
NAIST-IS-DD1261201

Doctoral Dissertation

Performance Evaluation of a 3D-Stencil Library

for Distributed Memory Array Accelerators

Yoshikazu Inagaki

September 16, 2015

Department of Information Science

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Yoshikazu Inagaki

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Michiko Inoue (Co-supervisor)

Assistant Professor Shinya Takamaeda-Yamazaki (Co-supervisor)

Assistant Professor Tran Thi Hong (Co-supervisor)

Performance Evaluation of a 3D-Stencil Library

for Distributed Memory Array Accelerators∗

Yoshikazu Inagaki

Abstract

The Energy-aware Multi-mode Accelerator eXtension [24, 25] (EMAX) is

equipped with distributed single-port local memories and ring-formed intercon-

nections. The accelerator is designed to achieve extremely high throughput for

scientific computations, big data, and image processing as well as low-power con-

sumption. However, before mapping algorithms on the accelerator, application

developers require sufficient knowledge of the hardware organization and spe-

cially designed instructions. They also need significant effort to tune the code

for improving execution efficiency when no well-designed compiler or library is

available. A similar problem exists in EMAX. To address this problem, we focus

on library support for stencil (nearest-neighbor) computations that represent a

class of algorithms commonly used in many partial differential equation (PDE)

solvers. In this dissertation, we address the following topics: (1) system config-

uration, features, and mnemonics of EMAX; (2) instruction mapping techniques

that reduce the amount of data to be read from the main memory; (3) perfor-

mance evaluation of the library for PDE solvers. With the features of a library

that can reuse the local data across the outer loop iterations and map many

instructions by unrolling the outer loops, the amount of data to be read from

the main memory is significantly reduced to a minimum of 1/7 compared with

a hand-tuned code. In addition, the stencil library reduced the execution time

23% more than a general-purpose processor, and it was shown that EMAX and

the 3D-Stencil Library have the superior performance compared with GPGPU.

∗ Doctoral Dissertation, Department of Information Science, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1261201, September 16, 2015.

i

Keywords:

CGRA, coarse grained reconfigurable architecture, accelerator, library, stencil,

optimization

ii

Contents

1. Introduction 1

1.1 Performance enhancement of computations 1

1.2 Partial Differential Equations (PDE) 1

1.3 CGRA for Stencil Computations 2

1.4 3D-Stencil Library for EMAX . 2

1.5 Organization . 3

2. Related Work 4

2.1 CGRA for Stencil Computations 4

2.2 Linear Array Pipelined Processor (LAPP) 6

3. Stencil Computation 10

3.1 3D-Stencil Kernels . 10

4. Overview of EMAX 11

4.1 System Diagram of EMAX . 11

4.2 Interface with Host Computer . 11

4.3 EMAX mnemonics . 11

4.4 Instruction Mapping . 13

5. 3D-Stencil Library for EMAX 18

5.1 User Interface of 3D-Stencil Library 18

5.2 Structure of 3D-Stencil Library 18

5.3 Basic Instruction Mapping . 22

5.4 Packing of Instructions . 23

5.5 Evaluation of Packing . 23

5.6 Parallel Mapping in 3D-Stencil Library 24

6. Results and Analysis 30

6.1 Simulation Model for Performance Measurement 30

6.2 Evaluation of 3D-Stencil Library 33

6.3 Comparison with general-purpose processors 35

6.4 Comparison with GPGPU . 35

iii

7. Conclusion 40

Acknowledgements 41

References 42

Publications 48

iv

List of Figures

1 3D-Stencil Kernels . 6

2 The structure of LAPP . 9

3 EMAX configuration . 12

4 EMAX mnemonics . 14

5 Instruction shift by “dist” . 15

6 Source code of unsharp() . 16

7 EMAX mnemonics of unsharp() 17

8 Interface of stencil kernel . 19

9 Source Code of Stencil Computing with EMAX mnemonics [jacobi] 19

10 Source Code of Stencil Computing with EMAX mnemonics [FD6] 20

11 Structure of 3D-Stencil Library 21

12 Divided 3D-Stencil space . 22

13 Basic instruction mapping . 26

14 Parallel mapping . 27

15 Data transmission to LMM on stencil computing 28

16 Instruction mapping of stencil [degree = 1] 29

17 Execution sequence of EMAX . 32

18 Execution time of 3D-Library [degree=1] 34

19 Execution time of 3D-Library [degree=3] 34

20 Comparison of execution between CPUs and EMAX 36

21 3D stencil space divided according to number of threads 37

22 Execution time of GPGPU [degree=1] 38

23 Execution time of GPGPU [degree=3] 38

24 Comparison of execution between GPGPU and EMAX 39

List of Tables

1 Simulation parameters . 30

2 General-purpose processors for comparison 35

3 Specification of GPGPU . 37

v

1. Introduction

1.1 Performance enhancement of computations

To speed up the scientific and technological computations required in such fields as

image processing and 3-dimensional simulation, many studies and developments

have been reported from the views of hardware and software. From the view of the

former especially in the high performance computations (HPC) field, computer

systems have employed high-performance processors equipped with SIMD units,

such as SPARC64 with HPC-ACE [7], Intel with SSE/AVX extensions [3], and

ARM with Neon extensions [4], or such general-purpose accelerators as GPGPU

[6, 9] and Xeon Phi [8]. Recently, the continuous performance improvements by

advancing both the on-die transistor density and the switching frequency have

been facing an increasing challenge from the power constraints, which is also

known as the utilization wall. Therefore, the computing industry has shifted

from this exponential scaling in the clock frequency toward chip multiprocessors

(CMPs) in order to better trade-off among performance, energy efficiency and

reliability. Other than the traditional CMP architecture such as many-core gen-

eral platforms [40], coprocessors including GPGPU and Xeon Phi have also gained

their positions of importance in HPC field for their high peak GFlops density and

state-of-art ability of managing thread level parallelism [41, 42, 43]. The single

instruction multiple threads (SIMT) in GPGPU and SIMD targeted vectorization

in Xeon Phi [44] have been popularly used to provide a vector-like processing to

accelerate high performance computations. Other than the computation itself,

the memory characteristics in HPC programs should also be well taken care of,

as it usually defines the interleaved thread division boundaries, and the physical

allocation of the divided data sets, especially for the memory bound applications.

A special class of algorithms to access nearest neighbor data, which is known as

stencil computation [39, 46, 45, 16], has been recently gaining more importance.

1.2 Partial Differential Equations (PDE)

In general, SPEC [1] and NPB [2] are widely used to represent the performance

of computer systems. However, in the HPC field, the importance is growing

1

of measuring the performance obtained by several standard partial differential

equations (PDE) [11]. The PDE solver’s kernel code, which is obtained by some

finite differential method, is called stencil computation because of the memory

access pattern that forms predefined stencils across each dimension of the data

array. Since stencil computation fundamentally has both spatial and temporal

localities, the performance depends significantly on the quality of the instruction

scheduling where the size of the data does not fit in the cache memories. However,

it is difficult to schedule complicated patterns in the memory access so that

traditional cache-based multi-core systems can avoid the contentions of cache

lines. To address this problem, optimization schemes have been proposed for

parallel resource allocation, such as data reuse [12] and a domain-specific language

compiler for stencil computing [13, 14, 16].

1.3 CGRA for Stencil Computations

In contrast to previous studies, we proposed for stencil computations Coarse

Grained Reconfigurable Architectures (CGRAs) [20, 21, 24, 25, 22, 23, 26], which

have many processing elements, local memories, and inter-connection networks

so that many operations can be executed simultaneously on several data streams.

We also focused on how to design general-purpose stencil libraries on plural spe-

cific CGRAs. The optimization scheme of stencil libraries for CGRA depends

closely on the stencil pattern and the sequence of calculations, the frequency and

width of the memory system, and the frequency of PEs.

1.4 3D-Stencil Library for EMAX

In this dissertation, we propose a 3D-Stencil Library that can receive input pa-

rameters, such as the number of CGRA columns and the degree of stencil calcu-

lation, and generate optimized code. For quantitative evaluation, we assume a

specific CGRA that we call the Energy-aware Multi-mode Accelerator eXtension

(EMAX), which is equipped with distributed single-port local memories and a 2-

dimensional interconnection network. To understand easily such a stencil library,

it is necessary to grasp the inter-PE structure of CGRA, including columns (hor-

izontal connections), rows (vertical connections), and memory hierarchy. The

2

EMAX structure will be described below.

1.5 Organization

The rest of this dissertation is organized as follows:

• Section 2 describes the related works about CGRA.

• In section 3, an overview of stencil computing is given.

• In section 4, some key features of EMAX are shown.

• In section 5, the techniques in a 3D-Stencil Library for optimizing and

generating codes for EMAX are described.

• In section 6, the performance as measured by certain benchmarks is pre-

sented.

• In section 7, we conclude this dissertation

3

2. Related Work

This section describes the previous works those are either used in, or directly re-

lated to this dissertation. Section 2.1 presents an overview of stencil computation

and recaps work already done in acceleration it by general purpose accelerators

such as Xeon Phi. In section 2.2 describes about Liner Array Pipelined Processor

(LAPP) that we have designed for boosting performance under a given power

budget.

2.1 CGRA for Stencil Computations

Most stencil computations can be abstracted into a cascaded loop based algo-

rithm, similar to the example in Fig. 1, where the data accesses per each cal-

culation task is generally focusing on a small window of nearest neighbor data

elements along the multi-dimensional directions. A high memory access to cal-

culation rate of 7:6 can be observed from the algorithm in in Fig. 1, indicating

a memory bound performance caused by expensive L2 misses and off-chip band-

width.

