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Verification Methods for Security against

Inference Attacks on XML and Relational

Databases∗

Chittaphone Phonharath

Abstract

Access control is one of the most important mechanisms of a database manage-

ment system to keep confidential information secret, which should be protected

from malicious users (or attackers). A typical way of realizing access control is to

divide the available set of queries into authorized queries and unauthorized ones,

and to allow a user to obtain only the result of authorized queries for a database

instance. At first glance, this access control policy works well. However, it may

happen that a user can obtain the result (or a set of candidates of the correct

result) of an unauthorized query by cleverly combining the results of authorized

queries. Such an attack is called an inference attack. This dissertation presents

two studies of verifying the security against inference attacks on both XML and

relational databases.

Firstly, we study a static analysis problem on k-secrecy, which is a metric for

the security against inference attacks on XML databases. Intuitively, k-secrecy

means that the number of candidates of sensitive data of a given database instance

or the result of an unauthorized query cannot be narrowed down to k−1 by using

available information such as authorized queries and their results. We investigate

the decidability of the schema-level k-secrecy problem defined as follows: for a

given XML database schema, an authorized query and an unauthorized query

decide whether every database instance conforming to the given schema is k-

secret. We first show that the schema-level k-secrecy problem is undecidable for
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any finite k > 1 even when queries are represented by a simple subclass of linear

deterministic top-down tree transducers (LDTT). Next, we give an algorithm for

deciding the schema-level ∞-secrecy problem and analyze its time complexity.

We show the schema-level ∞-secrecy problem is EXPTIME-complete for LDTT.

Moreover, we show similar results for LDTT with regular look-ahead.

Secondly, we propose a notion of the security against inference attacks by

extending `-diversity in relational databases with access control for queries.

More specifically, we propose a new privacy notion called query-based `-diversity.

A database instance T is (query-based) `-diverse with respect to given autho-

rized queries if an attacker cannot narrow down the number of possible values

of the sensitive information to less than ` by inference using the result of the

authorized queries on the instance T and the meaning of the queries. We provide

two approaches to deciding the property. The first approach directly decides the

problem for a given input by using a relational database management system,

e.g. Structured Query Language (SQL). The second approach transforms a given

input to a logical formula and decides the problem by model counting using a

#SAT solver. We discuss the effectiveness and scalability of two approaches based

on the experimental results.

Keywords:

Database Security, Privacy, Diversity, Inference Attacks, Relational Databases,

XML Databases.
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Chapter 1

Introduction

Database security is one of the most important challenges in minimizing the

leakage of sensitive information due to accesses or to data publishing, which have

been growing rapidly and more powerful. Databases may store large amount of

sensitive information of individuals or organizations. The problem occurring is

that data publishing is vulnerable to attacks, which can lead to serious problems

such as privacy information leakage. Database security is built upon a framework

of three structures: confidentiality, integrity and availability [2]. Confidentiality

refers to the protection of data against an unauthorized access. Integrity refers to

the prevention of unauthorized modification. Availability refers to the prevention

and recovery from hardware and software errors as well as from malicious data

access resulting in the denial of data availability.

1.1. Research Motivation

Access control is a means to allow or deny users to do operations such as read,

write, modify, etc. on data in a computer system. The system decides whether to

allow or deny a user’s access requests to information or resources in the system,

and if a request is allowed, then that user can do operations according to the ac-

cess control rules and roles of the user. Access control rules are determined based

on information rights, security policy, authorization rules and other factors de-

pending on the system environment. Furthermore, access control is a traditional

mechanism for confidentially restricting accesses to a database made by a user by
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dividing the queries into authorized and unauthorized ones, and restricting the

portion of the data that can be retrieved and updated by the user. However, it

may happen that a user can obtain the result (or a set of candidates of correct

result) of an unauthorized query by cleverly combining the results of authorized

queries. Such an attack is called an inference attack as described below.

Even though a database management system (DBMS for short) provides an

appropriate access control mechanism, there is a possibility that sensitive informa-

tion (unauthorized by access control) can be indirectly obtained from available

information (authorized by access control). Let us take a relational database

instance r with a schema (student name, year, salary, TA subject) as an exam-

ple and assume that two queries q1(r) = π(student name, TA subject)(r) and

q2(r) = π(salary, TA subject)(r) are authorized and q3(r) = π(student name,

salary, TA subject)(r) is not authorized (because the income of an individual is

private information) where π(X)(r) means the projection of r onto X. However,

if we take the natural join of q1(r) and q2(r), then we can obtain a superset of

q3(r), which is a candidate set of the result of the unauthorized query q3 on r.

As shown in this example, an inference attack is a way to infer sensitive infor-

mation from available information such as the result of authorized queries, the

code (meaning) of the authorized and unauthorized queries, and possibly, some

external information. If the number of candidates of the result of an unautho-

rized query is small, then the attacker may obtain information sufficient for his

purpose. In the above example, if there are only two candidates (Alice, 100,

Database) and (Alice, 70, Database), the attacker knows that the salary of Alice

for Database is at least 70.

As shown in the above example, the number of candidates of the sensitive

information depends on how secure the system should be. We need a quanti-

tative notion to measure the security or privacy of the system under consider-

ation. There are a few well-known quantitative notions for database privacy,

k-anonymity [19][21], `-diversity [15] and t-closeness [14]. These notions assume

the following basic concepts on relational databases. The set of attributes are di-

vided into sensitive and nonsensitive attributes. Also, a subset of the nonsensitive

attributes, called the quasi-identifier, is assumed. The value of the quasi-identifier

is potentially used to identify the tuple of a target individual by linking the dis-
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closed information with external data. A database instance satisfies k-anonymity

if for any value of the quasi-identifier, there are k or more tuples having that

value of the quasi-identifier. However, a k-anonymous database may still have

some issues because the database may lack the diversity in the sensitive attributes.

`-diversity has been proposed by [15] to overcome the weakness of k-anonymity.

Though [15] proposes a general definition of `-diversity, we just review a simple

and frequently used one, called distinctive non-recursive `-diversity (or simply,

`-diversity). A database instance satisfies `-diversity if for each equivalence class,

all tuples within the same class have the same value of the quasi-identifier, there

are at least ` different values of the sensitive attributes.

Recently, Hashimoto, et al. [11] proposed a quantitative security notion called

instance-level k-secrecy to quantify the security against inference attacks on XML

databases. Assume that a database instance T of a schema R, authorized queries

q1, q2, . . . , qm and an unauthorized query qs are given. An attacker knows R,

q1, q2, . . . , qm, qs (the meaning of the authorized and unauthorized queries) and

q1(T ), q2(T ), . . . , qm(T ) (the result of the authorized queries), but he does not

know T . The goal of the attacker is to obtain qs(T ), which is the result of the

unauthorized query qs on T (as shown in Example 1.1). For a positive integer k,

a database instance T is k-secret with respect to R, q1, . . . , qm, qs if the attacker

cannot narrow down the number of the candidates of qs(T ) to less than k. T is

∞-secret if the candidates of qs(T ) are infinite.

Example 1.1.1. Figure 1.1 shows the scenario that an attacker infers the

sensitive information qs(T ) (on the lower left) of a database instance T by

combining the result of queries q1(T ), q2(T ), ..., qm(T ) that gives the candi-

date set of sensitive information qs(T ) (on the lower right), which means

one of the candidates included in this set is the correct sensitive information

which is qs(T ) (on the lower left). Assume that q1, q2, ..., qm are authorized

queries and qs is an unauthorized query.

3



Database instance T

Sensitive 
information  

q1 q1(T)

q2(T)

qm(T)

q2

qm

…

qs(T)

qs

qs(T)

Inference

Figure 1.1. An inference attack.

[11] showed that k-secrecy is decidable for XML databases where queries are

given as tree transducers in a certain subclass that can use relabeling and deletion.

1.2. Research Contribution

The main purpose of this dissertation is to propose methods for verifying secu-

rity against inference attacks on XML and relational databases. The following

subsections give the summary of the contribution of this thesis.

1.2.1 Contribution on XML Databases

To extend the idea of instance-level k-secrecy [11], we introduce the notion of

schema-level k-secrecy. For a positive integer k, a schema R is k-secret with

respect to authorized queries q1, ..., qm and an unauthorized query qs if every

instance conforming to R is k-secret with respect to those queries. If we can
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guarantee that every instance is k-secret, then we do not need to repeatedly test

whether a new instance is k-secret or not every time an instance is updated. In

this study, we restrict the number of authorized queries to one for simplicity.

We show that the schema-level k-secrecy is undecidable for any finite k when

queries are given by linear deterministic top-down tree transducers. Also, we

show that the schema-level ∞-secrecy is decidable for the same class of queries

and investigate the computational complexity of the problem. The details of this

study will be discussed in Chapter 3.

1.2.2 Contribution on Relational Databases

To apply the idea of instance-level k-secrecy [11] in defining a quantitative notion

for anonymity, this study introduces a notion of the security against inference

attacks by extending `-diversity [15] in relational databases with access control

for queries. More specifically, we propose a new privacy notion called query-

based `-diversity. A database instance T is (query-based) `-diverse with respect

to given authorized queries if an attacker cannot narrow down the number of

possible values of the sensitive information for any individual to less than ` by

inference, based on the result of the authorized queries on the instance T and the

queries themselves. Two approaches are proposed and implemented by Struc-

tured Query Languages (SQL) and #SAT solver, respectively. Also, we compare

the scalability and effectiveness of the two approaches based on the experiments

conducted on the implemented tools. The first approach is based on relational

algebra and restricts the authorized queries only on projection queries (selection

is not allowed). The second approach transforms a given input of the problem to

a logical formula and decides the problem by model counting using #SAT solver,

where queries are self-join free conjunctive queries, consisting of projection, se-

lection and join without self-join. The details of this study will be presented in

Chapter 4.
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1.3. Dissertation Layout

This dissertation is organized as follows:

Chapter 1 presents the purpose by introducing the motivations of this disser-

tation. Mainly, k-secrecy, the verification notion on XML databases is discussed.

Also, the research contributions are briefly introduced to both XML and rela-

tional databases. Chapter 2 presents the related security and privacy notions

in details. Chapter 3 extends the notion of instance-level k-secrecy to schema-

level k-secrecy. The decidability and computational complexity of the problem

of schema-level k-secrecy are investigated for the class of queries represented by

linear deterministic top-down tree transducers. Chapter 4 gives the proposal of

the query-based `-diversity, which is a notion obtained by combining k-secrecy

and `-diversity in the relational database setting. We propose two approaches

to the problem of verifying the query-based `-diversity. One of them based on

relational algebra and the other one is based on model counting. Then we end

with the experimental results conducted on two verification tools implemented

by SQL and #SAT solver. Chapter 5 provides the conclusion of this dissertation.

6



Chapter 2

Related Work

In the introduction, we briefly discussed about an inference attack, which is the

main problem of this dissertation. Furthermore, we also mentioned access control

as a traditional mechanism that confidentially restricts accesses to a database.

Finally, we discussed about security and privacy notions such as k-anonymity,

`-diversity and k-secrecy. This chapter presents these notions in more details.

2.1. k-Anonymity

A database instance satisfies k-anonymity if for any value of the quasi-identifier,

there are k or more tuples having that value of the quasi-identifier. A maximal

subset of tuples having same values of the quasi-identifier is called an equiva-

lence class. k-anonymity means that the cardinality of each equivalence class is

at least k. A transformation of a given instance to another instance satisfying

k-anonymity is called a k-anonymization for the original instance. [21] proposed

a method for k-anonymization by hiding some information of individuals by gen-

eralization and suppression. Generalization replaces a value with a less specific

but semantically consistent value, while suppression hides the data or does not

release the entire data. Various anonymization methods have been reported us-

ing clustering, branch-and-bound search and so on [1][4]. k-anonymity is a simple

notion and has been frequently used.

k-anonymity guarantees that an individual’s information cannot be distin-

guished from a given number of people in the record of size k. In general, the
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higher the value of k, the more privacy is achieved.

Example 2.1.1. Consider a database instance in Table 2.1, which contains

two attributes; Zipcode and Age. The instance is k-anonymous if for any

record, k − 1 other records have the same Zipcode and Age. Table 2.1

satisfies 2-anonymity.

Table 2.1. A 2-anonymous instance.

Zipcode Age

130-**** 2*

130-**** 2*

130-**** 2*

130-**** 2*

630-**** 2*

630-**** 2*

As discussed in [15], however, a k-anonymous database may still have some

issues because the database may lack the diversity in the sensitive attributes.

`-diversity has been proposed by [15] to overcome the weakness of k-anonymity.

