
NAIST-IS-DD1261205

Doctoral Dissertation

Security Quantification and Risk-Adaptive
Authorization Mechanism in Cloud

Computing

Doudou Fall

September 16, 2015

Department of Information Science
Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Doudou Fall

Thesis Committee:

Professor Suguru Yamaguchi (Supervisor)
Professor Kazutoshi Fujikawa (Co-supervisor)
Associate Professor Atsuo Inomata (Co-supervisor)
Associate Professor Yuichi Kaji (Co-supervisor)
Associate Professor Youki Kadobayashi (Co-supervisor)

Abstract
Cloud computing has revolutionized information technology, in that it allows

enterprises and users to lower computing expenses by outsourcing their needs to a
cloud service provider. However, despite all the benefits it brings, cloud computing
raises several security concerns that have not yet been fully addressed to a satis-
factory note. Indeed, by outsourcing its operations, a client surrenders control to the
service provider and needs assurance that data is dealt with in an appropriate manner.
Furthermore, the most inherent security issue of cloud computing is multi-tenancy.
Cloud computing is a shared platform where users’ data are hosted in the same phys-
ical infrastructure. A malicious user can exploit this fact to steal the data of the users
whom he or she is sharing the platform with. To address the aforementioned secu-
rity issues, we propose a security risk quantification method that will allow users and
cloud computing administrators to measure the security level of a given cloud envi-
ronment. Our risk quantification method is an adaptation of the fault tree analysis,
which is a modeling tool that has proven to be highly effective in mission-critical
systems. We replaced the faults by the probable vulnerabilities in a cloud system,
and with the help of the Common Vulnerability Scoring System (CVSS), we were
able to generate the risk formula. In addition to addressing the previously men-
tioned issues, we were also able to quantify the security risks of a popular cloud
management stack, and propose an architecture where users can evaluate and rank
different cloud service providers. While being infamous for its numerous security
issues, cloud computing is also infamous for being highly dynamic. The dynamicity
of cloud computing implies that dynamic security mechanisms are being employed
to enforce its security, especially in regards to access decisions. However, this is
surprisingly not the case. Static traditional authorization mechanisms are being used
in cloud environments, leading to legitimate doubts on their ability to fulfill the se-
curity needs of the cloud. We propose a Risk-Adaptive Authorization Mechanism
(RAdAM) for a simple cloud deployment, collaboration in cloud computing and
federation in cloud computing. We use a fuzzy inference system to demonstrate the
practicability of RAdAM. We complement RAdAM with a Vulnerability Based Au-
thorization Mechanism (VBAM) which is a real-time authorization model based on
the average vulnerability scores of the objects present in the cloud. We demonstrated
the usefulness of VBAM in a use case featuring OpenStack.

Keywords: Cloud Computing, risk, security quantification, vulnerability, access

control, fuzzy inference∗

∗Doctoral Dissertation, Department of Computer Science, Graduate School of Information Science, Nara Insti-
tute of Science and Technology, NAIST-IS-DD1261205, September 16, 2015.

Acknowledgments
First and foremost I thank Allah for giving me the light and for enabling me to

complete this task.
I owe special thanks to my supervisor Professor Suguru Yamaguchi. He did

for me what the best supervisors always find a way to do: put me in a position to
be successful. I thank him for accepting me in his laboratory and for igniting and
sustaining my interest in research.

I am grateful to Professor Kazutoshi Fujikawa, Associate Professor Yuichi Kaji
and Associate Professor Atsuo Inomata for accepting positions as members of my
thesis committee.

I want to extend particular thanks to Associate Professor Youki Kadobayashi,
who always encouraged me to be more creative in research, providing wisdom, a
sharp critical eye, and many more insights I fully took advantages of in my thesis. I
wish to thank him as well for making use of his avuncular qualities to cheer me up
whenever he sensed an air of demotivation.

My thanks go to Assistant Professor Takeshi Okuda, who urged me toward this
thesis topic and patiently worked with me until it became clear to both of us that I
am impossible to work with. He has been more patient with me than, I once thought,
I would ever be towards myself or any other human being. Throughout, he has been
generous with his advice, humility and enviable erudition.

I wish to thank Marius Liviu Georgescu and Ady Wahyudi Paundu for their valu-
able assistance, and weekly encouragements. I am grateful to the many provocative
and serendipitous questions and responses I received from them, many of which
opened doors to new horizons that I have greatly enjoyed exploring. I wish to reiter-
ate my thanks to Marius Georgescu for the many hangout/eating plans he engineered
and always welcomed me to join. I wish him and his wife the best of luck in the fu-
ture.

I wish to thank Christopher Michael Yap who, since he joined the lab, has had
a major impact in my English writing styles. Henceforth, every single page of my
manuscripts has been improved by his ‘yellow felt pen’. I wish him the best of luck
for his Ph.D. and his likely illustrious future career.

I wish to thank Dr. Sirikarn Pukkawanna and soon-to-be Dr. Jane Louie Fresco
Zamora for their endless support and encouragements. I deeply appreciated the fem-
inine touch they brought to the laboratory and greatly enjoyed every single bit of the
crazy conversations we were having. I wish them the best of luck in their profes-
sional careers.

I would like to bow down in thanks and prose to the Internet Engineering Labora-
tory current and past administrative staff members — Natsue Tanida, Yukika Nishi-
touge, Naoko Omori, Ami Ugo, and Emiko Okamoto — for their indefatigable aid.

I wish to thank all the remaining members of the Internet Engineering Laboratory
for making the laboratory such a lovely place to not only conduct, but also to enjoy
research.

I owe tremendous debt of gratitude to all the friends I have made in Japan. I
apologize for not listing you all. Every single one of you has been, and I hope will

v

continue to be, a deep source of inspiration. I would especially like to thank Gustavo
Garcia and Nelson Kibinge for supporting and tolerating the character I am since
2010 and for being present whenever I needed them. I hope, wish, and pray that
our friendship will last forever. I also would like to extend my thanks to Salik M.D.
Parwez for being such a good friend in a very short period of time. The best is the
worst thing I could wish for him.

I owe a tremendous debt of gratitude to my friends in Senegal. You have been
with me since the beginning, and your support is greatly appreciated.

For my parents, brothers, and sisters, I am running out of praise. There are no
words that can testify my affection for you.

I would like to bow down in thanks and prose to NAIST International Student
Affair Section staff members for their indefatigable aid.

Finally, I wish to thank the Japanese Ministry of Education, Culture, Sports,
Science and Technology for their wonderful scholarship which I am a recipient of.

vi

To my family.

viii

Contents

1 Introduction 1
1.1 Genesis of cloud computing . 1
1.2 Motivation and Problem Statement . 2
1.3 Contributions . 3
1.4 Thesis Structure . 4

2 In-depth Understanding of Cloud Computing 7
2.1 Cloud Computing . 7

2.1.1 The many definitions of cloud computing 7
2.1.2 Characteristics . 8
2.1.3 Service Models . 8
2.1.4 Deployment Models . 9

2.2 Virtualization . 9
2.3 Shared Resources in the Cloud: Multi-tenancy 10
2.4 Economics of cloud computing . 11
2.5 Cloud adoption obstacles . 12
2.6 Cloud Management Frameworks . 15
2.7 Security Issues in Cloud Computing . 17

3 Security Risk Quantification in Cloud Computing 21
3.1 Introduction . 21
3.2 Related Work . 24
3.3 Cloud Computing Security Risk Quantification 25

3.3.1 Security risks in Cloud Computing . 26
3.3.2 Fault Tree Analysis . 27
3.3.3 National Vulnerability Database and Common Vulnerability Scoring Sys-

tem . 29
3.4 Multi-tenancy Security Quantification . 32
3.5 IaaSecEval: Cloud Security Evaluation Architecture 38
3.6 Security Risk Quantification of OpenStack . 40

3.6.1 Overview of OpenStack Security Analysis 40
3.6.2 Security Evaluation of Swift . 42
3.6.3 Security Evaluation of Glance . 42
3.6.4 Security Evaluation of Nova . 43

ix

3.6.5 Security Evaluation of Cinder . 45
3.6.6 Security Evaluation of Neutron . 45
3.6.7 Security Evaluation of Keystone . 46
3.6.8 Security Evaluation of Horizon . 49
3.6.9 Summary . 50

3.7 Discussion and Future Work . 50
3.8 Summary . 53

4 Risk Adaptive Authorization Mechanism for Cloud Computing 55
4.1 Introduction . 55
4.2 Background: Risk Aware Access Control . 56
4.3 Related Work . 57
4.4 Risk-Adaptive Authorization Mechanism: RAdAM 58

4.4.1 RAdAM: Cloud user . 59
4.4.2 RAdAM: Cloud Collaboration . 60
4.4.3 RAdAM: Cloud Federation . 61
4.4.4 Outsourcing data without outsourcing control 62
4.4.5 Architecture of RAdAM . 64
4.4.6 Risk assessment in XACML . 65

4.5 RAdAM Based on Fuzzy Inference System . 67
4.5.1 RAdAM risk estimation in FIS . 67
4.5.2 RAdAM decision evaluation in FIS . 69

4.6 Enforcement of RAdAM with Vulnerability Based Authorization (VBAM) Mech-
anism . 69
4.6.1 Practical: VBAM with the Common Vulnerability Scoring System 71
4.6.2 NVD and CVSS . 71
4.6.3 VBAM and CVSS . 72

4.7 Discussion . 74
4.8 Summary . 76

5 Future Work 77
5.1 Classification of the security bugs in the cloud 78
5.2 Crankenstein: towards the most efficient cloud management stack 78
5.3 Elo rating method for ranking cloud service providers 79
5.4 Game-theoretic approach: Stackelberg Security Games and Cloud Computing . . 79
5.5 Deep cloud security: on using artificial intelligence to design a secure cloud

platform . 80
5.6 Towards the real cloud computing architecture 80

6 Conclusion 83

A List of Publications 85
A.1 Journal . 85
A.2 International Conferences . 85

x

List of Figures

2.1 Different types of hypervisors in virtualization 10
2.2 Different degrees of multi-tenancy . 12
2.3 Cost comparison between internal IT, managed services and the cloud 13
2.4 Net job creation of cloud computing . 14
2.5 Unified taxonomy of cloud management stack architectures [1] 16
2.6 OpenStack vulnerabilities: number, types [2] 18

3.1 OpenStack presence in the NVD . 24
3.2 List of Standard Fault Tree Symbols . 27
3.3 CVSS Parameter Details . 31
3.4 Vulnerability tree of the use case . 33
3.5 IaaSecEval architecture . 38
3.6 Use case Data and Results . 39
3.7 OpenStack logical architecture . 41
3.8 Swift Vulnerability Tree . 42
3.9 Glance Vulnerability Tree . 43
3.10 Nova Vulnerability Tree . 44
3.11 Cinder Vulnerability Tree . 45
3.12 Neutron Vulnerability Tree . 46
3.13 Keystone Vulnerability Tree . 47
3.14 Horizon Vulnerability Tree . 49
3.15 Current Vulnerability Naming of OpenStack . 51
3.16 Proposed Nomenclature for OpenStack Vulnerabilities 51

4.1 RAdAM/XACML architecture . 64
4.2 RAdAM expression in XACML . 66
4.3 Membership functions of the object sensitivty 68
4.4 Membership functions of the subject clearance 69
4.5 Membership functions of the risk level . 70
4.6 RAdAM risk evaluation . 72
4.7 Membership functions of RAdAM decisions . 73
4.8 RAdAM decision evaluation . 74

xi

xii

List of Tables

3.1 Vulnerabilities of this example and their impact and likelihood values 32
3.2 Use case: Results summary . 35
3.3 Keystone vulnerabilities likelihood & impact 48

4.1 List of the rules for RAdAM risk evaluation . 71
4.2 Vulnerabilities of the different services of OpenStack 75

xiii

xiv

Chapter 1

Introduction

1.1 Genesis of cloud computing

Cloud computing has revolutionized the information technology (IT) world. It promotes cheap
computing resources delivered through the Internet as a utility like water, electricity, gas and
telephone. It is beneficial for both users, who cut cost on infrastructures, and cloud service
providers, who make profits by maximizing the resources in their datacenters. Cloud computing
represents the dream of the pioneers of computer science who have always wanted computing
to be served as a utility. Indeed, in 1966, Douglas Parkhill published a book titled The Chal-
lenge of the computer utility [3], where he expressed his will to see the process happening. That
early desire of the pioneers sparked the creation of mainframe time-sharing technology that is
considered as the ancestor of cloud computing as users were accessing to the main computer via
dumb terminals. However, as mainframes were very big thus not very practical, people quickly
realized that the technology will not be used as a utility. To aggravate the situation, the develop-
ment of personal computers (PC) seemed to definitely ring the end of the idea of computing as
a utility. But the development of the Internet brought back the idea as Leonard Kleinrock, one
of the chief scientist of the Advanced Research Projects Agency Network (ARPANET) project,
predicted it in 1969 by saying: “As of now, computer networks are still in their infancy, but as
they grow up and become sophisticated, we will probably see the spread of ’computer utilities’
which, like electric and telephone utilities, will service individual homes and offices across the
country.” In fact, the rapid development of the Internet allows companies to propose products
that could be accessed via this very large network of computers. The history of cloud computing
is intertwined with the history of the Internet. Salesforce was created in 1999 and was followed
by Amazon Elastic Compute Cloud (EC2), which is the first to deliver infrastructure as a service.
In 2006, Eric Schmidt, the CEO of Google at that time, first coined the term cloud computing.
Afterwards, a flurry of definitions was proposed but one that has proven to be generic enough to
stand the test of time was proposed by the National Institute of Science and Technology (NIST)
[4] of the United States of America (USA): “a new model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction.” It has become clich to list the benefits of

1

cloud computing, as they are diverse and well known. It is equally clich to finger-point the se-
curity issues of cloud computing that represent the major obstacles to its wide adoption by many
companies, specially the financial firms who prefer to implement their own cloud thus not fully
profiting of the benefits of cloud computing.

1.2 Motivation and Problem Statement

In order to reap the stated benefits of cloud computing, it is necessary to investigate the disad-
vantages of cloud. Indeed, despite all the benefits, users are still reluctant to adopt it and the
main cause of that reluctance is the security issues of cloud computing. Indeed cloud comput-
ing has many security issues identified in numerous survey papers [5, 6, 7, 8, 9, 10]. Those
security issues range from the security of the multi-tenant aspect of Cloud Computing [11] to
loss of control[12]. The current cloud computing model is based on an outsourcing strategy.
Essentially, customers are generally reluctant to entrust the management of their data to a third
party. Clearly the problem of trust is magnified in this case and cloud service providers (CSPs)
must provide the necessary guarantees to convince the customers that their data will be safe and
secure. Furthermore, the fact that the cloud environment is a shared platform (i.e. all the users’
data are pooled up and stored in the same physical infrastructure) makes it a nightmare for CSPs
in their endeavor to attract potential customers. It is this inherent multi-tenancy aspect of cloud
computing that also dissuades customers from utilizing the cloud. We noticed that security is-
sues come under many guises both technical and non-technical. There are existing efforts that
look to provide a taxonomy over the aforementioned issues. The Cloud Security Alliance (CSA)
[13] is a non-profit organization that thrive to promote the best practises for providing security
assurance within the cloud computing milieu. In their report titled “The notorious nine: cloud
computing top threats in 2013” [14], they identified nine threats to cloud computing:
• Data breaches: cloud computing introduces significant new avenues of attack related to

data breaches.
• Data loss: the data stored in cloud can be lost due to many reasons. The cloud service

provider (CSP) can be victim of a denial of service (DoS) attack, electrical outage can
happen, the cloud administrator can inadvertently delete some users’ data.

• Account hijacking: this type of attack is very prevalent in cloud systems where most users
use a web client to access their data. Methods such as phising can be used to achieve the
forfeiture. Attackers can steal the users credentials to commit malicious acts in the name
of the user without his knowledge.

• Insecure API: the usage of application programming interfaces (APIs) in the cloud and
many other modern IT systems is de rigueur. The cloud users use the APIs to interconnect
with the cloud services. Most of the operations between the CSP and the users are done
through the APIs. Therefore, there is prescient need to make them more secure.

• Denial of Service: attackers can cause a slowdown in a given system and thus prevent
many cloud customers to access their data in the most efficient way possible.

• Malicious insiders: cloud administrators can be malicious. They can steal the users data

2

for monetary purposes or for spying reasons.
• Abuse of cloud service: we know that cloud computing give customers the impression

that they have unlimited computing power. Enterprises take profit of it as well as attack-
ers. Indeed, an attacker can use the computing power of a cloud system to decipher an
encryption key in a record time.

• Insufficient due diligence: many organizations request the services of a cloud service
provider without knowing the full functioning of the cloud. An organization should be
responsible enough to gauge about incident response mechanisms, encryption, security
monitoring and others prerequisites before hosting their data into a certain CSP.

• Shared technology issues: some of the aforementioned issues are caused by this unique
characteristic of cloud computing. A number of research papers have been already pub-
lished demonstrating how an attacker can leverage the shared environment provided by
cloud computing to achieve a malicious act.

What we are exploring here is the fact that any kind of attack that can happen in the cloud
will be the result of an exploitation of vulnerabilities related to the aforementioned security
issues. In practice, many vulnerabilities may still remain in a cloud environment after they are
discovered, due to environmental factors (latency in releasing vulnerability patches), cost factors
(such as money and administrative efforts required for deploying patches), or mission factors
(organizational preference for availability and usability over security). Therefore, addressing the
problem of security in cloud computing by leveraging the vulnerabilities seems to be the perfect
solution.

Elsewhere, the many security issues of cloud computing make people overlook another im-
portant feature that can be as damaging: its dynamism. In fact cloud computing, like most
modern computer systems, is highly dynamic. That dynamicity is illustrated by the elasticity of
cloud computing that allows the user to scale in and scale out in an easy manner. A user can add
computing power to its VM and reduce it at will or add more storage capacity and reduce and this
have to be real time because the user cannot wait to get approval from the cloud administrator.
The latter also cannot deal with those types of requests coming from thousand of users. Surpris-
ingly, traditional static access control models like role-based access control, mandatory access
control or discretionary access control are used to enforce the security in cloud computing. It is
not to undermine the effectiveness of the aforementioned models; after all, through time, they
have demonstrated their value in early computer systems. But the cloud brings a new environ-
ment, meaning that the traditional access control have to be moved, adapted or become obsolete.
The last option is what currently prevails in cloud computing thus a new type of access models,
as preconized by [15], is needed.

1.3 Contributions

Our contribution is twofold.
First, in order to prevent the issues mentioned above, we contend that the best solution is to
quantify security risks in cloud computing. Our first main contribution is a novel approach
for quantifying security in cloud computing, inspired by Fault Tree Analysis (FTA), which is

3

commonly used in Probabilistic Risk Analysis (PRA) (which in turn is used to quantify the risk
of failure in highly mission-critical systems like those of a nuclear power plant). In FTA, a fault
tree is built out of the probable faults that could occur in the system. A further analysis of the fault
tree concludes in a quantified result that could help decision makers to plan their future strategy.
Our security quantification method consists of the vulnerabilities of an IaaS that we use to build
a Boolean vulnerability tree while conforming to FTA rules. The analysis of the vulnerability
tree leads to the extraction of the quantification formula. Risk (R) is generally defined as the
likelihood (L) of an unwanted event to occur multiplied by the impact (I) that particular event
would cause: R = L×I. Using the Common Vulnerability Scoring System (CVSS), we were able
to generate an impact sub-formula and a likelihood sub-formula for any single vulnerability.
We then use the vulnerability tree to generate the Impact and Likelihood formulas. The final risk
value is calculated by using the traditional risk definition. We were able to prove how our solution
works in a multi-tenant platform, and also presented a unique architecture for ranking cloud
service providers. We finally used the security risk to perform an analysis of OpenStack logical
architecture. We were able to generate the different security vulnerability trees of the components
that compose the architecture, and we were also able to make some recommendations on a better
nomenclature of OpenStack vulnerabilities.

Second, to solve the issue of the non-existence of an authorization mechanism that fits the
dynamism of cloud computing, we propose a risk adaptive authorization mechanism (RAdAM)
which is a dynamic risk-aware authorization mechanism for cloud computing. We ascertained
that RAdAM follows the principles of a risk aware access control as defined in [16]. We proposed
authorization mechanisms for the most prominent cases that exist in cloud computing. We con-
sider the situation where the user is a simple cloud customer with basic services. Afterwards, we
slightly complicated the atmosphere by proposing an authorization mechanism for collaboration
in cloud computing. Finally, we designed an authorization mechanism for the most complicated
case in cloud computing: cloud federation. We employed a fuzzy inference system (FIS) [17]
to demonstrate how RAdAM functions. The main contribution of RAdAM is not in the risk de-
termination in itself but in the way the authorization algorithms work and the novel parameters
we introduce in order to allow the authorization to be as flexible as possible. To complement
RAdAM, we also proposed a vulnerability-based authorization (VBAM) mechanism which is
a variation of the Bell-Lapadula multi-level security (MLS) [18]. The most important point of
VBAM is the usage of the vulnerability score of the objects to enforce a decision. We contend
that modern authorization mechanisms should not only be dynamic, but also should be tailored
to the vulnerabilities of the objects that are being accessed.

