
NAIST-IS-DD1361014

Doctoral Dissertation

Microphone Array Processing based on Blind

Source Separation for Robust Distant Speech

Recognition System

Fine Dwinita Aprilyanti

March 14, 2016

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Fine Dwinita Aprilyanti

Thesis Committee:

Professor Satoshi Nakamura (Supervisor)

Professor Kenji Sugimoto (Co-supervisor)

Professor Hiroshi Saruwatari (Co-supervisor)



Microphone Array Processing based on Blind

Source Separation for Robust Distant Speech

Recognition System∗
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Abstract

Distant speech recognition system, in which a single or an array of microphone

is utilized to capture the user’s utterance as opposed to the user-attached micro-

phone, is greatly affected by the presence of background noise and reverberation.

Many researches have been conducted on developing an array processing method

to improve the quality of the captured speech signals. Most of these methods are

optimized to obtain the clean target speech, as measured by signal-to noise ratio

or human perception. However, speech recognition system works as a statistical

pattern classifier of features extracted from the speech waveform. Therefore, ar-

ray front-end processing can only be expected to increase the recognition accuracy

if it maximizes the likelihood of the correct hypothesis.

In this study, I propose array processing techniques based on blind source

separation to suppress the background noise and late reverberation, optimized

to maximize the likelihood to the acoustic model of speech recognizer. The first

method utilizes frequency-domain blind signal extraction (BSE), which is an al-

ternative to the conventional blind source separation specifically designed for the

case of speech in the presence of diffuse noise, combined with two stages of multi-

channel Wiener filter. I extend this method by integrating information from the

image sensor to achieve optimum performance regardless the interference level.

In the second method, I combine BSE with multichannel generalized minimum

mean-square error estimator of short time spectral amplitude (MMSE-STSA),
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which can provide less distortion to the output signal owing to the use of speech

spectral amplitude statistical model assumption and decision-directed signal-to-

noise ratio estimation approach.

These methods, however, are able to perform optimally only if the background

noise is diffused, due to the characteristics of BSE. The performance of BSE de-

grades in the presence of point-source noise, thus the first and second method

are sub-optimal for such case. To further improve the capability of array front-

end processing, in the third method, I develop a source-adaptive blind source

separation, in which the activation function is parameterized according to the

estimated statistical model of each source signal. Parameter for each activation

function is derived from the parameter of the generalized MMSE-STSA postpro-

cessing, which is optimized based on the acoustic model. Experimental evaluation

shows that this proposed method is more robust to different types of interference

than former array processing approaches.

Keywords:

Blind source separation, generalized MMSE-STSA, dereverberation, noise sup-

pression
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1. Introduction

1.1 Automatic Speech Recognition System in Distant-Talking

Environments

The use of speech-based human-machine interface provides us the simple and

natural way of communication with computers. Over the past decades, research

in this field has progressed significantly such that the state-of-the-art automatic

speech recognition (ASR) systems are able to achieve high recognition accuracy in

a noise-free environment. In these systems, the speaker talks using a microphone

that is put closely to mouth, so that the quality of the captured speech signal

is quite high. However, there are many conditions where the implementation of

this setting becomes difficult or even impossible for either safety or convenience

reasons. For example, the act of wearing a microphone while operating a vehicle

is distracting and may lead to danger. In a meeting room or during conferences’

poster session, hand-held or head-mounted microphone is inconvenient because

it restricts the movement of the participants.

This problem can be solved by placing a single or an array containing multiple

microphones to captured speech signals at a certain distance. However, another

problem arises, i.e, distortions from interferences that corrupt the target speech

quality, as illustrated in Fig. 1. In general, these distortions can be distinguished

into three main types [1]:

• Noise, or also known as background noise, which is any sound other than

the target speech, e.g, sound from air conditioners, machines in a factory,

or speech from other speakers.

• Reveberation, which is the reflection of the sound source that arrives some

time after the direct sound. The severity of this distortion varies according

to the distance between speaker and microphone, the geometry of the room

and the material of the surface of the room.

• Other types of distortions that are introduced by environmental factors,

e.g., room modes, the orientation of the speaker’s head, or the Lombard

effect.
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Figure 1. Illustration of the target speech and interference sounds captured at

the microphone array in a distant speech recognition system.

Each type of distortion affects the captured speech signal in different manner.

This dissertation is focused on the first two types of distortion.

1.1.1 Effect of Background Noise to Speech Recognition

Background noise is any additive sound other than the target speech that is

captured by the microphone or microphone array. The term background noise

covers a broad variety of additive sound, which can be classified as:

• Stationarity noises, which have statistics that relatively constant over long

time spans. Some example sound from computer fans or air conditioning.

• Nonstationary noises, which have statistics that change significantly over

short periods, such as music and people voice. This type of noise is usu-

ally produced by point source, unlike the stationary noise which is usually

diffused and widespread.

Figure 2 illustrates the effect of the presence of noise on the quality of speech.

It can be seen the noise components fill in the segment where the speech energy

is low and mask the original clean speech. It will be difficult for ASR system to

distinguish the speech pattern under such condition. Even though the recognition

performance may be improved by using the noisy data for acoustic model training,
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Figure 2. Illustration of speech distorted by background noise.

this option is not realistic because the noise conditions in training and testing

process are seldom matched, particularly for nonstationary noise. Therefore, it is

preferable to apply noise suppression algorithm as a front-end to the ASR system.

1.1.2 Effect of Reverberation to Speech Recognition

Reveberation occurs when the reflected sounds from the surfaces in an enclosure

come simultaneously following the direct signal. In spectral domain, reverberation

causes smearing of the original speech spectrum. For some cases, for example

in a musical performance, the presence of reverberation is favored. However,

reverberation also distorts both the envelope and fine structure of a speech signal.

The reverberant speech becomes more difficult to be recognized by the ASR

system [2].

Reverberation in one room depends on the room impulse response. An exam-

ple of room impulse response is shown in Fig. 3. As shown in the figure, a room

impulse response can be separated into three parts: direct-path response, early

and late reverberations [3]. The direct-path response represents how the sound is

received on the microphone without any reflection. The delay between the initial
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Figure 3. A sample of room impulse response.

excitation and its observation depends on the distance of the sound source from

the speaker and also the velocity of the sound. Early reverberation arrives at

the microphone a little later than the direct sounds. It is usually not perceived

as a separate sound to the direct sound as long as the reflection delay does not

exceed a certain limit which is often called cutoff delay. The cutoff delay τd is

approximated between the range of 50-100 ms depending on the sound source.

Due to its frequency response, early reverberation often causes the coloration of

the original speech spectrum. However, early reverberation also tend to reinforce

the direct sound owing to the precedence effect and therefore is considered useful

to increase the speech intelligibility. The state-of-the-art ASR system also can

handle the presence of early reverberation, for example by applying cepstral mean

normalization.

Late reverberation is any component of reflected sound that arrives at the

microphone after the cutoff delay. Because it is a combination of many reflected

sounds, late reverberation loses its correlation to the direct sound. It is modeled

in the time domain as an energy tail that decays according to the room rever-

beration time T60. The late reverberation is harmful to the speech intelligibility

as illustrated in Fig. 4. The strong reverberation smears the original speech
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Figure 4. Distorted speech spectrum due to revereberation.

spectrum long enough that it causes the overlap-masking between the adjacent

phoneme in an utterance. Therefore, researches on dereverberation algorithm put

more focus in suppressing the late reverberation components.

1.2 Research Scope and Motivation

A vast amount of array processing techniques have been developed to reduce the

effect of these distortions on speech. Many of these techniques only focus on one

type of interference. For example, noise suppression algorithms are simulated

under no reverberation condition or evaluated in rooms with short T60, as in

[4, 5]. On the other hands, the dereverberation algorithms usually developed

under noise-free assumption, such as in [6, 7]. These approaches are unsuitable

for the real world implementation.

Recently, more algorithms have been built to jointly suppress background

noise and late reverberation, e.g., [8, 9, 10]. Often these algorithms are opti-

mized to enhance the quality of the input speech waveform. The performance

are evaluated objectively by the improvement of signal-to-noise ratio (SNR) or
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the reduced cepstral distortion, and subjectively by human listening test. This

also applies to the ASR system array preprocessing, under assumption that the

enhanced input speech waveform will lead to better accuracy in speech recogni-

tion. However, the ASR systems is basically a statistical pattern classifier that

works on a sequence of features extracted from the speech waveform, not directly

on the waveform itself. Therefore, the array preprocessing methods is expected

to improve the recognition accuracy only if it can generate such feature sequence

which increases the likelihood of the correct transcription, relative to other.

According to this principle, in this study I propose array prepocessing methods

based on blind source separation (BSS) combined with nonlinear postprocessing,

that is integrated with ASR system, as depicted in Fig. 5. Information from the

acoustic model in ASR is used to tune the parameter of array processing method.

This architecture will enable the output of the preprocessing methods to have

the optimized likelihood to the best hypothesis, thus is expected to improve the

recognition accuracy. The approach has been implemented for the beamforming-

based array processing method in [11] and also spectral subtraction method [12].

The use of BSS-based approach in this study, including BSE as an alternated

BSS, is based on several potential of this method. First, BSS and BSE requires

almost no a priori knowledge, hence the term blind. Second, although both

conventional BSS and BSE can only perform well on certain type of interference,

we can develop new method that emphasize on their advantages, for example by

combining with nonlinear postprocessing and modifying the activation function to

be source-adaptive, as described in the third proposed method in this dissertation.

Third, by incorporating the statistical model of the recognizer, i.e. acoustic

model, into the array processing optimization scheme, we can focus on enhancing

the signal components important for recognition accuracy, without putting too

much emphasis on less important components.

All the proposed methods in this study requires the T60 information in the

dereverberation stage. In real world implementation, the estimation of T60 can be

done from the geometry of the room or by the impulse response test. Assuming

the distant speech recognition system will be fixed in one place, the estimation

process is only required once. For systems that can move to different room, such

as robot implementation, we can integrate the information from other sensors,
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Figure 5. The general architecture of array preprocessing optimized for the speech

recognition performance, in which the information from statistical model of ASR

is utilized to tune the array processing parameter.

such as image sensor, as described in the first proposed method. Furthermore,

I also investigate the significance of acquiring the correct value of T60 for the

performance of the source-adaptive proposed method as not to contradict the

blind characteristics of the method.

1.3 Overview of Dissertation

The rest of dissertation is organized as follows.

First, I present related works on microphone array processing in Sect. 2.

