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Supporting Effective Knowledge Sharing

through Extracting Search Activities in a

Community of Interest∗

Papon Yongpisanpop

Abstract

A Community of Interest (CoI) is a group of people who share a common

interest or passion. The purpose of the CoI is to provide a place where people

who share a common interest can go and exchange information, ask questions, and

express their opinions about the topic. With todays technology people can access

information online by using web search engine, which allow people to discover and

share knowledge within a CoI. High turnover in CoI is one of the important causes

that make it hard to capture and share knowledge. The question is whether we

can create a system that will capture community-wide knowledge in a real time

and make it widely available to all its members or not. This dissertation focuses

on the issue of reducing knowledge-sharing efforts while people search and reuse

users past search results to improve future search results to be more relevant

for a community of interest. It proposes Search Activity Knowledge Extraction

(SAKE) model, which extract the knowledge from search behavior and share it

through the CoI. A framework called Adaptive Search Framework (ASF) based

on the SAKE model can collect ten most used keywords and evaluate Top-5

and Top-10 search results using standard Topic-Sensitive PageRank (OSim and

KSim) in the CoI environment. A user experience study to evaluate the user

satisfaction after two weeks of using the proposed search engine revealed that

the search results were significantly improved compared with conventional search

engines (Google and Bing). This study can reduce the effort of search results

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1261028, February 5, 2015.
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sharing in a CoI and get everyone to focus on what they are searching. ASF

returns more relevant results to the searchers.
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knowledge sharing, collaborative search, search engine
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Chapter 1

Introduction

We are often involved with more than one organization in these days [2], for ex-

ample, education, employment, family, or recreation community. With today’s

technology, people are able to access large amount of information from electronic

resources such as websites, social networks, and webboards [3, 4]. Since the in-

formation in WWW is growing, it has become increasingly difficult for users to

find information related to the topics in the context of their community. For

example a user in the software company is new to a one of the java component

called “JavaBeans”. He decide to google for the information using “java bean” as

a keyword. The results that he/she expects is the context of java programming

language. Unfortunately the results are mixed up with java programming and

java coffee. People hit the search engines every day. According to the statistics [5],

there are more than five thousands billion searches per day using Google in 2013.

In many communities and organizations, employees use search engines to learn

how to accomplish tasks, solve problems and gain information. There are many

conventional search engines available, such as Google, Bing, or Yahoo. These

major search engines return search results based on relevance scores reflecting

the popularity of the results with the majority of people in the world. However,

using only conventional search engines inside a specific type of community will

not always give people the results relevant to the topics inside communities [6].

People are able to exchange information and ideas virtually [7] when perform-

ing search tasks inside a community. The results obtained can be valuable and

reusable to others in the organization, but the organization lacks proper tools to
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facilitate the ability for people to share their results. Moreover, individual search

results can extract insight and knowledge and reuse them to return more relevant

search results to other people in the organization.

In 2006 Google launched the service called “Custom Search Engine” (formerly

known as Google Custom Search1). It is a platform that allows web developers to

feature specialized information in web searches, refine and categorize queries and

create customized search engines, boxed on Google Search. This allows the user

to tailor the search engine to the interests of specific users, taking into account

the context and purpose of the search. For example, when a car salesman searches

for “lotus” on Google search, there are many results about “lotus flowers” and

“IBM lotus software”. The generic Google search does not limit the context of

“lotus” to a brand of a car. Google Custom Search, on the other hand, could

search only preselected websites about cars, providing more relevant results to the

car salesman. However, Google Custom Search does not provide a collaborative

search for users, nor are the results adapted to the interests of specific users in

community and organization. The results are still based on popularity measures

produced by the majority of people in the world.

In 2004, Digg2 launched a news aggregator service, which is a website that

allows people to discover and share contents from anywhere, with members of the

community “voting” for materials. The website provides tools for the members

of the community to discover contents, discuss topics, and connect with people

with similar interests. Digg builds lists of popular contents from across the web.

However, as with Google custom search, Digg uses the score from people’s votes

to rank the contents which mean that searcher will obtain search results based

on a majority score of people in the world.

On the other hand, Bing3, which is a web search engine developed by Mi-

crosoft, announced its newest feature called “Adaptive Search” in September

2011. As explained by Adrian Cook4, the concept of Adaptive Search is that

“Every time you search on Bing, the information provided helps Bing understand

what you are trying to do. The more you search, the more Bing can learn and

1https://www.google.jp/cse/
2http://digg.com/
3http://www.bing.com/
4http://blogs.bing.com/search/2011/09/14/adapting-search-to-you/
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use that information to adapt the experience so that you can spend less time

searching and accomplish what you set out to do.” With Bing, search results

for each individual user are personalized based on data collected during previous

uses of the search engine. This data is used to determine the individual context

of search queries and provide more personalized results. Bing still caters to indi-

vidual. It learns from the data collected from users, predicts the interest of each

user from that information, and returns search results related to the topics of

interest to that user. Similar to Google Custom Search, Bing does not provide a

collaborative web search feature for users right now, but Bing is a little ahead of

Google. It uses collaborative search behavior to rank results, which means that

Bing makes use of your click behavior while delivering search results for other

users searching on the same keyword.

