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Latent Variable Models for Bag-of-Words Data
Based on Kernel Embeddings of Distributions®

Yuya Yoshikawa

Abstract

In machine learning and its related fields such as natural language processing,
kernel methods are studied to perform non-linear prediction. In this thesis, we
consider a case where input data are represented as multi-sets of features, i.e., bag-
of-words (BoW). Many papers have reported that kernel methods are superior to
linear models in terms of prediction accuracy. However, kernel functions based
on inner-product such as a Gaussian RBF kernel and polynomial kernel has a
common problem that the kernel functions cannot reflect the correlation between
related features in a kernel calculation.

To overcome this problem, we propose a general framework of kernel methods
for BoW data, which consists of the following two parts: (1) defining a class of
kernel functions with latent variables for BoW data, which we call it latent distri-
bution kernel (LDK), and (2) developing models with LDK and their optimization
methods.

LDK assumes that each feature has a low-dimensional latent vector, and each
of the input data is represented as a multiset (or distribution) of latent vectors for
the features associated with the datum. To represent the distributions nonpara-
metrically and efficiently, we employ kernel embeddings of distributions, which
can represent the moment information of the distributions e.g., the mean, covari-
ance and higher-order moments as an element in a reproducing kernel Hilbert
space. By this method, LDK can use all the information of the latent vectors
for the kernel calculation between data, while overcoming the problem of the
inner-product kernels.

*Doctoral Dissertation, Department of Information Science, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1361013, September 16, 2015.



Then, we propose models with LDK to solve three machine learning prob-
lems: classification, regression and cross-domain matching, and derive their op-
timization methods. In our experiments, we demonstrate the quantitative and
qualitative effectiveness of the proposed methods compared to various linear and
non-linear methods.

Keywords:

machine learning, latent variable models, kernel methods, classification, regres-
sion, cross-domaian matching
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Chapter

Introduction

1.1 Motivation

Nowadays, in various research fields such as computer vision, speech processing,
natural language processing (NLP), and bioinformatics, machine learning is one
of the most necessary techniques to automatically classify data, predict unseen
behaviors, and extract latent structures from the data. In the field of machine
learning, kernel methods are used as a framework for performing non-linear anal-
ysis; research on these methods has been in progress since the 1990s. Currently,
the best known kernel method is support vector machines (SVMs) [9], which were
originally used for non-linear classification, but have recently also been used for
non-linear regression [11], anomaly detection [10], and ranking prediction [23].
Further, in NLP, SVMs are successfully used for text classification [22], named
entity recognition [18], dependency structure analysis [28], etc.

The core idea of kernel methods is to map data into a high-dimensional (poten-
tially infinite-dimensional) space. By treating the data in the high-dimensional
space rather than in the original space, one can easily analyze the complex be-
haviors appearing in the data. An example that classification works well in the
mapped space is shown in Figure 1.1. In this example, there are two classes of
data: data denoted by red circle and data denoted by blue cross. Since the data
denoted by the red circles are located inside those indicated by blue crosses, we
cannot accurately classify the data by using a linear function. On the other hand,
by representing the data in a high-dimensional space, we can find a linear func-
tion that can classify the data more accurately than in the original space. Here,
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Figure 1.1: Linear discriminative functions (red dotted lines) in an original space
(left) and a mapped space (right).

kernel methods do not expand the data explicitly to a high-dimensional space.
Instead, they use the similarity between the data, which is calculated by using a
non-linear similarity function called kernel function. Let v and v’ be the vectors
representing the input data. For example, the typical kernel functions include
linear, Gaussian radial basis function (RBF) and polynomial kernels, which are
defined as follows:

Linear kernel:  Kyn(v,v) =v'V/, (1.1)

Gaussian RBF kernel: ~ Kgppp(v,v') = exp (—%HV — V’||2) : (1.2)

Polynomial kernel: ~ Kpory (v, V') = (v'v/ + a)b, (1.3)

where, v > 0, a € R, and b € N. Basically, what non-linear structure kernel-

based models can capture is determined by the form of the kernel function chosen.

Thus, it is important to choose a kernel function appropriate for one’s goal and
dataset.

1.1.1 Bag-of-Words Representation and Its Problem

In this thesis, we consider a case where data are represented as multisets of
features. Here, a multiset is a generalization of the concept of a set that allows
multiple instances of the multiset’s elements.



PC 2 f=—F 0
Computer 1 \‘x:“ 1
America 0 D\ \:[ 0
Baseball 0 \\ 0
Soccer 2 T 2

Figure 1.2: A problem occurring in kernel functions based on the inner-product.

Definition 1.1.1 (Multiset) Let U be a universal set, A be a subset of U, and
m: A — Ny be a multiplicity function that counts the multiplicity of each element
included in A, where N>y denotes a positive integer set {1,2,---}, and m(a) =0
if a ¢ A. Then, a multiset is defined as a 2-tuple (A, m).

Such a data representation is called the bag-of-words (BoW) representation [11]
and is a typical representation way of data in the fields of NLP, data mining,
and computer vision. For example, in NLP, the universal set U/ is a vocabulary
set, and each datum is represented as a multiset of vocabulary terms in U. For
notation simplicity, in this thesis, we denote the BoW data by the set notation,
rather than the multiset notation.

Each of BoW data can also be represented as a feature-frequency vector whose
element corresponds to the frequency of a feature associated with the datum. In
such a case, previous studies have reported that kernel methods are superior to
linear models in terms of the prediction accuracy. However, kernel functions based
on the inner-product, such as linear, polynomial, and Gaussian RBF kernels, have
a common problem that they cannot reflect the correlation between the related
features in a kernel calculation. Here, the Gaussian RBF kernel Eq. (1.2) can be

expanded as follows:

Krpr(v,v') = exp (—% [viv+vTv - 2VTVD : (1.4)



Therefore, the Gaussian RBF kernel can be regarded as a type of inner-product-
based kernel. Fig. 1.2 illustrates a problem that occurs in inner-product kernels
when two BoW documents are given. The inner-product between vectors v and

v’ is given by
d
viv = Zvlvf, (1.5)
I=1

where d denotes the dimensionality of v and v’, and v; and v; indicate the Ith
elements of v and v/, respectively. That is, the inner-product only considers
the correlation of the same dimension in the two vectors. However, this is a
counterintuitive result. Because although people know that the features ‘PC’
and ‘Computer’ indicate almost the same thing, the correlation between the fre-
quency of these two features cannot be considered in the inner-product. Thus,
the existing machine learning systems based on kernel methods are expected to
be improved by development of a general framework to overcome this problem.

1.2 Contribution

The contribution of this thesis is to develop a general framework of kernel
methods for the BoW data. This framework consists of the following two parts:
(1) defining a class of kernel functions with latent variables appropriate for the
BoW data, which we call latent distribution kernel (LDK), and (2) developing
models with LDKs and their optimization methods.

LDK is a class of kernel functions that can capture the relationship between
features by incorporating latent variables for the features into the kernel functions.
Each of the latent variables is represented as a vector in a lower-dimensional space
than an observed BoW data space. In this thesis, we refer to the vector as latent
vector and the space as latent space.

LDK assumes that each feature has a low-dimensional latent vector, and each
of the input data is represented as a multiset (or distribution) of latent vectors
for the features associated with the datum. To represent the distributions non-
parametrically and efficiently, we employ a framework of kernel embeddings of
distributions, which can represent the moment information of the distributions,
e.g., the mean, covariance, and higher-order moments, as elements in a reproduc-

ing kernel Hilbert space. By this method, LDK can use all the information of



the latent vectors for the kernel calculation between data, while overcoming the
problem of the existing kernel functions based on the inner-product.

LDK can be used by incorporating it into existing kernel-based algorithms such
as SVMs, or by developing new kernel-based algorithms. Note that although
LDK can reflect the relationship between features in kernel calculations between
data, the relationship varies with the problem that one wants to solve. For
example, when classifying a web page into the “Dog” or “Cat” categories, the
relationship between the two features (words in this case) “Dog” and “Cat” should
be weak. On the other hand, when classifying it into the “Animal” or “Economic”
categories, the relationship should be strong because both “Dog” and “Cat” are
characteristic words in the “Animal” category. Thus, to obtain the latent vectors
of features are appropriate for solving solve a given problem, we need to develop
an optimization algorithm for the problem.

In this thesis, we consider three machine learning problems: classification, re-
gression, and cross-domain matching. With classification and regression, we at-
tempts to solve these problems by incorporating LDK into SVMs and Gaussian
processes (GPs) [11], which are well-studied kernel-based algorithms. Then, we
derive optimization methods for the latent vectors of features on the basis of their
objective functions. With cross-domain matching, we solve this problem by using
an entirely new model with LDK.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Preliminaries. In this chapter, we first provide fundamental
knowledge about kernel methods. Then, we introduce the framework of ker-
nel embeddings of distributions, which is a key technique to define LDK.

Chapter 3: Latent Distribution Kernel for Bag-of~-Words Data. In this
chapter, we present LDK, particularly its definition, measurement of the similar-
ity and the distance between data, and the computation of the gradients of LDK,
which are often used in the later chapters.

Chapter 4: Classification. This chapter presents a method to solve the clas-



sification problem by incorporating LDK into SVMs.

Chapter 5: Regression. In this chapter, we propose a GP-based non-linear
regression model with LDK. Then, we show that the proposed model can also be
used for two applications: predicting group behaviors and developing information
diffusion models on social networks.

Chapter 6: Cross-Domain Matching. In this chapter, we consider predicting
the correspondence between the data in different domains. To solve this problem,
we propose an entirely new model with LDK, which matches the data in different
domains on a shared latent space.

Chapter 7: Conclusion. This chapter summarizes the thesis and discusses the
direction of further research.



Chapter

Preliminaries

This chapter provides the background knowledge [J that is required to under-
stand this thesis, particularly about kernel methods and kernel embeddings of
distributions. Kernel methods form the basis of the proposed methods through-
out this thesis. Kernel embeddings of distributions are necessary to define the
proposed kernel presented in Chapter 3.

2.1 Kernel Methods

2.1.1 Overview

First, we will briefly overview kernel methods. In machine learning and its
related fields, kernel methods are used for non-linear prediction and for captur-
ing non-linear structures appearing in the data. A naive way to perform such
non-linear analyses is to map vectors representing data into those with a higher
dimensionality via a feature map function ¢, and then, to perform linear predic-
tion in the high-dimensional space. In this section, we call the vectors representing
data original vectors, and the vectors mapped into a high-dimensional space by
¢ feature vectors. As a feature map function, the following can be considered:

¢ 1 (v1,02) = (7,03, V20109). (2.1)

That is, the feature map function transforms a given original vector with variables
v, and vy into a three-dimensional feature vector by calculating the square root
of the multiplication of the two variables and their squares. Now, we consider



Figure 2.1: Mapping 2D original vector onto 3D space for XOR data. Red circles
indicate the vectors with “True”, and blue crosses indicate the ones with “False”.

applying the feature map function to an exclusive-or (XOR) problem. In the XOR
problem, our goal is to construct a classifier that upon receiving two binary inputs,
outputs “True” if the two inputs have different values, and “False” otherwise,
just like an XOR logic gate. Figure 2.1 shows the 2D original vectors and their
corresponding feature vectors mapped by Eq. (2.1) for the XOR problem. In
this problem, it is impossible to construct a linear separating hyperplane in the
original space. On the other hand, by mapping the original vectors onto a 3D
feature space, we can find the hyperplane.

More generally, let us consider a case where d variables vy, vq, - -+ ,v4 are given
as observations. Since the number of multiplications of two variables increases
with an increase in the number of variables, the dimensionality of the feature
vector also increases. Thus, when the dimensionality of an original vector is
large, such a naive method requires an enormous computational overhead.