In this section, I will also explain about the data used for the experimental

evaluation. The first proposed method combining FD-BSE with multichannel

WF is described in Sect. 3. This semi-blind method assumes that the target

user’s distance information is accessible from the image sensor. The next method

proposed in Sect. 4 works under no such assumption. In this section, FD-BSE

is applied for noise suppression and the generalized MMSE-STSA is applied as

postprocessing for dereverberation. These proposed method are developed only

for the case of diffuse background noise, in which BSE excels in target speech

enhancement and computational complexity.

Next, to achieve good performance not only in diffuse noise case but also in
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point-source noise case, I propose a novel source-adaptive BSS method in Sect.

5. The proposed method use the more appropriate parameterized activation

function instead of fixed activation function in conventional BSS. The activation

fuctions in this method correspond to the probability density function (PDF) of

each source, which are modeled in generalized Gaussian distribution (GGD). I

derive an approximated closed-form solution based on higher-order-statistics ap-

proach to estimate the target speech PDF from the parameter of the optimized

generalized MMSE-STSA postprocessing. I also introduce the strategy to esti-

mate the interference source’s PDF using the optimized shape parameter of the

target speech. Experiment is carried out using different type of interference to

evaluate the performance of the proposed method.

As the parameter of the generalized MMSE-STSA is optimized according to

the acoustic model, the resulting proposed method integrates the statistical mod-

eling of speech in three different domains, i.e. complex spectral domain (as in

source-adaptive BSS), amplitude domain (as in generalized MMSE-STSA), and

mel-frequency cepstral domain (as in the acoustic model of ASR).
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2. Review on Microphone Array Processing Method

for Speech Recognition

2.1 Introduction

As pointed out in the previous section, the quality of speech signals captured

by a microphone in a distance decreases significantly due to the distortion from

the background noise and reverberation. It is also understandable that the use

of multiple microphone can recover the target speech signal better than using

single microphone owing to the spatial information it provides. In this section,

first, the model of sound signal captured by a microphone array will be described.

Next, two groups of well-known array processing method will be explained, i.e.

BSS based method and spectral-based method. In the end of this section, I will

also explain about the speech corpus and room impulse response data used in

experimental evaluation.

2.2 Sound Mixture Model at Microphone Array

Signals captured by an M -channel microphone array are composed of a clean

speech signal and interference sounds. This interference can be additive, that is

background noise, and also convolutive, that is room reverberation. Mathemati-

cally, a mixture of signals at a microphone array can be modeled by

x(t) = xS(t) + xN(t), (1)

xS(t) = (hE(τ) + hL(τ)) ∗ s(t)
= xE(t) + xL(t),

xN(t) = (hE(τ) + hL(τ)) ∗ sN(t),

(2)

where xN(t) denotes the contribution from background noise and xS(t) denotes

the contribution from speech and its reverberation. The signal s(t), hE(τ) and

hL(τ) are the clean speech source and the early and late parts of the room impulse

response, respectively, with ∗ denoting the convolution operation. The term sN(t)

is the source of background noise, including interference speech if exists. The early

9



and late impulse responses can be defined as

hE(τ) =

h(τ) for τ ≤ τd

0 for τ > τd
(3)

hL(τ) =

0 for τ ≤ τd

h(τ) for τ > τd.
(4)

The array processing method aims to suppress the background noise and late

reverberation, and to obtain the estimated early reverberant speech signal x̂E(t).

In the time-frequency domain, the mixture model in each frequency bin can

be simplified without explicitly separating the early and late reverberation com-

ponents, as given by

X(f, k) ≈Hθ(f)S(f, k) + XN(f, k), (5)

where S(f, k) is the clean speech component, XN(f, k) contains components of

background noise and

Hθ(f) = {exp(j2π(f/F )fs
md

c
sin θ(f)}m∈[0,M−1] (6)

is an M×1 vector depending on the direction of arrival (DOA) θ(f) of the speech,

with F the size of the discrete Fourier transform, d the microphone spacing, fs

the sampling frequency and c the sound velocity. Here, M denotes the number of

microphone and f and k denote the frequency bin and time frame, respectively.

Without loss of generality, Eq. (5) can be reformulated as

X(f, k) = A(f)S(f, k), (7)

with S1(f, k) = S(f, k) and [S2(f, t), ..., SN(f, k)] = XN(f, k). It is also realistic

to assume that, in each frequency bin, the speech component is statistically in-

dependent of the noise component. In this study, the number of sound source is

limited to one target source and one interference, but the idea can be extended

into any number of sound source.

2.3 Blind Source Separation

Blind source separation (BSS) is a class of array processing techniques that works

on a principle that signal mixture captured at the multichannel microphone can

10



be separated according to their source by applying a certain demixing matrix. As

its name suggests, BSS was previously developed to separate multisource signals.

But the separation function can also be utilized to separate the target speech from

other unwanted sounds. The term blind is used because this class of method does

not required a priori information about the relative positions of the sensors or

the positions of the sources. Many BSS algorithms [13, 14, 15] are based on

independent component analysis (ICA) [16, 17], in which the source signals are

separated by utilizing their statistical independence. Also, it has been known that

BSS in frequency domain performs better to separate convolutive mixture than

the time-domain BSS. In this section, I discuss about the conventional ICA-based

frequency domain BSS.

In this method, the estimated separated signals Y (f, k) in the fth frequency

bin are obtained by applying an demixing matrix W (f) to the observed signals,

as given by

Y (f, k) = W (f)X(f, k) = W (f)A(f)S(f, k). (8)

W (f) is updated so that the output signals in Y (f, k) are mutually inde-

pendent. Among the many proposed algorithms for ICA, an approach based

on higher-order statistics exists, in which the optimization is based on the non-

Gaussianity of the signal. The optimal demixing matrix W ICA(f) is then obtained

from the iterative operation

W
[i+1]
ICA (f) = µ[I − 〈φ(Y (f, k))Y H(f, k)〉k]W [i]

ICA(f) + W
[i]
ICA(f), (9)

where I is the identity matrix, 〈·〉 denotes the time-averaging operator and φ(·)
is a nonlinear activation function. Because of the super-Gaussian characteristics

of the speech signal, the appropriate nonlinear function should not grow too

fast with the signal amplitude, for example, tangent hyperbolic or the sigmoid

function are suitable function [18].

Since the above calculations are carried out independently in each frequency

bin, FD-ICA suffers from two problems, i.e., source permutation and scaling

indeterminacy. This can be written as

Y (f, k) = P (f)Λ(f)S(f, k), (10)
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where P (f) is an M ×M permutation matrix and Λ(f) is a diagonal M ×M
matrix.

The scaling indeterminacy filter Λ(f) can be solved by applying a projection

back of the separated independent components to the microphone array input

[14]. In the case of speech and diffuse background noise mixture, if Ym(f, t) is the

estimated speech component, the projection back of the noise components can be

defined by

X̂N(f, k) = W (f)−1(I −Dm)Y (f, k), (11)

where Dm is a matrix having only one non-null entry dmm = 1.

The remaining permutation problem P (f) requires the matching of the com-

ponents belonging to the same signal across all the frequency bins. This is carried

out by applying a permutation resolution. Methods of permutation resolution

often utilize the DOA or temporal structure of signals. Assuming that the sepa-

ration is perfect in each frequency bin, then

W (f)A(f) = P (f)Λ(f). (12)

The authors of [19] showed that in the presence of nonpoint sources such as

diffuse noise, the square matrix W ICA(f) is such that the row corresponding

to the estimated speech component is a delay-and-sum (DS) beamformer in the

direction of the speech’s apparent DOA at that frequency, while the other rows

corresponding to the estimates of the noise components are null beamformers

at that direction. Consequently, the quality of the noise estimate is superior

to that of the speech estimate as the null beamformers efficiently suppress the

speech (a point source) from the estimated noise components, whereas the DS

beamformer does not suppress the noise from the estimated speech component.

Therefore, performing frequency domain BSS alone may not be sufficient in the

case of speech with diffuse noise mixture.

2.3.1 Blind Signal Exraction

For specific case of the presence of diffuse background noise, an alternative to

BSS has been introduced in [20], namely frequency-domain blind signal extrac-

tion (BSE). The algorithm for BSS and BSE is depicted in Fig. 6. Unlike the
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Figure 6. The block diagram of a) BSS and b) BSE.

conventional BSS, the BSE algorithm only extracts the desired speech compo-

nents from the noise components.

Given the same observation signal X(f, k), BSE estimates only the compo-

nents of S1(f, k) in each frequency bin by applying extracting vector W (f), as

given by

Y (f, k) = W (f)X(f, k). (13)

The vector W (f) is updated using a gradient decent method to minimize the cost

function J(W (f)) given by,

J(W (f)) =
1

2
〈|Y (f, k)|〉2, (14)

〈|Y (f, k)|2〉 = 1. (15)

The cost function implies that the extracted component has a modulus with a

small mean and a large variance, or in other word, the component is sparse that

most of the values are close to zero and only a few are significantly large. In the

case of a target speech within diffuse background noise, the speech modulus may

be considered sparser than that of the noise components; thus the cost function

is minimum when the target speech component is extracted. In this way, it

is not required to confirm the selection of noise components, which means the

permutation problem as in BSS can be avoided.
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2.3.2 Performance Comparison Between Frequency-Domain BSE and

BSS

BSE outperforms BSS in speech and diffuse noise mixture in terms of output

signal quality and the computational complexity, owing to a simple nonparamet-

ric cost function. However, its performance is yet to be evaluated in the case

of the presence of point-source noise. In order to investigate this, a preliminary

experiment is conducted for both the mixture of speech with diffuse noise and

speech with point-source noise. In this experiment, the clean speech was convo-

luted with recorded room impulse response with T60 of approximately 250 ms.

For simulating the speech and diffuse noise, 10 female and 10 male utterances are

each convoluted with room impulse response and mixed with recorded real noise

at SNR of 10 dB.

For simulating the speech and point-source noise, 4 female and 4 male target

speech are each mixed with interference speech convoluted with room impulse

response. It is assumed that the target speaker always stays closer to the micro-

phone than the interference speaker. Therefore, for near speaker distance, the

interference speech comes from the far distance, and for far speaker distance, the

interference speech comes from the same distance but has half the energy of the

target speech signals. The performance of each method is evaluated using word

recognition accuracy measure.

