematics, so the proposal of using a shared synergistic
model between these two observation data makes sense. We showed how a Bayesian
GPLVM with Automatic Relevance Determination (ARD) framework can be used to
obtain shared latent synergistic features between EMG and finger posture kinematics.
We showed a probabilistic approach for generating high-DOF finger kinematics, and
that dexterous finger movements can be represented in a small dimensional space using
a nonlinear synergistic representation with the GPLVM model. We have also shown
that the proposed method outperforms commonly used linear dimensionality reduction
method coupled with simultaneous regression used in the previous studies.

To this date, the resulting use of the proposed shared model is promising as very
few studies has been able to recreate the continuous movements of a full 23-joint high-
dimensional finger posture kinematics from EMG inputs. The proposed approach
presents a viable solution for a myoelectric control strategy for handling high-DOF
control in robotic hand prostheses and hand interfaces. Our method validates the fea-
sibility of a position-based control of high-DOF finger movements from EMG.
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Chapter 6

Directions for future research

For the future direction of this study, instead of mapping the full-DOF hand kinematics
solely from EMG, one strategy is to create a new type of EMG-based interface where
a subject needs only to learn a low-level control strategy in navigating a visual latent
space in order to generate dynamic high-DOF finger movements. For example, Nazar-
pour et al [68] have analyzed motor learning in the context of muscle synergies using
2D-cursor position control tasks. They found that subjects were able to learn easily
and robustly the flexible control of the 2D-cursor via EMG, through the formation of
task-specific muscle synergies.

Building on this idea, we can create a 2D manifold where dynamic high-DOF fin-
ger movement is embedded in this space. Using myoelectric control to explore in
this 2D latent space, subjects can learn to control a high-DOF robot quickly and in-
tuitively by, with each point having a GP-mapping to the high dimensional kinematic
space. Visual feedback via the presented latent space would not only close the con-
trol loop for better real-time performance but may also let users learn some internal
system dynamics while interacting with the control interface. Real-time execution in
this new interface is not only fast, as the latent space is trained beforehand, but may
also be robust as the new process involves some degree of co-adaptive learning from
the users. Such pre-training can be used to target different modes such as continuous
finger movements, fixed grasping postures, and trajectories for object handling. Us-
ing the nonlinear synergistic low-dimensional representation in the latent space model,
high-dimensional complex movements useful for prostheses control or rehabilitation
can be trained.
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Despite having to a learn completely new and unfamiliar mapping from muscle
activity to movement trajectories, we hypothesize that such an interface can induce
synergy development during the long-term cursor control. This could result to the
development of population-wide convergence to common synergies while interacting
with a particular low dimensional mapping function, similar to that described in [65].
We believe that providing a tool to enhance development of new synergies, providing
visual feedback during training and developing co-adaptive learning strategies between
the user and control agent are key improvements that could potentially improve the next
generation myoelectric controllers in the context of human-robot interaction.
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