1.4 Thesis Structure
The remainder of this thesis is structured as follows:

Chapter 2 : We briefly introduce cloud computing in this chapter and explain some funda-
mental notions like multi-tenancy, the economic aspect of cloud computing, the enabling
technologies. We also performed a vulnerability analysis of OpenStack in order to confirm
the security issues listed within this chaper as well as showcasing new security issues. The

4

purpose of this chapter is to provide the reader enough background information to under-
stand the research landscape we are working on.

Chapter 3 : This chapter contains the details of our security quantification methodology.

Chapter 4 : Our second main contribution is described in detail in this chapter.

Chapter 5 : The future work is detailed in this chapter. Besides extensions of the work we
accomplished in this dissertation, we propose different distinct projects that can be good
avenues towards the securisation of cloud computing in particular, and computer systems
in general.

Chapter 6 : This chapter concludes the thesis. We did a recapitulation of the work we have
done by giving brief summaries of the different chapters.

5

6

Chapter 2

In-depth Understanding of Cloud
Computing

In this Chapter, we will explain the background information required for understanding this the-
sis. The explanation of cloud computing given in Chapter 1 will be extended with futher technical
details and clarifications. Multi-tenancy, the biggest aspect of controversy in cloud computing,
will be explained from a theoretical/technical perspective including the different degrees of multi-
tenancy that are possible.

2.1 Cloud Computing

Cloud computing is considered as the “fifth utility” after water, gas, electricity, and telephone
[19]. It employs the same functioning mode where users pay their services as they go. In cloud,
users have a panel of choices going to fully featured applications like Customer Relationship
Management (CRM), to environments for software development and deployment, plus comput-
ing resources like storage, network bandwidth, and processing.

2.1.1 The many definitions of cloud computing

As stated in the introduction, the main idea behind cloud computing is not new. The pioneers of
computer science have been advertising it since the 1960s. John McCarthy gave an early defini-
tion of the cloud as:“if computers of the kind I have advocated become computers of the future,
then computing may someday be organized as a public utility just as the telephone system is a
public utility. . . The computer utility could become the basis of a new and important industry.”

The term cloud computing was first coined in 2006 by the then Chief Executive Officer (CEO)
of Google Erik Schmidt, and afterwards, as a domino effect, it started to gain massive popularity.
The standard definition of cloud computing revolves around the one given by NIST [4], but there
still exist other definition that can rival the NIST definition of cloud computing. Buyya et al. [19]
provide the following definition: “A cloud is a type of parallel and distributed system consisting
of a collection of inter-connected and virtualized computers that are dynamically provisioned

7

and presented as one or more unified computing resource(s) based on service-level agreements
established through negotiation between the service provider and consumers.”

Armbrust et al. [20] gave a more or less superficial definition of cloud computing as:
• The illusion of infinite computing resources available on demand
• The elimination of an up-front commitment by cloud users
• The ability to pay for use of computing resources on a short term basis as needed.

Despite the seemingly lack of consensus on the definition of cloud computing, all the researchers
seem to agree on two characteristics: on-demand self service and rapid elasticity.

2.1.2 Characteristics

On-demand self-service: the cloud system is automated such that a consumer can conveniently
make use of as many computer resources as he/she wants without any human interaction
with the cloud service provider.

Broadband network access: standard network mechanisms are used to make the computing re-
sources available online and accessible via different devices.

Resource pooling: multi-tenancy is the key technology to the economical benefits of cloud.
The resources of the consumers are aggregated in the same physical infrastructure and
separated logically. The resources vary from storage, processing, memory, to network
bandwidth.

Rapid elasticity: this concerns the capabilities of a cloud service provider to quickly scale-
in/out any computing resources.

Measured service: a metering capability is linked to each type of service provided by a CSP. For
the needs of transparency, the resource usage can be monitored, controlled and reported.

2.1.3 Service Models

Cloud computing has several types of services offerings categorized as either Software, Platform,
and Infrastructure as a Service. We briefly explain these three models as follows:

Software as a Service (SaaS): in this model, a consumer uses web-based applications running
on a cloud infrastructure such as webmail or customer relationship management programs.
Except for some specific application settings under the responsibility of the consumer, the
management of the underlying infrastructure is completely dependent on the cloud service
provider (CSP).

Platform as a Service (PaaS): in this model, a CSP offers a platform to deploy and develop
applications using specific programming languages. The CSP is responsible for the under-

8

lying cloud infrastructure, while the consumer manages his/her applications.

Infrastructure as a Service (IaaS): in this model, a CSP provides necessary computing re-
sources, generally in form of virtual machines, to the consumers who can deploy a sys-
tem as they according to their needs and run their applications on it. The CSP has control
over the underlying cloud infrastructure. Whereas, the consumer is responsible for the
management of the operating systems, storage, deployed applications, and some network
components.

2.1.4 Deployment Models
Along with the different service models present in Cloud Computing, there also are different
deployment models. In this subsection, we will discuss the deployment models (Private, Com-
munity, Public, and Hybrid clouds) proposed by NIST [4].

Private Cloud: this type of cloud is generally deployed within a single organization with (or
without) multiple cloud users. The organization, a CSP, or a combination of both can
conduct the management of this type of cloud. The resources might be located inside the
organization’s facilities or off-premises.

Community Cloud: this deployment model is for a specific community of consumers that have
shared concerns. The management can be done by one or more organizations in the com-
munity, entrusted to a third party, or a combination of the two. Similar to private cloud, the
resources may be on-premises or off-premises.

Public Cloud: is the most popular deployment model. There are no restrictions on who can
use the services as it is open to everybody and exists off-premises (i.e. on the premises
of the cloud provider). The ownership can be governmental, academic, commercial, or a
combination of these three entities.

Hybrid Cloud: this deployment model represents a mixture of two or more distinct cloud in-
frastructures.

2.2 Virtualization
Contrary to what many people may think, virtualization is not a new technology. It has been
around since the 1960s and has become extremely evolved. However, despite being considered
as an old technology, virtualization or more specifically server virtualization has been playing an
important role in cloud computing, and more precisely, infrastructure cloud. In server virtualiza-
tion, a virtualization software is used to create and manage multiple Virtual Machines (VMs) on
a single server. The VMs function like normal physical machines. The virtualization software is
called hypervisor, or virtual machine monitor (VMM) and is responsible of the abstraction of the
hardware to the individual virtual machines.

9

There exist two types of hypervisor (Figure 2.1):
- Type 1 hypervisor: runs directly over the hardware. It is also known as bare metal or

native.

- Type 2 hypervisor: runs over an operating system. It is also known as hosted hypervisor.
The hypervisor manages the VMs by providing security isolation as well as access to the shared
resources in the physical server (CPU, memory, I/O). In the quasi-general case, a VM runs an op-
erating system and applications which are not aware of the type of environment they are running
in (virtual).

Figure 2.1: Different types of hypervisors in virtualization

2.3 Shared Resources in the Cloud: Multi-tenancy
At the beginning of cloud computing, multi-tenancy was considered as a feature unique to it.
However, that was not the case, multi-tenancy has existed since the mainframe era where people
were using terminals to gain access to the mainframe. With the rise of personal computer, it fell
into obscurity. However with cloud computing, it is experiencing a rebirth.

Multi-tenancy is implemented in the cloud to reduce the cost of delivering the same application
to many different sets of users. It is considered as the most direct path to cost minimization/cost
maximization from a cloud application. A multi-tenant application is able to fulfill the needs of
several tenants by using the hardware resources necessary to manage a single software instance.
Tenants in a multitenant platform are separated logically and each of them can use and modify
an application related to his individual needs.

10

Cloud computing is commonly comprised of three services models: SaaS, PaaS, and IaaS. There-
fore, we can naturally deduce three level of multi-tenancy: application level, middleware level,
and hypervisor level. In our research, we mainly focus on the hypervisor level multi-tenancy.
Multi-tenancy is defined as a continuum between isolation and sharing and can be divided in
three approaches as depicted in Figure 2.2 .

Separate database: In this approach, each tenant has his/her own database where his/her data
is stored, but he/she shares computation resources and application code with other tenants.
The key benefits of this approach are that it is easy to meet tenants’ individual needs and
to restore tenants’ data from backup in case of failure. Conversely, the drawback of this
approach is that it is costly in terms of hardware and in terms of data backup.

Shared database, separate schema: several tenants are sharing the same database but each of
them has his/her own schema, which is a set of tables. This approach is easy to imple-
ment and has the same benefits as the previous approach. But the disadvantage is that
tenants’ data cannot be recovered in the event of a failure because the backup is made at
the database level and recovering from the backup implies completely overwriting the data
of all the tenants, as opposed to just the affected tenants.

Shared database, shared schema: in this approach, the tenants are using the same database
and the same set of tables. A table can contain records from multiple tenants identified by
the tenants’ ID. Among the three approaches, this one is the most cost-effective, but it is
also the least secure. Futhermore it experiences the same problem of data backup similar
to the second approach.

Each of these approaches appeals to some aspects of economic benefit and security, but each
of these approaches is still based on a shared environment with different degrees of multi-tenancy.

2.4 Economics of cloud computing
Elasticity: like cloud computing, there is not a consensus on the definition of elasticity. In

physics it is defined as the property of a material to be able to return to its initial state after
a deformation. Herbs et al. [21] define elasticity in cloud computing as: “It is the degree
of flexibility to which a system is able to adapt to workload changes by provisioning re-
sources in a automatic manner, such that at each point in time the available resources match
the current demand as closely as possible.” Elasticity comes with some prerequisites that
lie between the boundaries of the scalability of a cloud system including hardware, virtu-
alization, and software layers. The following points factor in when evaluating elasticity
in cloud computing: automatic scaling, elasticity dimensions, resource scaling units, and
scalability bounds. Thanks to elasticity, the economic appeal of cloud computing is la-
beled as “converting capital expenses to operating expenses” (CapEx to OpEx). Elasticity
in cloud computing allows customers to add or remove resources at fine grain and with

11

Figure 2.2: Different degrees of multi-tenancy

efficiency timing. It allows customers to match resources to workload more closely, hence
mitigating the risk of overprovisioning or underprovisioning. The speed and precision on
which the resources are scaled up/down are core aspects of elasticity.

Cost of the cloud: One of the main promise of cloud computing is the maximization of both the
cloud service provider and the consumers. Figure 2.3 shows that that cloud computing can
effectively help consumers save money. Additionally, there is a price war between the main
cloud service providers Amazon, Google, Microsoft, which means the prices will continue
to profit the consumers. In the cloud service provider side, whether or not they are making
money depends on the Total Cost of Ownership (TCO). Indeed, many parameters factor
in when it comes to evaluating the profits of a cloud provider. One of the main issue is
the price of electricity. Data centers consume as much electricity as a developed country
like France. An increase of the price of electricity can have a negative impact in a cloud
service providers profit. But as they keep lowering the prices for their services, we can
only assume that they are making profits.

Furthermore, cloud computing created new jobs in the market as shown in Figure 2.4 [22].

2.5 Cloud adoption obstacles
Availability of service: Cloud computing services are mainly delivered through the Internet.

Prospective customers worry about whether the cloud service provider will have adequate

12

Figure 2.3: Cost comparison between internal IT, managed services and the cloud

availability. Cloud service providers and Internet service provider must collaborate in
order to make sure there will no interruption of the connection. This is an important issue
especially in regards to countries where Internet does not have a wide spread deployment.
Cloud computing adoption will be even slower in those countries to date. Another lingering
issue in the availability of services is power outage. In recent years, we have witnesses a
dozen of power outages that hit different cloud service providers. Hence to ensure service
availability, there should be a good management of the power grid.

Data lock-in: Customers can find themselves ‘imprisoned’ into a cloud service provider. It
might difficult to extract the customers data from one cloud to another. A poignant exam-
ple is users of the iPhone. It is impossible to transfer your personal data from an iPhone
to an android device. As cloud is maturing, the experts are finding solution through stan-
dardization and policy management. Plus the development of different cloud deployment
modes like cloud federation allows people to move their data freely between different cloud
service providers.

Data confidentiality and auditability: This is the most obvious obstacle and lies directly into
the motivation to pursue this thesis. Once the mechanism of the functioning of cloud
computing is understood, customers immediately complain about the fact that their data
will be managed by a third party. They might know the cloud service provider corporate
name but they have to trust them and believe that they will not tamper with their data. Most
companies with sensitive data adamantly refuse to use the services of a public cloud service
provider because of this fact. Instead, they prefer building their own private cloud within
their organizations boundaries. With the advent of cloud computing, the three principles of
security: confidentiality, integrity, and availability; have stated the process of obsolescence.
To add fuel to the fire, sometimes, users might not know the location of their data.

13

Figure 2.4: Net job creation of cloud computing

14

To further make more benefits out of the cloud, some cloud services providers build data
centers in place where the overall cost is cheaper but where governments can, at any time,
cease the customers data.

Performance unpredictability: The business model of cloud computing lies on multi-tenancy
or the fact that users data are stored in the same physical platform hence they use the same
computing resources. The cloud service provider must ensure that their hardware features:
CPU, memory, I/O; are powerful enough to be able to be shared by multiple customers.

Bugs in large distributed systems: cloud computing systems are very large systems, hence
prone to bugs and other vulnerabilities that can remain in the system undetected or even
when they are detected, the cloud administrators do not patch them due to either situational
factor or cost factors.

Reputation fate sharing: cloud computing is inherently multi-tenant. Customers are unaware
of each other, thus a legitimate user may have their data hosted in the same physical infras-
tructure as a notable hacker. Ristenpart et al. [11] already demonstrated that it was possible
to steal data from neighboring tenants in the cloud. Also, the bad behavior of a user in gen-
eral can affect the reputation of the cloud service provider; others might perceive it as the
cloud service provider is not doing a job to preserve its image. The reputation of a cloud
provider can falter when they are found guilty of collaborating with the government by
regularly handing them users data.

Software licensing: Formerly, the software licenses were commonly restricted to the comput-
ers on which the software is running. Users purchase the software and additionally pay
a maintenance fee. Cloud computing changes this business model drastically and as it
becoming more popular, and due to the fact most cloud providers were using open source
software, the commercial are obliged to move, adapt or disappear. They have to restructure
their licensing deals if they want to survive in this era of cloud computing.

2.6 Cloud Management Frameworks

Cloud management frameworks are groups of software that permit to ease the management of
a cloud infrastructure. Figure ?? contains the taxonomy of a cloud management stack. Dukaric
et al. [1] provided a taxonomy of cloud management frameworks by defining six quintessential
layers that they should feature:
Resource abstraction layer: it comprises the compute, storage, volume and networking com-

ponent. The compute component is in charge of the provisioning and management of vir-
tual machines and physical hosts. The storage component provides a scalable and redun-
dant object store. The volume component eases the management of persistent, block-level
storage volumes, as the virtual machine instances do not provide persistent storage. The
network component is responsible of managing networking tasks and performing system
commands to manipulate the network.

Core service layer: it is made of five components, i.e. identity service, scheduling, image repos-
itory, charging and billing, and logging. The identity service component provides authen-

15

Figure 2.5: Unified taxonomy of cloud management stack architectures [1]

tication and authorization services for different cloud components; it also helps with the
management of the users. The scheduling component is responsible fitting the virtual ma-
chine instances to their respective servers/hosts, which consequently lead to an efficient
usage of the physical resources. The image repository provides a catalog service for stor-
ing and querying virtual disk images. The charging and billing component keeps track of
the user activity and creates the bills. The logging component is mainly for auditing. It
should make it impossible for any user to use the cloud without leaving any traces.

Support layer: it is the middleware layer. It is responsible for the communication between
the other layers. It is comprised of the message bus, database and transfer services. The
message bus acts as the main conveyor of messages between the cloud services. The
database component stores the configuration and runtime state of cloud infrastructures
like virtual machine instances, networks available, security users, etc. Transfer services
is responsible of the transfer of the images of the virtual machines to the cluster nodes to
allow the execution of the virtual machines without a degradation of performance.

Security layer: it is made of five components, i.e. authentication, authorization, security groups
component, single sign-on and security monitoring. The authentication component mainly
feature token-based access and uses well-known mechanism such as LDAP, SSH keypairs,
Kerberos or X509 certificates. It is used for the authentication of the cloud users and

16

also for the provisioning of virtual machines. The authorization component is used to de-
termine access decisions of the users when they attempt to perform specific tasks. The
security group component contains sets of firewall rules that are applied to virtual ma-
chine instances linked with a particular group. The single sign-on component pairs with a
technology accompanied with a set of standards named federated identity, as the cloud is
multi-resources, identities should be shared securely across all the resources. The security
monitoring provides the traditional network monitoring set of tools to the cloud.

Management layer: it is composed of eleven components, i.e. management tools, federa-
tion management, elasticity management, resource management, user and group manage-
ment, SLA definition, reporting, monitoring, incident management, power management
and lease management. Management tools is in charge of specifying application program-
ming interfaces (APIs), tools, graphical user interfaces and a cloud orchestrator for inter-
acting with underlying services and resources. The federation management component is
responsible of putting together several cloud services with an SSO mechanism. The elas-
ticity management component takes in charge the automation and dynamic provisioning of
resources; all according to user-defined policies. SLA definition is primordial as a contract
between the a consumer and a provider. A service level agreement (SLA) is a document
that describes the agreed services. The reporting component generates cost, usage, and
comparison reports for different users. Power management gives the cloud administrators
the control over power management by providing features related to that service. The re-
source management incorporates virtual machine management (creation, suspension, and
termination) and host management. The user and group management component features
the addition and removal of users and groups, and the addition of users to a particular
group. Monitoring should be able to vover wide cloud ecosystems. Incident management
ensures that the cloud ecosystem can be resumed in an efficient timing in case of a dis-
ruption of a service. Finally, the lease management component is responsible of granting
leases on resources to users.

Control layer: this layer is comprised of the components SLA enforcement, SLA monitoring,
metering, policy control, notification service and orchestration.SLA monitoring specifies
the prerequisites by which the service parameters can be monitored and the monitoring
format. The SLA enforcement component ensures that the agreed quality of service (QoS)
parameters are respected to best. The metering component provides metering capabilities
to measure, analyze and report on resources used in the cloud environment. Policy control
represents a paraphernalia of policies that cover wide ranges from quota to security and
privacy control. The notification component allows the sending of notifications to the dif-
ferent stakeholders of the cloud. Orchestration provides a catalog of workflows that permit
automated, configurable processes to manage the cloud and third-party technologies.

2.7 Security Issues in Cloud Computing

We have already listed the main security issues that hinder the development of cloud computing.
We reiterate that the CSA published a work titled “the notorious 9” where they classify the se-

17

Figure 2.6: OpenStack vulnerabilities: number, types [2]

curity issues in the cloud as: data breaches, data loss, account hijacking, insecure API, denial of
service, malicious insider, abuse of cloud service, insufficient due diligence, and shared technol-
ogy issues. In this section, we want to demonstrate that, except insufficient due diligence, all the
other security issues are represented in form of vulnerabilities available in the diverse vulnerabil-
ity databases. Our modus operandi is to consider of the most famous cloud framework stack, and
then conduct a vulnerability analysis. We choose to work with OpenStack, which, by far, has the
most significant number of vulnerabilities among the cloud framework stacks. A simple query
of the OpenStack vulnerabilities on the website www.cvedetails.com, returned the table shown
in Figure 2.6. At first glance, we notice that the number of vulnerabilities augment every year,
thus we can conclude that, in general, the number of vulnerabilities in cloud computing keeps
increasing. Most importantly, we can say that all the security issues listed in the “notorious 9”
are represented in this vulnerability dataset. We notice that DoS and information gain are very
prevalent in the cloud. By analyzing the dataset, we have also discovered some security issues
that were not addressed before, to the best of our knowledge.

Remote access: we are surprised to see that most (over 90%) of the vulnerabilities can be ex-
ploited by a remote attacker. The common knowledge in cloud computing is that most of
the attacks are caused by legitimate consumers who take advantage of the shared platform
to attack the other tenants.

Vulnerabilities related to other vendors: this is also an issue that researchers have not thought
about. By building extensions for some cloud software, the vendors introduce new vulner-
abilities. The following vulnerability descriptions showcase the situation. CVE-20148333:
The VMware driver in OpenStack Compute (Nova) before 2014.1.4 allows remote authen-
ticated users to cause a denial of service (disk consumption) by deleting an instance in
the resize state. CVE-2014-3632: The default configuration in a sudoers file in the Red
Hat openstack-neutron package before 2014.1.2-4, as used in Red Hat Enterprise Linux
Open Stack Platform 5.0 for Red Hat Enterprise Linux 6, allows remote attackers to gain
privileges via a crafted configuration file. NOTE: this vulnerability exists because of a
CVE-2013-6433 regression.

Inter-component vulnerabilities: We also found that there were vulnerabilities that were shared
by many components. This can jeopardize an entire cloud environment as an attacker can

18

exploit the same vulnerability in different components. CVE-2014-3473: Cross-site script-
ing (XSS) vulnerability in the Orchestration/Stack section in the Horizon Orchestration
dashboard in OpenStack Dashboard (Horizon) before 2013.2.4, 2014.1 before 2014.1.2,
and Juno before Juno-2, when used with Heat, allows remote Orchestration template own-
ers or catalogs to inject arbitrary web script or HTML via a crafted template. CVE-2014-
7231: The strutils.mask password function in the OpenStack Oslo utility library, Cinder,
Nova, and Trove before 2013.2.4 and 2014.1 before 2014.1.3 does not properly mask pass-
words when logging commands, which allows local users to obtain passwords by reading
the log.