The experimental result for both cases is shown in Fig. 7. It is clearly shown

that BSE outperforms BSS when the background noise is diffuse. However, its

performance drops in the presence of speech as point-source noise because the

sparseness assumption in the cost function does not hold when the interference

has similar statistics to the target speech. From this preliminary result, it is of

great interest to incorporate the benefit of BSE into BSS to built a new method

that is more robust to various type of interference.

2.4 Spectral-based Speech Enhancement

The alternative approach in array processing is based on the spectral modifica-

tion of the observed signal. Most of the methods in this field are the extension

of single-channel processing algorithm. The methods work in frame-by-frame
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Figure 7. Performance of conventional frequency-domain BSE and BSS under

different acoustic condition; a) speech mixed with diffuse background noise, and

b) speech mixed with other interference speech.

manner, resulting in nonlinear processing that is more robust to nonstationary

interferences but are prone to the artificial distortion of the residual noise, which

is also known as the phenomenon of musical noise. One of the most well-known

method is spectral subtraction [4], in which the estimated noise component is

subtracted from the observed signal either in spectral or power spectral domain

to obtain the clean target speech. There are also methods in which a filter is

applied to the observed signal to suppress the interference, such as in Wiener

filtering (WF) family [5].

Another spectral-based speech enhancement method is based on the assump-

tion of the statistical model of the speech spectrum. The aim of this class of

method is to estimate the spectrum of clean speech signal in noisy environment

using statistical estimation framework [21]. Authors in [22] emphasizing on the

estimation of speech spectral amplitude, acknowledging the importance of short-

time spectral amplitude (STSA) on speech intelligibility and quality. In this

method, speech STSA is obtained using a minimum mean-square error (MMSE)

estimator. The optimal estimator is sought to minimized the mean-square error

between the estimated and the true (clean) speech amplitudes. The clean speech

prior is assumed to follow the Gaussian distribution, motivated by the central

limit theorem. Furthermore, an estimator for the local a priori SNR is built

using decision-directed approach. Then, the estimated clean speech is obtained
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Figure 8. Block diagram of generalized MMSE-STSA estimator.

following the process flow as depicted in Fig. 8.

A generalization of MMSE-STSA estimator is also referred to as MMSE esti-

mation with optimizable speech model and inhomogeneous error criterion (MOSIE)

estimator [23]. In this method, the PDF of the clean speech spectral amplitude

is modeled by a chi distribution, as given by

p(s) =
2

Γ(ρ)

(
ρ

PS(f)

)ρ
s2ρ−1 exp

(
− ρ

PS(f)
s2
)
, (16)

where ρ is the shape parameter of the speech model, PS(f) is the mean of speech

power spectrum, and Γ(·) is the complete Gamma function. The value of ρ = 1

corresponds to Gaussian-distributed speech prior as in the original MMSE-STSA

estimator. As speech is known to be super-Gaussian-distributed, it is reasonable

to set the value of ρ from the range of 0 < ρ ≤ 1 to model the speech spectral

amplitude.

In similar manner to the original MMSE-STSA estimator, MOSIE is used

for single-channel noise suppression by applying the gain function G(f, k) to the

observed signal, as given by

YMOSIE(f, k) =G(f, k)X(f, k), (17)

G(f, k) =

√
ν(f, k)

γ̂(f, k)

[
Γ(ρ+ β/2)

Γ(ρ)
.
Φ(1− ρ− β/2, 1;−ν(f, k))

Φ(1− ρ, 1;−ν(f, k)

]1/β
, (18)

ν(f, k) =
ξ̂(f, k)

ρ+ ξ̂(f, k)
γ̂(f, k), (19)
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where Φ(a, b, c) is the confluent hypergeometric function. ξ̂(f, k) and γ̂(f, k) are

the estimated a priori and a posteriori SNRs, respectively, as given by

ξ̂(f, k) =αγ̂(f, k − 1)G2(f, k − 1) + (1− α)max[γ̂(f, k)− 1, 0], (20)

γ̂(f, k) =
|X(f, k)|2

|XN(f, k)|2
, (21)

where α is the forgetting parameter in the decision-directed approach [22]. In

addition, β is the compression parameter of the error function given by

e(So(f, k), Sp(f, k)) = |So(f, k)|β − |Sp(f, k)|β, (22)

where So(f, k) and Sp(f, k) are the speech spectral amplitude before and after

processing by MOSIE, respectively.

Several well-known estimators can be derived from the MOSIE estimator de-

pending on the choice of ρ and β. For example, by applying ρ = 1 and β = 1,

MOSIE will be equivalent to the conventional MMSE-STSA estimator. The log

spectral amplitude estimator [24] can be approximated with ρ = 1 and β = 0.001.

2.5 Experimental Setup and Corpora

In this study, I use utterances from the Japanese newspaper article sample (JNAS)

speech corpus [25] as target speech. The speech corpus contains speech recordings

of 153 males and 153 females reading excerpts from newspaper’s articles and

phonetically balanced (PB) sentences, sampled at 16 kHz . It was developed

to accommodate Japanese large vocabulary (20K) continuous speech recognition

task. The training data for the acoustics model consists to about 100 sentences

per speaker for over 100 speakers.

The room impulse responses used for experimental evaluations throughout

this dissertation were recorded in real rooms using a microphone array. For the

experiments in Sect. 3 and 4, the impulse response recorded in a large lecture

room is used. The reverberation time T60 of the room is approximately 500 ms.

The recording is carried out using a linear array of 8 omni-directional micro-

phones, with the distance between each microphone is 2.5 cm. The target speech

is assumed to be at the normal direction relative to the array. The background
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Figure 9. Recording setup for the room impulse response used in Sect. 3 and 4.

noise is also recorded separately using the same microphone array. The recording

setup is illustrated in Fig. 9.

The preliminary experiment and all experiments in Sect. 5 are conducted us-

ing the room impulse response data from REVERB Challenge 2014 [26], which is

an event to evaluate the dereverberation and ASR techniques based on a common

database and evaluation metrics. There are impulse response data from 3 rooms

provided in this challenge, i.e. a small, medium, and large-size meeting room with

T60 of about 250 ms, 680 ms, and 730 ms, respectively. The recordings is carried

out from two different angles using 8-channel circular microphone arrays with

diameter of 20 cm. The recordings were taken for two speaker-microphone dis-

tance, the ’near’ case being 0.5 m and the ’far’ case being 2.0 m. The background

noise is also recorded using the same microphone array.

In the first and third room (small and large-size meeting room), the position

of the target speaker is set to 45◦ relative to the first microphone channel, while

the interference speaker is positioned at 135◦ relative to the first microphone

channel. For the second room (medium-size meeting room), the position of the

target speaker is set to 45◦ relative to the seventh microphone channel, while

the interference speaker is positioned at 135◦ relative to the seventh microphone
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Table 1. System specification of ASR

Frame length 25 ms

Frame period 10 ms

Pre-emphasis 1− 0.97z−1

Feature vectors 12-order MFCC,

12-order ∆MFCC,

1-order ∆E

Acoustic model HMM phonetic tied mixture (PTM), 2000 states,

GMM 64 mixtures

Language model standard word trigram model

Training data Adult JNAS database

channel.

To simplify the problem, in this study only the data from 2 channel are selected

from the circular array, creating a linear array with inter-microphone space of

7.65 cm. This is done because the 2-channel linear configuration is more flexible

to extend into any number of microphone. It is worth to note that the inter-

microphone distance in this array is quite large, causing the spatial aliasing to

occur [27]. This will disrupt the estimation of DOA of the target speech. To cope

with this problem, only the low frequency components (up to about 2.2 kHz) is

used for calculating the estimate DOA.

The performance of each method is evaluated by ASR system using the word

recognition accuracy given by

WA = 100× N − (I + S +D)

N
, (23)

where N is the number of words in the reference transcriptions, I is the number

of insertions, S is the number of substitutions, and D is the number of deletions.

Julius 4.2[28] is used as the decoder in ASR system. The system specification is

shown in table 1.
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2.6 Summary

In this section, the problem of distant speech recognition system has been mod-

eled mathematically. Some important assumptions used in the model have also

been described. Then, I provided short review on some well-known speech en-

hancement techniques, covering their advantages and weakness. Conventionally,

these techniques have only been viewed as a means of improving the quality of the

speech waveform. Throughout the next sections, I present a framework in which

the microphone array processing are specifically optimized for improved speech

recognition performance. The novel methods extend and combine the existing

speech enhancement techniques and are optimized to maximize the likelihood of

the acoustic model in ASR system. This integrated system is more appropriate

for the implementation in distant speech recognition system.
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3. Semi-Blind Noise Suppression and Derever-

beration based on Frequency-Domain BSE

3.1 Introductions

The implementation of microphone array in a hands-free robot dialog system al-

lows a more natural and stress-free interface for human-robot interaction. How-

ever, it is difficult to achieve accurate speech recognition, because the background

noises always degrade the target speech quality. Furthermore, the distance be-

tween the speaker and the robot also causes the reverberation to be captured

along with the target speech.

In this section, I propose a semi-blind method based on BSE that jointly sup-

press diffuse background noise and late reverberation, assuming only one speaker

is active at a time. This method is the extension of the work in [29], with the

optimization scheme that address the speech recognition accuracy improvement.

The conventional BSE-based joint method has to be manually optimized, there-

fore it is unsuitable for the real environment implementation. Moreover, the

performance of this method is not stable if the interference is not too severe.

In the proposed method, I make assumption that the robot has its own video

camera, and thus, the position of the target speaker can be immediately detected.

From this image information, I develop a semi-blind optimization scheme for the

joint method. I conduct experiment to evaluate the performance of the proposed

method.

3.2 Main Algorithm

3.2.1 Noise Suppression Stage

The block diagram of the optimized BSE-based joint method is depicted in Fig.

10. In this method, BSE is utilized to estimate the background noise component.

This is done by subtracting the orthogonal projection of the extracted speech

component Y (f, k) obtained from Eq. (13), as given by

X̂N(f, k) = (IM − PX(f)λHWH(f)λW (f))X(f, k), (24)
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Figure 10. The block diagram of the optimized BSE-based joint method.

where λ is a scalar such that Q(f, k) = λW (f)X(f, k) verifies 〈|Q(f, k)|2〉 = 1.

PX is given by

PX = 〈X(f, k)XH(f, k)〉. (25)

Then, the estimated noise is suppressed using multichannel WF, as given by

X̂S(f, k) = G|X(f, k)|ejarg(X(f,k)), (26)

G =
|X(f, k)|2

|X(f, k)|2 + ζN|X̂N(f, k)|2
, (27)

where βN is a parameter used to control the strength of noise suppression.