However, unlike other kinds of memory intensive HPC applications such as

Sparse Matrix-Vector Multiplication (SpMV) [30, 31], the most important feature

in stencil computation is the possibility of data reuse. Furthermore, taking an-

other feature that the small window or cube is usually firstly moving along the X

direction (as shown in Fig. 1) into account, the algorithm of stencil computation

can be regarded as a stream data processing one. It is relatively easier to use

memory blocking and cache blocking to accelerate them in GPGPU and Xeon

Phi. Specifically, paper [39] has provided circular queue and thread blocking as

multicorespecific stencil optimizations, where blocking refers to dividing the orig-

inal X×Y ×Z data set into small RX×RY ×RZ blocks that sweep through each

thread block. The result in paper [39] indicates that on an eight-core CMP ar-

chitecture Sun Victoria Fall, all blocking methods including register/core/thread

blocking can provide more than 2x speed-up. And a fine thread blocking of 1024

blocks on CUDA achieves 1.4x speed-up as compared to the 64-block division.

This blocking optimization partially coincides the concept of neighbor data

access behavior by aggregating a small set of adjacent data into the small L1 cache

4

for a better data allocation. However, it still does not fully explore the concept

of sliding window to ultimately indicate the data re-use in the X,Y,Z directions.

In this dissertation, we show a reconfigurable architecture to specifically take

care of the data allocation and the reuse in our memory system. Compared to

the thread/cache blocking on general purpose accelerators, our work on special

hardware has provided the following contributions:

• A memory hierarchy has been proposed to use only singleported RAM to

present vector-like per cycle multi-word load/store throughput. An easy-to-

program physical memory blocking assignment has been added to instruc-

tively match the X-direction neighboring data access pattern and several

other well-used patterns in stencil computations and other vectorize-able

HPC applications.

• A reconfigurable PE array has been designed beside the memory hierarchy

to accelerate the computation of the data-flow-graphs (DFGs) of the inner-

most loop kernels in these HPC applications, which can provide an IPC

near to the number of operations in the loop kernel DFG.

• This 2-D PE array additionally supports to explore the moving window

effect along the Y direction for the stencil computations. Data can thus be

largely reused in both the X,Y directions for the first and second innermost

loops in these applications. For most 3-D stencil algorithms, the data reuse

rate is 66%, which accordingly results in an optimally high computation

density per each off-chip data load.

Many reconfigurable architectures, including TRIPS[32, 33], CGRA[34], and

ADRES[37], have been proposed to accelerate the algorithm DFGs. However,

they are not targeting at the stencil applications so that the data movement and

reuse are not tuned for this neighboring access pattern. In addition, compared

to these reconfigurable architectures, we specially paid attention to the hardware

complexity, wire spacing and delay in the proposed special purpose accelerator.

Simple network has been used to only assure necessary data bypassing in the

stencil DFGs. Extra hardware supports are designed to isolate the wire-delay of

the bypassing network from the critical path, which makes it easily to up-scale

5

the capacity of PE array for a larger problem without influencing the working

frequency.

Figure 1. 3D-Stencil Kernels

2.2 Linear Array Pipelined Processor (LAPP)

To focus on both the energy efficiency and the flexibility, the CGRA has been

widely studied[35, 36, 38]. However, for most current CGRAs a special compiler

is desired to generate the good reconfiguration code. To solve this problem, we

6

have designed the Liner Array Pipelined Processor (LAPP).

LAPP has been designed and implemented to achieve high power/performance

efficiency by ultimately exploiting the parallelism between program loop iterations

with a functional unit (FU) array. LAPP includes two parts, as the normal VLIW

pipeline part and the FU array part as shown in Fig. 2. The VLIW pipeline makes

it enable to take normal VLIW binaries as input, without requiring a special

compiler to generate special instruction set architecture (ISA) based binaries.

The VLIW pipeline works under a normal execution mode for program parts

that have no parallelism. When a loop kernel’s iterations can be executed without

dependency, the LAPP triggers the array execution mode by mapping the loop

kernels vertically along its FU array part.

The FU array takes a structure of multiple array pipeline stages, each of

which can map a single VLIW instruction. The multiple array pipeline stages

form an array pipeline, which executes instructions in the loop kernel in sequential

cycles. Meanwhile, based on the assumption that the mapped loop does not have

dependency between its iterations, when the array pipeline stage finishes the

execution of the current loop iteration, it can start the execution of the mapped

instruction of the next loop iteration.

As shown in paper[27], after filling the array pipeline, the FU array can fin-

ish one loop iteration per cycle, resulting in an extremely high speed-up of the

loop execution. As in paper[29], LAPP has about nine times power/performance

efficiency, as compared to a normal many-core processor with the same chip area.

However, the architecture of LAPP which includes a VLIW pipeline and an

FU array also brings some limitations, as:

• The VLIW pipeline processor contains an L1 cache for the data access use,

which is an unified memory for all the LAPP processor. During the array

execution, the FU array stage also takes data from this L1 cache. For this

purpose, L0 buffers are required to propagate data from L1 cache to the

actual position of the data load inside the array stages. For an FU array

with many stages, the data propagation along the L0 buffers are long and

the L0 buffers occupy large amount of areas, which lowers the power and

area efficiencies.

• LAPP uses VLIW ISA, which has a very limited amount of LD/ST op-

7

erations per each instruction. To map memory intensive programs, other

than the extensive use of the L0 buffer, the data-flow-graph (DFG) will be

largely extended along the vertical direction, which sometimes makes the

mapping impossible inside a given number of array stages.

• LAPP generates the mapping information when the loop start instruction

is detected by a hardware mapping scheme. The VLIW pipeline, together

with this mapper, consumes a large part of area. This further worsens the

area efficiency.

• In addition, to pass the data to any register possible in LAPP, it uses a

crossbar like interconnection between the array stages. The wire amount of

LAPP is thus very huge. This large wire amount gives a drawback in the

physical design of the chip, making the critical path long and hard for the

place and route tool to get an optimal design[47].

To address these problems, we designed and implemented a novel array ac-

celerator, Energy-aware Multimode array accelerator (EMAX). The feature of

EMAX is described in section 4.

8

Figure 2. The structure of LAPP

9

3. Stencil Computation

This section describes the structure of stencil computing that is supported by the

3D-Stencil Library.

Stencil computation is a class of iterative kernels which update array elements

according to some fixed pattern, called stencil. They are most commonly found

in the codes of computer simulations, e.g. for computational fluid dynamics in

the context of scientific and engineering applications. Other notable examples

include solving partial differential equations, the Jacobi kernel, the Gauss-Seidel

method, image processing and cellular automata. The regular structure of the

arrays sets stencil codes apart from other modeling methods such as the Finite

element method. Most finite difference codes which operate on regular grids can

be formulated as stencil codes.

3.1 3D-Stencil Kernels

Figure 1 shows two examples of 3D-stencil kernels represented by C language.

Each of the kernels has neighbors that spread from the center in three direc-

tions along the X, Y, and Z axes. The difference between these two examples is

the number of elements in each of the three directions. In this dissertation, the

number of elements (the distance) from the center is called the “degree”. A 7-

point stencil kernel has degree = 1, and a 13-point stencil kernel has degree = 2

(Fig. 1). A 3D-stencil kernel with “degree = 1” expresses a 3D Jacobi solver from

the Rodinia benchmark suite [17], which is used for the evaluation of heteroge-

neous computing [19, 18].

10

4. Overview of EMAX

In this section, such general features of CGRA as columns, rows, mnemonics, and

memory hierarchy are described as is our proposed EMAX configuration [24, 25].

4.1 System Diagram of EMAX

As shown in Fig. 3, EMAX consists of two or more basic processing elements

(PEs) arranged in the shape of a matrix. Each PE has several arithmetic logical

units (e.g., EX1, EX2), distributed single-port local memories (LMM), an effective

address generator (EAG), and several FIFOs that can hold a certain amount of

recent data read from LMM. In EMAX, the LMM and FIFOs in the same row

are connected with a common data path. In the case of the configuration shown

in Fig. 3, the data in an LMM can be sent to a maximum of 8 FIFOs in the same

row. Additionally, the PEs at the top are connected with the PEs at the bottom

in a ring fashion. The number of rows is defined by the number of stages required

by specific application programs.

4.2 Interface with Host Computer

In general, accelerators have a local DDR3 memory and are connected to host

computers through an external I/O bus (Fig. 3). Consequently, the overhead for

sending instructions and data to the accelerators should be taken into consider-

ation for modeling performance.