Kernel methods owe their name to the use of kernel functions, which enable
them to operate in a high-dimensional feature space without explicitly mapping
the original vectors into that space, but rather by simply computing the inner-
products between the original vectors. This operation is often computationally
cheaper than computing a feature map function explicitly. This approach is called
the kernel trick. Now, we show that using a kernel function is equivalent to calcu-
lating the inner-product between feature vectors without explicitly treating the
feature map function ¢. Let u = [uy,us] T and v = [v1,v5] " be the original vec-



tors. Then, the homogeneous second-order polynomial kernel K (u,v) = (u'v)?
can be expanded as follows:

Ku,v) = (u'v)? (2.2)
= (w1 + ugvg)®
= wiv] + uivs + 2u v ugvy
= (uf, u3, V2uruz) " (v, 03, V20109)
= o(u)' ¢(v).

Thus, K(u,v) = ¢(u) ¢(v) is proven. Then, the computational cost of the
kernel function is cheaper than that of the inner-product, because the kernel
needs three multiplications and an addition, while the inner-product needs nine
multiplications and three additions.

2.1.2 Dual Representation

What algorithms can kernel methods be applied to? In fact, objective func-
tions for many linear algorithms in machine learning can be expressed by the
inner-product between vectors representing data via dual representation. As an
example, we introduce ridge regression [15], a linear regression method with L2
regularization for weights. Suppose that we are given a set of training data
D = {(vi,y;) | vi € R%y; € R}, where v; denotes the ith sample and y;
represents its corresponding target variable. Then, a target variable is predicted
by using the prediction function f(v) = w'@(v) with the weight vector w. An
objective function of ridge regression to estimate the optimal weight vector w is
given by

J(w) = li(w"l'¢(vi) —yi)*+ iHWIB, (2.3)
2 2

i=1
where, A > 0 denotes a regularizer parameter, which is fixed in advance. The
optimal weights can be obtained by minimizing J(w) with respect to w. By
setting the gradient of J(w) with respect to w to zero, we can obtain the following
equation:

n

w— —§ > (W olv) — wbo(vi) = 3 wolv) = @7 (2.4)



where, a; = W' ¢(vi)~yi, a = [ar, a9, -+ ,a,] ", and @ = [p(v1), d(va), -+, O(va)] .
Then, by substituting w = ®"a into Eq. (2.3), we obtain the following equation:
1 1 A

J(a) = §aT‘1><I>T<I><I>Ta —a'®d'y + §yTy - EaT<I>‘1>Ta, (2.5)
where y = [y1, 2, -+ ,y,] . Since the (4, j) element of ®® is calculated by using
the inner-product between the ith and the jth feature vectors ¢(v;) ¢(v;) , we
can replace the inner-product with kernel function K(v;,v;). Thus, by defining
K = ®® " whose element is expressed as K;; = K (v;, v;), we can rewrite Eq. (2.5)

as follows:

1 1 A
J(a) = §aTKKa —a' Ky + éyTy - §aTKa. (2.6)

In Eq. (2.6), we notice that the parameters to be estimated are a rather than w.
By setting the gradient of Eq. (2.6) with respect to a to zero, we can obtain the
optimal a by using the following equation:

a=(K+ L)y, (2.7)

where I,, denotes the identity matrix of size n. Then, the prediction function f
is given by

fv)=w'o(v) =a' @¢(v) =k(v) (K + L)y, (2.8)

where k(v) = [K(v,vy), K(v,vs), -+, K(v,v,)]" denotes a vector whose ele-

ment is the kernel value between the test sample v and one of the training samples
v;. By thus deriving a dual representation, one can perform non-linear prediction
without explicitly using any non-linear functions.

Interestingly, the resulting prediction function Eq. (2.8) depends on the val-
ues of the kernel function. Thus, it is important to choose a kernel function
appropriate to one’s goal and own dataset.

2.2 Kernel Embeddings of Distributions

In this section, we introduce the framework of kernel embeddings of distri-
butions, which is a key technique to define the proposed kernel presented in
Chapter 3. The kernel embeddings of distributions are used for representing
probabilistic distributions nonparametrically. For a similar purpose, kernel den-
sity estimation (KDE) [15] can be used. The main difference between the kernel

10



embeddings of distributions and KDE is that the former is used for estimating
the moment information of a distribution, while the latter is used for estimating
the density of the distribution. Thus, one should choose between these methods
depending on one’s goal.

2.2.1 Definition

The kernel embeddings of distributions are used for embedding any probability
distribution P on space X into a reproducing kernel Hilbert space (RKHS) H;,
specified by kernel k, and the distribution is represented as element m*(PP) in the
RKHS. More precisely, when given distribution P, the kernel embedding of the

distribution or kernel mean m*(P) is defined as follows:

m*(B) = Exoplk(-,x)] = / k(-,x)dP € H,, (2.9)

X
where kernel k is referred to as the embedding kernel. 1t is known that the kernel
mean m*(P) preserves the properties of probability distribution P, such as the
mean, covariance, and higher-order moments by using characteristic kernels (e.g.,
Gaussian RBF kernel) [50].

In practice, there are often cases where the distribution P is unknown but
a set of samples X = {x;}].; generated from the unknown distribution is ob-
served. For such cases, by interpreting sample set X as empirical distribution
P = L3 1 0x,(+), where dx(-) denotes the Dirac delta function at point x € X,
the estimator of kernel mean m(X) can be calculated by

m(X) = %Zk<.,xl), (2.10)

which is approximated with an error rate of ||m(X) — m*(P)||, = Op(n~2) [15].
Unlike that in the case of kernel density estimation, the error rate of the kernel
embeddings is independent of the dimensionality of the given distribution. As
with the standard kernel methods, the kernel mean is not calculated explicitly.

2.2.2 Kernel Function for Distributions

On the basis of the kernel embeddings of distributions, a kernel function that
measures the similarity between distributions can be defined efficiently. This is

11



a benefit of using the kernel embeddings of distributions. The kernel function
can be used for applying the existing kernel-based algorithms to the distribution
data.

Suppose that two distributions P and Q on space X are given. Then, the
kernel function is defined as the inner-product between two kernel means m*(IP)
and m*(Q) in the RKHS #j, which is given by

K(m*(P),m*(Q)) = (m*(P), m*(Q))n,, = Ex~py~o[k(x,¥)]. (2.11)

When given only the samples generated from distributions P and @, the simi-
larity between the distributions can also be measured by using the estimators of
the kernel means. Let X = {x;}]~; be a set of samples generated from distribu-
tion P, and Y = {y;}7_, be a set of samples generated from distribution Q. The
estimators of the kernel means of X and Y can be obtained by using Eq. (2.10).
Then, a kernel function between two distributions P and Q is given by

KX Y) = (m(X),m(Y))n

k

_ <% S k%), nl Zk(-,yp)>

I'=1

= S S k). (2.12)

=1 0U=1

The kernel in Eq. (2.12) can be used for classifying the distribution data [10].
This method will be reviewed in Section 4.2.2.

The kernel in Eq. (2.12) is regarded as a linear kernel between the distributions
P and Q as this kernel is calculated using the inner-product. Kernels that define
the similarity between P and Q are called level-2 kernels. Non-linear level-2
kernels can also be defined analogous to standard kernel methods, which will be
described in Section 3.5.

2.2.3 Measuring Distance

By using the estimator of the kernel mean in Eq. (2.10), one can measure the
distance between two distributions. Given two sets of samples X = {x;}}*; and
Y = {yl/};};l where x; and y, belong to the same space but are generated from
different distributions IP and Q, one can obtain the estimators of the kernel means

12



by using Eq. (2.10), which are respectively denoted as m(X) and m(Y). Then,
the distance between m(X) and m(Y) is given by

D(X,Y) = [|m(X) — m(Y)][3,- (2.13)

Intuitively, this distance reflects the difference in the moment information of
the distributions. It is equivalent to the square of the maximum mean discrep-
ancy (MMD), which is used for a statistical test of independence of two distribu-
tions [13]. The distance can be calculated by expanding Eq. (2.13) as follows:

[[m(X) = m(Y)|[3, = (m(X), m(X))s, + (m(Y), m(Y))w, — 2(m(X), m(Y))s,.
(2.14)
where, (-, -)%, denotes the inner-product in RKHS H,, which is given by Eq. (2.12).

13






15

Chapter

Latent Distribution Kernel for
Bag-of-Words Data

In this chapter, we present a new class of kernel functions for measuring the

similarity between bag-of-words (BoW) data, which we call the latent distribution
kernel (LDK).

3.1 Motivation

The kernel embeddings of distributions described in Section 2.2 implicitly as-
sume that an unknown distribution P is a continuous distribution and a sample
generated from PP is represented as a dense vector. If an unknown distribution P
is a discrete distribution, a sample generated from P is represented as a one-hot
vector in which the value of a single dimension is one, while the values of the
other dimensions are zero. In such a case, the use of Eq. (2.12) is inappropriate,
because all the inner-product terms in the embedding kernel k£ become zero ex-
cept for cases where two vectors are identical. Thus, even if we apply the kernel
embeddings of distributions to the BoW data, we cannot overcome the problem
in the inner-product kernels, which is described in Section 1.1.1. Therefore, it is
inappropriate to directly apply the kernel embeddings of distributions to discrete
data, including the BoW data.

A naive method to apply the kernel embeddings of distributions to the BoW
data is to adopt a two-stage approach as follows: (1) learning a low-dimensional



vector representation for each feature in an unsupervised manner, and (2) repre-
senting each datum as a kernel mean of the set of vectors for features associated
with the datum. There are many algorithms to learn low-dimensional vector
representations for features, which include matrix factorization-based methods
such as NMF [33] and manifold learning-based methods such as Isomap [51]. In
NLP, in particular, many algorithms to obtain vector representations such that
they reflect the semantics of words, such as word2vec [39], have recently been
developed. However, since the vector representations are learned independently
of the problem that one wants to solve, they would not be appropriate for solving
the problem. The proposed class of kernel functions, latent distribution kernel
(LDK), treats the vector representations for features as latent variables, which
are then optimized to solve a given problem accurately.

3.2 Definition

Let D; be the ith observed datum, which is represented as BoW, that is, D; is
a multiset of features associated with the ith datum, and D; consists of elements
in the unique feature set V,

LDK assumes that each feature f included in the unique feature set V has a
latent vector x; € RY, where ¢ denotes a constant parameter for determining
the dimensionality of the latent vector, which we decide in advance. Then, the
observed datum D is represented as a multiset of latent vectors of features associ-
ated with the ith datum, which is denoted by X; = {xs} rep,. X; can be regarded
as a multiset of samples obtained from an unknown distribution. To represent
the distribution efficiently and nonparametrically according to the samples X;,
we employ the framework of the kernel embeddings of distributions, which is in-
troduced in Section 2.2. From Eq. (2.10), the estimator of the kernel mean of the
ith multiset of latent vectors X;, m(X;), is given by

1 1
m(Xz) = ’Dz‘ Z k('7xf) = |Xz’ Z k’(',X), (31>

fGD»L‘ xeX;

where | - | denotes the number of elements in a given multiset.

16



3.3 Measuring Similarity and Distance

Like the similarity and distance between distributions described in Sections 2.2.2
and 2.2.3, LDK can measure the similarity and distance between BoW data.

Let D; and D; be the observed BoW data, and X; and X; be multisets of
latent vectors of the features included in D; and Dj, respectively. Then, the
kernel mean estimators of X; and X;, m(X;) and m(X;), respectively, can be
obtained by using Eq. (3.1). According to Eq. (2.12), the similarity between two
multisets of latent vectors X; and X is given by

KX, X;5) = (m(Xq), m(X;)n,

- <15|Z ) T b Xt>H

teD;
k

= |D|| |ZZkX5’Xt (3.2)

seD; teD;

Similarly, according to Eq. (2.13), the distance between two multisets of latent
vectors X; and X; is given by

DX, X;) = [Im(X:) —m(X;)[3, (3.3)
= (m(Xs), m(Xa))a, + (m(Xy), m(X;))a, — 2m(Xa), m(X;)) a, -

3.4 Interpretation

In this subsection, we discuss the interpretation of why LDK is superior to the
existing kernel functions on the basis of the inner-product.

Let v; and v; be the feature-frequency vectors for observed data D; and D;.
Then, kernel functions based on the inner-product such as a linear kernel, calcu-
late the similarity between D; and D; by using the following equation:

d
K(vi,vj) =v]v; =) vy, (3.4)

=1

where v;; indicates the frequency of the [th feature (or dimension) in the ith
datum, and d denotes the dimensionality of v;. Thus, the kernel functions only

consider the correlation between the same feature in two items of data.
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Figure 3.1: The difference between the inner-product kernel and the latent dis-

tribution kernel in terms of the measurement of feature correlation.

