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Latent Variable Models for Bag-of-Words Data

Based on Kernel Embeddings of Distributions∗

Yuya Yoshikawa

Abstract

In machine learning and its related fields such as natural language processing,

kernel methods are studied to perform non-linear prediction. In this thesis, we

consider a case where input data are represented as multi-sets of features, i.e., bag-

of-words (BoW). Many papers have reported that kernel methods are superior to

linear models in terms of prediction accuracy. However, kernel functions based

on inner-product such as a Gaussian RBF kernel and polynomial kernel has a

common problem that the kernel functions cannot reflect the correlation between

related features in a kernel calculation.

To overcome this problem, we propose a general framework of kernel methods

for BoW data, which consists of the following two parts: (1) defining a class of

kernel functions with latent variables for BoW data, which we call it latent distri-

bution kernel (LDK), and (2) developing models with LDK and their optimization

methods.

LDK assumes that each feature has a low-dimensional latent vector, and each

of the input data is represented as a multiset (or distribution) of latent vectors for

the features associated with the datum. To represent the distributions nonpara-

metrically and efficiently, we employ kernel embeddings of distributions, which

can represent the moment information of the distributions e.g., the mean, covari-

ance and higher-order moments as an element in a reproducing kernel Hilbert

space. By this method, LDK can use all the information of the latent vectors

for the kernel calculation between data, while overcoming the problem of the

inner-product kernels.

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1361013, September 16, 2015.
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Then, we propose models with LDK to solve three machine learning prob-

lems: classification, regression and cross-domain matching, and derive their op-

timization methods. In our experiments, we demonstrate the quantitative and

qualitative effectiveness of the proposed methods compared to various linear and

non-linear methods.

Keywords:

machine learning, latent variable models, kernel methods, classification, regres-

sion, cross-domaian matching
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分布のカーネル埋め込みに基づく

Bag-of-Wordsデータのための潜在変数モデル ∗

吉川 友也

内容梗概

機械学習や自然言語処理等の関連分野において，カーネル法は非線形予測を行
うために研究されている．本論文では，入力データが特徴の多重集合，すなわち
Bag-of-Words（BoW）として表現される場合を考える．多くの論文では，予測
性能の観点から，カーネル法は線形予測モデルよりも優れていることが報告され
ている．しかしながら，ガウシアンカーネルや多項式カーネル等の内積に基づく
カーネル関数は，関連ある特徴間の相関をカーネルの計算に反映できないという
共通の問題点がある．この問題点を解決するために，BoWデータのためのカー
ネル法の新しい枠組みを提案する．この枠組みは（1）Latent Distribution Kernel

（LDK）と呼ぶ BoWデータのための潜在変数を含むカーネル関数のクラスの定
義，（2）LDKに基づくモデルとそれらの最適化法の構築から構成される．LDKで
は，各特徴が低次元潜在ベクトルで表現されると仮定し，入力データはそのデー
タに含まれる特徴を表す潜在ベクトルの集合（分布）によって表現される．その
分布をノンパラメトリックかつ効率的に表現するために，分布のカーネル埋め込
みを用いる．この方法を用いることで，LDKは潜在ベクトルのすべての情報を
データ間のカーネルの計算のために利用するとともに，内積に基づくカーネル関
数の問題点を解決することができる．LDKの有効性を確認するために，機械学
習における基本的な問題である分類，回帰，異種データ間マッチングに対して，
LDKを組み込んだモデルを提案し，それらの最適化法を導出する．実験では，各
問題について，既存の線形や非線形手法と比較して，LDKを内包する提案モデル
は予測性能が優れていることを示す．また，特徴の潜在ベクトルを可視化するこ
とにより，提案モデルの定量的有効性を示す．

キーワード

機械学習，潜在変数モデル，カーネル法，分類，回帰，異種データ間マッチング
∗奈良先端科学技術大学院大学情報科学研究科情報科学専攻博士論文, NAIST-

IS-DD1361013, 2015年 9月 16日.
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Chapter 1
Introduction

1.1 Motivation

Nowadays, in various research fields such as computer vision, speech processing,

natural language processing (NLP), and bioinformatics, machine learning is one

of the most necessary techniques to automatically classify data, predict unseen

behaviors, and extract latent structures from the data. In the field of machine

learning, kernel methods are used as a framework for performing non-linear anal-

ysis; research on these methods has been in progress since the 1990s. Currently,

the best known kernel method is support vector machines (SVMs) [9], which were

originally used for non-linear classification, but have recently also been used for

non-linear regression [11], anomaly detection [46], and ranking prediction [23].

Further, in NLP, SVMs are successfully used for text classification [22], named

entity recognition [18], dependency structure analysis [28], etc.

The core idea of kernel methods is to map data into a high-dimensional (poten-

tially infinite-dimensional) space. By treating the data in the high-dimensional

space rather than in the original space, one can easily analyze the complex be-

haviors appearing in the data. An example that classification works well in the

mapped space is shown in Figure 1.1. In this example, there are two classes of

data: data denoted by red circle and data denoted by blue cross. Since the data

denoted by the red circles are located inside those indicated by blue crosses, we

cannot accurately classify the data by using a linear function. On the other hand,

by representing the data in a high-dimensional space, we can find a linear func-

tion that can classify the data more accurately than in the original space. Here,



Figure 1.1: Linear discriminative functions (red dotted lines) in an original space

(left) and a mapped space (right).

kernel methods do not expand the data explicitly to a high-dimensional space.

Instead, they use the similarity between the data, which is calculated by using a

non-linear similarity function called kernel function. Let v and v′ be the vectors

representing the input data. For example, the typical kernel functions include

linear, Gaussian radial basis function (RBF) and polynomial kernels, which are

defined as follows:

Linear kernel: KLIN(v,v
′) = v⊤v′, (1.1)

Gaussian RBF kernel: KRBF(v,v
′) = exp

(
−γ

2
||v − v′||2

)
, (1.2)

Polynomial kernel: KPOLY(v,v
′) =

(
v⊤v′ + a

)b
, (1.3)

where, γ > 0, a ∈ R, and b ∈ N. Basically, what non-linear structure kernel-

based models can capture is determined by the form of the kernel function chosen.

Thus, it is important to choose a kernel function appropriate for one’s goal and

dataset.

1.1.1 Bag-of-Words Representation and Its Problem

In this thesis, we consider a case where data are represented as multisets of

features. Here, a multiset is a generalization of the concept of a set that allows

multiple instances of the multiset’s elements.
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Figure 1.2: A problem occurring in kernel functions based on the inner-product.

Definition 1.1.1 (Multiset) Let U be a universal set, A be a subset of U , and
m : A → N+ be a multiplicity function that counts the multiplicity of each element

included in A, where N≥1 denotes a positive integer set {1, 2, · · · }, and m(a) = 0

if a /∈ A. Then, a multiset is defined as a 2-tuple (A,m).

Such a data representation is called the bag-of-words (BoW) representation [14]

and is a typical representation way of data in the fields of NLP, data mining,

and computer vision. For example, in NLP, the universal set U is a vocabulary

set, and each datum is represented as a multiset of vocabulary terms in U . For

notation simplicity, in this thesis, we denote the BoW data by the set notation,

rather than the multiset notation.

Each of BoW data can also be represented as a feature-frequency vector whose

element corresponds to the frequency of a feature associated with the datum. In

such a case, previous studies have reported that kernel methods are superior to

linear models in terms of the prediction accuracy. However, kernel functions based

on the inner-product, such as linear, polynomial, and Gaussian RBF kernels, have

a common problem that they cannot reflect the correlation between the related

features in a kernel calculation. Here, the Gaussian RBF kernel Eq. (1.2) can be

expanded as follows:

KRBF(v,v
′) = exp

(
−γ

2

[
v⊤v + v′⊤v′ − 2v⊤v

])
. (1.4)

3



Therefore, the Gaussian RBF kernel can be regarded as a type of inner-product-

based kernel. Fig. 1.2 illustrates a problem that occurs in inner-product kernels

when two BoW documents are given. The inner-product between vectors v and

v′ is given by

v⊤v′ =
d∑

l=1

vlv
′
l, (1.5)

where d denotes the dimensionality of v and v′, and vl and v′l indicate the lth

elements of v and v′, respectively. That is, the inner-product only considers

the correlation of the same dimension in the two vectors. However, this is a

counterintuitive result. Because although people know that the features ‘PC’

and ‘Computer’ indicate almost the same thing, the correlation between the fre-

quency of these two features cannot be considered in the inner-product. Thus,

the existing machine learning systems based on kernel methods are expected to

be improved by development of a general framework to overcome this problem.

1.2 Contribution

The contribution of this thesis is to develop a general framework of kernel

methods for the BoW data. This framework consists of the following two parts:

(1) defining a class of kernel functions with latent variables appropriate for the

BoW data, which we call latent distribution kernel (LDK), and (2) developing

models with LDKs and their optimization methods.

LDK is a class of kernel functions that can capture the relationship between

features by incorporating latent variables for the features into the kernel functions.

Each of the latent variables is represented as a vector in a lower-dimensional space

than an observed BoW data space. In this thesis, we refer to the vector as latent

vector and the space as latent space.

LDK assumes that each feature has a low-dimensional latent vector, and each

of the input data is represented as a multiset (or distribution) of latent vectors

for the features associated with the datum. To represent the distributions non-

parametrically and efficiently, we employ a framework of kernel embeddings of

distributions, which can represent the moment information of the distributions,

e.g., the mean, covariance, and higher-order moments, as elements in a reproduc-

ing kernel Hilbert space. By this method, LDK can use all the information of

4



the latent vectors for the kernel calculation between data, while overcoming the

problem of the existing kernel functions based on the inner-product.

LDK can be used by incorporating it into existing kernel-based algorithms such

as SVMs, or by developing new kernel-based algorithms. Note that although

LDK can reflect the relationship between features in kernel calculations between

data, the relationship varies with the problem that one wants to solve. For

example, when classifying a web page into the “Dog” or “Cat” categories, the

relationship between the two features (words in this case) “Dog” and “Cat” should

be weak. On the other hand, when classifying it into the “Animal” or “Economic”

categories, the relationship should be strong because both “Dog” and “Cat” are

characteristic words in the “Animal” category. Thus, to obtain the latent vectors

of features are appropriate for solving solve a given problem, we need to develop

an optimization algorithm for the problem.

In this thesis, we consider three machine learning problems: classification, re-

gression, and cross-domain matching. With classification and regression, we at-

tempts to solve these problems by incorporating LDK into SVMs and Gaussian

processes (GPs) [44], which are well-studied kernel-based algorithms. Then, we

derive optimization methods for the latent vectors of features on the basis of their

objective functions. With cross-domain matching, we solve this problem by using

an entirely new model with LDK.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Preliminaries. In this chapter, we first provide fundamental

knowledge about kernel methods. Then, we introduce the framework of ker-

nel embeddings of distributions, which is a key technique to define LDK.

Chapter 3: Latent Distribution Kernel for Bag-of-Words Data. In this

chapter, we present LDK, particularly its definition, measurement of the similar-

ity and the distance between data, and the computation of the gradients of LDK,

which are often used in the later chapters.

Chapter 4: Classification. This chapter presents a method to solve the clas-

5



sification problem by incorporating LDK into SVMs.

Chapter 5: Regression. In this chapter, we propose a GP-based non-linear

regression model with LDK. Then, we show that the proposed model can also be

used for two applications: predicting group behaviors and developing information

diffusion models on social networks.

Chapter 6: Cross-Domain Matching. In this chapter, we consider predicting

the correspondence between the data in different domains. To solve this problem,

we propose an entirely new model with LDK, which matches the data in different

domains on a shared latent space.

Chapter 7: Conclusion. This chapter summarizes the thesis and discusses the

direction of further research.

6
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Chapter 2
Preliminaries

This chapter provides the background knowledge　 that is required to under-

stand this thesis, particularly about kernel methods and kernel embeddings of

distributions. Kernel methods form the basis of the proposed methods through-

out this thesis. Kernel embeddings of distributions are necessary to define the

proposed kernel presented in Chapter 3.

2.1 Kernel Methods

2.1.1 Overview

First, we will briefly overview kernel methods. In machine learning and its

related fields, kernel methods are used for non-linear prediction and for captur-

ing non-linear structures appearing in the data. A naive way to perform such

non-linear analyses is to map vectors representing data into those with a higher

dimensionality via a feature map function ϕ, and then, to perform linear predic-

tion in the high-dimensional space. In this section, we call the vectors representing

data original vectors, and the vectors mapped into a high-dimensional space by

ϕ feature vectors. As a feature map function, the following can be considered:

ϕ : (v1, v2) → (v21, v
2
2,
√
2v1v2). (2.1)

That is, the feature map function transforms a given original vector with variables

v1 and v2 into a three-dimensional feature vector by calculating the square root

of the multiplication of the two variables and their squares. Now, we consider



Figure 2.1: Mapping 2D original vector onto 3D space for XOR data. Red circles

indicate the vectors with “True”, and blue crosses indicate the ones with “False”.

applying the feature map function to an exclusive-or (XOR) problem. In the XOR

problem, our goal is to construct a classifier that upon receiving two binary inputs,

outputs “True” if the two inputs have different values, and “False” otherwise,

just like an XOR logic gate. Figure 2.1 shows the 2D original vectors and their

corresponding feature vectors mapped by Eq. (2.1) for the XOR problem. In

this problem, it is impossible to construct a linear separating hyperplane in the

original space. On the other hand, by mapping the original vectors onto a 3D

feature space, we can find the hyperplane.