4.3 EMAX mnemonics

For describing the 3D-Stencil Library, it is convenient to prepare some typical

mnemonics for controlling the EMAX. The framework of the mnemonics is shown

in Fig. 4. The preceding combination of row and col specifies the logical location of

PE to be assigned with the succeeding function. To explain the EMAX operation,

we describe three load instructions in the same Z coordinates (Fig. 5(1) at Y =

0, 1, 2 and Fig 5(2) at Y = 1, 2, 3). Each load instruction can increment the

load address in the X axis count times. Therefore, one load instruction can read

the data of the count points from the stream data along the X axis. In the 1st

11

EMAX

PE PE PEPE

・

・

・

col#0 col#1 col#2 col#3

row#0

row#1

row#2

row#N

Host PC

DDR3

SDRAM
Intel

Interface

USB3.0

EX1 EAG

LMMEX2

EX2_FIFO LMM_FIFO

PE PE PEPE

PE PE PEPE

PE PE PEPE

PE (Processor Element)

to Interface

Figure 3. EMAX configuration

processing on EMAX at Y = 0, 1, 2 (Fig 5(1)), three load instructions read the

count points data from the stream data along the X axis (three stream data are

Y = 0,Y = 1, and Y = 2). Then these three load instructions are mapped on

PE at rows 0, 2, 4 (Fig. 5(3)). After the 1st processing is completed, the next

processing starts to read the count points data from the three stream data at

Y = 1, 2, 3 (Fig. 5(2)). Then the two data streams at Y = 1 and Y = 2 on the X

axis are used on PE at rows 2 and 4 in the 1st processing. However, because these

data exist in the LMM of another PE when the instruction is similarly arranged,

it cannot be read. To reuse these data streams, the Dist field exists in the EMAX

mnemonics. Dist specifies the distance of the vertical location between LMMs

that hold neighbor streams for each other for the stencil computation. After

EMAX has finished processing on a stencil stream at Y = 0, 1, 2 along the X

axis (Fig. 5(1)), some LMMs can supply data for the next processing on the next

stencil stream at Y = 1, 2, 3, because the neighbor stencil streams overlap each

other at Y = 1 and Y = 2 (Fig. 5(2)). If the LMM that holds the stream

12

corresponding to Y = 1 is located on row 2, and Y = 2 is located on row 4, then

dist should be 2. For the next processing with Y = 1, 2, 3, the previous contents

of LMMs are kept and the mapping of instructions is shifted by dist, as shown

in Fig. 5(4). Consequently, the next processing can reuse the streams at Y = 1

and Y = 2 (black LMMs in Fig. 5(4)). The operations for EX1 and EX2 are

specified by ALU OP, as shown in Figs. 4(b) and (c). The load operation from

EX2 FIFO can be specified as EX1 operations. The MEM OP (Fig. 4(d)) is the

load/store operations from LMM or LMM FIFO. The initial value of the register

for ALU OP and MEM OP can be specified by RGI.

4.4 Instruction Mapping

In this section, we describe instruction mapping method to EMAX with unsharp

kernel that used for image processing. Figure 6 shows unsharp() program written

in C language, and Fig 7 expresses EMAX mnemonics for executing that un-

sharp() program. First, each PEs of col#0 loads input array data to own LMM

(col#0 raw#0, col#0 raw#1, col#0 raw#2). In 2-dimension stencil kernel like

unsharp, it is used three contiguous data to calculate a stencil ([p1, p5, p2], [p6,

p0, p7] and [p3, p8, p4] in Fig. 6. Therefore it is mapped three load instructions

in same row. Then, each instruction of PEs of col#1 and col#2 can load data

from LMM-FIFO that PE of col#0 stored. Nine loaded data is propagated by

a register, and each data are operated by each PE. The final operation result is

stored by PE of raw#8, col#0 to LMM. All PEs execute operation count times.

In this case, count is set to the number of stencil stream size(WD). Each PE

works in parallel, therefore the result to be provided by 9 load instructions, 21

ALU operations, and 1 store instruction is obtained by 1 cycle with EMAX.

mauh/mauh3 expresses the instruction that add upper 16bit of Xr, Yr, Zr and

lower 16bit respectively. mluh is an instruction to multiply Yr and upper 16bit

and lower 16bit of Xr as 8bit data. mh2bw is to merge upper 16bit of Xr, Yr and

lower 16bit as 8bit data.

13

Figure 4. EMAX mnemonics

14

�✁ ✂
✁ ✄ ☎✁ ✄ ✆ ✁ ✄ ✝

�✁ ✂
✁ ✄ ✝✁ ✄ ✆✁ ✄ ✞

✟ ✝ ✠ ✝ ✡ ☛ ☞ ✌ ✍ ✎ ✏ ✡ ✡ ✑ ✒ ✓ ✍ ✒ ✔ ✕ ✖ � ✗ ☛ ✁ ✄ ☎ ✘ ✝ ✘ ✆

✟ ✆ ✠ ✆ ✒ ✙ ☞ ✌ ✍ ✎ ✏ ✡ ✡ ✑ ✒ ✓ ✍ ✒ ✔ ✕ ✖ � ✗ ☛ ✁ ✄ ✝ ✘ ✆ ✘ ✞✚ ✛ ✜ ✢ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✢✫ ✛ ✦ ✬ ✭ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✢ ✮✯ ✰ ✣ ✤ ✚ ✱ ✲ ✤ ✳ ✛ ✰ ✫ ✴ ✴✚ ✛ ✜ ✵✚ ✛ ✜ ✶✚ ✛ ✜ ✷ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✵✫ ✛ ✦ ✬ ✭ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✵ ✮
✚ ✛ ✜ ✸✚ ✛ ✜ ✹ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✷✫ ✛ ✦ ✬ ✭ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✷ ✮✚ ✛ ✜ ✺

✚ ✛ ✜ ✢ ✯ ✰ ✣ ✤ ✚ ✱ ✲ ✤ ✳ ✛ ✰ ✫ ✴ ✴✚ ✛ ✜ ✵✚ ✛ ✜ ✶✚ ✛ ✜ ✷ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✵✫ ✛ ✦ ✬ ✭ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✵ ✮
✚ ✛ ✜ ✸✚ ✛ ✜ ✹ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✷✫ ✛ ✦ ✬ ✭ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✷ ✮✚ ✛ ✜ ✺ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✶✫ ✛ ✦ ✬ ✭ ✣ ✤ ✚ ✥ ✦ ✧ ★ ✩ ✪ ✶ ✮✧ ✦ ✻ ✻ ✳ ✰ ✼ ✛ ✽ ✯ ✰ ✣ ✤ ✚ ✱ ✲ ✤ ✳ ✛ ✰ ✣ ✳ ✣ ✣ ✾ ✳ ✽ ✤ ✥ ✬ ✿ ❀ ❁ ✬ ✳ ✣ ✤ ❂ ❃ ✬ ✳ ✣ ✤ ✪ ✷ ❄

✟ ✞ ✠ ❅ ✒ ✡ ☛ ✌ ❆ ✎ ☛ ✑ ✍ ✒ ❇ ✍ ✎ ✗ ☛ ✑ ✍ ✒ ✑ ✒ ✝ ✡ ☛ ☞ ✌ ✍ ✎ ✏ ✡ ✡ ✑ ✒ ✓

✟ ❈ ✠ ❅ ✒ ✡ ☛ ✌ ❆ ✎ ☛ ✑ ✍ ✒ ❇ ✍ ✎ ✗ ☛ ✑ ✍ ✒ ✑ ✒ ✆ ✒ ✙ ☞ ✌ ✍ ✎ ✏ ✡ ✡ ✑ ✒ ✓
Figure 5. Instruction shift by “dist”

15

p0

p1 p2

p3 p4

p5

p6 p7

p8

p0

p-WD

p

p+WD

r

void unsharp(unsigned char *p, unsigned char *r)

{

 int t0,t1,t2, j, k;

 int p0 = ((0)*WD+(1))*4;

 int p1 = ((0-1)*WD+(1-1))*4;

 int p2 = ((0-1)*WD+(1+1))*4;

 int p3 = ((0+1)*WD+(1-1))*4;

 int p4 = ((0+1)*WD+(1+1))*4;

 int p5 = ((0-1)*WD+(1))*4;

 int p6 = ((0)*WD+(1-1))*4;

 int p7 = ((0)*WD+(1+1))*4;

 int p8 = ((0+1)*WD+(1))*4;

 for (j=0; j<WD; j++) {

 r[p0+0] = 0;

 t0 = p[p0+1];

 t1 = p[p1+1] + p[p2+1] + p[p3+1] + p[p4+1];

 t2 = p[p5+1] + p[p6+1] + p[p7+1] + p[p8+1];

 r[p0+1] = limitRGB((t0 * 239 - t1 * 13 - t2 * 15 - t2/4) >> 7);

 t0 = p[p0+2];

 t1 = p[p1+2] + p[p2+2] + p[p3+2] + p[p4+2];

 t2 = p[p5+2] + p[p6+2] + p[p7+2] + p[p8+2];

 r[p0+2] = limitRGB((t0 * 239 - t1 * 13 - t2 * 15 - t2/4) >> 7);

 t0 = p[p0+3];

 t1 = p[p1+3] + p[p2+3] + p[p3+3] + p[p4+3];

 t2 = p[p5+3] + p[p6+3] + p[p7+3] + p[p8+3];

 r[p0+3] = limitRGB((t0 * 239 - t1 * 13 - t2 * 15 - t2/4) >> 7);

 p0+=4; p1+=4; p2+=4; p3+=4; p4+=4; p5+=4; p6+=4; p7+=4; p8+=4;

 }

}

unsigned char limitRGB(int c) {

 if (c<0x00) return 0x00;

 if (c>0xff) return 0xff;

 return c;

}

WD

Figure 6. Source code of unsharp()

16

mauh (Xr.{fhl}, Yr.{fhl})

 16bit[2] Xr + Yr

mauh3 (Xr.{fhl}, Yr.{fhl})

 16bit[2] Xr + Yr + Zr

mluh (Xr.{fhl}, Yr.{fhl}, Zr.{fhl})

 8bit[2] * 9bit � 16bit[2]

mh2bw (Xr, Yr)

 merge sat(Xr.H16bit).sat(Xr.L16bit)

 .sat(Yr.H16bit).sat(Yr.L16bit)

{fhl} f:fullword h:byte3,byte2�H16bit,L16bit

 l: byte1,byte0�H16bit,L16biy

//EMAX2 @0,0,0 [WD] & ld (r10+=,4),r1 rgi[p1] lmr[.p-WD:,WD,0]

//EMAX2 @0,1,0 [WD] & ld (r10+=,4),r2 rgi[p2]

//EMAX2 @0,2,0 [WD] & ld (r10+=,4),r5 rgi[p5]

//EMAX2 @1,0,0 [WD] mauh (r1.l,r2.l),r11 & ld (r10+=,4),r6 rgi[p6] lmr[.p:,WD,0]

//EMAX2 @1,1,0 [WD] & ld (r10+=,4),r7 rgi[p7]

//EMAX2 @1,2,0 [WD] mauh (r1.h,r2.h),r12 & ld (r10+=,4),r0 rgi[p0]