The output of noise suppression stage will be used to synthesize the late

reverberation component at the dereverberation stage. Therefore, it is important

to optimize the parameter of WF in order to improve the quality of the output

waveform of this stage. One problem that commonly arises in nonlinear signal

processing methods such as WF and SS is the occurrence of musical noise. This

artificial noise distorts the spectrum of the speech output of the noise suppression

stage. Thus, the parameter of WF shall be optimized to avoid generating musical

noise excessively.

I utilize kurtosis ratio (KR) in the optimization scheme, which measure a

ratio of kurtosis of the residual noise in the processed signal to the kurtosis

of unprocessed noise in the observed signal [30]. Kurtosis of noise spectrum is

calculated frequency subband-wise in speech absence region, as given by

kurt(i) =
(1/L)

∑
f∈Fi

∑
k∈T (|X(f, k)|2)4

{(1/L)
∑

f∈Fi

∑
k∈T (|X(f, k)|2)2}2

, (28)
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where kurt(i) is the ith subband kurtosis of a signal x. Fi and T represent the

evaluated subband time-frequency grid indexes, while L is the total number of

grids in each subband. Here, a 250-Hz-width Fi and a T of 5 s are used, which

are taken from a noise-only time-frequency region preceding a speech utterance.

Then, ζN is updated in an iterative manner to achieve the optimum noise reduc-

tion ratio (NRR) under a KR constraint, as given by

ζ̂N = arg max
ζN

NRR(ζN), (29)

kurtproc(ζN)

kurtorg
≤ KRlim, (30)

where kurtorg and kurtproc(ζN) are the kurtosis of the unprocessed noise and the

output from noise suppression stage, respectively, and KRlim is the constraint

value of KR. The procedure is described as follow.

Step 0: First, set initial ζN.

Step 1: Next, apply the WF for noise suppression using the value of ζN.

Step 2: Apply DS beamformer to the output signal, then calculate the kurtosis.

Obtain kurtosis ratio by dividing noise kurtosis of the output signal by the noise

kurtosis of observed signal.

Step 3: Increase the value of ζN by a certain amount ∆ζN . Return to Step 1 until

the kurtosis ratio value reaches the given limit, or until the difference between

updated value and previous value of kurtosis ratio is below certain threshold.

3.2.2 Dereverberation Stage

Provide that the noise suppression stage is effective, the estimated X̂S(f, k) con-

tains only the early reverberant speech XE(f, k) and late reverberant speech

XL(f, k). The task in dereverberation stage consists of the estimation and sup-

pression of the late reverberation components.

The estimation of the late reverberation components can be separated into

two tasks: estimating the late impulse response hL(τ) and the clean speech signal

s(t). In this method, the estimated hL(τ) is approximated by generating an
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exponentially decayed Gaussian random variable u(τ) as given by [31]

hL(τ) = au(τ)e−d(τ−τd), (31)

d =
ln 106

2(T60 − τd)
, (32)

where a is a scaling factor. The direct speech s(t) is approximated by projecting

back the output of the noise suppression stage X̂S(f, k) to the truncated FD-BSE

filter Wtrunc(f), as given by

Ŝ(f, k) = PX̂S(f)
λHWH

trunc(f)λWtrunc(f)X̂S(f, k). (33)

The scaling factor a is obtained from the energy difference between X̂S(f, k)

and Ŝ(f, k). Then, according to Eq. (2), X̂L(f, k) is obtained by applying a

convolution in the time domain, given by

x̂L(t) = hL(τ) ∗ ŝ(t), (34)

then it transformed back to the time-frequency domain by applying an STFT.

After that, the dereverberation process is carried out in the same manner as the

noise suppression stage, using multichannel WF given by

X̂E(f, k) = G|X̂S(f, k)|ejarg(X̂S(f,k)), (35)

G =
|X̂S(f, k)|2

|X̂S(f, k)|2 + ζR|X̂L(f, k)|2
, (36)

where ζR is a parameter to control the strength of dereverberation.

DS beamformer is applied in the direction of the target speech to merge the

output of the dereverberation stage X̂E(f, k) as given by

X̂E(f, k) = wT
DS(f)X̂E(f, k), (37)

wT
DS(f) =

[
w

(DS)
1 (f), w

(DS)
2 (f), ...w

(DS)
M (f)

]T
, (38)

w(DS)
m (f) =

1

M
exp(−i2π(f/F )fsd sinθ̂(f)/c). (39)

The estimated DOA θ̂ is calculated from the projection back of the FD-BSE filter

as given by

K(f) = PX(f)λHW H(f)λW (f), (40)

θ̂(f) = arg sin

(
cF

2πffsd
angle

(
{K(f)}i+1,j

{K(f)}i,j

))
, (41)
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Finally, the desired output x̂E(t) is obtained by applying an inverse STFT to the

output of DS beamformer.

Because this method is designed to be implemented in hands-free robot dia-

logue system, the final stage must be optimized to improve the speech recognition

accuracy. Therefore, the WF parameter at dereverberation stage is optimized to

maximizes the likelihood of the acoustic model of the ASR system.

The ASR system works on an extracted feature vector of the speech waveform.

It hypothesizes the correct transcription of an utterance by finding the sequence

that has the maximum likelihood of generating the extracted feature vector given

the statistical acoustic models of the recognizers. First, a series of vectors o =

[o1, ..., oT ] containing Mel-frequency cepstral coefficient (MFCC) [32] is extracted

from the speech waveform. Then, during decoding, the ASR system attempts

to find the word sequence Z = [z1, ..., zK ] that is most likely to generate the

sequence o, as expressed by

Ẑ = arg max
Z

P (Z|o). (42)

By applying Bayes’ theorem, the above expression can be written as

Ẑ = arg max
Z

P (o|Z)P (Z)

P (o)
, (43)

where P (o|Z) is the acoustic likelihood or acoustic score, representing the prob-

ability that acoustic feature sequence o is observed given that word sequence Z

was spoken, and P (Z) is the language score, i.e., the a priori probability of a

particular word sequence Z, which is calculated using a language model. Taking

into account only the part related to the acoustic feature of the signal, the WF

parameter in the dereverberation stage is optimized to maximize

ζ̂R = arg max
ζR

P (o(ζR)|Z). (44)

For an HMM-based speech recognition system, the solution of this problem can

be computed using the Viterbi algorithm [33].

In practice, the calculation of (44) requires the correct transcription Z, but

if it is already known, the speech recognizer is not required anymore. Therefore,

the optimization procedure is carried out as follows.
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Step 0: First, set initial ζR.

Step 1: Next, apply the WF for dereverberation using the value of ζR.

Step 2: Apply DS beamformer to the output signal, then calculate the log

likelihood P (o(ζR)|Z) using Viterbi algorithm.

Step 3: Increase the value of ζR by a certain amount ∆ζR . Return to Step 1 and

use Z obtained from initial ζR for Viterbi alignment. Repeat the process until

maximum score achieved.

3.3 Semi-blind Implementation of Joint Method

Although the proposed optimization scheme performs well under heavily rever-

berant conditions, it is still difficult to achieve the optimum performance when

the level of interference is not severe. This may be caused by the distortion from

the long processing. Therefore, we need a system that can adjust the signal pro-

cessing method to be applied according to the environmental conditions. Here

I incorporate the user position information provided by the robot’s camera and

develop a multimodal switching scheme based on distance information. An RGB

camera with depth sensor is utilized to obtain the speaker distance information.

The block diagram of the proposed semi-blind scheme is shown in Fig. 11. It

is assumed that the speaker distance from the robot corresponds to the severity

of the interference. First, an offline training stage is conducted to estimate the

distance at which the method should be switched. Both frequency domain BSE

and the optimized joint method are applied to signals at various speaker-to-

microphone distances and the results are compared. Next, after the switching

distance has been decided, the system applies two different schemes according to

the user position:

• For a short user distance, the reverberation is not severe so only frequency-

domain BSE is applied to the input signal to suppress the background noise.

The extracted speech from FD-BSE becomes the output signal.

• For a longer user distance, the complete optimized joint method is applied

instead of only FD-BSE.

The switching point also depends on the SNR condition of the signal. The

SNR can be easily approximated by utilizing the noise estimation from BSE. The
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Figure 11. The block diagram of the semi-blind joint method.

calculation is carried out channel-wise, as given by

SNRest = 10 log10

E[x(t)]2 − E[x̂N(t)]2

E[x̂N(t)]2
. (45)

The lower average SNR indicates not only more severe background noise but also

late reverberation, because the noise estimation from FD-BSE may also contain

the late reverberation components since they have similar characteristics. In this

case, the optimized joint method is more preferable, thus the switching distance

is shorter than in the case of higher SNR.

3.4 Experimental Result and Discussion

For the evaluation, 100 utterances from the female JNAS corpus as the clean

speech, each was convoluted with the room impulse response (T60 = 500 ms) and

mixed with noise at SNRs of 0, 10, and 20 dB. The τd value was set to 75 ms, which

corresponds to the effect of a room impulse response that can still be handled

by the speech recognizer. The time-frequency domain processing was done by

implementing the short-time Fourier transform (STFT) with a 1024 point FFT

size, a Hanning window and 50% overlap. The BSE algorithm was performed
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Figure 12. Word accuracy comparison among conventional methods and the

proposed method in various input SNR condition: (a) 0 dB, (b) 10 dB and (c)

20 dB.

for 600 iterations with an adaptation step of 0.3, which was halved every 200

iterations.

The proposed method is compared to the currently known method, namely,

blind spatial subtraction array (BSSA) [19], multi-step linear prediction based

dereverberation method (MSLP) [34], and the adaptation from full-rank spatial

covariance model (FRSC) [35]. Originally, MSLP works under noise-free assump-

tion, so I also investigate the performance of MSLP combined with multichannel

WF for suppressing the background noise (Denoised-MSLP). The background

noise for this method is estimated with a priori SNR [21].

The word recognition accuracy result is shown in Fig. 12. It can seen that

BSSA performs well under severe SNR conditions and short user distance, since

this method only suppress background noise. On the other hand, MSLP fails

to perform under severe SNR conditions. This is mainly because the method
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relies on noise-free assumption. Combination with WF for noise suppression do

not improve the recognition accuracy, probably because the noise suppression

causes more distortion to the target speech. The poor performance of FRSC

may be caused by failure in initialize the parameters, as this method is sensitive

to initialization process. Overall, the proposed method outperforms the other

methods under most of conditions.