More generally, let us consider a case where d variables v1, v2, · · · , vd are given

as observations. Since the number of multiplications of two variables increases

with an increase in the number of variables, the dimensionality of the feature

vector also increases. Thus, when the dimensionality of an original vector is

large, such a naive method requires an enormous computational overhead.

Kernel methods owe their name to the use of kernel functions, which enable

them to operate in a high-dimensional feature space without explicitly mapping

the original vectors into that space, but rather by simply computing the inner-

products between the original vectors. This operation is often computationally

cheaper than computing a feature map function explicitly. This approach is called

the kernel trick. Now, we show that using a kernel function is equivalent to calcu-

lating the inner-product between feature vectors without explicitly treating the

feature map function ϕ. Let u = [u1, u2]⊤ and v = [v1, v2]
⊤ be the original vec-
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tors. Then, the homogeneous second-order polynomial kernel K(u,v) = (u⊤v)2

can be expanded as follows:

K(u,v) = (u⊤v)2 (2.2)

= (u1v1 + u2v2)
2

= u2
1v

2
1 + u2

2v
2
2 + 2u1v1u2v2

= (u2
1, u

2
2,
√
2u1u2)

⊤(v21, v
2
2,
√
2v1v2)

= ϕ(u)⊤ϕ(v).

Thus, K(u,v) = ϕ(u)⊤ϕ(v) is proven. Then, the computational cost of the

kernel function is cheaper than that of the inner-product, because the kernel

needs three multiplications and an addition, while the inner-product needs nine

multiplications and three additions.

2.1.2 Dual Representation

What algorithms can kernel methods be applied to? In fact, objective func-

tions for many linear algorithms in machine learning can be expressed by the

inner-product between vectors representing data via dual representation. As an

example, we introduce ridge regression [15], a linear regression method with L2

regularization for weights. Suppose that we are given a set of training data

D = {(vi, yi) | vi ∈ Rd, yi ∈ R}ni=1, where vi denotes the ith sample and yi
represents its corresponding target variable. Then, a target variable is predicted

by using the prediction function f(v) = w⊤ϕ(v) with the weight vector w. An

objective function of ridge regression to estimate the optimal weight vector w is

given by

J(w) =
1

2

n∑
i=1

(w⊤ϕ(vi)− yi)
2 +

λ

2
||w||22, (2.3)

where, λ ≥ 0 denotes a regularizer parameter, which is fixed in advance. The

optimal weights can be obtained by minimizing J(w) with respect to w. By

setting the gradient of J(w) with respect tow to zero, we can obtain the following

equation:

w = −1

λ

n∑
i=1

{w⊤ϕ(vi)− yi}ϕ(vi) =
n∑

i=1

aiϕ(vi) = Φ⊤a, (2.4)

9



where, ai = w⊤ϕ(vi)−yi, a = [a1, a2, · · · , an]⊤, andΦ = [ϕ(v1), ϕ(v2), · · · , ϕ(vn)]
⊤.

Then, by substituting w = Φ⊤a into Eq. (2.3), we obtain the following equation:

J(a) =
1

2
a⊤ΦΦ⊤ΦΦ⊤a− a⊤ΦΦ⊤y +

1

2
y⊤y +

λ

2
a⊤ΦΦ⊤a, (2.5)

where y = [y1, y2, · · · , yn]⊤. Since the (i, j) element of ΦΦ⊤ is calculated by using

the inner-product between the ith and the jth feature vectors ϕ(vi)
⊤ϕ(vj) , we

can replace the inner-product with kernel function K(vi,vj). Thus, by defining

K = ΦΦ⊤ whose element is expressed asKij = K(vi,vj), we can rewrite Eq. (2.5)

as follows:

J(a) =
1

2
a⊤KKa− a⊤Ky +

1

2
y⊤y +

λ

2
a⊤Ka. (2.6)

In Eq. (2.6), we notice that the parameters to be estimated are a rather than w.

By setting the gradient of Eq. (2.6) with respect to a to zero, we can obtain the

optimal a by using the following equation:

a = (K+ λIn)
−1y, (2.7)

where In denotes the identity matrix of size n. Then, the prediction function f

is given by

f(v) = w⊤ϕ(v) = a⊤Φϕ(v) = k(v)⊤(K+ λIn)
−1y, (2.8)

where k(v) = [K(v,v1), K(v,v2), · · · , K(v,vn)]
⊤ denotes a vector whose ele-

ment is the kernel value between the test sample v and one of the training samples

vi. By thus deriving a dual representation, one can perform non-linear prediction

without explicitly using any non-linear functions.

Interestingly, the resulting prediction function Eq. (2.8) depends on the val-

ues of the kernel function. Thus, it is important to choose a kernel function

appropriate to one’s goal and own dataset.

2.2 Kernel Embeddings of Distributions

In this section, we introduce the framework of kernel embeddings of distri-

butions, which is a key technique to define the proposed kernel presented in

Chapter 3. The kernel embeddings of distributions are used for representing

probabilistic distributions nonparametrically. For a similar purpose, kernel den-

sity estimation (KDE) [45] can be used. The main difference between the kernel

10



embeddings of distributions and KDE is that the former is used for estimating

the moment information of a distribution, while the latter is used for estimating

the density of the distribution. Thus, one should choose between these methods

depending on one’s goal.

2.2.1 Definition

The kernel embeddings of distributions are used for embedding any probability

distribution P on space X into a reproducing kernel Hilbert space (RKHS) Hk

specified by kernel k, and the distribution is represented as element m∗(P) in the

RKHS. More precisely, when given distribution P, the kernel embedding of the

distribution or kernel mean m∗(P) is defined as follows:

m∗(P) := Ex∼P[k(·,x)] =
∫
X
k(·,x)dP ∈ Hk, (2.9)

where kernel k is referred to as the embedding kernel. It is known that the kernel

mean m∗(P) preserves the properties of probability distribution P, such as the

mean, covariance, and higher-order moments by using characteristic kernels (e.g.,

Gaussian RBF kernel) [50].

In practice, there are often cases where the distribution P is unknown but

a set of samples X = {xl}nl=1 generated from the unknown distribution is ob-

served. For such cases, by interpreting sample set X as empirical distribution

P̂ = 1
n

∑n
l=1 δxl

(·), where δx(·) denotes the Dirac delta function at point x ∈ X ,

the estimator of kernel mean m(X) can be calculated by

m(X) =
1

n

n∑
l=1

k(·,xl), (2.10)

which is approximated with an error rate of ||m(X)−m∗(P)||Hk
= Op(n

− 1
2 ) [48].

Unlike that in the case of kernel density estimation, the error rate of the kernel

embeddings is independent of the dimensionality of the given distribution. As

with the standard kernel methods, the kernel mean is not calculated explicitly.

2.2.2 Kernel Function for Distributions

On the basis of the kernel embeddings of distributions, a kernel function that

measures the similarity between distributions can be defined efficiently. This is
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a benefit of using the kernel embeddings of distributions. The kernel function

can be used for applying the existing kernel-based algorithms to the distribution

data.

Suppose that two distributions P and Q on space X are given. Then, the

kernel function is defined as the inner-product between two kernel means m∗(P)
and m∗(Q) in the RKHS Hk, which is given by

K(m∗(P),m∗(Q)) = ⟨m∗(P),m∗(Q)⟩Hk
= Ex∼P,y∼Q[k(x,y)]. (2.11)

When given only the samples generated from distributions P and Q, the simi-

larity between the distributions can also be measured by using the estimators of

the kernel means. Let X = {xl}nl=1 be a set of samples generated from distribu-

tion P, and Y = {yl′}n
′

l′=1 be a set of samples generated from distribution Q. The

estimators of the kernel means of X and Y can be obtained by using Eq. (2.10).

Then, a kernel function between two distributions P and Q is given by

K(X,Y) = ⟨m(X),m(Y)⟩Hk

=

⟨
1

n

n∑
l=1

k(·,xl),
1

n′

n′∑
l′=1

k(·,yl′)

⟩
Hk

=
1

nn′

n∑
l=1

n′∑
l′=1

k(xl,yl′). (2.12)

The kernel in Eq. (2.12) can be used for classifying the distribution data [40].

This method will be reviewed in Section 4.2.2.

The kernel in Eq. (2.12) is regarded as a linear kernel between the distributions

P and Q as this kernel is calculated using the inner-product. Kernels that define

the similarity between P and Q are called level-2 kernels. Non-linear level-2

kernels can also be defined analogous to standard kernel methods, which will be

described in Section 3.5.

2.2.3 Measuring Distance

By using the estimator of the kernel mean in Eq. (2.10), one can measure the

distance between two distributions. Given two sets of samples X = {xl}nl=1 and

Y = {yl′}n
′

l′=1 where xl and yl′ belong to the same space but are generated from

different distributions P and Q, one can obtain the estimators of the kernel means
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by using Eq. (2.10), which are respectively denoted as m(X) and m(Y). Then,

the distance between m(X) and m(Y) is given by

D(X,Y) = ||m(X)−m(Y)||2Hk
. (2.13)

Intuitively, this distance reflects the difference in the moment information of

the distributions. It is equivalent to the square of the maximum mean discrep-

ancy (MMD), which is used for a statistical test of independence of two distribu-

tions [13]. The distance can be calculated by expanding Eq. (2.13) as follows:

||m(X)−m(Y)||2Hk
= ⟨m(X),m(X)⟩Hk

+ ⟨m(Y),m(Y)⟩Hk
− 2⟨m(X),m(Y)⟩Hk

,

(2.14)

where, ⟨·, ·⟩Hk
denotes the inner-product in RKHSHk, which is given by Eq. (2.12).
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Chapter 3
Latent Distribution Kernel for

Bag-of-Words Data

In this chapter, we present a new class of kernel functions for measuring the

similarity between bag-of-words (BoW) data, which we call the latent distribution

kernel (LDK).

3.1 Motivation

The kernel embeddings of distributions described in Section 2.2 implicitly as-

sume that an unknown distribution P is a continuous distribution and a sample

generated from P is represented as a dense vector. If an unknown distribution P
is a discrete distribution, a sample generated from P is represented as a one-hot

vector in which the value of a single dimension is one, while the values of the

other dimensions are zero. In such a case, the use of Eq. (2.12) is inappropriate,

because all the inner-product terms in the embedding kernel k become zero ex-

cept for cases where two vectors are identical. Thus, even if we apply the kernel

embeddings of distributions to the BoW data, we cannot overcome the problem

in the inner-product kernels, which is described in Section 1.1.1. Therefore, it is

inappropriate to directly apply the kernel embeddings of distributions to discrete

data, including the BoW data.

A naive method to apply the kernel embeddings of distributions to the BoW

data is to adopt a two-stage approach as follows: (1) learning a low-dimensional



vector representation for each feature in an unsupervised manner, and (2) repre-

senting each datum as a kernel mean of the set of vectors for features associated

with the datum. There are many algorithms to learn low-dimensional vector

representations for features, which include matrix factorization-based methods

such as NMF [33] and manifold learning-based methods such as Isomap [51]. In

NLP, in particular, many algorithms to obtain vector representations such that

they reflect the semantics of words, such as word2vec [39], have recently been

developed. However, since the vector representations are learned independently

of the problem that one wants to solve, they would not be appropriate for solving

the problem. The proposed class of kernel functions, latent distribution kernel

(LDK), treats the vector representations for features as latent variables, which

are then optimized to solve a given problem accurately.

3.2 Definition

Let Di be the ith observed datum, which is represented as BoW, that is, Di is

a multiset of features associated with the ith datum, and Di consists of elements

in the unique feature set V ,
LDK assumes that each feature f included in the unique feature set V has a

latent vector xf ∈ Rq, where q denotes a constant parameter for determining

the dimensionality of the latent vector, which we decide in advance. Then, the

observed datum Di is represented as a multiset of latent vectors of features associ-

ated with the ith datum, which is denoted by Xi = {xf}f∈Di
. Xi can be regarded

as a multiset of samples obtained from an unknown distribution. To represent

the distribution efficiently and nonparametrically according to the samples Xi,

we employ the framework of the kernel embeddings of distributions, which is in-

troduced in Section 2.2. From Eq. (2.10), the estimator of the kernel mean of the

ith multiset of latent vectors Xi, m(Xi), is given by

m(Xi) =
1

|Di|
∑
f∈Di

k(·,xf ) =
1

|Xi|
∑
x∈Xi

k(·,x), (3.1)

where | · | denotes the number of elements in a given multiset.
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3.3 Measuring Similarity and Distance

Like the similarity and distance between distributions described in Sections 2.2.2

and 2.2.3, LDK can measure the similarity and distance between BoW data.