//EMAX2 @2,0,0 [WD] mluh (r0.l,ri),r20 rgi[,.i239c0:]& ld (r10+=, 4),r3 rgi[p3] lmr[.p+WD:,WD,0]

//EMAX2 @2,1,0 [WD] mluh (r0.h,ri),r21 rgi[,.i239c1:]& ld (r10+=, 4),r4 rgi[p4]

//EMAX2 @2,2,0 [WD] mauh (r5.l,r6.l),r15 & ld (r10+=, 4),r8 rgi[p8]

//EMAX2 @2,3,0 [WD] mauh (r5.h,r6.h),r16

//EMAX2 @3,0,0 [320] mauh3 (r11,r3.l,r4.l),r11

//EMAX2 @3,1,0 [320] mauh3 (r12,r3.h,r4.h),r12

//EMAX2 @4,0,0 [320] mluh (r11,ri),r13 rgi[,.i13c0:]

//EMAX2 @4,1,0 [320] mluh (r12,ri),r14 rgi[,.i13c1:]

//EMAX2 @4,2,0 [320] mauh3 (r15,r7.l,r8.l),r15

//EMAX2 @4,3,0 [320] mauh3 (r16,r7.h,r8.h),r16

//EMAX2 @5,0,0 [320] | or (r15,0)>M2,r7

//EMAX2 @5,1,0 [320] mluh (r15,ri),r17 rgi[,.i15c0:]

//EMAX2 @5,2,0 [320] | or (r16,0)>M2,r8

//EMAX2 @5,3,0 [320] mluh (r16,ri),r18 rgi[,.i15c1:]

//EMAX2 @6,0,0 [320] msuh3 (r20,r7,r17),r20

//EMAX2 @6,2,0 [320] msuh3 (r21,r8,r18),r21

//EMAX2 @7,0,0 [320] msuh (r20,r13) | or (-,0)>M7,r20

//EMAX2 @7,2,0 [320] msuh (r21,r14) | or (-,0)>M7,r21

//EMAX2 @8,0,0 [320] mh2bw (r21,r20) & st -,(ri+=,4) rgi[.p0_out:,] lmw[.r:,320,0]

Figure 7. EMAX mnemonics of unsharp()

17

5. 3D-Stencil Library for EMAX

This section describes the user interface of the 3D-Stencil Library and a technique

for generating instructions for EMAX. For the best use of EMAX, we must reduce

the amount of data transmission between LMM and the main memory (DDR3).

The optimization scheme must focus on how to map local memory to the stencil

streams.

5.1 User Interface of 3D-Stencil Library

As shown in Fig. 1, typical templates for stencil kernels are easily written in C

language. The parameters for customizing the templates and implementation on

EMAX are the ”degree” of the stencil and the ”number of columns” of EMAX.

Fig. 8(1) is an example of a customizable stencil library. When the degree is

one, the Jacobi 3D stencil computation is expressed, as described in Section 3.

When the degree is three, a FD6 kernel is expressed. Application developers can

embed various stencil computations on various EMAXs by customizing 3D-Stencil

Libraries with specific parameters (Fig. 8(2)). When we use EMAX without the

3D-Stencil Library, we have to write the program with EMAX mnemonics shown

in Fig. 9 and Fig. 10. With 3D-Stencil Library, we can write the program for

executing stencil computing with only one line.

5.2 Structure of 3D-Stencil Library

The structure of the 3D-Stencil Library is shown in Fig. 11. When an application

program calls the stencil library, the library first generates EMAX instructions

based on the given parameters. Then the instructions and the data are sent to

EMAX through DDR3. Finally, EMAX executes the instructions mapped on PEs

simultaneously and stores the result in DDR3. The following is the processing

flow of using the 3D-Stencil Library: efdn

(1) The stencil application allocates three memory arrays in the main memory

of the host PC. A is the input 3D-array, B is the output 3D-array, and C

is the symmetric-constant coefficients of the stencil [5].

18

Figure 8. Interface of stencil kernel

EMAX2 @0,0,1 [320] add (ri+=,4),r0 rgi[.emax_rgi_p0____jacobi:,] &

EMAX2 @0,1,1 [320] & ld (ri+=,4),r1 rgi[.emax_rgi_CURR_A0_jacobi:,] lmr[.emax_lmr_CURR_A0_jacobi:,320,0]

EMAX2 @1,1,1 [320] fmul (ri,r1),r10 rgi[.emax_rgi_C20_jacobi:,] & ld (r0,-1280),r2 lmr[.emax_lmr_PREV_A1_jacobi:,320,0]

EMAX2 @2,1,1 [320] fma3 (ri,r2,r10),r10 rgi[.emax_rgi_C21_jacobi:,] & ld (r0,4),r5 lmr[.emax_lmr_CURR_A1_jacobi:,320,0]

EMAX2 @2,2,1 [320] & ld (r0,0),r4

EMAX2 @2,3,1 [320] & ld (r0,-4),r3

EMAX2 @3,1,1 [320] fma3 (ri,r5,r10),r10 rgi[.emax_rgi_C22_jacobi:,] & ld (r0,1280),r6 lmr[.emax_lmr_NEXT_A1_jacobi:,320,0]

EMAX2 @3,2,1 [320] fmul (ri,r4),r11 rgi[.emax_rgi_C10_jacobi:,] & ld (ri+=,4),r7 rgi[.emax_rgi_CURR_A2_jacobi:,] lmr[.emax_lmr_CURR_A2_jacobi:,320,0]

EMAX2 @3,3,1 [320] fmul (ri,r3),r12 rgi[.emax_rgi_C23_jacobi:,] &

EMAX2 @4,1,1 [320] fma3 (ri,r6,r10),r10 rgi[.emax_rgi_C24_jacobi:,] &

EMAX2 @4,2,1 [320] fma3 (ri,r7,r11),r11 rgi[.emax_rgi_C25_jacobi:,] &

EMAX2 @5,1,1 [320] fadd (r10,r11),r10 &

EMAX2 @6,1,1 [320] fadd (r10,r12),r10 &

EMAX2 @7,1,1 [320] & st r10,(ri+=,4) rgi[.emax_rgi_store_jacobi:,] lmw[.emax_lmw_store_jacobi:,320,0]■jacobi

EMAX2 @0,0,1 [320] add (ri+=,4),r0 rgi[.emax_rgi_p0____jacobi:,] &

EMAX2 @0,1,1 [320] & ld (ri+=,4),r1 rgi[.emax_rgi_CURR_A0_jacobi:,] lmr[.emax_lmr_CURR_A0_jacobi:,320,0]

EMAX2 @1,1,1 [320] fmul (ri,r1),r10 rgi[.emax_rgi_C20_jacobi:,] & ld (r0,-1280),r2 lmr[.emax_lmr_PREV_A1_jacobi:,320,0]

EMAX2 @2,1,1 [320] fma3 (ri,r2,r10),r10 rgi[.emax_rgi_C21_jacobi:,] & ld (r0,4),r5 lmr[.emax_lmr_CURR_A1_jacobi:,320,0]

EMAX2 @2,2,1 [320] & ld (r0,0),r4

EMAX2 @2,3,1 [320] & ld (r0,-4),r3

EMAX2 @3,1,1 [320] fma3 (ri,r5,r10),r10 rgi[.emax_rgi_C22_jacobi:,] & ld (r0,1280),r6 lmr[.emax_lmr_NEXT_A1_jacobi:,320,0]

EMAX2 @3,2,1 [320] fmul (ri,r4),r11 rgi[.emax_rgi_C10_jacobi:,] & ld (ri+=,4),r7 rgi[.emax_rgi_CURR_A2_jacobi:,] lmr[.emax_lmr_CURR_A2_jacobi:,320,0]

EMAX2 @3,3,1 [320] fmul (ri,r3),r12 rgi[.emax_rgi_C23_jacobi:,] &

EMAX2 @4,1,1 [320] fma3 (ri,r6,r10),r10 rgi[.emax_rgi_C24_jacobi:,] &

EMAX2 @4,2,1 [320] fma3 (ri,r7,r11),r11 rgi[.emax_rgi_C25_jacobi:,] &

EMAX2 @5,1,1 [320] fadd (r10,r11),r10 &

EMAX2 @6,1,1 [320] fadd (r10,r12),r10 &

EMAX2 @7,1,1 [320] & st r10,(ri+=,4) rgi[.emax_rgi_store_jacobi:,] lmw[.emax_lmw_store_jacobi:,320,0]

Figure 9. Source Code of Stencil Computing with EMAX mnemonics [jacobi]

19

EMAX2 @0,0,1 [320] add (ri+=,4),r10 rgi[.emax_rgi_p0____fd6:,] & ld (ri+=,4),r0 rgi[.emax_rgi_CURR_A0_fd6:,] lmr[.emax_lmr_CURR_A0_fd6:,320,0]

EMAX2 @0,1,1 [320] & ld (ri+=,4),r1 rgi[.emax_rgi_CURR_A1_fd6:,] lmr[.emax_lmr_CURR_A1_fd6:,320,0]

EMAX2 @0,2,1 [320] & ld (ri+=,4),r2 rgi[.emax_rgi_CURR_A2_fd6:,] lmr[.emax_lmr_CURR_A2_fd6:,320,0]

EMAX2 @1,0,1 [320] fmul(ri,r0),r20 rgi[.emax_rgi_C40_fd6:,] & ld (r10,-3840),r3 lmr[.emax_lmr_PREV3_A3_fd6:,320,0]

EMAX2 @1,1,1 [320] fmul(ri,r1),r21 rgi[.emax_rgi_C30_fd6:,] &

EMAX2 @1,2,1 [320] fmul(ri,r2),r22 rgi[.emax_rgi_C20_fd6:,] &

EMAX2 @2,0,1 [320] fma3(ri,r3,r20),r20 rgi[.emax_rgi_C41_fd6:,] & ld (r10,-2560),r4 lmr[.emax_lmr_PREV2_A3_fd6:,320,0]

