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Jane Louie Fresco Zamora

Abstract

This dissertation presents the use of mobile devices as specific ICT solutions

for some natural disasters in order to tackle current issues with existing technolo-

gies for mitigating risks before and after disaster events. Several modern ICT

applications nowadays adapt to disaster-related issues that enable the society to

mitigate the risks brought about by these events. However, with the onset of

climate change, more individuals especially those who are considered to be at a

disadvantage are increasingly vulnerable to disaster risks. Dynamic improvements

in ICT applications, thus, are yet to be continually implemented.

In this research, the motivation is to be able to save lives from the impending

risks of natural hazards by providing the opportunity to be informed and com-

municate despite the limited resource. Technology is speedily growing but not

all individuals have similar access rate and adaptation to the growth. Moreover,

in the event of a large-scale disaster, all things essential to the function of one

system, i.e., communication towers, may be lost. Therefore, in this regard, there

is a need for a low-cost and easily implementable technological countermeasures.

In this dissertation, specific implementations for smartphone-based informa-

tion sharing by communication and environmental observation for rescue and

disaster preparation, respectively, are proposed. Particularly, because commu-

nication channels can be lost during a large-scale disaster such as in a devas-

tating earthquake, a quick countermeasure for communication to rescue victims
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mation Science, Nara Institute of Science and Technology, NAIST-IS-DD1261029, September
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for within the critical 72 hours was investigated in this research. In this regard,

SOSCast, which is an Android OS-based application is developed to enable vic-

tims to exchange emergency messages even when trapped under debris. However,

SOSCast is yet to be improved in terms of efficiency as it currently functions lim-

ited to battery life. In addition, because of the limited resources in some parts of

the world, not all individuals have easy access to weather information which makes

them vulnerable to flooding and landslides, for instance, during heavy rains. In

this regard, the research focus was to examine easily implementable and low-cost

alternatives to weather observation. That is, in addition to the information that

can be measured by the built-in sensors in smartphones such as humidity, pres-

sure, temperature, acceleration, etc., we also investigated on received signal level

(RSL) on the device. This information can be a supporting data to pinpoint

heavy rain events, as such, we conducted several measurement experiments using

smartphones to support the idea that pervasive smartphone-based data is helpful

in describing heavy rain events.

Keywords:

smartphone, sensing, communication, information sharing, mobility, disaster events,

risk mitigation, emergency management, search and rescue
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1. Introduction

1.1 Motivation

Information and communications technology (ICT) in this century has become

more advanced parallel to the rapid growth of new technological developments.

Cellular phones beginning the 1970s have particularly evolved from large blocks

of plastic-cased basic wireless communication devices to sleek aluminum-cased

devices, which recently include sophisticated minuscule sensors [15]. According to

ITU’s (International Telecommunication Union) latest ICT statistics, the mobile-

cellular subscriptions worldwide has reached approximately 7 billion in the year

2015 from 738 million in 2000 [17]. In this regard, the use of mobile devices for

ICT applications in education, health, transportation, weather, disaster and risk

mitigation etc., has become increasingly endless.

ICT generally enables the user to access and manipulate data as well as trans-

mit and receive it. With the smartphone as a tool for ICT, it can enable the user

to manage data anywhere desired. Thus, it is beneficial to take advantage of

the smartphone in sensing actual information specifically where pinpoint data is

needed. For instance, in environmental monitoring, there are particular remote

areas where observational data is required but where conventional sensors are

difficult to install. It is in such cases when mobile devices can be very helpful in

delivering environmental data.

Some of the modern ICT sensing applications nowadays also adapt to disaster-

related issues that enable the society to mitigate the risks brought about by

these events. With the continued increase of mobile device use especially in least

developed countries, it may be one of the low-cost solutions that could save their

lives as they are statistically the most vulnerable to disasters.

1.2 Problem Statement

Recently, disasters caused by natural hazards are becoming frequent globally and

is commonly attributed to the impact of climate change by scientists. In the latest

IPCC (Intergovernmental Panel on Climate Change) report of 2014, 90% of the

population in Asia are projected to be vulnerable to flooding and rainfall-induced

1



landslides due to increase in sea level rise, heavy rain, and tropical cyclones [11].

In this regard, researchers are also developing ICT applications as solutions to

mitigate risks that follow these disasters. There are currently several ways of

providing ICT solutions for disaster mitigation. In our study, we focus in the

application of the smartphone as our ICT tool to communicate, exchange data,

and receive timely and actual information. More specifically, we require these

solutions to be in the form of low-cost and low-maintenance tools that are also

easily implementable as alternatives for search and rescue and risk mitigation

before or after a devastating disaster occurs.

This study attempts to answer three underlying issues in the following dis-

cussions, for which specific proposed solutions are described for each issue:

1. When communication channels are limited or inexistent in the

event of a devastating earthquake, the probability that victims

can be rescued within 72 hours of expected survival duration is

low.

Normal use of the mobile devices typically requires data to be sent over

wireless channels serviced by communication towers such as WiFi or 3G.

Phone calls, text messages, or media to be sent can be quickly transmitted

across a wide interconnection of these channels and in long distances. In the

event that the network infrastructure is damaged, there can only be a few of

these towers to handle the transmission traffic. In such cases where victims

would naturally ask for help by making phone calls or send messages, the

limited channels will not be capable of processing such activities promptly.

Thus, this would result to either the rejection of the victims’ call or unsent

messages.

Research Goal 1: Develop a communication scheme using the Bluetooth

(BT) function that would enable victims to send emergency messages di-

rectly from their mobile device to another

2. Scarcity of in-situ weather sensors can result to a lack of ground-

based observation data with the consequence of inaccurate fore-

casts on localized heavy rains.

2



Heavy rains are usually detected by a combination of data from satellite,

radar, and weather stations. However, in the case satellite and radar for

instance, the observation coverage is typically from 100 to 100,000 km which

is sometimes incapable of detecting localized heavy rains occurring at less

than 10 km. Adding more weather stations on the ground, for example, may

not be economical in terms of cost and deployment. In that regard, wireless

communication towers have long been existent since the beginning of WiFi

and 3G technologies and its transmission information can be helpful in

detecting the onset or occurrence of localized heavy rains. Wireless networks

are typically affected by water vapor and this is evident in the decrease of

transmission power level. If this information can be harnessed to describe

rain activities, then it can be a cost-efficient supporting information for

describing rain events.

Research Goal 2: Find an alternative and supporting information for exist-

ing systems, that is, in the form of Received Signal Level (RSL) in wireless

networks that could describe heavy rain activities.

3. Several available sensed weather data via participatory sensing

using mobile devices can be unreliable especially on the process

of obtaining these information.

Considering that it is the aim in this study to mobile devices as a tool for

obtaining weather information, there are potentially abundant data that

can be used to describe in-situ weather conditions. Nowadays, there is a

gaining popularity of mobile device use and harvesting data from these can

suffice for the lack of ground weather information. However, in the process

of obtaining these information, user activity can greatly affect the quality

of the data. As mobile devices, such as in the form of smartphones, are

typically used as devices for communicating, device movement and handling

can distort the information taken in the background. This in turn can

greatly affect the quality of the forecasts as well in large scale.

Research Goal 3: Perform a series of calibration processes on several ob-

tained data as affected by user activity and evaluate the reliability of the

results.

3



1.3 Contributions

It is the main objective of this research to be able to use smartphones as perva-

sive sensors for emergency management, that is, for search and rescue and risk

mitigation. To support search and rescue of victims trapped under debris, the

primary goal is to develop a tool for victims to easily send emergency messages

by using their mobile device even without Internet. And so far, we have devel-

oped an approach of a device-to-device communication via BT in the form of a

smartphone application. Currently, this tool is in the process of improvement

for a more efficient exchange of emergency messages. On the other hand, in the

search for alternative ways of obtaining in-situ weather observation data, we have

conducted several measurement experiments of using the smartphone as a sensor

and information sharing device.

Thus far, we contribute to providing low-cost, low-maintenance, and easily

implementable solutions for emergency management. Particularly, we develop

Android OS-based smartphone applications to communicate, exchange data, and

receive information. In this way, we empower individuals to be part of the disaster

mitigation by participating in the process. Moreover, we contribute by support-

ing individuals, especially victims of disasters, to help themselves to hasten the

rescue process. Also, we encourage individuals to participate by sensing using

their devices to contribute data that would be very helpful in forecasting natural

disasters.

The specific contributions are as follows:

1. Introduce a way to communicate between smartphones even without the

conventional Internet-based communication

2. Introduce a novel way of using smartphones as a weather sensor in addition

to its communication capabilities

4



1.4 Organization

The remainder of this dissertation presents the details of each independent ex-

periments that focus on the use of smartphones in mitigating risks before or after

a particular disaster has occurred.

Chapter 2 discusses some cases of ICT applications of smartphones to exam-

ples of disaster-related situations. Chapter 3 presents a proposed work on using

smartphones to communicate during post-disaster situations such as during a

devastating earthquake. Chapter 4 presents an improve smartphone-based direct

communication approach related to the prior chapter. Chapter 5 presents a pro-

posed work on using smartphones to gather weather information by way of RSL,

using the device to observe and measure current conditions. Chapter 6 presents

experimentation of measuring in-situ weather conditions using the smartphone

in collaboration with other existing commercial sensors. Chapter 7 discusses a

calibration method considering the effects of user activity to the observed data.

Finally, Chapter 8 summarizes the proposed works and introduces future works

for the continuation and improvement of this study.
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2. Smartphones for ICT in disaster research

In this study, we present ICT-based solutions with focus on two types of natural

hazards, earthquake and heavy rain. This chapter discusses more background

on the risks by the aforementioned phenomena as in Sec. 2.1. It is followed by

Sec. 2.2 which highlights related works on device-to-device communications as a

solution for emergency situations such as during earthquakes. Lastly, Sec. 2.3

discusses similar studies on conventional monitoring and observation of environ-

mental conditions using ICT.

2.1 Natural disasters and risks

In the past decades, industrialization has caused the increased production of car-

bon dioxide causing more heat to be trapped on earth. In return, this has caused

increased warming and abnormal greenhouse effect which is one of the reasons

for the on-going debate on climate change. Specifically, the Fifth Assessment

Report of IPCC [11] projected that increasing emissions of carbon dioxide into

the atmosphere increases surface temperature. This, in effect, will “very likely”

cause frequent heat waves and extreme precipitation. Flood events continue to

increase in the past three decades according to World Bank [42]. In fact, it was

reported in the World Disasters Report of 2013 [15] that Asia has had 38,986

deaths due to flooding based on statistics from 2003 to 2012. This number is the

highest in among other continents, which accounts for 68.5% of the total.

However, climate change is believed not only to affect the frequency and inten-

sity of precipitation but can also trigger earthquakes. According to Bill McGuire

[28], the melting of the ice and the rise of sea levels destabilizes the plates caus-

ing the occurrence of earthquakes. Moreover, the excess water also drives the

weathering of the underground volcanic activity which makes volcanoes prone

to eruptions. Within a span of ten years, earthquakes and tsunamis has caused

much damage in Asia with a death toll of 449,941 (66% of total worldwide).

These numbers implies that there is much ICT innovation that needs to be done

to save more lives.

IPCC has summarized in their recent report that “disadvantaged” individuals

and groups are more likely vulnerable to the risks considering the effects of rising

6



global mean temperatures. In that regard, many ongoing efforts are in place,

developing several and sometimes conventional ways of mitigating deaths due to

risks from effects of natural phenomena, particularly of earthquakes and heavy

rainfall.

2.2 Emergency communications

In this section, we discuss related works on emergency communications during

devastating disasters. Specifically, we focus on ICT innovations on communica-

tions on events where transmission channels are unavailable. Especially during

large-scale disasters, victims of the disaster must be rescued during the 72 critical

hours where communication plays a crucial role. It is important that emergency

messages must reach designated rescuers in this time duration but because of

destroyed infrastructures, the Internet or phone lines are unavailable. It is with

this motivation that researchers thought of implementing peer-to-peer commu-

nications during emergency to bypass the unavailability of the communication

channels. For instance, one study focused on collaborating WiFi, WiMax, and

GEO (geostationary orbit) satellite as a hybrid mobile ad-hoc network for en-

abling VoIP calls and exchange of multimedia data between rescuers in an emer-

gency situation [26]. Their approach for a speedy rescue via efficient communi-

cation and information sharing was to develop a hybrid network that replaces

the conventional Push-to-Talk (PTT) communications. Their networks extends

the communication range between rescue teams and accommodate multimedia

data for a richer information content, which can not be done when using PTT.