19

20

Chapter 3

Security Risk Quantification in Cloud
Computing

Cloud computing has revolutionized information technology, in that It allows enterprises and
users to lower computing expenses by outsourcing their needs to a cloud service provider. How-
ever, despite all the benefits it brings, cloud computing raises several security concerns that
have not yet been fully addressed to a satisfactory note. Indeed, by outsourcing its operations,
a client surrenders control to the service provider and needs assurance that data is dealt with
in an appropriate manner. Furthermore, the most inherent security issue of cloud computing is
multi-tenancy. Cloud computing is a shared platform where users’ data are hosted in the same
physical infrastructure. A malicious user can exploit this fact to steal the data of the users whom
he or she is sharing the platform with. To address the aforementioned security issues, we propose
a security risk quantification method that will allow users and cloud computing administrators
to measure the security level of a given cloud ecosystem. Our risk quantification method is an
adaptation of the fault tree analysis, which is a modeling tool that has proven to be highly effec-
tive in mission-critical systems. We replaced the faults by the probable vulnerabilities in a cloud
system, and with the help of the common vulnerability scoring system, we were able to generate
the risk formula. In addition to addressing the previously mentioned issues, we were also able
to quantify the security risks of a popular cloud management stack, and propose an architecture
where users can evaluate and rank different cloud service providers.

3.1 Introduction

Cloud computing is revolutionizing the way society uses computing resources. It promises a
new economic model, which is profitable for both cloud computing service providers and cus-
tomers. Although many industry and academic definitions exist for cloud computing, the most
widely accepted definition originates from the National Institute of Standards and Technology
[4] (NIST) that defines cloud computing as “a new model for enabling convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., networks, servers,
storage, applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction”. The cloud computing business model permits

21

non-IT-related companies to focus more on their specialties rather than their IT infrastructures.
However, while cloud computing has numerous benefits, especially in regards to infrastructure
costs, it also has some disadvantages that must be addressed.

In order to reap the stated benefits of cloud computing, it is necessary to investigate its dis-
advantages. Indeed, despite all the benefits, users are still reluctant to adopt cloud computing
because of its security issues identified in numerous survey papers [5, 6, 7, 8, 9, 10]. These secu-
rity issues range from the security of the multi-tenant aspect of cloud computing [11] to the loss
of control [12].

The current cloud computing model is based on an outsourcing strategy. Essentially, cus-
tomers are generally hesitant to entrust the management of their data to a third party. The issue
of trust is magnified in this case and Cloud Service Providers (CSPs) must provide the necessary
guarantees to convince the customers that their data will be safe and secure. Furthermore, the
fact that the cloud environment is a shared platform (i.e. all the users’ data are pooled up and
stored in the same physical infrastructure) makes it a nightmare for CSPs in their endeavor to
attract potential customers. It is this inherent multi-tenancy aspect of cloud computing that also
dissuades customers from utilizing the cloud.

In this work, we are exploring the fact that any kind of attack that can happen in the cloud is
the result of an exploitation of unpatched vulnerabilities. In practice, many vulnerabilities remain
in a cloud environment after they are discovered. This issue is due to environmental factors
(latency in releasing vulnerability patches), cost factors (such as money and administrative efforts
required for deploying patches), or mission factors (organizational preference for availability and
usability over security). Therefore, addressing the problem of security in cloud computing is a
huge challenge.

Cloud computing is widely accepted as having three preeminent service models: Infrastruc-
ture as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). In
summary, the IaaS service model provides the virtual infrastructure (networks, bandwidth, vir-
tual machines, volumes, etc.). The PaaS service model contains the middleware services. The
SaaS service model provides software features that are used by end-users via a thin-client. Each
of these service models has its inherent security issues but, in this paper, we have decided to val-
idate this research over the IaaS service model. IaaS is the foundation of any cloud infrastructure
and presents the highest level of multi-tenancy with the different tenants sharing storage, CPU,
network bandwidth, and memory.

On the other hand, cloud computing has burgeoned to become the dominant paradigm in in-
formation technology (IT). The rapid development of cloud computing has permitted the emer-
gence of other important paradigms like cloud management stacks. A cloud management stack
is a set of components that work together to facilitate the management of a cloud infrastruc-
ture system. A cloud management stack is, at least, composed of the following components: an
external application programming interface (API) that assures the communication between the
cloud services and external users; a compute service which makes charge the management of the
virtual machines (VMs) on the host machines in terms of features like creation, deletion or sus-
pension of VMs; an image service for managing the deployment or registration of VM images;
a volume service that maps persistent storage used by the VMs; and a network service that helps
with the management of the networks used by the VMs. In addition to the intrinsic aforemen-
tioned components, cloud management stacks rely on some external services that are critical for

22

its functioning. Among those external services, the hypervisor is regarded as the most important.
Popular cloud computing management stacks include OpenStack [23], OpenNebula [24], Cloud-
Stack [25], or Eucalyptus [26]. In this paper, our focus is on OpenStack because it is the most
deployed cloud management software, plus it has a vibrant community that provides all the nec-
essary documentation. Since its inception, OpenStack has had numerous releases; this research
considers the HAVANA edition. People in academia and industry often use OpenStack to deploy
their private clouds. However, with its rapid adoption, OpenStack is also rapidly beginning to
garner attention in the National Vulnerability Database (NVD) [27]. Indeed, OpenStack has a
total of 101 vulnerabilities (as of September 2014) that have scores ranging from 9.0 to 1.9 in the
Common Vulnerability Scoring System (CVSS) [28]. Figure 3.1 gives a visual description of the
former statement. Furthermore, the logical architecture of OpenStack [29] reveals a deep level of
interconnectedness between its different components (services) and subcomponents. We contend
that these two situations, mixed together, could jeopardize the security of the cloud systems of
the different adopters of OpenStack. Due to this level of interconnectedness, a successful attack
in one component can turn out to be a successful attack on the entire architecture.

In order to prevent the issues mentioned above, we contend that the best solution is to quantify
security risks in cloud computing. Our main contribution is a novel approach for quantifying
security in cloud computing, inspired by Fault Tree Analysis (FTA), which is commonly used
in Probabilistic Risk Analysis (PRA) (which in turn is used to quantify the risk of failure in
highly mission-critical systems like those of a nuclear power plant). In FTA, a fault tree is built
out of the probable faults that could occur in the system. A further analysis of the fault tree
concludes in a quantified result that could help decision makers to plan their future strategy.
Our security quantification method consists of the vulnerabilities of an IaaS that we use to build
a Boolean vulnerability tree while conforming to FTA rules. The analysis of the vulnerability
tree leads to the extraction of the quantification formula. Risk (R) is generally defined as the
likelihood (L) of an unwanted event to occur multiplied by the impact (I) that particular event
would cause: R = L×I. Using the Common Vulnerability Scoring System (CVSS), we were able
to generate an impact sub-formula and a likelihood sub-formula for any single vulnerability.
We then use the vulnerability tree to generate the Impact and Likelihood formulas. The final risk
value is calculated by using the traditional risk definition. We were able to prove how our solution
works in a multi-tenant platform, and also presented a unique architecture for ranking cloud
service providers. We finally used the security risk to perform an analysis of OpenStack logical
architecture. We were able to generate the different security vulnerability trees of the components
that compose the architecture, and we were also able to make some recommendations on a better
nomenclature of OpenStack vulnerabilities.

The remainder of this Chapter is structured as follows. Section 3.2 is about the related work.
In Section 3.3, we detail our proposal. Section 3.4 contains a proof-of-concept of how our
method works in a multi-tenant system. Section 3.5 is entirely dedicated to the ranking platform.
In section 3.6, we showcase the security analysis of the logical architecture of OpenStack. In
Section 3.7, we propose a discussion of our findings and give a hint of our future work. Section
3.8 concludes the Chapter.

23

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

9/14/11	
 4/1/12	
 10/18/12	
 5/6/13	
 11/22/13	
 6/10/14	
 12/27/14	

Score	

Figure 3.1: OpenStack presence in the NVD

3.2 Related Work

Most of the work related to this study comes from reliability system analysis. Indeed, we make
use of the fault tree to perform our security analysis, which is similar to applying fault tree in a
highly critical system like nuclear power plant systems. To the best of our knowledge, besides
Fall et al. [30], we are not aware of a similar work that has been conducted in cloud computing,
particularly in OpenStack architecture. Nevertheless, there is some work related to the security
of OpenStack that we can cite as reference.

Zhai el al. [31] produced the closest work to this research. They proposed a structural re-
liability auditing (SRA) technique that permits the quantification of the vulnerabilities of inter-
dependent infrastructures in a cloud platform. The operating of the system is divided in three
steps: infrastructure dependency data collection, construction of a fault tree based on the gath-
ered data, and analysis of the fault tree to estimate the probability of failure of the top event.
They demonstrated the practicality of their system by implementing it, which also showed the
lack of privacy measures for the data that is being used. Xiao et al. [32] fixed the issue by adding
a privacy aspect to the SRA system. They re-engineered the 3-step process of [31]’s work by
adding privacy to each step and using Secure Multi-Party Computation (SMPC). They were able
to evaluate an implemented version of their proposal on the Sharemind SecretC platform.

Khan et al. [33] proposed an OpenId authentication mechanism for OpenStack. In their
system, OpenId provides authentication for the user solely while the cloud provider manages the
access control policies. Sasko et al. [34] performed an OpenStack security assessment. They
set up a system running OpenStack with virtual machines that separately have Ubuntu, CentOS,
Fedora and Windows operating systems. After running a vulnerability scan, they concluded
that the latter operating system (Windows) was more subject to vulnerabilities than the others.
In the same spirit, Donevski et al. [35] proposed a security assessment for virtual machines in

24

open source clouds. They also used OpenStack and performed their assessment in two different
network situations for the virtual machines: same IP addresses for floating and fixed IPs, and
two different IPs for both. They were able to label out different test cases that gave different
results that they classified qualitatively and quantitatively by using the CVSS. Aryan et al. [36]
evaluated the degree of compromise of a cloud environment knowing that, at least one of the
components is compromised.

A body of work that is similar to our initiative in the cloud level exists in the enterprise
network domain and is called Attack graph [37]. An attack graph elucidates how multiple vul-
nerabilities may be combined to launch an attack in an enterprise network. Usually, an attack
graph makes use of vulnerability on a host and evaluates the possibility of propagation towards
different hosts. Different tools have been developed to automatically generate attack graphs.
MulVAL [38] (Multihost, multistage Vulnerability Analysis) is a scalable attack graph generator
that models the interaction of the constituents of an enterprise network (software bugs, system
and network configuration). MULVAL uses Datalogs as modeling language contrarily to most
of the other tools in this domain; they use model checking. NETSPA [39] (A Network Secu-
rity Planning Architecture) is an attack graph tool that has a primarily preventive role. From
the network topology of an enterprise, NETSPA generates an attack graph of all the possible
paths an attacker can use, which permits network administrators to take necessary measures for
plausible attacks. Topological Vulnerability Analysis (TVA) [40] is a tool that combines simu-
lated attacker exploits on a network to discover attack paths that are used to assess the overall
vulnerability of the network. There also exist commercial tools for vulnerability analysis and
attack graph generation. As instances, Nessus [41], Retina [42] and Tripwire IP360 [43] are
well-known network vulnerability scanners that provide vulnerability management, vulnerabil-
ity analysis and network protection. Skybox security [44] and Red Seal Systems [45] propose
attack graph generators where risk is calculated in the traditional way: likelihood multiplied by
the impact.

On the other hand, despite the fact that it is out of the scope of this research, we wanted
to mention that Failure Mode and Effects Analysis (FMEA) [46] and Root Cause Analysis
(RCA) [47] compete with Fault Tree Analysis (FTA) [48] on modeling failures in a given system.
We prefer FTA because we contend that it is more suitable for our research.

3.3 Cloud Computing Security Risk Quantification
The concept of risk is very complex and the available definitions are sources of ambiguity. In-
deed, risk is considered as the probability that a particular adverse event occurs during a stated
period of time, or results from a particular challenge [49]. Another definition of risk considers
it as a combination of the probability or frequency of occurrence of a defined hazard and the
magnitude of the consequences of the occurrence [50]. These definitions seem different yet sim-
ilar as they convey the idea of an undesired event linked with its consequences. In Information
Technology (IT), risk is defined as “the net negative impact of the exercise of a vulnerability,
considering both the probability and the impact of the occurrence” [51].

In this research, the concept of risk revolves around the concept of security vulnerability. A
vulnerability is a security weakness that could be exploited to cause loss of or harm to the assets

25

of a system. In line with the IT definition of risk, we consider risk as being the likelihood of a
vulnerability being exploited times the impact of the previous case happening as highlighted in
Equation 3.1.

Risk = Likelihood × Impact. (3.1)

In the remainder of this section, we shed the light into our proposal. First we enumerate
the security issues we want to tackle. Afterwards we explain in detail the methodology and the
different tools that helped us to reach our goal.

3.3.1 Security risks in Cloud Computing

It is a truism to single out the security issues of cloud computing as the main obstacles to its
adoption, but that does not make it any less true. Indeed, since the inception of cloud computing
as we know it in the modern era, until now, where it has matured, its security issues are still
alarming. The most obvious security issue is the loss of control. The main feature of cloud com-
puting is its capability to host users’ computing resources. The users perceive that feature as a
risk to their data. While it is really attractive, users are not yet ready to delegate the control of
their data to the cloud administrators who can be malicious. The users’ data can be leaked inad-
vertently or consciously to their competitors. In this research, we do not offer a direct solution
for this security issue. However, we believe that the security issues that we are directly tackling
can lead to a loss of control issue.

The other security point of contention is multi-tenancy. Cloud computing promotes cheap
services for the users. But that implies some other concessions from the cloud service provider
(CSP). In fact, to be able to host the users’ data at the cheapest price possible, CSPs host their data
on the same platform. In the early days of cloud computing, Ristenpart et al. [11] demonstrated
that attackers can take advantage of that shared platform to steal the data of their neighboring
tenants. This nagging security issue of cloud computing is still unresolved. A tenant is quasi-
totally oblivious of the maliciousness (respectively, honesty) of their other fellow tenants. They
do not want to give to each other the benefit of the doubt and request the CSP to meticulously
isolate their interests from other tenants’ interests.

Another motivating issue is cloud computing ranking systems based on security. Indeed, as
seen in numerous surveys, the main concern for users is security. Yet researchers continue to
focus on proposing cloud computing ranking systems that are mainly based on the performances
of the cloud service providers. We are not trying to undermine that valuable research by any
means as they are important to a certain extent, but what really matters for the adopters of cloud
computing is security. Thus, a security ranking system that allows users to securely evaluate a
CSP before requesting its services is primordial nowadays. We look forward to propose a viable
solution for this matter.

Recently, we are assisting the rapid development of new technologies in cloud computing
called cloud management stacks. These technologies facilitate the management of cloud in-
frastructure platforms by providing different layers of software solutions that permit a cloud
administrator to easily handle the different required tasks in their datacenter. Organizations that
are looking forward to building private clouds are euphorically adopting these software prod-
ucts without evaluating their security. This reminds us of the beginning of the Internet where

26

Basic Event
An initiating fault requiring no further development	

Undeveloped Event
An event which is not developed further, either because it is considered
unnecessary, or because insufficient information is available	

Intermediate Event
An event arising from the combination of other events	

AND Gate
All input events must occur for the output to occur	

OR Gate
The occurrence of one or more input events will cause the output to occur	

Transfer in
The tree is developed further elsewhere.	

Transfer out
Indicates the place where the development takes place	

INHIBIT Gate
Output fault occurs if the single input fault occurs in the presence of an
enabling condition.	

Figure 3.2: List of Standard Fault Tree Symbols

researchers developed a flurry of applications without any care about their security. The result
is that we are continuously trying to fix those early mistakes. We want this paper to serve as a
wake-up call for all the aficionados of cloud management stacks to be more security oriented.

3.3.2 Fault Tree Analysis

A fault tree [48, 52] is a basic tool used as part of a quantitative analysis of a system. It gives rise
to a pictorial representation of an undesirable event in a system in Boolean logic. The analysis
of the fault tree is the process of developing a deterministic description of the occurrence of an
undesirable event, the top event, in terms of the occurrence or non-occurrence of other events
called intermediate events. Furthermore, the intermediate events are deeply explored until the
basic events, which represent the lowest events of the tree, are reached. Each node in a fault
tree represents either an event or a logic gate. The logic gates determine the logical relationship

27

among the events. The events can be fundamentally different but should belong to the same
family, i.e., when the top event is a successful attack on an infrastructure, the basics events are
successful attacks on some of the components that constitute the infrastructure. Additionally,
since fault trees are expressions in Boolean logic, their usage implies that the events are binary,
that is, true or false. Fault tree construction requires different symbols and notations, some of
them are illustrated in Figure 3.2. Practically, the use of various gates can be helpful to construct
a well-detailed fault tree but, in principle, it is possible to construct any fault tree from the
combination of AND and OR gates. Hereafter, we provide some definitions that are necessary
for a better comprehension of fault tree analysis.

Definition 3.1 : A cut set is a collection of basic events such that if these events occur
together then the top event will certainly occur.

Definition 3.2 : A minimal cut set is a collection of basic events forming a cut set such
that if any of the basic events are removed, then the remaining set is no
longer a cut set.

Definition 3.3 : A path set is a collection of basic events such that if none of these events
occur then the top event will certainly not occur.

Definition 3.4 : A minimal path set is a path set such that if any of the events are removed
then the remaining set will no longer be a path set.

The minimal cut and path sets are primordial for quantifying the probability of the top event.
Suppose that we have a fault tree representation with a top event T and several cut sets C1, . . . ,
Cn. From the aforementioned definitions, we know that T is a set composed of all the possible
cut sets of the fault tree:

T = C1 ∪C2 ∪ ... ∪Cn. (3.2)

By applying the inclusion-exclusion law of probability [52] to Equation 3.2, we obtain Equa-
tion 3.4:

P[T] = P(C1 ∪C2 ∪ ... ∪Cn). (3.3)

P[T] =

n∑
i=1

P[Ci] −
∑
i< j

P[Ci ∩ C j] + ... − (−1)n+1P[C1 ∩ C2 ∩ ... ∩ Cn]. (3.4)

In the subsequent security analysis, we will use this formulation to perform the security
quantification. The Impact and Likelihood equations are defined as follows:

I[T] =

n∑
i=1

I[Ci] −
∑
i< j

I[Ci ∩ C j] + ... − (−1)n+1I[C1 ∩ C2 ∩ ... ∩ Cn]. (3.5)

28

L[T] =

n∑
i=1

L[li] −
∑
i< j

L[li ∩ l j] + ... − (−1)n+1L[l1 ∩ l2 ∩ ... ∩ ln]. (3.6)

We will also write vulnerability instead of a fault tree in order to be more in line with secu-
rity, but the intrinsic concepts of fault tree remain intact. In the following section, we explain
how we use the vulnerabilities in the National Vulnerability Database (NVD) and the Common
Vulnerability Scoring System (CVSS) to achieve our proposal.

The process of building a vulnerability tree is similar to the process of constructing a fault
tree. It begins with a top event which is the attack of the cloud environment. We develop the
tree by finding necessary and sufficient vulnerabilities of which their exploitation leads to the
top event. In a simple case, all the vulnerabilities are somewhat independent and we use to
Boolean logic OR to interpret their relationship. The situation can be more complicated with
some dependencies in the tree as we show in Section 3.4.

3.3.3 National Vulnerability Database and Common Vulnerability Scoring
System

The National Vulnerability Database is a publicly available database for computer-related vul-
nerabilities. It is a property of the United States (US) government, which manages it throughout
the computer security division of the U.S. National institute of Science and Technology (NIST).
The NVD is also used by the U.S. government as a content repository for the Security Content
Automation Protocol (SCAP). The primary sources of the NVD are as follows: Vulnerability
Search Engine (Common Vulnerability Exposure (CVE) and CCE misconfigurations), National
Checklist Program (automatable security configuration guidance in XCCDF and OVAL), SCAP
and SCAP compatible tools, Product dictionary (CPE), Common vulnerability Scoring System
for impact metrics, and Common Weakness Enumeration (CWE).

The Common Vulnerability Scoring System (CVSS) [28] is a vendor-neutral open source
vulnerability scoring system. It was established to help organizations to efficiently plan their
responses regarding security vulnerabilities. The CVSS is comprised of three metric groups clas-
sified as base, temporal, and environmental. The base metric group contains the quintessential
characteristics of a vulnerability. The temporal metric group is used for non-constant charac-
teristics of a vulnerability, and the environmental metric group defines the characteristics of a
vulnerability that are tightly related to the user’s environment. We want our proposal to be suffi-
ciently generic so that it can be utilized at any time by any organization which expressly desires
to adopt a secure cloud computing system. For that reason, we opted to make exclusive use of
a base metric group which provides the constant characteristics of a vulnerability. In doing so,
the vulnerabilities will not change in relation to either time or organization. Consequently, the
temporal and environmental metric groups do not feature prominently in our research. The base
metric group regroups essential metrics that are used to compute the score of a vulnerability: Ac-
cess Vector (AV) is the metric reflecting how the vulnerability is exploited; Access Complexity
(AC) is the metric that defines how difficult it is to exploit a vulnerability once an attacker has
gained access to the target system; Authentication (Au) is the metric that reflects the number of
times an attacker must authenticate to a target in order to exploit a vulnerability; Confidentiality
Impact (C) is the metric that measures the impact on confidentiality of a successfully exploited

29

vulnerability; Integrity Impact (I) is the metric that measures the impact to integrity of a success-
fully exploited vulnerability; and Availability Impact (A) is the metric that measures the impact
to availability of a successfully exploited vulnerability. The base equation is the foundation of
CVSS scoring; it contains two sub-equations that are of particular interest in our proposal:

Impact = 10.41 × (1 − (1 − Con f Impact) × (1 − IntegImpact) × (1 − AvailImpact)) (3.7)

Exploitability = 20 × AccessVector × AccessComplexity × Authentication (3.8)

We are constrained to slightly amend the previous sub-equations because their default values
range between 0 to 10 whereas we are looking for probabilities like values. The amendment
results in Equation 3.9 and Equation 3.10.