2.2. `-Diversity

`-diversity has been proposed by [15] to overcome the weakness of k-anonymity

and improves anonymization beyond what k-anonymity provides. [24] showed

that `-diversity always guarantees stronger privacy preservation than k-anonymity.

The difference between these two notions is that while k-anonymity requires each

equivalence classes of quasi-identifier to have k entires, `-diversity requires that

there are ` different sensitive values for each quasi-identifier, as shown in Table

2.3. Though [15] proposes a general definition of `-diversity, we review a simple

and frequently used one, called distinctive non-recursive `-diversity (or simply,

`-diversity). A database instance satisfies `-diversity if for each equivalence class,

there are at least ` different values of the sensitive attributes. Distinctive `-

diversity shows that sensitive values are distinctive from each other for at least `

values in the same equivalence class.

8



Example 2.2.1. Table 2.2 shows a database instance consisting of six tu-

ples. Assume that {Zipcode, Gender, Age} is the quasi-identifier and Di-

agnosis is the sensitive attribute. All the tuples have different values of

the quasi-identifier and hence this database instance does not satisfy k-

anonymity for any k ≥ 2.

Assume that in this database instance, the latter four digits of the val-

ues of “Zipcode” are hidden, the values of “Gender” are hidden and the

values of “Age” are generalized to the intervals of ten years. Then we ob-

tain the database instance shown in Table 2.3. This instance consists of

two equivalence classes and the number of tuples in each class is three.

Hence, this instance satisfies 3-anonymity and the above transformation is

a 3-anonymization for the original instance. Also, the first class has three

different values of the sensitive attribute and the second class has two dif-

ferent values. Hence, the transformed instance satisfies 2-diversity but does

not satisfy `-diversity for any ` ≥ 3.

Table 2.2. A sample instance.

Zipcode Gender Age Diagnosis

123-4567 F 45 A

123-5235 F 44 B

123-4567 F 44 C

378-2102 M 65 A

378-2102 M 62 B

378-2102 F 65 A

Table 2.3. A 3-anonymous and 2-diverse instance.

Zipcode Gender Age Diagnosis

123-**** - [40,49] A

123-**** - [40,49] B

123-**** - [40,49] C

378-**** - [60,69] A

378-**** - [60,69] B

378-**** - [60,69] A

9



2.3. k-Secrecy

A related but different quantitative notion on database security is given in [11]

based on access control on queries. Assume that a database instance T of a

schema R, authorized queries q1, q2, . . . , qm and an unauthorized query qs are

given. An attacker knows R, q1, q2, . . . , qm, qs (the meaning of the authorized

and unauthorized queries) and q1(T ), . . . , qm(T ) (the result of the authorized

queries), but he does not know T . The goal of the attacker is to obtain qs(T ),

which is the result of the unauthorized query qs on T . For a positive integer k,

a database instance T is k-secret with respect to R, q1, . . . , qm, qs if the attacker

cannot narrow down the number of the candidates of qs(T ) to less than k . T

is ∞-secret if the candidates of qs(T ) are infinite. [11] showed that k-secrecy is

decidable for XML databases where queries are given as tree transducers in a

certain subclass that can use relabeling and deletion. Example 2.3.1 shows the

example of an inference attack on an XML database instance.

Example 2.3.1. Figure 2.1 illustrates the example of an inference attack

on an XML database instance. Assume that an attacker wants to know the

salary (sensitive information of an individual) of an employee named Taro,

whose lives in Nara, but an attacker does not have permission to access to

such information. Meanwhile, there are some available information which

has been retrieved by authorized queries such as the results of queries q1

(a pair of “Name” and “Address”), and q2 (a pair of “Salary” and “Ad-

dress”). An attacker obtains the sensitive information by combining these

available information and narrowing down candidate set of sensitive infor-

mation Y (t). An attacker knows that one of the candidates set Y (t) is the

correct information of Taro or the salary of Taro is at least $1000.
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Person

Name Salary Address

“Taro” “$1000” “Nara”

Employees

Person Person

Person

Name Address

“Taro” “Nara”

Person

Name Address

“Sato” “Nara”

Person

Name Address

“Yuki” “Nara”
q1

q2
Person

Salary Address

“$1500” “Nara”

Person

Salary Address

“$1800” “Nara”

Person

Salary Address

“$1000” “Nara”

Person

Name Salary Address

“Taro” “$1500” “Nara”

Person

Name Salary Address

“Taro” “$1800” “Nara”

Person

Name Salary Address

“Taro” “$1000” “Nara”

Candidates of sensitive information Y(t)

Database instance t

Figure 2.1. An attack on XML instance.

Although [11] deals with XML databases, the notion of k-secrecy is general

enough for other kinds of databases. Furthermore, [10] discussed verification of

the security against inference attacks on XML databases, considering a functional

dependency when unauthorized query is represented by a deterministic top-down

tree transducer. More sophisticated notions have been also proposed. For ex-

ample, [6][16] proposed stronger notions where the probability distribution of

possible secrets does not change after observing (authorized) information.
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Chapter 3

Deciding Schema k-Secrecy on

XML Databases

This chapter presents the notion of schema-level k-secrecy, which is the extension

of instance-level k-secrecy. The definition and restriction of the problem are

presented. Also, the decidability results and its computational complexity are

discussed.

3.1. Introduction

Access control is one of the most important mechanisms of a database manage-

ment system to keep confidential information secret, which should be protected

from malicious access. A typical way of realizing access control is to divide the

available set of queries into authorized queries and unauthorized ones and to allow

a user to obtain only the result of the authorized queries for a database instance.

At first glance, this access control policy works well. However, it may happen

that a user can obtain the result (or a set of candidates of the correct result) of an

unauthorized query by cleverly combining the results of authorized queries. Such

an attack is called an inference attack. Hence, it is desirable to be able to decide

whether an inference attack is possible or not for a given database. To quantify

the degree of safeness against inference attacks, Hashimoto, et al. [11] define k-

secrecy. Intuitively, a database instance is k-secret if an attacker cannot narrow

down the number of candidates of the result of an unauthorized query to less
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than k. In particular, an instance is∞-secret if the number of candidates cannot

be narrowed down to a finite value. The underlying idea is similar to `-diversity

in [15]. For a given XML database schema AG, a database instance t conforming

to the schema, an authorized query Ta and an unauthorized query Ts, we say

that t is k-secret if |Y (t)| ≥ k where Y (t) = {Ts(t′) | t′ ∈ L(AG), Ta(t
′) = Ta(t)}

and L(AG) is the set of instances conforming to AG. In particular, t is ∞-secret

if Y (t) is infinite. AG is given by a tree automaton, and queries Ta and Ts are

given by tree transducers. In [11], it is shown that k-secrecy is decidable and its

time complexity is polynomial in the size of a given instance t if each query is

represented by a composition of relabeling and/or deleting tree transducers. The

problem discussed in [11] is in instance-level in the sense that we are required

to decide whether a given instance t is k-secret or not. In this study, we discuss

the decidability of the problem for schema-level k-secrecy (or simply schema k-

secrecy), which is the problem of deciding whether every instance conforming to

a given schema is k-secret. If we can guarantee that every instance is k-secret,

then we do not need to repeatedly test whether a new instance is k-secret or not

every time an instance is updated.

3.2. Models

3.2.1 XML Documents

XML documents or XML database instances are often modeled by unranked la-

beled ordered trees, where each node has an arbitrary number of child nodes.

Moreover, we do not consider attributes as the input of k-secrecy problem. In

this chapter, for simplicity, we consider only binary labeled ordered trees. Some

encodings from unranked trees to binary trees, without loss of expressive power,

are proposed [5][9]. Among them, we adopt First-Child-Next-Sibling encoding [9],

which is a simple and widely accepted encoding. The first child of a node in an

unranked tree corresponds to the left child of the node in the encoded binary

tree, and the next sibling of a node in an unranked tree corresponds to the right

child of the node in the encoded binary tree. We use # as the special symbol

which means that there is no child or no next sibling.
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The set TΣ of (binary) labeled ordered trees over an alphabet Σ is the smallest

set defined by:

� # ∈ TΣ, and

� a(t1, t2) ∈ TΣ if t1, t2 ∈ TΣ and a ∈ Σ.

For a tree t ∈ TΣ, let V (t) denote the set of nodes of t, and let λ(v) denote the

label of a node v ∈ V (t). For t, t′ ∈ TΣ and v ∈ V (t), let t/v denote the subtree

of t rooted at v and let t[v ← t′] denote the tree obtained from t by replacing

t/v by t′. The size of a tree t is the number of the nodes of t. Let X2 be the set

consisting of two variables x1 and x2. A context C over Σ is a tree over Σ∪X2 such

that x1 and x2 can only appear on leaves of the tree at most once, respectively.

Let C(Σ,X2) be the set of all contexts over Σ. For a context C ∈ C(Σ,X2) and

t1, t2 ∈ TΣ, let C[t1, t2] denote the tree in TΣ obtained from C by replacing each

variable xi by ti for i ∈ {1, 2}.

3.2.2 XML Databases

A database schema describes syntactic restriction on database instances. Schema

for XML documents are modeled by tree automaton.

Definition 3.2.1. A tree automaton (TA) A is a 4-tuple (Q,Σ, Q0, δ), where Q

is a finite set of states, Σ is an alphabet, Q0 ⊆ Q is the set of initial states, and

δ is a set of transition rules in the form of either q → a(q1, q2) or q → #, where

q, q1, q2 ∈ Q and a ∈ Σ.

A tree t ∈ TΣ is accepted by A if and only if there is a mapping r from V (t)

to Q such that

� r(v0) ∈ Q0 where v0 is the root of t

� r(v) → λ(v)(r(v1), r(v2)) ∈ δ if v1 and v2 are the left and right children of

v, respectively and

� r(v)→ # ∈ δ if v is a leaf.

14



The mapping r is called a successful run of A on t. A successful run will be

called a run in this study. We define the language L(A) to be { t ∈ TΣ | A
accepts t }. L(A) is called the language recognized by A. A regular tree language

is a language recognized by a TA. The size of a TA A is the number of the states

and transition rules of A. A TA A is unambiguous if for every t ∈ L(A), a run of

A on t is unique.

For a TA A = (Q,Σ, Q0, δ), define the dependency graph of A as the directed

graph GA = (Q,EA) where EA = {(q, q′) | ∃q′′ ∈ Q,∃ a ∈ Σ, q → a(q′, q′′) ∈ δ
or q → a(q′′, q′) ∈ δ}. A path of a directed graph is nonempty if it consists of at

least one edge. For a TA A = (Q,Σ, Q0, δ), we say that a state q ∈ Q is recursive

through a nonempty path of nodes (states) q1, q2, . . . , qn (n ≥ 2) of GA such that

q1 = qn = q.

3.2.3 Queries

As languages for XML queries/transformations, XQuery and XSLT are developed

and recommended by W3C (World Wide Web Consortium). Both queries and

programs written in XQuery and XSLT can be regarded as transformations from

trees to trees. Unfortunately, many static analysis problems are undecidable

for the full class because XQuery and XSLT are Turing complete [12]. The

core of tree transduction of XSLT can be modeled by tree transducers [3][5][9].

Tree transducers are a finite machine model for tree transformations. As query

models, we use linear deterministic top-down tree transducers (LDTT) and linear

deterministic top-down tree transducers with regular look-ahead (LDTTR).

Definition 3.2.2. A linear top-down tree transducer (LTT) T is a quintuple

(Q,Σ,∆, Q0, δ), where Q is a finite set of states, Σ is an input alphabet, ∆ is an

output alphabet, Q0 ⊆ Q is the set of initial states, and δ is a set of transduction

rules of the following two types:

q(a(x1, x2))→ C[q1(x1), q2(x2)] or q(#)→ t′

where a ∈ Σ, q, q1, q2 ∈ Q, C ∈ C(∆,X2), and t′ ∈ T∆.

The move relation → of T is defined as follows:
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� If q(a(x1, x2)) → C[q1(x1), q2(x2)] ∈ δ, t1, t2 ∈ TΣ and t/v = q(a(t1, t2))

then, t→ t[v ← C[q1(t1), q2(t2)]] and

� If q(#)→ t′ ∈ δ and t/v = q(#) then t→ t[v ← t′].

The reflexive and transitive closure of → is denoted by →∗. The transformation

induced by T , also denoted as T , is the relation defined by: T = {(t, τ) | q0(t)→∗

τ, t ∈ TΣ, τ ∈ T∆, q0 ∈ Q0}. The domain Dom(T ) of T is the set {t ∈ TΣ | ∃τ ∈
T∆.(t, τ) ∈ T}. The image of a subset L ⊆ TΣ by T is the set T (L) = {τ ∈ T∆ |
∃t ∈ L.(t, τ) ∈ T}. The size of an LTT T is the sum of the number of the states

and the sizes of the transduction rules of T . The size of a transduction rule ρ is

the size of the context in the right-hand side of ρ. An LTT T = (Q,Σ,∆, Q0, δ)

is deterministic (denoted LDTT) if (1) Q0 is a singleton and (2) for each state q

and a ∈ Σ, there is at most one rule that contains q and a in its left-hand side.