However, this type of system does not address the absence of communication in-

frastructures in the disaster area. On the other hand, [30] developed an overlay

network called the Human-centric Wireless Sensor Network (HWSN) to support

the use of conventional VHF/UHF radio communication systems. To make com-

munication more efficient even without the usual infrastructure, firetrucks were

utilized to route disconnected networks and stationary communication units were

deployed to store information. However, this system may not apply to instances

when the disaster area is only accessible by foot and thus, limiting search cover-

age. Moreover, for both of these studies, the participation of the victims in the

rescue operations was not considered although the communication schemes were

7



proven effective.

In both studies aforementioned, the focus was on the rescuers using the system

to share disaster information for rescue operations. Note that, according to the

World Disaster Reports 2013 [15], people affected in a disaster are to be consid-

ered “first responders” more than referring to them as victims. In addition, these

victims needs to be involved hands-on with emergency response. By being first

responders, disaster-affected people can aid in rescue operations by providing in-

formation by their selves. In that regard, Twimight [13] was developed to support

disaster information acquisition from first responders or the victims of the disas-

ters themselves. It is generally an online social networking service in the form of a

smartphone application designed after the Twitter platform having similar basic

functions, such as posting short text messages. Twimight ’s approach to sharing

information in a disaster-affected area that is independent of the communication

infrastructure was basically developing a “disaster mode”, which differentiates

it from Twitter. That is, in an event of a disaster, the smartphone application

enables the exchange, aggregation, and transmission of short messages directly

with other smartphones via BT. However, some people may not be accustomed

to Twitter and this manner of asking for help may not be direct. Also, the use of

Twimight eventually requires Internet connection and thus, not ideal for use in a

catastrophic disaster with the communication infrastructures destroyed.

The disaster mode in Twimight actually utilizes opportunistic communica-

tions via BT, which most smartphones nowadays are capable of. In that regard,

references [43] and [23] explored and supported the idea of using smartphones with

BT devices to disseminate or aggregate information. Opportunistic communica-

tions via BT is especially encouraged for use in situations where communication

infrastructures are unavailable due to natural hazards. Even without existing

channels, messages can be widely spread using smartphones via epidemic rout-

ing, which also ensures that these messages are received by nearby smartphones.

Simultaneously, messages can be aggregated and ferried among smartphone de-

vices until it reaches the recipients, such as the rescuers or family members for

instance.

However, epidemic routing itself consumes high battery power when not man-

aged efficiently. In the application of such opportunistic communication tech-
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nique, if the smartphones ran out of power, then the probability of being res-

cued decreases. Several studies [10, 44], therefore, proposed clustering techniques

among smartphones to optimize disaster information gathering and reduce bat-

tery consumption at the same time. For example, in [10], a wireless ad hoc net-

work architecture named DistressNet was developed to organize multiple sensors

to sense, localize, and communicate in a disaster situation where communication

is congested, limited, or non-existent. To efficiently manage energy consumption

in devices during disasters for a successful rescue, their approach was to opti-

mize information delivery and situational awareness. The focus is mainly on the

system architecture, protocol design, and application development that address

the goals of DistressNet. On the other hand, in [44], algorithms for creating and

managing clusters to conserve energy consumption among nodes in a mobile ad

hoc network is proposed for use in a disaster scenario. Though having similar

aims with [10], the difference lies in the solution method for clustering and bat-

tery conservation. To investigate if the techniques satisfy the aims, both studies

have evaluated their respective systems in a simulation, but with [10] comparing

different algorithms and [44] inspecting the performance of the proposed network

mechanisms. However, [10] focuses more on the system and requires a hardware

they developed to be deployed. In [44], no actual application were done to show

the effectiveness of their system and there was no mention of securing the records

of the transactions.

2.3 Environmental Sensing and Weather Information

Services

In this section we describe research on sensors and sensor networks that focuses on

environmental observation. Before digital instruments took over measurements

of the real world, there used to be analog sensors where data logging was done

by hand and may be at times subjective based on the observer. In the recent

years, measurements are automated and better techniques are being proposed

nowadays. In that regard, scientists have thought of other ways where they can

maximize the use of digital sensors and sometimes develop new ones. For instance,

remote areas that are usually difficult to access have very few observation data
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or sometimes not existent. Researchers working on SensorScope [16] for example,

provides solutions for sensor network deployment customized according to dif-

ferent sensing requirements and geographical locations even in remotely difficult

areas such as the Swiss alps. In this study, the researchers designed a system of

low-cost sensors as alternative to the deployment of conventional sensing stations

that are commonly priced at 80,000 USD each. As these may be costly, having

only a few of these sensors would limit the spatial coverage of near-surface obser-

vation and the availability of weather information. In this study, we aim to use

already available devices that can obtain environmental data without the high

price. As an alternate solution to this sensor cost issue, researchers explore the

potential of commercial wireless communication networks or CWCNs [36] as a

way to lower the cost specifically of precipitation measurement and observation.

In their study of reconstructing rain maps from RSL measurements of CWCNs,

they have found that there is more work to be done in terms of accurate recon-

struction and data sufficiency. The concept is favorable with the exception of

having to consider more about the acquisition of RSL data especially with pri-

vate communication companies. Some companies will not easily provide the RSL

data as it may jeopardize their business. Also, for the purpose of increasing the

accuracy of the rainfall map from RSL, it was mentioned as that their is a need

for assimilating RSL data with in-situ rain gauges in sparse areas for instance.

Which is why in this study, we take advantage of the growing popularity of mobile

phones. As these devices are capable of sensing and data transmission, nowadays,

it is a most likely cost-efficient way of obtaining environmental data especially

for pinpointing extreme weather such as heavy rains. In a survey on the emerg-

ing field of mobile phone sensing or MPS [22], the applications for mobile device

based information harvesting range from social network services, environmental

monitoring, and personal health improvement. A typical example of an MPS ap-

plication would be user context recognition systems [12] that aim to deliver better

services based on user behaviour, for instance. Context includes user activities

and interactions with other users or with the environment that is based on the

MPS data. More often, to get a general view of a group of users, the data has be

to be sourced from a multiple group of users having similar qualifying criteria.

These criteria are based on categorization of MPS data by statistical methods
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Table 1: List of smartphone models used and their available sensors

Common Name
Samsung Galaxy

Nexus[33]
Samsung S3[35] Samsung S4 [34]

Model I9250 GT-I9300 GT-I9500

Android OS version 4.3 4.2.2 4.3

Light (lux) X X X

Proximity (cm) X X X

Gyroscope (rad/s) X X X

Accelerometer (m/s2) X X X

Magnetometer (µT) X X X

Pressure (hPa) X X X

Temperature (◦C) N/A N/A X

Humidity (%) N/A N/A X

like Mean, Median, Variance, etc., to analyze patterns in the data and group like

patterns accordingly. In addition to context recognition, which frequently makes

use of position or motion sensor data, environmental application of MPS as listed

in [8] also includes utilizing microphones and cameras to provide audio and im-

age samples of the environment, respectively. Another example of environmental

MPS is discussed in [31] where it makes use of the temperature sensor to estimate

urban air temperatures. With recent mobile phone models, like in Table 1, it is

now possible to observe pressure, ambient temperature, and relative humidity for

meteorological applications.

With such capabilities in a mobile device may it be in sensing or communi-

cation, in this study, we take advantage of these functions for use in emergency

situations or observing weather conditions to mitigate risks. The following sec-

tions discusses in details the different mobile-phone-based solutions specific to a

scenario, such as during damaging disasters or when the need for pinpoint weather

observation in the event of a heavy rain arises.
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3. Using smartphones to communicate during post-

disaster situations

In a devastating earthquake such as the Great Eastern Japan earthquake of 2011,

we find that communication channels are most likely destroyed leaving victims

with difficulties in contacting their friends and families. In an event of a disaster,

victims need to be rescued for at least 72 hours from when it happened. Survival

rate typically decreases after this duration for which rescue operations must be

hastily initiated.

3.1 Overview and Requirements

We have developed a smartphone-based communication tool called SOSCast,

which enables victims to communicate even with the absence of communication

channels. It allows for the victims to exchange SOS messages that contains in-

formation of their current physical status, location information retrieved by GPS

(Global Positioning Satellite), etc., via the smartphone using Bluetooth (BT)

communications. Fig. 1 shows a general picture of how victims are capable of

sending emergency messages to rescuers using SOSCast on their smartphones.

Figure 1: Emergency message sending process using SOSCast
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Figure 2: Captured screen images of the SOSCast application on the immobilized

victim’s device

It is assumed that the application will be utilized in a scenario where the

disaster-affected area is cut off from the conventional communication services,

i.e., landline and cellular. That is, victims having smartphones with the installed

application are able to communicate directly. The process begins by having the

victim create his or her SOS message as in Fig. 2.

First, the victim identifies self if immobilized or mobile. If the victim is im-

mobilized, the victim will be asked to create the message that requests the rescue

using the smartphone application. We refer to this message in the application

as “SOS message”. The application makes the SOS message with the needed

information

Otherwise, the mobile victim would simply enable smartphone to broadcast

a pairing request. After the immobilized victim creates the SOS message, the

smartphone must be enabled to broadcast a pairing request as well. While the

application is used by a mobile victim, the device continues to listen to pairing

requests from other victims using the application. If the mobile victim’s device

found a pairing request, the device will begin to establish connection. Then, if
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Figure 3: Captured screen images on the SOSCast application on the mobile

victim’s device

the connection is identified to be with an immobilized victim, the mobile victim’s

device will wait to receive the SOS message. Simultaneously, the immobilized

victim sends the created SOS message to the mobile victim and waits to receive

the extended SOS message. At the time when the mobile victim receives the SOS

message, the mobile victim will attach personal information to the message, store

this on the device, then send back to the immobilized victim the extended message

(Fig. 3). Finally, the mobile victim ends the connection with the immobilized

victim and broadcast again a new pairing request searching for other victims.

On the other hand, if the mobile victim happen to find a pairing request from

another mobile victim or rescuer, the mobile victim on inquiry mode sends a

connection request and establish connection with the other party. Then, instead

of receiving an SOS message, the mobile victim sends the other mobile victim

or rescuer the currently stored SOS messages from immobilized victims with the

extended information. Afterwards, the mobile victim waits to receive the stored

messages from the other party to update the database in the device. When the

exchange of stored messages is done, both parties end the connection and begin

to search for other unaccounted victims.
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3.2 Message Format

The SOS message formats between immobilized and mobile victims differ in con-

tent. The immobilized victim records ID, and remarks on current physical con-

dition. The location information and the time the message was created are also

logged. The immobilized victim’s ID may include a nickname or the real name

of the person. As for the remarks, it is a message field where the immobilized

victim selects from a dropdown menu of current statuses with predefined mes-

sages. The location field includes the currently identified GPS information by the

device. Lastly, the time when the immobilized victim created the message is also

recorded. From this, it is possible to estimate the time when the immobilized

victim began to ask for help. Moreover, it is useful to sort and delete duplicated

messages based on this time field.

The mobile the victim’s information includes ID, the current location informa-

tion, and the time when the mobile victim communicated with the immobilized

victim. Similar the to immobilized victim’s ID, this field may also include a nick-

name or real name. The location field logs the current GPS information where

the mobile victim has established connection with the immobilized victim. Lastly,

the time when the mobile victim has received SOS message from the immobilized

victim is logged in the time field.

In general, the number of bytes allocated for each of these information is

listed in Table 2. Also, it should be noted that the GPS information for both

the immobilized and mobile victims is inaccurate by around 10 meters. The

SOSCast application is not capable of identifying the accuracy of the obtained

GPS information. However, we rely on this information to at least have an idea

where the immobilized victim may be at.