EMAX2 @2,1,1 [320] fadd(r21,r22),r21 &

EMAX2 @3,0,1 [320] fma3(ri,r4,r20),r20 rgi[.emax_rgi_C31_fd6:,] & ld (r10,-1280),r5 lmr[.emax_lmr_PREV1_A3_fd6:,320,0]

EMAX2 @3,1,1 [320] &

EMAX2 @4,0,1 [320] add (ri+=,4),r10 rgi[.emax_rgi_p1____fd6:,] & ld (r10,12),r12 lmr[.emax_lmr_CURR_A3_fd6:,320,0]

EMAX2 @4,1,1 [320] ld (r10,4),r10 & ld (r10,8),r11

EMAX2 @4,2,1 [320] ld (r10,-4),r8 & ld (r10,0),r9

EMAX2 @4,3,1 [320] ld (r10,-12),r6 & ld (r10,-8),r7

EMAX2 @5,0,1 [320] fma3(ri,r5,r20),r20 rgi[.emax_rgi_C21_fd6:,] & ld (r10,1280),r13 lmr[.emax_lmr_NEXT1_A3_fd6:,320,0]

EMAX2 @5,1,1 [320] fma3(ri,r10,r21),r21 rgi[.emax_rgi_C22_fd6:,] &

EMAX2 @5,2,1 [320] fmul(ri,r8),r22 rgi[.emax_rgi_C23_fd6:,] &

EMAX2 @5,3,1 [320] fmul(ri,r6),r23 rgi[.emax_rgi_C42_fd6:,] &

EMAX2 @6,0,1 [320] fma3(ri,r12,r20),r20 rgi[.emax_rgi_C43_fd6:,] & ld (r10,2560),r14 lmr[.emax_lmr_NEXT2_A3_fd6:,320,0]

EMAX2 @6,1,1 [320] fma3(ri,r11,r21),r21 rgi[.emax_rgi_C32_fd6:,] &

EMAX2 @6,2,1 [320] fma3(ri,r9,r22),r22 rgi[.emax_rgi_C10_fd6:,] &

EMAX2 @6,3,1 [320] fma3(ri,r7,r23),r23 rgi[.emax_rgi_C33_fd6:,] &

EMAX2 @7,0,1 [320] & ld (r10,3840),r15 lmr[.emax_lmr_NEXT3_A3_fd6:,320,0]

EMAX2 @7,1,1 [320] & ld (ri+=,4),r16 rgi[.emax_rgi_CURR_A4_fd6:,] lmr[.emax_lmr_CURR_A4_fd6:,320,0]

EMAX2 @7,2,1 [320] fma3(ri,r13,r22),r22 rgi[.emax_rgi_C24_fd6:,] & ld (ri+=,4),r17 rgi[.emax_rgi_CURR_A5_fd6:,] lmr[.emax_lmr_CURR_A5_fd6:,320,0]

EMAX2 @7,3,1 [320] fma3(ri,r14,r23),r23 rgi[.emax_rgi_C34_fd6:,] & ld (ri+=,4),r18 rgi[.emax_rgi_CURR_A6_fd6:,] lmr[.emax_lmr_CURR_A6_fd6:,320,0]

EMAX2 @8,0,1 [320] fma3(ri,r15,r20),r20 rgi[.emax_rgi_C44_fd6:,] &

EMAX2 @8,1,1 [320] fma3(ri,r16,r21),r21 rgi[.emax_rgi_C25_fd6:,] &

EMAX2 @8,2,1 [320] fma3(ri,r17,r22),r22 rgi[.emax_rgi_C35_fd6:,] &

EMAX2 @8,3,1 [320] fma3(ri,r18,r23),r23 rgi[.emax_rgi_C45_fd6:,] &

EMAX2 @9,1,1 [320] fadd(r20,r21),r21 &

EMAX2 @9,2,1 [320] fadd(r22,r23),r22 &

EMAX2 @10,2,1 [320] fadd(r21,r22),r22 &

EMAX2 @11,0,1 [320] & st r22,(ri+=,4) rgi[.emax_rgi_store_fd6:,] lmw[.emax_lmw_store_fd6:,320,0]

Figure 10. Source Code of Stencil Computing with EMAX mnemonics [FD6]

(2) The stencil application calls the 3D-Stencil Library. Arguments A, B, and

C are the address pointers allocated in the main memory by the stencil

application (1), and size X, size Y, and size Z are the dimension sizes of

the 3D-array.

(3) The 3D-Stencil Library automatically generates instructions (mapping data)

of the EMAX including input 3D-array data from the input parameter. If

the data size of the X-direction exceeds the LMM capacity, the 3D-Stencil

Library divides the 3D-Stencil space and executes EMAX multiple times.

Fig. 12 shows the divided image.

(4) The 3D-Stencil Library transmits the instruction data including the data

for the EMAX activation to EMAX’s DDR3 with DMA.

(5) When the activation data are written on DDR3, EMAX is activated auto-

matically and prefetches the input 3D-array data from the DDR3 to the

20

LMMs. Then each PE of EMAX executes the instructions and sends the

result to DDR3.

(6) The result of the stencil computation is transmitted by DDR3 to the pointer

of array B in the main memory of the host PC.

Figure 11. Structure of 3D-Stencil Library

21

Figure 12. Divided 3D-Stencil space

5.3 Basic Instruction Mapping

As mentioned above, the amount of data, which is transmitted between LMMs

and the main memory (DDR3), must be reduced to increase EMAX’s execution

efficiency. The stencil computation has spatial (horizontal) locality in the X-

direction and temporal (vertical) locality in the Y-direction. Horizontal locality

can be maximally utilized by employing FIFOs in the same row of the EMAX. The

FIFOs are filled with the data from the LMM in the same row and can hold several

neighbors in the X-direction. In contrast, vertical locality can be maximally

utilized by reusing LMMs that hold different streams in the Y-directions. Fig. 13

describes the basic memory mapping of stencil computation when the “degree”

equals one. Fig. 13(1) shows the load instructions for a stencil kernel expressed by

EMAX mnemonics. First, seven load instructions are mapped on corresponding

EAGs (Fig. 13(2)). Then for utilizing FIFOs to load the neighbor data in the

X-direction, the load instructions from A[z][y][x−1], A[z][y][x], and A[z][y][x+1]

22

must be mapped in the same row, and the load instructions from A[z][y − 1][x],

A[z][y][x−1], and A[z][y+1][x] must be mapped in the same column to reuse the

data in the LMMs. By setting each dist field of the instructions to 1, subsequent

processing can reuse the LMMs of A[z][y][[x] and A[z][y + 1][x− 1] (Fig. 13(3)).

5.4 Packing of Instructions

After basic mapping is completed, the packing of instructions should be con-

sidered by unrolling in the Z-direction. As mentioned above, the X-direction is

mapped on the sequential access with FIFOs, and the Y-direction is mapped

on the reusing of LMMs. Moreover, we have another chance to parallelize the

Z-direction by unrolling so that two contiguous stencil computations can be per-

formed simultaneously. An example of the program and an arrangement for

unrolling is shown in Fig. 14. The load instructions from A[z][y][x−1], A[z][y][x],

A[z][y][x+1], A[z][y−1][x], and A[z][y+1][x] are defined as a fixed pattern in the

3D-Stencil Library due to utilizing FIFOs and reusing LLMs. The neighbor sten-

cil on the Z-direction is mapped on empty PEs in a mirrored fashion (Fig. 14(2)).

By having unrolled codes share two load instruction (A[z][y][x], A[z + 1][y][x]),

two load instructions can be eliminated. Therefore, we expect that the packing of

instructions reduces the total amount of data to be transmitted between LMMs

and the main memory (DDR3).

5.5 Evaluation of Packing

If we assume that the target EMAX has an infinite number of rows, the number

of parallel mappings in the Z-direction can theoretically be increased infinitely.

To compute the optimal degree of parallelizing in the Z-direction based on the

number of EMAX rows, the amount of data to be transmitted in each case is

evaluated. The flow of prefetching data to LMM in the case of stencil computation

is shown in Fig. 15, where each block corresponds to a stream in the X-direction

and is stored in each LMM. The two dimensions of Y and Z in Fig. 15 correspond

to the Y- and X-directions. The amount of data to be transmitted to LMM

can be estimated by the following formulas: p: number of parallel mappings, d:

number of stencil degrees, y: size of Y-direction, and z: size of Z-direction.

23

(1) First required bit of data: (4d+ 1) + p(2d+ 1)

(2) Subsequent required data: (2d+ 1) + (p− 1) = 2d+ p

(3) Total data in xy-iteration: y(2d+ p)

(4) Total data in xyz-iteration: z((1) + (3))/p

(5) Total data (approximate value): yz(2d+ p)/p

Formula (1) is the amount of data to be transmitted to LMM at the first

iteration of the Y-direction, and formula (2) is the amount of data required by the

subsequent incremental stencil in the Y-direction. The total amount of data with

the incremental to the Y-direction is expressed by formula (3) (i.e., (2)∗y). Since
the number of iterations in the Z-direction (z) is divided by the number of parallel

mappings (p), formula (4) becomes the total amount of data to be transmitted

to LMM. Since the stencil calculation has many dimensions (p < y), the value

of (1) can be ignored, and the amount of required data can be approximated as

the value of formula (5). Therefore, the more p increases, the more the required

data are reduced. In the case of degree = 1, the ratio of without parallelization

(p = 1) to with parallelization becomes 3 : (2 + p)/p. When p is assumed to be

infinite, the ratio becomes 3 : 1. Therefore, by parallelization, the amount of data

to be transmitted is reduced to a maximum of 1/3 of that without parallelization,

and for degree = 2 and degree = 3, it is reduced to a maximum of 1/5 and 1/7,

respectively.