Let Di and Dj be the observed BoW data, and Xi and Xj be multisets of

latent vectors of the features included in Di and Dj, respectively. Then, the

kernel mean estimators of Xi and Xj, m(Xi) and m(Xj), respectively, can be

obtained by using Eq. (3.1). According to Eq. (2.12), the similarity between two

multisets of latent vectors Xi and Xj is given by

K(Xi,Xj) = ⟨m(Xi),m(Xj)⟩Hk

=

⟨
1

|Di|
∑
s∈Di

k(·,xs),
1

|Dj|
∑
t∈Dj

k(·,xt)

⟩
Hk

=
1

|Di||Dj|
∑
s∈Di

∑
t∈Dj

k(xs,xt). (3.2)

Similarly, according to Eq. (2.13), the distance between two multisets of latent

vectors Xi and Xj is given by

D(Xi,Xj) = ||m(Xi)−m(Xj)||2Hk
(3.3)

= ⟨m(Xi),m(Xi)⟩Hk
+ ⟨m(Xj),m(Xj)⟩Hk

− 2⟨m(Xi),m(Xj)⟩Hk
.

3.4 Interpretation

In this subsection, we discuss the interpretation of why LDK is superior to the

existing kernel functions on the basis of the inner-product.

Let vi and vj be the feature-frequency vectors for observed data Di and Dj.

Then, kernel functions based on the inner-product such as a linear kernel, calcu-

late the similarity between Di and Dj by using the following equation:

K(vi,vj) = v⊤
i vj =

d∑
l=1

vilvjl, (3.4)

where vil indicates the frequency of the lth feature (or dimension) in the ith

datum, and d denotes the dimensionality of vi. Thus, the kernel functions only

consider the correlation between the same feature in two items of data.
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(a) Inner-product kernel (b) Latent distribution kernel

Figure 3.1: The difference between the inner-product kernel and the latent dis-

tribution kernel in terms of the measurement of feature correlation.

With LDK, Eq. (3.2) can be rewritten as

K(Xi,Xj) =
1

|Di||Dj|

d∑
l=1

d∑
l′=1

vilvjl′k(xl,xl′). (3.5)

As this equation shows, the embedding kernel between latent vectors, k(xl,xl′),

plays a role in controlling a weight for the correlation between the lth and the

l′th features.

Figure 3.1 illustrates the difference between the inner-product kernel and LDK

in terms of the weights of feature correlation. In this figure, the line weights

represent the kernel values between features, which are regarded as correlation

weights. With the inner-product kernel shown in Figure 3.1(a), the correlation

weight for the same feature is one and that for the others is zero. On the other

hand, LDK shown in Figure 3.1(b) considers the correlations between all the

features, which are weighted by the embedding kernel’s values between the latent

vectors of the features. By learning the latent vectors so as to fit the task that

we want to solve, we can automatically control the correlation weights.

3.5 Choice of Kernels

LDK includes various forms of kernel functions depending on the choice of

embedding and level-2 kernels. In this section, we introduce the formulations of
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LDK when using linear, Gaussian RBF, and polynomial kernels as embedding

and level-2 kernels.

3.5.1 Embedding kernels

Embedding kernels determine how highly the moment information of a dis-

tribution is embedded in the RKHS. For example, a Gaussian RBF kernel can

preserve all the moment information such as the mean, covariance, and higher-

order moments, and the bth-order polynomial kernel can preserve all the moment

information up to the bth order. We denote linear, Gaussian RBF, and polyno-

mial embedding kernels by kLIN, kRBF, and kPOLY, respectively. These are defined

as follows:

kLIN(xs,xt) = x⊤
s xt, (3.6)

kRBF(xs,xt) = exp
(
−γ

2
||xs − xt||2

)
, (3.7)

kPOLY(xs,xt) =
(
x⊤
s xt + a

)b
, (3.8)

where γ > 0 of kRBF denotes a bandwidth parameter, and a ∈ R and b ∈ N of

kPOLY represent the bias and degree parameters, respectively.

3.5.2 Level-2 kernels

Level-2 kernels are used for defining the similarity between distributions. We

indicate the choice of embedding and level-2 kernels by using the subscript K.

For example, we denote LDK consisting of a Gaussian RBF embedding kernel and

a linear level-2 kernel by KRBF−LIN. When a kernel formulation is independent

of the choice of the embedding or level-2 kernels, we use the subscript ∗ as a

wild-card operator for the choice of kernels.

Again, let Xi and Xj be the respective multisets of the latent vectors of the

features included in observed data Di and Dj. Then, we can obtain the kernel

mean estimators of Xi and Xj, which are denoted by m(Xi) and m(Xj), respec-

tively, on the basis of any of the embedding kernels. A linear level-2 kernel is
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defined as the inner-product ⟨m(Xi),m(Xj)⟩Hk
in RKHS Hk, which is given by

K∗−LIN(Xi,Xj) =
⟨ 1

|Di|
∑
s∈Di

k∗(·,xs),
1

|Dj|
∑
t∈Dj

k∗(·,xt)
⟩
Hk

(3.9)

=
1

|Di||Dj|
∑
s∈Di

∑
t∈Dj

k∗(xs,xt).

The dth-order polynomial level-2 kernel with a bias parameter c ∈ R can be

defined as

K∗−POLY(Xi,Xj) = (K∗−LIN(Xi,Xj) + c)d . (3.10)

A Gaussian RBF level-2 kernel with a bandwidth parameter ζ > 0 can be

defined as

K∗−RBF(Xi,Xj) (3.11)

= exp

(
−ζ

2
||m(Xi)−m(Xj)||2

)
= exp

(
− ζ

2

{
K∗−LIN(Xi,Xi)− 2K∗−LIN(Xi,Xj) +K∗−LIN(Xj,Xj)

})
.

3.6 Gradients of Kernels

To learn the latent vectors of features so as to optimize the objective function of

the task that we want to solve, we will use gradient-based optimization methods

such as L-BFGS [36] in the later chapters. In this section, we list the gradients

of the kernels with respect to a latent vector of feature m, xm.

∂KLIN−LIN(Xi,Xj)

∂xm

=
1

|Di||Dj|
∑
s∈Di

∑
t∈Dj


xt (m = s ∧m ̸= t)

xs (m = t ∧m ̸= s)

2xm (m = t ∧m = s)

0 (m ̸= t ∧m ̸= s).

(3.12)

∂KLIN−RBF(Xi,Xj)

∂xm

(3.13)

= −ζ

2
KLIN−RBF(Xi,Xj)

×
(
∂KLIN−LIN(Xi,Xi)

∂xm

+
∂KLIN−LIN(Xj,Xj)

∂xm

− 2
∂KLIN−LIN(Xi,Xj)

∂xm

)
.
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∂KLIN−POLY(Xi,Xj)

∂xm

= d (KLIN−LIN(Xi,Xj) + c)d−1 ∂KLIN−LIN(Xi,Xj)

∂xm

. (3.14)

∂KRBF−LIN(Xi,Xj)

∂xm

=
1

|Di||Dj|
∑
s∈Di

∑
t∈Dj


kRBF(xs,xt)γ(xt − xs) (m = s ∧m ̸= t)

kRBF(xs,xt)γ(xs − xt) (m = t ∧m ̸= s)

0 (m = t ∧m = s)

0 (m ̸= t ∧m ̸= s).
(3.15)

∂KRBF−RBF(Xi,Xj)

∂xm

(3.16)

= −ζ

2
KRBF−RBF(Xi,Xj)

×
(
∂KRBF−LIN(Xi,Xi)

∂xm

+
∂KRBF−LIN(Xj,Xj)

∂xm

− 2
∂KRBF−LIN(Xi,Xj)

∂xm

)
.

∂KRBF−POLY(Xi,Xj)

∂xm

= d (KRBF−LIN(Xi,Xj) + c)d−1 ∂KRBF−LIN(Xi,Xj)

∂xm

.

(3.17)

∂KPOLY−LIN(Xi,Xj)

∂xm

=
1

|Di||Dj|
∑
s∈Di

∑
t∈Dj


b(x⊤

s xt + a)b−1xt (m = s ∧m ̸= t)

b(x⊤
s xt + a)b−1xs (m = t ∧m ̸= s)

b(x⊤
s xt + a)b−12xm (m = t ∧m = s)

0 (m ̸= t ∧m ̸= s).
(3.18)

∂KPOLY−RBF(Xi,Xj)

∂xm

(3.19)

= −ζ

2
KPOLY−RBF(Xi,Xj)

×
(
∂KPOLY−LIN(Xi,Xi)

∂xm

+
∂KPOLY−LIN(Xj,Xj)

∂xm

− 2
∂KPOLY−LIN(Xi,Xj)

∂xm

)
.

∂KPOLY−POLY(Xi,Xj)

∂xm

= d (KPOLY−LIN(Xi,Xj) + c)d−1 ∂KPOLY−LIN(Xi,Xj)

∂xm

.

(3.20)
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Chapter 4
Classification

4.1 Introduction

Classification is one of the most fundamental problems in machine learning, and

the developed algorithms for classification are utilized in a wide variety of research

fields such as natural language processing [29], information retrieval [57, 55], data

mining [27], etc.

Classification is basically executed through the processes shown in Fig. 4.1.

When training of a classifier, training data consisting of pairs of an input sample

and a label are given. Here, we consider that the input sample is represented

by BoW representation. Our goal is to learn a classifier (or discriminative func-

tion) f that outputs the correct label when receiving its corresponding input

sample. Then, we can classify newly coming data without label information via

the resulting classifier.

One of the methods to learn discriminative function f is support vector ma-

chines (SVMs) [9], which are kernel-based non-linear discriminative learning meth-

ods. Because SVMs are kernel-based methods, the performance of SVMs gener-

ally depends on whether the kernel values between input samples can be defined

properly, as with kernel ridge regression described in Section 2.1.

This chapter presents SVM-based discriminative learning methods for BoW

data classification, which we call them latent support measure machine (latent

SMMs). Latent SMMs employ LDK to compute kernel values between BoW input

samples. The learning procedure of latent SMMs is performed by alternately

finding a separating hyperplane and estimating the latent vectors for features.



Figure 4.1: Training and test processes in classification.

The learned latent vectors of two related features are located close to each other

in the latent space, and we can obtain kernel values that reflect the relationship.

As a result, latent SMMs can classify unseen data using a richer and more useful

representation than the BoW representation.

In our experiments, we demonstrate the quantitative and qualitative effective-

ness of latent SMMs on standard BoW text datasets. The experimental results

first indicate that latent SMMs can achieve state-of-the-art classification accu-

racy. Therefore, we show that the performance of latent SMMs is robust with

respect to its own hyper-parameters, and the latent vectors for words in latent

SMM can be represented in a two dimensional space while achieving high classi-

fication performance. Finally, we show that the characteristic words of each class

are concentrated in a single region by visualizing the latent vectors.

Latent SMMs are a general framework of discriminative learning for BoW data.

Thus, the idea of latent SMMs can be applied to various machine learning prob-

lems for BoW data, which have been solved by using SVMs: for example, novelty

detection [47], structure prediction [53], and learning to rank [23].

The rest of this chapter is organized as follows: First, Section 4.2 provides the

formulations of SVMs and support measure machines (SMMs), which are basis of

latent SMMs. Then, Section 4.3 describes the formulation and the optimization

method of latent SMMs. In Section 4.4, we introduce some related works. In

Section 4.5, we demonstrate the quantitative and qualitative effectiveness of latent
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SMMs. Finally, we summarize this chapter in Section 4.6.

4.2 Preliminaries

In this section, we introduce support vector machines (SVMs) and support

measure machines (SMMs). Our proposed method will build upon these tech-

niques.

4.2.1 Support Vector Machines

Support vector machines (SVMs) are discriminative learning methods, which

are based on a maximum-margin criteria. Suppose that we are given a set of n

training data, D = {(vi, yi) | vi ∈ Rd, yi ∈ {+1,−1}}ni=1. Here, we call vi sample,

and yi class. One wants to learn a discriminative function f : Rd → {+1,−1}
from the training data.

The strategy of SVM to obtain f is to find a separating hyperplane so as to

maximize the margin between the samples in different classes. The separating

hyperplane is defined as

w⊤v − b = 0, (4.1)

where, w ∈ Rd is a weight vector and b ∈ R is an offset parameter. Thus,

discriminative function f is defined as

f(v) = sgn
(
w⊤v − b

)
, (4.2)

where, sgn(·) is a sign function that returns +1 if its argument is positive, and

−1 otherwise. Our goal is to learn the optimal w and b such that the margin is

maximized.

In order to describe the separating hyperplane, we introduce the following

formulas:

w⊤vi − b ≥ +1 (if yi = +1) (4.3)

w⊤vi − b ≤ −1 (if yi = −1). (4.4)

In these formulas, the equality is satisfied when sample vi lies on the hyperplane.