3.5 Summary

In this section, I present a semi-blind method to suppress diffuse background noise

and late reverberation for a distant-talking robot system. This method combines

BSE with two stages of multichannel WF, and utilizes the image information

from the robot’s camera to know the position (distance) of the speaker. Then,

the information is used to select the optimum method between the optimized

joint method and BSE to be implemented to the observed signal.

This semi-blind configuration can maintain the stable performance regardless

the severity of interferences. However, there are many situations where the infor-

mation of speaker position is not provided. Under such conditions, the proposed

semi-blind method is impossible to be implemented. Therefore, in the next section

I present the modified blind method based on BSE. I also introduce the extension

of generalized MMSE-STSA as a nonlinear postprocessing for dereverberation in

the next section.
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4. Joint Noise Suppression and Dereverberation

Combining FD-BSE and Generalized MMSE-

STSA

4.1 Introduction

The semi-blind method proposed in Sect. 3 is effective to suppress the diffuse

background noise and late reverberation. However, its implementation is lim-

ited to the situation where the image information revealing the user’s position is

accessible. Therefore, it is preferable to develop a blind joint method that can

maintain a stable performance without the aid of another sensor.

In this section, I propose the modified blind joint noise suppression and dere-

verberation method based on BSE. Under assumption that only one speaker is

active at a time, BSE is utilized as speech extractor, in contrast to its role as

noise estimator in the previous method. Simultaneously, BSE also suppress the

background noise as it extracts the target speech component. Thus, only one

stage of postprocessing is required, that is the dereverberation stage.

I also introduce the extension of generalized MMSE-STSA (MOSIE) as a

postprocessing for dereverberation stage. As described in Sect. 2, MOSIE works

based on the prior assumption of the statistical model of speech STSA. An exper-

iment is carried out to compare the performance of the proposed blind method

with different postprocessing choices.

4.2 Main Algorithm

In the proposed method, the FD-BSE is used to extract the speech component

from the observed signal, based on the cost function in Eq. (14). The scaling

problem is solved by applying projection back (PB), as given by

X̂S(f, k) = PX(f)WH(f)YBSE(f, k), (46)

where PX(f) indicates the covariance of the observed signals. Assuming that the

extraction is effective, X̂S(f, k) will only consist of clean speech and its reverber-

ation. First, we synthesize the late reverberation in the time domain using (32),
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Figure 13. Block diagram of FD-BSE combined with multichannel WF postpro-

cessing.

Figure 14. Block diagram of FD-BSE combined with single-channel MOSIE esti-

mator postprocessing.

(33), and (34). Next, we compare three different postprocessing for dereverber-

ation. The first method utilizes a multichannel WF as shown in Fig. 13, given

by

X̂E(f, k) = G|X̂S(f, k)|ejarg(X̂S(f,k)), (47)

G =
|X̂S(f, k)|2

|X̂S(f, k)|2 + ζR|X̂L(f, k)|2
, (48)

where ζR is a parameter for controlling the strength of dereverberation.

The second and third methods utilize single-channel and multichannel MOSIE

estimator postprocessing, as shown in Fig. 14 and Fig. 15, respectively. The

estimated speech is obtained by applying a gain function to the observed signal,

as given by Eq. (19). Then, DS beamformer is applied in the end of multichannel

processing to obtain single-channel output, with the direction-of-arrival calculated

from the PB of the FD-BSE filter using Eq. (41).

Parametric postprocessing allows flexible control of the level of dereverbera-

tion. However, it is important to set the parameter to obtain the best speech
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Figure 15. Block diagram of FD-BSE combined with multichannel MOSIE esti-

mator postprocessing.

Figure 16. Block diagram of the optimized one stage blind noise suppression and

dereverberation based on BSE.

recognition accuracy. In this study, only the internal parameter in nonlinear

postprocessing, i.e., ζR in the multichannel WF and ρ in the MOSIE estimator,

will be optimized. Other parameters, such as T60, are assumed to be known.

The parameters of nonlinear postprocessing are optimized to maximized the like-

lihood of the acoustic model of the speech recognizer. The optimization scheme

is carried out in iterative manner, with the hypothesized transcription from the

first iteration is used in Viterbi alignment for the rest of iteration. The general

flow of the optimization scheme is depicted in Fig. 16.

4.3 Experimental Result and Discussion

Two experiments have been carried out for evaluation purposes. The observed

signal was created by convolution of the clean speech with the impulse response
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Table 2. Word accuracy results (%) of Experiment 1, input SNR = 10 dB

Distance 1 m 2 m 3 m 4 m 5 m

Reference 97.20 90.22 90.11 92.91 92.85

FD-BSE 89.65 61.55 56.32 70.59 41.24

FD-BSE + MC-WF 91.79 79.28 73.13 82.09 55.86

FD-BSE + SC-MOSIE

α = 0.98 74.44 56.36 55.97 61.94 36.04

FD-BSE + MC-MOSIE

α = 0.96 91.79 75.00 73.13 85.07 58.56

FD-BSE + MC-MOSIE

α = 0.98 95.50 65.91 72.07 82.84 52.25

FD-BSE + MOSIE-LSA

α = 0.98 71.64 60.23 61.26 73.87 48.86

(T60 = 500 ms), and recorded real noise was added at SNR of 10 dB. The frequency

domain processing was carried out with a 512-point Hamming window and 50%

overlap of the STFT. FD-BSE was performed in 600 iterations with an adaptation

step of 0.3. The parameter τd was set to 75 ms, corresponding to the delay that

can still be handled by the speech recognizer.

4.3.1 Manual Tuning of the Parameter of the MOSIE Estimator

The first experiment was carried out using 5 male and 5 female utterances. The

purpose of this experiment is to find the optimum parameter sets for the MOSIE

estimator other than the shape parameter of chi-distributed speech prior ρ. The

first parameter is α, i.e. the forgetting factor of decision-directed a priori SNR

estimator. It is well known that the optimum value of α for hearing purpose is

0.98, as any value below 0.98 generates a noticeable amount of musical noise. In

the experiment, I compare the performance of MOSIE postprocessing with α set

to 0.98 and 0.96.

The second parameter to be tuned is β, i.e. the compression parameter of

the error function. As described in Sect. 2, β value of 0.001 to represent the

MOSIE-LSA estimator and 1 to represent the MOSIE-STSA estimator [23]. The
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best result among these combinations are manually selected. The results are

shown in Table 2. It is shown that nonlinear postprocessing improves the recog-

nition accuracy compared with the FD-BSE method, except for the case of the

single-channel MOSIE-STSA estimator. This is understandable as single-channel

processing tends to result in higher speech output distortion due to the lost of

spatial information. It can be observed that the MOSIE-STSA estimator per-

forms better than the MOSIE-LSA estimator for dereverberation in terms of

word recognition accuracy.

It is also shown that the α = 0.96 results in better word accuracy than α =

0.98. This is an interesting finding because α = 0.98 is a preferred setting for

speech enhancement such as that for hearing aid system. This is possibly because

a high quality output signal waveform is less important for speech recognition

purposes. The performance of the MOSIE estimator with α = 0.96 is similar

to multichannel WF postprocessing in the case of small user-to-microphone dis-

tances, except for a distance of 2 m. For the long user distances, postprocessing

with the MOSIE estimator achieves slightly better word accuracy.

4.3.2 Evaluation of Optimized Blind Joint Method

The optimization scheme of the proposed blind joint method is evaluated in the

second experiment. The utterances from 50 male and 50 female speakers is used as

the target speech. In this experiment, I compare the performance of combination

of BSE and multichannel WF postprocessing to the combination of BSE and

multichannel MOSIE postprocessing. For the multichannel MOSIE estimator,

α and β were set to 0.96 and 1, respectively, following to the result in the first

experiment.

The results of the second experiment is shown in Table 3. We can see that

both optimized methods outperform frequency domain BSE, with an average im-

provement of 11.4% for the multichannel WF and 12.9% for MOSIE estimator

postprocessing, and the highest improvement of 17.85% achieved by the multi-

channel WF at a distance of 3 m. This implies that by shortening the processing

path, a more stable performance of blind noise suppression and dereverberation

method can be achieved, hence the better recognition accuracy. It is also shown

that the parameter optimization based on acoustic likelihood is effective for the
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Table 3. Word accuracy results (%) of Experiment 2, input SNR = 10 dB

Distance 1 m 2 m 3 m 4 m 5 m

Reference 90.86 78.20 80.30 83.96 84.97

FD-BSE 77.50 52.99 47.59 60.63 33.80

FD-BSE+

MC-WF 82.00 68.33 65.44 68.15 45.68

FD-BSE+

MC-MOSIE 83.82 65.75 64.02 73.38 50.05

proposed blind method.

Despite its advantages, the current proposed method leaves potential and

unsolved problems. The nonparametric characteristic of BSE causes the noise

suppression stage to be non-optimizable. Thus, the performance of this method

is greatly dependent to the capability of BSE to extract the clean speech from

noisy mixture. From the preliminary experiment result in Sect. 2, we can only

expect the current proposed method to perform effectively in the case of speech

and diffuse noise mixture.

4.4 Summary

In this section, I propose a modified blind noise suppression and dereverberation

method based on frequency-domain BSE. In this method, BSE is used to extract

speech component and suppress the diffuse background noise. Then, a nonlinear

postprocessing is applied to suppress the late reverberation, with the parameter

optimized according to the acoustic likelihood. Experimental result confirms

the effectiveness and stability of the proposed method, particularly for the BSE

combined with multichannel MOSIE.

The BSE-based proposed methods perform well in the mixture of speech and

diffuse background noise, under assumption that only one speaker, i.e. target

speaker, is active at a time. However, there are many situations in which such

assumption does not hold. As pointed out in Sect. 2, BSE performance is prone

to the presence of point-source interference, for example the overlapping speech

from other speaker. The poor performance of BSE in noise suppression stage will
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lead to the poor overall performance of the proposed method, as conventional

BSE is non-optimizable. These problems will be addressed in the next section.
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5. Robust Noise Suppression and Dereverbera-

tion using Source-Adaptive BSS and General-

ized MMSE-STSA

5.1 Introduction

In general, the conventional ICA-based BSS suffers from poor and slow conver-

gence due to the fact that the simultaneous identification of statistical model of

the sound source and the estimation of demixing matrix for source separation

is a difficult task in an unsupervised optimization viewpoint. The utilization of

fixed activation function, such as described in Sect. 2.3 aids in improving the

performance. The use of BSE instead of BSS also reduces the computational

complexity by only considering the difference of sparseness of the signal spectral

modulus in the case of one target speech in the presence of diffuse background

noise.