With LDK, Eq. (3.2) can be rewritten as

d d
K(X;,X;) = o SN vavjrk(xs, xp). (3.5)
| Ds|| D] = 4=
As this equation shows, the embedding kernel between latent vectors, k(x;, xy),
plays a role in controlling a weight for the correlation between the /th and the
I'th features.

Figure 3.1 illustrates the difference between the inner-product kernel and LDK
in terms of the weights of feature correlation. In this figure, the line weights
represent the kernel values between features, which are regarded as correlation
weights. With the inner-product kernel shown in Figure 3.1(a), the correlation
weight for the same feature is one and that for the others is zero. On the other
hand, LDK shown in Figure 3.1(b) considers the correlations between all the
features, which are weighted by the embedding kernel’s values between the latent
vectors of the features. By learning the latent vectors so as to fit the task that

we want to solve, we can automatically control the correlation weights.

3.5 Choice of Kernels

LDK includes various forms of kernel functions depending on the choice of
embedding and level-2 kernels. In this section, we introduce the formulations of
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LDK when using linear, Gaussian RBF, and polynomial kernels as embedding
and level-2 kernels.

3.5.1 Embedding kernels

Embedding kernels determine how highly the moment information of a dis-
tribution is embedded in the RKHS. For example, a Gaussian RBF kernel can
preserve all the moment information such as the mean, covariance, and higher-
order moments, and the bth-order polynomial kernel can preserve all the moment
information up to the bth order. We denote linear, Gaussian RBF, and polyno-
mial embedding kernels by kpn, krsr, and kpory, respectively. These are defined

as follows:
kLIN(XSaXt> = X;rxt; (3-6>
biwr (%) = exp (=2 lx = xll?) (3.7)
b
kpory (Xs,X¢) = (XSTXH‘CL) ; (3.8)

where v > 0 of kgrpr denotes a bandwidth parameter, and ¢« € R and b € N of
kpory represent the bias and degree parameters, respectively.

3.5.2 Level-2 kernels

Level-2 kernels are used for defining the similarity between distributions. We
indicate the choice of embedding and level-2 kernels by using the subscript K.
For example, we denote LDK consisting of a Gaussian RBF embedding kernel and
a linear level-2 kernel by Krpr_rin. When a kernel formulation is independent
of the choice of the embedding or level-2 kernels, we use the subscript * as a
wild-card operator for the choice of kernels.

Again, let X; and X be the respective multisets of the latent vectors of the
features included in observed data D; and D;. Then, we can obtain the kernel
mean estimators of X; and X;, which are denoted by m(X;) and m(X;), respec-
tively, on the basis of any of the embedding kernels. A linear level-2 kernel is

19



defined as the inner-product (m(X;), m(X;))y, in RKHS H;, which is given by

K, (X, X;) = <ﬁ§ik*(.,xs),ﬁZk*(.,xt)>H (3.9)

tED]' k

1
" DID) 2 2 o)

seD; tGDj

The dth-order polynomial level-2 kernel with a bias parameter ¢ € R can be
defined as

K, pory(X;, X;) = (Koo (Xi, X;) + C)d- (3.10)

A Gaussian RBF level-2 kernel with a bandwidth parameter ( > 0 can be
defined as

Ko noe(Xs, X5) (3:11)
e (_gumoci) - m(Xj>||2)

= exp ( — g{K*—LIN(Xz‘yxi) — 2K, v (X5, X)) + Keonin (X, Xg)})

3.6 Gradients of Kernels

To learn the latent vectors of features so as to optimize the objective function of
the task that we want to solve, we will use gradient-based optimization methods
such as L-BFGS [30] in the later chapters. In this section, we list the gradients
of the kernels with respect to a latent vector of feature m, x,,.

SEDZ' tED]'

( )

OKin-Lin (X, X)) 1 X,  (m=tAm#s)
e T IDID) 2 2 ) 2 ) 63

( )

OKvin-rer (X, X;)
0%,

= _gKLIN—RBF(Xia X,)

OKun-Lin(X5, X)) OKpuin-Lin(X;, X) OKuin-Lin (X5, X)
+ -2 )
ox,, X, 0X,,

(3.13)
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8[(LINfF'OLY (Xza XJ)

0,

d—1 OKpin—nin (X5, X;)

0,

= d (Kun-1n(Xi, X;) +¢) . (3.14)

krpr(Xs, X¢)7(x¢ — Xs)

( )

8KRBF,LIN(X¢, XJ) _ 1 kRBF(st Xt)’y(Xs — Xt) (m =tAm 7é S)
| Dil|Dj 2. 2 ( )

( )

00X,

seD; tEDj
m#“tAm#£s
(3.15)
OKrpr-rer(Xi, X;)
T (3.16)
S
= _§KRBF—RBF(XZ" X;)
(aKRBF—LIN<Xz’> X;)  O0Kgpr-nLin(Xj, X;) OKgrpr-Lin (X, X;)
+ -2 .
X, X, X,

OKwpr-rory (X;, X;) d—1 OKger_Lin(Xi, X))

= d (Krpr-uix (X3, X;) + ¢)

aXm 8Xm
(3.17)
b(x/x;+a) 'y (m=sAm#t)
OKpory—Lin(Xi, X;) _ 1 Z Z b(x/x;+a)'x, (m=tAm#s)
0X, |D;|| Dy S5 b(x!x; +a)"'2x,, (m=tAm=s)
0 (m#tAm#s)
(3.18)
OKpory rer(Xi, X;)
e (3.19)
= _%KPOLY—RBF<XZ‘, X;)
<8KPOLYLIN(Xi, X) + OKpory—Lin(X;, X;) 28KPOLY7LIN(X2'7XJ')

0Kpory—rory (X;, X;)
O,

d—1 OKpory -Lin (X, X)
OXn,

= d (Kpory-Lin(Xs, X;) +¢)

(3.20)
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Chapter

Classification

4.1 Introduction

Classification is one of the most fundamental problems in machine learning, and
the developed algorithms for classification are utilized in a wide variety of research
fields such as natural language processing [29], information retrieval [57, 55], data
mining [27], etc.

Classification is basically executed through the processes shown in Fig. 4.1.
When training of a classifier, training data consisting of pairs of an input sample
and a label are given. Here, we consider that the input sample is represented
by BoW representation. Our goal is to learn a classifier (or discriminative func-
tion) f that outputs the correct label when receiving its corresponding input
sample. Then, we can classify newly coming data without label information via
the resulting classifier.

One of the methods to learn discriminative function f is support vector ma-
chines (SVMs) [9], which are kernel-based non-linear discriminative learning meth-
ods. Because SVMs are kernel-based methods, the performance of SVMs gener-
ally depends on whether the kernel values between input samples can be defined
properly, as with kernel ridge regression described in Section 2.1.

This chapter presents SVM-based discriminative learning methods for BoW
data classification, which we call them latent support measure machine (latent
SMMs). Latent SMMs employ LDK to compute kernel values between BoW input
samples. The learning procedure of latent SMMs is performed by alternately
finding a separating hyperplane and estimating the latent vectors for features.
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Figure 4.1: Training and test processes in classification.

The learned latent vectors of two related features are located close to each other
in the latent space, and we can obtain kernel values that reflect the relationship.
As a result, latent SMMs can classify unseen data using a richer and more useful
representation than the BoW representation.

In our experiments, we demonstrate the quantitative and qualitative effective-
ness of latent SMMs on standard BoW text datasets. The experimental results
first indicate that latent SMMs can achieve state-of-the-art classification accu-
racy. Therefore, we show that the performance of latent SMMs is robust with
respect to its own hyper-parameters, and the latent vectors for words in latent
SMM can be represented in a two dimensional space while achieving high classi-
fication performance. Finally, we show that the characteristic words of each class
are concentrated in a single region by visualizing the latent vectors.

Latent SMMs are a general framework of discriminative learning for BoW data.
Thus, the idea of latent SMMs can be applied to various machine learning prob-
lems for BoW data, which have been solved by using SVMs: for example, novelty
detection [17], structure prediction [53], and learning to rank [23].

The rest of this chapter is organized as follows: First, Section 4.2 provides the
formulations of SVMs and support measure machines (SMMs), which are basis of
latent SMMs. Then, Section 4.3 describes the formulation and the optimization
method of latent SMMs. In Section 4.4, we introduce some related works. In

Section 4.5, we demonstrate the quantitative and qualitative effectiveness of latent
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SMMs. Finally, we summarize this chapter in Section 4.6.

4.2 Preliminaries

In this section, we introduce support vector machines (SVMs) and support
measure machines (SMMs). Our proposed method will build upon these tech-

niques.

4.2.1 Support Vector Machines

Support vector machines (SVMs) are discriminative learning methods, which
are based on a maximum-margin criteria. Suppose that we are given a set of n
training data, D = {(v;,y:) | vi € R, y; € {+1,—1}},. Here, we call v; sample,
and y; class. One wants to learn a discriminative function f : R? — {+1,—1}
from the training data.

The strategy of SVM to obtain f is to find a separating hyperplane so as to
maximize the margin between the samples in different classes. The separating

hyperplane is defined as
w'v—0b=0, (4.1)

where, w € R? is a weight vector and b € R is an offset parameter. Thus,

discriminative function f is defined as
f(v) =sgn (WTV — b) , (4.2)

where, sgn(+) is a sign function that returns +1 if its argument is positive, and
—1 otherwise. Our goal is to learn the optimal w and b such that the margin is
maximized.

In order to describe the separating hyperplane, we introduce the following

formulas:
w'v,—b>+1  (ify; = +1) (4.3)
wv,i—b<—1 (ify; =—1). (4.4)
In these formulas, the equality is satisfied when sample v; lies on the hyperplane.
Fori=1,2,--- ,n, these formulas can be rewritten as:
yi(wivi—b)>1 (4.5)
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Then, the distance between the separating hyperplane Eq. (4.1) and sample v;
is given by

d(w,b;v;) = (4.6)

Thus, the margin between two hyperplanes Eqs. (4.3) and (4.4) can be written

as:
in d(w,b;vi) + min d(w,b;v) = — (47)
min d(w,b; v; min d(w,b;v;) = — )
viyi=+1 T viyi=—1 T HWH,
because miny,.,,—+1 |[W'v; — bl = miny,.,,— 1 |w'v; — b] = 1. Since maximizing

Tw 18 equivalent to minimize :|lwl|?, the optimal parameters w and b can be

obtained by solving the following problem with constraints:
1
milr)l §\|w\|2 subject to y;(w'v; —b) > 1 (i=1,2,---,n). (4.8)

By introducing Lagrange multipliers A = {aj,as, - , a,}, the constrained prob-
lem Eq. (4.8) can be expressed as

2
nul?rjglax—HwH + Zlal yilw v —b] —1). (4.9)

According to the gradients of Eq. (4.8) with respect to w and b, the following
conditions are satisfied at the saddle point:

w = Zyiaivi (4.10a)
i=1

0 = ) wa (4.10Db)
=1

Plugging Eq. (4.10) into Eq. (4.9), we can obtain the following dual Lagrangian

problem:
max L(A) where L(A ZaZ - = Zl Zl a;a;yiy;vi v;  (4.11a)
i=1 j
subject to a; >0 (i=1,2,---,n), Zaiyi =0. (4.11b)
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This problem can be solved as a quadratic programming problem. After the
optimization, the samples with a; > 0,2 = 1,2,--- ,n are called support vectors.
The support vector samples lie on any of the hyperplanes Eqgs. (4.3) and (4.4).

The optimal offset b can be obtained by utilizing the property that the support
vectors hold the equalities in Eqs. (4.3) and (4.4), that is, w'v;—b = 1if y; = +1
or w'v; —b= —1if y; = —1. In practice, b is obtained by the average over the

support vectors as follows:

1
h— T = Ui), 4.12
= ns igs (W' v Yi) ( )

where, SV is a set of support vector indexes, and ngy is the number of support
vectors.