For i = 1, 2, · · · , n, these formulas can be rewritten as:

yi(w
⊤vi − b) ≥ 1 (4.5)
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Then, the distance between the separating hyperplane Eq. (4.1) and sample vi

is given by

d(w, b;vi) =
|w⊤vi − b|

||w||
. (4.6)

Thus, the margin between two hyperplanes Eqs. (4.3) and (4.4) can be written

as:

min
vi:yi=+1

d(w, b;vi) + min
vi:yi=−1

d(w, b;vi) =
2

||w||
, (4.7)

because minvi:yi=+1 |w⊤vi − b| = minvi:yi=−1 |w⊤vi − b| = 1. Since maximizing
2

||w|| is equivalent to minimize 1
2
||w||2, the optimal parameters w and b can be

obtained by solving the following problem with constraints:

min
w,b

1

2
||w||2 subject to yi(w

⊤vi − b) ≥ 1 (i = 1, 2, · · · , n). (4.8)

By introducing Lagrange multipliers A = {a1, a2, · · · , an}, the constrained prob-

lem Eq. (4.8) can be expressed as

min
w,b

max
A≥0

1

2
||w||2 +

n∑
i=1

ai(yi[w
⊤vi − b]− 1). (4.9)

According to the gradients of Eq. (4.8) with respect to w and b, the following

conditions are satisfied at the saddle point:

w =
n∑

i=1

yiaivi (4.10a)

0 =
n∑

i=1

yiai. (4.10b)

Plugging Eq. (4.10) into Eq. (4.9), we can obtain the following dual Lagrangian

problem:

max
A

L(A) where L(A) =
n∑

i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyjv
⊤
i vj (4.11a)

subject to ai ≥ 0 (i = 1, 2, · · · , n),
n∑

i=1

aiyi = 0. (4.11b)

26



This problem can be solved as a quadratic programming problem. After the

optimization, the samples with αi > 0, i = 1, 2, · · · , n are called support vectors.

The support vector samples lie on any of the hyperplanes Eqs. (4.3) and (4.4).

The optimal offset b can be obtained by utilizing the property that the support

vectors hold the equalities in Eqs. (4.3) and (4.4), that is, w⊤vi−b = 1 if yi = +1

or w⊤vi − b = −1 if yi = −1. In practice, b is obtained by the average over the

support vectors as follows:

b =
1

nSV

∑
i∈SV

(w⊤vi − yi), (4.12)

where, SV is a set of support vector indexes, and nSV is the number of support

vectors.

Soft-margin SVMs

SVMs described above assume that all the training samples are linearly sep-

arable. Such SVMs are called hard-margin SVMs. If there are samples that

cannot be classified correctly, the learning of hard-margin SVMs would be unsta-

ble. Soft-margin SVMs adopt a modified maximum-margin criterion that allows

for misclassified samples. Soft-margin SVMs introduce non-negative slack vari-

ables, ξi, which measure the degree of misclassification of sample vi. In this case,

Eq. (4.5) can be rewritten as

yi(w
⊤vi − b) ≥ 1− ξi, ξi ≥ 0. (4.13)

Under the soft-margin criterion, the dual Lagrangian problem Eq. (4.11) changes

as follows:

max
A

L(A) where L(A) =
n∑

i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyjv
⊤
i vj (4.14a)

subject to 0 ≤ ai ≤ C (i = 1, 2, · · · , n),
n∑

i=1

aiyi = 0, (4.14b)

where, C appearing in the constraints is a cost parameter that determines the

degree of penalty for misclassification. If C = ∞, soft margin SVMs are equivalent

to hard-margin SVMs. The value of C is usually decided by cross-validation.

27



Kernelization

In Eqs. (4.11) and (4.14), one can use kernel k(vi,vj) instead of the inner-

product v⊤
i vj. By using a non-linear kernel such as polynomial and Gaussian

kernels, non-linear classification can be executed as with the same solution for

Eqs. (4.11) and (4.14). By substituting Eq. (4.10) into Eq. (4.2), the discrimina-

tive function f can be rewritten as

f(v) = sgn

(∑
i∈SV

aiyiK(v,vi)− b

)
. (4.15)

4.2.2 Support Measure Machines

Support measure machines (SMMs) are kernel-based discriminative methods

for distribution data [40]. Here, each of the distribution data consists of a set of

samples.

Suppose that we are given a set of n training data D = {(Vi, yi) | Vi =

{v ∈ Rd}, yi = {+1,−1}}. To represent distribution sample Vi efficiently and

nonparametrically, SMMs employ the framework of the kernel embeddings of

distributions described in Section 2.2. Since the kernel between distribution sam-

ples can be defined by using Eq. (2.12), SMMs can be solved like the standard

SVM problem. For example, soft-margin SMMs can be obtained by solving the

following problem:

max
A

L(A) where L(A) =
n∑

i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyjK(Vi,Vj)(4.16a)

subject to 0 ≤ ai ≤ C (i = 1, 2, · · · , n),
n∑

i=1

aiyi = 0, (4.16b)

where, K(Vi,Vj) is a kernel between distribution samples Vi and Vj defined in

Eq. (2.12).

4.3 Latent Support Measure Machines

In this section, we propose latent support measure machines (latent SMMs)

that are effective for BoW data classification by learning latent word represen-

tation to improve classification performance. For intuitive explanation, in this
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section, we refer to each datum as a document, and each feature as a word,

respectively.

SMMs assume that a set of samples from distribution Pi, Xi, is observed. On

the other hand, as described later, latent SMMs assume that Xi is unobserved.

Instead, we consider a case where BoW features are given for each document.

More formally, we are given a training set of n pairs of documents and class labels

{(Di, yi)}ni=1, where Di is the ith document that is represented by a multiset of

words appearing in the document and yi ∈ Y is a class variable. Each word is

included in vocabulary set V . For simplicity, we consider binary class variable yi ∈
{+1,−1}. The proposed method is also applicable to multi-class classification

problems by adopting one-versus-one or one-versus-rest strategies as with the

standard SVMs [17].

Latent SMMs adopt the data representation of LDK described in Chapter 3.

That is, each word t ∈ V is represented by a q-dimensional latent vector xt ∈ Rq,

and the ith document is represented as a multiset of latent vectors for words

appearing in the document Xi = {xt}t∈Di
. Then, we can obtain the kernel mean

representation of the ith document from Xi as follows:

m(Xi) =
1

|Di|
∑
t∈Di

k(·,xt). (4.17)

Using latent word vectorsX = {xt}t∈V and document representations {m(Xi)}ni=1,

the primal optimization problem for latent SMM can be formulated in an analo-

gous but different way from original SMMs as follows:

min
w,b,ξ,X,θ

1

2
||w||2 + C

n∑
i=1

ξi +
ρ

2

∑
t∈V

||xt||22 (4.18a)

subject to yi (⟨w,m(Xi)⟩H − b) ≥ 1− ξi, ξi ≥ 0, (4.18b)

where {ξi}ni=1 denotes slack variables for handling soft margins. Unlike the pri-

mal form of SMMs, that of latent SMMs includes a ℓ2 regularization term with

parameter ρ > 0 with respect to latent word vectors X. Latent SMM minimizes

Eq. (4.18) with respect to the latent word vectors X and kernel parameters θ,

along with weight parameters w, offset parameter b and {ξi}ni=1.

It is extremely difficult to solve the primal problem Eq. (4.18) directly because

the inner term ⟨w,m(Xi)⟩H in the constrained conditions is in fact calculated

in an infinite dimensional space. Thus, we solve this problem by converting it
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into an another optimization problem in which the inner term does not appear

explicitly. Unfortunately, due to its non-convex nature, we cannot derive the

dual form for Eq. (4.18) as with standard SVMs. Thus we consider a min-max

optimization problem, which is derived by first introducing Lagrange multipliers

A = {a1, a2, · · · , an} and then plugging w =
∑n

i=1 aim(Xi) into Eq (4.18), as

follows:

min
X,θ

max
A

L(A,X, θ) subject to 0 ≤ ai ≤ C,

n∑
i=1

aiyi = 0 (4.19a)

where L(A,X, θ) =
n∑

i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyjK(m(Xi),m(Xj)) +
ρ

2

∑
t∈V

||xt||22,

(4.19b)

where K(m(Xi),m(Xj)) is a kernel value between kernel mean estimators m(Xi)

and m(Xj) specified by parameters X and θ as is shown in Section 3.5.

We solve this min-max problem by separating it into two partial optimization

problems: 1) maximization over A given current estimates X̄ and θ̄, and 2)

minimization overX and θ given current estimates Ā. This approach is analogous

to wrapper methods in multiple kernel learning [49].

Maximization over A

When we fix X and θ in Eq. (4.19) with current estimate X̄ and θ̄, the maxi-

mization over A becomes a quadratic programming problem as follows:

max
A

n∑
i=1

ai −
1

2

n∑
i=1

n∑
j=1

aiajyiyjK(m(X̄i),m(X̄j)) (4.20)

subject to 0 ≤ ai ≤ C,

n∑
i=1

aiyi = 0,

which is identical to solving the dual problem of standard SVMs described in

Section 4.2.1. Thus, we can obtain optimal A by employing an existing SVM

package.
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Minimization over X and θ

When we fix A in Eq. (4.19) with current estimate Ā, the min-max problem

can be replaced with a simpler minimization problem as follows:

min
X,θ

l(X, θ), where l(X, θ) = −1

2

n∑
i=1

n∑
j=1

āiājyiyjK(m(Xi),m(Xj))+
ρ

2

∑
t∈V

||xt||22.

(4.21)

To solve this problem, we use a quasi-Newton method [36]. The quasi-Newton

method needs the gradient of parameters. For each word m ∈ V , the gradient of

latent word vector xm is given by

∂l(X, θ)

∂xm

= −1

2

n∑
i=1

n∑
j=1

āiājyiyj
∂K(m(Xi),m(Xj))

∂xm

+ ρxm, (4.22)

where the gradient of the kernel with respect to xm depends on the choice of

kernels. See in Section 3.6. As with the estimation of X, kernel parameters θ

can be obtained by calculating gradient ∂l(X,θ)
∂θ

. By alternately repeating these

computations until dual function Eq. (4.19) converges, we can find a local optimal

solution to the min-max problem.

The parameters that need to be stored after learning are latent word vectors X,

kernel parameters θ and Lagrange multipliers A. Classification for new document

Dte is performed by computing

f(Dte) = sgn

(
n∑

i=1

aiyiK(m(Xi),m(Xte))− b

)
, (4.23)

where, m(Xte) is the kernel mean estimator of the set of the latent vectors for

Dte.

4.4 Related Work

The proposed method is based on the framework of SMMs, which are kernel-

based discriminative learning on distributions [40]. Muandet et al. showed that

SMMs are more effective than SVMs when the observed feature vectors are numer-

ical and dense in their experiments on handwriting digit recognition and natural

scene categorization. On the other hand, when observations are BoW features,
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Table 4.1: Dataset specifications.
# samples # features # classes

WebKB 4,199 7,770 4

Reuters-21578 7,674 17,387 8

20 Newsgroups 18,821 70,216 20

SMMs coincide with SVMs as described in Section 4.2.2. To receive the benefits

of SMMs for BoW data, the proposed method represents each word as a numerical

and dense vector, which is estimated from the given data.

The proposed method aims to achieve a higher classification performance by

learning a classifier and feature representation simultaneously. Supervised topic

models [2] and maximummargin topic models (MedLDA) [60] have been proposed

based on a similar motivation but using different approaches. They outperform

classifiers using features extracted by unsupervised LDA. There are two main dif-

ferences between these methods and the proposed method. First, the proposed

method plugs the latent word vectors into a discriminant function, while the exist-

ing methods plug the document-specific vectors into their discriminant functions.

Second, the proposed method can naturally develop non-linear classifiers based

on the kernel embeddings of distributions. We demonstrate the effectiveness of

the proposed model by comparing the topic model based classifiers in our text

classification experiments.

4.5 Experiments with Bag-of-Words Text Clas-

sification

Data description

For the evaluation, we used the following three standard multi-class text clas-

sification datasets: WebKB, Reuters-21578 and 20 Newsgroups. These datasets,

which have already been preprocessed by removing short and stop words, are

found in [6] and can be downloaded from the author’s website1. The specifica-

tions of these datasets are shown in Table 4.1. For our experimental setting, we

ignored the original training/test data separations.

1http://web.ist.utl.pt/acardoso/datasets/
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Setting

In our experiments, the proposed method, latent SMM, uses a Gaussian RBF

embedding kernel and a linear level-2 kernel. To demonstrate the effectiveness

of latent SMM, we compare it with several methods: MedLDA, SVD+SMM,

word2vec+SMM and SVMs. MedLDA is a method that jointly learns LDA and

a maximum margin classifier, which is a state-of-the-art discriminative learning

method for BoW data [60]. We use the author’s implementation of MedLDA2.