When T is deterministic, we can regard T as a function from Dom(T ) to T∆.

Also we let T−1(t′) = {t | T (t) = t′}.
The regular look-ahead [7] allows that, when processing each node in top-

down manner, it checks whether the subtrees rooted by its children are contained

in specified regular tree languages and then processes the node if the containment

holds. This ability of look-ahead corresponds to the XPath filters used in XSLT

programs.

Definition 3.2.3. A linear top-down tree transducer with regular look-ahead

(LTTR) T is a quintuple (Q,Σ,∆, Q0, δ), where Q is a finite set of states, Σ

is an input alphabet, ∆ is an output alphabet, Q0 ⊆ Q is the set of initial states,

and δ is a set of transduction rules of the following two types:

q(a(x1 : A1, x2 : A2))→ C[q1(x1), q2(x2)] or

q(#)→ t′

where a ∈ Σ, q1, q2, q ∈ Q, C ∈ C(∆,X2), t′ ∈ T∆, and A1, A2 are TAs over Σ.

The move relation → of T is defined as follows:

� t→ t[v ← C[q1(t1), q2(t2)]] if q(a(x1 : A1, x2 : A2))→ C[q1(x1), q2(x2)] ∈ δ,
t1 ∈ L(A1), t2 ∈ L(A2) and t/v = q(a(t1, t2)) and
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� t→ t[v ← t′] if q(#)→ t′ ∈ δ and t/v = q(#).

The transformation induced by T is defined in the same way as LTT. The size of

an LTTR T is the sum of the number of the states and the sizes of the transduction

rules of T . The size of a transduction rule ρ is the sum of the size of the context

in the right-hand side and the sizes of the TAs in the left-hand side. An LTTR

T is deterministic (denoted LDTTR) if (1) Q0 is a singleton and (2) there are no

two different rules q(a(x1 : A1, x2 : A2)) → ρ1 and q(a(x1 : A′1, x2 : A′2)) → ρ2

such that L(A1) ∩ L(A′1) 6= ∅ and L(A2) ∩ L(A′2) 6= ∅. It is known that the class

of transformations induced by LDTTR is a superclass of those by LDTT.

3.3. Schema k-Secrecy Problem

Definition 3.3.1 (k-Secrecy). Given a database schema AG, a database instance

t, an authorized query Ta and an unauthorized query Ts where Dom(Ta) ⊇ L(AG)

and Dom(Ts) ⊇ L(AG). We say that (t, Ta, Ts) is k-secret if |Y (t)| ≥ k where

Y (t) = {Ts(t′) | t′ ∈ L(AG), Ta(t
′) = Ta(t)}. In particular, (t, Ta, Ts) is∞-secret if

Y (t) is infinite. If Ta and Ts are clear from context, we simply say t is k(∞)-secret.

In the above definition, Y (t) represents the candidates of secret information.

We assume that attackers know the schema, the definition of both authorized and

unauthorized queries as well as the results of authorized queries applied to t, but

do not know the instance t and the secret information Ts(t). Note that Y (t) can

be represented as Y (t) = Ts(T
−1
a (Ta(t))∩L(AG)). An attacker uses the available

information from the result of authorized queries Ta(t) to compute the inverse

image T−1
a (Ta(t)), then extracts from T−1

a (Ta(t)) the trees that conform to the

given schema AG. After that, the attacker executes the unauthorized query Ts

in order to obtain the candidate secret information Y (t) of the database. Y (t) is

the set consisting of all candidates that the attacker cannot distinguish from the

secret information Ts(t).

Note that a database instance always satisfies 1-secrecy and hence when we

refer to k-secrecy, we implicitly assume that k ≥ 2.

Definition 3.3.2 (Schema k-Secrecy). Given a database schema AG, an autho-

rized query Ta, and an unauthorized query Ts, (AG, Ta, Ts) is schema k-secret if
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every instance t ∈ L(AG) is k-secret.

Schema k-secrecy (or schema ∞-secrecy) problem, abbreviated as k-SS (or

∞-SS), asks whether, given a database schema AG, an authorized query Ta, and

an unauthorized query Ts, (AG, Ta, Ts) is schema k-secret (or schema ∞-secret).

In this study, we assume the number of authorized queries is one and leave the

extension to multiple authorized queries as future work (see Section 3.6.1).

Example 3.3.3. Consider TA AG and transducers T 1
a , T

2
a , T

1
s and T 2

s de-

fined as follows:

� Σ = {a, ã, s,#}, Q = {q0, q1, q#} and AG = (Q,Σ, {q0}, {q0 → a(q1, q#),

q0 → ã(q1, q#), q1 → s(q1, q#), q1 → s(q#, q#), q# → #}). AG accepts the

trees which have the shapes shown in Figure 3.1.

� T ia = ({q},Σ,Σ, {q}, δia) (i = 1, 2) where δ1
a = {q(a(x1, x2))→ a(q(x1), q(x2)),

q(ã(x1, x2)) → a(q(x1), q(x2)), q(s(x1, x2)) → q(x1), q(#) → #} and δ2
a is

the set of rules obtained from δ1
a by replacing q(ã(x1, x2))→ a(q(x1), q(x2))

with q(ã(x1, x2)) → ã(q(x1), q(x2)). Both T 1
a and T 2

a delete all s and T 1
a

replaces ã with a.

� T 1
s is an LDTT that induces the identity map on L(AG).

� T 2
s = ({q},Σ,Σ, {q}, δ2

s) where δ2
s = {q(a(x1, x2))→ a(#,#), q(ã(x1, x2))→

ã(q(x1), q(x2)), q(s(x1, x2))→ s(q(x1), q(x2)), q(#)→ #}. T 2
s deletes all s

only after it reads a.

For m ≥ 1, let asm and ãsm be the trees of the shape shown in Figure 3.1 (a)

and (b) respectively. Also let as+ = {asm | m ≥ 1} and ãs+ = {ãsm | m ≥ 1}.
A symbol a stands for a(#,#) or {a(#,#)} depending on the context. For each

t ∈ L(AG), T 1
a (t) = a. Thus, (T 1

a )−1 ◦ T 1
a (t) ∩ L(AG) = L(AG). T 2

a (asm) = a and

T 2
a (ãsm) = ã. Thus, (T 2

a )−1 ◦ T 2
a (asm) ∩ L(AG) = as+ and (T 2

a )−1 ◦ T 2
a (ãsm) ∩

L(AG) = ãs+. Since T 1
s is the identity map, (AG, T

1
a , T

1
s ), (AG, T

2
a , T

1
s ) are schema

∞-secret. (AG, T
1
a , T

2
s ) is also schema ∞-secret because T 2

s (L(AG)) = a ∪ ãs+

while (AG, T
2
a , T

2
s ) is not schema ∞-secret because T 2

s (as+) = a. See Table 3.1.
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Figure 3.1. Trees accepted by AG.

Table 3.1. Schema ∞-secrecy for Example 3.3.3.

T ia, T
i
s t T ia(t) A(t) Y (t) |Y (t)| ∞-secret

T 1
a , T

1
s

asm
a L(AG) L(AG) ∞ yes

ãsm

T 2
a , T

1
s

asm a as+ as+

∞ yes
ãsm ã ãs+ ãs+

T 1
a , T

2
s

asm
a L(AG) a ∪ ãs+ ∞ yes

ãsm

T 2
a , T

2
s

asm a as+ a 1
no

ãsm ã ãs+ ãs+ ∞

We let A(t) = (T ia)
−1 ◦ T ia(t) ∩ L(AG) and Y (t) = T is((T

i
a)
−1 ◦ T ia(t) ∩ L(AG)).

Note that L(AG) = as+ ∪ ãs+.

3.4. Undecidability Result

We show that k-SS is undecidable for any finite k > 1, even if queries are restricted

to deterministic rational transducers on words (DRTW) [5] where a rule has the

shape p(ax)→ αq(x) (a is an input symbol, x is a variable denoting the remaining

input string, p, q are states and α is a string of output symbols). DRTW can be

regarded as a proper subclass of LDTT.

Theorem 3.4.1. k-SS is undecidable for any integer k > 1, where queries are

represented by DRTW.
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Proof. We show the undecidability of 2-SS by reduction from PCP. The unde-

cidability of k-SS for k > 2 can be shown in almost the same way. Here, we

use a regular expression to represent a schema and DRTW to represent queries.

The class of languages represented by regular expressions, when regarded as tree

languages, is a proper subclass of regular tree languages.

Consider any instance (W,U) of PCP, where W = 〈w1, w2, . . . , wn〉 and U =

〈u1, u2, . . . , un〉 are both n-tuples of words over an alphabet Σ. Let [n] = {1, . . . , n}
and we assume that Σ ∩ [n] = ∅. We construct the following regular expression

AG over Σ ∪ [n] as a schema:

AG = (1w1 | 2w2 | . . . | nwn)+ | (1u1 | 2u2 | . . . | nun)+.

For example, let W = 〈abc, d〉 and U = 〈a, bcd〉, then we construct AG = (1abc |
2d)+ | (1a | 2bcd)+. Let L(AG) be the language represented by AG. Next, let Ta

be the authorized query that extracts only symbols in [n] from an input word,

and let Ts be the unauthorized query that extracts only symbols in Σ from an

input word. For example, given t = 1abc2d as an input word, Ta(t) = 12 and

Ts(t) = abcd. Both Ta and Ts can be defined by DRTW with one state.

We now show that |Ts(T−1
a (Ta(t)) ∩ L(AG))| ≥ 2 for any t ∈ L(AG) if and

only if (W,U) has no solution. Take any t = i1wi1i2wi2 · · · imwim ∈ L(AG) (or

t = i1ui1i2ui2 · · · imuim ∈ L(AG)), and then it holds that T−1
a (Ta(t)) ∩ L(AG) =

{i1wi1i2wi2 · · · imwim , i1ui1i2ui2 · · · imuim}. Thus,

Y (t) = Ts(T
−1
a (Ta(t)) ∩ L(AG)) = {wi1wi2 · · ·wim , ui1ui2 · · ·uim}.

This situation is depicted in Figure 3.2. If the instance (W,U) of PCP

has a solution i1i2 · · · im, then |Y (t)| = 1 where t = i1wi1i2wi2 · · · imwim or

t = i1ui1i2ui2 · · · imuim because wi1wi2 · · ·wim = ui1ui2 · · ·uim . Conversely, if the

instance (W,U) of PCP has no solution, then |Y (t)| = 2 for any t ∈ L(AG)

because wi1wi2 · · ·wim 6= ui1ui2 · · ·uim for any i1i2 · · · im ∈ [n]+. Thus, we have

proved that 2-SS is undecidable.
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Figure 3.2. Reduction from PCP to 2-SS.

3.5. Decidability Results on ∞-SS

In this section, we first give an overview of our decision algorithm for ∞-SS

in Section 3.5.1, and the details of the algorithm where queries are represented

by LDTT in Section 3.5.2. Then, we prove the correctness of the algorithm in

Section 3.5.3, and analyze the time complexity in Section 3.5.4. The results are

extended to LDTTR in Section 3.5.5.

3.5.1 Overview of Decision Algorithm

For simplicity, we consider only authorized/unauthorized queries but not schemas

here. More precisely, we fix a schema to be a TA which accepts any tree. We

assume that a schema is arbitrarily given as a TA when we give the detail of our

algorithm in Section 3.5.2.

Consider a pair (t, T (t)) of input and output trees of an LDTT T . For each

node v of t ∈ Dom(T ), v either is transformed to some nonempty part of T (t) by

applying some rule of T to v, or does not correspond to any part of T (t), that is, v

is deleted by T . For example, let T be the LDTT which has the transduction rules

listed in Figure 3.3. The left tree is transformed into the right tree in Figure 3.3

by T . The nodes of the left tree in the circle-dot-lines correspond to the parts

of the right tree according to the applied rules of T , respectively. On the other

hand, the nodes in the rectangle-dot-line are deleted by T . The subtree c(#,#)

is deleted because q1(b(x1, x2)) → # is applied to the parent node b and thus

the subtrees at x1 and x2 are ignored (or not touched). Note that the node b
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Figure 3.3. Deleted and undeleted nodes by T .

is not deleted but transformed to #. We call a rule such that a variable in its

left hand side does not occur in its right hand side, like q1(b(x1, x2)) → #, a

subtree-deleting rule. The node b which is the right child of the root is deleted

by T because q2(b(x1, x2))→ q(x1) is applied to the node and thus no symbol is

output by this rule. We call a rule without output symbols in the right hand an

erasing rule. Note that any erasing rule is also a subtree-deleting rule because

only one variable can occur in its right-hand side of the erasing rule.