3.3 Propagation Process

Figs. 4 and 5 illustrates how messages are exchanged between an immobilized

person and a propagator and between propagators, respectively. While both

communication processes exhibit a similar manner of establishing a connection via

BT, it is obligatory for propagators to store and share received SOS messages. In

SOSCast, by having propagators acquire both of the SOS messages they received
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Item Description Size (byte)

Immobilized victim ID (IMEI) Name to identify the victim 15

Message creation time Time when the SOS

message was composed

4

Immobilized victim location GPS information of the

victim

8

Communication time Time when a connection

was established

4

Propagator location GPS information of the

propagator

8

Immobilized victim information Current status of the

immobilized victim

0

Table 2: Description of the SOS message format

and what the other propagators receive, this ensures that all immobilized victims

are accounted for when the database is relayed to the rescuers.

Meanwhile, the propagator could possibly encounter multiple BT pairing re-

quests upon traversing the disaster-affected area. In this case, we have thought

of a process on how the propagators should be able to accommodate as much

as possible all connections. Table 3 shows six types of connection lists, namely,

immobilized persons, propagators, and already connected persons classified into

either having a strong or weak Received Signal Strength Indication (RSSI). Note

that already connected persons refers to persons, including both immobilized per-

sons and propagators, of whom SOSCast has made a connection with. Since a

propagator can acquire the RSSI of inquiry responses received, the propagator

first classifies them according to RSSI level. For example, if the RSSI of an

inquiry response that an immobilized person sent is larger than the predeter-

mined RSSI threshold1, SOSCast inserts the immobilized persons ID into the list

of immobilized persons with strong RSSI. Otherwise, the immobilized persons

ID will be kept in the list of immobilized persons with weak RSSI if the RSSI

1This threshold was decided by the preliminary experiment whether the connection was

stable.
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Figure 4: Communication process between an immobilized person and a propa-

gator

is lower than the given threshold. Propagators and already connected persons

are similarly classified based on the reported RSSI levels. After making the six

lists, SOSCast establishes connection in the following order: (1) immobilized per-

sons with strong RSSI, (2) propagators with strong RSSI, (3) already connected

persons with strong RSSI, (4) immobilized persons with weak RSSI, (5) propaga-

tors with weak RSSI, and (6) already connected persons with weak RSSI. Each of

lists with weak RSSI have low probability of establishing connection, so these lists
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Figure 5: Communication process between propagators

were postponed. Note that the corresponding IDs in each list will be addressed

according to the order of the arrival of the SOS message.

3.4 Message Deletion

If an immobilized person were rescued, the SOS messages that the immobilized

person distributed will mislead the rescuers as they would continue to search for

the immobilized person. To prevent this drawback, unnecessary SOS messages
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Priority Classification RSSI level

1 Immobilized persons Strong

2 Propagators Strong

3 Already connected persons Strong

4 Immobilized persons Weak

5 Propagators Weak

6 Already connected persons Weak

Table 3: List of SOSCast connection priority

need to be properly removed from the network as soon as possible. Illustrated in

Figs. 6 and 7 is the deletion processes of unnecessary SOS messages.

Figure 6: Deletion process in immobilized victim’s device

After being rescued, an immobilized person should now become a propagator

and continue propagating other immobilized persons SOS messages. During this

change in status, the immobilized person first deletes the information relating

to its own information from the holding SOS messages and indicate RESCUED
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Figure 7: Deletion process in mobile victim’s device

in the message field. The new propagator, i.e., the rescued immobilized person,

may now be able to exchange information upon meeting another propagator. If

the received SOS messages include rescued information, each propagator removes

the related information from the holding SOS messages according to the rescued

information. However, some people who had sent SOS messages and rescued,

may need to call rescue again by some reason like secondary disaster. They

can also create SOS messages, and these messages are not deleted by the old

rescued message. Note that the rescued information is maintained in the SOS

message. Therefore, rescued immobilized persons’ information is deleted during

propagating process.

3.5 Location Estimation

Based on the logged SOS messages, the rescuers can easily estimate the immo-

bilized victims’ location from the recorded GPS location information. Actually,

SOS messages will be propagated via mobile victims until these messages reach
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the rescuers. Note that, although SOSCast provides the same functions to both

mobile victims and rescuers, the difference lies in the capability to actually search

for immobilized victims. SOSCast can display locations of immobilized persons

and propagators on a map from collected SOS messages for the purpose of provid-

ing aid to the rescuers. In the display, if the GPS information of the immobilized

persons SOS message is incorrect or missing, the information will be useless. To

prevent that, the SOSCast also collects propagators’ GPS information where hav-

ing received it. Thus, as the number of propagators’ GPS information increases,

the location of the immobilized person will be estimated correctly.

3.6 Prototype implementation

To observe how the SOSCast application actually works, we conducted an experi-

ment using Android OS-based smartphones. First, the experimental environment

is discussed then the results are explained in the following sections.

Environment

Firstly, based on the above design, we implemented SOSCast as an Android

application. Then, we conducted a preliminary experiment in a residential area

to confirm the potential of SOSCast. As shown in Fig. 8, an immobilized person is

presumably trapped in a house while propagators walk along the street five times

in each of the five directions. Note that all participants have installed SOSCast

on their smartphones (Samsung Galaxy Tab SC-01C). Finally, the locations of

both the immobilized person and propagators will be indicated on the map when

a rescuer collects the entire SOS messages from the propagators.

Results

Shown in Fig. 8 are the locations of the immobilized person and the propagators

on a map which the rescuer can view on his or her own smartphone. During

the experiment, all propagators were able to communicate with the immobilized

person for every trial. As seen from the figure, the propagators were able to

receive SOS messages from the immobilized person within 10 m in average along

the directions 1, 2, and 5. Furthermore, even if the indicated location of the
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captured information is more than the average as in the case of directions 3 and

4, it is important to note that this implies the existence of an immobilized person

within the indicated perimeter. Also, even if an immobilized person has incorrect

GPS information or lacks it altogether, rescuers can estimate the location of the

immobilized person by utilizing the GPS information of propagators.

Figure 8: Experimental result on using the SOSCast application

3.7 Issues with SOSCast

Since SOSCast had some problems with it during the first application trial, im-

provements were accordingly done to make it more efficient. One of the problems

we found with SOSCast is that it has a limited search coverage. In the aforemen-

tioned experiment scenario, the walls of the building as a physical obstruction

have drastically lowered the communication range. We cannot expect a maxi-

mum range in a disaster-affected area where there are possibly many obstacles.

As the device coverage area may be limited to 10-20 m in radius, it is possible
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Figure 9: The problems of the original SOSCast

that some messages from the immobilized victims are missed. In Fig. 9 (1), for

example, while the mobile victim (or possibly a rescuer) walks through the search

path, his or her device may not be able to communicate with the immobilized

victim’s device (victim marked with “x”). Since the immobilized victim is located

outside the BT search coverage of the mobile victim’s device, it is not possible

to establish a connection between the devices. Thus, when the mobile victim has

passed through the search path, he will miss receiving the immobilized victim’s

SOS message.

In another case (Fig. 9 (2)), the SOS message will be missed when establishing

a connection has not been completed like when there are multiple immobilized

victims in one area. Since SOSCast requires a one-to-one connection, the mobile

victim may not have sufficient time to establish a connection with each of the

immobilized victims. Similar to the previous scenario, the immobilized victims

will eventually be outside the BT search coverage area when the mobile victim

has passed the search path.

SOSCast typically uses BT to communicate with other nodes. In order for

mobile victim nodes to receive SOS messages from immobilized victim nodes, a

communication has to be established via BT2. Also, as the SOSCast automatically

2It takes about 1-5 seconds to establish a BT connection before starting communication
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collect SOS messages, mobile victims are not involved in collecting them.

As an example, when the mobile victim has left the immobilized victim out-

side the device coverage, the immobilize victim will continue to broadcast SOS

messages until the opportunity of another mobile victim passing nearby. In this

case then, the immobilize victim will continue using the device and eventually

use up battery power and decrease the probability of being found. In another

scenario where there are several immobilized victims present in a similar point

location, the mobile victim node may not be able to accommodate all connection

requests one at a time. As the mobile victim continues to move farther, some

connections may not happen and eventually some immobilize victims may not

be accounted for. Therefore, it is important that we have to increase the op-

portunity that a connection is established between devices of both mobile and

immobilized victim. As such, by conserving battery, there is a higher chance that

an immobilized victim can be found due to the increased chances of transmitting

SOS messages.

3.8 Summary

The basic implementation and design of sending SOS messages by victims of

a very damaging disaster, namely the SOSCast application is discussed in this

section. By mapping estimated locations, we have shown that SOSCast has the

potential to locate immobilized persons based on this information. In SOSCast,

victims collect and propagate these messages which rescuers can use to estimate

locations of the immobilized persons by using the smartphone. In a disaster area

where conventional communication services are impaired, SOSCast can poten-

tially aid the work of rescuers as it can enable direct communication between

smartphones.

between nodes and exchange data.
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4. iSOSCast: Enhanced SOS message collection

in disaster-affected area

Improved SOSCast (iSOSCast) was developed to address the problems experi-

enced from the actual experimentation of the original SOSCast. In this section,

we present the construction of an information cluster of immobilized victim nodes

as a solution. The goal, thus, is to increase the opportunity of locating victims

in a disaster area by virtually extending the search coverage while saving battery

consumption.

To address the problems mentioned in Sec. 3.7, we propose the construction

of an information-sharing cluster (see Fig. 10) among immobilized victim nodes.

Making a cluster presents two contributions. Firstly, SOS messages of all im-

mobilized victim nodes in a cluster can be sent to a mobile victim node all at

once. Having this feature reduces the number of communications. The second

contribution is that the designation of representative nodes, which is explained

later on, virtually extends the communicable area of immobilized victim nodes.

Thus, such a clustering method improves the opportunities to connect with mo-

bile victim nodes and simultaneously extends the search coverage area virtually

while prolonging battery life. Moreover, this method ensures that the collected

messages withstand transmission to authorized rescue teams.

4.1 Selecting representative nodes

To efficiently make a cluster while lowering battery consumption, we begin by

employing representative nodes among immobilized victim nodes to collect SOS

messages within one hop. Each node promotes an immobilized victim node with

the highest remaining battery within one hop as a representative node. Each node

first sets a new BT device name including its own node ID, remaining battery

level, and blank representative node ID. After conducting a BT device search,

each node identifies a node with highest battery among the group, including

itself, as a representative. Each node then records the node ID of the promoted

node in the representative node ID. For instance, in Fig. 10, nodes b, c, and f are

representative nodes. Then, nodes a and d send their SOS messages to c, which

sends its SOS message to b. Nodes e and g then send their SOS messages to f .
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Figure 10: Information clustering process

Each representative node then stores the received SOS messages. Note that, as

nodes b and f are nodes with highest battery levels within their one hop neighbor,

they do not send their SOS messages. After selecting a representative node, a

normal node, i.e., non-representative node, directly sends its SOS message to its

representative node without the BT device search.

Considering only the above step, the SOS messages of all nodes may be divided

among multiple representative nodes because a representative node is passively

selected. Moreover, each immobilized victim node regularly monitors their re-

spective battery levels and constantly compares it with one-hop neighbor nodes.

If, for instance, the battery level of the current representative node goes below

a predetermined threshold, the immobilized victim nodes in the cluster select a

new representative node following the same process. In our case, we have chosen

15% as the threshold since Android-OS based phones typically prompt the user

to charge the device upon reaching 15%. If the remaining battery of all nodes is

below that threshold, the selection process is not executed. In the experiments,

we measure the lifetime of all the immobilized victim nodes until battery power

runs out.
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Table 4: Distribution of node roles

NODE a b c d e f g

Representative node c b b c f f f

One-hop c c a, b, d c, e d, f e, g f

neighbor nodes

Two-hop (c, a), (d, e) (e, d)

neighbor nodes (c, d)

Neighbor c b, (d, c)

representative (e, f)

nodes

4.2 Message sharing among representative nodes

When SOSCast is used, each representative node is assumed to hold all SOS

messages collected within a particular area. In the following discussion, we explain

the process of sharing stored SOS messages among representative nodes. When

collecting SOS messages from one-hop neighbor nodes, a representative node can

also obtain the information of two-hop neighbor nodes because the SOS messages

include the information of one-hop neighbor nodes, as shown in Table 4.