Impact = 1.041 × (1 − (1 − Con f Impact) × (1 − IntegImpact) × (1 − AvailImpact)) (3.9)

Likelihood = 2 × AccessVector × AccessComplexity × Authentication (3.10)

In this research, we consider an impact tree and a Likelihood tree. The analysis of the afore-
mentioned trees lead to the Equations 3.5 and 3.6. Precious information about the parameters
used in the CVSS equations are displayed in Figure 3.3. In the subsequent sections, we will
explore three distinct cases that we deem as popular IaaS cloud deployment. The first case will
feature the classic virtualization architecture where we have a server, a virtual machine monitor
and virtual machines. We use that case to epitomize how to perform a security analysis of a
multi-tenant cloud platform. Our second use case represents a modern architecture that allows
users to compare the security of different cloud service providers (CSPs). The result of the rank-
ing will give the user a good insight on which CSP they should use. The final use case focuses
on the security quantification of OpenStack.

30

Figure 3.3: CVSS Parameter Details

31

Table 3.1: Vulnerabilities of this example and their impact and likelihood values
Components Vulnerabilities Renaming Impact Likelihood

Xen 4.1
CVE-2011-1898 VX1 1 0.44
CVE-2011-1583 VX2 1 0.34

VM1 (Apache 2.0)
CVE-2011-3192 V11 0.69 1
CVE-2011-4317 V12 0.29 0.86
CVE-2011-4415 V13 0.29 0.19

VM2 (MySQL) CVE-2010-1626 V21 0.49 0.39

VM7 (Bind 9.8.0)
CVE-2011-2465 V71 0.29 0.49
CVE-2011-2464 V72 0.29 1

3.4 Multi-tenancy Security Quantification
Computing resources in Infrastructure as a Service (IaaS) cloud computing are typically con-
sumed using virtual machines. By the magic of virtualization, a physical machine is represented
by several virtual machines running their own operating system. The virtual machines are iso-
lated from each other in a multi-tenant environment. The system providing the abstraction of
the hardware and managing the virtual machines is called the Hypervisor or Virtual Machine
Monitor (VMM). Thus, the hypervisor plays a pivotal role in IaaS (machine virtualization) as it
represents the most important link of the entire infrastructure chain system. The level of security
of the shared resources significantly depends on the corresponding strength or weakness of the
hypervisor. These factors culminate into the following hypothesis:

Hypothesis 3.1 In a multi-tenant IaaS cloud, unauthorized access occurs if and only if the
attacker succeeds in exploiting a vulnerability on the virtual machine mon-
itor.

This hypothesis is a pretext that we use to define complex attacks, which are any kind of
attacks that involve multiple vulnerabilities (at least two). This hypothesis constitutes the corner-
stone of this section and is only limited to this section.

Case study
In this case study, we use a cloud infrastructure that is running XEN-4.1 as hypervisor and

has multiple virtual machines. After a security vulnerability scanner, the administrator discovers
the vulnerabilities exposed in Table 3.1 with their impact and likelihood values derived from
Equation 3.9 and Equation 3.10 respectively.
The results of the scanner revealed that there are vulnerabilities in the hypervisor, VM1, VM2,
and VM7. The vulnerability tree of this scenario is shown in Figure 3.4. In the following, we
expose the different vulnerabilities associated with the cloud system.

– xen-4.1: CVE-2011-1898
“Xen 4.1 before 4.1.1 and 4.0 before 4.0.2, when using PCI passthrough on Intel VT-d
chipsets that do not have interrupt remapping, allows guest OS users to gain host OS

32

T

VM2	
 VM1	
 VM7	

Xen	
 4.1	

AND	

OR	

V11	
 V13	
 V71	
 V72	

VX1	
 VX2	
 OR	
 OR	

OR	

V12	

V21	

Figure 3.4: Vulnerability tree of the use case

privileges by using DMA to generate MSI interrupts by writing to the interrupt injection
registers.”

– xen-4.1: CVE-2011-1583
“Multiple integer overflows in tools/libxc/xc dom bzimageloader.c in Xen 3.2, 3.3, 4.0, and
4.1 allow local users to cause a denial of service and possibly execute arbitrary code via
a crafted paravirtualised guest kernel image that triggers (1) a buffer overflow during a
decompression loop or (2) an out-of-bounds read in the loader involving unspecified length
fields.”

– VM1 (Apache 2.0): CVE-2011-3192
“The byterange filter in the Apache HTTP Server 1.3.x, 2.0.x through 2.0.64, and 2.2.x
through 2.2.19 allows remote attackers to cause a denial of service (memory and CPU
consumption) via a Range header that expresses multiple overlapping ranges, as exploited
in the wild in August 2011, a different vulnerability than CVE-2007-0086.”

– VM1 (Apache 2.0)CVE-2011-4317
“The mod proxy module in the Apache HTTP Server 1.3.x through 1.3.42, 2.0.x through

33

2.0.64, and 2.2.x through 2.2.21, when the Revision 1179239 patch is in place, does not
properly interact with use of (1) RewriteRule and (2) ProxyPassMatch pattern matches
for configuration of a reverse proxy, which allows remote attackers to send requests to
intranet servers via a malformed URI containing an @ (at sign) character and a : (colon)
character in invalid positions. NOTE: this vulnerability exists because of an incomplete fix
for CVE-2011-3368.”

– VM1 (Apache 2.0)CVE-2011-4415
“The ap pregsub function in server/util.c in the Apache HTTP Server 2.0.x through 2.0.64
and 2.2.x through 2.2.21, when the mod setenvif module is enabled, does not restrict the
size of values of environment variables, which allows local users to cause a denial of
service (memory consumption or NULL pointer dereference) via a .htaccess file with a
crafted SetEnvIf directive, in conjunction with a crafted HTTP request header, related to
(1) the ”len +=” statement and (2) the apr pcalloc function call, a different vulnerability
than CVE-2011-3607.”

– VM2 (MySQL)CVE-2010-1626
“MySQL before 5.1.46 allows local users to delete the data and index files of another
user‘s MyISAM table via a symlink attack in conjunction with the DROP TABLE command,
a different vulnerability than CVE-2008-4098 and CVE-2008-7247.”

– VM7 (Bind 9.8.0)CVE-2011-2465
“Unspecified vulnerability in ISC BIND 9 9.8.0, 9.8.0-P1, 9.8.0-P2, and 9.8.1b1, when
recursion is enabled and the Response Policy Zone (RPZ) contains DNAME or certain
CNAME records, allows remote attackers to cause a denial of service (named daemon
crash) via an unspecified query.”

– VM7 (Bind 9.8.0)CVE-2011-2464
“Unspecified vulnerability in ISC BIND 9 9.6.x before 9.6-ESV-R4-P3, 9.7.x before 9.7.3-
P3, and 9.8.x before 9.8.0-P4 allows remote attackers to cause a denial of service (named
daemon crash) via a crafted UPDATE request.”

The significance of this scenario is the presence of multiple vulnerabilities in some compo-
nents of the infrastructure: hypervisor (two), VM1 (three), and VM7 (two). Before applying
our global formula to the entire system, we do the partial quantifications for those specific com-
ponents. For each of the aforementioned components, we use the equations that we developed
earlier to perform the partial Impact and Likelihood quantifications. Afterwards, we proceed to
generate the actual risk quantification. The results are summarized in Table 3.2. We consider the
vulnerabilities to be independent but not mutually exclusive.

The NVD provides a vulnerability severity ratings which is as follows:
• ”Low” for CVSS base scores that range from 0.0 to 3.9
• ”Medium” if the vulnerabilities have base scores of 4.0-6.9
• ”High” if the CVSS base scores range from 7.0 to 10

As we opted to work with probability-like values, we reduced the vulnerability severity rating of
the NVD to the following:
• ”Low” if the risk values range between 0.0-0.39

34

Table 3.2: Use case: Results summary
Components impact likelihood
Xen 4.1 1 0.6304
VM1 0.8437 1
VM2 (MySQL) 0.49 0.39
VM7 0.4959 1
I[T] 0.9598 0
L[T] 0 0.6304
Risk 0.605

• ”Medium” if the risk values range between 0.4-0.69
• ”High” if the risk values range between 0.7-1

Therefore, the risk of this particular use case can be considered to be MEDIUM. This means that
the administrator of the system has to take rapid actions to patch the vulnerabilities, especially if
the reasons for not updating the system are mission or cost factors. We show the details of the
calculations of the likelihood and impact. Likelihood of the hypervisor Xen 4.1:

L[Xen4.1] = L[VX1] + L[VX2] − L[VX1] ∗ L[VX2] (3.11)

L[Xen4.1] = 0.44 + 0.34 − 0.44 ∗ 0.34 = 0.6304 (3.12)

Likelihood of VM1:

L[V M1] = L[V11] + L[V12] + L[V13] − L[V11] ∗ L[V12] − L[V11] ∗ L[V13]
−L[V12] ∗ L[V13] + L[V11] ∗ L[V12] ∗ L[V13] (3.13)

L[V M1] = 1 + 0.86 + 0.19 − 1 ∗ 0.86 − 1 ∗ 0.19 − 0.19 ∗ 0.86 + 1 ∗ 0.86 ∗ 19
= 1 (3.14)

Likelihood of VM7:

L[V M7] = L[V71] + L[V72] − L[V71] ∗ L[V72] (3.15)

L[V M7] = 0.49 + 1 − 0.49 = 1 (3.16)

35

Likelihood of the top event T:

L[T] = L[Xen4.1] ∗ L[V M1] + L[Xen4.1] ∗ L[V M2] + L[Xen4.1] ∗ L[V M7]
−L[Xen4.1] ∗ L[V M1] ∗ L[V M2] − L[Xen4.1] ∗ L[V M1] ∗ L[V M7]
−L[Xen4.1] ∗ L[V M2] ∗ L[V M7]
+L[Xen4.1] ∗ L[V M1] ∗ L[V M2] ∗ L[V M7] (3.17)

L[T] = 0.6304 ∗ 1 + 0.6304 ∗ 0.39 + 0.6304 ∗ 1 − 0.6304 ∗ 1 ∗ 0.39 − 0.6304 ∗ 1 ∗ 1
−0.6304 ∗ 0.39 ∗ 1 + 0.6304 ∗ 1 ∗ 0.39 ∗ 1 (3.18)

L[T] = 0.6304 (3.19)

Impact of the hypervisor Xen 4.1:

I[Xen4.1] = I[VX1] + I[VX2] − I[VX1] ∗ I[VX2] (3.20)

I[Xen4.1] = 1 + 1 − 1 = 1 (3.21)

Impact of VM1:

I[V M1] = I[V11] + I[V12] + I[V13] − I[V11] ∗ I[V12] − I[V11] ∗ I[V13]
−I[V12] ∗ I[V13] + I[V11] ∗ I[V12] ∗ I[V13] (3.22)

I[V M1] = 0.69 + 0.29 + 0.29 − 0.69 ∗ 0.29 − 0.69 ∗ 0.29 − 0.29 ∗ 0.29 + 0.69 ∗ 0.29 ∗ 0.29
= 0.8437 (3.23)

Impact of VM7:

I[V M7] = I[V71] + I[V72] − I[V71] ∗ I[V72] (3.24)

I[V M7] = 0.29 + 0.29 − 0.29 ∗ 0.29 = 0.4959 (3.25)

Impact of the top event T:

36

I[T] = I[Xen4.1] ∗ I[V M1] + I[Xen4.1] ∗ I[V M2] + I[Xen4.1] ∗ I[V M7]
−I[Xen4.1] ∗ I[V M1] ∗ I[V M2] − I[Xen4.1] ∗ I[V M1] ∗ I[V M7]
−I[Xen4.1] ∗ I[V M2] ∗ I[V M7]
+I[Xen4.1] ∗ I[V M1] ∗ I[V M2] ∗ I[V M7] (3.26)

I[T] = 0.8437 + 0.49 + 0.4959 − 0.8437 ∗ 0.49 − 0.8437 ∗ 0.4959 − 0.49 ∗ 0.4959
+0.8437 ∗ 0.49 ∗ 0.4959 (3.27)

I[T] = 0.9598 (3.28)

Risk calculation:

Risk[T] = L[T] ∗ I[T]
= 0.6304 ∗ 0.9598
= 0.605 (3.29)

37

VM OSes	

Applications	

Hypervisors	

NVD
CVSS	

IaaSecEval:
Applications	

IaaSecEval:
Hypervisor	

IaaSecEval:
VM OS	

Outputs:	

-  Hypervisor	

-  VM OS	

-  Applications	

User	
 User	

1	

2	

3	

4	

5	

6	
 9	

8	

7	
 10	

11	

12	

13	

Figure 3.5: IaaSecEval architecture

3.5 IaaSecEval: Cloud Security Evaluation Architecture

In this section, we propose a unique mechanism called IaaSecEval, that can allow a user to
evaluate the security of a cloud service provider before using its services.

As stated in the Introduction of this Chapter, by a large margin, the first hurdle to the adoption
of cloud computing is security. However, to the best of our knowledge most of the work that
has been done in ranking cloud providers focuses more prominently on pricing, performance,
sustainability, reliability and neglects security [53, 54, 55, 56]. We felt that this is a big issue in
cloud computing that needed to be addressed.

Our ultimate motivation is to guide the customer to make a choice of provider solely based
on security. The reality is that the customer should not worry about the prices of cloud services
because there is a war of cloud prices between the providers [57] i.e., cloud services are getting
cheaper. What it comes down to is performance versus security. In this work we have opted to
furnish security evaluation to the user so that he can make a wiser choice of CSP. The CSPs can
also use our proposal to evaluate the security of their platform and make decisions on, for in-
stance, which hypervisor they should deploy as primary hypervisors and which ones they should
deploy as secondary hypervisors and so on.

The architecture of our framework is depicted in Figure 3.5. The architecture is dispatched
into 13 steps, which we explain hereafter: Steps 1, 2, and 3 represent the users inputs. Actually,
they can be done in no particular order. Once the user submits his requests, the system transfers
the queries to the database (Steps 4, 5, and 6). In the database, the system executes the query to
retrieve all the vulnerabilities associated with the hypervisor, the VM OS, and the Applications
that the user inputted but also performs queries regarding the vulnerabilities of all the hypervisor
(respectively VM OS and Applications) that are in the same family than the one that the user
specified. Afterwards, the results of the queries are forwarded to the modules that are responsible
of the partial evaluation (steps 7, 8, and 9). Finally, the modules in charge of the computation do
their job, and forward their result to the interface of the user (steps 10, 11, 12, and 13).

We propose a use case where a user wants to use cloud services for his data. They have a
choice between CLOUD A and CLOUD B and they use our architecture to compare the two
cloud service providers. Figure 3.6 contains the details of the use case and the final results. The
descriptions of the vulnerabilities we considered in this section are as follows:

CVE-2014-1893: Multiple integer overflows in the (1) FLASK GETBOOL and (2)

38

CLOUD	
 A	
 CLOUD	
 B	

CVE-­‐ID	
 L	
 I	
 CVE-­‐ID	
 L	
 I	

Xen4.0.1	
 CVE-­‐2014-­‐1893	

CVE-­‐2014-­‐1892	

CVE-­‐2011-­‐1166	

0.44	

0.44	

0.51	

0.69	

0.69	

0.69	

Qemu	

2.0.0	

CVE-­‐2014-­‐2894	

CVE-­‐2014-­‐0150	

CVE-­‐2013-­‐4544	

0.39	

0.44	

0.44	

1	

0.64	

0.64	

0.85	
 0.97	
 0.81	
 1	

Risk	
 0.8245	
 Risk	
 0.81	

Ubuntu	

14.04	

CVE-­‐2014-­‐3730	

CVE-­‐2014-­‐3204	

0.86	

0.34	

0.29	

0.64	

Windows	
 8	
 CVE-­‐2014-­‐1812	

CVE-­‐2014-­‐1807	

0.8	

0.39	

0.69	

1	

0.91	
 0.74	
 0.88	
 1	

Risk	
 0.6734	
 Risk	
 	
 0.88	

Apache	
 Apache	

Figure 3.6: Use case Data and Results

FLASK SETBOOL suboperations in the flask hypercall in Xen 4.1.x, 3.3.x, 3.2.x, and
earlier, when XSM is enabled, allow local users to cause a denial of service (processor
fault) via unspecified vectors, a different vulnerability than CVE-2014-1891, CVE-2014-
1892, and CVE-2014-1894.

CVE-2014-1892: Xen 3.3 through 4.1, when XSM is enabled, allows local users to cause a
denial of service via vectors related to a ”large memory allocation,” a different vulnerability
than CVE-2014-1891, CVE-2014-1893, and CVE-2014-1894.

CVE-2011-1166: Xen, possibly before 4.0.2, allows local 64-bit PV guests to cause a denial of
service (host crash) by specifying user mode execution without user-mode pagetables.

CVE-2014-3730: The django.util.http.is safe url function in Django 1.4 before 1.4.13, 1.5 be-
fore 1.5.8, 1.6 before 1.6.5, and 1.7 before 1.7b4 does not properly validate URLs, which
allows remote attackers to conduct open redirect attacks via a malformed URL, as demon-
strated by “http://djangoproject.com.”

CVE-2014-3204: Unity before 7.2.1, as used in Ubuntu 14.04, does not properly handle key-
board shortcuts, which allows physically proximate attackers to bypass the lock screen
and execute arbitrary commands, as demonstrated by right-clicking on the indicator bar
and then pressing the ALT and F2 keys.

CVE-2014-2894: Off-by-one error in the cmd smart function in the smart self test in hw/ide/core.c
in QEMU before 2.0 allows local users to have unspecified impact via a SMART EXE-
CUTE OFFLINE command that triggers a buffer underflow and memory corruption.

CVE-2014-0150: Integer overflow in the virtio net handle mac function in hw/net/virtio-net.c
in QEMU 2.0 and earlier allows local guest users to execute arbitrary code via a MAC

39

addresses table update request, which triggers a heap-based buffer overflow.

CVE-2013-4544: hw/net/vmxnet3.c in QEMU 2.0.0-rc0, 1.7.1, and earlier allows local guest
users to cause a denial of service or possibly execute arbitrary code via vectors related to
(1) RX or (2) TX queue numbers or (3) interrupt indices. NOTE: some of these details are
obtained from third party information.

CVE-2014-1812: The Group Policy implementation in Microsoft Windows Vista SP2, Win-
dows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Windows 8, Windows 8.1, and
Windows Server 2012 Gold and R2 does not properly handle distribution of passwords,
which allows remote authenticated users to obtain sensitive credential information and
consequently gain privileges by leveraging access to the SYSVOL share, as exploited in
the wild in May 2014, aka “Group Policy Preferences Password Elevation of Privilege
Vulnerability.”

CVE-2014-1807: The ShellExecute API in Windows Shell in Microsoft Windows Server 2003
SP2, Windows Vista SP2, Windows Server 2008 SP2 and R2 SP1, Windows 7 SP1, Win-
dows 8, Windows 8.1, Windows Server 2012 Gold and R2, and Windows RT Gold and 8.1
does not properly implement file associations, which allows local users to gain privileges
via a crafted application, as exploited in the wild in May 2014, aka “Windows Shell File
Association Vulnerability.”

3.6 Security Risk Quantification of OpenStack
In this section, we shed the light on the security levels of the most popular cloud management
stack currently available in the market. We will elucidate the security interconnections that exist
in OpenStack logical architecture.

3.6.1 Overview of OpenStack Security Analysis

OpenStack logical architecture, Figure 3.7 [29], is made of seven main components (note that we
use component instead of service to fit more into the spirit of vulnerability tree analysis). The
components make use of their application programming interfaces (APIs) to communicate with
each other. We use that architecture to run our security evaluation mechanism, which consists
of using vulnerability trees into the different components of OpenStack. The architecture helps
us understand the degree of interconnectedness that exists between the different components.
The interconnectedness can compromise the security of the entire architecture as it favorites
vulnerability propagation. The background of the main components has already been clarified
in the previous section. We mostly used the Boolean operator OR to construct our vulnerability
trees. That choice is made to give us more flexibility. The use of other Boolean operators like
AND, for instance, would suggest a very strong dependency between the subcomponents, which
implies that the failure of the entire component happens if and only if all the subcomponents are
vulnerable. Nevertheless, we consider the Boolean operator used in our analysis to be inclusive.
We made the assumption that all the components (respectively subcomponents) that have a direct
connection to the Internet (the end users) are susceptible to being attacked. That assumption led

40

Figure 3.7: OpenStack logical architecture

to the construction of 7 vulnerability trees that we examine hereafter. To avoid redundancy, we
only provide details of the top events for one case. A clear comprehension of Section 3.3 allows
a better understanding of this section. Figure 3.2 shows a non-exhaustive list of standard fault
tree symbols that we use to construct our vulnerability tree.