We intend to show a decision algorithm for ∞-secrecy of (AG, Ta, Ts) which

will be explained later. The unambiguous TA Aa can be constructed from a query

Ta as follows:

� Aa recognizes the domain of Ta.

� Each state of Aa is either a rule ρ of Ta or a special state ⊥.

� For any input tree t and any node v of t, if the unique run of Aa on t assigns

a rule ρ of Ta, then Ta applies the rule ρ at v when t is transformed by Ta;
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if the run assigns ⊥ to v, then Ta deletes v by applying a subtree-deleting

rule at some proper ancestor of v.

For an input tree t ∈ Dom(Ta), in order to distinguish whether a node is deleted

by Ta, we just look at the state assigned to the node of t by Aa. That is, ⊥ or

ρ where ρ is an erasing rule is assigned to the node if and only if the node is

deleted by Ta. We call such states deleting states of Aa. Similarly, let As denote

the unambiguous TA constructed from Ts in the same way as Aa.

Our algorithm consists of four steps:

1. Construct tree automata Aa and As from Ta and Ts s.t L(Aa) = Dom(Ta)

and L(As) = Dom(Ts).

2. Construct AI = Aa × As × AG.

3. Construct tree automata Ainf and Afin from AI such that

� L(Afin) ∪ L(Ainf ) = L(AI), L(Afin) ∩ L(Ainf ) = ∅ and

� Ta(L(Afin)) ⊆ Ta(L(Ainf )) iff (AG, Ta, Ts) is ∞-secret

by identifying the states of AI which can occur recursively and contain

deleting states of Aa and non-deleting states of As as their components.

4. Decide whether Ta(L(Afin)) ⊆ Ta(L(Ainf )).

3.5.2 Detailed Construction

LetAG = (Q,Σ, Q0, δ) be a TA as an XML schema and let Ta = (Qa,Σ,∆, {q0
a}, δa)

and Ts = (Qs,Σ,∆, {q0
s}, δs) be LDTT as authorized and unauthorized queries,

respectively. Our algorithm works as follows:

Step 1. Construct the following two TAs Aa and As from Ta and Ts:

- Aa = (δa ∪ {⊥},Σ, δa0, δ
′
a) where ⊥ 6∈ Qa, δa0 is the set of rules in δa of

which left hand side contains q0
a and δ′a is the smallest set such that

� for each ρ = q(σ(x1, x2)) → C[q1(x1), q2(x2)] ∈ δa with q, q1, q2 ∈ Qa,

σ ∈ Σ and C ∈ C(∆,X2),

ρ→ σ(q̃1, q̃2) ∈ δ′a
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where for each i ∈ {1, 2}, if the right hand side of ρ (abbreviated as

RHS(ρ)) contains xi then q̃i = ρi for any ρi ∈ δa of which left hand

side contains qi; otherwise q̃i = ⊥.

� for each ρ = q(#)→ u where q ∈ Qa and u ∈ T∆, ρ→ # ∈ δ′a.

� for each σ ∈ Σ, ⊥ → σ(⊥,⊥) ∈ δ′a.

� ⊥ → # ∈ δ′a.

If the variable xi disappears from RHS(ρ), we use the dummy state ⊥
instead of qi so that Aa goes through the subtree substituted into xi by the

rule ⊥ → σ(⊥,⊥).

- As = (δs∪{⊥},Σ, δs0, δ′s) is defined from Ts in the same way as Aa. We can

see that Aa and As constructed from Ta and Ts as above satisfy the three

conditions listed in Section 3.5.1. Note that Aa and As are unambiguous

TAs because Ta and Ts are top-down deterministic and thus it is uniquely

determined which rule is applied to each node.

Step 2. Construct the product TA AI of Aa, As, and AG. More specifically, con-

struct the following tree automaton AI = (Q′a×Q′s×Q,Σ, Q0
a×Q0

s×Q0, δI)

from Aa = (Q′a,Σ, Q
0
a, δ
′
a), As = (Q′s,Σ, Q

0
s, δ
′
s), and AG = (Q,Σ, Q0, δ):

(qa, qs, q)→ σ((q1
a, q

1
s , q

1), (q2
a, q

2
s , q

2)) ∈ δI if and only if qa → σ(q1
a, q

2
a) ∈ δ′a,

qs → σ(q1
s , q

2
s) ∈ δ′s, and q → σ(q1, q2) ∈ δ. Note that L(AG) = L(AI) be-

cause Dom(Ta) ⊇ L(AG) and Dom(Ts) ⊇ L(AG). Also for every t ∈ L(AI),

there are unique runs ra, rs of Aa, As respectively, on t because Aa, As are

unambiguous; r is a run of AG on t if and only if r′ is a run of AI on t such

that r′(v) = (ra(v), rs(v), r(v)) for every node v ∈ V (t).

Step 3. Let QI = Q′a ×Q′s ×Q be the set of states of AI . Compute two subsets

QDa and QDs of QI as follows:

QDa = {(qa, qs, q) ∈ QI | qa = ⊥ or qa = ρ

where ρ is an erasing rule of Ta},
QDs = {(qa, qs, q) ∈ QI | qs = ⊥ or qs = ρ

where ρ is an erasing rule of Ts}.
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AI assigns a state (qa, qs, q) ∈ QDa (rsp. QDs ) to a node v if and only if Ta

(rsp. Ts) deletes v by a subtree-deleting rule.

Step 4. Compute Q′ consisting of qI ∈ QI such that qI is recursive through a

nonempty path of the dependency graph GAI
such that all the states in

the path are in QDa and some state in the path is not in QDs . Let QDa =

{1, 2, ..., n} where n = |QDa |. We can compute Q′ by dynamic programming

using Dk[i, j] (k, i, j ∈ QDa ). We intend Dk[i, j] = 0 if there is no path from

i to j via 1, 2, ..., k. Dk[i, j] = 1 if there is a path from i to j via 1, 2, ..., k

and every node in such a path belongs to QDs . Dk[i, j] ≥ 2 if there is a path

from i to j via 1, 2, ..., k such that at least one node in the path does not

belong to QDs .

D0[i, j] can be defined as follows: for each i, j ∈ QDa

� if ∃ k ∈ QDa ∃σ ∈ Σ: i→ σ(j, k) ∈ δI or i→ σ(k, j) ∈ δI then

– if i, j ∈ QDs then D0[i, j]:= 1

– else D0[i, j]:= 2

� else D0[i, j]:= 0.

We compute Dk[i, j](1 ≤ k ≤ n) as follows: Dk[i, j] = max{Dk−1[i, k] ×
Dk−1[k, j],Dk−1[i, j]}. Then Q′ can be obtained as {i | Dn[i, i] ≥ 2}.

Step 5. Construct Ainf such that t ∈ L(Ainf ) if and only if there is a run rIt
of AI on t that assigns a state in Q′ to at least one node of t as follows:

Ainf = (QI × {0, 1},Σ, {q0
a} × {q0

s} ×Q0 × {1}, δ′′I ) where δ′′I is the smallest

set such that

� for each q → σ(q1, q2) ∈ δI , if q ∈ Q′ then (q, 1) → σ((q1, i), (q2, j)) ∈
δ′′I for each i, j ∈ {0, 1}; otherwise, (q, i||j)→ σ((q1, i), (q2, j)) ∈ δ′′I for

each i, j ∈ {0, 1}, where || is the boolean operator OR, and

� for each q → # ∈ δI , if q ∈ Q′ then (q, 1) → # ∈ δ′′I ; otherwise

(q, 0)→ # ∈ δ′′I .

The last component {0, 1} of each state is for checking whether at least one

state in Q′ appears in a run.
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Step 6. Construct Afin such that L(Afin) = L(AI)− L(Ainf ). More concretely,

construct a complement TA Acinf of Ainf and then construct an intersection

TA of AI and Acinf . Note that TAs are closed under Boolean operations [5].

Step 7. Decide whether Ta(L(Afin)) ⊆ Ta(L(Ainf )). If Ta(L(Afin)) ⊆ Ta(L(Ainf ))

then output “schema∞-secret”; Otherwise, output “not schema∞-secret.”

Note that any LDTT T preserves regularity, that is, for any regular tree

language L, T (L) is also a regular language, and a TA which recognizes T (L)

can be constructed. Also, the inclusion problem is decidable for regular tree

languages.

Example 3.5.1. Using the above algorithm, we can decide ∞-secrecy for

Example 3.3.3 as follows:

Table 3.2. The execution results of the algorithm for Example 3.3.3.

T ia, T
i
s L(Ainf ) L(Afin) T ia(L(Ainf )) T ia(L(Afin)) H

T 1
a , T

1
s L(AG) ∅ a ∅ yes

T 2
a , T

1
s L(AG) ∅ a ∪ ã ∅ yes

T 1
a , T

2
s ãs+ as+ a a yes

T 2
a , T

2
s ãs+ as+ ã a no

We let H = T ia(L(Afin)) ⊆ T ia(L(Ainf )).

Consider the third case (AG, T
1
a , T

2
s ) in Table 3.2. We assign a label to each

rule of T 1
a and T 2

s as δ1
a = {ρ1

a:q(a(x1, x2))→ a(q(x1), q(x2)), ρ2
a:q(ã(x1, x2))→

a(q(x1), q(x2)), ρ3
a:q(s(x1, x2))→ q(x1), ρ4

a:q(#)→ #}. δ2
s = {ρ1

s:q(a(x1, x2))→
a(#,#), ρ2

s:q(ã(x1, x2))→ ã(q(x1), q(x2)), ρ3
s:q(s(x1, x2))→ s(q(x1), q(x2)),

ρ4
s:q(#)→ #}. We can construct A1

a, A
2
s, AI , Ainf and obtain Q′ as follows.

Note that useless states and rules are removed at (Step 2) and (Step 5).

� (Step 1) A1
a = (Q1

a
′
,Σ, δ1

a, δ
1
a
′
) where Q1

a
′
= δ1

a ∪ {⊥}, δ1
a
′
= {ρ1

a → a(ρia, ρ
j
a),

ρ2
a → ã(ρia, ρ

j
a), ρ

3
a → s(ρia,⊥), ρ4

a → #, ⊥ → σ(⊥,⊥), ⊥ → #} with

1 ≤ i ≤ 4, 1 ≤ j ≤ 4 and σ ∈ {a, ã, s}. A2
s = (Q2

s
′
,Σ, δ2

s , δ
2
s
′
) where

Q2
s
′

= δ2
s ∪ {⊥}, δ2

s
′

= {ρ1
s → a(⊥,⊥), ρ2

s → ã(ρis, ρ
j
s), ρ

3
s → s(ρis, ρ

j
s),

ρ4
s → #, ⊥ → σ(⊥,⊥), ⊥ → #} with 1 ≤ i ≤ 4, 1 ≤ j ≤ 4 and

σ ∈ {a, ã, s}.
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� (Step 2) AI = (Q1
a
′ ×Q2

s
′ ×Q,Σ, {(ρ1

a, ρ
1
s, q0), (ρ2

a, ρ
2
s, q0)},

δI) where δI = {(ρ1
a, ρ

1
s, q0)→ a((ρ3

a,⊥, q1), (ρ4
a,⊥, q#)),

(ρ2
a, ρ

2
s, q0)→ ã((ρ3

a, ρ
3
s, q1), (ρ4

a, ρ
4
s, q#)),

(ρ3
a, ρ

3
s, q1)→ s((ρ3

a, ρ
3
s, q1), (⊥, ρ4

s, q#)),

(ρ3
a, ρ

3
s, q1)→ s((ρ4

a, ρ
4
s, q#), (⊥, ρ4

s, q#)),

(ρ3
a,⊥, q1)→ s((ρ3

a,⊥, q1), (⊥,⊥, q#)),

(ρ3
a,⊥, q1)→ s((ρ4

a,⊥, q#), (⊥,⊥, q#)),

(ρ4
a, ρ

4
s, q#)→ #, (ρ4

a,⊥, q#)→ #, (⊥, ρ4
s, q#)→ #, (⊥,⊥, q#)→ #}.

� (Step 3) QDa is the subset of states of which first component is ρ3
a or ⊥. QDs

is the subset of states of which second component is ⊥.

� (Step 4) The dependency graph GAI
of AI is shown in Figure 3.4. Q′ =

{(ρ3
a, ρ

3
s, q1)}.