SVD+SMM is a two-step procedure: 1) extracting low-dimensional representa-

tions of words by using a singular value decomposition (SVD), and 2) learning

a support measure machine using the distribution of extracted representations

of words appearing in each document with the same kernels as latent SMM.

word2vec+SMM employs the representations of words learned by word2vec [39]

and uses them for SMM as in SVD+SMM. Here we use pre-trained 300 dimen-

sional word representation vectors from the Google News corpus, which can be

downloaded from the author’s website3. Note that word2vec+SMM utilizes an ad-

ditional resource to represent the latent vectors for words unlike latent SMM, and

the learning of word2vec requires n-gram information about documents, which is

lost in the BoW representation. With SVMs, we use a Gaussian RBF kernel with

parameter γ and a quadratic polynomial kernel, and the features are represented

as BoW. We use LIBSVM4 to estimate Lagrange multipliersA in latent SMM and

to build SVMs and SMMs. To deal with multi-class classification, we adopt a one-

versus-one strategy [17] in latent SMM, SVMs and SMMs. In our experiments, we

choose the optimal parameters for these methods from the following variations:

γ ∈ {10−3, 10−2, · · · , 103} in latent SMM, SVD+SMM, word2vec+SMM and

SVM with a Gaussian RBF kernel, C ∈ {2−3, 2−1, · · · , 25, 27} in all the methods,

regularizer parameter ρ ∈ {10−2, 10−1, 100}, latent dimensionality q ∈ {2, 3, 4} in

latent SMM, and the latent dimensionality of MedLDA and SVD+SMM ranges

{10, 20, · · · , 50}.

2http://www.ml-thu.net/~jun/medlda.shtml
3https://code.google.com/p/word2vec/
4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(a) WebKB

(b) Reuters-21578

(c) 20 Newsgroups

Figure 4.2: Classification accuracy over number of training samples.
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Accuracy over number of training samples

We first show the classification accuracy when varying the number of training

samples. Here we randomly chose five sets of training samples, and used the

remaining samples for each of the training sets as the test set. We removed words

that occurred in less than 1% of the training documents. Below, we refer to the

percentage as a word occurrence threshold. As shown in Figure 4.2, latent SMM

outperformed the other methods for each of the numbers of training samples in

the WebKB and Reuters-21578 datasets. For the 20 Newsgroups dataset, the

accuracies of latent SMM, MedLDA and word2vec+SMM were proximate and

better than those of SVD+SMM and SVMs.

The performance of SVD+SMM changed depending on the datasets: while

SVD+SMM was the second best method with the Reuters-21578, it placed fourth

with the other datasets. This result indicates that the usefulness of the low

rank representations by SVD for classification depends on the properties of the

dataset. The high classification performance of latent SMM for all of the datasets

demonstrates the effectiveness of learning the latent word representations.

Robustness over latent dimensionality

Next we confirm the robustness of the latent SMM over the latent dimensional-

ity. For this experiment, we changed the latent dimensionality of the latent SMM,

MedLDA and SVD+SMM within {2, 4, · · · , 12}. Figure 4.3 shows the accuracy

when varying the latent dimensionality. Here the number of training samples in

each dataset was 600, and the word occurrence threshold was 1%. For all the

latent dimensionality, the accuracy of the latent SMM was consistently better

than the other methods. Moreover, even with two-dimensional latent vectors,

the latent SMM achieved high classification performance. On the other hand,

MedLDA and SVD+SMM often could not display their own abilities when the

latent dimensionality was low. One of the reasons why latent SMM with a very

low latent dimensionality q achieves a good performance is that it can use q|di|
parameters to classify the ith document, while MedLDA uses only q parameters.

Since the latent word representation used in SVD+SMM is not optimized for the

given classification problem, it does not contain useful features for classification,

especially when the latent dimensionality is low.
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(a) WebKB

(b) Reuters-21578

(c) 20 Newsgroups

Figure 4.3: Classification accuracy over the latent dimensionality.
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Figure 4.4: Classification accuracy on WebKB when varying word occurrence

threshold.

Accuracy over word occurrence threshold

In the above experiments, we omit words whose occurrence accounts for less

than 1% of the training document. By reducing the threshold, low frequency

words become included in the training documents. This might be a difficult

situation for latent SMM and SVD+SMM because they cannot observe enough

training data to estimate their own latent word vectors. On the other hand,

it would be an advantageous situation for SVMs using BoW features because

they can use low frequency words that are useful for classification to compute

their kernel values. Figure 4.4 shows the classification accuracy on WebKB when

varying the word occurrence threshold within {0.4, 0.6, 0.8, 1.0}. The performance

of latent SMM did not change when the thresholds were varied, and was better

than the other methods in spite of the difficult situation.

Parameter sensitivity

Figure 4.5 shows how the performance of latent SMM changes against ℓ2 regu-

larizer parameter ρ and C on a Reuters-21578 dataset with 1,000 training samples.

Here the latent dimensionality of latent SMM was fixed at q = 2 to eliminate the
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(a) WebKB

(b) Reuters-21578

(c) 20 Newsgroups

Figure 4.5: Hyper-parameter sensitivity for accuracy.
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project course faculty student

Figure 4.6: Distributions of latent vectors for words appearing in documents of

each class on WebKB.

effect of q. The performance is insensitive to ρ except when C is too small. More-

over, we can see that the performance is improved by increasing the C value. In

general, the performance of SVM-based methods is very sensitive to C and ker-

nel parameters [7]. Since kernel parameters θ in latent SMM are estimated along

with latent vectors X, latent SMM can avoid the problem of sensitivity for the

kernel parameters. In addition, Figure 4.3 has shown that latent SMM is robust

over the latent dimensionality. Thus, latent SMM can achieve high classification

accuracy by focusing only on tuning the best C, and experimentally the best C

exhibits a large value, e.g., C ≥ 25.

Visualization of classes

In the above experiments, we have shown that latent SMM can achieve high

classification accuracy with low-dimensional latent vectors. By using two- or

three-dimensional latent vectors in latent SMM, and visualizing them, we can

understand the relationships between classes. Figure 4.6 shows the distributions

of latent vectors for words appearing in documents of each class. Each class has its

own characteristic distribution that is different from those of other classes. This

result shows that latent SMM can extract the difference between the distributions

of the classes. For example, the distribution of ‘course’ is separated from those

of the other classes, which indicates that documents categorized in ‘course’ share

few words with documents categorized in other classes. On the other hand, the

latent words used in the ‘project’ class are widely distributed, and its distribution

overlaps those of the ‘faculty’ and ‘student’ classes. This would be because faculty

and students work jointly on projects, and words in both ‘faculty’ and ‘student’
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appear simultaneously in ‘project’ documents.
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Visualization of words

In addition to the visualization of classes, latent SMM can visualize words

using two- or three-dimensional latent vectors. Unlike unsupervised visualization

methods for documents, e.g., [20], latent SMM can gather characteristic words of

each class in a region. Figure 4.7 shows the visualization result of words on the

WebKB dataset. Here we used the same learning result as that used in Figure 4.6.

As shown in the complete view, we can see that highly-frequent words in each

class tend to gather in a different region. On the right side of this figure, four

regions from the complete view are displayed in closeup. Figures (a), (b) and

(c) include words indicating ‘course’, ‘faculty’ and ‘student’ classes, respectively.

For example, figure (a) includes ‘exercise’, ’examine’ and ‘quiz’ which indicate

examinations in lectures. Figure (d) includes words of various classes, although

the ‘project’ class dominates the region as shown in Figure 4.6. This means

that words appearing in the ‘project’ class are related to the other classes or are

general words, e.g., ‘occur’ and ‘differ’.

4.6 Summary

In this chapter, we have attempted to apply LDK to BoW data classification.

In particular, we have proposed latent support measure machines (latent SMMs),

which are kernel-based discriminative learning methods effective for BoW data.

Latent SMMs adopt the data representation by LDK, that is, latent SMMs repre-

sent each feature as a latent vector, and each datum to be classified as a distribu-

tion of the latent vectors for features appearing in the datum. Then, latent SMMs

find a separating hyperplane that maximizes the margins between distributions

of different classes while estimating the latent vectors to improve the classifica-

tion performance. The experimental results can be summarized as follows: First,

latent SMMs have achieved state-of-the-art classification accuracy for BoW data.

Second, we have shown experimentally that the performance of latent SMMs is

robust as regards its own hyper-parameters. Third, since latent SMMs can repre-

sent each feature (word in this case) as a two- or three- dimensional latent vector,

we have shown that latent SMMs are useful for understanding the relationships

between classes and between words by visualizing the latent vectors.
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Chapter 5
Regression

5.1 Introduction

In the previous chapter, we have present a non-linear classifier based on LDK. In

machine learning, another fundamental problem is regression, which is a problem

in which predicts a real value from an input datum. Figure 5.1 shows the training

and test processes in regression. Regression is almost the same as classification,

but because the target value is real-valued, a regression function f to be learned

also outputs a real value, although the function for classification outputs a class

label.

In this chapter, we consider performing prediction using a function generated

by Gaussian processes (GPs). This approach is called GP regression, which is

a widely used method for regression problems in various domains, e.g. natural

language processing [8], time series analysis [41], computer vision [26] and data

mining [30].

In GP regression, the prediction function f is modeled such that two correlated

inputs have correlated outputs. To describe the idea, let us consider a standard

linear regression f(v) = w⊤ϕ(v) where v is an input vector and w is a weight

vector, and output y is given by y = f(v) + ϵ where ϵ is a noise term. For

convenience, we define y = [y1, y2, · · · , yn]⊤ as a vector of n outputs. Here,

we put an assumption that w is generated from a Gaussian distribution with

zero-mean and precision α, i.e., N (w|0, α−1I). Note that, since y is computed by

linear summation of the weights, y is also generated from a Gaussian distribution.

Then, with the mean and the covariance of the output vector y, E[y] and cov[y],



Figure 5.1: Training and test processes in regression.

the following results can be derived:

E[y] = 0, (5.1)

cov[y] =
1

α
Φ⊤Φ, (5.2)

where, Φ is a feature matrix whose column corresponds to an input. Thus,

under this assumption, the covariance (i.e., correlation) of outputs is completely

determined by the covariance of inputs. In fact, since this assumption is identical

to that of GPs, the form of regression function f in GP regression is determined

by the covariance of the inputs.

Since each element of covariance matrixΦ⊤Φ is calculated by the inner-product

between two inputs, a kernel function can be used instead of the inner-product.

Thus, as with latent SMMs presented in Chapter 4, it is expected that the pre-

diction performance of regression can be improved by applying LDK to the GP

regression.

In this chapter, we propose a Gaussian process latent variable set model (GP-

LVSM), which is a non-linear regression model effective for BoW data. Figure 5.2

illustrates GP-LVSM. GP-LVSM adopts the representation for BoW data based

on LDK. That is, GP-LVSM assumes that a latent vector is associated with each

feature, and each input datum is represented as a distribution of the latent vectors

for features appearing in the datum. Then, GP-LVSM generates a regression

function from a Gaussian process with the covariance structures calculated by
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the similarity between input data based on LDK. The learning of GP-LVSM

is based on maximizing a posterior (MAP) estimation, which is performed by

updating the latent vectors and other kernel parameters.

In the experiments, we demonstrate the quantitative and qualitative effective-

ness of GP-LVSM on 25 item review datasets. First, we show that GP-LVSM out-

performs standard non-linear and linear regression methods in rating prediction.

Then, we show that the performance of GP-LVSM is robust for the dimensional-

ity of the latent vectors for features, and we can obtain vector representations for

features on a quite low-dimensional space while achieving high prediction perfor-

mance. Finally, we show that GP-LVSM is also useful for visualizing words.

GP-LVSM provides a general framework of solving regression problems for BoW

data. Thus, the idea of GP-LVSM can be applied to various machine learning

problems, which have been solved based on GP regression such as multi-task

learning [4] and active learning [25].

The rest of this chapter is organized as follows. In Section 5.2, we review models

and techniques related to GP-LVSM. In Section 5.3, we explain the details of

GP-LVSM. In Section 5.4, we show the effectiveness and the properties of GP-

LVSM experimentally. Finally, we summarize this chapter with future work in

Section 5.6.

5.2 Related Work

Topic models such as latent Dirichlet allocation (LDA) [3] finds latent topic

structures from BoW data. By learning the LDA, we obtain a low-dimensional

and dense vector representation for each document. Supervised topic model [2]

is a topic model of predicting target variables from documents, and uses the low-

dimensional vectors for documents as features for prediction. We note that there

are mainly two differences between GP-LVSM and the supervised topic model,

which would show that GP-LVSM is better than the supervised topic model. The

first one is that GP-LVSM performs non-linear prediction, while the supervised

topic model is linear prediction. The second one is that GP-LVSM uses V q

parameters to represent a document, while the supervised topic model only uses

K parameters, where V is the number of words in the document, q is the latent

dimensionality for words and K is the number of topics. Generally, because of
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Figure 5.2: Framework of GP-LVSM. Each word is represented as a latent vec-

tor denoted by ‘×’ in the latent space. The distributions of the documents are

mapped into a reproducing kernel Hilbert space (RKHS). The target variables are

expressed by a non-linear regression function generated from a Gaussian process.

V q > K, GP-LVSM can capture the characteristic of the document in more detail

than the supervised topic model.

GP-LVSM is related to but different from the Gaussian process latent variable

model (GP-LVM), which is used for dimension reduction [31] and matrix factor-

ization [32]. Given BoW data, the GP-LVM learns a single latent vector for each

datum. Since the GP-LVM cannot obtain the latent vector of a new datum, we

cannot use it as a regression method. On the other hand, since GP-LVSM learns

a latent vector for each feature, we can predict the target variable of a new datum

by using the representation of the datum calculated from the latent vectors for

features.