41

Swift-proxy
vulnerable	

Account
vulnerable 	

Container
vulnerable	

Object
vulnerable	

Account DB
vulnerable	

Object store
vulnerable	

Container DB
vulnerable	

Memcached
vulnerable	

Figure 3.8: Swift Vulnerability Tree

3.6.2 Security Evaluation of Swift
Swift or OpenStack Object Store, is intrinsically composed of seven subcomponents that are
named: memcached, account, container, object, account DB, container DB, and Object DB. The
three last mentioned subcomponents are respectively bound to the three other subcomponents
that precede them. The resulting vulnerability tree is described in Figure 3.8. As Swift is attached
to Keystone, the vulnerability tree can be developed further in respect to that attachment.

3.6.3 Security Evaluation of Glance
Glance is very simple in its composition, consequently the vulnerability tree, which is schema-
tized in Figure 3.9, is easy to generate. Glance has connections with Swift, Horizon, Nova, and
Keystone. As a result, the tree can be further expanded in any of those directions.

42

Glance
registry

vulnerable	

Glance
database

vulnerable	

Glance-api
vulnerable	

Figure 3.9: Glance Vulnerability Tree

3.6.4 Security Evaluation of Nova
OpenStack Compute or Nova turns out to be the most complicated component of OpenStack in
terms of the high level of interconnection between its contents plus the fact that it can be accessed
from the Internet in two ways. We have constructed one vulnerability tree that describes the
former situation. The subcomponent nova-api, which we consider as the main subcomponent,
is linked to the subcomponents nova-database, Queue, and nova-cert/objectstore. Queue, in its
turn, is linked to the subcomponents nova-consoleauth, nova-scheduler, nova-conductor, nova-
compute, nova-console. The vulnerability tree that resumes this narrative is depicted in Figure
3.10. We indicate that the tree can be extrapolated due the connections that Nova has with other
components.

43

Nova-api
vulnerable	

Nova-
scheduler
vulnerable	

Nova-cert / object
store vulnerable	

Queue
vulnerable

Nova database
vulnerable	

Nova console
vulnerable	

Nova-
consoleauth
vulnerable	

Nova-
conductor
vulnerable	

Nova compute
vulnerable	

Hypervisor
vulnerable	

Figure 3.10: Nova Vulnerability Tree

44

Cinder-api
vulnerable	

Cinder-volume
vulnerable	

Volume
provider

vulnerable	

Cinder-scheduler
vulnerable	

Cinder database
vulnerable	

Figure 3.11: Cinder Vulnerability Tree

3.6.5 Security Evaluation of Cinder

The vulnerability tree of OpenStack Block Storage, also known as Cinder, is simple to construct
and is represented in Figure 3.11. Cinder is composed of the subcomponents cinder-api, cinder
volume, volume provider, cinder database and cinder scheduler. The tree can be developed
further as Cinder has connections with Nova and Keystone.

3.6.6 Security Evaluation of Neutron

OpenStack Network Service, codenamed Neutron, also has a simple composition that facilitates
the construction of the vulnerability tree showed in Figure 3.12. Neutron has connections with
Horizon, Nova, and Keystone. Consequently, the tree can be extended further towards those
components.

45

Neutron-server
vulnerable	

Neutron agent(s)	

vulnerable	

Queue
vulnerable	

Neutron plugin(s)
vulnerable	

Neutron
database

vulnerable	

Network
provider

vulnerable	

Figure 3.12: Neutron Vulnerability Tree

3.6.7 Security Evaluation of Keystone

Keystone, which is the security guard of OpenStack, is composed of the subcomponents tocken
backend, catalog backend, policy backend, and identity backend. The vulnerability tree is de-
scribed in Figure 3.13. Keystone is connected to all the other components in that manner. The
tree is subject to be developed further to accomplish a deeper analysis. We denote the top event
(Keystone vulnerable) K, the basics events: Token backend vulnerable, Catalog backend vul-
nerable, Policy backend vulnerable, and Identity backend vulnerable, are respectively denoted
K1, K2, K3, and K4. By following the details in Section 3.3, we are able to derive the security
evaluation, which is given by Equation 3.30.

46

Keystone
vulnerable	

Token
backend

vulnerable	

Catalog
backend

vulnerable	

Policy
backend

vulnerable	

Identity
backend

vulnerable	

Figure 3.13: Keystone Vulnerability Tree

P[K] = P[K1] + P[K2] + P[K3] + P[K4] − P[K1]P[K2]
−P[K1]P[K3] − P[K1]P[K4] − P[K2]P[K3]
−P[K2]P[K4] − P[K3]P[K4] + P[K1]P[K2]P[K3]
+P[K1]P[K3]P[K4] + P[K1]P[K2]P[K4] +

P[K2]P[K3]P[K4] − P[K1]P[K2]P[K3]P[K4]. (3.30)

Let us reiterate that to compute the risk quantification for Keystone, we compute first the
Likelihood and Impact by using the previous equation. With the values of the impact and the
likelihood for each vulnerability derived as explained in Section 3.3. Unfortunately, we can-
not have an ideal use case because of the vulnerability issue (Section 3.7) we encountered in
this study. Nevertheless, we provide a particular case of security quantification of Keystone.
We query the NVD to retrieve four vulnerabilities of Keystone and their respective impact and
likelihood values as shown in Table 3.3.

Likelihood of Keystone L[K]:

47

Table 3.3: Keystone vulnerabilities likelihood & impact
Vulnerabilities Impact Likelihood
CVE-2014-0204 (K1) 0.64 0.8
CVE-2014-3520 (K2) 0.64 0.68
CVE-2014-7144 (K3) 0.29 0.86
CVE-2014-3621 (K4) 0.29 0.8

L[K] = L[K1] + L[K2] + L[K3] + L[K4] − L[K1]L[K2]
−L[K1]L[K3] − L[K1]L[K4] − L[K2]L[K3]
−L[K2]L[K4] − L[K3]L[K4] + L[K1]L[K2]L[K3]
+L[K1]L[K3]L[K4] + L[K1]L[K2]L[K4] +

L[K2]L[K3]L[K4] − L[K1]L[K2]L[K3]L[K4]. (3.31)

L[K] = 0.8 + 0.68 + 0.86 + 0.8 − 0.8 ∗ 0.68
−0.8 ∗ 0.86 − 0.8 ∗ 0.8 − 0.68 ∗ 0.86
−0.68 ∗ 0.8 − 0.86 ∗ 0.8 + 0.8 ∗ 0.68 ∗ 0.86
+0.8 ∗ 0.86 ∗ 0.8 + 0.8 ∗ 0.68 ∗ 0.8 +

0.68 ∗ 0.86 ∗ 0.8 − 0.8 ∗ 0.68 ∗ 0.86 ∗ 0.8. (3.32)

L[K] = 0.9981. (3.33)

Impact of Keystone I[K]:

I[K] = I[K1] + I[K2] + I[K3] + I[K4] − I[K1]I[K2]
−I[K1]I[K3] − I[K1]I[K4] − I[K2]I[K3]
−I[K2]I[K4] − I[K3]I[K4] + I[K1]I[K2]I[K3]
+I[K1]I[K3]I[K4] + I[K1]I[K2]I[K4] +

I[K2]I[K3]I[K4] − I[K1]I[K2]I[K3]I[K4]. (3.34)

I[K] = 0.64 + 0.64 + 0.29 + 0.29 − 0.64 ∗ 0.64
−0.64 ∗ 0.29 − 0.64 ∗ 0.29 − 0.64 ∗ 0.29
−0.64 ∗ 0.29 − 0.29 ∗ 0.29 + 0.64 ∗ 0.64 ∗ 0.29
+0.64 ∗ 0.29 ∗ 0.29 + 0.64 ∗ 0.64 ∗ 0.29 +

0.64 ∗ 0.29 ∗ 0.29 − 0.64 ∗ 0.64 ∗ 0.29 ∗ 0.29. (3.35)

48

Swift
vulnerable	

Glance
vulnerable	

Neutron
vulnerable	

Keystone
vulnerable	

Horizon
vulnerable	

Cinder
vulnerable	

Nova
vulnerable	

Figure 3.14: Horizon Vulnerability Tree

I[K] = 0.9347. (3.36)

Risk of Keystone R[K]:

R[K] = L[K] ∗ I[K] = 0.9981 ∗ 0.9347 = 0.9329. (3.37)

3.6.8 Security Evaluation of Horizon

Horizon or OpenStack dashboard is very intriguing because it does not have any particular sub-
component but is linked to all the other major components, which makes it one of the most
critical components of the architecture. Its vulnerability tree is depicted in Figure 3.14. All the
events are deemed intermediate because they could be extended further.

Let’s denote the top event (Horizon vulnerable) by H. The intermediate events Swift vulner-
able, Glance vulnerable, Nova vulnerable, Cinder vulnerable, Neutron vulnerable, and Keystone
vulnerable are respectively denoted S, G, No, C, Ne, and K. The ensuing security evaluation is
given in Equation 3.38. As in the previous subsection, Equation 3.38 can not be used with the
current naming of OpenStack’s vulnerabilities.

Let us remind that P[S], P[G], P[No], P[C], P[Ne], and P[K] respectively represents the secu-
rity evaluation of Swift, Glance, Nova, Cinder, Neutron, and Keystone. The security evaluation
of Horizon, P[H], can be seen as the security evaluation of the entire OpenStack logical architec-
ture.

49

P[H] = P[S] + P[G] + P[No] + P[C] + P[Ne] + P[K] − P[S]P[G] −
P[S]P[No] − P[S]P[C] − P[S]P[Ne] − P[S]P[K] − P[G]P[No] −
P[G]P[C] − P[G]P[Ne] − P[G]P[K] − P[No]P[C] − P[No]P[Ne] −
P[No]P[K] − P[C]P[Ne] − P[C]P[K] − P[Ne]P[K] + P[S]P[G]P[No] +

P[S]P[G]P[C] + P[S]P[G]P[Ne] + P[S]P[G]P[K] + P[S]P[No]P[C] +

P[S]P[No]P[Ne] + P[S]P[No]P[K] + P[S]P[C]P[Ne] +

P[S]P[C]P[K] + P[S]P[Ne]P[K] + P[G]P[No]P[C] + P[G]P[No]P[Ne] +

P[G]P[No]P[K] + P[G]P[C]P[Ne] + P[G]P[C]P[K] + P[G]P[Ne]P[K] +

P[No]P[C]P[Ne] + P[No]P[C]P[K] + P[No]P[Ne]P[K] + P[C]P[Ne]P[K] −
P[S]P[G]P[No]P[C] − P[S]P[G]P[No]P[Ne] − P[S]P[G]P[No]P[K] −
P[S]P[No]P[C]P[Ne] − P[S]P[No]P[C]P[K] − P[S]P[C]P[Ne]P[K] −
P[G]P[No]P[C]P[Ne] − P[G]P[No]P[C]P[K] −
P[No]P[C]P[Ne]P[K] + P[S]P[G]P[No]P[C]P[Ne] +

P[S]P[G]P[No]P[C]P[K] + P[G]P[No]P[C]P[Ne]P[K] −
P[S]P[G]P[No]P[C]P[Ne]P[K]. (3.38)

3.6.9 Summary

Overall, the security analysis of the logical architecture of OpenStack is a daunting task. One
must know the intricacies of each component and their different liaisons to effectively perform
the analysis. We decided to use the Boolean operator OR to give ourselves more room to flexibly
operate the security analysis but a deeper analysis of the architecture can yield a more on-the-
point security analysis by using more precise Boolean operators. Some components contain
subcomponents that have redundant connections with other subcomponents. That situation was
hard to design in the vulnerability tree, and we forcibly have to ignore that redundancy while
generating the likelihood and impact of the top event.

3.7 Discussion and Future Work
We have developed our proposal based on industry and consumer needs and evaluated its applica-
bility with three different application scenarios described in Sections 3.4, 3.5, and 3.6. Currently,
many administrators of cloud systems use the CVSS to evaluate potential reported vulnerabili-
ties, with the resulting score helping to quantify the severity of the vulnerabilities and to prioritize
their responses. They do not have a response in case of mixed, combined vulnerabilities. Our
proposal is a response to these particular cases.

However, we do not argue that our proposal is the ultimate security solution that will solve
all the security problems in IaaS cloud systems. The fact that we are only using the base metric
group can be subject to discussion. In fact, in our proposal, we completely omitted the temporal

50

Figure 3.15: Current Vulnerability Naming of OpenStack

Figure 3.16: Proposed Nomenclature for OpenStack Vulnerabilities

and environmental metric groups. We believe that their presence in our proposal is a non-sense
as we want to solely use the intrinsic score of the vulnerabilities as reported in the NVD, plus
the fact that they are optional gives us a better leverage to ignore them. Nevertheless, if an
organization wants to adopt our method, we recommend them to include the two omitted metrics
as they can help to generate more accurate impact and likelihood values.

In Section 3.4, security quantification of multi-tenancy, we made a strong assumption, which
is represented by our hypothesis. That assumption can be a polarizing notion. Some experts
may not agree that the hypervisor plays such a pivotal role in an IaaS system. Researchers
in academia and industry acknowledge that the hypervisor is responsible of the security of the
virtual machines but they would not go as far as we did in our argumentation.

In Section 3.6, we deployed our security analysis mechanism and generated the different
vulnerability trees that could allow someone to quantify the security of OpenStack depending on
how many components they wish to use. One of the first issues we noticed is the complication of
the interconnectedness of the components. Indeed, if they are taken individually, we can affirm
that the vulnerability trees developed are sound. But when we take them collectively, we have
some components that come back redundantly, hence compromising our vulnerability tree. The
result of the security evaluation in this case will not be optimal because we do not really know
how that redundancy is impacting the evaluation.

The other point of contention, which is also considered as a future work, is the nomenclature
of the vulnerabilities. In our security evaluation, the equations depend heavily on the subcom-
ponents; whilst the naming of the vulnerabilities in the NVD does not give any indication on
which subcomponent was affected by the vulnerability. The descriptions of OpenStack vulnera-
bilities often only indicate the components that are vulnerable (Figure 3.15). The naming of the
vulnerabilities is effectuated by using the Naming specification of the Common Platform Enu-
meration (CPE) [58]. CPE is a standard that is used for the identification and the description
of classes of applications, operating systems, and hardware devices. The latest version of CPE
(CPE 2.3) uses the well-formed CPE name (WFN), which is an abstract logical construction, to

51

represent the name of the classes of products. There are two methods for binding WFNs into
machine-readable encodings: Uniform Resource Identifier (URI) binding and formatted string
binding. URI binding is used for backward compatibility with CPE 2.2 [59]; that is why it has
a monopolistic presence in the NVD. Based on these facts, the equations for each component
would be ‘mono-parametric’. Additionally, the equation of the entire architecture will be sim-
pler yet hiding much information i.e., it will not be accurate. Therefore, a new way of naming
OpenStack vulnerabilities is needed. The novel enumeration should take into account all the
different subcomponents that compose OpenStack. As future work, we will propose the use of
a nomenclature system that is adequate to our security evaluation. The formatted string binding
appear to be a good choice. Figure 3.16 gives a hint of what a better nomenclature for Open-
Stack’s vulnerabilities should look like by using the formatted string binding. But, the intrinsic
definition of the CPE forbids the usage of its binding methods to name a class of product in a
very detailed way. That means that a new binding method is definitely needed for our proposal.

Our last discussion point revolves around the case of vulnerability masking. Indeed, one
might argue that in case of a networked-system the vulnerabilities might not factor in i.e. the
security evaluation is useless in that situation. That theory is true, and that is why in the intro-
duction of Section 3.6, we made the assumption that only the Internet-facing components are
considered in our security evaluation. In our research, an Internet-facing component is a com-
ponent that has a direct connection to the Internet there is no intermediary infrastructure like a
firewall.

Finally, the architecture we considered in this work does not contain all the services of Open-
Stack. Indeed, Heat and Ceilometer are not part of the architecture. Consequently, we did not
consider them in our security evaluation.

52

3.8 Summary
Cloud computing is a promising technology that needs to be protected in order to sustain or fur-
ther accelerate its adoption. In that momentum, we proposed a unique mechanism to quantify
security risks in cloud computing. Our solution consists of building vulnerability (impact and
likelihood) trees of IaaS systems and perform an analysis that results in impact and likelihood
formulas that lead to the quantified security risk. We built our vulnerability trees in regards to
the rules and regulations of fault tree analysis. We showed how our method works in a multi-
tenant cloud system. We made an assumption that hypothesizes that in a multi-tenant system, an
attacker cannot exploit a vulnerability of a targeted virtual machine without bypassing the hyper-
visor. The use case that we provided represents an archetype of how to use our technique in that
particular environment. Furthermore, we proposed a security ranking architecture that allows
users to rank cloud service providers. The architecture allows the user to input the features of the
different cloud provider they want to compare. Afterwards, the system automatically queries the
vulnerabilities associated with those features and computes their risk values. The example we
provided represents an epitome. We finished by applying the method on the logical architecture
of OpenStack. We were able to generate security vulnerabilities for the different components of
OpenStack but we were not able to properly quantify the security risk due to the current nomen-
clature of OpenStack vulnerabilities. We proposed the usage of a new nomenclature scheme to
allow better security quantification of OpenStack and other similar software products.

53

54

Chapter 4

Risk Adaptive Authorization Mechanism
for Cloud Computing

Cloud computing provides many advantages for both the cloud service provider and the clients.
It is also infamous for being highly dynamic and for having numerous security issues. The dy-
namicity of cloud computing implies that dynamic security mechanisms are being employed to
enforce its security, especially in regards to access decisions. However, this is surprisingly not
the case. Static traditional authorization mechanisms are being used in cloud environments, lead-
ing to legitimate doubts on their ability to fulfill the security needs of the cloud. We propose a
risk adaptive authorization mechanism (RAdAM) for a simple cloud deployment, collaboration
in cloud computing and federation in cloud computing. We use a fuzzy inference system to
demonstrate the practicability of RAdAM. We complement RAdAM with a Vulnerability Based
Authorization Mechanism (VBAM) which is a real-time authorization model based on the aver-
age vulnerability scores of the objects present in the cloud. We demonstrated the usefulness of
VBAM in a use case featuring OpenStack.

4.1 Introduction

Modern computer systems are highly dynamic. This fact is epitomized by cloud computing,
which is a novel paradigm in Information Technology (IT) that features data externalization
and low cost of computing infrastructures. The National Institute of Standards and Technology
(NIST) [4] defines cloud computing as “a model for enabling ubiquitous on demand network ac-
cess to a shared pool of configurable resources (e.g., networks, servers, storage, applications, and
servers) that can be rapidly provisioned and released with minimal management effort or service
provider interaction.” Despite the fact that cloud computing is profitable for both adopters and
providers, its security issues remain a concern; particularly, the fact that traditional static autho-
rization mechanisms are employed to enforce access decisions. The current situation reflects an
unsuitability between cloud computing and the authorization mechanisms to date. Novel autho-
rization mechanisms are needed. In the early 2000s, the JASON report [15] pioneered the usage
of risk in modern authorization mechanisms in order to keep with the dynamicity of modern
IT platforms. Their idea supposes that every access request is associated with a risk decision

55

that will be challenged by a threshold to allow (resp. deny) the access request. That marks
the genesis of a number of work around risk aware access controls. Among those researches, a
seminal paper [16] defined the principles of a risk aware access control. In that regard, we pro-
pose a risk adaptive authorization mechanism (RAdAM) which is a dynamic real-time risk-aware
authorization mechanism for cloud computing. We ascertained that RAdAM follows the princi-
ples of a risk aware access control as defined in [16]. We proposed authorization mechanisms
for the most prominent cases that exist in cloud computing. We consider the situation where
the user is a simple cloud customer with basic services. Afterwards, we slightly complicated
the atmosphere by proposing an authorization mechanism for collaboration in cloud comput-
ing. Finally, we designed an authorization mechanism for the most complicated case in cloud
computing: cloud federation. We employed a fuzzy inference system (FIS) [17] to demonstrate
how RAdAM functions. The main contribution of RAdAM is not in the risk determination in
itself but in the way the authorization algorithms work and the novel parameters we introduce
in order to allow the authorization to be as flexible as possible. To complement RAdAM, we
also proposed a vulnerability-based authorization (VBAM) mechanism which is a variation of
the Bell-Lapadula multi-level security (MLS) [18]. The most important point of VBAM is the
usage of the vulnerability score of the objects to enforce a decision. We contend that modern
authorization mechanisms should not only be dynamic, but also should be tailored to the vulner-
abilities of the objects that are being accessed. We demonstrated the usefulness of VBAM by
explaining how it could be used in an OpenStack environment. The remaining of this Chapter is
structured as follows: Section 4.2 contains the motivation and the background explanation of a
risk aware access control. The related work is exposed in Section 4.3. We explain the details of
RAdAM in Section 4.4. We expand upon the usage of RAdAM in a fuzzy inference system in
Section 4.5. Section 4.6 contains the explanation of VBAM and a use case of a possible usage.
In Section 4.7, we discuss the shortcomings of our proposals and future work that lies ahead.
Section 4.8 concludes the paper.