� (Step 5)Ainf = (QI×{0, 1},Σ, {((ρ2
a, ρ

2
s, q0), 1)}, δ′′I ) where δI

′′ = {((ρ2
a, ρ

2
s, q0), 1)→

ã(((ρ3
a, ρ

3
s, q1), 1), ((ρ4

a,

ρ4
s, q#), 0)), ((ρ3

a, ρ
3
s, q1), 1)→ s(((ρ3

a, ρ
3
s, q1), 1), ((⊥, ρ4

s,

q#), 0)), ((ρ3
a, ρ

3
s, q1), 1)→ s(((ρ4

a, ρ
4
s, q#), 0), ((⊥, ρ4

s, q#),

0)), ((ρ4
a, ρ

4
s, q#), 0)→ #, ((ρ4

a,⊥, q#), 0)→ #, ((⊥, ρ4
s, q#), 0)→ #}.

� (Step 6) Afin is a TA such that L(Afin) = L(AI)− L(Ainf ).

� (Step 7) We have L(Ainf ) = ãs+, L(Afin) = L(AG) − L(Ainf ) = as+.

T 1
a (L(Afin)) ⊆ T 1

a (L(Ainf )) holds and (AG, T
1
a , T

2
s ) is schema ∞-secret be-

cause T 1
a (L(Afin)) = a and T 1

a (L(Ainf )) = a. See Table 3.2.

Figure 3.4. The dependency graph GAI
.
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3.5.3 Correctness

We give several lemmas for the proof of the correctness.

Lemma 3.5.2. Let t be an arbitrary tree in L(AI). For any node v1 and any

descendant v2 of v1 in t such that

� there is a run rIt of AI on t such that rIt (v1) = rIt (v2) and

� every node v that appears in the path from v1 to v2 (inclusive) is mapped to

a state in QDa (rsp. in QDs ) by the run rIt ,

Ta(t) = Ta(t[v1 ← t/v2]) (rsp. Ts(t) = Ts(t[v1 ← t/v2])) (see Figure 3.5).

Figure 3.5. Lemma 3.5.2.

Proof. Let t be an arbitrary tree in L(AI) and let v be an arbitrary node in t.

Let rIt be an arbitrary run of AI on t. By definition of Aa, As, and AI , we have

the following two facts:

� If rIt (v) = (⊥, qs, q) ∈ QDa then for every descendant v′ of v, rIt (v
′) =

(⊥, q′s, q′) ∈ QDa for some q′s ∈ Qs and q′ ∈ Q.

� If rIt (v) = (qa, qs, q) ∈ QDa where qa 6= ⊥ then for either one node v′ of the

two children of v, rIt (v
′) = (⊥, q′s, q′) ∈ QDa for some q′s ∈ Qs and q′ ∈ Q.
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Figure 3.6. Lemma 3.5.3.

Let v1 be an arbitrary node in t, and let v2 be an arbitrary descendant of v1. We

assume that rIt (v1) = rIt (v2) ∈ QDa and that rIt (v) ∈ QDa for each v that appears

in the path from v1 to v2. By the facts we stated above, for each node v that is

a descendant of v1 but not a descendant of v2, rIt (v) ∈ QDa . Since nodes mapped

to states in QDa by rIt are deleted by Ta, it holds that Ta(t) = Ta(t[v1 ← t/v2]).

The case for Ts and QDs can be shown in the same way.

Lemma 3.5.3. For every τ ∈ L(AG), if Ta(τ) ∈ Ta(L(Ainf )) then Ts(T
−1
a (Ta(τ))∩

L(AG)) is infinite.

Proof. Assume that Ta(τ) ∈ Ta(L(Ainf )), then there is t ∈ L(Ainf ) such that

Ta(t) = Ta(τ) (see Figure 3.6). Note that if τ ∈ L(Ainf ) we just let t = τ . By

the definition of Ainf , there is a run rIt of AI on t that assigns a state in Q′ to

at least one node of t. Let v be an arbitrary node such that rIt (v) ∈ Q′. By

the definition of Q′, there are another tree t′ ∈ L(Ainf ) having a node v1 and its

proper descendant v2, and a run rIt′ of AI on t′ such that

� t′[v1 ← t′/v2] = t and t/v = t′/v2,

� rIt′(v1) = rIt′(v2) = rIt (v) ∈ Q′, and

� all the states in the path from v1 and v2 are in QDa and some state in the

path is not in QDs .
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Figure 3.7. Lemma 3.5.4.

By Lemma 3.5.2, Ta(t
′) = Ta(t). On the other hand, Ts(t

′) 6= Ts(t) because there

is some state qs /∈ QDs between v1 and v2 in t′ and thus at least one more node

labeled with an output symbol in ∆ is emitted by Ts, that is, |Ts(t′)| ≥ |Ts(t)|+1.

Let tk and tk+1 be the trees in L(Ainf ) obtained from t by pumping at v as above

k and k + 1 times, respectively, then Ta(t
k) = Ta(t

k+1) and Ts(t
k) 6= Ts(t

k+1).

Thus, Ts(T
−1
a (Ta(t)) ∩ L(AG)) is infinite.

Lemma 3.5.4. For every t ∈ L(Afin), if Ta(t) 6∈ Ta(L(Ainf )) then Ts(T
−1
a (Ta(t))∩

L(AG)) is finite (see Figure 3.7).

Proof. Let t be an arbitrary tree in L(Afin) and let rIt be an arbitrary run of AI

on t. For any node v1 and any descendant v2 of v1 in t such that

� rIt (v1) = rIt (v2) and

� every node v that appears in the path from v1 to v2 is mapped to a state

in QDa by rIt ,

it holds not only that Ta(t) = Ta(t[v1 ← t/v2]) but also that Ts(t) = Ts(t[v1 ←
t/v2]). The reason is as follows: let q̄ = rIt (v1) = rIt (v2), then q̄ is recursive through

a path in t such that all of the states in the path are in QDa . By the fact that

L(Afin) = L(AI)−L(Ainf ) and the construction of Ainf , there is no run of AI on

t that assigns a state in Q′ to some node of t (see Step 5 in Section 3.5.2). Hence,

we must have that rIt (v1) = rIt (v2) ∈ QDs and rIt (v) ∈ QDs for each v which appears

in the path from v1 to v2. Thus, by Lemma 3.5.2, Ts(t) = Ts(t[v1 ← t/v2]).
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Now consider an arbitrary tree t ∈ L(Afin) such that Ta(t) 6∈ Ta(L(Ainf )),

and let t0 = Ta(t). For any t′ ∈ T−1
a (t0) and any run rIt′ of AI on t′, |{v ∈

V (t′) | rIt′(v) 6∈ QDa }| ≤ |t0| because a node labeled with an output symbol in ∆

is emitted every time a rule that contains q 6∈ QDa in its left-hand side is applied.

Thus, in any path of t′, there are at most |t0| nodes to which AI assigns states

not in QDa . Let l be the number of such nodes. In addition, in the path, there

are l + 1 intervals separated by the l nodes, and AI assigns states in QDa to all

nodes in the intervals. Hence, using the fact we have stated in the beginning

of this proof, we can say that for each t′ ∈ T−1
a (t0), there is a tree t′′ such that

Ts(t
′′) = Ts(t

′) and the height of t′′ is at most |t0|+ (|t0|+ 1)|QDa |. Thus, there is

a subset Lf of the set of all trees of height at most |t0|+ (|t0|+ 1)|QDa | such that

Ts(Lf ) = Ts(T
−1
a (t0)). Since Ts is functional and Lf is finite, Ts(T

−1
a (t0)∩L(AG))

is finite.

We now give a lemma for correctness of our algorithm.

Lemma 3.5.5. Ta(L(Afin)) ⊆ Ta(L(Ainf )) if and only if Ts(T
−1
a (Ta(t))∩L(AG))

is infinite for every t ∈ L(AG).

Proof. Assume that Ta(L(Afin)) ⊆ Ta(L(Ainf )). We have Ta(t) ∈ Ta(L(Ainf )) for

every t ∈ L(AG). By Lemma 3.5.3, Ts(T
−1
a (Ta(t)) ∩ L(AG)) is infinite for every

t ∈ L(AG).

On the other hand, assume that Ta(L(Afin))⊆/Ta(L(Ainf )), and then there is

some t ∈ L(Afin) ⊆ L(AG) such that Ta(t) 6∈ Ta(L(Ainf )). Thus, by Lemma 3.5.4,

Ts(T
−1
a (Ta(t)) ∩ L(AG)) is finite.

By lemma 3.5.5, we obtain the following theorem.

Theorem 3.5.6. ∞-SS is decidable for LDTT.

3.5.4 Time Complexity

Here, we show that ∞-SS for LDTT is EXPTIME-complete. First we show the

time complexity of the proposed algorithm for∞-SS where queries are represented

by LDTT is in EXPTIME. Next we prove that ∞-SS for LDTT is EXPTIME-

hard.

We estimate the time and space complexities of the proposed algorithm.
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Step 1. Construct two TAs Aa and As from Ta and Ts: it takes O(|Ta|3) (rsp.

O(|Ts|3)) time to construct Aa (rsp. As), and its size is O(|Ta|3) (rsp.

O(|Ts|3)).

Step 2. Construct the product TA AI from As, Aa and AG: it takes O(|Aa| ×
|As| × |AG|) time, and its size is O(|Aa| × |As| × |AG|).

Step 3. Compute QDa and QDs : it takes O(|AI |× |Aa|) (rsp. O(|AI |× |As|)) time

to construct QDa (rsp. QDs ), and the sizes of QDa and QDs are O(|AI |).

Step 4. Construct Q′ from AI , QDa , and QDs : construction of Q′ takes O(|AI |3)

time, and its size is O(|AI |) because Q′ is a subset of QI .

Step 5. Construct Ainf from AI and Q′: construction of Ainf takes O(|AI |×|Q′|)
time, and |Ainf | is O(|AI |).

Step 6. Construct Afin such that L(Afin) = L(AI) − L(Ainf ): construction

of a complement TA Acinf of Ainf takes exponential time and its size is

exponential in |Ainf | at the worst. Construction of an intersection TA Afin

of AI and Acinf takes O(|AI | × |Acinf |) time and its size is O(|AI | × |Acinf |).

Step 7. Decide whether Ta(L(Afin)) ⊆ Ta(L(Ainf )): a TA Bfin recognizing

Ta(L(Afin)) can be constructed in O(|Ta| × |Afin|) time. Similarly, a TA

Binf recognizing Ta(L(Ainf )) can be constructed in O(|Ta| × |Ainf |) time.

Note that the size of Bfin is exponential in the sizes of Ta, Ts, and AG but

that of Binf is polynomial. Thus, we can obtain a complement TA Bc
inf

of Binf of exponential size, and deciding whether L(Bfin) ∩ L(Bc
inf ) = ∅ is

possible in O(|Bfin| × |Bc
inf |) time.

Therefore, the total time complexity of our algorithm is in EXPTIME.

Theorem 3.5.7. ∞-SS is EXPTIME-complete for LDTT.

Proof. We showed ∞-SS is in EXPTIME solvable and thus we show ∞-SS is

EXPTIME-hard by reduction from inclusion of regular tree languages, which is

known to be EXPTIME-complete. The reduction uses Lemma 3.5.5.

Consider any two TAs A1 = (Q1,Σ, Q10, δ1) and A2 = (Q2,Σ, Q20, δ2). We

construct AG, Ta, and Ts such that Ta(L(Afin)) = L(A1) and Ta(L(Ainf )) =
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L(A2). Without loss of generality, neither A1 nor A2 accepts the tree having only

#, and Q1 and Q2 are disjoint. Let ΣAi
= {a(q,q1,q2) | q → a(q1, q2) ∈ δi}(i = 1, 2).

For a(q,q1,q2) ∈ ΣA1 ∪ΣA2 , let π(a(q,q1,q2)) = a. Note that ΣA1 and ΣA2 are disjoint

because so are Q1 and Q2. We construct the following TA AG and transducers

Ta and Ts:

� AG = (Q1 ∪ Q2 ∪ {q0},ΣA1 ∪ ΣA2 ∪ {s}, Q10 ∪ {q0}, δG) where q0 is a new

state, s is a new symbol, and δG is the smallest set such that

– for each a ∈ Σ, if q → a(q1, q2) ∈ δ1∪ δ2 then q → a(q,q1,q2)(q1, q2) ∈ δG,

– for each q20 ∈ Q20, q0 → s(q20, q#) ∈ δG,

– q0 → s(q0, q#) ∈ δG, and

– q# → # ∈ δG.

� Ta = ({qa},ΣA1 ∪ ΣA2 ∪ {s},Σ, {qa}, δa) where δa = {qa(ã(x1, x2)) →
a(qa(x1), qa(x2)) | ã ∈ ΣA1∪ΣA2 , π(ã) = a}∪{qa(s(x1, x2))→ qa(x1), qa(#)→
#}.