Another search engine tool called “Eurekster”5 allows users to custom search

portal and harness the knowledge, passion and behavior of online communities

to improve the search experiences, while creating online assets for web publishers

and enterprisers. Eurekster launched a personalized social search in 2004 before

Google and Yahoo, which is an important next step for increasing relevancy.

Users can build and customize their search portal on any topics, and share and

distribute the social search to grow a community of interested. What makes

Google, Bing and Yahoo different from Eurekster is Eurekster twisted concept of

personalization to social, which is to provide personalized results based not on

who you are but who you know.

1.1. Motivation

Many researches created algorithms and tools to solve irrelevant search results,

but most of them only focused on personal information-seeking tasks rather than

the community. For example, Teevan et al. [8] has been proposed using groups

to improve personalised search, but they just focused on using group profiles to

improve search rather than using people-search activities.

There are also many tools such as SearchTogether [9], Coagmento [10], Col-

labSearch [11], and Results Space [12], which allow people to find, save and share

5http://www.eurekster.com/
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Figure 1.1. The problems found when user performs a search task.

documents and see the activities of others in the collaboration group.

To share search results among the members is sometime that will require

change in people’s behaviour. It means that people need to put some effort into

it. Two researches [7, 13] have been studied to encourage people to share their

knowledge in the communities. Cabrerab et al. [14] shows that sharing knowledge

among community members requires a lot of efforts. A deep understanding of

the organization culture is also a major challenge if you want to get some of

that knowledge. It is very important to have a full understanding of individual

and organizational culture. Another problem remains: who should introduce and

drive knowledge flow management. This led us to consider what if there was an

additional search engine layer that could learn from what users have searched

before and adapt itself to return the top-ranked results that are more relevant

to topics in the organization without modifying the conventional search engine

itself.

Three hypothesizes of the research problem with using search engines in the

community of interest are:

• Community does not have a proper tool to convert individual search results

to community knowledge.

• Results from conventional search engines do not match with the topics inside

the community.

• Sharing search results while collaborating requires a lot of effort.

To help address these problems, search engines could use information collected

when users perform searches to choose and return results related to topics within

6



a user’s organization, which should allow users to spend less time searching. To

do this, I decided to develop a framework implemented on top of normal search

engines.

1.2. Contributions

This research has revealed what is missing in collaborative search and how to

improve the quality of the search results in order to make the return results more

relevant to Col. One of the most important problem is that people. We are filling

the gap of what is missing in collaborative search by using knowledge management

and information retrieval research areas together. We have indicated the gap of

knowledge and the limitation of exiting collaboration search tools. The Search

Activity Knowledge Extraction (SAKE) model is proposed. The SAKE model

is derived from Knowledge Asset Management model (KAM), which is widely

used to deal with the knowledge asset inside the organization. The concept of

SAKE model is “People Process and Technology make Knowledge Flow”. Web

2.0 and Information retrieval technique are used as a technology to fulfill the

goal of SAKE model. To prove the effectiveness of the proposed model, The

tool which applied SAKE model called Adaptive Search Framework (ASF) is

developed. The ASF with SAKE model has been proved that it can help people

in community to do the collaborative search and make search results sharing

effortless. Applying knowledge sharing technique can help the community sustain

the knowledge assets, which can be reuse in order to make the advantage for both

community and users.

1.3. Thesis Layout

This dissertation is structured into four parts. The first part is knowledge man-

agement and sharing. This part consists of two chapters. In the first chapter,

brief backgrounds of community-driven knowledge base and Knowledge sharing

through search activity is introduced. Part two has two chapters and presents

the evolution of information retreival of search engine and social ranking algo-

rithm. Chapter 4 discusses the existing search engines and tools. In chapter 5,
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the investigation of related social ranking algorithm and the proposed algorithm

called “SAKERank” are discussed and revealed. Part three is about design and

implementation of Adaptive Search Framework (ASF). Chapter 6 introduces the

architecture, user interface, data flow, and database. Chapter 7 shows the ex-

perimental design & procedure and evaluation measurements that are used to

evaluate the ASF. Chapter 8 presents the results of performance and usability of

the ASF. The performance results show the degree of overlapping search results

from Google, Bing, ASF with ideal result from the experts using OSim and the

ranking similarity by using KSim. For the usability, Participants’ experience is

observed and questioned. In the system usability scale (SUS) consists of three

parts which are information seeking, knowledge sharing & management, and tool

usage. The dissertation finally concludes with a discussion and summary of con-

tributions and an outlook into the future.
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Part I