4.2 Background: Risk Aware Access Control

Information sharing has always been a subject of controversy. That is why it drew the attention
of the security experts in the early stages of computing. Many security mechanisms have been
developed for the purpose of information sharing; starting from the basic Access Control Lists
(ACLs) to Mandatory Access Control (MAC) [60], Discretionary Access Control (DAC) [61],
and Role-Based Access Control (RBAC) [62]. Currently, we are facing new challenges as the
shared infrastructure became dynamic and those aforementioned ACs are not flexible enough
to meet the new challenges. It became an urgent matter to engineer access controls that can
cope with the new challenges brought by the modern computer systems. The JASON report
[15] pioneered the idea of a modern access control by defining three fundamental principles that
should be included in their design:
• Measure risk: if you can measure it, you can manage it. In other words, knowing the risk

associated with an event permits a better handling.
• Establish an acceptable risk level

56

• Ensure that the information is tailored to the level of the acceptable risk.
An authorization mechanism that is engineered by mirroring these guidelines can deal with
the reality of today’s information sharing platforms. A seminal paper about an access control
that follows theses guideline was proposed by NIST and titled Risk-Adaptable Access Control
(RAdAC) [16]. RAdAC is a real-time, adaptable risk-aware access control built by a combina-
tion of Attribute-Based Access Control [63], Policy-Based Access Control, Machine Learning,
and heuristics. Six factors are indispensable to make RAdAC decisions:
• Operational need: this factor is one of the factors that RAdAC borrowed from traditional

access controls. It involves the notion of need to know, which means that a requester should
have a relation with the object he is requesting.

• Security risk: is the cornerstone of RAdAC. This factor requires the use of machine learn-
ing for a real time probabilistic determination of risk associated to a request.

• Situational factors: sometimes the access decisions are made depending on the actual
situations; it is possible that the Operational need outweighs the Security risk.

• Access Control Policy: as any normal AC, policies need to be enforced. The policies
should respect the mechanisms of RAdAC by, among other things, setting the acceptable
risk level and defining the conditions on which the Operational Need can outweigh the
Security Risk.

• Heuristics: the goal is to use past access control decisions to make present and future
decisions. The utilization of past decisions will help to better determine the Security Risk
and Operational Need and will increase the positive number of access control decisions.

4.3 Related Work
To the best of our knowledge, this technique is novel as it has not been employed by other
researchers. Nevertheless, a quick perusal over the literature of risk based access control revealed
interesting facts.

Despite the fact that cloud computing is the archetypical dynamic system, there is not a
tremendous amount of research related to risk aware access control in cloud. In fact, Fall et al.
[64] and Dos Santos et al. [65, 66] are the only researchers who are evangelizing the usage of
this method in cloud. Fall et al. [64] proposed a semantic for adapting RAdAC [16] in cloud
computing. Unfortunately they did not propose any implementation of their idea. Santos et al.
[65] proposed a risk-based access control architecture for a highly scalable cloud federation.
They demonstrated the usefulness of their proposal through a prototype by using a combination
of tools including XACML [67]. In their other paper [66], they extended [65] by adding three
modules to the XACML 3.0 architecture. A risk policy module that explains to the cloud service
provider how the access control must be handled. The risk engine module handles the processing
of risk policies. The risk quantification and web services module quantifies the risk for every
access request.

Cheng et al. [68] extended the Bell-Lapadula multi-level security (MLS) access control
model with the concept of risk and named their proposal FuzzyMLS. In FuzzyMLS, risk is
the value of utility loss, multiplied by its leakage probability. The leakage probability is jointly

57

dependent on the temptation and inadvertent leakage probabilities. The temptation is calculated
by the security level of the subject and object, and the inadvertent leakage by a fuzzy approach.
They use different risk thresholds to make access decisions. Ni et al. [69] proposed a risk based
access control built on fuzzy inference. They claim that the inflexibility of traditional access con-
trol is a major inhibitor for information sharing. They first proposed fuzzy BLP and compared
it to FuzzyMLS [68]. Moreover, they argue that despite fuzzy inference being an excellent so-
lution for modern access control, it raises new issues that have to be addressed. Particularly, the
fact that, generally, risk aware access controls are time-consuming thus malicious users can take
advantage of the time window that exists between an access request and the risk mitigation. Fur-
ther, they proposed some algebraic adjustment to solve the issues of conjunction and disjunction
in fuzzy inference.

Burnett et al. [70] proposed TRAAC a trust and risk aware access control that provides a
policy coverage, dynamic access control decisions, appropriate denial of risk and rights delega-
tion. They claim that their system fits the healthcare domain perfectly though it can be extended
to other domains. First, they defined a zone policy model where the data owner has total control
of the privileges on his data which he can share with other users, hence including them in the
domain. The trust is defined in terms of sharing trust and obligation trust that permits the veri-
fication of whether the requester respected the obligations that are assigned to him or not. They
used a probabilistic computational trust model called Subjective Logic to formulate their trust
assessment. The risk is computed in the classical manner of expected loss in terms of unwanted
disclosure. Khambhammettu et al. [71] designed a risk aware framework for decision making
where risk is evaluated as the product of threats and impact scores. The authorization is made
by weighing the security risk against the operational-need and security factors. The framework
embraces four approaches based on the sensitivity level of the object, the trustworthiness of the
subject, and the remaining are made of the combination of the two aforementioned approaches.
Throughout their paper, they proposed successful instances of their proposal. Shaikh et al. [72]
proposed two methods of risk aware access control based on trust and risk. The formulation of
trust and risk depends on rewards and penalties which are updated either positively (rewards) or
negatively (penalties) after an access request decision is made (allow or deny, respectively). An
increase of the trust causes a decrease of the risk and vice versa. The method is based on Multi-
Level Security (MLS) systems [18]. Due to the slow responses in access rights, they proposed
another risk aware access control based on Exponentially Weighted Moving Average (EWMA)
[73]. This method has similar functionalities as the first method.

4.4 Risk-Adaptive Authorization Mechanism: RAdAM
In this section, we will shed some light on our proposal. We propose an authorization mechanism
for three cloud deployment methods: user-mode, collaboration mode and federation mode.

Our authorization mechanism respects the aforementioned principles of RAdAC. We reiter-
ate that, in this model, every access request is evaluated by a risk that will be challenged against
a threshold. We introduce a number of parameters that are handy while designing the autho-
rizations. If the access request is allowed (resp. denied), the parameters are ’positively’ (resp.
negatively) updated in a way that risk will be better (resp. worse) for the next access request. We

58

assume the existence of a set of objects O and a set of subjects S. An object represents a piece of
data which is controlled by the system.

4.4.1 RAdAM: Cloud user

We are aware of the fact that in basic cloud environments, the prominent actors are the users and
the cloud administrator. We suppose that the cloud administrator is honest so our authorization
mechanism focuses on the user. We interchangeably say user or subject. We consider the data of
the user as objects. Thus in our authorization mechanism, we have the tuple <Subject, Object>.
As we strive to build a real time risk adaptive authorization mechanism, we introduce two tokens
that will be used to compute the risk associated with a request:
• α: represents the dynamic token of the user that is linked with the object the subject is

trying to access.
• β: stands for the token of the object that is being accessed.
In our system, every single access is associated with a risk calculation. The risk is calculated

in function of the token of the user α and the token of the object β. Risk is represented by Risk(α,
β). To be in line with the principles of a risk adaptive authorization mechanism, we introduce
a threshold T(α, β). The threshold is also inherently attached to the subject and that particular
object. For situational factor purposes, we also introduce two other parameters:
• The average risk, which is the sum of the risk accumulated by the subject divided by the

number of objects:
Risk(α, β)A =

∑
Risk(α, β) / n.

• The average risk threshold, which is the sum of the thresholds to all subject/object risk
attempts divided by the number of objects:
T(α, β)A =

∑
T(α, β) / n.

The average risk gives us the general behavior of the user. In case the Risk(α, β) is equal to
the threshold T(α, β), the system verifies whether the average risk is greater than or equal to the
average risk threshold to subsequently allow the access request or deny it otherwise.

We want to clarify how the system works in detail as the parameters defined above are for
generic purposes. We consider that we have a set of subjects S. A subject si ∈ S has a set of
objects Oi = {oi1, . . . ,oin}. So for an access request to object oik, the risk is defined by Risk(αik,
βik). Similarly the threshold is T(αik, βik). The average risk would be given by:
Risk(αi, βi)A =

∑n
j=1Risk(αi j, βi j) / n.

The average risk threshold is: T(αi, βi)A =
∑n

j=1T(αi j, βi j) / n. The authorization algorithm is
highlighted in Equation 4.1.

Au(si, oik) =


if Risk(αik, βik) > T (αik, βik) allow
if Risk(αik, βik) = T (αik, βik) then, if
Risk(αi, βi)A ≥ T (αi, βi)A allow
otherwise, deny (4.1)

59

4.4.2 RAdAM: Cloud Collaboration
Data owner

In our understanding, collaboration in cloud computing reflects the idea of a subject expressing a
desire to share their data with other subjects. While collaboration creates added values, resource
misuse and irresponsibility inflict costs and damages on affected resources. Permission misuse
and legitimate user attacks are among the most serious threats which users in cloud computing
collaboration face today. The situation is made even worse due to the dynamic aspect of cloud
computing. The authorization mechanism that we display in this section solely concerns the data
owner. We discuss the authorization mechanism for the other subjects in the appropriate section.
The parameters we defined in the previous section are carried over in this section. We also intro-
duce new parameters that are inherent to collaboration in cloud computing:

• γ: represents the dynamic collaboration token of the user that is attached to the object
which the user is trying to access.

• δ: represents the token of the object in collaboration mode.

• Risk(γ, δ): is the risk associated with a collaboration access request.

• T(γ, δ): the risk threshold to which the risk will be evaluated against.

• Risk(γ, δ)A: the average collaboration risk is the sum of the accumulated collaboration risk
divide by their number (m): Risk(γ, δ)A =

∑
Risk(γ, δ) / n.

• T(γ, δ)A: The average collaboration risk threshold is the sum of the risk collaboration
thresholds divided by their number: T(γ, δ)A =

∑
T(γ, δ) / n.

The above-introduced parameters are solely used in the case of collaboration. Similar to the
previous section, Risk(γ, δ)A and T(γ, δ)A are only used for situational factors.

For an instance of the authorization mechanism in this collaboration case, we still consider
the user si with his set of object Oi={oi1,. . . ,oin}. If the user wants to access the object oik,
the collaboration risk is given by: Risk(γik, δik). The collaboration threshold is: T(γik, δik). The
average collabration risk is determined by: Risk(γi, δi)A =

∑t
l=1Risk(γil, δil) / t; t being the number

of objects, of the user, that are in collaboration mode. The average collaboration risk threshold
is: T(γi, δi)A =

∑t
l=1T(γil, δil) / t. The authorization mechanism is displayed in Equation 4.2.

60

Collaborative user

In this situation we assume that the data owner wants to collaborate with another user in the cloud
and thus share their data with them. As there are different levels of permission (i.e, read, write or
execute), we introduce risk bands that define the level of permission which the user belongs to.

When a user attempts an access request, the system checks first whether they has the collabo-
ration parameters. If so, the system then proceeds and computes the risk based on the parameters.
The result will determine to which risk band the user belongs to hence their level of permission
over the data they is trying to access.

Au(si, oik,C) =



if

Risk(αik, βik) > T (αik, βik) and,
Risk(γik, δik) > T (γik, δik)

allow

if


Risk(αik, βik) = T (αik, βik) and,
Risk(γik, δik) > T (γik, δik) then,
if Risk(αi, βi)A ≥ T (αi, βi)A allow

if


Risk(αik, βik) = T (αik, βik) and,
Risk(γik, δik) = T (γik, δik) then,

if

Risk(αi, βi)A ≥ T (αi, βi)A and,
Risk(γi, δi)A ≥ T (γi, δi)A

allow

if


Risk(αik, βik) > T (αik, βik) and,
Risk(γik, δik) = T (γik, δik) then,
if Risk(γi, δi)A ≥ T (γi, δi)A allow

otherwise, deny (4.2)

4.4.3 RAdAM: Cloud Federation
Data owner

Cloud federation is understood as indicating subjects from different cloud providers being able
to access each other’s data [74, 75, 76]. Cloud computing federation should cope with a het-
erogeneous environment and dynamic sets of users and access requests, and are under multiple
administrative domains. There is a great deal of identity management that is involved in this
paradigm and technologies like OpenID [77] appear to be quintessential in these settings. In our
authorization mechanism, we ignore all the noise caused by the federation and only focus on the
user who is sharing their data with another user from a different cloud. We believe that cloud
federation incorporates both the simple cloud and the collaboration. Therefore, the parameters
defined in the previous section are carried over to this section. To those parameters, we add the
following:

61

• ε: represents the dynamic federation token for the user and the object he is trying to access.
• η: represents the token of the object that user is trying to access.
• Risk(ε, η): represents the risk of the federation request access.
• T(ε, η): represents the threshold of the federation risk access to which the federation risk

will be compared to.
• Risk(ε, η)A: stands for the average federation risk and is calculated by dividing the sum of

all the federation risks by the number of objects: Risk(ε, η)A =
∑

Risk(ε, η) / n.
• T(ε, η)A: represents the average federation threshold risk and is computed by dividing the

sum of all the federation risk thresholds by the number of objects: T(ε, η)A =
∑

T(ε, η) / n.

The access request is allowed (respectively denied) if the risk for federation is strictly greater
than (respectively, strictly lower than) the risk threshold for federation. The other parameters are
used in the situational factor.

For an instance of the authorization mechanism in this federation case, we still consider
the user si with his set of object Oi={oi1,. . . ,oin}. If the user wants to access the object oik, the
risk federation is given by: Risk(ε ik, ηik). The federation threshold is: T(ε ik, ηik). The average
federation risk is determined by: Risk(ε i, ηi)A =

∑z
m=1Risk(ε im, ηim) / z; z being the number

of objects that are in federation mode. The average federation risk threshold is: T(ε i, ηi)A =∑z
m=1T(ε im, ηim) / z. The authorization mechanism is represented in Equation 4.3.

Federative user

Cloud federation can be described as a cloud collaboration on a wider scale. In fact, Tang et
al [78] designed an RBAC model for collaboration cloud services but exclusively used cloud
federation, throughout their paper, to test their solution. In our system, a data owner in cloud
federation has the right to allow a user from another cloud (federative user) to have access to
their data. In this case, the data owner decides the risk level (user token and object token) of the
federative user and can, at any moment, revoke their rights. The authorization mechanism for the
federative user works as in Equation 4.2.

4.4.4 Outsourcing data without outsourcing control

It is a common knowledge that cloud computing prospective adopters are not comfortable know-
ing that the cloud service provider can access their data at anytime. This explains why many
financial institutions prefer to build their own private cloud instead of using the public clouds. In
this Section, we show that our model can be used to limit the power of the cloud administrator
over the user’s data. In a perfect world, the cloud admin should be limited to managerial rights
over the user’s data. We can use the risk bands as in collaboration to allow the user to have more
power over his data that the cloud provider. But the concern that lingers is that the cloud admin
administers the cloud without being able to have a minimal access to the users data.

62

Au =



if


Risk(αik, βik) > T (αik, βik) and,
Risk(γik, δik) > T (γik, δik) and,
Risk(εik, ηik) > T (εik, ηik)

allow

if


Risk(αik, βik) = T (αik, βik) and,
Risk(γik, δik) > T (γik, δik) and,
Risk(εik, ηik) > T (εik, ηik)
then, if Risk(αi, βi)A ≥ T (αi, βi)A allow

if


Risk(αik, βik) > T (αik, βik) and,
Risk(γik, δik) = T (γik, δik) and,
Risk(εik, ηik) > T (εik, ηik)
then, if Risk(γi, δi)A ≥ T (γi, δi)A allow

if


Risk(αik, βik) > T (αik, βik) and,
Risk(γik, δik) > T (γik, δik) and,
Risk(εik, ηik) = T (εik, ηik)
then, if Risk(εi, ηi)A ≥ T (εi, ηi)A allow

if



Risk(αik, βik) = T (αik, βik) and,
Risk(γik, δik) = T (γik, δik) and,
Risk(εik, ηik) > T (εik, ηik)

then, if

Risk(αi, βi)A ≥ T (αi, βi)A and,
Risk(γi, δi)A ≥ T (γi, δi)A

allow

if



Risk(αik, βik) = T (αik, βik) and,
Risk(γik, δik) > T (γik, δik) and,
Risk(εik, ηik) = T (εik, ηik)

then, if

Risk(αi, βi)A ≥ T (αi, βi)A and,
Risk(εi, ηi)A ≥ T (εi, ηi)A

allow

if



Risk(αik, βik) > T (αik, βik) and,
Risk(γik, δik) = T (γik, δik) and,
Risk(εik, ηik) = T (εik, ηik)

then, if

Risk(γi, δi)A ≥ T (γi, δi)A and,
Risk(εi, ηi)A ≥ T (εi, ηi)A

allow

if



Risk(αik, βik) = T (αik, βik) and,
Risk(γik, δik) = T (γik, δik) and,
Risk(εik, ηik) = T (εik, ηik)

then, if


Risk(αi, βi)A ≥ T (αi, βi)A and,
Risk(γi, δi)A ≥ T (γi, δi)A and,
Risk(εi, ηi)A ≥ T (εi, ηi)A

allow

deny otherwise (4.3)

63

RAdAM	

PIP	

resource	
PDP	

Cloud	
 API	
 PEP	

Obliga7ons	

service	

Context	

handler	

PAP	

subjects	
 environment	

1	

2	

3	

4	

5	

6	

7a	

7b	

7c	

8	

9	

10	

11	
 12	

13	

14	

15	

16	

Figure 4.1: RAdAM/XACML architecture

4.4.5 Architecture of RAdAM

We use XACML 3.0 to leverage the architecture for our authorization mechanism. XACML is
an extensible, XML-encoded language that provides format for authorization policies and ac-
cess control decision request and responses. XACML 3.0 was approved as an OASIS standard
on 22 January 2013 [67]. It includes a non-normative data flow model that describes the major
components involved in processing access requests. Prior to any access request, the policy ad-
ministration point (PAP) writes policies and policy sets, that represent the complete policy for
a specified target, and transmits them to the policy decision point (PDP) (step 1). Via the cloud
API, the user performs an access request (step 2). The policy encryption point (PEP) intercepts
the request and forwards it to the context handler (step 3). The context handler converts the
request into an XACML request contest and sends it to the PDP (step 4). The PDP requests to
the context handler any supplemental attributes it might deem necessary to correctly evaluate
the XACML request (step 5). The context handler request the attributes from a policy informa-
tion point (PIP) (step 6). The PIP retrieves the requested attributes which include, among other
things, all the parameters that we introduced in our authorization mechanism and then trans-

64

mits them to the context handler (steps 7-8). The context handler forwards the attributes to the
PDP, and can optionally include the resource (steps 9-10). The PDP sends the attributes to the
RAdAM module for evaluation (step 11). After evaluation as per of our authorization mech-
anism, the RAdAM module returns the decision to the PDP, which forwards it to the context
handler (steps 12-13). The context handler translates the response to the native response format
of the PEP and then sends it to the latter (step 14). The PEP transmits the response to the cloud
API and fulfills the obligations, which include updating the tokens of the users (steps 15-16).

4.4.6 Risk assessment in XACML
XACML employs three top-level policy elements: <Rule>, <Policy> and <PolicySet>. The
<Rule> element contains a Boolean expression that is meant to be evaluated in isolation within
the XACML PAP. It is the most elementary unit of a policy. A <Rule> comprises an optional
<Target> and <Condition> elements and an Effect attribute. The <Condition> defines a Boolean
expression that further restricts the applicability of the rule that determines the outcome: either
Permit or Deny. A <Rule> may also include obligation expressions that refer to operations that
must be performed by the PEP in addition to enforcing the PDP’s decision. Note that these
are systems obligations, not user obligations. More than one rule defined by a policy may be
relevant to a request, and so the rule-combining algorithm (Deny-overrides, as instance), is used
to combine outcomes of these rules into a single decision. The <Policy> element is the basic unit
of policy used by the PDP. It is composed of a set of <Rule> elements and plays a pivotal role in
an authorization decision, a <Target> and a rule-combining algorithm. The <Target> defines a
set of conditions that the attribute values in an access request must meet for the policy to apply to
the request. The <PolicySet> element is the standard apparatus for combining separate policies
into a single policy. It is made of a set of <Policy> and/or other <PolicySet> elements with
a sound process to make the combination works by using a policy combining algorithm that
defines the manner of combining the results of evaluating the policies. An instance of RAdAM
in XACML expression is shown in Figure 4.2.

65

Figure 4.2: RAdAM expression in XACML

66

4.5 RAdAM Based on Fuzzy Inference System

Fuzzy inference systems (FIS) derive from fuzzy logic. Profesor L. A. Zadeth of the University
of California Berkley invented fuzzy logic in 1965 [17]. Fuzzy logic is a multivalued logic that
permits intermediate values to be expressed in conventional evaluations like true/false, yes/no,
high/low, etc. Fuzzy systems are an alternative to traditional notions of set membership and
logic. The very basic notion of fuzzy systems is a fuzzy set. The concept of fuzzy set extends
the concept of a classical crisp set. A classical crisp set is a collection of objects in a given range
with a sharp boundary, which means that a member either belongs to that set or does not. The
fuzzy set is fundamentally a more flexible set as it allows its members to have a smooth boundary
i.e., a member can belong to a set to some partial degree. The fuzzy set convincingly provides
interpretations that are similar to a human being thought processes. The implementation of fuzzy
logic requires the three following steps:
• Fuzzification: the first step to apply a fuzzy inference system. It involves two processes:

derive the membership functions for input and output variables and represent them with
linguistic variables. This process is equivalent to converting or mapping classical set to
fuzzy set to varying degrees. The membership function is a graphical representation of the
magnitude of the participation of each input. It associates a weight with each of the inputs
that are processed, defines functional overlap between inputs, and utltimately determines
an output response. The rules use the input membership values as weighting factors to
determine their influence on the fuzzy output sets of the final output conclusion. In prac-
tice, membership functions can have a multitude of different types, such as the triangular
waveform, trapezoidal waveform, Gaussian waveform, bell-shaped waveform, sigmoidal
waveform and S-curve waveform. The exact type depends on the actual applications. A
triangular or trapezoidal waveform should be utilized for systems that necessitate signifi-
cant dynamic variations in a short period of time. Systems that require a very high control
accuracy are better suited with a Gaussian or S-curve waveform.