However, the above-mentioned approaches result in lost applicability to vary-

ing type of sound signals. Thus, it is preferable to develop a strategy for efficient

estimation of the statistical model of each component and then building the cor-

responding activation function for the demixing matrix update. Authors in [36]

has proposed a time-domain ICA method with such flexible activation function,

however it can only perform well for additive mixture of signals.

In this section, I propose the new method of BSS based on source-adaptive

ICA in the frequency domain. The activation functions for updating the sepa-

ration filter correspond to the statistical model of each sound source spectrum.

First, the main algorithm of the proposed method is explained. Then, I describe

the estimation strategy for each parameter of source-adaptive BSS. Experiments

are then carried out to evaluate the performance of the proposed method and

highlight some remarks on the implementation.

5.2 Main Algorithm

Many signal processing methods apply different kinds of statistical models as-

sumption to different variables in each operational domain. For example, con-
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ventional ICA-based BSS introduces the tangent hyperbolic or sigmoid activation

function that corresponds to the super-Gaussian-distributed sound source PDF

in the time-frequency (spectral) domain. MMSE-STSA estimator assumes that

the speech spectral amplitude follows Gaussian distribution, and MOSIE utilizes

chi-distributed speech spectral amplitude prior model.

The proposed method in Sect. 4 has been shown to perform optimally for

the case of speech in the presence of diffuse background noise, owing to the

utilization of BSE to extract the speech components. The simple cost function

within frequency domain BSE exploits the difference of statistical properties of

each sound source, i.e. the sparseness of its modulus. However, the lacks of

the statistical model assumption causes the performance of BSE to drop in the

presence of interference speech, as the statistical properties of each sound source

is similar. Therefore, it is of great interest to develop a BSS method that has

flexible statistical model assumption according to the estimate of each sound

source’s PDF.

Figure 17 shows the main idea of the proposed method, which is the extension

of the method proposed in Sect. 4. Here, we take advantage from the MOSIE

postprocessing that works based on a statistical model assumption of speech,

i.e. chi-distributed speech spectral amplitude prior. The shape parameter ρ of

chi distribution, which is optimized to maximize the acoustic likelihood, can be

utilized to obtain the optimum internal parameter of source-adaptive BSS.

Although the idea is promising, there is an inherent problem arised because

BSS and MOSIE works in different domain. There is no known explicit rela-

tionship between the statistical model in amplitude domain (such as in MOSIE)

and the statistical model in the complex spectral domain (such as in BSS). Thus

development of the proposed method includes the following tasks:

• Approximation of the relationship between the parameter of speech statisti-

cal model in source-adaptive BSS, which is in complex spectral domain, and

the shape parameter of chi-distributed speech amplitude prior in MOSIE.

• Estimation of the parameter corresponds to the remaining sound source,

i.e. interference signal, in source-adaptive BSS.

• Integrating the source-adaptive BSS into the proposed method and building
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Figure 17. Block diagram of the optimized joint noise suppression and derever-

beration combining source-adaptive BSS and MOSIE postprocessing.

optimization strategy.

If such tasks are well-performed, then the proposed method will bridge the

difference of speech component modelling in three different domain, i.e. spectral

domain in BSS, spectral amplitude domain in MOSIE, and mel-cepstral domain

in ASR acoustic model. This relation is shown in Fig. 18.

5.3 Estimating the Parameter of Source-Adaptive BSS

In this method, the generalized Gaussian distribution is used to model the sound

source PDF in the complex spectral domain. This distribution is selected amongst

other distribution functions because it can represent various shape of distribution

according the value of its parameter. The PDF for an arbitrary random variable

z in the form of GGD function is given by

pGGD(z;ϑ, η) =
η

2ϑΓ( 1
η
)

exp

(
−
[
z − z̄
ϑ

]η)
, (49)

where z̄ is the mean of z, ϑ and η is the scaling parameter and shape parameter

of GGD function, respectively. In this study, all the sound source are assumed to

be zero-mean.
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Figure 18. Block diagram showing how the proposed joint method will connect

different modelling of speech component in different domain.

Figure 19 depicts the various shape of GGD function according to different

values of its shape parameter. It is shown that for η = 2, GGD function repre-

sents Gaussian distribution, which is commonly used to model the diffuse noise

PDF. Also, for η = 1, GGD function represents Laplacian distribution, which

is commonly used to model the speech PDF [37]. In general η < 2 indicates

super-Gaussian distributed random variable, while η > 2 indicates sub-Gaussian

distributed random variable.

5.3.1 Estimation of Speech PDF Shape Parameter

The relation between the statistical model of the target speech component in

source-adaptive BSS and MOSIE is derived in this section. Recall that in MOSIE,

the target signal amplitude spectrum is modeled as chi distribution by Eq. 16. It

is known that chi distribution have a useful relation between the shape parameter
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Figure 19. Sample of GGD functions for different values of ϑ and η.

ρ and the higher-order statistics, i.e. kurtosis, as given by

ρ =
1

kurtosis(s)− 1
. (50)

The complex-valued speech variable in spectral domain is defined by (sR+jsI),

where sR and sI are real and imaginary parts of the speech signal spectrum,

respectively. Thus, Eq. (50) can be reformulated as

µ4(
√
s2R + s2I)

µ2
2(
√
s2R + s2I)

= ρ−1 + 1, (51)

where µl(s) is the lth-order moment of s, as defined by µl(s) = E[sl]. The

statistics of squared variable of sR and sI , respectively, are given by:

µl(s
2
R) = µ2l(sR), (52)

µl(s
2
I) = µ2l(sI). (53)

However, moments of summed random variables generally do not equal the sum of

each random variable’s moments. Therefore, cumulants, which hold the additivity

property of additive variables, are introduced in the derivation using moment-

cumulant transformation [38].
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Given Eq. (52) and (53), the lth-order cumulant of power spectrum s2R + s2I
can be calculated by

κl(s
2
R + s2I) =κl(s

2
R) + κl(s

2
I)

=
∑
π(l)

(−1)(|π(l)|−1)(|π(l)| − 1)!
∏

B∈pi(l)

µ|B|(s
2
R)+

∑
π(l)

(−1)(|π(l)|−1)(|π(l)| − 1)!
∏

B∈pi(l)

µ|B|(s
2
I),

(54)

and the lth-order moment of the power spectrum is given by

µl(s
2
R + s2I) =

∑
π(l)

∏
B∈π(l)

κ|B|(s
2
R + s2I). (55)

Furthermore, the lth-order moment of the amplitude of spectrum
√
s2R + s2I can

be written as

µl

(√
s2R + s2I

)
= µ l

2
(s2R + s2I). (56)

Finally, using Eq. (56), the resultant 2nd- and 4th-order moments of the

speech amplitude can be estimated as

µ2

(√
s2R + s2I

)
= 2µ2(sR), (57)

µ4

(√
s2R + s2I

)
= 2µ4(sR) + 2µ2

2(sR), (58)

under assumption that sR and sI are i.i.d to each other. Since both are modeled

by GGD, the lth-order moment of each component corresponds to the shape

parameter ηS through the following relationship:

µl(sR) = ϑlΓ

(
l + 1

ηS

)
Γ

(
1

ηS

)−1
. (59)

Thus, by incorporating Eq. (57), (58), and (59) into (50), we obtain the

relation between shape parameter of chi-distributed spectral amplitude ρ and

shape parameter of GGD-distributed spectrum ηS as given by

Γ

(
5

ηS

)
Γ

(
1

ηS

)
Γ

(
3

ηS

)−2
= 2ρ−1 + 1. (60)
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The value of ηS from given rho can be obtained by calculating the inverse

function of (60). However, such calculation is a difficult task and there is no

exact closed-form solution w.r.t to ηS. Therefore, the closed-form derivation of

ηS is approximated using modified Stirling’s formula on gamma function [39],

Γ(z) ≈
√

2π · exp(−z) · zz−0.5 · exp

(
1

12z

)
. (61)

In logarithmic scale, Eq. (61) is equal to

log Γ(z) ≈ 1

2
log(2π)− z + (z − 0.5) log z +

1

12z
. (62)

Then the relation in (60) can be approximated by

log Γ

(
5

ηS

)
+ log Γ

(
1

ηS

)
− 2 log Γ

(
3

ηS

)
≈ 1

ηS
log

(
55

36

)
+ log

(
3√
5

)
+ ηS.

2

45

= log(2ρ−1 + 1).

(63)

This results in quadratic equation

η2S + ηS
45

2
log

(
3√

5(2ρ−1 + 1)

)
+

45

2
log

(
55

36

)
= 0, (64)

and closed-form estimate of ηS from given ρ can be obtained from

ηS =− 45

4
log

(
3√

5(2ρ−1 + 1)

)

− 1

2

√
2025

4
log

(
3√

5(2ρ−1 + 1)

)2

− 90

(
55

36

)
.

(65)

The comparison between the theoretical relation in Eq. (60) and the estimated

value in Eq. (65) is depicted in Fig. 20. From the figure it is shown that the

estimation is very good in consistency, particularly for η < 2 which is the range

of shape parameter for super-Gaussian signal.

Next, an experiment is conducted to evaluate Eq. (65) when dealing with real

data. I use 20 clean utterances (10 males and 10 females) in this experiment,

with each utterance’ length varies between 1.8 - 13 s. The estimated ηS from

the proposed approach is compared to its true value which is estimated using the

kurtosis of the real component of each speech spectrum.
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Figure 20. Relation between the shape parameter of Chi distribution ρ and the

shape parameter of GGD η. The blue line shows the theoretical relation (60) and

the red line is the proposed approximation (65).

The experiment result is shown in Fig. 21. We can see that the shape pa-

rameter of clean speech indicates the super-Gaussian nature of the signal. The

estimated ηS is found to be always less than the true value, but the average esti-

mation error does not exceed 5%. Thus, the proposed approach for the estimation

of ηS is valid.

5.3.2 Estimation of Noise PDF shape Parameter

The approximated relationship between ρ and η only holds for the speech compo-

nent, as MOSIE do not have statistical assumption on noise component. There-

fore, the solution (65) cannot be applied to estimate ηN . Instead, the shape

parameter of speech ηS is utilized to the estimation of ηN . This is done by esti-

mating the PDF of the output of the source-adaptive BSS in which ηS has been

optimized. The optimized ηS will provide the appropriate activation function cor-

responds to the speech component, thus improve the separation of speech signal
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Figure 21. Estimated speech shape parameter corresponding to 20 utterances.

from the interferences. This is also mean that the residual output will contain

less speech component, and the PDF of the residual output will be close to the

real PDF of noise source. In practice, the shape parameter ηN can be estimated

from the kurtosis of the output signal that corresponds to the noise component.