Soft-margin SVMs

SVMs described above assume that all the training samples are linearly sep-
arable. Such SVMs are called hard-margin SVMs. If there are samples that
cannot be classified correctly, the learning of hard-margin SVMs would be unsta-
ble. Soft-margin SVMs adopt a modified maximum-margin criterion that allows
for misclassified samples. Soft-margin SVMs introduce non-negative slack vari-
ables, &, which measure the degree of misclassification of sample v;. In this case,
Eq. (4.5) can be rewritten as

Under the soft-margin criterion, the dual Lagrangian problem Eq. (4.11) changes
as follows:

max L(A) where L(A) = z; ai =5 Z Z a;a;yiy;v; v; (4.14a)

i=1 j=1

subject to 0<a; <C (i=1,2,---,n), Zaiyi =0, (4.14b)
i=1

where, C appearing in the constraints is a cost parameter that determines the
degree of penalty for misclassification. If C' = oo, soft margin SVMs are equivalent
to hard-margin SVMs. The value of C' is usually decided by cross-validation.
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Kernelization

In Egs. (4.11) and (4.14), one can use kernel k(v;,v;) instead of the inner-
product v/ v;. By using a non-linear kernel such as polynomial and Gaussian
kernels, non-linear classification can be executed as with the same solution for
Egs. (4.11) and (4.14). By substituting Eq. (4.10) into Eq. (4.2), the discrimina-
tive function f can be rewritten as

f(v) =sgn (Z a;y K(v,v;) — b) . (4.15)

1eSV

4.2.2 Support Measure Machines

Support measure machines (SMMs) are kernel-based discriminative methods
for distribution data [10]. Here, each of the distribution data consists of a set of
samples.

Suppose that we are given a set of n training data D = {(Vi,v:) | Vi =
{v € R}, y; = {+1,—1}}. To represent distribution sample V; efficiently and
nonparametrically, SMMs employ the framework of the kernel embeddings of
distributions described in Section 2.2. Since the kernel between distribution sam-
ples can be defined by using Eq. (2.12), SMMs can be solved like the standard
SVM problem. For example, soft-margin SMMs can be obtained by solving the
following problem:

n 1 n n
max L(A) where L(A)= z; ai =5 Z Z a;a;y:y; K (V;, V;)4.16a)

i=1 j=1
subject to 0<a; <C (i=1,2,---,n), Zaiyi =0, (4.16Db)
i=1

where, K(V;,V;) is a kernel between distribution samples V; and V; defined in
Eq. (2.12).

4.3 Latent Support Measure Machines

In this section, we propose latent support measure machines (latent SMMs)
that are effective for BoW data classification by learning latent word represen-
tation to improve classification performance. For intuitive explanation, in this
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section, we refer to each datum as a document, and each feature as a word,
respectively.

SMMs assume that a set of samples from distribution P;, X;, is observed. On
the other hand, as described later, latent SMMs assume that X; is unobserved.
Instead, we consider a case where BoW features are given for each document.
More formally, we are given a training set of n pairs of documents and class labels
{(Di,y:)}1—, where D; is the ith document that is represented by a multiset of
words appearing in the document and y; € ) is a class variable. Each word is
included in vocabulary set V. For simplicity, we consider binary class variable y; €
{+1,—1}. The proposed method is also applicable to multi-class classification
problems by adopting one-versus-one or one-versus-rest strategies as with the
standard SVMs [17].

Latent SMMs adopt the data representation of LDK described in Chapter 3.
That is, each word ¢ € V is represented by a g-dimensional latent vector x; € RY,
and the 7th document is represented as a multiset of latent vectors for words
appearing in the document X; = {x;};cp.. Then, we can obtain the kernel mean
representation of the ith document from X; as follows:

L Z k(-,Xt). (4'17)

’ 7’| teD;

m(X;) =

Using latent word vectors X = {x; }+¢y and document representations {m(X;)}7,,
the primal optimization problem for latent SMM can be formulated in an analo-
gous but different way from original SMMs as follows:

. 1 2 . p 2
i I+ e+ § S (4.180)
subject to  y; ((w,m(X;))y —b) >1-&;, & >0, (4.18b)

where {£;}7, denotes slack variables for handling soft margins. Unlike the pri-
mal form of SMMs, that of latent SMMs includes a ¢, regularization term with
parameter p > 0 with respect to latent word vectors X. Latent SMM minimizes
Eq. (4.18) with respect to the latent word vectors X and kernel parameters 0,
along with weight parameters w, offset parameter b and {&} ;.

It is extremely difficult to solve the primal problem Eq. (4.18) directly because
the inner term (w,m(X;))y in the constrained conditions is in fact calculated

in an infinite dimensional space. Thus, we solve this problem by converting it

29



into an another optimization problem in which the inner term does not appear
explicitly. Unfortunately, due to its non-convex nature, we cannot derive the
dual form for Eq. (4.18) as with standard SVMs. Thus we consider a min-max
optimization problem, which is derived by first introducing Lagrange multipliers
A = {ay,as, -+ ,a,} and then plugging w = >  a;m(X;) into Eq (4.18), as
follows:

: : <, < o '
min max L(A,X,0) subjectto 0<a; <C, zazyl 0 (4.19a)

where L(A,X,0) Zaz - = ZZalajyzyj m(X;), m(X;)) + gz |I%][3,

2131 tey

(4.19b)

where K (m(X;), m(X;)) is a kernel value between kernel mean estimators m(X;)
and m(X;) specified by parameters X and 6 as is shown in Section 3.5.

We solve this min-max problem by separating it into two partial optimization

problems: 1) maximization over A given current estimates X and 6, and 2)

minimization over X and @ given current estimates A. This approach is analogous

to wrapper methods in multiple kernel learning [19].

Maximization over A

When we fix X and 6 in Eq. (4.19) with current estimate X and 6, the maxi-
mization over A becomes a quadratic programming problem as follows:

max Z a; — = Z Z a;ia;yiy; K (m(X;), m(X;)) (4.20)

’Lljl

subject to 0 <a; < C, Zaiyi =0,
i=1

which is identical to solving the dual problem of standard SVMs described in
Section 4.2.1. Thus, we can obtain optimal A by employing an existing SVM
package.
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Minimization over X and 6§

When we fix A in Eq. (4.19) with current estimate A, the min-max problem
can be replaced with a simpler minimization problem as follows:

%gll(X,Q) where [(X,0)=—= ZZa a;yy; K (m(X;) Z ||| [3.
=1 j=1 tEV

(4.21)

To solve this problem, we use a quasi-Newton method [36]. The quasi-Newton

method needs the gradient of parameters. For each word m € V), the gradient of

latent word vector x,, is given by

al X, 0) X;), m(X;
— == ZZa,aJylyj K(m(X,), m(X,;)) + pXp, (4.22)

ox
11]1 m

where the gradient of the kernel with respect to x,, depends on the choice of
kernels. See in Section 3.6. As with the estimation of X, kernel parameters 6
can be obtained by calculating gradient %. By alternately repeating these
computations until dual function Eq. (4.19) converges, we can find a local optimal
solution to the min-max problem.

The parameters that need to be stored after learning are latent word vectors X,
kernel parameters 6 and Lagrange multipliers A. Classification for new document

Dy, is performed by computing

n

f(Dte) = sgn (Z azyzK(m(Xz)v m(Xte>) - b) ) (423>

i=1

where, m(Xt.) is the kernel mean estimator of the set of the latent vectors for
Dye.

4.4 Related Work

The proposed method is based on the framework of SMMs, which are kernel-
based discriminative learning on distributions [10]. Muandet et al. showed that
SMMs are more effective than SVMs when the observed feature vectors are numer-
ical and dense in their experiments on handwriting digit recognition and natural
scene categorization. On the other hand, when observations are BoW features,
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Table 4.1: Dataset specifications.
‘ # samples # features +# classes

WebKB 4,199 7,770 4
Reuters-21578 7,674 17,387 8
20 Newsgroups 18,821 70,216 20

SMMs coincide with SVMs as described in Section 4.2.2. To receive the benefits
of SMMs for BoW data, the proposed method represents each word as a numerical
and dense vector, which is estimated from the given data.

The proposed method aims to achieve a higher classification performance by
learning a classifier and feature representation simultaneously. Supervised topic
models [2] and maximum margin topic models (MedLDA) [60] have been proposed
based on a similar motivation but using different approaches. They outperform
classifiers using features extracted by unsupervised LDA. There are two main dif-
ferences between these methods and the proposed method. First, the proposed
method plugs the latent word vectors into a discriminant function, while the exist-
ing methods plug the document-specific vectors into their discriminant functions.
Second, the proposed method can naturally develop non-linear classifiers based
on the kernel embeddings of distributions. We demonstrate the effectiveness of
the proposed model by comparing the topic model based classifiers in our text

classification experiments.

4.5 Experiments with Bag-of-Words Text Clas-
sification
Data description

For the evaluation, we used the following three standard multi-class text clas-
sification datasets: WebKB, Reuters-21578 and 20 Newsgroups. These datasets,
which have already been preprocessed by removing short and stop words, are
found in [0] and can be downloaded from the author’s website'. The specifica-
tions of these datasets are shown in Table 4.1. For our experimental setting, we
ignored the original training/test data separations.

http://web.ist.utl.pt/acardoso/datasets/
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Setting

In our experiments, the proposed method, latent SMM, uses a Gaussian RBF
embedding kernel and a linear level-2 kernel. To demonstrate the effectiveness
of latent SMM, we compare it with several methods: MedLDA, SVD+SMM,
word2vec+SMM and SVMs. MedLDA is a method that jointly learns LDA and
a maximum margin classifier, which is a state-of-the-art discriminative learning
method for BoW data [60]. We use the author’s implementation of MedLDA?.
SVD+SMM is a two-step procedure: 1) extracting low-dimensional representa-
tions of words by using a singular value decomposition (SVD), and 2) learning
a support measure machine using the distribution of extracted representations
of words appearing in each document with the same kernels as latent SMM.
word2vec+SMM employs the representations of words learned by word2vec [39]
and uses them for SMM as in SVD+SMM. Here we use pre-trained 300 dimen-
sional word representation vectors from the Google News corpus, which can be
downloaded from the author’s website3. Note that word2vec+SMM utilizes an ad-
ditional resource to represent the latent vectors for words unlike latent SMM, and
the learning of word2vec requires n-gram information about documents, which is
lost in the BoW representation. With SVMs, we use a Gaussian RBF kernel with
parameter v and a quadratic polynomial kernel, and the features are represented
as BoW. We use LIBSVM* to estimate Lagrange multipliers A in latent SMM and
to build SVMs and SMMs. To deal with multi-class classification, we adopt a one-
versus-one strategy [17] in latent SMM, SVMs and SMMs. In our experiments, we
choose the optimal parameters for these methods from the following variations:
v € {1073,1072,--- ;10%} in latent SMM, SVD+SMM, word2vec+SMM and
SVM with a Gaussian RBF kernel, C' € {273,271 ... 25 27} in all the methods,
regularizer parameter p € {1072,107",10°}, latent dimensionality q € {2,3,4} in
latent SMM, and the latent dimensionality of MedLDA and SVD+SMM ranges
{10, 20, --- ,50}.

2http://www.ml-thu.net/~jun/medlda.shtml
3https://code.google.com/p/word2vec/
‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/

33


http://www.ml-thu.net/~jun/medlda.shtml
https://code.google.com/p/word2vec/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Accuracy
o
~
w
T

&9 Latent SMM
0.70f B @ MedLDA H
A4 SVD+SMM
* ¥ word2vec+SMM
0.65f FX SvM(rbf) 1
€9 SVM(poly2)
0.60 n . . T T
200 400 600 800 1000
# training samples
(a) WebKB
0.95
0.901 |

Accuracy
o
©
wu
T

0.80 |
0.75 200 400 600 800 1000
# training samples
(b) Reuters-21578
0.7 T T T T T
0.6 |
0.5 ]

Accuracy
o
Sy
T

o
w
:

e
[N
T
.