• Fuzzy control rules: The fuzzy classifiers represent one application of fuzzy theory. Ex-
pert knowledge is used and can be expressed in a very human-like way using linguistic
variables, which are described by fuzzy sets. The expert knowledge can be formulated as
rules:
IF A is X AND B is Y THEN C is Z
Linguistic rules describing the control system consist of two parts; an antecedent block
(between the IF and THEN) and a consequent block (following THEN).

• Defuzzification: The two steps explained above constitute the fuzzy inference system. The
fuzzy conclusion (output) is a linguistic variable and needs to be reverted back to the crisp
value: the process is denominated defuzzification.

4.5.1 RAdAM risk estimation in FIS

In order to explain RAdAM risk estimation in FIS, it is helpful to consider the following exam-
ple. Let’s suppose that we have a tuple (subject, object) in a cloud environment. The objects
are defined by their sensitivity: unclassified (U), public trust (PT), confidential (C), secret (S),

67

Figure 4.3: Membership functions of the object sensitivty

top secret (TS), and core secret (CS). Similarly, the different clearance levels for the subjects are
as follows: unclassified (U), public trust (PT), confidential (C), secret (S), top secret (TS), and
core secret (CS). As stated in previous sections, the risk is calculated in function of the subject
clearance and object sensitivity and can be valued as negligible (N), low (L), medium (M), high
(H), and very high (VH). The first step of the process of FIS consists of defining the input and
output variables of our system. The inputs are the object sensitivity and the subject clearance
and the output is the risk. We have decided to represent the clearance of the user in a trapezoidal
membership function and the object sensitivity in a combination of trapezoidal and triangular
membership functions. The risk is represented as a Gaussian membership function. The differ-
ent membership functions are depicted in Figure 4.3, Figure 4.4, Figure 4.5. We subsequently
establish the fuzzy classifier (if . . . then), which is shown in Table 4.1. Different values of the
risk are evaluated in Figure 4.6 in function of the subject clearance and the object sensitivity.

68

Figure 4.4: Membership functions of the subject clearance

4.5.2 RAdAM decision evaluation in FIS
The same process is conducted in order to evaluate the decisions of our authorization mechanism.
It is important to note that the threshold is also a risk. In this fuzzy system, the risk and the
threshold are the inputs and the decision (allow or deny) is the output. The output is considered
a constant as represented in Figure 4.7. The schema of the decision results is depicted in Figure
4.8. We can clearly see the decisions depending of the values of the risk and the threshold.

4.6 Enforcement of RAdAM with Vulnerability Based Autho-
rization (VBAM) Mechanism

Until now, researchers in the access control fields have not thought of using vulnerabilities score
to determine access decisions. We propose such solution by introducing Vulnerability-Based
Access Control. The modus operandi is to tailor an access to an object to the vulnerability
level of both the requester and the object that is being requested. In traditional access control,

69

Figure 4.5: Membership functions of the risk level

users are granted access to the objects regarding the privileges (read, write, or execute). We
contend that these types of access controls are obsolete in modern computer systems like cloud
computing. For instance, let us say we have a user who has the privilege to read an object. In
simplistic thinking we might think that the user has a low privilege over the object because he
can only read it. But the reality is that, if the object has a vulnerability with a high impact,
the user, if malicious, can exploit the vulnerability and damage the system. That is the reason
why we are advocating the usage of a Vulnerability (Risk) Based Authorization Mechanism
(VBAM) where the users access to an object will be decided by the security level of the user
and the average vulnerability score of the object that is being accessed. In our model, there
is need to be a standard vulnerability framework. The objects are classified according to their
vulnerability score: risk level 1, risk level 2, . . . , risk level n. The users of the system are also
classified according to the same multi-level security system. Whenever a user attempts an access,
the system checks the security clearance of the user before computing the average vulnerability
score of the object that is being accessed. If the user has a clearance level higher or equal to the
clearance level of the object then the access is granted otherwise, it is denied. In this situation, if a

70

Table 4.1: List of the rules for RAdAM risk evaluation
S/O U PT C S TS CS
U L M H VH VH VH
PT N L H H VH VH
C N L L H H VH
S N L L L H VH
TS N N N M L H
CS N N N L L M

user can only access objects with a low risk level, and if they succeed to exploit the vulnerability,
then the damage would not be significant.

4.6.1 Practical: VBAM with the Common Vulnerability Scoring System

The basic premise of the traditional MLS Bell Lapadula model is to determine if a subject is
trustworthy enough and has the legitimate need-to-know to access an object. A subject is usually
a person or an application running on behalf of a person. An object is usually a piece of infor-
mation such as a file. Each subject or object is tagged with a security label which represents the
sensitivity level. A subject’s sensitivity level reflects the degree of trust placed on the subject.
An object sensitivity level indicates how sensitive the object is or the magnitude of the damage
incurred by an unauthorized disclosure of the object. A subject can read an object if their label
dominates the object’s label

4.6.2 NVD and CVSS

The National Vulnerability Database (NVD) [27] is a publicly available database for computer-
related vulnerabilities. It is the property of the United States (US) government, which manages
it throughout the computer security division of the U.S. National institute of Science and Tech-
nology (NIST). The NVD is also used by the U.S. government as a content repository for the
Security Content Automation Protocol (SCAP). The primary sources of the NVD are as follows:
Vulnerability Search Engine (Common Vulnerability Exposure (CVE) and CCE misconfigura-
tions), National Checklist Program (automatable security configuration guidance in XCCDF and
OVAL), SCAP and SCAP-compatible tools, Product dictionary (CPE), Common vulnerability
Scoring System for impact metrics, and Common Weakness Enumeration (CWE).

The Common Vulnerability Scoring System (CVSS) [28] is a vendor-neutral open source
vulnerability scoring system. It was established to help organizations to efficiently plan their
responses regarding security vulnerabilities. The CVSS is comprised of three metric groups clas-
sified as base, temporal, and environmental. The base metric group contains the quintessential
characteristics of a vulnerability. The temporal metric group is used for non-constant charac-
teristics of a vulnerability, and the environmental metric group defines the characteristics of a
vulnerability that are tightly related to the user’s environment.

71

Figure 4.6: RAdAM risk evaluation

4.6.3 VBAM and CVSS

We aim to make use of the CVSS to demonstrate the suitability of our proposal. We suppose
that an OpenStack environment was installed in an Internet Engineering laboratory; we have
to use VBAM to determine which group of users (faculty, Ph.D. students, master students) can
access to which OpenStack services in the cloud environment. OpenStack is the most popular
open-source cloud management platform. In this study, we consider ten of its services, which
are briefly described hereafter. Dashboard, also called Horizon, provides a web portal for the
management of the underlying OpenStack services. Compute or Nova facilitates the manage-
ment of OpenStack’s instances. Networking, codenamed Neutron, this service, not only permits
network connection between OpenStack’s services, but also allows users to configure networks
by putting an API into their disposition. Object Storage helps with the storage and retrieval of
arbitrary unstructured data objects. It is also known as Swift. Block storage or Cinder provisions
persistent block storage to running instances. The identity service is responsible of the identity
management (authentication, authorization, endpoints) for the rest of OpenStack’s services. This
service is codenamed Keystone. The image service, codenamed Glance, takes charge of the stor-

72

Figure 4.7: Membership functions of RAdAM decisions

age and the retrieval of virtual machine disk images. Telemetry, codenamed Ceilometer, helps
monitoring and metering the business aspects of OpenStack like billing or benchmarking. Or-
chestration, or Heat, facilitates the orchestration of multiple composite cloud applications. The
Database as a Service, named Trove, provides a scalable and reliable cloud database provisioning
functionality.
We know that the CVSS provides vulnerability scores that range between 0 to 10 and following
the NVD severity ranking we have: LOW (0 - 3.9), MEDIUM (4 - 6.9), HIGH (7 - 10). We apply
the same classification to the users of the laboratory to get the following:
• Master students→ LOW
• Ph.D. students→MEDIUM
• Faculty members→ HIGH

This means that users with a security level of LOW can only access objects with a similar se-
curity level. Users with a security level of MEDIUM, can access objects with security levels of
MEDIUM and LOW. Finally, users with a security level of HIGH, can access all the services.
We conducted a static method by retrieving from the NVD all the vulnerabilities of the different

73

Figure 4.8: RAdAM decision evaluation

services of OpenStack that are in play in this paper, and their respective vulnerabilities. These
details are recorded in Table 4.2. The last row of the table represents the average score of the vul-
nerabilities of the different services. Henceforth, a straightforward analysis of the table reveals
that VBAM allows the faculty members to access all the services while the master students can
only access Cinder, Trove and Ceilometer.

4.7 Discussion
In this section, we elaborate on different scenarios in which RAdAM could be used. Furthermore,
we propose a solution to thwart some of the limitations of RAdAM.

We believe that the main weakness of RAdAM resides in the fact that we did not take into
account many aspects of cloud federations, especially with regards to federated identity man-
agement. In the future, we will try to find how to integrate RAdAM in federation mode with
federated identity management. The main issue with risk aware access control in general is the
cost of computation. Our proposal does not solve the issue. The excitement about RAAC re-

74

Table 4.2: Vulnerabilities of the different services of OpenStack
H G Ne N K S C T Ce H

Average Score 4.3 4.4 5.1 4.3 4.8 5.3 3.4 2.1 3.5 4.1

volves around the fact that in each access request, the risk will be evaluated. This certainly helps
in making better access decisions but it is costly in terms of resource consumption. Furthermore,
as stated by Ni et al. [69], an attacker can launch attacks in the time window between the access
request and risk mitigation. In the future, we will try to see how we can leverage the computing
power offered by cloud computing to resolve this issue. We believe that if our proposal is imple-
mented in a system with ‘unlimited’ computer power, as the cloud offer, the issue will become
obsolete.

We also proposed VBAM, a vulnerability (or risk) based authorization mechanism that can
cope with the dynamicity of modern computer systems like cloud computing. We contend that
the future of access control revolves around tailoring the access decisions to the vulnerability
score of the objects. We are aware that most attacks are the results of exploited vulnerabilities.
Therefore, to limit the damages of a probable attack, we must adopt VBAM and other similar
authorization mechanisms. One of the main issues of risk aware access control in general is
computational cost: our proposal is not an exception to that rule. Indeed, the fact that the system
is at work every time a user makes a request results in high resource usage. The second point
of contention relates to how our method can be used in an environment. We contend that it can
be used in a kind of 2-step access control. Where VBAM will be used as primary authorization
mechanism and a second authorization mechanism will decide whether the user can read write
or execute the objects they is allowed to access to by VBAM. One might argue that our proposal
does not solve the problem of authorization mechanism because a user with a high security
level can exploit a vulnerability that has an equally high damage factor. While this is true, we
argue that, in our system, users with a high security level are trusted users and should be a
limited number. Therefore detecting the culprit in any of these types of attacks is easy, as we
already know the possible damages that each user can make. The same applies for the other
security levels. As future work, we seek to implement our system in combination with the
XACML framework in order to provide a more flexible authorization mechanism for the cloud.
The security risk model we developed in Chapter 3 could be used to express risk in VBAM. The
principle is simple and does not necessarily require building a vulnerability tree. The modus
operandi is as follows: first we query all the vulnerabilities related to the object that is being
accessed and then we apply the inclusion-exclusion law to determine the likelihood and the
impact before doing the calculation for the risk. This operation can be tedious in case we have a
big number of vulnerabilities.

75

4.8 Summary
We proposed a risk-aware authorization mechanism flexible enough to deal with the dynamicity
of cloud computing. We proposed algorithms for simple user access, collaboration and federation
modes. To complement RAdAM, we proposed a variation of MLS model where the risk is repre-
sented by the vulnerability score of the objects. We showed the applicability of our methods by
using fuzzy inference systems for RAdAM and by proposing an OpenStack use case for VBAM.
We contend that a combination of authorization mechanisms similar to the one we proposed in
this paper represents the future of highly dynamic systems.

76

Chapter 5

Future Work

The work we have done in this research could be extended to produce further research; in Chap-
ters 3 and 4 we have already highlighted some avenues for probable future work. Risk aware
access controls (RAAC) constitute the present and future of access control mechanisms. Other
techniques like machine-learning (ML) can be incorporated into the mix to make RAAC more
efficient. We believe that we have realized a decent work in this thesis; we also believe that what
we have is the tip (a big tip nevertheless) of the iceberg of what is to come in the future.

In Chapter 4, we have developed our approache based on industry and consumer needs and
evaluated its applicability with the application scenarios. Our proposal is a solution to quantify
sophisticated security attacks in IaaS as a service cloud computing. Currently, many adminis-
trators of cloud systems use the CVSS to evaluate potential reported vulnerabilities; with the re-
sulting score helping to quantify the severity of the vulnerability and to prioritize their response.
The difference is they do it with single isolated vulnerabilities. They don’t have a response in
case of mixed, combined vulnerabilities, our proposal is a response in those particular cases.
The first to benefit from this proposal is obviously an administrator of an IaaS cloud system. In
practice, what often happens is vulnerabilities are discovered in systems but are not patched due
to environmental, cost, or mission factors. Our proposal allows the administrator to prioritize the
patch of the vulnerabilities. In the case of environmental factors, where there are no patches for
the discovered vulnerabilities, the admin can use our model to evaluate the security of different
scenarios where those vulnerabilities can be combined and used by an attacker. Depending on
the results the admin can take simple to drastic decisions going from a real time monitoring of
the concerned services to shutting them down until patches become available. In the case of
cost factors, where the patches for the scanned vulnerabilities are monetized, the result from our
quantification model can tell the admin if he/she can be frugal or not. In the case of mission
factors, the administrator can use our model to convince the consumers of the necessity to stop
some services momentarily to secure the system by patching the vulnerabilities.

A consumer of a cloud service provider can use our model to check the security level of the
CSP. Indeed a consumer of an IaaS CSP has some information about the type of resources that
are used. Knowing what kind of hypervisor the CSP uses and the different services he/she is
running there, he/she can simulate some scenarios by using vulnerabilities from the NVD related
to the services he/she subscribed for. For example if a user wants to subscribe to amazon web
services (AWS), knowing that they are using a highly modified version of Xen version 3, he/she

77

can simulate some plausible attack scenarios and obtain their security level by using our method.
Cloud computing is here to stay and will inevitably have more users. The development of security
models where users will be able to check the security of a cloud provider before subscribing to
its services will be indispensable. Those models will allow the users to classify, security-wise,
the different cloud service providers available in the market. Our proposal is a good premise for
this kind of model.

Henceforward, we try to explain some of the projects that we want to pursue in the short and
long term.

5.1 Classification of the security bugs in the cloud

There is a prescient need to classify the security bugs in the cloud as the technology keep growing
and, by ricochet, is generating other emergent paradigms. Gunawi et al. [79] presented a work
that set the tone in the study of bugs in cloud computing. The title of their paper is somehow
misleading, What Bugs Live in the Cloud, as they only cover bugs related to the bug data tools:
Hadoop MapReduce, Hadoop File System (HDFS), HBase, Cassandra, ZooKeeper and Flume.
Additionally, they focused on any types of bugs that exist within the tools cited above. We
promote a wider coverage of the cloud software by including others like cloud management
stacks and we also want to limit to study to security bugs solely. At the end of the study, we
should be able to identify all the security bugs or vulnerabilities that exist in cloud computing
and provide a guideline for best practices when it comes to developing cloud software. In the
same occasion, we can curate security vulnerabilities databases by eliminating any redundant
vulnerability. In fact, we have thousands of vulnerabilities that are references in vulnerabilities
databases. There might be numerous vulnerabilities that are intrinsically similar but appear in
different products. We believe that there should be a common semantic, for all the vulnerabilities,
that will help developers, regardless of their programming languages, to provide more secure
software.

5.2 Crankenstein: towards the most efficient cloud manage-
ment stack

Cloud management frameworks are on the rise. Organizations are adopting the different soft-
ware on the market in order to manage their private cloud or develop a business to provide cloud
services to the users. Currently, most organizations are directed towards the open source cloud
management frameworks like OpenStack, CloudStack, or Eucalyptus. We have already shown in
Chapter 2 that these software are composed of different stacks or component. In this project, we
want to select the best cloud frameworks and evaluate their different corresponding components.
Dukaric et al [1] have already done an excellent job in establishing a taxonomy of cloud software
and classifying the components of the most popular cloud software. The evaluation will be di-
verse: performance, scalability, security, etc. The goal is to assemble the best cloud management
framework out of the best performing components: C-rankenstein. We are aware of the fact the

78

code of some of these software, CloudStack, is monolithic; this might implies an exclusion of
any software that presents that specificity.

5.3 Elo rating method for ranking cloud service providers

The Elo rating is very popular for ranking entities (players, teams, etc.) in world-class competi-
tion like chess, football or tennis. It has a very good reputation and allows tournament organizers
to efficiently pair the competitors so that they will not be having the best competitors compet-
ing against each other early in the tournament. We believe that interdisciplinary techniques can
help solve issues. In this situation, we contend that the Elo rating method can be adopted and
adapted in the cyber security field so that we will have a ranging based on different parameters
like number of vulnerabilities, vulnerability scores, vulnerability density, etc. to the best of our
knowledge, only Pieters et al. [80] attempted such an adaptation. We contend that such a ranking
platform will help make the cloud in particular, any computer system more secure.

5.4 Game-theoretic approach: Stackelberg Security Games
and Cloud Computing

In game theory, the work of Jon Nash is the most recognized and has been used in many different
domains. However, recently, Stackelberg security games (so named due to their origins in the
work of Heinrich von Stackelberg) are drawing a lot of attention when it comes to game-theoretic
approaches to security. In the Stackelberg security game, the defender acts first by committing to
a strategy afterwards, the attacker choses where and how to attack after observing the defenders
choice. The leader-follower paradigm appears to fit many real world security situations. Tambe
et al. [81] used Bayesian Stackelberg games to successfully deploy Assistant for Randomized
Monitoring over Routes (ARMOR) at the Los Angeles International Airport (LAX) since 2007.
They also proposed: Intelligent Randomization in Scheduling (IRIS) for the U.S. Federal Air
Marshal services, Game-theoretic Unpredictable and Randomly Deployed Security (GUARDS)
for the U.S. Transportation Security Administration, and Port Resilience Operational/Tactical
Enforcement to Combat Terrorism (PROTECT) for the U.S. Cost Guard. In cloud computing
systems, we have administrators and customers. The administrators set the security of the cloud
environment and wait for new customers to enroll into their services. We have a perfect case
of leader (cloud administrator) and follower (customer). The research question is how we can
design a security system that follows the principle of leader-follower that is stable enough that
once the cloud administrator fixes the security of the cloud system, the malicious customer will
not be able to hack into it. We believe that Stackelberg security games appeals to the cloud
because in cloud computing, administrators attempt to secure the system with limited resources:
Stackelberg security games has that property.

79

5.5 Deep cloud security: on using artificial intelligence to de-
sign a secure cloud platform

In recent years, there is growing worry among thinkers on the role of artificial intelligence in our
life. We have self-driving cars, computers that can outperform human beings in some specific
tasks that involve cleverness and so on. People are worrying that the machines will take over
as they are becoming more and more autonomous. We do not believe that the machines will
ever take over the world but we do believe that it is time for cyber security to benefit of artificial
intelligence. The idea is to have a system that will be able to recognize the security vulnerabilities
and mitigate them by itself. One way to do it would be to look at all the vulnerabilities that have
been discovered, to look exactly the causes of those vulnerabilities and to generate a machine-
learning algorithm that will learn all security bugs so that it can detect future security bugs and
mitigate them. It sounds difficult but it shouldn’t be if we follow the footsteps of our colleagues
from other fields. The basic methodology used by our colleagues from computer vision and
natural language processing is to feed algorithm with very large datasets. Through iteration and
other neural network techniques, the algorithm learns to identify and describe images or texts
without any human intervention. We can adopt the same methodology in cyber security as we
have big datasets at our disposal. We can mimic their algorithms, adapt them to fit the cyber
security requirements, feed them with them with security bugs data and observe whether they
can recognize security bugs automatically.