5.4 Source-Adaptive BSS

The previous PDF estimation enables BSS to use more appropriate activation

function and mitigate the drawbacks on the poor convergence. Recall that the

separation filter matrix is update as given in Eq. (9). Instead of using fixed

tangent hyperbolic or sigmoid nonlinear function, the update rule is modified

into

W
[i+1]
ICA (f) = µ[I − 〈φ(Y (f, k);ϑ, η)Y H(f, k)〉k]W [i]

ICA(f) + W
[i]
ICA(f), (66)

where

φ(Y (f, k);ϑ, η) =[φ(Y
(R)
1 (f, k);ϑ1, η1) + jφ(Y

(I)
1 (f, k);ϑ1, η1),

· · · , Y (R)
M (f, k);ϑM , ηM) + jφ(Y

(I)
M (f, k);ϑM , ηM)]T

(67)

is the source PDF-adaptive activation function for each real and imaginary parts

of the separated signal [Y1(f, k), · · · , YM(f, k)] modeled in GGD function with

parameters ϑ and η. The appropriate activation function is derived from (49) as
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given by

φ(z;ϑη) = − ∂

∂z
log(pGGD(z;ϑ, η)) =

 η
ϑη
|z|η−1, (z ≥ 0),

− η
ϑη
|z|η−1, (z > 0).

(68)

Assuming that the output of BSS is normalized to have unit variance, the scale

parameter ϑ can be calculated as a function of η as given by

ϑ =

√
Γ(1/η)

Γ(3/η)
. (69)

Figure 22 provides examples of activation functions for GGD with various

shape parameter η. It is shown that although η ≤ 1 closely resembles the dis-

tribution shape of speech component which is super-Gaussian distributed, the

corresponding activation function is unstable, particularly for near-zero region.

Therefore, there is a trade-off between correctly modeling the source PDF and

maintaining good separation performance. In the proposed method, we will view

this trade-off problem from the recognition performance.

5.5 Experimental Evaluation

Three experiments are conducted to evaluate the performance of the proposed

method. The room impulse response from REVERB Challenge data are used in

the experiment, with the specific information as described in Sect. 2. In the first

experiment, I compare the source-adaptive BSS to conventional BSS with fixed

tanh activation function and BSE. For the speech and diffuse noise condition, 20

clean utterances from JNAS corpus are convoluted with room impulse response

and mixed with pre-recorded noise at input SNR of 10 dB.

For simulating the speech and point-source noise, 4 female and 4 male target

speech are each mixed with interference speech convoluted with room impulse

response. It is assumed that the target speaker always stays closer to the micro-

phone than the interference speaker. Therefore, for near speaker distance, the

interference speech comes from the far distance, and for far speaker distance, the

interference speech comes from the same distance but has half the energy of the

target speech signals. The performance of each method is evaluated using word

recognition accuracy measure.
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Figure 22. Samples of activation function corresponds to the various shape of

GGD function.

In the second experiment, I evaluate the performance of the proposed joint

method based on source-adaptive BSS in comparison to other BSS-based joint

method. In this experiment, 20 clean utterances from JNAS corpus are convoluted

with room impulse response and mixed with pre-recorded noise at input SNR of 10

dB. Using the same experimental conditions, additional experiment is conducted

to investigate the effect of the incorrect information of T60 to the performance of

the proposed method. This experiment is to ensure whether the proposed method

can perform well blindly, with no proper a priori knowledge.

5.5.1 Evaluation of Source-Adaptive BSS

In this experiment, the performance of source-adaptive BSS (PDFBSS) is com-

pared with conventional BSS with fixed tanh activation function (tanh-BSS) and

frequency domain BSE (FD-BSE). To compensate the poor performance of con-
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ventional BSS in the case of diffuse background noise mixture, I also try to apply

several iteration of BSE to provide initial unmixing matrix for BSS (BSE-BSS).

The shape parameter ηS and ηN is estimated directly from the reference speech

and reference noise, so only the algorithm of source-adaptive BSS is evaluated

in this experiment.The estimation is carried out using kurtosis matching method

in each frequency bin, and the mean of the obtained η is used throughout all

frequency bins.

In Sect. 5.4 it has been shown that η < 1 yields the corresponding activation

function of source-adaptive BSS that is unstable near the origin. Therefore, in

practice, a certain limit ηlim is applied to the source-adaptive BSS, so that if

the estimated η falls below the limit, the value will be replaced by ηlim. This

process can be rationalized as the source-adaptive BSS is intended to act as a

noise suppressor, hence the extracted speech should include the reverberation

components, which causes the output to have more Gaussian-like distribution

(larger ηS) according to central limit theorem.

The experiment results is depicted in Fig. 23. As expected, it is shown

that in the case of speech and diffuse background noise, BSE outperforms the

conventional BSS. On the other hands, BSE performance drops in the case of

speech with interference speech. The performance of BSS also decreases in the

significant presence of reverberation in room 2 and room 3. The BSE-based

initialization helps improving the performance of BSS in the presence of diffuse

background noise, but it deteriorates the performance in the case of interference

speech.

In contrast, the proposed source-adaptive BSS is able to maintain the stable

performance regardless the severity and the type of interference. In average, the

proposed source-adaptive BSS outperforms conventional methods. We can also

see that applying different ηlim results in varying performance, but in average,

choosing the ηlim = 1.05 provides the best performance. The corresponding ac-

tivation function of ηlim = 1.05 is similar to the tangent hyperbolic function in

conventional BSS, but it provides more flexibility in the activity function cor-

responds to the noise component, thus the better performance. From the ASR

point of view, this finding supports the hypothesis that recognition accuracy per-

formance does not directly correlated to the fine modeling of speech waveform.

48



Figure 23. Performance comparison of source-adaptive BSS to conventional BSS

and BSE, in (a) speech with diffuse background noise, and (b) speech with inter-

ference speech.

5.5.2 Evaluation of the Proposed Robust Joint Method

The first experiment confirms the robustness of the proposed source-adaptive

BSS provided the true η value of each sound source. However, in the real en-

vironment implementation, such information is not accessible. Therefore, the

source-adaptive BSS is combined with MOSIE postprocessing to build a robust

joint method. The optimum shape parameter ηS, ηN and ρ are obtained following

these procedures:

Step 0: First, set initial ηS and ηN to ηlim = 1.05 according to the previous

experiment.

Step 1: Next, run several iteration of initial source-adaptive BSS using initial η.

Step 2: Estimate the ηS and ηN from the output of initial source-adaptive BSS
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Figure 24. Performance comparison of proposed joint method based on source-

adaptive BSS and other joint method.

according to the estimation strategy in Sect. 5.3.2, by applying ηlim = 1.05. Run

the rest of source-adaptive BSS iteration.

Step 3: Apply MOSIE postprocessing to the output of source-adaptive BSS.

Optimize the shape parameter ρ according to the acoustic likelihood as described

in Sect. 3.

Step 4: Derive the optimum ηS from ρ using (65). Then run several iteration of

source-adaptive BSS to re-estimate ηN .

Step 5: Apply the source-adaptive BSS with optimized η value to the observed

signal, then apply MOSIE to obtained the desired output. Optimize ρ according

to the acoustic likelihood.

In this experiment, single channel MOSIE is applied as postprocessing. I

compare the performance of the proposed method with the BSE+ MOSIE joint

method and BSS+MOSIE joint method. The experiment results is depicted in

Fig. 24. From the result, it is shown that the proposed joint method outper-

forms other method in all conditions. The previously proposed BSE+MOSIE

joint method fails to perform effectively particularly where the reverberation is
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significant (case ’room 2’ and ’room 3’), most likely because the sparseness dif-

ference between speech and noise component is not as distinct as in the case of

low reverberation. The proposed source-adaptive BSS method also benefits from

the joint optimization of both source-adaptive BSS in noise suppression stage and

MOSIE in dereverberation stage, in contrast to the BSE-based joint method that

is only optimized in dereverberation stage.

5.5.3 Evaluation of the Importance of T60 information

Throughout this dissertation, it is assumed that T60 used in dereverberation stage

is accessible. This seems contradictory to the name blind in the proposed method.

Therefore, I conducted additional experiment to investigate the effect of incorrect

T60 value to the performance of the proposed method. In this experiment, T60

is set to 500 ms for all rooms. It means that the value is overestimated for

’room 1’ case, and underestimated for ’room 2’ and ’room 3’. The performance

of the proposed method is compared to the BSE+MOSIE joint method and the

proposed method with correct T60.

The experimental result is depicted in Fig. 25. It is shown that the use of in-

correct value caused the performance of the proposed method to drop. However,

it still outperforms the BSE+MOSIE joint method in general. The optimization

of source-adaptive BSS parameters may have provided a compensation for the

mismatched T60. From the result, it is safe to assume that the proposed method

can cope with the lack of T60 information to some extent, although further re-

search may be required to improve its robustness.

5.6 Summary

In this section I propose a novel frequency-domain BSS algorithm that is adaptive

to the PDF of each sound source. This source-adaptive BSS is combined with

MOSIE postprocessing, and the parameters in each part are jointly optimized to

maximize the acoustic likelihood to the acoustic model in speech recognizer. I also

present the approximated relation of the shape parameter of different statistical

model in BSS and MOSIE.

The resulting algorithm connects the statistical model of speech in three differ-
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Figure 25. Effect of the value of T60 to the recognition performance of the pro-

posed method.

ent domain, i.e. spectral domain, amplitude domain, and mel-frequency cepstral

domain, and utilizes these models to improve the speech recognition accuracy.

The experimental result confirms the robustness of the proposed method for any

type of interference. Further improvement may be achieved by implementing

multichannel MOSIE instead of single channel MOSIE, under consideration that

the computational complexity will also increase.
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6. Conclusion

6.1 Summary of Dissertation

This study aims to develop a new microphone array processing to suppress the

interferences, i.e. background noise and late reverberation, and to improve the

speech recognition accuracy for the speech recognition system in distant-talking

environment. Conventional microphone array processing attempt to do so by

manipulating the captured signal according to waveform-level objective criterion.

These approaches assume that enhancement of the target speech waveform quality

will lead to increased recognition accuracy.