5.6 Parallel Mapping in 3D-Stencil Library

It has become obvious that parallelization can reduce the amount of data trans-

mission based on the above evaluation. Therefore, the 3D-Stencil Library must

automatically generate instructions to increase the number of parallel mappings

at least to the maximum number of EMAX rows. First, the 3D-Stencil Library

maps the instructions according to the basic pattern. When degree = 1, the basic

pattern is copied in seven rows (Fig. 16(1)). If the number of EMAX columns

is seven or less, the 3D-Stencil Library maps the instructions in the form of

Fig. 16(1) (i.e., p = 1). If the number of EMAX columns is eight or more, for

24

computing the neighbor stencil in the Z-direction, the basic pattern occupies the

flipped horizontal location next to the original pattern (Fig. 16(2) (i.e., p = 2)).

When the number of sets for parallel mapping is 3 or 4, the basic pattern is

copied and put in the lower location. Then the added number of the EMAX

rows becomes four because the empty units are used (Fig. 16(3)). For example,

when the number of EMAX columns is 11 or 12, the number of parallel mappings

becomes three or four, respectively. On the other hand, if degree = 3, since the

PEs in the same row are occupied by the basic pattern using eleven rows, all of

the basic patterns should be located in subsequent rows. The number of rows,

generated by the 3D-Stencil Library according to the degree of the stencils and

the number of parallel mappings, can be defined as the following formulas (p:

number of parallel mappings):

• degree = 1 : 8 + 4((p/2) + (p mod 2)− 1)− (p mod 2)

• degree = 3 : 11p

25

col 0

EX1/2 EAG

col 3

EX1/2 EAG

col 2

EX1/2 EAG

col 1

EX1/2 EAG

load

A[z][y-1][x]

from LMM

load

A[z][y][x-1]

from LMM

load

A[z][y+1][x]

from LMM

load

A[z][y][x]

from FIFO

load

A[z-1][y][x]

from LMM

load

A[z+1][y][x]

from LMM

row 0

row 1

row 2

row 3

(2) First processing of EMAX at Y=y-1,y,y+1.

load

A[z][y][x+1]

from FIFO

col 0

EX1/2 EAG

col 3

EX1/2 EAG

col 2

EX1/2 EAG

col 1

EX1/2 EAG

(3) Next processing of EMAX at Y=y,y+1,y+2

 @0,0,1 [320] & ld (ri+=, 8), r0 rgi[A._Y-1] LMM[.A_Y-1]

 @0,2,1 [320] & ld (ri+=, 8), r1 rgi[A._Z-1] LMM[.A_Z-1]

 @1,0,1 [320] & ld (ri+=, 8), r2 rgi[A._X-1] LMM[.A_X-1]

 @1,1,1 [320] & ld (ri+=, 8), r3 rgi[A._X+0]

 @1,2,1 [320] & ld (ri+=, 8), r4 rgi[A._X+1]

 @2,0,1 [320] & ld (ri+=, 8), r5 rgi[A._Y+1] LMM[.A_Y+1]

 @2,2,1 [320] & ld (ri+=, 8), r6 rgi[A._Z+1] LMM[.A_Z+1]

load

A[z][y][x]

from LMM

load

A[z][y+1][x-1]

from LMM

load

A[z][y+2][x]

from LMM

load

A[z][y+1][x]

from FIFO

load

A[z-1][y+1][x]

from LMM

load

A[z+1][y+1][x]

from LMM

load

A[z][y+1][x+1]

from FIFO

row 0

row 1

row 2

row 3

load

A[z][y][x]

from LMM

load

A[z][y+1][x-1]

from LMM

instruction reusing LMMs

load

A[z][y][x]

from FIFO

load

A[z][y][x+1]

from FIFO

instruction loading from FIFO

(1) Load instructions for stencil kernel (degree=1)

Figure 13. Basic instruction mapping

26

Figure 14. Parallel mapping

27

Data to be transferred to LMM

at the first iteration

Data to be reused

with incremental to Y-direction

number of stencil degree

 = 1

number of

parallel mapping

 = 1

number of stencil degree

 = 2

number of

parallel mapping

 = 2

z

y

number of

parallel mapping

 = 3

Data to be transferred to LMM

with incremental to Y-direction

z

y

z

y

z

y

z

y

z

y

Data to be shared

between neighbor stencils

along Z-direction

Formula (1)

 (4d + 1) + p(2d + 1)

Formula (2)

(2d + 1) + (p - 1)) = 2d + p

Figure 15. Data transmission to LMM on stencil computing

28

col 0

EX1/2 EAG

col 3

EX1/2 EAG

col 2

EX1/2 EAG

col 1

EX1/2 EAG

row 0 A[z][y-1][x] A[z-1][y][x]

row 1 A[z][y][x-1]fmul A[z][y][x]fmul A[z][y][x+1]

row 2 A[z][y+1][x]fma3 fma3 A[z+1][y][x]

row 3 fma3 fma3

row 4 fma3

row 5 fma3

row 6 store

(1) Basic mapping of stencil [degree=1]

row 0 A[z][y-1][x] A[z-1][y][x]

row 1 A[z][y][x-1]fmul A[z][y][x]fmul A[z][y][x+1]
A[z+1]

[y-1][x]

row 2 A[z][y+1][x]fma3 fma3 A[z+1][y][x]fmul
A[z+1]

[y][x-1]fmul

row 3 fma3 fma3 fma3
A[z+1]

[y+1][x]fma3

row 4 fma3 fma3 fma3

row 5 fma3

A[z+1]

[y][x+1]

fma3

row 6 store fma3

(2) Parallel mapping (p=2)]

(3) Parallel mapping (p=3)]

row 7 store

row 8 fmul

row 9 fmul

row A fmul

A[z+2][y][x]

row 0 A[z][y-1][x] A[z-1][y][x]

row 1 A[z][y][x-1]fmul A[z][y][x]fmul A[z][y][x+1]
A[z+1]

[y-1][x]

row 2 A[z][y+1][x]fma3 fma3 A[z+1][y][x]fmul
A[z+1]

[y][x-1]fmul

row 3 fma3 fma3 fma3
A[z+1]

[y+1][x]fma3

row 4 fma3 fma3 fma3

row 5 fma3

A[z+1]

[y][x+1]

fma3

row 6 store fma3

row 7 store

A[z+2]

[y-1][x]

A[z+2]

[y][x-1]

A[z+2]

[y+1][x]

A[z+2][y][x]
A[z+2]

[y][x+1]

A[z+3][y][x]

store

fmul

fma3

fma3

fma3

fma3

fmul

fma3

fma3

Figure 16. Instruction mapping of stencil [degree = 1]

29

6. Results and Analysis

In this section, the execution time of the 3D-Stencil Library is estimated by a

clock-accurate EMAX simulator. The results are compared with general-purpose

processors.

6.1 Simulation Model for Performance Measurement

For an accurate estimation of the execution time in EMAX, we developed a clock-

accurate simulator that represents the activities of the memories and the registers

in EMAX. The assumptions of the frequency in each component, the memory

bandwidth, and the host bandwidth are shown in Table 1. After performing cir-

cuit composition by CAD with 28-nm technology using design data that became

LSI by Rohm 0.18 (it operates at 52.6 MHz), we learned that EMAX operates at

an internal clock speed of 252 MHz. Therefore, in the simulator condition, the

EMAX frequency is assumed to be 200 MHz.

Table 1. Simulation parameters

EMAX frequency 200 MHz

HOST-DDR3 bandwidth (USB 3.0) 400 Mbyte/sec

DDR3-LocalMEM bandwidth 800 Mbyte/sec

DDR3 SDRAM capacity 256 Mbyte

Local MEM capacity 8 Kbyte

When the 3D-Stencil Library executes 3D stencil computation with a dimen-

sion size of 320 × 320 × 320, the 3D-Stencil Library activates EMAX 320 × 320

times (when not using parallel mapping). For degree = 1 in the first execution,

five data streams along the X axis are transmitted to DDR3 to get the results

of 320-points data with the same X axis. This execution pattern resembles the

processing in Fig. 5(1), and the unit of the execution corresponds to a stream in

Fig. 17. To obtain all the stencil computing results, the 3D-Stencil Library acti-

vates EMAX in increments with the Y and Z axes, and the total activated time

30

becomes 320× 320. Fig. 17 describes the timing chart of EMAX. Each execution

is composed of five states.

• State 1

Data transmission is executed between the main memory of the host PC

and the DDR3 in EMAX.

• State 2

Data prefetching is executed from DDR3 to LMM.

• State 3

The instructions mapped on the PEs are executed simultaneously on the

data stream.

• State 4

The result stored in LMM is transmitted to DDR3.

• State 5

Data transmission is executed from DDR3 to the main memory of the host

PC.

• [Other conditions]

– Each state can be started after the previous state when identical exe-

cution is completed.

– States 1 and 5 and States 2 and 3 use the same data path. Therefore

each state exclusively uses the data path.

– Each state can be overlapped by another state.

– Since the data size of the control information including the operation of

the EMAX activation is much smaller than the 3D-array, it is ignored.

31

Figure 17. Execution sequence of EMAX

32

6.2 Evaluation of 3D-Stencil Library

We measured the execution time of the 3D-Stencil Library using the simulator.

Fig. 18 presents the execution time for running stencil kernels with degree =

1. The results with degree = 3 are shown in Fig. 19. The size of the X, Y,

and Z-directions in the 3D space is fixed to 320, and each point has a double

precision floating point value. The “stage count” shows the number of EMAX

rows. In Fig. 18, “stage count=7” corresponds to a hand-tuned code (the number

of parallel mappings = 1) and the others correspond to the 3D-Stencil Library.