Note that, the notation of (c, a) shows that node c connects with node a. In

this case, node b recognizes nodes a and d within two hops, c knows e, and f

knows d. Then, since node b needs to know the representative node for nodes

a and b to share the SOS messages with neighboring representative nodes, node

b sends the stored SOS messages to a and d via c. However, as node c is the

representative node for a and d, node c updates the stored SOS message based

on received SOS messages and then sends the updated SOS messages back to

node b. By receiving the updated SOS messages from c, node b knows that c

is the representative node for nodes a and d. In the case of node f , it sends

the stored SOS messages to d via node e. When receiving the SOS messages,

node d forwards them to node c as it is the representative node for node d.

After receiving them, node c sends the updated SOS messages to nodes b and

f and, consequently, all representative nodes have shared all the SOS messages.

Note that, when the stored SOS messages are being updated, a representative
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node can send the updated SOS messages to neighbor representative nodes. By

constructing an information-sharing cluster, every normal node can obtain all

SOS messages from their representative node within one hop. Moreover, the

battery consumption of each node decreases due to reduction of the number of

communications. Lastly, the communicable area is extended virtually.

From the process, a mobile victim node can obtain the SOS messages from a

representative node all at once (Fig. 11a). Even if a mobile victim node cannot

connect with a representative node directly, it can obtain them from a non-

representative node in a short amount of time because the non-representative

node can forward the data from the representative node within one hop.

4.3 Communication between mobile node and

non-representative node

Figure 11b illustrates the process of how a mobile node can indirectly obtain

the accumulated SOS messages via a non-representative node. Generally as in

Fig. 11a, the immobilized victim activates the BT device into discoverable mode

and broadcasts BT pairing while the mobile node activates the BT pairing re-

quest. When the immobilize node receives an inquiry packet, it will send an

inquiry response to the mobile node that requested for BT pairing. The con-

nection begins when the immobilized node approves the connection request from

the mobile node. The representative immobilize node then sends the accumu-

lated SOS messages to the mobile node. As for BT usage between mobile node

and non-representative node, the same process occurs with the difference in an

added connection with the representative immobilized node. Similarly with the

communication process between a mobile node and a representative node, the

non-representative immobilized node first sends its own SOS messages to the

mobile node. Then, it requests for a connection with the nearest representative

immobilized node within one hop. Instead of the representative node directly

sending the accumulated SOS messages to the mobile node, it sends these first

to the non-representative node. When the non-representative immobilized node

has received the SOS messages, it will request a connection with the mobile node.

Finally, the mobile node receives all SOS messages from the cluster.
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(a) Communication process between mobile person and

representative immobilized person

(b) Communication process between mobile person and representative

immobilized person via a non-representative node

Figure 11: Communication processes among different nodes
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4.4 Simulation Results and Analysis

Evaluation via prototype systems

In a disaster area, immobilized victim nodes need to save battery as long as

possible in order to increase the probability of being rescued. To investigate the

lifetime of the smartphone using SOSCast, the implementation of the previous

method was compared with the proposed information-sharing cluster method. In

this experiment, six devices were set up in one location where one of the devices

was assigned as the mobile victim node and the rest as the immobilized victim

nodes The five immobilized victim nodes initially have full battery and each device

communicate to each other via BT.

In the experiment with the previous method, the mobile victim node commu-

nicates to each immobilized victim node every minute in order to obtain an SOS

message. With the proposed method, on the other hand, the immobilized victim

nodes first elect a representative node among them. Then, the mobile victim

node directly obtains the SOS messages of all immobilized victim nodes from the

representative node once every minute.

Figures 12a and 12b show the running time of the nodes implementing the

previous and the proposed methods, respectively. Whereas, Table 5 gives the

running time of each node in both figures. From the table, we can see that

the running time of some immobilized victim nodes in the proposed method is

extended. In the previous method, as each immobilized victim node does not

share their SOS messages, an immobilized victim node stops sending its SOS

message when it runs out of battery. At this time, the SOS message of the node

is not distributed anymore.

Table 5: Comparison of running times of each node between the previous and

proposed methods

Node A Node B Node C Node D Node E

Previous (minutes) 590 586 554 615 586

Proposed (minutes) 591 594 625 617 611
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(a) Using the previous method

(b) Using the proposed method

Figure 12: Node running time results in both methods
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In the results, SOS message distribution by Node C is terminated after 554

minutes, while that of Node D is 615 minutes. On the other hand, since each

immobilize victim node shares SOS messages among them as in the proposed

method, their SOS messages are distributed until Node C runs out of battery

after 625 minutes. Also, since the mobile node does not need to connect with all

nodes, it contributes to conserving the battery of mobile victim nodes by at least

2-8 % in the experiment.

Evaluation via simulation experiments

In the prototype system, we cannot exactly evaluate the scalability of the method.

As an alternative, however, we evaluate the performance by having a large num-

ber of nodes and provide the results though a simulation experiment with Sce-

nargie simulator. The simulation is needed to observe the difference of proposed

SOSCast with the original SOSCast. To illustrate this comparison, we show

results of the number of messages sent per device and percentage of battery con-

sumption. We focus on these parameters so we can compare the amount of load

between the original SOSCast and the proposed SOSCast, in a group of smart-

phones in general. Evaluating the lifetime of several smartphones is insignificant

in this case as it typically varies on how the devices are used in real situations

such as the type of smartphone, current position on the user, etc. In addition, the

communication device was set to use the abstract model with varying number of

terminals from 16 to 2,500 units for every run. Each simulation lasts for a period

of 36,000 sec when all messages are completely accounted for. Furthermore, the

message size of the SOS message sent by each device was about 40 bytes. This

value includes 15 bytes of device ID, 4 for the message, 8 for device GPS informa-

tion, 4 for the time communication was established, 8 for the GPS information

of the other device, and an optional 1 byte for the information on the main res-

cuer. Each terminal is approximately located 10 m away from each other with a

potential one-hop connection with neighboring nodes as in the model in Fig. 13.

Fig. 14 shows the comparison of the proposed SOSCast method and original

SOSCast routing in terms of the number of messages sent. For example, for

approximately 1000 nodes, the average number of messages sent by each device

is less than 100 when using the proposed SOSCast method. Whereas, when
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Figure 13: Simulation model

Figure 14: Average number of messages sent per device for a corresponding num-

ber of nodes

using the original SOSCast, the average number is more than 150 messages. The

graph in general shows that SOSCast with the information-sharing cluster method

requires less messages to send to account for all message from all nodes.
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In another simulation result as in Fig. 15, the percentage of battery con-

sumption is compared between using the proposed SOSCast method and original

SOSCast. The results of device battery consumption by representative nodes and

non-representative nodes (or others as in the figure) is further graphed in detail.

With the proposed SOSCast, the representative nodes clearly consumes more

battery than the nodes using the original SOSCast and the non-representative

nodes or others. As we employed representative nodes as a new factor, we found

the need to further investigate this factor in contrast with non-representative

nodes. That is, considering that representative nodes need to communicate with

other representative nodes aside from the non-representative nodes, then it will

obviously have to consume more power. Note that non-representative nodes only

need to with the respective representative nodes by one-hop, which results to

lower batter consumption. With the combination of both representative and

non-representative nodes, the overall average battery consumption is reduced

compared with the original SOSCast.

Figure 15: Percentage of battery consumption
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4.5 Summary

This section discussed an information-sharing cluster technique with reduced bat-

tery consumption in SOSCast. The aim is to effectively collect SOS messages from

immobilized victim nodes in a disaster area with collapsed communication ser-

vice. The SOSCast application was developed to support rescue operations for

finding immobilized victims. However, upon extended research on SOSCast, we

found that it is necessary to improve the search coverage for immobilized victim

nodes and find a way to collect SOS messages from immobilized victim nodes

while saving battery. Also, it is important that the SOS messages are kept until

all nodes disappear. Thus, as a solution, we propose the implementation of an

information-sharing cluster in SOSCast as an improved feature. In this way, we

ensure that all existing SOS messages are accounted for, and that these collected

messages until it reaches the authorized rescue teams even when all nodes run out

of battery. Evaluation by actual measurements was performed by comparing the

battery consumption of the SOSCast with information-sharing cluster and the

prior SOSCast. Moreover, performance evaluation was also done via simulation

where the battery consumption of the proposed SOSCast is compared with the

original SOSCast. Overall, the number of messages sent per device was reduced

and the battery consumption was less when using SOSCast with the information

sharing cluster compared with the original SOSCast. By extending the battery

life, the survival of these SOS messages is also increased.
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5. Using smartphones to gain weather

information for pre-disaster preparation

As mentioned previously, mobile communication devices or smartphones these

days have sensing and communication capabilities. With these functions, we

are able to observe current weather conditions at point locations whilst expecting

extreme events and anticipating the risks, for instance, in an event of an extremely

heavy rain.

First, when we say heavy rain, we refer to rain events that have rainfall rates

ranging from 30-50 mm/hr for up to 200 mm/hr in extreme cases. These type of

rain events are typically highly localized, approximately within 1-5km area, due to

regional heating as a byproduct of greenhouse effect especially in highly urbanized

places. When it suddenly rains heavily, which commonly happens for only within

an hour, there are risks of flash flooding or land mass movements (landslide) [38].

With insufficient lead time for preparation, the risk of inconvenience and getting

caught up in the disaster is highly likely.

Moreover, current sophisticated systems that monitor these potentially dan-

gerous rainfall systems are not effecient for most of the time. One reason is that

they sometimes can be very costly. Moreover, these systems usually cover thou-

sands of kilometers and are unable to pinpoint the heavy rain events occuring in a

few hundred meters. These system are also deployed in a few kilometers from each

other, unable to cover all areas that needs monitoring for these localized heavy

rains. Take for example the AMeDAS environmental monitoring system in Japan

where a network of 1,300 weather stations are deployed all over the country with

each station averagely distanced 17km from each other [19]. Some developing

countries like the Philippines have sparse, if not available, weather stations [6].

While radars and satellites are helpful in describing cloud presence and density,

it may still be insufficient in determining highly localized rain systems such as

squalls. This is especially dangerous in ubranized areas as with the climate trend,

considering that population density is very high putting civilians vulnerable to

the risk of city flooding. In the following discussions, Section 5.1 describes how

smartphones were used to investigate the influence of localized heavy rain on the

device. Section 5.2 explains how the radio signals were processed to find the re-
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Figure 16: Different weather types according to lead time, duration, coverage

area

lationship between smartphone-based measurements and heavy rain. Section ??

describes how smartphones can be used to support existing commercial sensors.

Lastly, Section ?? discusses one of the ways to ensure that smartphone-based

measurements are calibrated accordingly as a supporting information.

5.1 Measure the influence of localized heavy rain by using

smartphones

Despite the limited equipment and information resource, as with the case of

Philippines for example, there may be an alternative information resource that be

harnessed. Due to increasing demand for mobile communication, service providers

began putting up more and more microwave links to provide channels to users

even in the remotest of locations. These towers typically service to WiFi and

3G communications which are sensitive to rainfall at very high frequencies. If

the received signal level (RSL) is measured, there is a noticeable decrease in the

distribution in an event of a heavy rain passing over the link [24]. In this regard,
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Figure 17: Preliminary measurement setup

the investigation of RSL measurements of Wi-Fi and 3G as observed by the

smartphone was conducted inside the campus. Generally the goal was to be able

to design a warning system for localized heavy rains that is easily implementable

and low cost, i.e., by use of the smartphone. We particularly want to implement

such warning system for developing or least developed countries with little or

no access to sophisticated weather observation equipments. To find out if RSL

in smartphones are influenced by localized heavy rain, we set up the following

experiment as in Fig. 17.