=4
=

200 400 600 800 1000
# training samples

(c) 20 Newsgroups

Figure 4.2: Classification accuracy over number of training samples.
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Accuracy over number of training samples

We first show the classification accuracy when varying the number of training
samples. Here we randomly chose five sets of training samples, and used the
remaining samples for each of the training sets as the test set. We removed words
that occurred in less than 1% of the training documents. Below, we refer to the
percentage as a word occurrence threshold. As shown in Figure 4.2, latent SMM
outperformed the other methods for each of the numbers of training samples in
the WebKB and Reuters-21578 datasets. For the 20 Newsgroups dataset, the
accuracies of latent SMM, MedLDA and word2vec+SMM were proximate and
better than those of SVD+SMM and SV Ms.

The performance of SVD+SMM changed depending on the datasets: while
SVD+SMM was the second best method with the Reuters-21578, it placed fourth
with the other datasets. This result indicates that the usefulness of the low
rank representations by SVD for classification depends on the properties of the
dataset. The high classification performance of latent SMM for all of the datasets

demonstrates the effectiveness of learning the latent word representations.

Robustness over latent dimensionality

Next we confirm the robustness of the latent SMM over the latent dimensional-
ity. For this experiment, we changed the latent dimensionality of the latent SMM,
MedLDA and SVD+SMM within {2,4,--- ,12}. Figure 4.3 shows the accuracy
when varying the latent dimensionality. Here the number of training samples in
each dataset was 600, and the word occurrence threshold was 1%. For all the
latent dimensionality, the accuracy of the latent SMM was consistently better
than the other methods. Moreover, even with two-dimensional latent vectors,
the latent SMM achieved high classification performance. On the other hand,
MedLDA and SVD+SMM often could not display their own abilities when the
latent dimensionality was low. One of the reasons why latent SMM with a very
low latent dimensionality ¢ achieves a good performance is that it can use g|d;|
parameters to classify the ith document, while MedLDA uses only ¢ parameters.
Since the latent word representation used in SVD+SMM is not optimized for the
given classification problem, it does not contain useful features for classification,
especially when the latent dimensionality is low.
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Figure 4.3: Classification accuracy over the latent dimensionality.
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Accuracy over word occurrence threshold

In the above experiments, we omit words whose occurrence accounts for less
than 1% of the training document. By reducing the threshold, low frequency
words become included in the training documents. This might be a difficult
situation for latent SMM and SVD+SMM because they cannot observe enough
training data to estimate their own latent word vectors. On the other hand,
it would be an advantageous situation for SVMs using BoW features because
they can use low frequency words that are useful for classification to compute
their kernel values. Figure 4.4 shows the classification accuracy on WebKB when
varying the word occurrence threshold within {0.4,0.6,0.8,1.0}. The performance
of latent SMM did not change when the thresholds were varied, and was better
than the other methods in spite of the difficult situation.

Parameter sensitivity

Figure 4.5 shows how the performance of latent SMM changes against {5 regu-
larizer parameter p and C on a Reuters-21578 dataset with 1,000 training samples.
Here the latent dimensionality of latent SMM was fixed at ¢ = 2 to eliminate the
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project course faculty student

Figure 4.6: Distributions of latent vectors for words appearing in documents of
each class on WebKB.

effect of g. The performance is insensitive to p except when C' is too small. More-
over, we can see that the performance is improved by increasing the C' value. In
general, the performance of SVM-based methods is very sensitive to C' and ker-
nel parameters [7]. Since kernel parameters ¢ in latent SMM are estimated along
with latent vectors X, latent SMM can avoid the problem of sensitivity for the
kernel parameters. In addition, Figure 4.3 has shown that latent SMM is robust
over the latent dimensionality. Thus, latent SMM can achieve high classification
accuracy by focusing only on tuning the best C', and experimentally the best C
exhibits a large value, e.g., C' > 25.

Visualization of classes

In the above experiments, we have shown that latent SMM can achieve high
classification accuracy with low-dimensional latent vectors. By using two- or
three-dimensional latent vectors in latent SMM, and visualizing them, we can
understand the relationships between classes. Figure 4.6 shows the distributions
of latent vectors for words appearing in documents of each class. Each class has its
own characteristic distribution that is different from those of other classes. This
result shows that latent SMM can extract the difference between the distributions
of the classes. For example, the distribution of ‘course’ is separated from those
of the other classes, which indicates that documents categorized in ‘course’ share
few words with documents categorized in other classes. On the other hand, the
latent words used in the ‘project’ class are widely distributed, and its distribution
overlaps those of the ‘faculty’ and ‘student’ classes. This would be because faculty

and students work jointly on projects, and words in both ‘faculty’ and ‘student’
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appear simultaneously in ‘project’ documents.
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Visualization of words

In addition to the visualization of classes, latent SMM can visualize words
using two- or three-dimensional latent vectors. Unlike unsupervised visualization
methods for documents, e.g., [20], latent SMM can gather characteristic words of
each class in a region. Figure 4.7 shows the visualization result of words on the
WebKB dataset. Here we used the same learning result as that used in Figure 4.6.
As shown in the complete view, we can see that highly-frequent words in each
class tend to gather in a different region. On the right side of this figure, four
regions from the complete view are displayed in closeup. Figures (a), (b) and
(¢) include words indicating ‘course’, ‘faculty’ and ‘student’ classes, respectively.
For example, figure (a) includes ‘exercise’, 'examine’ and ‘quiz’ which indicate
examinations in lectures. Figure (d) includes words of various classes, although
the ‘project’ class dominates the region as shown in Figure 4.6. This means
that words appearing in the ‘project’ class are related to the other classes or are
general words, e.g., ‘occur’ and ‘differ’.

4.6 Summary

In this chapter, we have attempted to apply LDK to BoW data classification.
In particular, we have proposed latent support measure machines (latent SMMs),
which are kernel-based discriminative learning methods effective for BoW data.
Latent SMMs adopt the data representation by LDK, that is, latent SMMs repre-
sent each feature as a latent vector, and each datum to be classified as a distribu-
tion of the latent vectors for features appearing in the datum. Then, latent SMMs
find a separating hyperplane that maximizes the margins between distributions
of different classes while estimating the latent vectors to improve the classifica-
tion performance. The experimental results can be summarized as follows: First,
latent SMMs have achieved state-of-the-art classification accuracy for Bow data.
Second, we have shown experimentally that the performance of latent SMMs is
robust as regards its own hyper-parameters. Third, since latent SMMs can repre-
sent each feature (word in this case) as a two- or three- dimensional latent vector,
we have shown that latent SMMs are useful for understanding the relationships
between classes and between words by visualizing the latent vectors.
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Chapter

Regression

5.1 Introduction

In the previous chapter, we have present a non-linear classifier based on LDK. In
machine learning, another fundamental problem is regression, which is a problem
in which predicts a real value from an input datum. Figure 5.1 shows the training
and test processes in regression. Regression is almost the same as classification,
but because the target value is real-valued, a regression function f to be learned
also outputs a real value, although the function for classification outputs a class
label.

In this chapter, we consider performing prediction using a function generated
by Gaussian processes (GPs). This approach is called GP regression, which is
a widely used method for regression problems in various domains, e.g. natural
language processing [3], time series analysis [11], computer vision [20] and data
mining [30].

In GP regression, the prediction function f is modeled such that two correlated
inputs have correlated outputs. To describe the idea, let us consider a standard
linear regression f(v) = w'@(v) where v is an input vector and w is a weight
vector, and output y is given by y = f(v) + ¢ where € is a noise term. For
convenience, we define y = [y1, ¥y, - ,yn]T as a vector of n outputs. Here,
we put an assumption that w is generated from a Gaussian distribution with
zero-mean and precision a, i.e., N'(w|0,a~'T). Note that, since y is computed by
linear summation of the weights, y is also generated from a Gaussian distribution.
Then, with the mean and the covariance of the output vector y, E[y]| and cov|y],
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Figure 5.1: Training and test processes in regression.

the following results can be derived:

Ely] = 0, (5.1)
covly] = é@TCI), (5.2)

where, ® is a feature matrix whose column corresponds to an input. Thus,
under this assumption, the covariance (i.e., correlation) of outputs is completely
determined by the covariance of inputs. In fact, since this assumption is identical
to that of GPs, the form of regression function f in GP regression is determined
by the covariance of the inputs.

Since each element of covariance matrix ® " @ is calculated by the inner-product
between two inputs, a kernel function can be used instead of the inner-product.
Thus, as with latent SMMs presented in Chapter 4, it is expected that the pre-
diction performance of regression can be improved by applying LDK to the GP
regression.

In this chapter, we propose a Gaussian process latent variable set model (GP-
LVSM), which is a non-linear regression model effective for BoW data. Figure 5.2
illustrates GP-LVSM. GP-LVSM adopts the representation for BoW data based
on LDK. That is, GP-LVSM assumes that a latent vector is associated with each
feature, and each input datum is represented as a distribution of the latent vectors
for features appearing in the datum. Then, GP-LVSM generates a regression

function from a Gaussian process with the covariance structures calculated by
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the similarity between input data based on LDK. The learning of GP-LVSM
is based on maximizing a posterior (MAP) estimation, which is performed by
updating the latent vectors and other kernel parameters.

In the experiments, we demonstrate the quantitative and qualitative effective-
ness of GP-LVSM on 25 item review datasets. First, we show that GP-LVSM out-
performs standard non-linear and linear regression methods in rating prediction.
Then, we show that the performance of GP-LVSM is robust for the dimensional-
ity of the latent vectors for features, and we can obtain vector representations for
features on a quite low-dimensional space while achieving high prediction perfor-
mance. Finally, we show that GP-LVSM is also useful for visualizing words.

GP-LVSM provides a general framework of solving regression problems for BoW
data. Thus, the idea of GP-LVSM can be applied to various machine learning
problems, which have been solved based on GP regression such as multi-task
learning [1] and active learning [25].

The rest of this chapter is organized as follows. In Section 5.2, we review models
and techniques related to GP-LVSM. In Section 5.3, we explain the details of
GP-LVSM. In Section 5.4, we show the effectiveness and the properties of GP-
LVSM experimentally. Finally, we summarize this chapter with future work in
Section 5.6.

5.2 Related Work

Topic models such as latent Dirichlet allocation (LDA) [3] finds latent topic
structures from BoW data. By learning the LDA, we obtain a low-dimensional
and dense vector representation for each document. Supervised topic model [2]
is a topic model of predicting target variables from documents, and uses the low-
dimensional vectors for documents as features for prediction. We note that there
are mainly two differences between GP-LVSM and the supervised topic model,
which would show that GP-LVSM is better than the supervised topic model. The
first one is that GP-LVSM performs non-linear prediction, while the supervised
topic model is linear prediction. The second one is that GP-LVSM uses Vg
parameters to represent a document, while the supervised topic model only uses
K parameters, where V' is the number of words in the document, ¢ is the latent

dimensionality for words and K is the number of topics. Generally, because of
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Target variable y
r 3

Figure 5.2: Framework of GP-LVSM. Each word is represented as a latent vec-
tor denoted by ‘x’ in the latent space. The distributions of the documents are
mapped into a reproducing kernel Hilbert space (RKHS). The target variables are
expressed by a non-linear regression function generated from a Gaussian process.

Vq > K, GP-LVSM can capture the characteristic of the document in more detail
than the supervised topic model.

GP-LVSM is related to but different from the Gaussian process latent variable
model (GP-LVM), which is used for dimension reduction [31] and matrix factor-
ization [32]. Given BoW data, the GP-LVM learns a single latent vector for each
datum. Since the GP-LVM cannot obtain the latent vector of a new datum, we
cannot use it as a regression method. On the other hand, since GP-LVSM learns
a latent vector for each feature, we can predict the target variable of a new datum
by using the representation of the datum calculated from the latent vectors for
features.

5.3 Gaussian Process Latent Variable Set Model

In this section, we define the proposed model, the Gaussian Process Latent
Variable Set Model (GP-LVSM), in detail. Then, we explain how GP-LVSM
is learned, and when a new input is given, how GP-LVSM predicts the target
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variable of the input. For intuitive explanation, in this section too, we refer to
each datum as a document, and each feature as a word, respectively.

5.3.1 Model

Suppose that we are given a set of n training data D = {(D;, y;)}I~,, where D;
is a set of words appearing in the 7th document and y; € R is its target variable.
Here, D; is bag-of-words with vocabulary set V.