In the same manner, in Fig. 19, “stage count=11” corresponds to a hand-tuned

code, and the others correspond to the 3D-Stencil Library. The results in each

case show that, as the degree of parallelization increases, the 3D-Stencil Library

can reduce the execution time by more than 90% compared with a hand-tuned

code. Our result shows that the evaluation in Section 5.5 is correct, and the

execution time can be reduced by more than the ratio of the amount of data

transmission. However, this is an over-estimation; when the size of the data

increases, many conflicts occur on the communication path between DDR3 and

the main memory of the host PC. Such a model is not included in the current

simulator yet. However, in general, commercial accelerators have many banks to

increase the memory throughput. EMAX can also increase the performance in

the same manner.

33

Figure 18. Execution time of 3D-Library [degree=1]

Figure 19. Execution time of 3D-Library [degree=3]

34

6.3 Comparison with general-purpose processors

The execution times of the stencil computation of EMAX are compared with

general-purpose CPUs. The processors, the version of compilers, and the compil-

ing options are shown in Table 2. We also use the same stencil kernels with the

same size (the size of the X, Y, and Z-directions is 320), where degree = 1 and

degree = 3. The results are shown in Fig. 20. In the case of degree = 1, Haswell

is faster than the other processors including EMAX. However, when degree = 3,

EMAX is faster. For reducing memory traffic, fitting many stencil points into

FIFOs and LMMs works better than a normal shared cache system.

Table 2. General-purpose processors for comparison

CPU Compiler Compile option

Intel (R) Xeon (R) CPU E5405

2.00 GHz

gcc 4.1.2 -O3 -msse2 -ffast -math

Intel (R) Core (TM) i5-4670

CPU@3.40 GHz (Haswell)

gcc 4.6.3 -O3 -msse2 -ffast -math

6.4 Comparison with GPGPU

Finally, the execution times of the stencil computation of EMAX are compared

with GPGPU. The specifications of GPGPU and the version of CUDA are shown

in Table 3. We also use the same stencil kernels with the same size (the size of

the X, Y, and Z-directions is 320), where degree = 1 and degree = 3. When we

execute the stencil computation with GPGPU, it is necessary to divide the range

of the calculation of each core. In the evaluation, Z-axis is divided by the number

of thread block, and the space of X and Y-axis are divided by two dimension

threads in the thread block as shown in Fig. 21. The measurement result of the

execution time of each division case is shown in Fig. 22 and Fig. 23. Execution

times were shortened most in the number of thread block 8 and the number of

threads 64× 16 in both measurement results.

The comparative result of the execution time of GPGPU and EMAX is

35

Figure 20. Comparison of execution between CPUs and EMAX

shown in Fig. 24. In both cases with degree=1 and degree=3, GPGPU is faster

than EMAX. This results are the same compared with general purpose CPUs.

However, when the number of cores is evaluated as the same (GPGPU:512,

EMAX:352), EMAX is the twice as fast as GPGPU in the case of degree=3.

It is shown that EMAX has the performance without inferiority compared with

GPGPU. Moreover, there is a big difference in the data transfer performance

in EMAX and GPGPU. The theoretical performance value of the EMAX sim-

ulator is 400Mbyte/sec, and measurement of the performance of GPGPU is

12Gbyte/sec. The improvement of the data transfer performance between HOST

and EMAX is indispensable for the performance improvement of EMAX. The

performance improvement is expected further in changing the interface between

HOST and EMAX.

36

Table 3. Specification of GPGPU

GPU Freq Num of core Interface CUDA ver

GeForce GTX 980 1126-1216(boost) 2048 PCI-e3.0 x16 7.0

Figure 21. 3D stencil space divided according to number of threads

37

Figure 22. Execution time of GPGPU [degree=1]

Figure 23. Execution time of GPGPU [degree=3]

38

Figure 24. Comparison of execution between GPGPU and EMAX

39

7. Conclusion

In this dissertation, we proposed a 3D-Stencil Library that automatically gener-

ates an instruction sequence that efficiently employs EMAXs. In section 1, as a

study background, we showed high performance computing architecture and the

optimization schemes for stencil computing. In section 2, we showed the previ-

ous works those are either used in, or directly related to this dissertation, and

LAPP we have developed for boosting performance under a given power bud-

get. Section 3 describes the structure of stencil computing that is supported by

the 3D-Stencil Library that we proposed. In section 4, we showed the features,

mnemonics and configuration of EMAX that 3D-Stencil Library supports. In

section 5, we showed the user interface of the 3D-Stencil Library and a technique

for generating instructions for the best use of EMAX, and evaluated legitimacy

of the proposed technique. In section 6, we showed simulation model of EMAX

and result of performance evaluation. First, with optimization of 3D-Stencil Li-

brary, we showed execution time of 3D-Stencil kernel can be reduced more than

90% compared with a hand-tuned code. Using a 3D-Stencil Library, application

developers can easily connect stencil computation on EMAX with C programs.

Moreover, EMAX’s execution time can be significantly reduced by eliminating

the data transmission by parallelizing instruction mapping. In addition, with a

performance simulator, the 3D-Stencil Library reduced the execution time 23%

more than a general-purpose processor, and it was shown that EMAX and the

3D-Stencil Library have the superior performance compared with GPGPU. The

practicality of EMAX and the 3D-Stencil Library is in sight. We plan to enhance

the library features to cope with many-point stencils, such as 27-point stencils.

40

Acknowledgements

I would like to gratefully acknowledge Professor Yasuhiko Nakashima of Nara

Institute of Science and Technology (NAIST) for supervising this dissertation,

continuous support, suggestions and encouragement.

I wish to express my gratitude to former president and CEO Nobuyuki Kikuchi

and corporate officer Takeshi Ibusuki of Fujitsu Computer Technologies Limited

(FCT) who gave the opportunity to enter a school of higher grade in doctor

course.

I also would like to express my appreciation to Jun Yao (HUAWEI), Assistant

Professor Shinya Yamazaki-Takamaeda (NAIST) and Professor Michiko Inoue

(NAIST) for their valuable opinions and support.

I also would like to thank the members of NAIST Nakashima Laboratory and

the member of TMP Depts in FCT for fruitful discussions and support.

Finally, I also would like to express my special thanks to my wife Kanako

Inagaki, son Towa, and daughter Yua from the bottom of my heart for continuous

support and encouragement.

41

References

[1] Standard Performance Evaluation Corporation

http://www.spec.org/

[2] NAS Parallel Benchmarks

http://www.nas.nasa.gov/publications/npb.html

[3] Intel Instruction Set Architecture Extensions

https://software.intel.com/en-us/intel-isa-extensions

[4] NEON - ARM

http://www.arm.com/products/processors/technologies/neon.php

[5] 3D Finite Differences on Multi-core Processors

https://software.intel.com/en-us/articles/3d-finite-differences-on-multi-

core-processors/

[6] High Performance Computing (HPC)-Supercomputing with NVIDIA Tesla

GPU

http://www.nvidia.com/object/tesla computing solutions.html

[7] T. Maruyama, T. Yoshida, R. Kan, I. Yamazaki, S. Yamamura, N. Taka-

hashi, H. Mikio, and H. Okano, “SPARC64 VIIIfx: A New-Generation Oc-

tocore Processor for Petascale Computing,” IEEE Micro, Vol. 30, No. 2, pp.

30-40, 2010.

[8] X. Liao, L. Xiao, C. Yang, and Y. Lu, “MilkyWay-2 supercomputer: system

and application,” in Frontiers of Computer Science, vol. 8, no. 3, pp. 345-356,

2014.

[9] T. Endo and S. Matsuoka, “Massive supercomputing coping with heterogene-

ity of modern accelerators,” in IEEE International Parallel & Distributed

Processing Symposium, pp. 1-10, 2008.

[10] N. Sedaghati, R. Thomas, L. Pouchet, R. Teodorescu, and P. Sadayappan,

“StVEC: A Vector Instruction Extension for High Performance Stencil Com-

putation,” in PACT, pp. 276-287, 2011.

42

[11] J. Cabezas, M. Araya-Plo, I. Gelado, N. Navarro, E. Morancho, and J. Cela,

“High-Performance Reverse Time Migration on GPU,” in International Con-

ference of the Chilean Computer Science Society, pp. 77-86, 2009.

[12] T. Grosser, A. Cohen, S. Verdoolaege, P. Sadayappan, and J. Holewinski,

“Hybrid hexagonal/classical tiling for GPUs,” In: Proceedings of Annual

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion. ACM, pp. 66, 2014.

[13] T. Henretty, R. Veras, F. Franchetti, L. Pouchet, and J. Ramanujam, “A

Stencil Compiler for Short-Vector SIMD Architectures,” In International

Conference on Supercomputing (ICS), pp. 13-24, 2013.

[14] M. Christen, O. Schenk, and Y. Cui, “PATUS for Convenient High-

Performance Stencils: Evaluation in Earthquake Simulations,” In SC, pp.

11, 2012.

[15] P. Barrio, C. Carreras, R. Sierra, T. Kenter, and C. Plessl, “Turning Control

Flow Graphs into Function Calls: Code Generation for Heterogeneous Ar-

chitectures,” In High Performance Computing and Simulation (HPCS), pp.

559-565, 2012.

[16] T. Endo and G. Jin, “Software Technologies Coping with Memory Hierar-

chy of GPGPU Clusters for Stencil Computations,” in Cluster Computing

(CLUSTER), pp. 132-139, 2014.

[17] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and K. Skadron,

“Rodinia: A Benchmark Suite for Heterogeneous Computing,” In IISWC,

pp. 44-54, 2009.