The radio signals were measured using an Android-based smartphone3 located

a few meters from the Wi-Fi access point (AP)4 . The set-up is deployed nearby

a Live-E! sensor5 to obtain in-situ weather information on the location. The

3 Samsung P1000 Galaxy Tab with Android OS v2.2 (Froyo) and Samsung Galaxy Nexus

with Android OS v4 (Ice cream sandwich)
4For the 2.4 GHz link, we used a JRL710 AP2 802.11 b/g Wireless LAN AP while that

of the 5 GHz link was a Buffalo 802.11 a/b/g/n Wireless LAN Broadband router (WZR-

AMPG300NH)
5This particular Live E! sensor was a Vaisala Weather Transmitter WXT520
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Figure 18: 3G RSL measurement results

radio signals were measured by an application developed on the smartphone to

constantly observe and log the data locally. To obtain the 3G signal strength

([45],[18]), we obtain the Arbitrary Strength Unit (ASU) and derive the UMTS

signal value in dBm by the following conversion: dBm = ASU – 166. ASU

is a constant number that describes the mobile phone signal strength and for

UMTS networks, it ranges from -5 to 99. As for the 2.4 GHz, the smartphone

was measuring signal strengths of the beacon signals from the access point. The

application directly provides the real signal strength in dBm Wi-Fi signals and

the obtained information is stored locally as well. These measurements were done

every minute on a daily basis independently as in the setup.

Note that in this experiment, we were observing three kinds of communication

channels mainly 3G, 5GHz and 2.4GHz WiFi. In general, 3G measurements

showed limited effect on signal attenuation under rain condition as shown in

Fig 18.

The 3G-network provider under investigation was of NTT Docomo FOMA,

W-CDMA/HSDPA/HSUPA with 2100 MHz frequency. One of the results for

example on June 21, 2012 rain event, reveal fluctuations on the signal between -97

and -99 dBm when it was raining at 30 mm/hr and. Compared with fluctuations
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Figure 19: 2.4G Wifi RSL measurement results

from -98 to -97 dBm when there was no rain, these effects are currently unclear

as to whether it was mainly affected by rain or not.

In the rain event of January 19, 2012, rainfall rates peaked for up to 10mm/hr

(Fig. 19).

However, the intensity was insufficient to be considered heavy rain as to signif-

icantly affect the RSL of the 2.4 GHz WiFi. Thus far, we are unable to determine

clearly what could have been the effect for this frequency in an event of 30mm/hr

or more rain event.

Meanwhile, 5 GHz RSL measurements showed obvious effects of heavy rain

as in Fig. 20. At the maximum rain rate of 64 mm/hr, a 4 dBm attenuation was

observed. Overall, however, there is a need for more investigation with multiple

links and frequencies considering the few chosen results.

5.2 Data processing by sample measurements of 5GHz WiFi

While 5GHz WiFi has proven to be useful among other communication channels,

we used the data to understand further how RSL degradation can be linked to

localized heavy rainfall. This section discusses methods of preprocessing raw RSL
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Figure 20: 5GHz Wifi rsl measurement results

data in preparation for exploratory data analysis and cross correlation function

to find out its relationship with rainfall rate.

Sliding Window

The original measured 5 GHz WiFi data are RSLs observed every minute from

beacon signals received from the AP. On a normal basis, the RSL in 5 GHz would

usually be observed between -100 to -80dBm. However, in other data, the values

reached up to -200dBm as in Fig.21. This is unusual for radio signals especially

that of Wi-Fi since the lowest receiver sensitivity [19] of the WLAN receiver

(Broadcom BCM4329) is -90 is dBm. We found that in Android development,

the instance of such a value in fact indicated a dropped signal. This value is

in fact pre-assigned and hardcoded in the program when it detects no signal

from the source. As such, the moving median window method had to be applied

to eliminate this phenomenon. This method, as illustrated in Fig. 21, is done

such that the median is determined for every 5 for up to 10 samples per window

(window size, WS).

The window is then moved by a certain number of units (overlap size, OS)

until it has gone through all the samples.
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Figure 21: Details when processing raw RSL data

Similarly applied to RSL, the weather parameters were also given the same

treatment to preserve consistency in analysis and sample quantity. To determine

which WS and OS would significantly retain the original RSL information, we

investigated with different combinations to see which combination would result

to samples nearly similar to the original. Also, by choosing the appropriate WS

and OS, we retain significant values from the original data set. Results showed

(Fig. 22) that by increasing both values simultaneously or one at a time would

decrease the number of produced samples.

For this case, the minimum value of 5 units for WS with WS-1 as the OS

was considered for the instantaneous change in weather conditions for guerilla

rain.rain event with WS=5 and WS=10 with both having OS=WS-1.

Exploratory Data Analysis (EDA)

The primary approach to compare and contrast smartphone data with weather-

related parameters is to perform several methods of EDA. Firstly, a scatterplot of

the RSL in comparison with temperature, humidity, pressure, and wind is plotted

in Fig. 23.
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Figure 22: Preliminary processing of raw RSL data

When RSL was plotted with rain, no significant trend and/or threshold was

observed even for other rain events with maximum rainfall rates of 50mm/h. For

humidity, however, it can be observed that it there is a dense concentration of

points at the beginning and at the end of the negative skew of the LOESS (locally

weighted scatterplot smoothing) as in the solid curve line (Fig. 24).

We assume then that RSL may be related to humidity, such that, in the next

section we discuss the results of cross-correlating humidity and RSL.

Cross-correlation Function (CCF)

With the assumption that RSL is related to humidity, we applied CCF to de-

termine the relationship. First, we examine the entire data in a day (Fig. 25)

then investigate further only when there is rain actually happening (see enclosed

part).

Note that for the RSL in Fig. 25, the LOESS was calculated before applying

the CCF. Even with the processed RSL data, noise is still evident in the resulting

graph as in Fig. 27. LOESS, as previously mentioned, is one technique to eas-

ily eliminate noise in the data by estimating weights based on the samples and

produce values that are almost similar to the original.
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Figure 23: Scatterplots of RSL values with temperature, wind speed, humidity,

and pressure.

The CCF is defined by the following equation for continuous data sets:

(f ? g)(t) =

∫ ∞
−∞

f∗(t)g(t + τ)dτ (1)

where f ∗(t) is compared to g(t) for some lag τ , which in this case is the maxi-

mum number of samples minus one. Note that, f ∗ is the notation for the complex

conjugate of f . The reason for choosing such lag is to maximize the comparison

between two time series to get the highest resolution especially for very short-term

analysis of guerilla rains. For a guerilla rain event on Aug 30, 2012, a maximum

of -0.6 cross-correlation can be observed. The reason for calculating the CCF is

not only to provide evidence for the potential relationship of 5 GHz attenuation

signal to humidity, but also to investigate the probability of deriving humidity

levels from RSL when there is no sensor available for it in the smartphone.

This section discussed methods of analyzing raw radio signal data, mainly of

the 5 GHz WiFi, and the challenges of finding relationships of it with weather
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Figure 24: Scatterplot of RSL vs. humidity for summer 2012 having averagely

50mm/hr of rainfall rate. The solid line represents the LOESS while the dotted

lines represents the spread of LOESS.

Figure 25: CCF results from an entire day measurement
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Figure 26: CCF results of the actual rain event duration

parameters. It was not clear whether the underlying results presented potential

relations between humidity and RSL. In this current measurement system, there-

fore, several limitations were observed. Firstly, the location at which the system

was deployed did not experience as much strong rains as desired. Therefore, only

a few data sets were found significant for processing. Secondly, this measurement

system is the only one link being observed. It would have been helpful to be

able to observe multiple links, such that a trend can be formalized even for a few

guerilla-like rain events. In addition, the system currently relies on a continuous

power supply, such that no significant data can be recorded like what happened

in the extreme rain event on August 14, 2012 [20]. Lastly, retrieval of the refer-

ence Live-E! data was occasionally inconsistent when rain occurs. The problem

may be due to the network delay and load as the data is obtained by sending

request to the sensor. Also, the sensor has limited sensitivity to precipitation and

therefore another reference for on-site weather data is needed.
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5.3 Summary

This section discussed methods of analyzing raw radio signal data, particularly

of the 3G and WiFi of both 2.4 GHz and 5 GHz, as a preliminary investigation

to detect localized heavy rain events for our design of a warning system. We

found that there is consistency in the values of humidity for any rain event and

it may be a key to understand the behavior of radio signals in describing local-

ized heavy rain events. In addition, EDA results of only the 5 GHz WiFi signal

measurements showed significance that is potential for detecting localized heavy

rain from its formation to dissipation. It showed consistency in trends more than

the findings from 3G and 2.4 GHz radio signal measurements. Furthermore, find-

ing relationships of the measured radio signals with weather-related parameters

presented challenges of limited data sets and measurement points.
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6. Use smartphone measurements in support of

existing commercial sensors

To observe ground weather conditions with increased spatial resolution, we focus

on near-surface measurements by consumer handheld sensors and commercial

weather stations. In this chapter, we present our conceptual design of a near-

surface weather observation.

6.1 Measurement experiments using different sensors

We conducted two kinds of experiments to examine the difference in measurement

values using different sensor types. We focused on temperature as the sensor is

most common to several of the devices used [4, 35, 37, 40, 41]. In both setups, we

used digital and analog handheld sensors as well as weather stations and recorded

temperature values every minute.

In the first setup, to see how much difference in measurement values each

sensor produce, all devices were simply deployed near each other where a short-

term observation was done on a fair day with low-wind condition (Fig. 27).

Figure 27: First measurement setup using different sensors
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Figure 28: Measurement results of the (A) raw and (B) calibrated temperature

values observed by different sensors

According to the raw temperature measurement results in Fig. 28(A), the Sen-

sordrone exhibits temperature values that are averagely higher than the Vaisala

by 4.5 ◦C while the others differ by 1 ◦C.

We found that the absolute value of each sensor measurement is different

but with similar trends. To deal with erroneous values from multiple devices

measuring the same event, these were calibrated based on a relatively reliable

reference device. Based in the first setup, the values measured by Vaisala was

chosen as reference being a fixed standard commercial weather sensor. In this

case, calibration was performed by taking the absolute difference of each time-

series value from Sorayomi, Sensordrone, and Davis from the corresponding values

by Vaisala and solving for the average difference for each sensor. For example, as

in Fig. 28(A), the value of 31 ◦C by Sensordrone A in the first minute is subtracted

from 26 ◦C by Vaisala in the same minute and thus, the absolute value is 5 ◦C.

This will be done for the next 2 to 9 minutes and the calculated average is 4.5 ◦C,

for instance. This value will then be subtracted from the values by Sensordrone

A, which produces 26.5 ◦C as in Fig. 28(B).

In another experiment, ground temperatures were sampled every minute for
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Figure 29: Second measurement setup using different sensors

up to approximately 20 minutes in designated locations as indicated in Fig. 29.

The reason for having this type of setup is to assess the variation in the

observed values in terms of distance and time. To find out the difference in

measurement values of each sensor, if any, by how far they are located to each

other and of the differences in deployed locations, the distances were varied from

a minimum of 100 m to 200 m maximum distance depending on the field area

limit under observation. Except for the Davis and Vaisala instruments, only the

locations of the handheld sensors were varied by 50 m which were recording tem-

perature values for every 20 minutes in each location. The arbitrary minimum

sampling time was set to 20 minutes so that the ratio of the variation in measure-

ments may be determined. Moreover, the minimum distance was set to 100 m in

the beginning of the measurement to establish it as standard spatial resolution for

this study. Finally, the distances were varied by 50 m to determine if the spatial

resolution can be extended up to 50 m if significant differences in measurements

is observed.

In the second experiment, the same calibration process was applied within the
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Figure 30: Result of measurement values from all sensors measuring at varying

distances at different time durations

similar sets of measured data. The results6 in Fig. 30 shows that temperature

values were significantly lower later in the day.