With GP-LVSM, each word v € V is represented by a ¢-dimensional latent
vector x, € RY, and the ith document is represented as a multiset of latent vectors
for words appearing in the document X; = {x,},ep,- Then, using Eq. (3.1), we
can obtain the kernel mean estimator corresponding to the ith document from
X, by m(X:) = o Sep, H%).

GP-LVSM assumes the following regression model with Gaussian noise for a
document and target pair (D;,y;):

where w is a weight vector of the regression and € is a noise drawn from a Gaussian
distribution with zero mean and precision parameter 3, i.e., € ~ N'(0, 371).

We consider the probabilistic model for Eq. (5.3). Given a set of latent vectors
X = {x, }vey, weight vector w, and a set of documents D = {D;} |, the likeli-
hood of target variables y = [y1,v2, -+ ,¥n] " is given by the following Gaussian
distribution:

where 7 is a parameter of embedding kernel k. We analytically marginalize out
weight vector w by assuming the following Gaussian prior distribution with zero
mean and precision parameter a:

p(wla) = \/ﬁ exp <—%WTW> (5.5)

By doing the marginalization, we do not need to explore the optimal w in a
potentially infinite dimensional space. The marginal likelihood of target variables
y is also a Gaussian distribution, which can be obtained analytically because
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likelihood Eq. (5.4) and prior Eq. (5.5) are both Gaussian distributions. As a
result, the marginal likelihood is given by

p(y|X.D,a,5,7) = / plylw, X, D, B)p(wla)dw
— p(y[0.0 MM+ 5T), (5.6)

where M = [m(X;),m(Xz), -+ ,m(X,)]". The mean and the covariance are
derived by using E[y] = ME[w] = 0 and Elyy '] = ME[ww' M = o= 'MM ",
respectively.

The (i, ) element of MM is inner product (m(X;),m(X;))s, of the kernel
mean estimators for ith and jth documents on RKHS ;. specified by embedding
kernel k. The value of the inner product is the similarity between their documents,
which is calculated by one of the kernels introduced in Section 3.5. For example,
when one uses linear level-2 kernel, the inner-product is given by

(m(X;), m(X;)u, = <u§1’ Z k(- %), ﬁ Z k(-’Xt)>

1
— DD Z Z k(xg, Xt). (5.7)

SGDZ' tGDj

Using the inner product, we define kernels between documents. For each pair of
document indexes (i, j), the kernel value between their documents is calculated
as follows:

Ki' = oz_l(m(Xz-), m(X]»Hk + ﬁ_l&j, (58)

where ¢;; is a function that returns 1 if ¢ is equal to j and 0 otherwise. By defining
K as a Gram matrix such that ¢th row and jth column is K;;, marginal likelihood
Eq. (5.6) can be rewritten as the following Gaussian distribution with zero mean
and covariance K.

_ 1 A

5.3.2 Parameter Estimation

We estimate the parameters of GP-LVSM, latent vectors X, precision param-
eters o and 3, and kernel parameter ~.
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For latent vectors X, we place a Gaussian prior with zero mean and precision
parameter p: p(X|p) o [],c, exp(—5|[xy||3). Then, the parameter estimation is
performed by maximizing the following logarithm of the posterior of the param-

eters:
L(©) = logp(y|X,D,a,B,7) +log p(X]|p) (5.10)
LS S 1 P 2
o =5y K y—§logdetK—§;||XU||2,

where, © = {X, a, #,7} is a set of parameters to be estimated.

To maximize Eq. (5.10), we use the quasi-Newton method, which is a gradient-
based optimization method [36]. For each word v € V, the gradient with respect
to x, can be calculated by

0L(O "L~ (0L(O 0K,
a}({v) :ZZ( 8%{))1.]- e (5.11)

i=1 j=1

The first factor ag_&a) is the gradient of £(©) with respect to Gram matrix K,

which is given by

0LO) 1., o 1
5K —2K yy K —2K , (5.12)

where we note that the form of the gradient is independent of the choice of the

embedding kernel. The second factor in Eq. (5.11), %ﬁj

kernel with respect to x,, which varies by the choice of kernels in LDK (see in

, is the gradient of the

Section 3.6). As with the estimation of latent vectors X, «, f and v can be
estimated using the chain rule of Eq. (5.11).

Using these gradients, we can obtain a local solution of the parameters by con-
tinuing to update the parameters in order until the improvement of Eq. (5.10) is
converged. The computational cost to calculate the gradient for each word vector
x € X is O(N?*W?q), where W is the average number of words in documents.
However, when one wants to use large training data, by using stochastic gradient
descent, the computational cost can be reduced to O(WW?q).

5.3.3 Prediction

When a prediction is required, we can use the standard formula for prediction
by a Gaussian process regression [11]. Given a new document D, consisting of
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words in V), the predictive target variable y, is given by
y. =k Ky, (5.13)

where k, is a vector whose element is a kernel value between the new document
and a training document, that is,

k* = [K*l,K*27"' 7K*n]T- (514)

Intuitively, the prediction is given by a weighted sum of training target variables
y, where the weights are calculated by kernel values between training documents.

Since GP-LVSM provides the posterior distribution of the predictive target
variable, we can calculate the variance of the predictive value, which is given by

02 =K,, —k]K'k,. (5.15)

This variance o2 can be used for measuring the confidence of the prediction: a

smaller variance indicates a higher confidence for the prediction.

5.4 Experiments

In this section, we demonstrate the effectiveness of GP-LVSM in prediction and
visualization.

5.4.1 Datasets and settings

20



Table 5.1: Dataset specifications. n¢, is the number of training data, ny. is the
number of test data and |V| is the maximum number of vocabularies in training
data. The number of development data is equal to ng,.
Nty Tte |V|
apparel | 1,000 7,064 1,449
automotive 200 324 918
baby | 800 2,635 1,250
beauty | 800 1,274 1,747
books | 1,000 9,927 1,953
camera | 1,000 5,338 1,434
cell phones & service | 300 409 1,501
computer & video games 600 1,550 2,000
dvd | 1,000 9,892 2,184
electronics | 1,000 9,883 1,341
gourmet food | 400 756 1,713
grocery 500 1,612 1,565
health & personal care | 1,000 5,154 2,165
jewelry & watches | 500 951 1,313
kitchen & housewares | 1,000 9,855 1,161
magazines 700 2,745 1,695
music | 1,000 9,870 1,716
musical instruments 100 127 542
office products 100 220 569
outdoor living | 400 781 1,141
software 500 1,375 1,759
sports & outdoors 900 3,859 1,360
tools & hardware 30 49 155
toys & games | 1,000 9,947 1,883
video | 1,000 9,878 2,012
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For evaluation, we use 25 item review datasets obtained from Amazon.com,
where each dataset corresponds to an item category on Amazon.com. Each review
is represented with bag-of-words without short, low-frequency and stop words,
and is associated with a rating ranging from {1,2,--- /5}. In our experiments,
we use the bag-of-words as input document D and the standardized value of the
rating as target variable y. Table 5.1 shows the specification of the datasets. For
each dataset, we randomly choose five sets of training, development and test data
from the whole of the dataset.

For comparison, we use four non-linear and linear regression methods: Gaussian
Process (GP) regression, Ridge [15], Lasso [52] and Elastic net [61]. With the GP
regression, we use a Gaussian RBF kernel with additive noise term as follows:

Ky = o™ exp (=2 vee(Dy) — vee(D,)3) + 870, (5.16)

where vec(-) is a function that returns a vector with vocabulary length, and
vth element of the vector is the frequency of the vth word in the given set.
Parameters «, 5 and v are estimated so as to maximize the marginal likelihood of
the GP regression. Ridge [15], Lasso [52] and Elastic net [61] are standard linear
regression models with different regularizers. We choose the parameters for these
regularizers so as to minimize the prediction errors on development data. With
GP-LVSM, we learned the model with latent dimensionality ¢ € {1,2,4,6,8,10}
and regularizer parameter p € {1072,107!,--- /10?}, and chose the optimal ¢ and
p so as to minimize the prediction errors on development data.

5.4.2 Prediction performance

Table 5.2 shows the prediction errors of ratings on test data. On 19 of 25
datasets, GP-LVSM outperforms the other methods. On average of the prediction
errors on all datasets, GP-LVSM is the best method. This result indicates GP-
LVSM is robust and can perform better prediction than the other methods.

Next, we investigate how the choice of latent dimensionality ¢ and regularizer
parameter p of GP-LVSM affects the prediction performance. Figure 5.3 shows
the prediction errors of GP-LVSM when varying the latent dimensionality gq.
Here, the regularizer parameter p was fixed at p = 10 to eliminate the effect of p.
As shown in the figure, even with a very small latent dimensionality, GP-LVSM
achieves low prediction error. Even though ¢ is relatively high, the errors are
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Figure 5.3: Prediction errors of GP-LVSM when varying latent dimensionality.
The regularizer parameter is fixed at p = 10.

nearly unchanged compared to that of the best latent dimensionality. Thus, the
performance of GP-LVSM is robust for the dimensionality of the latent vectors
for words, and we can obtain vector representations for words on a quite low
dimensional space while achieving high prediction performance. Figure 5.4 shows
the prediction errors when varying the regularizer parameter p. As opposed to the
latent dimensionality, the predictive performance is sensitive to the choice of p.
These results indicate that GP-LVSM can archive the high predictive performance
by focusing only on tuning the best p.

5.4.3 Visualization

Finally, we show that GP-LVSM can visualize words using two- or three-
dimensional latent vectors for words. In our experiments, since we predict the
ratings from item reviews, it is expected that positive and negative words for the
items are separated from each other. Figure 5.5 shows the visualization result
of the latent vectors for words, which are trained on a ‘software’ dataset. Here,
the regularizer parameter is fixed at p = 0.1. For understandability, we selected
positive and negative words based on Loughran and McDonald Financial Senti-
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Figure 5.4: Prediction errors of GP-LVSM when varying regularizer parameter.
The latent dimensionality is fixed at ¢ = 2.

ment Dictionaries!, and visualized their latent vectors with blue and red colors.
As shown in the figure, positive and negative words tend to gather in different
regions. Therefore, ‘great’ and ‘cumbersome’, which are characteristic words in
positive and negative polarity are far away from each other.

5.5 Applications

Since GP-LVSM is a kind of probabilistic generative models, various extended
models can be easily constructed based on GP-LVSM. In this section, we discuss
two extended models based on GP-LVSM for (1) predicting group behaviors and

(2) constructing information diffusion models.

5.5.1 Predicting Group Behaviors

This subsection considers modeling group behaviors, and predicting unseen
ones via the model. The group behaviors can be observed in various situations.

http://www3.nd.edu/~mcdonald/Word_Lists.html
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Figure 5.5: Visualization of latent vectors for words trained on ‘software’ dataset.
Words in blue are positive words while words in red are negative words.

For example, a movie is created by collaboration in a group of actors and cre-
ators. Then, the contents, the quality and the evaluation of the movie by users
correspond to the behaviors of the group. For another example, a scientific pa-
per is written by a research group of researchers. In this case, the contents and
the citation behaviors by the paper correspond to the behaviors of the group.
By modeling such group behaviors, we can predict the future and the unknown
group behaviors.

In this task, we are given a training data D = {(G;,y;)}!,, which consists of
pairs of a set of members in the ith group G; and its behavior vector y; € RZ.
Here, B is the number of behaviors. Our goal is to construct function f such
that y; ~ f(G;) for each i = 1,2,--- ,n. This problem is a kind of regression
problems. Thus, GP-LVSM can be used by regarding each feature as a member,
and each datum as a group. However, since GP-LVSM is now a model to predict
a single target value for each datum, we need to extend it to treat multiple target
variables.
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We define behavior matrix Y = [y1,y2, - ,¥n] ' where the ith row corresponds
to the 7th behavior vector y;, while the bth column corresponds to the groups’
own values for the bth behavior. Then, according to Eq. (5.9), the likelihood for
multiple target variables in GP-LVSM can be rewritten as

B
1 1
Y|X,D,a,B,7) = exp [ —=Y. K1Y, ) , 5.17
where, Y., indicates the bth column of Y. Coupled with that, the objective
function, the logarithm of posterior Eq (5.10), is changed as follows:

L(©) = logp(Y|X,D,a,p,v)+logp(X|p) (5.18)

B
1 Ty —1 1 p 2
X —5 b_g 1 Y:7bK Y:,b — 5 logdetK — 5 E ||XU||2

veY

Parameter estimation and prediction in the extended GP-LVSM can be performed
as with those of the ogirinal GP-LVSM.