� Ts = ({qs},ΣA1∪ΣA2∪{s},ΣA1∪ΣA2∪{s}, {qs}, δs) where δs = {qs(σ(x1, x2))→
σ(qs(x1), qs(x2)) | σ ∈ ΣA1 ∪ ΣA2 ∪ {s}} ∪ {qs(#) → #}, which represents

the identity transformation on trees over ΣA1 ∪ ΣA2 ∪ {s}.

Note that AG is an unambiguous TA, and Ta and Ts are LDTTs. L(AG) consists of

two disjoint sets: the set L1 of trees over ΣA1 corresponding to trees in L(A1) and

the set L2 of trees over ΣA2 ∪{s} corresponding to trees in L(A2). For t ∈ L(A1),

the size of T−1
a (t) ∩ L1 is at most the number of runs of A1 on t. On the other

hand, for t ∈ L(A2), there are infinitely many trees in L2 that are transformed to

t by Ta because trees in L2 are allowed to have any number of s on the top and Ta

deletes all the ss. From the above facts, we can see that Afin and Ainf constructed

by our decision algorithm in Section 3.5.2 satisfy that Ta(L(Afin)) = L(A1) and

Ta(L(Ainf )) = L(A2). Hence, from Lemma 4, L(A1) ⊆ L(A2) if and only if

(AG, Ta, Ts) is ∞-secret. Thus, we obtain EXPTIME-hardness of ∞-SS.

EXPTIME-hardness of LDBT can be shown in a similar way as above.
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3.5.5 Extension to LDTTR

We show that ∞-SS is decidable for LDTTRs by revising Steps 1 and 3 of the

algorithm in Section 3.5.2.

Step 1. Construct the following TAAa from a given LDTTR Ta = (Qa,Σ,∆, q
0
a, δa):

Step 1.1 Let A be the set of all the TAs occurring as ranges (look-ahead)

of variables in the rules of Ta. Let Aρ,i denote the TA of ranges of variable

xi in the rule ρ. For each Aρ,i ∈ A, construct a bottom-up deterministic [5]

and complete TA A′ρ,i equivalent to Aρ,i. Let A′ρ,i = (Q′ρ,i,Σ, Q
′
0,ρ,i, δρ,i), and

let A′ = {A′ρ,i | Aρ,i ∈ A}.

Step 1.2 Construct a product TA Arl = (Qrl,Σ, Qrl
0 , δ

rl) of all the TAs

A′ρ,i. For q̄ ∈ Qrl, let πρ,i(q̄) be the state of A′ρ,i occurring in q̄.

Step 1.3 Construct Aa = ((δa∪{⊥})×Qrl,Σ, δa0×Qrl, δ′) where δa0 is the

set of rules in δa of which left hand side contains q0
a and δ′ is the smallest

set such that

� for each ρ = q(σ(x1 : A1, x2 : A2)) → C[q1(x1), q2(x2)] ∈ δa where

q1, q2, q ∈ Qa and σ ∈ Σ,

(ρ, q̄)→ σ((q̃1, q̄1), (q̃2, q̄2)) ∈ δ′

where q̄ → σ(q̄1, q̄2) ∈ δrl, for i ∈ {1, 2}, πρ,i(q̄i) ∈ Q′0,ρ,i, and

– if RHS(ρ) contains xi then q̃i = ρi for any ρi ∈ δa of which left

hand side contains qi, and

– if RHS(ρ) does not contain xi, then q̃i = ⊥.

� for each r = q(#)→ u ∈ δa, (ρ, q̄)→ # ∈ δ′ where q̄ → # ∈ δρl.

� for each q̄ → σ(q̄1, q̄2) ∈ δrl,
(⊥, q̄)→ σ((⊥, q̄1), (⊥, q̄2)) ∈ δ′.

� for each q̄ → # ∈ δrl, (⊥, q̄)→ # ∈ δ′.

- As = (δs ∪ {⊥} × Qrl,Σ, δs0 × Qrl, δ′) can be constructed from Ts in the

same way as Aa.
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Step 3. Let QI be the set of states of AI . Compute two subsets QDa and QDs of

QI as follows:

It is also known that LDTTR preserves regularity [7]. In the same way as Sec-

tion 3.5.3, we can show that the revised algorithm for LDTTRs works correctly.

The sizes of Aa and As are exponential in |Ta| and |Ts|, respectively, because |Arl|
is exponential in |A| and |A| is proportional to the product of |Arl|, |Q|, and |δ|.
Thus, the time complexity of the algorithm is doubly exponential.

Theorem 3.5.8. ∞-SS is decidable in 2-EXPTIME for LDTTR.

3.6. Discussion

3.6.1 Multiple Authorized Queries

We have discussed ∞-SS for a single authorized query. Generalizing the results

to the case that there are multiple authorized queries is important because using

multiple authorized queries attackers can narrow down the candidates of secret

information to less than using them independently in general. However,∞-SS for

more than one authorized queries is much complicated and might be undecidable

at worst. In fact, the approach in Section 3.5.1 does not work well. Now we

assume that LDTTs Ta1 and Ta2 are given as authorized queries, and Ts and AG

are given as an unauthorized query and a schema. Then, the following procedure

which is almost the same as Section 3.5.2 is likely to work:

Step 1. Construct Aa1, Aa2 and As from Ta1, Ta2, and Ts, respectively.

Step 2. Compute the product TA of Aa1, Aa2, As and AG.

Step 3. Compute QDa1, QDa2 and QDs , respectively.

Step 4. Compute Q′ = {qI ∈ QI | qI is recursive through a nonempty path such

that all the states in the path are in QDa1 ∩QDa2 and some state in the path

is not in QDs .}

Steps 5–6. These steps are the same as Section 3.5.2.
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Step 7. Let (Ta1, Ta2)(L(Afin)) = {(Ta1(t), Ta2(t)) | t ∈ L(Afin)} and (Ta1, Ta2)

(L(Ainf )) = {(Ta1(t), Ta2(t)) | t ∈ L(Afin)}. Then, decide whether (Ta1, Ta2)

(L(Afin)) ⊆ (Ta1, Ta2)(L(Ainf )).

Unfortunately, the above procedure does not work in Step 7 because we do not

know whether (Ta1, Ta2)(L(Afin)) ⊆ (Ta1, Ta2)(L(Ainf )) is decidable. At least,

(Ta1, Ta2)(L(Ainf )) cannot be captured by any regular tree language in general.

Similarly, even for a single authorized query, when the authorized query Ta

is given by a non-linear top-down tree transducer, which allows to copy subtrees

twice or more, Ta(L) is not guaranteed to be regular for a regular tree language

L. Thus, our algorithm cannot be extended directly to such cases.

3.6.2 k-Secrecy Preservation through Updates

We would like to extend k-SS for deciding the k-secrecy preservation through

updates. For some schema, k-secrecy is too strong to satisfy. On the other

hand, a database instance is frequently updated in the real world. Consider the

property that for any instance t which is k-secret, every instance obtained from

t through updates is also k-secret. We call this property k-secrecy preserving

property through updates, abbreviated as k-SP. Formally, given an XML schema

AG, an authorized query Ta, an unauthorized query Ts, and update operations U ,

we say that U preserves k-secrecy with respect to (AG, Ta, Ts) if U(t) is k-secret

whenever t ∈ L(AG) is k-secret with respect to (AG, Ta, Ts). If a given schema,

queries and update operations satisfy k-SP, then it suffices to guarantee that

the initial instance is k-secret in order to keep every instance through updates

k-secret.

We can show that a variant of ∞-SP is decidable by using the decidability

result of∞-SS. Consider a regular subset Lsub of L(AG) such that every instance

in Lsub is ∞-secret. Here, for update operations, we adopt UFOreg [22], which

is a restricted model for XML update primitives of the W3C XQuery Update

Facility. The variant of∞-SP problem is to decide whether all possible instances

obtained by updating instances in Lsub by applying any finite number of update

operations are k-secret or not. Since it is known that UFOreg has the forward

regularity preserving property, the set post∗(Lsub) of the possible instances after
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updates is also regular. Thus, to decide the variant of ∞-SP, we just decide

whether (post∗(Lsub) ∩ L(AG), Ta, Ts) is k-secret or not.

3.7. Conclusion

In this chapter, we have discussed the problem of deciding whether every database

instance conforming to a given XML schema is safe against inference attacks for

given authorized and unauthorized queries in the sense of k-secrecy (k-SS).

We have shown that k-SS is undecidable for any natural number k > 1 by

reduction from PCP even when a query is given by a deterministic rational trans-

ducer on words (DRTW). For a positive result, we have shown that ∞-SS is

EXPTIME-complete for LDTT and in 2-EXPTIME for LDTTR. The proposed

method can be applied to linear deterministic bottom-up tree transducer and a

similar result has been obtained in [17].

37



Chapter 4

Query-Based `-Diversity on

Relational Databases

This chapter introduces a new privacy notion against inference attacks called

query-based `-diversity by extending `-diversity [15] in relational databases with

access control for queries. The basic notions of relational database is provided.

Then we end with the experimental results conducted on two verification tools

implemented by SQL and #SAT solver.

4.1. Introduction

As described in Chapter 2, there are well-known related notions such as k-

anonymity and `-diversity. Intuitively, a database is k-anonymous if for every

individual x, there are at least k different records (or tuples in the relational

database setting) which cannot be distinguished from the real record for x. A

database is `-diverse if for every individual x, there are at least ` different values of

the sensitive information contained in the records which cannot be distinguished

from the real record for x. Also, various methods are reported for transforming

a given database into a database satisfying k-anonymity or `-diversity. However,

these notions do not take the effect of access control for queries into consideration.

The goal of this study is to introduce a notion of the security against inference

attack by extending `-diversity in relational databases with access control for

queries. More specifically, we propose a new privacy notion called query-based `-
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diversity. A database instance T is (query-based) `-diverse with respect to given

authorized queries if an attacker cannot narrow down the number of possible

values of the sensitive information for any individual to less than ` by inference

based on the result of the authorized queries on the instance T and the queries

themselves. We provide two approaches to deciding the query-based `-diversity.

In the first approach, a decision algorithm is given by using relational operations,

which can be directly implemented by a relational database management system,

e.g., SQL. The second approach transforms a given input to a logical formula

and decides the problem by model counting using a #SAT solver. We discuss

the effectiveness and scalability of the two approaches based on the experimental

results.

4.2. Models

In this section, we introduce a simple relational database model , which will be

used in the rest of this chapter. A relational database instance (or simply a

database) can be seen as a table, of which columns are attributes. There are two

types of attributes, namely sensitive and nonsensitive attributes. The values of

sensitive attributes are considered as secret, that is, the data owner keeps them

confidentially and restrictively and protects them from unauthorized accesses.

Definition 4.2.1. A relational database schema (or simply a schema) is a finite

set of attributes. Let R = {A1, . . . , An} be a schema. We assume that for each

attribute Ai (1 ≤ i ≤ n), a finite set of values, denoted by dom(Ai) is associated.

A tuple (or a record) over R is t = (d1, . . . , dn) where di ∈ dom(Ai) for each

1 ≤ i ≤ n. Let t[Ai] = di, which is called the value of attribute Ai in t. That is,

t = (t[A1], . . . , t[An]). A relational database instance (or simply an instance) of

R is a finite set of tuples over R. An instance is sometimes called a table. Let

I[R] denote the set of all instances of R.

Let R be a schema. We assume that R is divided into two disjoint subsets,

namely, Se and NSe, which are the set of sensitive attributes and the set of

nonsensitive attributes, respectively. We furthermore assume that a subset Qi ⊆
NSe of nonsensitive attributes is given as a quasi-identifier of R. Note that
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the domain of every attribute is finite. We intend that the values of the quasi-

identifier can be potentially used to identify the values of the sensitive attributes

by linking the attribute values of the quasi-identifier with external data sets.

We define projection, selection and join in the usual way. Let R be a schema.

For a subset of attributes α = {Aj1 , . . . , Ajm} ⊆ R and a tuple t over R, let

πα(t) denote the tuple (t[Aj1 ], . . . , t[Ajm ]), which is called the projection of t on

α. Also, for an instance T ∈ I[R], let πα(T ) = {πα(t) | t ∈ T}. Let T1 ∈ I(R1)

and T2 ∈ I(R2). For a filtering condition F , and an instance T , let σF (T ) denote

the set of tuples in T that satisfy F . The natural join of T1 and T2 is the instance

obtained by “linking” every possible pair of tuples in T1 and T2:

T1 ./ T2 = {t over R1 ∪R2 | for some u ∈ T1,

w ∈ T2, t[R1] = u and t[R2] = w}. (4.1)

Since the natural join operator is associative and commutative, we sometimes

view the natural join as a polyadic operator and write T1 ./ .... ./ Tm.