5.6 Towards the real cloud computing architecture
When I first heard about cloud computing, I literally thought that the computing was coming
from the cloud. Later on, after dive deeply into the literature, I finally understood the technical
part of cloud computing. I understood that this enigmatic technology was coined “cloud because
the users data are off-premises; the data is not in the users hand anymore and is managed by
cloud administrators that run the datacenters of the different cloud service providers. We be-
lieve that it is a fairly good advancement in term of the development of technology. But some
people have accused the evangelists of cloud computing as usurpers because they believe cloud
computing is not new, the architecture has been proposed a while ago, and that the development
of the Internet helped bring back those architectures. Therefore they see cloud computing more
as an evolution than a revolution. In order to (re)establish cloud computing as an evolution, we
propose a new architecture where there will be no datacenters. In fact we believe that, instead of
the data being stored in datacenters, it should be kept moving on the Internet. This idea might
look superfluous but it is doable. As instance, when we browse the Internet and click on a photo,
the photo is downloaded from the server where it is hosted, transported through the Internet and
then delivered to our web client. The TCP/IP model gives a description of how the Internet
works currently. We contend that regarding the amount of data we have in the internet now, the
cost to maintenance the datacenter and so on, the TCP/IP model should be amended for a better
future Internet. This is a great challenge and will sure come with great obstacles both technical
and social. But, with the breadth of technological advancements such software defined network
(SDN) and content centric network (CCN), we believe that it is feasible.

80

Overall, we try to provide new solutions to facilitate decision-making and provide an all around
secure cloud platforms. We find that they are independent organizations like the FIDO alliance
that are doing excellent work in this field. We plan to find solutions to incorporate their work
into ours towards better and more secure technologies.

81

82

Chapter 6

Conclusion

In this dissertation, we investigated and addressed fundamental problems of security issues and
the absence of a suitable authorization mechanism for cloud computing. In Chapter I, we set the
basements of our thesis by listing the security issues of cloud computing and the scope of our re-
search. We used the many survey papers about cloud computing to establish a list. In Chapter 2,
we gave an in-depth explanation of cloud computing. We explained its main services, its techni-
cal and economic aspects. But most importantly, we succeeded to prove, through a vulnerability
analysis of OpenStack vulnerabilities, that all the technical security issues encountered in cloud
computing were represented in form of vulnerabilities. We concluded that then the all-in-one
solution for cloud security must be a security quantification based on the vulnerabilities, which
we tackle in Chapter 3. We developed our security quantification process. We set our scopes
to be all types of security in cloud computing specially multi-tenancy and the security of cloud
management stacks. We built our method by using fault tree analysis as a blueprint. Our security
quantification method consists of the vulnerabilities of an IaaS that we use to build a Boolean
vulnerability tree while conforming to FTA rules. The analysis of the vulnerability tree leads to
the extraction of the quantification formula. Risk (R) is generally defined as the likelihood (L)
of an unwanted event to occur multiplied by the impact (I) that particular event would cause:
R = L×I. Using the Common Vulnerability Scoring System (CVSS), we were able to generate
an impact sub-formula and a likelihood sub-formula for any single vulnerability. We then use
the vulnerability tree to generate the Impact and Likelihood formulas. The final risk value is
calculated by using the traditional risk definition. We were able to prove how our solution works
in a multi-tenant platform, and also presented a unique architecture for ranking cloud service
providers. We finally used the security risk to perform an analysis of OpenStack logical archi-
tecture. We were able to generate the different security vulnerability trees of the components
that compose the architecture, and we were also able to make some recommendations on a bet-
ter nomenclature of OpenStack vulnerabilities. We want to reiterate that the main conclusion
of this chapter is the fact that most technical vulnerabilities in cloud are represented in form
of vulnerabilities and that our security quantification allows to alleviate the risk related to the
aforementioned vulnerabilities. In Chapter 4, after we proposed a solution that we contend can
solve most cloud security issues available in the different survey papers, we attacked a different
problem: the dynamicity of cloud computing versus the static traditional access control mecha-
nisms that are used to enforce the security of access request decisions in cloud computing. The

83

problem of a non-suitable access control for dynamic systems is not new. In fact, in the early
2000s the JASON report [15] first highlighted the necessity to built adequate access controls for
those types of systems. Cloud computing just aggravates the issue. We propose a Risk-Adaptive
Authorization Mechanism (RAdAM) to solve the issue. We considered different situations in
cloud computing: simple user, user in collaboration, and federation mode. We were able to
evaluate our authorization mechanisms by using Fuzzy Inference Systems (FIS). We proposed
a Vulnerability-Based Authorization Mechanism (VBAM) to complement RAdAM or any other
type of authorization mechanisms. In Chapter 5 we discuss about the future work. We consider
that there are many interesting avenues for research in cloud security: deep security, Elo security
rating, Stackelberg security games in cloud.

84

Appendix A

List of Publications

A.1 Journal
1. Doudou Fall, Takeshi Okuda, Youki Kadobayashi, and Suguru Yamaguchi. Risk-Adaptive

Authorization Mechanism in Cloud Computing. Journal of Information Processing (JIP),
Special Issue of “Internet and operation technologies in the era of cloud.” (conditional
acceptance). Chapter 4.

2. Doudou Fall, Takeshi Okuda, Youki Kadobayashi, and Suguru Yamaguchi. Security Risk
Quantification Mechanism for Infrastructure as a Service Cloud Computing Platforms.
Journal of Information Processing (JIP), Special Issue: Applications and the Internet in
Conjunction with Main Topics of COMPSAC 2014, Vol. 23, No. 4. July 2015. Chapter 3.

A.2 International Conferences
1. Doudou Fall, Takeshi Okuda, Youki Kadobayashi, and Suguru Yamaguchi. Towards A Vul-

nerability Tree Security Evaluation of OpenStack’s Logical Architecture. In Thorsten Holz
and Sotiris Ioannidis, editors, The 7th International Conference on Trust & Trustworthy
Computing (TRUST2014), Vol. 8564 of Lecture Notes in Computer Science, pp. 127-
142. Springer International Publishing, July 2014. Chapter 3.

2. Doudou Fall, Noppawat Chaisamran, Takeshi Okuda, Youki Kadobayashi, and Suguru Yam-
aguchi. Security Quantification of Complex Attacks in Infrastructure as a Service Cloud
Computing. In 3rd International Conference on Cloud Computing and Services Science
(CLOSER 2013) poster presentation, May 2013. Chapter 3.

3. Takeshi Takahashi, Gregory Blanc, Doudou Fall, Youki Kadobayashi, Hiroaki Hazeyama,
and Shin’ichiro Matsuo. Enabling Secure Multitenancy in Cloud Computing: Challenges
and Approaches. In Proceedings of 2nd Baltic Congress on Future Internet Communica-
tions (BCFIC), April 2012.

85

4. Doudou Fall, Gregory Blanc, Takeshi Okuda, Youki Kadobayashi, and Suguru Yamaguchi.
Toward Quantified Risk-Adaptive Access Control for Multi-tenant Cloud Computing. In
Proceedings of the 6th Joint Workshop on Information Security (JWIS2011), October
2011. Chapter 4.

86

Bibliography

[1] Robert Dukaric and Matjaz B Juric. Towards a unified taxonomy and architecture of cloud
frameworks. Future Generation Computer Systems, 29(5):1196–1210, 2013. (document),
2.6, 2.5, 5.2

[2] S Özkan. Cve details: The ultimate security vulnerability datasourcevulnerabilities by type.
(document), 2.6

[3] Douglas F Parkhill. Challenge of the computer utility. 1966. 1.1

[4] Peter Mell and Tim Grance. The nist definition of cloud computing. 2011. 1.1, 2.1.1, 2.1.4,
3.1, 4.1

[5] Hassan Takabi, James BD Joshi, and Gail-Joon Ahn. Security and privacy challenges in
cloud computing environments. IEEE Security & Privacy, 8(6):24–31, 2010. 1.2, 3.1

[6] Luis M Vaquero, Luis Rodero-Merino, and Daniel Morán. Locking the sky: a survey on
iaas cloud security. Computing, 91(1):93–118, 2011. 1.2, 3.1

[7] Mohamed Almorsy, John Grundy, and Ingo Muller. An analysis of the cloud computing
security problem. In Proceedings of APSEC 2010 Cloud Workshop, Sydney, Australia, 30th
Nov, 2010. 1.2, 3.1

[8] Daniele Catteddu. Cloud Computing: benefits, risks and recommendations for information
security. Springer, 2010. 1.2, 3.1

[9] Minqi Zhou, Rong Zhang, Wei Xie, Weining Qian, and Aoying Zhou. Security and pri-
vacy in cloud computing: A survey. In Semantics Knowledge and Grid (SKG), 2010 Sixth
International Conference on, pages 105–112. IEEE, 2010. 1.2, 3.1

[10] Siani Pearson and Azzedine Benameur. Privacy, security and trust issues arising from cloud
computing. In Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second
International Conference on, pages 693–702. IEEE, 2010. 1.2, 3.1

[11] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. Hey, you, get off

of my cloud: exploring information leakage in third-party compute clouds. In Proceedings
of the 16th ACM conference on Computer and communications security, pages 199–212.
ACM, 2009. 1.2, 2.5, 3.1, 3.3.1

[12] Richard Chow, Philippe Golle, Markus Jakobsson, Elaine Shi, Jessica Staddon, Ryusuke
Masuoka, and Jesus Molina. Controlling data in the cloud: outsourcing computation with-
out outsourcing control. In Proceedings of the 2009 ACM workshop on Cloud computing
security, pages 85–90. ACM, 2009. 1.2, 3.1

87

[13] Cloud Security Alliance. 1.2

[14] Top Threats Working Group et al. The notorious nine: cloud computing top threats in 2013.
Cloud Security Alliance, 2013. 1.2

[15] Program Office JASON. Horizontal integration: Broader access models for
realising information dominance. Technical report, Report JSR-04-132, The
MITRE Corporation, JASON Program Office, December 2004. Available at
http://fas.org/irp/agency/dod/jason/classpol.pdf, 2004. 1.2, 4.1, 4.2, 6

[16] R McGraw. Risk adaptive access control (radac). In Proceedings of NIST & NSA privilege
management workshop, 2009. 1.3, 4.1, 4.2, 4.3

[17] Lotfi A Zadeh. Fuzzy sets. Information and control, 8(3):338–353, 1965. 1.3, 4.1, 4.5

[18] D Elliott Bell and Leonard J LaPadula. Secure computer systems: Mathematical founda-
tions. Technical report, DTIC Document, 1973. 1.3, 4.1, 4.3

[19] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and Ivona Brandic.
Cloud computing and emerging it platforms: Vision, hype, and reality for delivering com-
puting as the 5th utility. Future Generation computer systems, 25(6):599–616, 2009. 2.1,
2.1.1

[20] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, et al. A view of cloud
computing. Communications of the ACM, 53(4):50–58, 2010. 2.1.1

[21] Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in cloud computing:
What it is, and what it is not. 2.4

[22] Federico Etro. The economics of cloud computing, 2011. 2.4

[23] OpenStack Community. Openstack cloud software. 3.1

[24] OpenNebula Community. Opennebula cloud. 3.1

[25] CloudStack Community. Apache cloudstack software. 3.1

[26] Eucalyptus Community. Eucalyptus cloud. 3.1

[27] Computer Security Division. National vulnerability database. 3.1, 4.6.2

[28] Peter Mell, Karen Scarfone, and Sasha Romanosky. A complete guide to the common vul-
nerability scoring system version 2.0. In Published by FIRST-Forum of Incident Response
and Security Teams, pages 1–23, 2007. 3.1, 3.3.3, 4.6.2

[29] OpenStack Community. Openstack logical architecture. 3.1, 3.6.1

[30] Doudou Fall, Noppawat Chaisamran, Takeshi Okuda, Youki Kadobayashi, and Suguru Ya-
maguchi. Security quantification of complex attacks in infrastructure as a service cloud
computing. In Proceedings of the 3rd International Conference on Cloud Computing and
Services Science, 2013. 3.2

[31] Ennan Zhai, David Isaac Wolinsky, Hongda Xiao, Hongqiang Liu, Xueyuan Su, and Bryan
Ford. Auditing the structural reliability of the clouds. Technical report, Technical Report
YALEU/DCS/TR-1479, Department of Computer Science, Yale University, 2013. Avail-
able at http://www.cs.yale.edu/homes/zhai-ennan/sra.pdf, 2013. 3.2

88

[32] Hongda Xiao, Bryan Ford, and Joan Feigenbaum. Structural cloud audits that protect pri-
vate information. In Proceedings of the 2013 ACM workshop on Cloud computing security
workshop, pages 101–112. ACM, 2013. 3.2

[33] Rasib Hassan Khan, Jukka Ylitalo, and Abu Shohel Ahmed. Openid authentication as a
service in openstack. In Information Assurance and Security (IAS), 2011 7th International
Conference on, pages 372–377. IEEE, 2011. 3.2

[34] Sasko Ristov, Marjan Gusev, and Aleksandar Donevski. Openstack cloud security vulnera-
bilities from inside and outside. In CLOUD COMPUTING 2013, The Fourth International
Conference on Cloud Computing, GRIDs, and Virtualization, pages 101–107, 2013. 3.2

[35] Aleksandar Donevski, Sasko Ristov, and Marjan Gusev. Security assessment of virtual
machines in open source clouds. In Information & Communication Technology Electronics
& Microelectronics (MIPRO), 2013 36th International Convention on, pages 1094–1099.
IEEE, 2013. 3.2

[36] Aryan TaheriMonfared and Martin Gilje Jaatun. As strong as the weakest link: Handling
compromised compoenents in openstack. In Proceedings of the third IEEE International
Conference on Cloud Computing Technology and Science (CloudCom), 2011. 3.2

[37] Xinming Ou, Wayne F Boyer, and Miles A McQueen. A scalable approach to attack graph
generation. In Proceedings of the 13th ACM conference on Computer and communications
security, pages 336–345. ACM, 2006. 3.2

[38] Xinming Ou, Sudhakar Govindavajhala, and Andrew W Appel. Mulval: A logic-based
network security analyzer. 3.2

[39] Michael Lyle Artz. Netspa: A network security planning architecture. PhD thesis, Mas-
sachusetts Institute of Technology, 2002. 3.2

[40] Sushil Jajodia, Steven Noel, and Brian OBerry. Topological analysis of network attack
vulnerability. In Managing Cyber Threats, pages 247–266. Springer, 2005. 3.2

[41] Tenable Network Security. Nessus vulnerability scanner. 3.2

[42] BeyondTrust Corporation. Retina network security scanner. 3.2

[43] Tripwire Company. Tripwire ip360 vulnerability & risk management. 3.2

[44] Skybox Corp. Risk analytics for cyber security. 3.2

[45] ReadSeal Inc. Read seal systems. 3.2

[46] Mohamed Ben-Daya. Failure Mode and Effect Analysis. Springer, 2009. 3.2

[47] James J Rooney and Lee N Vanden Heuvel. Root cause analysis for beginners. Quality
progress, 37(7):45–56, 2004. 3.2

[48] William E Vesely, Francine F Goldberg, Norman H Roberts, and David F Haasl. Fault tree
handbook. Technical report, DTIC Document, 1981. 3.2, 3.3.2

[49] Sandra M. E. Wint. An overview of risk. 3.3

[50] Lindy Ellis. Reliability of systems, equipment and components - guide to fault tree analysis.
3.3

89

[51] Gary Stoneburner, Alice Goguen, and Alexis Feringa. Risk management guide for infor-
mation technology systems. Nist special publication, 800(30):800–30, 2002. 3.3

[52] Tim Bedford and Roger Cooke. Probabilistic risk analysis: foundations and methods.
Cambridge University Press, 2001. 3.3.2, 3.3.2

[53] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: comparing pub-
lic cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement, pages 1–14. ACM, 2010. 3.5

[54] Saurabh Kumar Garg, Steven Versteeg, and Rajkumar Buyya. Smicloud: A framework
for comparing and ranking cloud services. In Utility and Cloud Computing (UCC), 2011
Fourth IEEE International Conference on, pages 210–218. IEEE, 2011. 3.5

[55] Hangwei Qian, Hualong Zu, Chenghua Cao, and Qixin Wang. Css: Facilitate the cloud
service selection in iaas platforms. In Collaboration Technologies and Systems (CTS), 2013
International Conference on, pages 347–354. IEEE, 2013. 3.5

[56] Jonas Repschlaeger, Stefan Wind, Ruediger Zarnekow, and Klaus Turowski. A reference
guide to cloud computing dimensions: Infrastructure as a service classification framework.
In System Science (HICSS), 2012 45th Hawaii International Conference on, pages 2178–
2188. IEEE, 2012. 3.5

[57] Shira Ovide. A price war erupts in cloud services. 3.5

[58] Brant A Cheikes, David Waltermire, and Karen Scarfone. Common platform enumeration:
Naming specification version 2.3. NIST Interagency Report 7695, NIST-IR, 7695, 2011. 3.7

[59] Andrew Buttner and Neal Ziring. Common platform enumeration (cpe) - specification
version 2.2. The MITRE Corporation - National Security Agency, 2009. 3.7

[60] Hakan Lindqvist. Mandatory access control. Master’s Thesis in Computing Science, Umea
University, Department of Computing Science, SE-901, 87, 2006. 4.2

[61] Deborah D Downs, Jerzy R Rub, Kenneth C Kung, and Carole S Jordan. Issues in discre-
tionary access control. In 2012 IEEE Symposium on Security and Privacy, pages 208–208.
IEEE Computer Society, 1985. 4.2

[62] Ravi S Sandhu, Edward J Coyne, Hal L Feinstein, and Charles E Youman. Role-based
access control models. Computer, 29(2):38–47, 1996. 4.2

[63] Vincent C Hu, D Richard Kuhn, and David F Ferraiolo. Attribute-based access control.
Computer, (2):85–88, 2015. 4.2

[64] Doudou Fall, Takeshi Okuda, Youki Kadobayashi, and Suguru Yamaguchi. Toward quan-
tified risk-adaptive access control for multi-tenant cloud computing. pages 1–14, 2011.
4.3

[65] Daniel Ricardo dos Santos, Carla Merkle Westphall, and Carlos Becker Westphall. Risk-
based dynamic access control for a highly scalable cloud federation. In SECURWARE
2013, The Seventh International Conference on Emerging Security Information, Systems
and Technologies, pages 8–13, 2013. 4.3

[66] Daniel Ricardo dos Santos, Carla Merkle Westphall, and Carlos Becker Westphall. A dy-

90

namic risk-based access control architecture for cloud computing. In Network Operations
and Management Symposium (NOMS), 2014 IEEE, pages 1–9. IEEE, 2014. 4.3

[67] Erik Rissanen. extensible access control markup language (xacml) version 3.0, 2013. 4.3,
4.4.5

[68] Pau Chen Cheng, Pankaj Rohatgi, Claudia Keser, Paul A Karger, Grant M Wagner, and
Angela Schuett Reninger. Fuzzy multi-level security: An experiment on quantified risk-
adaptive access control. In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages
222–230. IEEE, 2007. 4.3

[69] Qun Ni, Elisa Bertino, and Jorge Lobo. Risk-based access control systems built on fuzzy
inferences. In Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security, pages 250–260. ACM, 2010. 4.3, 4.7

[70] Chris Burnett, Liang Chen, Peter Edwards, and Timothy J Norman. Traac: Trust and risk
aware access control. In Privacy, Security and Trust (PST), 2014 Twelfth Annual Interna-
tional Conference on, pages 371–378. IEEE, 2014. 4.3

[71] Hemanth Khambhammettu, Sofiene Boulares, Kamel Adi, and Luigi Logrippo. A frame-
work for risk assessment in access control systems. Computers & Security, 39:86–103,
2013. 4.3

[72] Riaz Ahmed Shaikh, Kamel Adi, and Luigi Logrippo. Dynamic risk-based decision meth-
ods for access control systems. Computers & Security, 31(4):447–464, 2012. 4.3

[73] J Stuart Hunter. The exponentially weighted moving average. J. Quality Technol.,
18(4):203–210, 1986. 4.3

[74] Antonio Celesti, Francesco Tusa, Massimo Villari, and Antonio Puliafito. How to enhance
cloud architectures to enable cross-federation. In Cloud Computing (CLOUD), 2010 IEEE
3rd International Conference on, pages 337–345. IEEE, 2010. 4.4.3

[75] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. Intercloud: Utility-oriented fed-
eration of cloud computing environments for scaling of application services. In Algorithms
and architectures for parallel processing, pages 13–31. Springer, 2010. 4.4.3

[76] Inigo Goiri, Jordi Guitart, and Jordi Torres. Characterizing cloud federation for enhancing
providers’ profit. In Cloud Computing (CLOUD), 2010 IEEE 3rd International Conference
on, pages 123–130. IEEE, 2010. 4.4.3

[77] David Recordon and Drummond Reed. Openid 2.0: a platform for user-centric identity
management. In Proceedings of the second ACM workshop on Digital identity management,
pages 11–16. ACM, 2006. 4.4.3

[78] Bo Tang, Qi Li, and Ravi Sandhu. A multi-tenant rbac model for collaborative cloud ser-
vices. In Privacy, Security and Trust (PST), 2013 Eleventh Annual International Conference
on, pages 229–238. IEEE, 2013. 4.4.3

[79] Haryadi S Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-anake,
Thanh Do, Jeffry Adityatama, Kurnia J Eliazar, Agung Laksono, Jeffrey F Lukman, Vin-
centius Martin, et al. What bugs live in the cloud?: A study of 3000+ issues in cloud
systems. In Proceedings of the ACM Symposium on Cloud Computing, pages 1–14. ACM,

91

2014. 5.1

[80] Wolter Pieters, Sanne HG van der Ven, and Christian W Probst. A move in the security
measurement stalemate: Elo-style ratings to quantify vulnerability. In Proceedings of the
2012 workshop on New security paradigms, pages 1–14. ACM, 2012. 5.3

[81] Milind Tambe. Security and game theory: algorithms, deployed systems, lessons learned.
Cambridge University Press, 2011. 5.4

92