The work presented in this dissertation take a different approach by consider-

ing that the microphone array processing and the ASR system as single system.

The proposed methods, also named as joint method, are based on BSS combined

with nonlinear postprocessings. The algorithms in microphone array front-end

are optimized with the objective of improved speech recognition accuracy. This

is done by optimizing the parameter of the proposed joint method to maximize

the likelihood of the output speech to the acoustic model in the ASR system.

A preliminary experiment in Sect. 2 shows the potentials and disadvantages

of array processing method belongs to BSS family. While conventional ICA-based

BSS performs optimally only in the case of target speech mixed with point-source

interference, the BSE algorithms achieves best performance in the case of target

speech mixed with diffuse background noise. Based on this findings, one of the

main goal in this work is to develop a novel adaptive BSS algorithms that is

robust to various type of interference.

In Sect. 3, I proposed a semi-blind joint method for the implementation in

a robot dialogue system. The main algorithm of this method consists of BSE,

which is the alternative of BSS specifically designed for the mixture of speech and

diffuse background noise, as noise estimator, combined with two stages of mul-

tichannel parametric WF as postprocessings. The proposed method utilizes the

image information from robot’s camera to decide whether to apply the postpro-

cessings or not, assuming the position of the speaker correspond to the severity

of interferences. Experimental evaluation confirm the robustness of the proposed

method under varying level of background noise (diffuse) and reverberation, in
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comparison to some well-known competing method. However, this method can

only be implemented along with the presence of image sensor.

To cope with the above-mentioned limitation, I proposed the modified BSE-

based joint method which can perform without the aid of image information in

Sect. 4. In contrast to the previous method, in this method BSE is utilized as

speech extractor, and also simultaneously suppress the background noise. Thus,

only one additional stage of postprocessing is required for dereverberation. In this

section, I discussed the performance of the joint method with various nonlinear

postprocessing, with the parameter of postprocessing is optimized to maximize

the acoustic likelihood in the speech recognizer. Experimental evaluation shows

that the joint method combining BSE and generalized MMSE-STSA estimator

(MOSIE) outperforms other methods in terms of recognition accuracy. Another

interesting finding is that the preferable value of forgetting factor in decision-

directed-based SNR estimator in MOSIE is different from what is commonly

used for the hearing purpose. This supports the hypothesis that the optimization

criterion for speech recognition is different to that for human hearing purpose.

While these BSE-based joint methods have achieved quite successful improve-

ment in recognition accuracy, both are limited in the implementation. The rea-

son is the underlying assumption that the background noise contains only diffuse

noise, or in other words, only one speaker is active at a time frame. Although

this assumption holds for several acoustic conditions, there are many situations

where more than one speaker exists and the overlapping speech is unavoidable.

Moreover, the poor performance of BSE in noise suppression stage will lead to

the poor overall performance of the proposed method, as conventional BSE is

non-optimizable.

To extend the flexibility of joint method in the mixture of speech and various

type of interference, I proposed a source-adaptive BSS and its implementation in

joint method in Sect. 5. I take advantage from the provided statistical prior of

clean speech amplitude in MOSIE postprocessing and derive an approximation of

closed-form solution of the relationship between shape parameter of two different

statistical model in different domain. The MOSIE shape parameter ρ that is

optimized according to the acoustic likelihood is utilized to estimate the shape

parameter of speech component ηS of GGD function used in source-adaptive BSS.
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Furthermore, the shape parameter of noise component ηN is obtained from the

estimated ηS through kurtosis comparison.

In this source-adaptive approach, I managed to connect the statistical model

of speech in three different domain, i.e. spectral domain as in source-adaptive

BSS, amplitude domain as in MOSIE, and mel-frequency cepstral domain as in

acoustic model of speech recognizer. This configuration results in a robust joint

method that maintain a stable performance regardless the type and degree of

interferences. The proposed source-adaptive joint method can also handle the

mismatched T60 information, though further works remain to be done to improve

its robustness.

6.2 Direction for Future Works

The algorithms developed in this study have been successful at improving the

recognition accuracy using microphone arrays. Nevertheless, the proposed method

still leave plenty of room for improvement. In this section, I would like to give

some remarks regarding the current work, in the hope it will give hints for further

research.

One of the drawbacks of the proposed method is the inability to adapt to

a moving source. The current algorithm performs well in utterance level, but

cannot cope with a moving user during an utterance. Ideally, extending the

proposed method in an online manner should solve the problem. An example of

online algorithm of BSS has been developed in [40].

The parameter optimization in this dissertation are carried out using a simple

line search. This is because there is no closed-form solution can be derived for

the acoustic likelihood-based optimization. The future work may seek for the

solution with stronger mathematical basis, such as by implementing gradient-

based parameter update.

It is also worth to note that the improvement in speech recognition accuracy

throughout this dissertation is solely the contribution from the proposed array

processing techniques. Therefore, it is not surprising that under some conditions

the recognition accuracy are very low. Higher accuracy rate shall be expected

by combining the proposed array processing method with improvement in the

speech recognizer part of the system, for example by incorporating the acoustic
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model adaptation and speech recognition compensation methods.

One of the well-known acoustic model adaptation method is maximum likeli-

hood linear regression (MLLR) [41]. This method assumes that Gaussian means

of the state distribution of HMM acoustic model representing noisy speech are

related to that of clean speech by a linear regression function.The adaptation can

be carried out in unsupervised manner on the test data itself. This method has

been observed to perform well in many situations where interference condition

is relatively stationary. However, as this method really depends on the amount

of available adaptation data, a modification may be required to integrate the

technique to the proposed joint method.
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Appendix

A. Statistical Distribution of Diffuse Background

Noise

In this appendix, I show the goodness-of-fit test for the noise spectrum compo-

nent. I investigate the statistical distribution of real recorded background noise

signal with each length is approximately 20 s. Using Kolmogorov-Smirnov (KS)

test, I test the null hypothesis that the histogram of the noise spectrum and the

approximated pdf of a Gaussian distribution come from populations with similar

distribution.

The experiment result confirms that the KS test do not reject the null hy-

pothesis at the default 5% significance level. Figure 26 shows an example of the

histogram of the noise spectrum and the pdf of a Gaussian distribution corre-

sponding to it.

B. Statistical Distribution of Speech

I conduct the goodness-of-fit test for the speech spectrum component to validate

the use of generalized Gaussian distribution to model the speech spectral pdf

in source-adaptive BSS. I use 20 clean utterances as observed data with each

length is approximately 30 s. Using Kolmogorov-Smirnov (KS) test, I test the

null hypothesis that the histogram of the speech spectrum and the approximated

pdf of a generalized Gaussian distribution come from populations with similar

distribution.

The experiment result confirms that the KS test do not reject the null hy-

pothesis at the default 5% significance level. Figure 27 shows an example of the

histogram of the speech spectrum and the pdf of a generalized Gaussian distribu-

tion corresponding to it. It is also confirmed that noise and speech have different

statistical characteristics, thus this difference can be utilized for BSS activation

function.
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Figure 26. Histogram of the noise spectrum and the pdf of a Gaussian distribution

corresponding to it.

C. Moment-Cumulant Transformation

Moments and cumulants of a statistical distribution function have unique rela-

tions in each order. These relations are very useful, for example for estimating

the kurtosis of the speech amplitude from its complex-valued spectrum. Some

formula regarding moment-cumulant transformation are derived in this section.

The probability distribution of random variable x is defined by the character-

istic function φx(it), as given by

φx(it) =

∫ ∞
−∞

eitxP (x)dx. (70)

From this function, the lth-order moment µl(x) and cumulant κl(x) of x, respec-

tively, can be defined as

µl(x) =
∂(l)φx(it)

∂it(l)

∣∣∣∣
t=0

, (71)

κl(x) =
∂(l) log φx(it)

∂it(l)

∣∣∣∣
t=0

. (72)
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Figure 27. Histogram of the speech spectrum and the pdf of a generalized Gaus-

sian distribution corresponding to it.

From Eq. 71, the lth-order moment µl(x) can be rewritten as

µl(x) =
∂(l) exp(log φx(it))

∂it(l)

∣∣∣∣
t=0

=
∑
π(l)

exp(|π(l)|)(log φx(it))
∏

B∈π(l)

[log φx(it)]
(|B|)
∣∣∣∣
t=0

=
∑
π(l)

∏
B∈π(l)

κ|B|(x),

(73)

using a combinatorial form of Faà di Bruno’s formula,

∂(l)f(g(x))

∂x(l)
=
∑
π(l)

f (|π(l)|)(g(x))
∏

B∈π(l)

[g(x)](|B|). (74)

The sum is over all partitions π of the set {1, · · · , l} and the product is over all

of the blocks B of the partition π, and the number of members of B is denoted

by |B|.
In the same manner, the lth-order cumulant κl(x) in Eq. 72 can be rewritten

65



Figure 28. Effect of the value of T60 to the recognition performance of the pro-

posed source-adaptive BSS joint method.

as

κl(x) =
∑
π(l)

log(|π(l)|)(φx(it))
∏

B∈π(l)

[φx(it)]
(|B|)
∣∣∣∣
t=0

=
∑
π(l)

(−1)(|π(l)|−1)(|π(l)| − 1)!
∏

B∈π(l)

µ|B|(x).
(75)

The moment-cumulant transformations up to the 4th-order are given by

µ1 = κ1,

µ2 = κ21 + κ2,

µ3 = κ31 + 3κ1κ2 + κ3,

µ4 = κ41 + 6κ21κ2 + 3κ22 + 4κ1κ3 + κ4,

κ1 = µ1,

κ2 = µ2 − µ2
1,

κ3 = 2µ3
1 − 3µ1µ2 + µ3,

κ4 = −6µ4
1 + 12µ2

1µ2 − 3µ2
2 − 4µ1µ3 + µ4.

(76)
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D. Effect of T60 Input Value to the Robustness

of Joint Method Based on Source-Adaptive

BSS

Additional experiment was conducted to further investigate the robustness of

source-adaptive BSS based joint method against mismatched T60 input. I use im-

pulse response from ’room 3’ to simulate the observed data. For the experiment,

I test the proposed method using several incorrect T60 values. The experiment

result is depicted in Fig. 28.

From the result it can be seen that the proposed joint method is relatively

robust to the mismatched T60 input, except when it is far underestimated as in

the case of T60 = 100 ms. It is also shown that, for room with significant level of

reverberation, it is better to use overestimated T60 input than the underestimated

one.
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