5.3 Gaussian Process Latent Variable Set Model

In this section, we define the proposed model, the Gaussian Process Latent

Variable Set Model (GP-LVSM), in detail. Then, we explain how GP-LVSM

is learned, and when a new input is given, how GP-LVSM predicts the target
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variable of the input. For intuitive explanation, in this section too, we refer to

each datum as a document, and each feature as a word, respectively.

5.3.1 Model

Suppose that we are given a set of n training data D = {(Di, yi)}ni=1, where Di

is a set of words appearing in the ith document and yi ∈ R is its target variable.

Here, Di is bag-of-words with vocabulary set V .
With GP-LVSM, each word v ∈ V is represented by a q-dimensional latent

vector xv ∈ Rq, and the ith document is represented as a multiset of latent vectors

for words appearing in the document Xi = {xv}v∈Di
. Then, using Eq. (3.1), we

can obtain the kernel mean estimator corresponding to the ith document from

Xi by m(Xi) =
1

|Di|
∑

v∈Di
k(·,xv).

GP-LVSM assumes the following regression model with Gaussian noise for a

document and target pair (Di, yi):

f(Xi) = w⊤m(Xi), yi = f(Xi) + ϵ, (5.3)

wherew is a weight vector of the regression and ϵ is a noise drawn from a Gaussian

distribution with zero mean and precision parameter β, i.e., ϵ ∼ N (0, β−1).

We consider the probabilistic model for Eq. (5.3). Given a set of latent vectors

X = {xv}v∈V , weight vector w, and a set of documents D = {Di}ni=1, the likeli-

hood of target variables y = [y1, y2, · · · , yn]⊤ is given by the following Gaussian

distribution:

p(y|w,X,D, β, γ) =
n∏

i=1

1√
2πβ−1

exp

(
−β

2
(yi − f(Xi))

2

)
, (5.4)

where γ is a parameter of embedding kernel k. We analytically marginalize out

weight vector w by assuming the following Gaussian prior distribution with zero

mean and precision parameter α:

p(w|α) = 1√
2πα−1

exp
(
−α

2
w⊤w

)
. (5.5)

By doing the marginalization, we do not need to explore the optimal w in a

potentially infinite dimensional space. The marginal likelihood of target variables

y is also a Gaussian distribution, which can be obtained analytically because
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likelihood Eq. (5.4) and prior Eq. (5.5) are both Gaussian distributions. As a

result, the marginal likelihood is given by

p(y|X,D, α, β, γ) =

∫
p(y|w,X,D, β)p(w|α)dw

= p(y|0, α−1MM⊤ + β−1I), (5.6)

where M = [m(X1),m(X2), · · · ,m(Xn)]
⊤. The mean and the covariance are

derived by using E[y] = ME[w] = 0 and E[yy⊤] = ME[ww⊤]M⊤ = α−1MM⊤,

respectively.

The (i, j) element of MM⊤ is inner product ⟨m(Xi),m(Xj)⟩Hk
of the kernel

mean estimators for ith and jth documents on RKHS Hk specified by embedding

kernel k. The value of the inner product is the similarity between their documents,

which is calculated by one of the kernels introduced in Section 3.5. For example,

when one uses linear level-2 kernel, the inner-product is given by

⟨m(Xi),m(Xj)⟩Hk
=

⟨
1

|Di|
∑
s∈Di

k(·,xs),
1

|Dj|
∑
t∈Dj

k(·,xt)

⟩
Hk

=
1

|Di||Dj|
∑
s∈Di

∑
t∈Dj

k(xs,xt). (5.7)

Using the inner product, we define kernels between documents. For each pair of

document indexes (i, j), the kernel value between their documents is calculated

as follows:

Kij = α−1⟨m(Xi),m(Xj)⟩Hk
+ β−1δij, (5.8)

where δij is a function that returns 1 if i is equal to j and 0 otherwise. By defining

K as a Gram matrix such that ith row and jth column is Kij, marginal likelihood

Eq. (5.6) can be rewritten as the following Gaussian distribution with zero mean

and covariance K.

p(y|X,D, α, β, γ) =
1

(
√
2π)n

√
detK

exp

(
−1

2
y⊤K−1y

)
. (5.9)

5.3.2 Parameter Estimation

We estimate the parameters of GP-LVSM, latent vectors X, precision param-

eters α and β, and kernel parameter γ.
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For latent vectors X, we place a Gaussian prior with zero mean and precision

parameter ρ: p(X|ρ) ∝
∏

v∈V exp(−
ρ
2
||xv||22). Then, the parameter estimation is

performed by maximizing the following logarithm of the posterior of the param-

eters:

L(Θ) = log p(y|X,D, α, β, γ) + log p(X|ρ) (5.10)

∝ −1

2
y⊤K−1y − 1

2
log detK− ρ

2

∑
v∈V

||xv||22,

where, Θ = {X, α, β, γ} is a set of parameters to be estimated.

To maximize Eq. (5.10), we use the quasi-Newton method, which is a gradient-

based optimization method [36]. For each word v ∈ V , the gradient with respect

to xv can be calculated by

∂L(Θ)

∂xv

=
n∑

i=1

n∑
j=1

(
∂L(Θ)

∂K

)
ij

∂Kij

∂xv

− ρxv. (5.11)

The first factor ∂L(Θ)
∂K

is the gradient of L(Θ) with respect to Gram matrix K,

which is given by

∂L(Θ)

∂K
=

1

2
K−1yy⊤K−1 − 1

2
K−1, (5.12)

where we note that the form of the gradient is independent of the choice of the

embedding kernel. The second factor in Eq. (5.11),
∂Kij

∂xv
, is the gradient of the

kernel with respect to xv, which varies by the choice of kernels in LDK (see in

Section 3.6). As with the estimation of latent vectors X, α, β and γ can be

estimated using the chain rule of Eq. (5.11).

Using these gradients, we can obtain a local solution of the parameters by con-

tinuing to update the parameters in order until the improvement of Eq. (5.10) is

converged. The computational cost to calculate the gradient for each word vector

x ∈ X is O(N2W 2q), where W is the average number of words in documents.

However, when one wants to use large training data, by using stochastic gradient

descent, the computational cost can be reduced to O(W 2q).

5.3.3 Prediction

When a prediction is required, we can use the standard formula for prediction

by a Gaussian process regression [44]. Given a new document D∗ consisting of
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words in V , the predictive target variable y∗ is given by

y∗ = k⊤
∗ K

−1y, (5.13)

where k∗ is a vector whose element is a kernel value between the new document

and a training document, that is,

k∗ = [K∗1, K∗2, · · · , K∗n]
⊤ . (5.14)

Intuitively, the prediction is given by a weighted sum of training target variables

y, where the weights are calculated by kernel values between training documents.

Since GP-LVSM provides the posterior distribution of the predictive target

variable, we can calculate the variance of the predictive value, which is given by

σ2
∗ = K∗∗ − k⊤

∗ K
−1k∗. (5.15)

This variance σ2
∗ can be used for measuring the confidence of the prediction: a

smaller variance indicates a higher confidence for the prediction.

5.4 Experiments

In this section, we demonstrate the effectiveness of GP-LVSM in prediction and

visualization.

5.4.1 Datasets and settings
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Table 5.1: Dataset specifications. ntr is the number of training data, nte is the

number of test data and |V| is the maximum number of vocabularies in training

data. The number of development data is equal to ntr.

ntr nte |V|
apparel 1,000 7,064 1,449

automotive 200 324 918

baby 800 2,635 1,250

beauty 800 1,274 1,747

books 1,000 9,927 1,953

camera 1,000 5,338 1,434

cell phones & service 300 409 1,501

computer & video games 600 1,550 2,000

dvd 1,000 9,892 2,184

electronics 1,000 9,883 1,341

gourmet food 400 756 1,713

grocery 500 1,612 1,565

health & personal care 1,000 5,154 2,165

jewelry & watches 500 951 1,313

kitchen & housewares 1,000 9,855 1,161

magazines 700 2,745 1,695

music 1,000 9,870 1,716

musical instruments 100 127 542

office products 100 220 569

outdoor living 400 781 1,141

software 500 1,375 1,759

sports & outdoors 900 3,859 1,360

tools & hardware 30 49 155

toys & games 1,000 9,947 1,883

video 1,000 9,878 2,012
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For evaluation, we use 25 item review datasets obtained from Amazon.com,

where each dataset corresponds to an item category on Amazon.com. Each review

is represented with bag-of-words without short, low-frequency and stop words,

and is associated with a rating ranging from {1, 2, · · · , 5}. In our experiments,

we use the bag-of-words as input document D and the standardized value of the

rating as target variable y. Table 5.1 shows the specification of the datasets. For

each dataset, we randomly choose five sets of training, development and test data

from the whole of the dataset.

For comparison, we use four non-linear and linear regression methods: Gaussian

Process (GP) regression, Ridge [15], Lasso [52] and Elastic net [61]. With the GP

regression, we use a Gaussian RBF kernel with additive noise term as follows:

Kij = α−1 exp
(
−γ

2
||vec(Di)− vec(Dj)||22

)
+ β−1δij, (5.16)

where vec(·) is a function that returns a vector with vocabulary length, and

vth element of the vector is the frequency of the vth word in the given set.

Parameters α, β and γ are estimated so as to maximize the marginal likelihood of

the GP regression. Ridge [15], Lasso [52] and Elastic net [61] are standard linear

regression models with different regularizers. We choose the parameters for these

regularizers so as to minimize the prediction errors on development data. With

GP-LVSM, we learned the model with latent dimensionality q ∈ {1, 2, 4, 6, 8, 10}
and regularizer parameter ρ ∈ {10−2, 10−1, · · · , 102}, and chose the optimal q and

ρ so as to minimize the prediction errors on development data.

5.4.2 Prediction performance

Table 5.2 shows the prediction errors of ratings on test data. On 19 of 25

datasets, GP-LVSM outperforms the other methods. On average of the prediction

errors on all datasets, GP-LVSM is the best method. This result indicates GP-

LVSM is robust and can perform better prediction than the other methods.

Next, we investigate how the choice of latent dimensionality q and regularizer

parameter ρ of GP-LVSM affects the prediction performance. Figure 5.3 shows

the prediction errors of GP-LVSM when varying the latent dimensionality q.

Here, the regularizer parameter ρ was fixed at ρ = 10 to eliminate the effect of ρ.

As shown in the figure, even with a very small latent dimensionality, GP-LVSM

achieves low prediction error. Even though q is relatively high, the errors are
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Figure 5.3: Prediction errors of GP-LVSM when varying latent dimensionality.

The regularizer parameter is fixed at ρ = 10.

nearly unchanged compared to that of the best latent dimensionality. Thus, the

performance of GP-LVSM is robust for the dimensionality of the latent vectors

for words, and we can obtain vector representations for words on a quite low

dimensional space while achieving high prediction performance. Figure 5.4 shows

the prediction errors when varying the regularizer parameter ρ. As opposed to the

latent dimensionality, the predictive performance is sensitive to the choice of ρ.

These results indicate that GP-LVSM can archive the high predictive performance

by focusing only on tuning the best ρ.

5.4.3 Visualization

Finally, we show that GP-LVSM can visualize words using two- or three-

dimensional latent vectors for words. In our experiments, since we predict the

ratings from item reviews, it is expected that positive and negative words for the

items are separated from each other. Figure 5.5 shows the visualization result

of the latent vectors for words, which are trained on a ‘software’ dataset. Here,

the regularizer parameter is fixed at ρ = 0.1. For understandability, we selected

positive and negative words based on Loughran and McDonald Financial Senti-
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Figure 5.4: Prediction errors of GP-LVSM when varying regularizer parameter.

The latent dimensionality is fixed at q = 2.

ment Dictionaries1, and visualized their latent vectors with blue and red colors.

As shown in the figure, positive and negative words tend to gather in different

regions. Therefore, ‘great’ and ‘cumbersome’, which are characteristic words in

positive and negative polarity are far away from each other.

5.5 Applications

Since GP-LVSM is a kind of probabilistic generative models, various extended

models can be easily constructed based on GP-LVSM. In this section, we discuss

two extended models based on GP-LVSM for (1) predicting group behaviors and

(2) constructing information diffusion models.

5.5.1 Predicting Group Behaviors

This subsection considers modeling group behaviors, and predicting unseen

ones via the model. The group behaviors can be observed in various situations.

1http://www3.nd.edu/~mcdonald/Word_Lists.html
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Figure 5.5: Visualization of latent vectors for words trained on ‘software’ dataset.

Words in blue are positive words while words in red are negative words.

For example, a movie is created by collaboration in a group of actors and cre-

ators. Then, the contents, the quality and the evaluation of the movie by users

correspond to the behaviors of the group. For another example, a scientific pa-

per is written by a research group of researchers. In this case, the contents and

the citation behaviors by the paper correspond to the behaviors of the group.

By modeling such group behaviors, we can predict the future and the unknown

group behaviors.

In this task, we are given a training data D = {(Gi,yi)}ni=1, which consists of

pairs of a set of members in the ith group Gi and its behavior vector yi ∈ RB.