In this case, however, there needs to be a process of choosing the reference

device as the distances were varied. In general, we determine the reference as the

device having a fixed location and is only 100 m away, with 100 m considered to be

the highest spatial resolution. For example, in the case of the first measurement

set of Sensordrone A, the reference device was Davis and all of its measurements

were calibrated to it. In the case that a reference device cannot be determined,

the particular sensor has to be calibrated with a neighboring sensor that has been

calibrated to a reference within the 100 m2 grid. Generally, therefore, all sensors

must be calibrated within the grid area with at least one device calibrated to a

reference; or to the nearest device in another grid that has been calibrated to a

reference.

6Sorayomi B did not perform further measurements during 17:33-17:53 due to a limited area.
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6.2 Issues to address based on experimentation

The most obvious issue experienced in the experiments was the large difference in

the measured temperature values for a small area. To deal with it as with big data,

designating a reference point value within a particular grid area and calibrate

other measurements to it by our simple method can be a solution. Following

that, however, we may have to evaluate which reference device to select. A

straightforward process would be to assign a device in the relative center of a

grid, one which is not changing locations as we also deal with mobile sensors.

More importantly, not all weather instruments can have the same quantity of

sensors. We propose to utilize the BT device in smartphones to compensate for

parameters not being to measure for the lack of it in the device. We can deal with

insufficient weather-related information at a certain point location by querying

for such information from nearby nodes or sensors. We do this via BT wherein

the smartphone broadcasts a pairing request for BT-enabled devices within a

maximum of 100 m perimeter and request, for instance, wind speed data at a

certain point in time.

Lastly, a larger issue would be the resolution of a reliable representative value

and a way to aggregate the data. With enough trending weather information of at

most 45 data, we can possibly determine the distribution of the change in weather

measurements and directly infer on a representative value at certain grid points.

This also includes the RSL measurements that we are proposing to integrate

with the required weather information. We can look at the distribution of RSL

in among several devices in support of humidity measurements, for instance. To

gather all information, we rely on the smartphone to directly send the measured

information to our central database.
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6.3 Summary

This section discussed a conceptual design of a near-surface observation and

measurement system using multiple distributed devices for weather observation.

Based on our partial implementation using weather stations and handheld sen-

sors, we found the data quality differs among devices in a very small area of 100

m grid.

The advantage of our system design is the ubiquitous acquisition of near-

surface weather observation measurements using smartphones that can either

have embedded sensors for weather or have external sensors integrated with it.

We contribute to finding new data reliability solutions for multi-device weather

sensor integration and big data analytics with our on-going implementations.
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7. Calibrating smartphone-based weather

measurements via Pairwise Gossip

Similar to how weather instruments are calibrated and maintained, however,

smartphone-based data should undergo similar data correction processes to yield

reliable synoptic weather data. Therefore, in this chapter, we investigate how

to correct or adjust smartphone-based environmental data even when the de-

vice is normally used as a smartphone. Using commercial weather instruments

and built-in smartphone sensors, we adjust the device-based measurement with

a heuristic-based pairwise gossip algorithm. In our general setup, fixed sensors

like the commercial weather stations are assumed to produce proper informa-

tion and therefore, the majority of the adjustments are to be performed on the

smartphone-based data. To do so, we consider the basic context-based infor-

mation such as acceleration to observe user activity and adjust the measured

information accordingly.

Quantitative estimation of the current environmental conditions, such as tem-

perature, humidity, and pressure allows general forecasting services to have an

outlook of the weather in the next few minutes partly based on ground surface

information. If the estimate is far from actual conditions, this could remarkably

affect the calibration with other weather instruments and eventually, the fore-

casting model outputs. Therefore, if we could accordingly adjust the values from

the source in reference to a relative ground truth, then we may be able to mit-

igate forecasting errors from the lowest level of computation. The formulation

of a heuristic-based pairwise gossip algorithm that will adjust pressure values as

measured by the embedded sensors in the smartphone based on a normal usage

is a contribution of this work. Adjusting the smartphone-based value when the

user is stationary or moving requires the reference measurements of a weather

station as our established ground truth. In this way, it does not require complex

formulations to easily calibrate the pressure sensor on the smartphone.
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7.1 Related Work

“Crowdsourced” environmental data is largely affected most especially by how

individuals are using their devices when data is taken. Several surveys like [14],

[20], and [1], for instance, reveal that individuals would typically keep the devices

inside their shirt or trousers pockets or inside shoulder bags or backpacks. Al-

though these survey results were mainly used for activity recognition, we expect

that measurements performed in such instances may offset the ideal measured

value and notably affect the accuracy and reliability of environmental analysis.

Thus, in [29], it has been emphasized that calibration is important in sensor net-

works to avoid unreliable measurements. This is typical for environmental sensors

which weather forecasts rely on and significant for crowdsourced data affected by

several human factors. Furthermore, calibration allows for the identification of

errors in the system that may be attributed to offset faults, gain faults, and drift

faults. While calibration is often a difficult task, it can be typically implemented

in sensor networks before they are deployed or while they are on deployment.

An example of calibration that is performed on sensors in-situ is the work on

target detection using low-cost sensors as in [39]. The study proposed a cali-

bration algorithm based on feedback control theory and a combination of data

fusion and Bayesian detection models to properly identify a target exposed under

the sensors. Results from small-scale testbed and simulation using real vehicle

detection data has proven that target detection using their algorithm achieved op-

timal performance. Meanwhile, another approach to calibrating sensor networks

is based on a gossip protocol [32]. The goal was to estimate a signal signature

based on the collective sensor node values while calibrating the values at the same

time. Distributed processing techniques were applied to uncalibrated sensors in

the network to correct them and determine the signal pattern. Based on their

system model and the gossip-based distributed algorithm, the Distributed Sig-

nature Learning and Node Calibration (D-SLANC) algorithm was derived. This

algorithm enables local calibration among sensor nodes and addresses the global

estimation problem.

Similarly, we would like to address faults with the embedded smartphone

sensors with high-end commercial weather stations as our relative ground truth.

In this way, we may be able to utilize the smartphones as a network of weather
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instruments that can provide general forecasting services with sufficient synoptic

ground weather information for their forecasts. Thus, using analytical techniques

of context recognition like in [9] and [27] and gossip-based concepts, we would

like to investigate the effect of placing the device inside a shoulder bag with some

user activity in our aim to correct embedded smartphone sensor measurement at

the device level.

7.2 Investigation of smartphone sensor data as affected by

user activity

Based on the survey results of mobile phone usage provided in [20], 35% of the

respondents put their devices inside a bag. This is greater than both the 30%

of respondents who put it inside their trouser pocket and 13% inside the chest

pocket. Therefore, considering these statistics, we chose to observe first the effect

of placing the device inside a bag using two experiments. Using several models

of Samsung smartphones listed in Table 1, we investigate on the pressure data

having the sensor common to all devices in the list, while the device is measuring

from inside a shoulder bag. Surface pressure is an indication of the changes in at-

mospheric forces that is helpful for meteorologists to predict what kind of weather

we will be experiencing. For now, we simply focus on the pressure readings for the

weather measurement since the environmental sensor is most common to some

smartphone models which are currently being manufactured. Each device is then

installed with an Android application that we developed, which logs the available

sensor data for every second. The application, in general, samples the instanta-

neous measurement of the embedded smartphone sensors at every second then

continuously logs these values as a CSV file in the internal device storage.

We used two units of the Samsung S3 models and one unit each of the Samsung

Galaxy Nexus and S4 models, subjecting four devices overall in both experimen-

tal setups. Both experimental setups used the same shoulder bag by the same

user to perform the measurements. Motion sensors, such as the gyroscope, ac-

celerometer, and magnetometer were observed in three dimensions subjective to

the device orientation. Meanwhile, environmental sensors like light, proximity,

pressure, temperature, and humidity were recorded as is. In both experiments, we
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refer our readings to high-end commercial weather stations, such as the Vaisala

WXT520 [40] to provide us with measurements for our estimation reference. It

is important to note that, we are using several devices, each of which has a par-

ticular margin of error. As for the Vaisala, it has an acceptable error of ±0.5

hPa considering that it has been calibrated according to standard. The pres-

sure sensor in the smartphones has a maximum absolute error of 4 hPa by the

specifications according to [25]. Considering these errors, we can not directly

compare the accuracy of smartphone devices to the Vaisala since each instrument

was developed for different purposes. However, we find that the pressure sensors

in the smartphones can be proven useful if calibrated accordingly and if there is

potentially enough data. By sufficient data, this could mean having at least one

available smartphone device in a 100 meter unit area.

Figure 31: Setup of the stationary user experiment

The first experiment was conducted to investigate the precision of the baro-

metric readings by smartphones compared with that of the weather station. A

bigger picture of this scenario is when a user is idling nearby a fixed weather

station and with the device measuring on the background. In the setup shown

in Fig. 31, the user was required to stand one meter from the reference weather

station while carrying the shoulder bag with the devices inside it. A meter away

from the weather station minimizes the influence on the instrument. The mea-

surements were performed for three separate afternoons while sampling sensor
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data for 10 minutes in each event. Studies on context recognition would typically

sample for one to a few minutes to get enough data set. For similar experiments

with ours, the duration may vary depending on the desired sample size. In our

case, we decided on 10 minutes to get enough samples of both environmental

and motion sensors. Also, the reference weather station measures every minute

and 10 samples is sufficient to describe the surface pressure. Before determining

how precise the smartphone-based pressure readings with that of Vaisala, we first

pre-processed the data. As the observations were logged in seconds, we wanted to

match the per minute resolution of the weather stations. To do so, we sampled an

overlapping window on the same minute (60 units) and determined the median.

We use these values of median per minute and implemented them in the following

uncertainty range equation α as in Eq. 2:

α = (X(t)− xmin(t)) + (xmax(t))−X(t)) (2)

where X(t) is equal to
∑n

i=1 xi(t) + xref (t) divided by N for n = 4 smartphone

devices used and N = n + 1 = 5, which includes the reference weather station

having a measurement value of xref (t). Put simply, it is the the average of the

barometric pressure values of both smartphone devices and weather station at

time t. Then, we determined xmin(t) and xmax(t) by comparing pressure read-

ings from among the 4 devices while excluding the weather station since it is a

reference. After comparing the smartphone-based pressure readings, we deter-

mine the highest pressure value as xmax(t) and the lowest as xmin(t). In general,

determining α can give us a quick and general idea on how much the pressure

readings in the smartphone differ with the Vaisala WXT520. Moreover, it is also

helpful in knowing how close are the pressure readings among different device

models. A sample calculation result can be found at Table 6 based on the sample

data in Table 7 where the average uncertainty of smartphone-based sensors for 10

minutes of observed barometric pressure was 2.13 hPa. Therefore, in our actual

measurements of a stationary user with the devices in the shoulder bag, we can

express that the pressure may be approximately ±2 hPa precise with Vaisala in

reference to the sample calculations.

The second experiment, as in Fig. 32, was performed to observed the effects

of user motion on the pressure readings on the smartphone.
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Table 6: Uncertainty calculation results based on the Vaisala WXT520

Time X(t) xmin(t) xmax(t) Uncertainty

14:00 990.47 989.20 991.28 2.0800

14:01 990.44 989.15 991.29 2.1400

14:02 990.48 989.19 991.31 2.1200

14:03 990.47 989.17 991.34 2.1670

14:04 990.41 989.14 991.29 2.1500

14:05 990.41 989.15 991.27 2.1200

14:06 990.34 989.12 991.24 2.1200

14:07 990.35 989.14 991.24 2.1000

14:08 990.35 989.12 991.31 2.1900

14:09 990.34 989.14 991.24 2.1000

Table 7: Sample pressure data for uncertainty calculation

Time Vaisala S3(1)x̃ S3(2)x̃ GalaxyNexusx̃ S4x̃

14:00 991.10 991.28 991.14 989.61 989.20

14:01 991.10 991.29 991.13 989.55 989.15

14:02 991.10 991.31 991.20 989.62 989.19

14:03 991.10 991.34 991.13 989.59 989.17

14:04 991.00 991.29 991.10 989.53 989.14

14:05 991.10 991.27 990.98 989.54 989.15

14:06 991.00 991.24 990.84 989.49 989.12

14:07 991.00 991.24 990.79 989.56 989.14

14:08 991.00 991.31 990.78 989.54 989.12

14:09 991.00 991.24 990.79 989.51 989.14

As a basic scenario for our proposed system, we imagine a user passing by a

reference sensor, which is the kind of user motion that we would like to investigate

with this experiment. With the same setup, the user at this time was asked to

move around the weather station by walking in a leisurely manner. Each set was

composed of 10 rounds, to obtain sufficient sample, that was about 7 minutes

long while pausing for 2 minutes in between sets. The movement pattern was
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Figure 32: Setup of the moving user experiment

designed to estimate the duration of the rounds so we can replicate the same

duration, which was 7 minutes for each round. The pause was done to compare

moving and stationary events and serve as a marker between sets. Figure 33

illustrates the raw readings of pressure and accelerometer data taken from the

Samsung S4 device as an example. In the graph, the stages of walking and pauses

can be easily distinguished by the instability and stability of the accelerometer

readings, respectively.