4.3. Proposed Framework

In order to provide the definitions, we need to introduce the candidate set of

instances of which results of queries are the same as those of the real instance.

For a given instance T and queries q1, ..., qm, let cand(q1, ..., qm, T ) be the set

consisting of all instances that give the same result as T with respect to all

queries q1, ..., qm:

cand(q1, ..., qm, T ) = {T ′ ∈ I(R) | ∀i(1 ≤ i ≤ m) ·
qi(T ) = qi(T

′)}. (4.2)

Each T ′ ∈ cand(q1, ..., qm, T ) is called a candidate instance.

Let T be a database instance over schema R. T is query-based `-diverse if

for each maximal subset of a candidate instance of which tuples have the same

quasi-identifier, there are ` or more different values of the sensitive attributes.

Suppose that the following information is available to public: a database

schema R, authorized queries q1, ..., qm, quasi-identifier Qi, sensitive attributes
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Se and a threshold ` (a positive integer). Let T be an instance of R. An at-

tacker infers sensitive information by taking the natural join of the results of the

authorized queries q1, ..., qm on the instance T to obtain the candidate set of sen-

sitive information. We now show three options for the definition of query-based

`-diversity as follows.

Definition 4.3.1. An instance T ∈ I(R) is (query-based) `-diverse (with respect

to R, Qi, Se, q1, ..., qm)

(Option 1) if for every t ∈ πQi(T ),

|{πSe(t′) | ∃T ′ ∈ cand(q1, ..., qm, T ) ·
(πQi(t

′) = t ∧ t′ ∈ T ′)}| ≥ l, (4.3)

(Option 2) if for every t ∈ πQi(T ), there is an instance T ′ ∈ cand(q1, ..., qm, T )

such that

|{πSe(t′) | (πQi(t′) = t ∧ t′ ∈ T ′)}| ≥ l, (4.4)

(Option 3) if there is T ′ ∈ cand(q1, ..., qm, T ) such that for every t ∈ πQi(T ),

|{πSe(t′) | (πQi(t′) = t ∧ t′ ∈ T ′)}| ≥ l. (4.5)

By definition, (4.5) implies (4.4), and (4.4) implies (4.3).

A conjunctive query consists of projection, selection and join. In our proposed

framework, we assume self-join free conjunctive queries.

Definition 4.3.2. A query q on R is monotonic if for any T1, T2 ∈ I(R), T1 ⊆ T2

implies q(T1) ⊆ q(T2).

Lemma 4.3.3. Every conjunctive query is monotonic.

If we restrict the class of queries to self-join free conjunctive queries, all the

three definitions of `-diversity become equivalent as stated in the next theorem.

Theorem 4.3.4. If we assume self-join free conjunctive queries, then the three

options in definitions 4.3.1 become equivalent.
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Proof. By the following properties 1 and 2.

Property 1. For any instances T1, T2 and a self-join free conjunctive query q,

q(T1 ∪ T2) = q(T1) ∪ q(T2).

Proof. Let T1, T2 be instances and q be a self-join free conjunctive query. By

Lemma 4.3.3, q is monotonic and hence q(T1 ∪ T2) ⊇ q(T1) ∪ q(T2) holds. Since

q does not contain self-join, q(T1 ∪ T2) ⊆ q(T1) ∪ q(T2) also holds.

Property 2. Let T be an instance and q1, . . . , qm be self-join free conjunctive

queries. The largest candidate set in cand(q1, ..., qm, T ) (with respect to set in-

clusion) is the union of all instances in cand(q1, ..., qm, T ).

Proof. Let Tc =
⋃
T ′∈cand(q1,...,qm,T ) T

′. By Property 1,

qi(Tc) =
⋃

T ′∈cand(q1,...,qm,T )

qi(T
′)

=
⋃

T ′∈cand(q1,...,qm,T )

qi(T )

= qi(T ) (1 ≤ i ≤ m).

Hence, Tc ∈ cand(q1, ..., qm, T ). Apparently, Tc is the largest set in cand(q1, ..., qm, T ).

We define the query-based `-diversity problem as follows:

Input : A schema R, an instance T ∈ I(R), authorized queries q1, ..., qm, quasi-

identifier Qi ⊆ R, sensitive attributes Se ⊆ R, and a threshold ` ≥ 1.

Output : T is query-based `-diverse or not with respect to R, Qi, Se, q1, ..., qm.

4.4. Verification by Relational Algebra

In this section, we describe our verification algorithm that solves the query-based

`-diversity problem. For simplicity, we only focus on projection queries. The

algorithm can be extended to deal with join without self-join. However, selection
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cannot be allowed. Also, we assume that the set of sensitive attributes is not

empty.

We assume that an attacker knows the domain of each attribute in R, specially

the domains of the sensitive attributes, so that he can infer a candidate instance

by adding values of the sensitive attributes chosen from the domain even if (some

of) the sensitive attributes are missing in the result of queries q1, ..., qm.

Our algorithm consists of four steps as follows:

1. Obtain the candidate set of tuples T ′ by taking the natural join of all results

q1(T ), ..., qm(T ) as follows.

T ′ = q1(T ) ./ ... ./ qm(T ).

2. Let Qi′ (⊆ Qi) be the set of quasi-identifier that exist in T ′. Compute the

subset Tc of T ′ consisting of tuples whose quasi-identifier value belongs to

the original instance T .

Tc = T ′ ./ πQi′(T ).

3. Divide Tc into subsets (equivalence classes) g1, . . . , gh such that

(a) πQi′(t) = πQi′(t
′) for any t, t′ ∈ gi (1 ≤ i ≤ h) and

(b) πQi′(t) 6= πQi′(t
′) for any t ∈ gi (1 ≤ i ≤ h) and t′ ∈ gj (1 ≤ j ≤ h)

with i 6= j.

4. Let mis Se be the set of sensitive attributes that does not exist in T ′. With

mis Se and the threshold `, decide whether T is `-diverse by examining the

following necessary and sufficient condition for `-diversity:

∀gi (1 ≤ i ≤ h),

|gi| ×
∏

a∈mis Se

| dom(a) | ≥ `. (4.6)

In the last step, the number of different sensitive values in each equivalence

class gi (1 ≤ i ≤ h) is computed by using the domains of the missing sensitive

attributes mis Se. If for every equivalence class gi (1 ≤ i ≤ h), the left-hand side
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of (4.6) is greater than or equal to the threshold `, the algorithm answers that the

given input is `-diverse. If there is at least one equivalence class gi such that the

left-hand side of (4.6) is less than `, the algorithm answers that the given input is

not `-diverse. For a given database instance with n tuples and authorized queries

q1, ..., qm, this decision algorithm takes O(nm) time.

4.5. Verification by Model Counting

In this section, we provide another method for deciding the query-based `-diversity.

The method transforms a given input of the problem to a logical formula pre-

sented in CNF and decides the problem by model counting using a #SAT solver

to count the different values of sensitive attributes in the equivalence classes.

This counting procedure terminates when it detects that the number of different

values of sensitive attributes of an equivalence class is less than `. The advantage

of this method is that it can handle self-join free conjunctive queries, consisting

of projection, selection and join without self-join. Henceforth, we assume queries

in the class.

Before we explain our method, we give some definitions. For a formula Ψ,

let #models(Ψ) denote the number of different models (assignments to variables

that make Ψ true). If a formula Ψ contains only variables in Σ, we call Ψ a Σ-

formula. For a Σ-formula Ψ and ∆ ⊆ Σ, let Ψ|∆ denote the strongest ∆-formula

implied by Ψ when considered as a Σ-formula where A is stronger than B if and

only if A⇒ B holds. We say that Ψ|∆ is the projection of Ψ onto ∆.

Assume that a schema R where n = |R|, an instance T ∈ I(R), queries

q1, . . . , qm on R, quasi-identifies Qi ⊆ R, sensitive attributes Se ⊆ R, and a

threshold ` are given. For simplicity, suppose that Qi = {A1, . . . , Ak} ⊆ R, and

Se = {Ak+1, . . . , Am} ⊆ R where 1 ≤ k < m < n. The summary of the method

is as follows.

1. Construct a logical formula Φ(x1, . . . , xn) such that

Φ(c1, . . . , cn) is satisfiable

if and only if (c1, . . . , cn) ∈ Tc (∗)

Note that φ(x1, . . . , xn) has free variables other than x1, . . . , xn in general.

44



2. Decide if for all tuple (c1, . . . , ck) ∈ πQi(T ),

#models(Φp(xk+1, . . . , xn)|Xs) ≥ l.

where Xs = {xk+1, . . . , xm} and

Φp(xk+1, . . . , xn) = Φ(c1, . . . , ck, xk+1, . . . , xn).

Constructing Constraint

Let n = |R| and ni = |Ri| where Ri is the output schema of qi (1 ≤ i ≤ m). To

construct a formula Φ(x1, . . . , xn) satisfying (∗), we first construct subformulas

φqi and Oqi for 1 ≤ i ≤ m.

(1-i) For 1 ≤ i ≤ m, φqi represents the input-output relation of the query qi. The

formula φqi contains free variables x1, . . . , xn, y1, . . . , yni
and satisfies:

for any t = (c1, . . . , cn) and t′i = (d1, . . . , dni
),

φqi(c1, . . . , cn, d1, . . . , dni
) is satisfiable if and only if qi({t}) ⊆ {t′}.

(Construction)

If q = T then

φq(x1, . . . , xn, y1, . . . , yn) =
n∧
i=1

(xi = yi).

projection: If q = πα(q′) where α = {Aj1 , . . . , Ajn′},

φq(x1, . . . , xnI
, z1, . . . , zn′)

= φq′(x1, . . . , xnI
, y1, . . . , ynO

) ∧
n′∧
i=1

(yji = zi).

selection: If q = σF (q′),

φq(x1, . . . , xnI
, z1, . . . , znO

)

= φq′(x1, . . . , xnI
, y1, . . . , ynO

)

∧

(
PF (y1, . . . , ynO

)⇒
nO∧
i=1

(yi = zi)

)
.

where PF (y1, . . . , ynO
) is a formula representing the filtering condition F of σF .
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cross product: If q = q′ ∗ q′′,

φq(x1, . . . , xn′
I
, x′1, . . . , x

′
n′′
I
, z1, . . . , zn′

O+n′′
O

)

= φq′(x1, . . . , xn′
I
, y1, . . . , yn′

O
)

∧ φq′′(x′1, . . . , x′n′
I
, y′1, . . . , y

′
n′′
O

)

∧
n′
O∧

i=1

(yi = zi) ∧
n′′
O∧

i=1

(y′i = zn′
O+i).

(1-ii) Oqi is defined as

Oqi(y1, . . . , yni
)

=
∨

(d1,...,dni )∈qi(T )

((y1 = d1) ∧ · · · ∧ (yni
= dni

)).

(1-iii) Finally, Φ is defined as

Φ(x1, . . . , xn)

=
m∧
i=1

(φqi(x1, . . . , xn, yi,1, . . . , yi,ni
) ∧Oqi(yi,1, . . . , yi,ni

)).

Remember that in the algorithm of the previous section, we introduce the

subsets g1, . . . , gh, each of which shares same values of the quasi-identifier. For

gj (1 ≤ j ≤ h), let (cj1, . . . , c
j
k) be the values of the quasi-identifier shared

by tuples in gj. Let Φj
p(xk+1, . . . , xn) = Φ(cj1, . . . , c

j
k, xk+1, . . . , xn). By (∗),

Φj
p(ck+1, . . . , cn) is satisfiable if and only if (cj1, . . . , c

j
k, ck+1, . . . , cn) ∈ gj. Further-

more, Φj
p(xk+1, . . . , xn)|Xs is the strongestXs-formula implied by Φj

p(xk+1, . . . , xn).

Hence, the number of assignments to variables inXs that make Φj
p(xk+1, . . . , xn)|Xs

true coincides with the number of different values of Se appearing in tuples that

belong to gj. Hence, we obtain the following lemma.