Here, B is the number of behaviors. Our goal is to construct function f such

that yi ≈ f(Gi) for each i = 1, 2, · · · , n. This problem is a kind of regression

problems. Thus, GP-LVSM can be used by regarding each feature as a member,

and each datum as a group. However, since GP-LVSM is now a model to predict

a single target value for each datum, we need to extend it to treat multiple target

variables.
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We define behavior matrixY = [y1,y2, · · · ,yn]
⊤ where the ith row corresponds

to the ith behavior vector yi, while the bth column corresponds to the groups’

own values for the bth behavior. Then, according to Eq. (5.9), the likelihood for

multiple target variables in GP-LVSM can be rewritten as

p(Y|X,D, α, β, γ) =
B∏
b=1

1

(
√
2π)n

√
detK

exp

(
−1

2
Y⊤

:,bK
−1Y:,b

)
, (5.17)

where, Y:,b indicates the bth column of Y. Coupled with that, the objective

function, the logarithm of posterior Eq (5.10), is changed as follows:

L(Θ) = log p(Y|X,D, α, β, γ) + log p(X|ρ) (5.18)

∝ −1

2

B∑
b=1

Y⊤
:,bK

−1Y:,b −
1

2
log detK− ρ

2

∑
v∈V

||xv||22.

Parameter estimation and prediction in the extended GP-LVSM can be performed

as with those of the ogirinal GP-LVSM.

5.5.2 Constructing Information Diffusion Models

An information diffusion model is a model to capture how information diffuses

on a social network. We have developed a latent variable model for information

diffusion [56], in which each node in the social network has a latent vector, and

diffusion probability between two nodes is determined by the inner-product be-

tween the latent vectors of the two nodes. Since the model is a linear model, i.e.,

the model only captures linear relationships between nodes, it is expected that

a more accomplished information diffusion model will be developed by applying

LDK for capturing non-linear relationships between nodes.

5.6 Summary

In this chapter, we have proposed a non-linear regression model for BoW data,

which we call it Gaussian process latent variable set model (GP-LVSM). GP-

LVSM performs prediction using a function generated from Gaussian processes

(GPs). Since the form of the function is determined kernel values between in-

puts, we have used LDK in Gaussian processes to generate the function. In
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our experiments, we have shown that GP-LVSM outperforms conventional linear

and non-linear regression methods on the rating prediction using 25 item review

datasets, and is useful for visualizing features (words in this case) by using the

learned latent vectors for the features. Through Chapter 4 and this chapter, we

have shown that LDK works well on the existing algorithms in kernel methods.
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Chapter 6
Cross-Domain Matching

6.1 Introduction

The discovery of matched instances in different domains is an important task,

which appears in natural language processing, information retrieval and data min-

ing tasks such as finding the alignment of cross-lingual sentences [59], attaching

tags to images [12] or text documents [21], and matching user identifications in

different databases [34].

When given an instance in a source domain, our goal is to find the instance

in a target domain that is the most closely related to the given instance. In

this chapter, we focus on a supervised setting, where correspondence informa-

tion between some instances in different domains is given. To find matching in a

single domain, e.g., find documents relevant to an input document, a similarity

(or distance) measure between instances can be used. On the other hand, when

trying to find matching between instances in different domains, we cannot di-

rectly measure the distances since they consist of different types of features. For

example, when matching documents in different languages, since the documents

have different vocabularies we cannot directly measure the similarities between

documents across different languages without dictionaries.

One solution is to map instances in both the source and target domains into

a shared latent space. One such method is canonical correspondence analysis

(CCA) [16], which maps instances into a latent space by linear projection to

maximize the correlation between paired instances in the latent space. However,

in practice, CCA cannot solve non-linear relationship problems due to its linear-



Figure 6.1: An example of the proposed method used on a multilingual docu-

ment matching task. Correspondences between instances in source (English) and

target (Japanese) domains are observed. The proposed method assumes that

each feature (vocabulary term) has a latent vector in a shared latent space, and

each instance is represented as a distribution of the latent vectors of the features

associated with the instance. Then, the distribution is mapped as an element in

a reproducing kernel Hilbert space (RKHS) based on the kernel embeddings of

distributions. The latent vectors are estimated so that the paired instances are

embedded closer together in the RKHS.

ity. To find non-linear correspondence, kernel CCA [1] can be used. It has been

reported that kernel CCA performs well as regards document/sentence align-

ment between different languages [54, 35], when searching for images from text

queries [43] and when matching 2D-3D face images [24]. Note that the perfor-

mance of kernel CCA depends on how appropriately we define the kernel function

for measuring the similarity between instances within a domain. Since the ex-

isting inner-product kernels have the major weakness as described in Chapter 1,

there are cases where kernel CCA does not work better than one expects.

In this chapter, we propose an entirely new kernel-based cross-domain matching

method. The proposed method employs LDK to measure the distance between
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instances in different domains, although latent SMM in Chapter 4 and GP-LVSM

in Chapter 5 do that to measure the similarity within a single domain. In par-

ticular, it assumes that each feature in source and target domains is associated

with a latent vector in a shared latent space. Since all the features are mapped

into the latent space, it can measure the similarity between features in different

domains. Then, each instance is represented as a set of the latent vectors of fea-

tures that are contained in the instance, and it is embedded into a reproducing

kernel Hilbert space (RKHS) by the framework of the kernel embeddings of dis-

tributions. The proposed method assumes that two instances are matched when

their distance in the RKHS is the smallest in all possible pairs of instances. Here,

the distance is calculated by the distance measurement based on LDK presented

in Section 3.3. Thus, in the learning of the proposed method, the latent vectors

for features are estimated by minimizing the distances between paired instances

while keeping unpaired ones apart. Then, the proposed method predicts the

matching of test instances by measuring the distance according to the learned

latent vectors. Figure 6.1 shows an example of the proposed method used on a

multilingual document matching task.

In our experiments, we demonstrate the effectiveness of our proposed method

in tasks that involve finding the correspondence between multi-lingual Wikipedia

articles, between documents and tags, and between images and tags, by compar-

ison with existing linear and non-linear matching methods.

The rest of this chapter is organized as follows. Section 6.3 describes the

model design, learning and prediction methods of the proposed method. Sec-

tion 6.4 shows the effectiveness of the proposed method experimentally. Finally,

Section 6.5 summarize this chapter.

6.2 Related Work

In this section, we review canonical correlation analysis (CCA) [16], kernel

CCA [1] and bilingual topic models [19, 59] that can be used for BoW data, and

discuss the difference between the proposed method and these methods.

CCA learns projection vectors so as to maximize the correlation of paired

instances in a latent space, and then, by measuring the distance between test

instances in the latent space, it can find an unseen matching.
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Suppose that we are given two observations X ∈ Rn×u and Y ∈ Rn×v from

different domains. Here, there is a one-to-one matching between the ith rows of

X and Y for each i = 1, 2, · · · , n. Then, CCA finds an optimal projection vectors

a ∈ Ru,b ∈ Rv by solving the following problem with a constraint:

max
a,b

a⊤X⊤Yb s.t. a⊤X⊤Xa = b⊤Y⊤Yb = 1. (6.1)

This corresponds to mapping two instances X and Y into a one-dimensional

shared latent space. Mapping the instances into a multidimensional shared latent

space can be achieved by repeatedly solving Eq. (6.1) such that the correlation

between new projection vectors and previously obtained ones is zero. At test

phase, matching can be predicted by (1) mapping test instances using learned

projection vectors a and b into the shared latent space and (2) measuring the

distance between the test instance in the shared latent space.

Kernel CCA is a kernel extension version of CCA, and can perform non-linear

cross-domain matching. Instead of X and Y, kernel CCA uses Gram matrices K

and L with respect to X and Y, respectively. Here, (i, j) elements of K and L are

kernel values between the ith and jth rows of X and Y, respectively. Kernel CCA

learns an optimal projection vectors a and b by solving the following problem:

max
a,b

a⊤KLb s.t. a⊤KKa = b⊤LLb = 1. (6.2)

As with CCA, multidimensional extension and finding matching can be per-

formed.

When we want to match cross-domain instances represented by bag-of-words

such as documents, bilingual topic models [19, 59] can also be used. Bilingual

topic models assume that words appearing in paired bilingual documents are gen-

erated from a shared topic distribution. By learning the model from a bilingual

document collection, the topic distribution of each document can be obtained.

Then, at test phase, one can find matching by searching pairs of bilingual docu-

ments that have similar topic distributions.

The proposed method differs from CCA, kernel CCA and bilingual topic models

in two ways. The first difference is that the proposed method is a discriminative

matching method, i.e., its objective function is designed to minimize the distances

between paired instances while keeping unpaired ones apart. The second one is

that the proposed method can use all the information about the latent vectors of

features by employing LDK, although the existing methods use the mean of the

latent vectors only.
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6.3 Proposed Method

Suppose that we are given a training set consisting of n instance pairs O =

{(Ds
i , D

t
i)}ni=1, where Ds

i is the ith instance in a source domain and Dt
i is the

ith instance in a target domain. These instances Ds
i and Dt

i are represented

as multisets of features, i.e., BoW included in source feature set F s and target

feature set F t, respectively. The goal of our task is to determine the unseen

relationship between instances across source and target domains in test data.

The number of instances in the source domain may be different to that in the

target domain.

6.3.1 Kernel Embeddings of Distributions in a Shared La-

tent Space

As described in Section 6.1, the difficulty as regards finding cross-domain in-

stance matching is that the similarity between instances across source and target

domains cannot be directly measured. We have also stated that although we can

find a latent space that can measure the similarity by using kernel CCA, standard

kernel functions, e.g., a Gaussian RBF kernel, cannot reflect the co-occurrence

of different but related features in a kernel calculation between instances. To

overcome them, we propose to employ LDK for finding cross-domain instance

matching. The proposed method assumes that each feature in a source feature

set, f ∈ F s, has a q-dimensional latent vector xf ∈ Rq in a shared space. Like-

wise, each feature in target feature set, g ∈ F t, has a q-dimensional latent vector

yg ∈ Rq in the shared space. Since all the features in the source and target

domains are mapped into a common shared space, the proposed method can cap-

ture the relationship between features both in each domain and across different

domains. We define the sets of latent vectors in the source and target domains

as X = {xf}f∈Fs and Y = {yg}g∈Ft , respectively.

The proposed method assumes that each instance is represented by a distri-

bution (or set) of the latent vectors of the features that are contained in the

instance. The ith instance in the source domain Ds
i is represented by a set of

latent vectors Xi = {xf}f∈Ds
i
and the jth instance in the target domain Dt

j is

represented by a set of latent vectors Yj = {yg}g∈Dt
j
.
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In the proposed method, we employ the framework of kernel embeddings of

distributions to represent the distributions of the latent vectors for the instances.

The kernel mean estimators for the ith source and the jth target domain instances

are given by

m(Xi) =
1

|Xi|
∑
f∈Ds

i

k(·,xf ), m(Yj) =
1

|Yj|
∑
g∈Dt

j

k(·,yg). (6.3)

Then, the distance between the distributions of the latent vectors are measured

by using Eq. (3.4), that is, the distance between the ith source and the jth target

domain instances is given by

d(Xi,Yj) = ||m(Xi)−m(Yj)||2Hk
. (6.4)

6.3.2 Likelihood and Posterior

The proposed method assumes that paired instances have similar distributions

of latent vectors and unpaired instances have different distributions. In accor-

dance with the assumption, we define the likelihood of the relationship between

the ith source domain instance and the jth target domain instance as follows:

p(Dt
j|Ds

i ,X,Y, θ) =
exp (−d(Xi,Yj))∑N

j′=1 exp (−d(Xi,Yj′))
, (6.5)

where, θ is a set of hyper-parameters for the embedding kernel used in Eq. (6.3).

Eq. (6.5) is in fact the conditional probability with which the jth target domain

instance is chosen given the ith source domain instance. This formulation is more

efficient than we consider a bidirectional matching. Intuitively, when distribution

Xi is more similar toYj than other distributions {Yj′ | j′ ̸= j}nj′=1, the probability

has a higher value.

We define the posterior distribution of latent vectors X and Y. By placing

Gaussian priors with precision parameter ρ > 0 for X and Y, that is,

p(X|ρ) ∝
∏
x∈X

exp
(
−ρ

2
||x||22

)
, p(Y|ρ) ∝

∏
y∈Y

exp
(
−ρ

2
||y||22

)
, (6.6)

the posterior distribution is given by

p(X,Y|O,Θ) =
1

Z
p(X|ρ)p(Y|ρ)

n∏
i=1

p(Dt
i |Ds

i ,X,Y, θ), (6.7)

64



where, O = {(Ds
i , D

t
i)}ni=1 is a training set of n instance pairs, Θ = {θ, ρ} is a set

of hyper-parameters and Z =
∫ ∫

p(X,Y,O,Θ)dXdY is a marginal probability,

which is constant with respect to X and Y.