To closely examine the difference between pressure measurements during the

presence or absence of movement, we first divided the raw pressure data into

partitions of the corresponding stable and unstable measurements of acceleration.

This division is shown in Fig. 33, where we have three sets of user movement

which correspond to an unstable acceleration and three sets in which the user is

not moving which correspond to a stable acceleration. Then, we calculated the

variance for each partition and the results are shown in Table 8.

Examining the variance of pressure measured between movement and inac-

tivity can indicate the ability of the sensor to stabilize its readings even when

subjected to physical disturbance. Weather stations generally follow a standard
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Figure 33: Division of moving and stationary partitions each at 7 and 2 minutes,

respectively

Table 8: Sample result of calculated variance between partitions of moving and

stationary user

Partition Name Variance

Set A 0.0021

Pause 1 0.0018

Set B 0.0025

Pause 2 0.0013

Set C 0.0032

Pause 3 0.0017

for fixed setups to provide accurate and precise readings uniformly without hav-

ing to consider the effect of movement. However, as we are dealing with portable

sensors, this is one aspect that we need to further consider for producing reliable
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measurements similar to that of fixed weather stations. We hypothesize then,

that the variance of the sensor is higher during movement than when the user is

inactive, and thus, we can presume that the sensor is unstable and stable, respec-

tively. To verify this, an upper one-tailed F-test was performed between phases of

walking and inactivity as shown in the results of Table 9. The results show that

the F value for all comparisons is greater than the Fcritical values, which rejects

the null hypothesis that the variances are equal and proves that the variance of

pressure values during movement is higher than when the user is inactive.

Table 9: F-test result for a sample observation

Partition F Fcritical

Set A vs. Pause 1 1.18 0.92

Set B vs. Pause 2 1.91 1.49

Set C vs. Pause 3 1.82 1.45

Overall, we found that the smartphone pressure sensor reading has an un-

certainty value of ±2 when compared with Vaisala WXT520 from our first ex-

periment. Moreover, we verified via an upper one-tailed F-test that the variance

of the smartphone-based pressure readings is higher during user movement than

when the user is stationary. Although the pressure readings were not explicitly

proven to be accurate in the experiments, this would still imply that the embed-

ded sensor is more stable in providing pressure readings if the user handling the

device is stationary as opposed to when the user is moving.

7.3 Smartphone-based sensor calibration via

pairwise gossip

Based on our findings on the effect of motion on smartphone sensor readings of

pressure, we present our heuristic-based pairwise gossip algorithm. To calibrate

embedded smartphone sensors with respect to a fixed weather station, our al-

gorithm relies on the variance of the pressure readings. It is also based on the

actual difference of the pressure readings between the smartphone-based sensor

and the fixed weather station. Gossip algorithms [5] are generally used for the
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classic estimation of values in a network by distributed averaging. This particular

algorithm has its advantages for distributed averaging in sensor networks as it

enables quick and efficient analysis of distributed data over sensor networks espe-

cially when faced with several constraints as emphasized in [2]. Such constraints

include the lack of centralization, dynamically changing network topology, and

sensor hardware limitations. The standard gossip algorithm is in the following

form:

x(t+ 1) = W (t)x(t) (3)

where W (t) is random weight matrix and x(t) is the current value of a node in a

network. Ideally for gossip algorithms, the weights must converge to a value of 1.

In actual pairwise gossiping as stated in [5], random pairs of neighboring nodes

exchange their information and calculate the average of their values as some time

t and updates their values with the average, thereafter. Note that, we apply the

same principle of pairwise gossiping by maintaining a one-to-one pairing with

the weather station to calibrate the embedded smartphone sensors. However,

instead of a random weight assignment, we calculate the weights that equate to

a unit value based on the variance of the smartphone-based measurement and

the actual difference of the measurements between the smartphone-based sensors

and reference weather station.

Let us first consider the following sensing model equation [5] as in Eq. (4:)

zi(t) = Hiθ + wi(t) (4)

where θ is the value that we want to estimate with our actual pressure readings

in the smartphone. In our case, we assign it as our reference value which is the

weather station measurement. Meanwhile, Hi and wi(t) are the gain and offset

of the system in place, respectively. Ideally, Hi = 1 and wi(t) = 0 are true if,

for instance, the embedded pressure sensor in the smartphones behaves similar to

Vaisala. However, in reality, we have the effects of the surrounding environment,

user activity, sensor limitations, etc.

To explain this concept further, we formulate the following heuristics-based

pairwise gossip algorithm to adjust and update the pressure readings in the smart-

phone as in Eq. 5:

63



xi(t+ 1) = Wαθi(t) +Wβxi(t) (5)

where xi(t + 1) is our updated pressure reading (zi(t) or y). Meanwhile, Wαθi(t)

(Hiθ or mx) is our reference value θ for some ratio of Wα. Finally, Wβxi(t)

(wi(t) or b) is some ratio of Wβ based on the variance %2 = (xi(t) − xi(t))
2

and actual difference d(t) = |θ(t) − xi(t)| . The current heuristics algorithm is

applicable to a one-to-one calibration of smartphone-based data with a reference

weather station. To use the algorithm, the scenario requires that the smartphone

is measuring within coverage area of the weather station and consequently, located

adjacent to the weather station. Thus, Eq. 5 presently does not take distance

into consideration in the calculation. Furthermore, it follows that Wα + Wβ = 1

considering that the weights ideally converge to one. And as for our heuristics-

based pairwise algorithm, since we only need to compare two values every time,

we simply assigned Wα = 1−Wβ where Wβ is the ratio of %2

|θ(t)−xi(t)| . To further

understand the process of obtaining Wα and Wβ, we will use a data set of raw

barometric pressure logged by all devices used from one of our measured events

as in Table 10.

Table 10: Sample raw data from a 10-minute event

Time Samsung S3(1) Samsung S3(2) Galaxy Nexus Samsung S4

14:00:00 991.39 991.11 989.57 989.16

14:00:01 991.35 991.14 989.60 989.16

14:00:02 991.33 991.16 989.58 989.16
...

...
...

...
...

14:09:59 991.23 990.90 989.58 989.14

Referring to S3(1)raw as a more specific example for our calculation process,

we first determine the median per minute of the raw pressure readings S3(1)raw.

This will produce S3(1)x̃ values that are in the similar temporal resolution as

the weather station measurements of pressure. Refer to Table 7 for a sample

result of these median values per minute for each device. Then, we calculate the

variance of the pressure readings of the raw data of each device per minute or

V arS3(1)raw(t) for example. Next, we obtain the absolute difference of pressure
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readings between the calculated median per minute, AbsDiffV aisala−S3(1)x̃(t) for

instance, at each device and of the weather station measurements. Refer to Table

11 for the results of Samsung S3 as an example of these calculations.

Table 11: S3(1) calculation result of Variance and Absolute Difference

Time Vaisala S3(1)x̃ V ar(t) AbsDiff(t)

14:00 991.10 991.28 0.0049859 0.17978

14:01 991.10 991.29 0.0037714 0.19140

14:02 991.10 991.31 0.0037007 0.20952

14:03 991.10 991.34 0.0090520 0.23600

14:04 991.00 991.29 0.0046557 0.29380

14:05 991.10 991.27 0.0047261 0.16914

14:06 991.00 991.24 0.0055904 0.23865

14:07 991.00 991.24 0.0054008 0.23590

14:08 991.00 991.31 0.0056691 0.31200

14:09 991.00 991.24 0.0041641 0.24316

Then, we consider the effects of the user motion via the variance of the

smartphone-based readings and the actual difference of the readings between

the smartphone-based sensor and the weather station. We do this by calculating

the ratio between %2(S3(1)raw(t) and |V aisala− S3(1)median| , which we refer to as

our Wβ. Then, we obtain Wα by 1 −Wβ considering the prior weight condition

that requires the weights equal to one. Finally, using these calculated weights,

we can update the value of xi(t+ 1) as in Table 12.

The resulting adjustments have significantly transformed the measurements

and those measurements are now very close to the reference values as shown in

the comparison graph in Fig. 34. Each device model essentially has different

values of Wα and Wβ as reflected in some sample values in Table 13 and Table

14, respectively.
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Table 12: S3(1) calculation result of W (t) and xi(t+ 1)

Time Vaisala S3(1) Wα Wβ = 1−Wα xi(t+ 1)

14:00 991.10 991.28 0.027733 0.97227 991.10

14:01 991.10 991.29 0.019704 0.98030 991.10

14:02 991.10 991.31 0.017663 0.98234 991.10

14:03 991.10 991.34 0.038356 0.96164 991.11

14:04 991.00 991.29 0.015847 0.98415 991.00

14:05 991.10 991.27 0.027943 0.97206 991.10

14:06 991.00 991.24 0.023425 0.97657 991.01

14:07 991.00 991.24 0.022894 0.97711 991.01

14:08 991.00 991.31 0.018170 0.98183 991.01

14:09 991.00 991.24 0.017125 0.98287 991.00

Figure 34: Comparison of pressure per minute before and after adjustments
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Table 13: Calculated Wα of different device models

Time Samsung S3(1) Samsung S3(2) Galaxy Nexus Samsung S4

14:00 0.97227 0.84940 0.99894 0.99937

14:01 0.98030 0.81662 0.99896 0.99942

14:02 0.98234 0.93642 0.99852 0.99945

14:03 0.96164 0.85621 0.99615 0.99890

14:04 0.98415 0.95145 0.99813 0.99932

14:05 0.97206 0.92999 0.99847 0.99957

14:06 0.97657 0.97966 0.99752 0.99920

14:07 0.97711 0.97323 0.99998 0.99971

14:08 0.98183 0.98382 0.99859 0.99926

14:09 0.98287 0.96791 0.99768 0.99845

Table 14: Calculated Wβ of different device models

Time Samsung S3(1) Samsung S3(2) Galaxy Nexus Samsung S4

14:00 0.027733 0.15060 0.0010565 0.00062344

14:01 0.019704 0.18338 0.0010387 0.00057949

14:02 0.017663 0.063578 0.0014766 0.00055123

14:03 0.038356 0.14379 0.0038511 0.0010974

14:04 0.015847 0.048554 0.0018666 0.00067643

14:05 0.027943 0.070009 0.0015258 0.00043013

14:06 0.023425 0.020340 0.0024820 0.00079598

14:07 0.022894 0.026771 0.000017361 0.00029228

14:08 0.018170 0.016183 0.0014091 0.00074171

14:09 0.017125 0.032091 0.0023210 0.0015459
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In summary, we formulated a heuristic-based pairwise gossip algorithm that

adjusts the smartphone measurement values with respect to the weather station

measurement. Prior to this, we verified that the variance is higher for instances

when the user is moving as opposed to when it is stationary. The difference in

variance can be linked to the stability and instability of the embedded smart-

phone sensors. Therefore, to employ this finding, we calculated the weights in

accordance with the ratio of the variance of the raw pressure data and the actual

difference between the median pressure data and the reference weather station

values. These weight calculations apply to calibrating embedded smartphone sen-

sors with fixed weather stations as an established ground truth. Moreover, the

weights Wα and Wβ is not constant over time. In real measurements, therefore, we

can calibrate smartphone-based measurements based on the weights even when

the user is moving. For instance, in a setup where the user is located within the

coverage of a fixed weather station, the established ground truth measurements

would most likely have a larger percentage in the calibration. If the ground truth

measurements are presumed to be accurate, these values can be representative

estimates of the synoptic ground weather condition. Thus, the percentage of the

supporting weather information from the smartphone sensor data is dependent on

the weights whereby the effect of movement is mitigated via the variance and ab-

solute difference. As a result of a one-to-one fixed setup, the smartphone sensors

would be updated with values closer to the representative estimate.
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7.4 Summary

This section disccussed a heuristic-based pairwise gossip algorithm to adjust em-

bedded smartphone pressure sensor measurements. Based on our experiments

with the smartphone pressure sensors, we found that the pressure sensors of the

different Samsung smartphone models we used have a certain precision value

compared with Vaisala WXT520 which we established as our referential ground

truth. Moreover, the pressure readings were verified to be unstable when the user

is moving compared when the user is stationary. Thus, to adjust accordingly, we

consider the effect of user activity while the device is measuring from inside a

shoulder bag by integrating the variance of the raw pressure readings with re-

spect to the actual difference from the reference weather station as our weight

ratio. These weight ratio are then consolidated with the pairwise gossip algorithm

which updates the pressure reading of the embedded smartphone sensor.