Lemma 4.5.1. Let R be a schema, Qi, Se ⊆ R be the quasi-quantifier and

sensitive attributes, respectively, q1, . . . , qm be self-join free conjunctive queries

on R and T ∈ I(R) be an instance. Let g1, . . . , gh be the subsets of Tc, each of

which shares same values for the quasi-identifier. For each j (1 ≤ j ≤ h), the

number of different values of sensitive attributes in gj is

#models(Φj
p(xk+1, . . . , xn)|Xs).
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Counting Candidates

To count the different values of sensitive attributes for each gj (1 ≤ j ≤ h), we

transform Φj
p(xk+1, . . . , xn) to an equivalent propositional formula Φj

cnf in con-

junctive normal form (CNF) by using Sugar [20]. Next, for each t′ = (c1, . . . , ck) ∈
πQi(T ), we construct a CNF formula ψt′ that represents x1 = c1 ∧ · · · ∧ xk =

ck, and then count #models(Φj
cnf ∧ ψt′)|P (Xs), where P (Xs) is the set of the

propositional variables in Φj
cnf corresponding to Xs in Φj

p(xk+1, . . . , xn). We use

sharpCDCL [13], which is a #SAT solver (an automatic tool for counting the

models of a given propositional formula). Among other #SAT solvers that can

count models, the advantage of sharpCDCL is that it can automatically count

#models(Ψ|∆) only by giving a formula Ψ and a subset ∆ of propositional vari-

ables. If some t′ ∈ πQi(T ) such that #models(Φj
cnf ∧ ψt′)|P (Xs) < ` is found, we

say that T is not `-diverse. Otherwise, T is `-diverse. For a given propositional

formula Φj
cnf over n variables, the model counting algorithm counts the distinct

truth assignments to variables that make Φj
cnf true, and hence this counting

problem is solvable in #P.

4.6. Experiments

The purpose of the experiment was to investigate the scalability and effectiveness

of the algorithms for deciding `-diversity problem.

4.6.1 Experimental Result of Relational Algebra

Setup

Experiment were performed on a 3.33 GHz Intel(R) Core(TM) i7 CPU with

6GB of RAM. The operating system was Microsoft Windows 8.1 Enterprise, and

implementation was built and run in MySQL Workbench, version 6.1. We used

available dataset, Employees Sample Database [23], Copyright (C) 2007, 2008,

MySQL AB, version 1.0.6. The database contains about 300,000 tuples with 2.8

million salary entries. In our experiment, the schema consists of ten attributes,

where five attributes {Gender, DeptName, BirthDate, HireDate, FromDa-

te} were designated as the quasi-identifier and the sensitive attribute is {Salary}.
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Datasets and Queries

The proposed algorithm was implemented in MySQL and was performed on three

instances (datasets) with n = 37, 500, 75, 000, 150, 000, 300, 000 tuples. Also, we

prepared three queries, each of which is the projection onto the following at-

tributes:

q1 : {EmpNo, LastName,Gender}.
q2 : {EmpNo, Salary,HireDate}.
q3 : {DeptName}.

In the experiment, we used three sets of queries, namely, QA = {q1, q2}, QB =

{q3}, and QC = {q1, q2, q3}. For example, for QA, the verification algorithm took

the natural join of the results of q1 and q2 on each of the datasets in Step 1. In

Step 3, the algorithm constructed the table from the candidate set Tc obtained in

Step 2 by grouping tuples that have same values of the quasi-identifier. Lastly,

in Step 4, the algorithm tested `-diversity (` = 2 in the experiment).

Table 4.1. Total time of verifying 2-diversity.

Dataset Cases Total time

q1, q2 7sec

37, 500 q3 4sec

q1, q2, q3 11sec

q1, q2 19sec

75, 000 q3 8sec

q1, q2, q3 31sec

q1, q2 1min 7sec

150, 000 q3 14sec

q1, q2, q3 1min 47sec

q1, q2 4min 8sec

300, 000 q3 26sec

q1, q2, q3 8min 48sec

Table 4.1 shows the total running time of our algorithm. For example, for

QA and the dataset n = 37, 500, the total running time is 7sec. Also the
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running time of each set of queries, QA,QB and QC on the datasets of size

n = 37, 500, 75, 000, 150, 000 and 300, 000. We can observe that the decision algo-

rithm is efficient, in general, and also the computation time depends on the size

of the datasets.

4.6.2 Experimental Result of Model Counting

Setup

Experiment were performed on a 3.10 GHz Intel(R) Core(TM) i5 CPU with 8GB

of RAM. The operating system was Ubantu 14.04. We performed the experiment

on a dataset, having 50,000 tuples.

Datasets and Queries

In the experiment, we used two instances T1 and T2, having ten and eleven at-

tributes, respectively. Both of T1 and T2 have 5, 000 tuples. Actually, T1 was

obtained from T2 by projecting out one of the eleven attributes. We conducted

the experiment on the following two settings:

D1: a query σstate=Iwate(T1),

Qi = {ID, state} and Se = {Name}.
D2: two queries ΠBirthY ear,BirthMonth(T2),

ΠBirthY ear,BirthMonth(σCarrier=SoftBank(T2)),

Qi = {ID,BirthMonth, Carrier}
and Se = {BirthY ear}.

The experimental results for these settings are shown in Table 4.2 where

clauses and variables are those in the transformed CNF formula, projected vari-

ables are the variables corresponding to sensitive attributes, min count is the min-

imum number of different values of sensitive attributes among g1, . . . , gh. That is,

D1 is `-diverse if and only if ` ≤ 50 and D2 is `-diverse if and only if ` ≤ 42. Next,

we increased the number of tuples in T2 to 10, 000, 30, 000 and 50, 000 and exam-

ined the scalability of the proposed method by using the setting D2. The result

is shown in Table 4.3. In sharpCDCL, an upperbound U of the model counting

can be specified. That is, when sharpCDCL detects that the current number of

models reaches U , sharpCDCL terminates. The computation times in Table 4.3
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Table 4.2. Performance of model counting method.

Projected

Clauses Variables variables Min count Time

D1 34, 271 14, 916 4, 961 50 6min 15sec

D2 22, 941 11, 121 96 42 2min 1sec

are those when this upperbound is specified as U = 20. The transformation to

Table 4.3. Scalability of model counting method.

Projected

Tuples Clauses Variables variables Time

5, 000 22, 941 11, 121 96 1min 58sec

10, 000 42, 334 20, 877 96 10min 2sec

30, 000 117, 557 58, 541 106 2hrs 28min 30sec

50, 000 187, 820 93, 633 106 8hrs 56min 8sec

a CNF formula takes less than one second, and model counting dominates the

running time.

4.6.3 Additional Result

We compare the results of two approaches by observing the total running time

of the smallest dataset and queries in Table 4.5. Additionally, the total running

time of the first approach on datasets is shown in Table 4.4.

Setup

The experiment were run on a different environment, as mentioned in Section

4.6.2 and 4.6.1, independently.

Datasets and Queries

The experiment performed on the same datasets as in Section4.6.1 and queries sets

were given as follows, where QA = {q4}, QB = {q5, q6}, and QC = {q6, q7, q8}.
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q4 : {HireDate, LastName,Gender, Salary}.
q5 : {HireDate, LastName,Gender}.
q6 : {HireDate, Salary}.
q7 : {HireDate, LastName}.
q8 : {LastName,Gender}.

Table 4.4. Total running time of relational algebra.

Dataset Cases Total time

q4 7sec

37, 500 q5, q6 19sec

q6, q7, q8 32sec

q4 10sec

75, 000 q5, q6 50sec

q6, q7, q8 1min 33sec

q4 1min 16sec

150, 000 q5, q6 2min 54sec

q6, q7, q8 6min

q4 4min 28sec

300, 000 q5, q6 12min 47sec

q6, q7, q8 22min 05sec

Table 4.5. Computation time of two approaches on a dataset.

Dataset Cases Relational algebra Model counting

q4 7sec 3min 32sec

37, 500 q5, q6 19sec 1min 36sec

q6, q7, q8 32sec 38sec
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Table 4.5 confirms that verification method for security based on relational

algebra using SQL is faster than model counting using #SAT solver.

4.7. Conclusion

We have introduced query-based `-diversity as a privacy notion for a realistic

database system that assumes access control for queries. This new notion inher-

its from `-diversity of [15] the quantitative notion for the diversity of sensitive

attributes. Also, the notion utilizes k-secrecy of [11] by taking attacker’s inference

on the authorized information into consideration.

We proposed two approaches to deciding whether a given database instance

satisfies query-based `-diversity with respect to given queries. The first approach

is based on relational algebra computation that counts the candidate values of

the sensitive attributes. The second approach transforms a given input to a

logical formula and then decide the problem by counting models of a formula by

a #SAT solver. The first approach can directly be implemented by an existing

relational database system such as SQL, and the experimental results show that

this approach is fairly efficient. The weakness is that it cannot deal with selection

queries. The second approach, on the other hand, can deal with selection queries.

However, the model counting in a #SAT solver is generally time consuming and

we have not yet customized the solver to our problem and hence, the performance

is not good compared with the first approach.
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Chapter 5

Conclusion

Security against inference attacks has been the main motivation in this disserta-

tion. When releasing data in a database system, it is necessary to prevent the

sensitive information of an individual from being disclosed either directly or indi-

rectly. Access control can perfectly control the direct disclosure of the data, but

it cannot avoid the indirect disclosure in general. An inference attack is a typi-

cal way of indirectly leaking the sensitive information. For defining the security

against inference attacks, we need a quantitative notion for security and privacy

because the perfect security or privacy cannot be achieved when indirect leak-

age or inference exists. Quantitative notions such as k-anonymity and `-diversity

were proposed and widely used. However, these notions do not take access control

into consideration. The motivation of this dissertation is to propose quantitative

notions for security and privacy for a database system with access control.

More concretely, this dissertation has presented two studies on verifying the

security against inference attacks on both XML and relational databases.

In Chapter 2, we reviewed quantitative notions for security and privacy,

namely, k-anonymity, `-diversity and k-secrecy. The first two are well-known

notions mainly for relational databases, which are defined based on the number

of tuples or the distribution of the sensitive information included in the tuples in-

distinguishable from one another. Although these notions are simple and useful,

they cannot be directly used in databases having structural data or databases

with access control. k-secrecy assumes access control in terms of authorized and

unauthorized queries and is defined based on the number of candidates of the
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results of the unauthorized query (the sensitive information) obtained by an in-

ference attack. k-secrecy is a security notion that can be applied not only to

relational databases, but also more general databases such as XML databases.

The remaining chapters utilized and extended these notions to investigate verifi-

cation methods for those extended notions as follows.

Chapter 3 discussed schema-level k-secrecy for XML databases. Based on

instance-level k-secrecy introduced by Hashimoto et al., we first defined schema-

level k-secrecy. Schema-level k-secrecy is important because once we can guaran-

tee that a schema is k-secret, we do not have to check the k-secrecy of an instance

conforming to the schema when an update of a database instance takes place. We

showed that k-secrecy is undecidable for any finite k when queries are given by

linear deterministic top-down tree transducers (LDTTs). Also we showed that

∞-secrecy is decidable in the same setting. A similar positive result of a stronger

query class, linear top-down tree transducers with regular look-ahead (LDTTR)

was obtained. We also analyzed the time complexity of the decision problem, and

showed that the problem is EXPTIME-complete.

Chapter 4 discussed query-based `-diversity for relational databases. As men-

tioned above, k-anonymity and `-diversity do not take access control into con-

sideration. This chapter first introduced a new notion, query-based `-diversity

by incorporating the way of quantifying the security in defining k-secrecy into

`-diversity. A database instance is (query-based) `-diverse with respect to given

authorized queries if there are at least ` different values of sensitive informa-

tion for an individual, which are obtained by inference based on the available

query results. It is obvious that query-based `-diversity is decidable for relational

databases. In this dissertation, we proposed two approaches to deciding query-

based `-diversity, namely, an approach that directly uses relational algebra and

an approach based on model counting of a propositional formula. The second

approach can deal with self-join free positive conjunctive queries while the first

approach cannot deal with queries including selection operations. The scalability

and effectiveness of the two approaches were discussed based on the experimental

results conducted on the implemented tools. The first approach was implemented

by SQL and the second approach was implemented by #SAT solver. For the scal-

ability in efficiency, the experimental results emphasized that the verification by
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relational algebra was much faster than the other approach. As shown in the ad-

ditional experimental results, the model counting approach for the dataset with

37, 500 tuples had a total running time nearly identical to the relational algebra

approach on the dataset with 75, 000 tuples.

Chapter 3 assumed that the number of authorized queries is one for simplic-

ity. It is left as a future study to extend our algorithm to work with multiple

authorized queries and investigate the computational complexity of the extended

problem. We also want to extend the notion of schema k-secrecy to k-secrecy

preservation (k-SP) through updates. Investigating the decidability of k-SP in

an appropriate model of update operations is interesting future work. Also, ap-

plying the approaches proposed in Chapter 4 to other kind of databases such

as object-oriented or XML databases is challenging future work. Furthermore,

the model counting approach was slower than relational algebra approach. In

particular, the model counting approach took very much time when query results

were large because the size of the query results directly affects the size of the

translated CNF formula. To overcome this problem, we want to improve the

translation algorithm so that a given input can be translated into a smaller CNF

formula.
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