5.5.2 Constructing Information Diffusion Models

An information diffusion model is a model to capture how information diffuses
on a social network. We have developed a latent variable model for information
diffusion [50], in which each node in the social network has a latent vector, and
diffusion probability between two nodes is determined by the inner-product be-
tween the latent vectors of the two nodes. Since the model is a linear model, i.e.,
the model only captures linear relationships between nodes, it is expected that
a more accomplished information diffusion model will be developed by applying
LDK for capturing non-linear relationships between nodes.

5.6 Summary

In this chapter, we have proposed a non-linear regression model for BoW data,
which we call it Gaussian process latent variable set model (GP-LVSM). GP-
LVSM performs prediction using a function generated from Gaussian processes
(GPs). Since the form of the function is determined kernel values between in-
puts, we have used LDK in Gaussian processes to generate the function. In
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our experiments, we have shown that GP-LVSM outperforms conventional linear
and non-linear regression methods on the rating prediction using 25 item review
datasets, and is useful for visualizing features (words in this case) by using the
learned latent vectors for the features. Through Chapter 4 and this chapter, we
have shown that LDK works well on the existing algorithms in kernel methods.

o8



59

Chapter

Cross-Domain Matching

6.1 Introduction

The discovery of matched instances in different domains is an important task,
which appears in natural language processing, information retrieval and data min-
ing tasks such as finding the alignment of cross-lingual sentences [79], attaching
tags to images [12] or text documents [21], and matching user identifications in
different databases [31].

When given an instance in a source domain, our goal is to find the instance
in a target domain that is the most closely related to the given instance. In
this chapter, we focus on a supervised setting, where correspondence informa-
tion between some instances in different domains is given. To find matching in a
single domain, e.g., find documents relevant to an input document, a similarity
(or distance) measure between instances can be used. On the other hand, when
trying to find matching between instances in different domains, we cannot di-
rectly measure the distances since they consist of different types of features. For
example, when matching documents in different languages, since the documents
have different vocabularies we cannot directly measure the similarities between
documents across different languages without dictionaries.

One solution is to map instances in both the source and target domains into
a shared latent space. Omne such method is canonical correspondence analysis
(CCA) [16], which maps instances into a latent space by linear projection to
maximize the correlation between paired instances in the latent space. However,
in practice, CCA cannot solve non-linear relationship problems due to its linear-
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Figure 6.1: An example of the proposed method used on a multilingual docu-
ment matching task. Correspondences between instances in source (English) and
target (Japanese) domains are observed. The proposed method assumes that
each feature (vocabulary term) has a latent vector in a shared latent space, and
each instance is represented as a distribution of the latent vectors of the features
associated with the instance. Then, the distribution is mapped as an element in
a reproducing kernel Hilbert space (RKHS) based on the kernel embeddings of
distributions. The latent vectors are estimated so that the paired instances are
embedded closer together in the RKHS.

ity. To find non-linear correspondence, kernel CCA [I] can be used. It has been
reported that kernel CCA performs well as regards document/sentence align-
ment between different languages [541, 35], when searching for images from text
queries [13] and when matching 2D-3D face images [21]. Note that the perfor-
mance of kernel CCA depends on how appropriately we define the kernel function
for measuring the similarity between instances within a domain. Since the ex-
isting inner-product kernels have the major weakness as described in Chapter 1,
there are cases where kernel CCA does not work better than one expects.

In this chapter, we propose an entirely new kernel-based cross-domain matching
method. The proposed method employs LDK to measure the distance between
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instances in different domains, although latent SMM in Chapter 4 and GP-LVSM
in Chapter 5 do that to measure the similarity within a single domain. In par-
ticular, it assumes that each feature in source and target domains is associated
with a latent vector in a shared latent space. Since all the features are mapped
into the latent space, it can measure the similarity between features in different
domains. Then, each instance is represented as a set of the latent vectors of fea-
tures that are contained in the instance, and it is embedded into a reproducing
kernel Hilbert space (RKHS) by the framework of the kernel embeddings of dis-
tributions. The proposed method assumes that two instances are matched when
their distance in the RKHS is the smallest in all possible pairs of instances. Here,
the distance is calculated by the distance measurement based on LDK presented
in Section 3.3. Thus, in the learning of the proposed method, the latent vectors
for features are estimated by minimizing the distances between paired instances
while keeping unpaired ones apart. Then, the proposed method predicts the
matching of test instances by measuring the distance according to the learned
latent vectors. Figure 6.1 shows an example of the proposed method used on a
multilingual document matching task.

In our experiments, we demonstrate the effectiveness of our proposed method
in tasks that involve finding the correspondence between multi-lingual Wikipedia
articles, between documents and tags, and between images and tags, by compar-
ison with existing linear and non-linear matching methods.

The rest of this chapter is organized as follows. Section 6.3 describes the
model design, learning and prediction methods of the proposed method. Sec-
tion 6.4 shows the effectiveness of the proposed method experimentally. Finally,
Section 6.5 summarize this chapter.

6.2 Related Work

In this section, we review canonical correlation analysis (CCA) [10], kernel
CCA [1] and bilingual topic models [19, 59] that can be used for BoW data, and
discuss the difference between the proposed method and these methods.

CCA learns projection vectors so as to maximize the correlation of paired
instances in a latent space, and then, by measuring the distance between test

instances in the latent space, it can find an unseen matching.
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Suppose that we are given two observations X € R"** and Y € R™™" from
different domains. Here, there is a one-to-one matching between the ith rows of
X and Y foreachi=1,2,--- ,n. Then, CCA finds an optimal projection vectors
a € R* b € RY by solving the following problem with a constraint:

max a’X'Yb st. a'X'Xa=b'Y'Yb=1. (6.1)
This corresponds to mapping two instances X and Y into a one-dimensional
shared latent space. Mapping the instances into a multidimensional shared latent
space can be achieved by repeatedly solving Eq. (6.1) such that the correlation
between new projection vectors and previously obtained ones is zero. At test
phase, matching can be predicted by (1) mapping test instances using learned
projection vectors a and b into the shared latent space and (2) measuring the
distance between the test instance in the shared latent space.

Kernel CCA is a kernel extension version of CCA, and can perform non-linear
cross-domain matching. Instead of X and Y, kernel CCA uses Gram matrices K
and L with respect to X and Y, respectively. Here, (7, j) elements of K and L are
kernel values between the ith and jth rows of X and Y, respectively. Kernel CCA
learns an optimal projection vectors a and b by solving the following problem:

maxa' KLb st. a'KKa=b'LLb=1. (6.2)

a,b
As with CCA, multidimensional extension and finding matching can be per-
formed.

When we want to match cross-domain instances represented by bag-of-words
such as documents, bilingual topic models [19, 59] can also be used. Bilingual
topic models assume that words appearing in paired bilingual documents are gen-
erated from a shared topic distribution. By learning the model from a bilingual
document collection, the topic distribution of each document can be obtained.
Then, at test phase, one can find matching by searching pairs of bilingual docu-
ments that have similar topic distributions.

The proposed method differs from CCA, kernel CCA and bilingual topic models
in two ways. The first difference is that the proposed method is a discriminative
matching method, i.e., its objective function is designed to minimize the distances
between paired instances while keeping unpaired ones apart. The second one is
that the proposed method can use all the information about the latent vectors of
features by employing LDK, although the existing methods use the mean of the
latent vectors only.
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6.3 Proposed Method

Suppose that we are given a training set consisting of n instance pairs O =
{(D$, D})}r_,, where D$ is the ith instance in a source domain and D! is the
ith instance in a target domain. These instances D and D! are represented
as multisets of features, i.e., BoW included in source feature set F° and target
feature set F', respectively. The goal of our task is to determine the unseen
relationship between instances across source and target domains in test data.
The number of instances in the source domain may be different to that in the
target domain.

6.3.1 Kernel Embeddings of Distributions in a Shared La-
tent Space

As described in Section 6.1, the difficulty as regards finding cross-domain in-
stance matching is that the similarity between instances across source and target
domains cannot be directly measured. We have also stated that although we can
find a latent space that can measure the similarity by using kernel CCA, standard
kernel functions, e.g., a Gaussian RBF kernel, cannot reflect the co-occurrence
of different but related features in a kernel calculation between instances. To
overcome them, we propose to employ LDK for finding cross-domain instance
matching. The proposed method assumes that each feature in a source feature
set, f € F°, has a ¢-dimensional latent vector x; € R? in a shared space. Like-
wise, each feature in target feature set, g € F*, has a ¢-dimensional latent vector
¥y € R? in the shared space. Since all the features in the source and target
domains are mapped into a common shared space, the proposed method can cap-
ture the relationship between features both in each domain and across different
domains. We define the sets of latent vectors in the source and target domains
as X = {xs}rers and Y = {y,}jert, respectively.

The proposed method assumes that each instance is represented by a distri-
bution (or set) of the latent vectors of the features that are contained in the
instance. The ith instance in the source domain D; is represented by a set of
latent vectors X; = {Xs}seps and the jth instance in the target domain D is
represented by a set of latent vectors Y; = {y,},e Dt-
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In the proposed method, we employ the framework of kernel embeddings of
distributions to represent the distributions of the latent vectors for the instances.
The kernel mean estimators for the ith source and the jth target domain instances
are given by

m(Y;) |Y|Zk £ ¥g)- (6.3)

feDg eDt

Then, the distance between the distributions of the latent vectors are measured
by using Eq. (3.4), that is, the distance between the ith source and the jth target
domain instances is given by

d(X;, Y;) = [Im(X;) = m(Y;)[l5, (6.4)

6.3.2 Likelihood and Posterior

The proposed method assumes that paired instances have similar distributions
of latent vectors and unpaired instances have different distributions. In accor-
dance with the assumption, we define the likelihood of the relationship between
the ith source domain instance and the jth target domain instance as follows:

exp (—d(X;,Y;))
Siyexp (—d(Xi, Yy))

where, 6 is a set of hyper-parameters for the embedding kernel used in Eq. (6.3).

p(D51D;, X, Y, 0) = (6.5)

Eq. (6.5) is in fact the conditional probability with which the jth target domain
instance is chosen given the ith source domain instance. This formulation is more
efficient than we consider a bidirectional matching. Intuitively, when distribution
X is more similar to Y ; than other distributions {Y; | j* # j}},_,, the probability
has a higher value.

We define the posterior distribution of latent vectors X and Y. By placing
Gaussian priors with precision parameter p > 0 for X and Y, that is,

p(Xlp) o< [T exp (<5IIli3) . p(Yl) o [T exp (<ElvIE) . (66)

the posterior distribution is given by

p(X.Y[0,0) = _p(X|p)p(¥|o) [[ (DD X Y00, (67)

i=1
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where, O = {(D¢, D})}?_, is a training set of n instance pairs, © = {6, p} is a set
of hyper-parameters and Z = [ [ p(X,Y,0,0)dXdY is a marginal probability,
which is constant with respect to X and Y.

6.3.3 Parameter Estimation

We estimate latent vectors X and Y by maximizing the posterior probability
of the latent vectors given by Eq. (6.7). Instead of Eq. (6.7), we consider the
following negative logarithm of the posterior probability,

LX,Y) = {d(X@-,m +log Y exp <—d<X@-,Yj>>}+§ <Z B+ Hyl\%) ,

i=1 j=1 xeX yeY
(6.8)
and minimize it with respect to the latent vectors. Here, maximizing Eq. (6.7)
is equivalent to minimizing Eq. (6.8). To minimize Eq. (6.8) with respect to X
and Y, we perform a gradient-based optimization. The gradient of Eq. (6.8) with
respect to each xy € X is given by

IL(X,Y) 0d(X;,Y;) 1<~ 08d(X;,Y;)
i:feD?
where,

e;; = exp (—d(X;,Y;)), Ci = iexp (—d(X:,Y;)), (6.10)

and the gradient of the distance between distributions X; and Y; with respect
to x; is given by

0d(X;,Y;) 1 Ok(xy, xp1) 2 Ok(x1,y,)
o KPR 2 axy K 2 2 o O

I€D$ VeD? ! l€D geD!