By adjusting the sensor measurements accordingly, we can provide an almost

accurate and precise synoptic weather information to general forecasting services.

Moreover, as this information can possibly be densely available due to the popular

use of smartphones, general weather forecasting services can mitigate errors at the

sensor level with this particular calibration method. Thus, this paper contributes

a straightforward and heuristic linear estimation using the principles of pairwise

gossip. A limitation of this method, however, is that the smartphone requires to

be located nearby a weather station at present.
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8. Conclusion

This dissertation discusses on the use of mobile devices as solutions for mitigating

risks before and after disaster events. When devastating disasters occur, available

preparation time is typically insufficient. Especially when individuals are not

informed on time, they are most likely to be vulnerable to casualties. Moreover,

after the disaster has occurred, there is hardly any communication resource with

damaged infrastructures. To overcome these challenges, therefore, applications

such as the SOSCast was developed and experimentation with smartphones and

commercial weather sensors were performed. Considering the above goals, this

study provides two main contributions that are listed as follows:

• Introduce a way to communicate between smartphones even without the

conventional Internet-based communication particularly after a disaster has

occurred

• Introduce a novel way of using smartphones as a weather sensor in addition

to its communication capabilities to inform individuals of the incoming risk

before a disaster occurs

With new technologies emerging in ten years or so, this research will evolve

with having the developed smartphone application in this study, be seamlessly

used in cases of emergency during disasters. Instead of having to have it pre-

installed when smartphone users would simply ignore or uninstall it, the appli-

cation would be made available only when it is time for use. With SOSCast, for

example, it can be made available for installation at the same time when an early

warning is issued during a large-scale earthquake. Also, during the time when

small satellites are prevalent, SOSCast can be broadcast via these satellites and

immediately be used by victims even when communication channels on ground

are unavailable. As for detecting complex weather phenomena such as heavy rain

events before they occur or affect a certain area, pervasive sensing with the pop-

ular use of smartphones will contribute much to providing actual in-situ data.

Big data is now becoming key to understanding complex phenomenon especially

for weather forecasting. In the next decade within the phase of the Internet

of Things (IoT), in-situ observation of weather conditions can now be possible
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with newly developed smartphone technologies and devices. These new devices

can pervasively sense weather information as provided by individuals, contribut-

ing to a more accurate detection and information sharing of devastating weather

phenomena. As these are yet far from reality, this research on mobile-based

applications will continue to explore new solutions for disaster risk mitigation.

The following discussion presents a quick summary of each chapter focusing

on issues that needed to be resolved in this study.

8.1 Summary and Discussion

Chapter 2

Extreme weather phenomenon such as heavy precipitation and earthquakes are

occurring more frequently than the previous years. Recent reports claim that

these circumstances are attributed to climate change. In that regard, more dev-

astating events are about to happen and the most vulnerable are individuals who

are regarded as “disadvantaged”, i.e., in developing or least-developed countries.

Several actions have been done to mitigate the risks brought by the effects of the

rising global temperatures. However, more efforts are yet to be done in managing

emergency situations, particularly in terms of rescue operations and preparation.

Communication is most important during post-disaster situations especially

for rescue operations. For most of the cases, however, communication channels

are also damaged during disaster and can become unmanageable when rescuing

people for at least within 72 hours. This is the most critical time duration when

victims can survive the longest especially when trapped under damaged infras-

tructures and buildings. If communications from victims to rescuers is possible,

then it would be easier to locate the victims despite being trapped underneath

the rubbles.

One of the ways to be prepared is to be informed of the approaching risk,

that is, by observation and forecast. General forecasting services typically make

use of the combination of satellite image, radar, and in-situ weather stations to

make forecasts. As the equipments to acquire these information may be costly,

spatial coverage may also be compromised. Thus, some areas may not have

available weather information which makes people in these areas unaware of the
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impending danger.

These are only a few of the reasons why the focus is on emergency communi-

cations and in-situ weather measurements and observations. More importantly,

as individuals these days typically carry with them their mobile devices, it is

advantageous to take this matter to provide solutions to a select few challenges

with emergency management.

Chapters 3 and 4

Chapter 3 discusses one specific example on how emergency communications can

be implemented using smartphones in a scenario of a devastating earthquake. In

this case, we assume that communication lines are cutoff as it has been damaged

along with infrastructures and buildings. The next best thing that victims who

are trapped inside damaged buildings and infrastructures have is their mobile

devices, or their smartphones. The smartphone application, namely the SOSCast,

has been developed to enable direct communications between smartphones even

without using the Internet. Normally, the way to exchange data is by using the

Internet as a channel to send and receive messages to and from recipients far and

wide. However, as the Internet is unavailable due to destroyed communication

towers, it has become impossible to do so. On the other hand, smartphones

have built in communication devices (WiFi and BT) that, in fact, enables these

devices to communicate directly. With that said, SOSCast was developed over

BT to transmit and receive SOS messages to another device that can use BT as

well.

During the development of the SOSCast application, several issues like mes-

sage duplication, speedy battery depletion, and limited communication coverage.

In that regard, improvements have been accordingly done to the SOSCast appli-

cation to resolve these problems as described in Chapter 4.

Generally, there may be cases when the immobilized person is unable to obtain

GPS information as the debris may prevent GPS connection with the smartphone.

When the GPS information of the immobilized victim is unavailable, the rescuers

can simply refer to the GPS information of the propagator or the mobile victim

to whom the immobilized victim had prior connection with. Note that, whenever

the propagator or mobile victim establishes BT connection with an immobilized
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victim, they also log the GPS information from where they had connection. In

this way, the rescuers can search for the trapped victim in the nearby perimeter

based on the mobile victim’s acquired GPS location.

Moreover, at the time of writing, new communication technologies like the

iBeacon [21, 7, 3] are emerging and may have to replace general BT for DTN

applications. iBeacon was proposed by Apple, which can function on both An-

droid and IOS, implementing BT Low Energy (BLE) wireless technology that

makes it efficient with power consumption. Using iBeacon makes it easy for both

indoor and outdoor location identification with the correct settings. Compared

with the BT pairing process, iBeacon needs a battery-powered iBeacon device

and UIID, Major and Minor value settings with the smartphone device to iden-

tify with the iBeacon device. It is, thus, appropriate that SOSCast may simply

have to adapt iBeacon when establishing connections between immobilized and

mobile victims without the inconvenience of approving BT pairing requests. In

this regard, however, the message collection process with representative nodes

may have to remain the same as in the case of the improved SOSCast.

Chapters 5, 6, and 7

Chapter 5 discusses the investigation of a point in-situ weather observation and

measurement system for pre-disaster risk preparation. In consideration of limited

resources especially in developing or least-developed countries, the focus of the

investigation revolves around finding devices with least cost and can be easily

implemented in a system. With that said, received signal level (RSL) was sought

as a conventional and additional information to describe the onset or occurrence

of localized heavy rains. Moreover, environmental data from current models

of smartphone devices with built-in sensors were integrated into the system to

analyze the correlation and discover an alternative way of obtaining pinpoint

weather data.

However, having only RSL data is insufficient to actually describe current

weather conditions. Thus, as in Chapter 6, other mobile sensors were introduced

and measurement experiments were performed to determine how these sensors

can be useful. In this sense, we explore other possibilities of also using existing

handheld sensors or built-in sensors in smartphones as additional information to
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RSL in describing in-situ point weather.

To simply make sure that this integration is reliable, calibration experiments

by measurement were also performed as described in Chapter 7. In the simplest

setup, pairwise gossip was implemented to calibrate measurements taken from

different mobile devices and sensors. Note that such calibration is important

because small errors at the lowest level of measurements can greatly affect the

final output, i.e., forecasts.

The general approach of using RSL and other sensors to detect localized events

such as heavy rains in this research can be applicable to other natural hazards

with similar characteristics. As aforementioned, RSL is mainly affected by the

amount of water vapor in the atmosphere. That is, increased humidity can be

assumed when increased attenuation is observed when measuring along the link.

In that regard, severe thunderstorms or squalls can be other hazards that can

be detected through RSL-based approach. For other natural hazards that are

the by product of thunderstorms like tornadoes, we may not be able to directly

identify such with our approach. As it can have similar onset characteristics

with thunderstorms, the mechanism of its formation can be different, which is

primarily attributed to wind activities. Nevertheless, it can be a potential focus

in future works similarly with other natural hazards globally that are difficult to

detect at microscale.
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8.2 Future Works

Plounge App: SNS for weather observation

In continuation with the calibration of smartphone-based weather measurements,

an application designed to obtain more data called the Plounge App was devel-

oped (Fig. 35).

Figure 35: Plounge App dashboard screenshot

It is currently an Android-based smartphone application that integrates so-

cial networking service (SNS) with weather measurements from built-in sensors

running on the background. The application originated from a small-scale ex-

perimentation of smartphone-based weather measurements. The need to acquire

more data stemmed from the issue of whether a network of point weather sensors,

as such in the form a smartphone device, can actually describe current weather

conditions.
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The idea of Plounge App revolves around a game theory of gaining points to

grow virtual plants and achieve goals in competition with friends online (Fig. 36)

Figure 36: Plounge App ranking among friends

Users of Plounge App can participate in an SNS-based online game while

actually harvesting important weather data to support the realization of an pin-

point weather information database via a network of in-situ observation system.

So far, the development of the application is ongoing with several test measure-

ments from within the campus using only 7 smartphone devices with built-in

environmental sensors.

Inside the Plounge App, the user can also view the current weather conditions

only from within the friendship network (Fig. 37). For now, this is a simple text-

based pop-up whenever a user hovers over a point that is displayed on the map.
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Figure 37: Image of the text-based data on a map

Reliability evaluation of context-tagged weather data

More than the amount of data needed, there also needs to be a way to manage

and analyse these information to make sure that data in the Plounge App users

is reliable. Following this idea, the first step is to “tag” each observed informa-

tion with the actual situation that the device is in. For instance, based on the

environmental data taken from the built-in sensors as in Table 15, it is possible

to infer if the device is kept in the shirt or pants pocket, or placed inside a bag.

Ideally, when making background measurements, the device is in a stable state

and outside any compartment to make it measure the current environment with

maximum reliability as possible. However, in reality, the smartphones are meant

to be used as it is, and thus, it is securely kept by its owner inside their pockets or

bags for most of the time. With such conditions, eliminating errors and increasing
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Data Type

Accelerometer 3D, numeric, integer

Orientation 3D, numeric, integer

Light numeric, constant

Proximity binary (near or far)

Humidity, Temperature, Pressure numeric

Table 15: Environmental data from smartphones

the reliability of, i.e., humidity, temperature, and pressure data by integrating

the error that is caused by erroneous measurements by smartphones in actual use

like when kept inside the pocket.
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