6.3.3 Parameter Estimation

We estimate latent vectors X and Y by maximizing the posterior probability

of the latent vectors given by Eq. (6.7). Instead of Eq. (6.7), we consider the

following negative logarithm of the posterior probability,

L(X,Y) =
n∑

i=1

{
d(Xi,Yi) + log

n∑
j=1

exp (−d(Xi,Yj))

}
+
ρ

2

(∑
x∈X

||x||22 +
∑
y∈Y

||y||22

)
,

(6.8)

and minimize it with respect to the latent vectors. Here, maximizing Eq. (6.7)

is equivalent to minimizing Eq. (6.8). To minimize Eq. (6.8) with respect to X

and Y, we perform a gradient-based optimization. The gradient of Eq. (6.8) with

respect to each xf ∈ X is given by

∂L(X,Y)

∂xf

=
∑

i:f∈Ds
i

{
∂d(Xi,Yi)

∂xf

− 1

ci

n∑
j=1

eij
∂d(Xi,Yj)

∂xf

}
+ ρxf (6.9)

where,

eij = exp (−d(Xi,Yj)) , ci =
n∑

j=1

exp (−d(Xi,Yj)) , (6.10)

and the gradient of the distance between distributions Xi and Yj with respect

to xf is given by

∂d(Xi,Yj)

∂xf

=
1

|Xi|2
∑
l∈Ds

i

∑
l′∈Ds

i

∂k(xl,xl′)

∂xf

− 2

|Xi||Yj|
∑
l∈Ds

i

∑
g∈Dt

i

∂k(xl,yg)

∂xf

. (6.11)

When the distribution Xi does not include the latent vector xf , the gradient

consistently becomes a zero vector.
∂k(xl,xl′ )

∂xf
and ∂k(xl,yg)

∂xf
are the gradients of

an embedding kernel k. This depends on the choice of the embedding kernel.

For example, when the embedding kernel is Gaussian RBF kernel kRBF(xl,yg) =

exp
(
−γ

2
||xl − yg||2

)
, the gradient is given by

∂k(xl,yg)

∂xf

= kRBF(xl,yg)γ(yg − xl). (6.12)
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Similarly, The gradient of Eq. (6.8) with respect to each yg ∈ Y is given by

∂L(X,Y)

∂yg

=
n∑

i=1

∂d(Xi,Yi)

∂yg

− 1

ci

∑
j:g∈Dt

j

eij
∂d(Xi,Yj)

∂yg

+ ρyg, (6.13)

where, the gradient of the distance between distributions Xi and Yj with respect

to yg is given by

∂d(Xi,Yj)

∂yg

=
1

|Yj|2
∑
l∈Dt

j

∑
l′∈Dt

j

∂k(yl,yl′)

∂yg

− 2

|Xi||Yj|
∑
f∈Ds

i

∑
l∈Dt

i

∂k(xf ,yl)

∂yg

. (6.14)

Learning is performed by alternately updating X using Eq. (6.9) and updating

Y using Eq. (6.13) until the improvement in the negative log likelihood Eq. (6.8)

converges.

6.3.4 Matching Prediction

After the estimation of the latent vectors X and Y, the proposed method

can reveal the matching between test instances. The matching is found by first

measuring the distances between a given source domain instance and target do-

main instances using Eq. (6.4), and then searching for the instance pair with the

smallest distance.

6.4 Experiments

In this section, we report our experimental results for three different types

of cross-domain datasets: multi-lingual Wikipedia, document-tag and image-tag

datasets.

Setup of proposed method

Throughout these experiments, we used a Gaussian RBF kernel as an embed-

ding kernel. The hyper-parameters of the proposed method are the dimension-

ality of a shared latent space q, a regularizer parameter for latent vectors ρ and

a Gaussian RBF embedding kernel parameter γ. After we train the proposed
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method with various hyper-parameters q ∈ {8, 10, 12}, ρ ∈ {0, 10−2, 10−1} and

γ ∈ {10−1, 100, · · · , 103}, we chose the optimal hyper-parameters by using devel-

opment data. When training the proposed method, we initialized latent vectors

X and Y by applying principle component analysis (PCA) to a matrix concate-

nating two feature-frequency matrices in the source and target domains. Then,

we employed the L-BFGS method [36] with gradients given by Eqs. (6.9) (6.13)

to learn the latent vectors.

Compared methods

We compared the proposed method with the k-nearest neighbor method (KNN),

canonical correspondence analysis (CCA), kernel CCA (KCCA), bilingual latent

Dirichlet allocation (BLDA), and kernel CCA with the kernel embeddings of dis-

tributions (KED-KCCA). For a test instance in the source domain, our KNN

searches for the nearest neighbor source instances in the training data, and out-

puts a target instance in the test data, which is located close to the target in-

stances that are paired with the searched for source instances. CCA and KCCA

first learn the projection of instances into a shared latent space using training

data, and then they find matching between instances by projecting the test in-

stances into the shared latent space. KCCA used a Gaussian kernel for measuring

the similarity between instances and chose the optimal Gaussian kernel parame-

ter and regularizer parameter by using development data. With BLDA, we first

learned the same model as [19, 59] and found matching between instances in the

test data by obtaining the topic distributions of these instances from the learned

model. KED-KCCA uses the kernel embeddings of distributions described in

Section 2.2 for obtaining the kernel values between the instances. The vector rep-

resentations of features were obtained by applying singular value decomposition

(SVD) for instance-feature frequency matrices. Here, we set the dimensionality

of the vector representations to 100. Then, KED-KCCA learns kernel CCA with

the kernel values as with the above KCCA. With CCA, KCCA, BLDA and KED-

KCCA, we chose the optimal latent dimensionality (or number of topics) within

{10, 20, · · · , 100} by using development data.
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Evaluation method

Throughout the experiments, we quantitatively evaluated the matching perfor-

mance by using the precision with which the true target instance is included in

a set of R candidate instances, S(R), found by each method. More formally, the

precision is given by

Precision@R =
1

Nte

Nte∑
i=1

δ (ti ∈ Si(R)) , (6.15)

where, Nte is the number of test instances in the target domain, ti is the ith true

target instance, Si(R) is R candidate instances of the ith source instance and δ(·)
is the binary function that returns 1 if the argument is true, and 0 otherwise.
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6.4.1 Matching between Bilingual Documents

With a multi-lingual Wikipedia document dataset, we examine whether the

proposed method can find the correct matching between documents written in

different languages. The dataset includes 34,024 Wikipedia documents for each

of six languages: German (de), English (en), Finnish (fi), French (fr), Italian

(it) and Japanese (ja), and documents with the same content are aligned across

the languages. From the dataset, we create 6C2 = 15 bilingual document pairs.

We regard the first component of the pair as a source domain and the other

as a target domain. For each of the bilingual document pairs, we randomly

create 10 evaluation sets that consist of 1,000 document pairs as training data,

100 document pairs as development data and 100 document pairs as test data.

Here, each document is represented as a bag-of-words without stopwords and low

frequency words.

Figure 6.2 shows the matching precision for each of the bilingual pairs of the

Wikipedia dataset. With all the bilingual pairs, the proposed method achieves

significantly higher precision than the other methods with a wide range of R. Ta-

ble 6.1 shows examples of predicted matching with the Japanese-EnglishWikipedia

dataset. Compared with KCCA, which is the second best method, the proposed

method can find both the correct document and many related documents. For

example, in Table 6.1(a), the correct document title is “SD card”. The proposed

method outputs the SD card’s document and documents related to computer

technology such as “Intel” and “MPlayer”. This is because the proposed method

can capture the relationship between words and reflect the distance between doc-

uments across different domains by learning the latent vectors of the words.

6.4.2 Matching between Documents and Tags, and be-

tween Images and Tags

We performed experiments matching documents and tailgates, and match-

ing images and tailgates with the datasets used in [21]. When matching doc-

uments and tailgates, we use datasets obtained from two social bookmarking

sites, delicious1 and hatena2, and patent dataset. The delicious and the

hatena datasets include pairs consisting of a web page and a tag list labeled by

1https://delicious.com/
2http://b.hatena.ne.jp/
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Figure 6.3: Precision of matching prediction and its standard deviation on

delicious, hatena, patent and flickr datasets.

users, and the patent dataset includes pairs consisting of a patent description and

a tag list representing the category of the patent. Each web page and each patent

description are represented as a bag-of-words as with the experiments using the

Wikipedia dataset, and the tag list is represented as a set of tags. With the

matching of images and tag lists, we use the flickr dataset, which consists of

pairs of images and tag lists. Each image is represented as a bag-of-visual-words,

which is obtained by first extracting features using SIFT [38], and then apply-

ing K-means clustering with 200 components to the SIFT features. For all the

datasets, the numbers of training, test and development pairs are 1,000, 100 and

100, respectively.

Figure 6.3 shows the precision of the matching prediction of the proposed and

comparison methods for the delicious, hatena, patent and flickr datasets.

The precision of the comparison methods with these datasets was much the

same as the precision of random prediction. Nevertheless, the proposed method

achieved very high precision particularly for the delicious, hatena and patent

datasets. Figure 6.4 shows examples of input tag lists and the top five images

matched by the proposed method with the flickr dataset. In the examples, the

proposed method found the correct images and similar related images from given

tag lists.
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Figure 6.4: Two examples of input tag lists and the top five images matched by

the proposed method on the flickr dataset.

6.5 Summary

We have proposed a novel kernel-based method for addressing cross-domain in-

stance matching tasks for BoW data. In the proposed method, we have employed

LDK to measure the distance between instances in different domains, although

latent SMM in Chapter 4 and GP-LVSM in Chapter 5 do that in a single do-

main. Experiments on various types of cross-domain datasets confirmed that the

proposed method significantly outperforms the existing methods including kernel

CCA and topic model-based approach for cross-domain matching.
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Chapter 7
Conclusion

This thesis has proposed a general framework of kernel methods for bag-of-

words (BoW) data. This framework consists of the following two parts: (1)

defining a class of kernel functions with latent variables appropriate for BoW

data, which we call it latent distribution kernel (LDK), and (2) developing models

with LDK and their optimization methods.

In LDK, each feature has a latent vector, and each datum is represented as

a set of the latent vectors of the features associated with the datum. Here, the

latent vectors are learned according to the problem we want to solve. To represent

the set of the latent vectors for each datum, we have employed the framework of

kernel embeddings of distributions. The benefits that we employ the framework

are as follows:

• According to the latent vectors, the moment information of the distribution

that generates the latent vectors for each datum can be obtained nonpara-

metrically.

• Since the framework is based on kernel methods, the existing strong machine

learning methods such as support vector machines (SVMs) and Gaussian

processes (GPs) can be utilized.

• The problem that the inner-product kernels cannot capture the correlation

between different features in a kernel calculation can be overcome naturally.

LDK can be used by incorporating itself into the existing kernel-based algo-

rithms such as SVMs, or to develop new kernel-based algorithms. To demonstrate



the effectiveness of LDK, we have developed three methods based on LDKs for

adressing their corresponding machine learning problems: classification, regres-

sion and cross-domain matching. First, we have developed a novel non-linear

discriminative learning method for BoW data classification, which is formulated

based on SVMs. In the experiments, we have showed that the proposed method

achieves the state-of-the-art accuracy on BoW text categorization tasks. Second,

we have developed a non-linear regression method for BoW data by incorporating

LDKs into GPs. In the experiments, we have showed that the proposed method

outperforms the existing linear and non-linear regression methods on item review

score prediction. Third, we have developed a cross-domain matching method

for BoW data, in which LDKs are used for matching data in different domains.

The experimental results have showed that the proposed matching method out-

performs the existing methods on multi-lingual document, document-tag, and

image-tag matching.

7.1 Future Work

There are two future directions to advance our research.

The first direction is to make the learning of the proposed methods efficient.

Although the proposed methods based on LDK are superior to the existing ones

in terms of prediction accuracy, the time to learn the proposed methods is ba-

sically longer than the existing kernel methods. The most time-consuming part

in the learning is the calculation of the gradients with respect to the latent vec-

tors. In this thesis, we have presented straightforward implementations for the

learning, i.e., batch learning to evaluate whether the proposed methods are valid

or not. Since this thesis have showed that the proposed methods are superior

to the existing methods in terms of prediction accuracy, in future work, we will

develop faster learning methods to apply to larger datasets. In particular, two

approaches can be considered. The first approach is to use stochastic gradient de-

scent (SGD) [5]. SGD is a gradient descent optimization method for minimizing

an objective function that is written as a sum of differentiable functions. In each

iteration of SGD, parameters are updated by optimizing the objective function for

a single sample that is randomly chosen from training samples. In practice, the

SGD-based learning is more efficient in terms of time and space complexity than

a batch learning that uses the whole training samples in each iteration. Since

76



the objective functions of the proposed methods described in Chapters 4 and 5

are a sum of objective functions for two sample pairs, these methods can use the

SGD-based learning without any change of their formulation. The second one is

to use kernel approximation such as Nyström method [10] and random feature

method [42]. Kernel approximation speeds up learning by approximating a kernel

matrix, and is successfully used for SVM [58] and kernel CCA [37]. By applying

this for the proposed methods in this thesis, it is expected that their learning is

more efficient.

The second direction is to develop new methods for other machine learning

problems and applications based on LDK. LDK is a general framework for su-

pervised learning. Basically, LDK can be applied to the existing kernel-based

supervised learning methods as described in Chapter 4 and 5. Thus, we will con-

firm the effectiveness of LDK by applying to other supervised learning such as

learning to rank and structured learning. Additinally, since BoW data appears in

various tasks in computer vision and data mining, we will explore to apply LDK

in these other fields.
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