When the distribution X; does not include the latent vector x;, the gradient

8k(gl,xl/) and Ok(x1,y4)
X f oxy

an embedding kernel k. This depends on the choice of the embedding kernel.

consistently becomes a zero vector. are the gradients of

For example, when the embedding kernel is Gaussian RBF kernel kgpr(x;,y,) =
exp (—%Hxl — yg||2), the gradient is given by

ok(x1,y,)

o, krr (X1, Y9)7(yg — X1)- (6.12)
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Similarly, The gradient of Eq. (6.8) with respect to each y, € Y is given by

OL(X,Y) _i 9d(X;,Y;) 1 Z . 2d(Xi,Y;)

+ PYgs 6.13
ayg — ayg ayg g ( )

j gED*

where, the gradient of the distance between distributions X; and Y; with respect
to y, is given by

0d(X;,Y;) Ok( yz,yzf Ok( Xf yi)
A PIDY X o T G

leD! l'eD} feD; 1eD?

Learning is performed by alternately updating X using Eq. (6.9) and updating
Y using Eq. (6.13) until the improvement in the negative log likelihood Eq. (6.8)
converges.

6.3.4 Matching Prediction

After the estimation of the latent vectors X and Y, the proposed method
can reveal the matching between test instances. The matching is found by first
measuring the distances between a given source domain instance and target do-
main instances using Eq. (6.4), and then searching for the instance pair with the
smallest distance.

6.4 Experiments

In this section, we report our experimental results for three different types
of cross-domain datasets: multi-lingual Wikipedia, document-tag and image-tag
datasets.

Setup of proposed method

Throughout these experiments, we used a Gaussian RBF kernel as an embed-
ding kernel. The hyper-parameters of the proposed method are the dimension-
ality of a shared latent space ¢, a regularizer parameter for latent vectors p and
a Gaussian RBF embedding kernel parameter . After we train the proposed
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method with various hyper-parameters ¢ € {8,10,12}, p € {0,1072,107'} and
v € {1071 10% -+ , 103}, we chose the optimal hyper-parameters by using devel-
opment data. When training the proposed method, we initialized latent vectors
X and Y by applying principle component analysis (PCA) to a matrix concate-
nating two feature-frequency matrices in the source and target domains. Then,
we employed the L-BFGS method [30] with gradients given by Egs. (6.9) (6.13)
to learn the latent vectors.

Compared methods

We compared the proposed method with the k-nearest neighbor method (KNN),
canonical correspondence analysis (CCA), kernel CCA (KCCA), bilingual latent
Dirichlet allocation (BLDA), and kernel CCA with the kernel embeddings of dis-
tributions (KED-KCCA). For a test instance in the source domain, our KNN
searches for the nearest neighbor source instances in the training data, and out-
puts a target instance in the test data, which is located close to the target in-
stances that are paired with the searched for source instances. CCA and KCCA
first learn the projection of instances into a shared latent space using training
data, and then they find matching between instances by projecting the test in-
stances into the shared latent space. KCCA used a Gaussian kernel for measuring
the similarity between instances and chose the optimal Gaussian kernel parame-
ter and regularizer parameter by using development data. With BLDA, we first
learned the same model as [19, 59] and found matching between instances in the
test data by obtaining the topic distributions of these instances from the learned
model. KED-KCCA uses the kernel embeddings of distributions described in
Section 2.2 for obtaining the kernel values between the instances. The vector rep-
resentations of features were obtained by applying singular value decomposition
(SVD) for instance-feature frequency matrices. Here, we set the dimensionality
of the vector representations to 100. Then, KED-KCCA learns kernel CCA with
the kernel values as with the above KCCA. With CCA, KCCA, BLDA and KED-
KCCA, we chose the optimal latent dimensionality (or number of topics) within
{10,20,--- ,100} by using development data.
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Evaluation method

Throughout the experiments, we quantitatively evaluated the matching perfor-
mance by using the precision with which the true target instance is included in
a set of R candidate instances, S(R), found by each method. More formally, the
precision is given by
Nie
> 5 (t; € Si(R)), (6.15)

i=1

Precision@QR =
recision N

where, N is the number of test instances in the target domain, ¢; is the ith true
target instance, S;(R) is R candidate instances of the ith source instance and J(-)
is the binary function that returns 1 if the argument is true, and 0 otherwise.
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6.4.1 Matching between Bilingual Documents

With a multi-lingual Wikipedia document dataset, we examine whether the
proposed method can find the correct matching between documents written in
different languages. The dataset includes 34,024 Wikipedia documents for each
of six languages: German (de), English (en), Finnish (fi), French (fr), Italian
(it) and Japanese (ja), and documents with the same content are aligned across
the languages. From the dataset, we create ¢Cy = 15 bilingual document pairs.
We regard the first component of the pair as a source domain and the other
as a target domain. For each of the bilingual document pairs, we randomly
create 10 evaluation sets that consist of 1,000 document pairs as training data,
100 document pairs as development data and 100 document pairs as test data.
Here, each document is represented as a bag-of-words without stopwords and low
frequency words.

Figure 6.2 shows the matching precision for each of the bilingual pairs of the
Wikipedia dataset. With all the bilingual pairs, the proposed method achieves
significantly higher precision than the other methods with a wide range of R. Ta-
ble 6.1 shows examples of predicted matching with the Japanese-English Wikipedia
dataset. Compared with KCCA, which is the second best method, the proposed
method can find both the correct document and many related documents. For
example, in Table 6.1(a), the correct document title is “SD card”. The proposed
method outputs the SD card’s document and documents related to computer
technology such as “Intel” and “MPlayer”. This is because the proposed method
can capture the relationship between words and reflect the distance between doc-
uments across different domains by learning the latent vectors of the words.

6.4.2 Matching between Documents and Tags, and be-

tween Images and Tags

We performed experiments matching documents and tailgates, and match-
ing images and tailgates with the datasets used in [21]. When matching doc-
uments and tailgates, we use datasets obtained from two social bookmarking
sites, delicious! and hatena?, and patent dataset. The delicious and the
hatena datasets include pairs consisting of a web page and a tag list labeled by

'https://delicious.com/
2http://b.hatena.ne. jp/
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Figure 6.3: Precision of matching prediction and its standard deviation on
delicious, hatena, patent and flickr datasets.

users, and the patent dataset includes pairs consisting of a patent description and
a tag list representing the category of the patent. Each web page and each patent
description are represented as a bag-of-words as with the experiments using the
Wikipedia dataset, and the tag list is represented as a set of tags. With the
matching of images and tag lists, we use the flickr dataset, which consists of
pairs of images and tag lists. Each image is represented as a bag-of-visual-words,
which is obtained by first extracting features using SIFT [38], and then apply-
ing K-means clustering with 200 components to the SIFT features. For all the
datasets, the numbers of training, test and development pairs are 1,000, 100 and
100, respectively.

Figure 6.3 shows the precision of the matching prediction of the proposed and
comparison methods for the delicious, hatena, patent and flickr datasets.
The precision of the comparison methods with these datasets was much the
same as the precision of random prediction. Nevertheless, the proposed method
achieved very high precision particularly for the delicious, hatena and patent
datasets. Figure 6.4 shows examples of input tag lists and the top five images
matched by the proposed method with the f1ickr dataset. In the examples, the
proposed method found the correct images and similar related images from given
tag lists.
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Figure 6.4: Two examples of input tag lists and the top five images matched by
the proposed method on the f1ickr dataset.

6.5 Summary

We have proposed a novel kernel-based method for addressing cross-domain in-
stance matching tasks for BoW data. In the proposed method, we have employed
LDK to measure the distance between instances in different domains, although
latent SMM in Chapter 4 and GP-LVSM in Chapter 5 do that in a single do-
main. Experiments on various types of cross-domain datasets confirmed that the
proposed method significantly outperforms the existing methods including kernel
CCA and topic model-based approach for cross-domain matching.
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Chapter

Conclusion

This thesis has proposed a general framework of kernel methods for bag-of-
words (BoW) data. This framework consists of the following two parts: (1)
defining a class of kernel functions with latent variables appropriate for BoW
data, which we call it latent distribution kernel (LDK), and (2) developing models
with LDK and their optimization methods.

In LDK, each feature has a latent vector, and each datum is represented as
a set of the latent vectors of the features associated with the datum. Here, the
latent vectors are learned according to the problem we want to solve. To represent
the set of the latent vectors for each datum, we have employed the framework of
kernel embeddings of distributions. The benefits that we employ the framework

are as follows:

e According to the latent vectors, the moment information of the distribution
that generates the latent vectors for each datum can be obtained nonpara-

metrically.

e Since the framework is based on kernel methods, the existing strong machine
learning methods such as support vector machines (SVMs) and Gaussian

processes (GPs) can be utilized.

e The problem that the inner-product kernels cannot capture the correlation
between different features in a kernel calculation can be overcome naturally.

LDK can be used by incorporating itself into the existing kernel-based algo-

rithms such as SVMs, or to develop new kernel-based algorithms. To demonstrate



the effectiveness of LDK, we have developed three methods based on LDKs for
adressing their corresponding machine learning problems: classification, regres-
sion and cross-domain matching. First, we have developed a novel non-linear
discriminative learning method for BoW data classification, which is formulated
based on SVMs. In the experiments, we have showed that the proposed method
achieves the state-of-the-art accuracy on BoW text categorization tasks. Second,
we have developed a non-linear regression method for BoW data by incorporating
LDKs into GPs. In the experiments, we have showed that the proposed method
outperforms the existing linear and non-linear regression methods on item review
score prediction. Third, we have developed a cross-domain matching method
for BoW data, in which LDKs are used for matching data in different domains.
The experimental results have showed that the proposed matching method out-
performs the existing methods on multi-lingual document, document-tag, and
image-tag matching.

7.1 Future Work

There are two future directions to advance our research.

The first direction is to make the learning of the proposed methods efficient.
Although the proposed methods based on LDK are superior to the existing ones
in terms of prediction accuracy, the time to learn the proposed methods is ba-
sically longer than the existing kernel methods. The most time-consuming part
in the learning is the calculation of the gradients with respect to the latent vec-
tors. In this thesis, we have presented straightforward implementations for the
learning, i.e., batch learning to evaluate whether the proposed methods are valid
or not. Since this thesis have showed that the proposed methods are superior
to the existing methods in terms of prediction accuracy, in future work, we will
develop faster learning methods to apply to larger datasets. In particular, two
approaches can be considered. The first approach is to use stochastic gradient de-
scent (SGD) [5]. SGD is a gradient descent optimization method for minimizing
an objective function that is written as a sum of differentiable functions. In each
iteration of SGD, parameters are updated by optimizing the objective function for
a single sample that is randomly chosen from training samples. In practice, the
SGD-based learning is more efficient in terms of time and space complexity than
a batch learning that uses the whole training samples in each iteration. Since
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the objective functions of the proposed methods described in Chapters 4 and 5
are a sum of objective functions for two sample pairs, these methods can use the
SGD-based learning without any change of their formulation. The second one is
to use kernel approximation such as Nystrom method [10] and random feature
method [12]. Kernel approximation speeds up learning by approximating a kernel
matrix, and is successfully used for SVM [58] and kernel CCA [37]. By applying
this for the proposed methods in this thesis, it is expected that their learning is
more efficient.

The second direction is to develop new methods for other machine learning
problems and applications based on LDK. LDK is a general framework for su-
pervised learning. Basically, LDK can be applied to the existing kernel-based
supervised learning methods as described in Chapter 4 and 5. Thus, we will con-
firm the effectiveness of LDK by applying to other supervised learning such as
learning to rank and structured learning. Additinally, since BoW data appears in
various tasks in computer vision and data mining, we will explore to apply LDK
in these other fields.
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