[18] G. Misra, N. Kurkure, A. Das, M. Valmiki, S. Das, and A. Gupta, “Evalua-

tion of Rodinia Codes on Intel Xeon Phi,” In Intelligent Systems Modelling

& Simulation (ISMS), pp. 415-419, 2013.

[19] P. Di, D. Ye, Y. Su, U. Sui, and J. Xue, “Automatic Parallelization of Tiled

Loop Nests with Enhanced Fine-Grained Parallelism on GPUs,” In Parallel

Processing (ICPP), pp. 350-359, 2012.

43

[20] J. Yao, M. Saito, S. Okada, K. Kobayashi, and Y Nakashima, “EReLA: a

Low-Power Reliable Coarse-Grained Reconfigurable Architecture Processor

and Its Irradiation Tests,” in IEEE Nuclear and Space Radiation Effects

Conference, 2014.

[21] J. Yao, Y. Nakashima, M. Saito, Y. Hazama, and R. Yamanaka, “A Flexibly

Fault-Tolerant FU Array Processor and its Self-Tuning Scheme to Locate

Permanently Defective Unit,” in IEEE Symposium on Low-Power and High-

Speed Chips, 2014.

[22] S. Kurebayashi, J. Yao, and Y. Nakashima, “A Pipelined Newton-Raphson

Method for Floating Point Division and Square Root on Distributed Mem-

ory CGRAs,” in IEEE Symposium on Low-Power and High-Speed Chips

(poster), 2014.

[23] R. Shimizu, Takamaeda-Yamazaki, J. Yao, and Y. Nakashima, “High Per-

formance Graph Processing with a Memory Intensive Array Accelerator,” in

CPSY2014-11, pp. 7-12, 2014.

[24] R. Shimizu, M. M. Tanomoto, S. Takamaeda-Yamazaki, J. Yao, and Y.

Nakashima, “Implementation and Evaluation of An Accelerator based on

Manymemory Network,” in CPSY2014-81, pp. 51-56, 2014.

[25] M. Tanomoto, S. Takamaeda-Yamazaki, J. Yao, and Y. Nakashima, “Convo-

lutional Neural Network Processing on An Accelerator based on Manymem-

ory Network,” in CPSY2014-82, pp. 57-62, 2014.

[26] S. Kurebayashi, Takamaeda-Yamazaki, J. Yao, and Y. Nakashima, “Paral-

lelization of Shortest Path Search on Various Platforms and Its Evaluation,”

in CPSY2014-74, pp. 13-18, 2014.

[27] Kazuhiro YOSHIMURA, Takuya IWAKAMI, Takashi NAKADA, Jun YAO,

Hajime SHIMADA and Yasuhiko NAKASHIMA, “An Instruction Mapping

Scheme for FU Array Accelerator,” IEICE Trans. on Information and Sys-

tems, Vol.E94-D, No.2, pp.286-297, Feb, 2011

44

[28] Wei Wang, Jun Yao, Youhui Zhang, Wei Xue, Yasuhiko Nakashima, and

Weimin Zheng, “HW/SW Approaches to Accelerate GRAPES in an FU

Array,” IEEE Symposium on Low-Power and High-Speed Chips 2013, Apr,

2013

[29] Naveen Devisetti, Takuya Iwakami, Kazuhiro Yoshimura, Takashi Nakada,

Jun Yao, Yasuhiko Nakashima, “LAPP: A Low Power Array Accelerator

with Binary Compatibility,” HPPAC2011, pp.849-857, May. 2011

[30] N. Bell and M. Garland, “Efficient Sparse Matrix-Vector Multiplication on

CUDA,” NVIDIA Corporation, NVIDIA Technical Report, Dec. 2008.

[31] J. D. Davis and E. S. Chung, “SpMV: A Memory-Bound Application on

the GPU Stuck Between a Rock and a Hard Place,” Microsoft Research,

Microsoft Technical Report, Sep. 2012.

[32] M. Gebhart, B. A. Maher, K. E. Coons, J. Diamond, P. Gratz, M. Marino, N.

Ranganathan, B. Robatmili, A. Smith, J. Burrill, S. W. Keckler, D. Burger,

and K. S. McKinley, “An Evaluation of the TRIPS Computer System,” in

Proceedings of the 14th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS XIV), Mar.

2009, pp. 112.

[33] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S.

W. Keckler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with the

Polymorphous TRIPS Architecture,” in Proceedings of the 30th Annual In-

ternational Symposium on Computer Architecture (ISCA’03), May 2003, pp.

422433.

[34] Y. Kim, I. Park, K. Choi, and Y. Paek, “Power-Conscious Configuration

Cache Structure and Code Mapping for Coarse-Grained Reconfigurable Ar-

chitecture,” in Proceedings of the 2006 International Symposium on Low

Power Electronics and Design (ISLPED ’06), 2006, pp.310315.

[35] Yongjun Park, Hyunchul Park, Scott Mahlke, “CGRA Express: Accelerating

Execution using Dynamic Operation Fusion,” CASE’09 Proceedings of the

45

2009 international conference on Compilers, architecture, and synthesis for

embedded systems, Pages 271-280. 2009

[36] J. Lee, K. Choi, and N. Dutt. “Compilation approach for coarse-grained

reconfigurable architectures, “IEEE D&T, 20:26-33, January/February. 2003

[37] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwereins, “ADRES:

An Architecture with Tightly Coupled VLIW Processor and Coarse-Grained

Reconfigurable Matrix,”in Field Programmable Logic and Application, Sep.

2003, pp. 6170.

[38] F. Bouwens, M. Berekovic, A. Kanstein, and G. Gaydadjiev, “Architectural

Exploration of the ADRES Coarse-grained Reconfigurable array,” Reconfig-

urable Computing: Architectures, Tools and Applications, vol. 44191, pp.1-

13. 2007.

[39] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patter-

son, J. Shalf, and K. Yelick, “Stencil Computation Optimization and Auto-

tuning on State-of-the-art Multicore Architectures,” in Proceedings of the

2008 ACM/IEEE Conference on Supercomputing (SC’08), Nov. 2008, pp.

4:14:12.

[40] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, P. Dubey, S. Junkins, A.

Lake, R. Cavin, R. Espasa, E. Grochowski, T. Juan, M. Abrash, J. Sugerman,

and P. Hanrahan, “Larrabee: A Many-Core x86 Architecture for Visual

Computing,” IEEE Micro, vol. 29, no. 1, pp. 1021, 2009.

[41] A. Heinecke, K. Vaidyanathan, M. Smelyanskiy, A. Kobotov, R. Dubtsov,

G. Henry, A. Shet, G. Chrysos, and P. Dubey, “Design and Implementation

of the Linpack Benchmark for Single and Multi-node Systems Based on Intel

R Xeon Phi Coprocessor,“ in 2013 IEEE 27th International Symposium on

Parallel Distributed Processing (IPDPS’13), May 2013, pp. 126137.

[42] J. Park, G. Bikshandi, K. Vaidyanathan, P. T. P. Tang, P. Dubey, and D.

Kim, “Tera-scale 1D FFT with Low-communication Algorithm and Intel R

46

Xeon PhiTM Coprocessors,” in Proceedings of 2013 International Confer-

ence for High Performance Computing, Networking, Storage and Analysis

(SC’13), Nov. 2013, pp. 34:134:12.

[43] X.-J. Yang, X.-K. Liao, K. Lu, Q.-F. Hu, J.-Q. Song, and J.-S. Su, “The

TianHe-1A Supercomputer: Its Hardware and Software,” Journal of Com-

puter Science and Technology, vol. 26, no. 3, pp. 344351, 2011.

[44] A. Heinecke, M. Klemm, and H.-J. Bungartz, “From GPGPU to ManyCore:

Nvidia Fermi and Intel Many Integrated Core Architecture,” Computing in

Science Engineering, vol. 14, no. 2, pp. 7883, 2012.

[45] P. Micikevicius, “3D Finite Difference Computation on GPUs Using CUDA,”

in Proceedings of 2nd Workshop on General Purpose Processing on Graphics

Processing Units (GPGPU-2), Mar. 2009, pp. 7984.

[46] Y. Zhang and F. Mueller, “Auto-generation and auto-tuning of 3d stencil

codes on gpu clusters,” in Proceedings of the Tenth International Symposium

on Code Generation and Optimization (CGO ’12), 2012, pp. 155164.

[47] Ho, R (Dept. of Computer. Sci., Stanford Univ., CA, USA), Mai, K.W,

Horowitz, M.A. “The future of wires,” PROCEEDINGS OF THE IEEE,

VOL89, NO.4, APRIL, 2001.

47

Publications

Journal Papers

1. Yoshikazu INAGAKI, Shinya, Takamaeda-Yamazaki, Jun Yao, and Ya-

suhiko NAKASHIMA, “Performance Evaluation of a 3D-Stencil Library

for Distributed Memory Array Accelerators”, IEICE Transactions on Infor-

mation and Systems, Vol.E98-D, No.12, (to appear), Dec. 2015.

Conference and Workshops (Referred)

1. Yoshikazu INAGAKI, Shinya, Takamaeda-Yamazaki, Jun Yao, and Ya-

suhiko NAKASHIMA, “‘Performance Evaluation of a 3D-Stencil Library

for Distributed Memory Array Accelerators”, Proc. 2nd Int’l Workshop on

Computer Systems and Architectures (CSA’14), held in conjunction with

CANDAR’14, Shizuoka, Japan, Dec. 2014.

Conference and Workshops (Not Referred)

1. 稲垣慶和, 原祐子, 姚駿, 中島康彦, “リング型アレイアクセラレータ向け演

算ライブラリの実装と性能評価”, In Proceeding of SWOPP 2013, 研究方向

計算機アーキテクチャ(ARC), 2013-ARC-206, No.1, pp.1-6, Jul. 2013.

48