Knowledge Management &

Sharing
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Chapter 2

Community-driven Knowledge

Base

“Knowledge can be best understood as a social phenomenon,
and efforts to work with it are better structured as some
group effort than by individuals”

As mentioned in Enterprise Knowledge Management [15] in 1998, knowledge

management entails formally managing knowledge resources in order to facilitate

access and reuse of knowledge, typically by using advanced information technol-

ogy. KM is formal in that knowledge is classified and categorized according to a

pre-specified but evolving ontology into structured and semistructured data and

knowledge bases. The overriding purpose of enterprise KM is to make knowl-

edge accessible and reusable to the organization. Knowledge resources vary for

particular industries and applications, but they generally include manuals, let-

ters, summaries of responses to clients, news, customer information, and knowl-

edge derived from work processes. A wide range of technologies are being used

to implement KM systems: e-mail; databases and data warehouses; group sup-

port systems; browsers and search engines; intranets and internets; expert and

knowledge-based systems; and intelligent agents.

As organizations store an increasing amount of information and knowledge

in data and knowledge warehouses and in data and knowledge bases, they are

attempting to manage that knowledge in more efficient ways. Historically, or-
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ganizational knowledge has been stored on paper and in people’s minds. Unfor-

tunately, paper has limited accessibility and is difficult to update. And when

people leave, they take most of their knowledge with them, so reuse is not always

feasible. Thus, firms have moved to data and knowledge warehouses and to data

and knowledge bases to improve accessibility, updatability, and archivability of

data and knowledge.

2.1. Community of Interest (CoI)

A community of interest is a group of people who share a common interest or

passion. These members exchange ideas and thoughts about the given passion,

but may know little about each other outside of this area. Participation in a com-

munity of interest can be compelling, entertaining and create a sticky community

where people return frequently and remain for extended periods.

In other words, Community of interest is a gathering of people assembled

around a topic of common interest. Its members take part in the community to

exchange information, to obtain answers to personal questions or problems, to

improve their understanding of a subject.

In this research, I have developed a web search and result sharing environment,

which will be described in Chapter 6 for community of interest based on these

characteristics:

• A group of people interested in sharing information and discussing a par-

ticular topic that interests them.

• Members are not necessarily experts or practitioners of the topic around

which the CoI has formed.

• The purpose of the CoI is to provide a place where people who share a com-

mon interest can go and exchange information, ask questions, and express

their opinions about the topic.

• Membership in a CoI is not dependent upon expertise - one only needs to

be interested in the subject.
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2.2. The Evolution of Knowledge Mangement

According to Larry Prusak’s foreword message in Mastering Organisational knowl-

edge Flow [16] many organizations. Several organisations realized that it was

actually possible to do something about knowledge in their organizations. The

“something” that could be done was often discussed among knowledge practi-

tioners. However the idea could be summarised in this way:

• Knowledge in organizations is most likely to be found in existing or emergent

document.

• The key to managing these documents are better systems - either technology

systems of cleverer taxonomies.

• Incentives can easily be developed to encourage the production and use of

these document.

• All of these activities can be measured for their effectiveness within the

organization and their costs can be justified this way.

• Knowledge was the result of individual action and thinking and the indi-

vidual is the most efficient unit of analysis for work with knowledge in the

firm.

• Knowledge management projects had a very strong technological compo-

nent.

These general idea were termed Knowledge Management (KM) by many peo-

ple, and by 1995 these ideas had taken hold and much effort and expenditures

were being burned up in putting them into practice. Ideas have consequences and

these surely did as knowledge practitioners, consultants, and technology vendors

all jumped on the KM world to implement these systems.

Unfortunately, the ideas were flawed. They were not so much wrong as mis-

guided in their approach. Since almost all new movements build on the skeletons

of earlier movements, KM looked very much like information management, and,

not surprisingly, the results produced by these new KM projects diappointing
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the knowledge advocates and especially the users and clients who were expecting

great thing from the more effective use of knowledge within the organization.

However, rather than admitting defeat and leaving the field, practitioners

rethought many of their assumptions and came up, again with the help of con-

sultants and academics, with some new working hypotheses that seemed much

closer to the reality of how knowledge actually works in organizations.

Needless to say, this was not the case for all KM projects. Many stuck with

the old models and some still do. But it can be fairly said that these retro efforts

almost all became absorbed into more traditional information technology projects

and lost their focus and user enthusiasm. They are still fading from sight.

Here are the new assumptions of KM

• Knowledge can be best understood as a social phenomenon, and efforts to

work with it are better structured as some group effort than by individuals.

• Working with knowledge needs some mixture or combination of technology,

strategy, human capital, and social capita approaches.

• It is almost impossible to effectively measure knowledge, and it is not worth

the effort to do so.

• A holistic approach is therefore called for difficult as this may be to for-

mulate and implement.

2.3. What is missing in Collaborative Search?

My previous research [17] indicated the gap of knowledge and possible limitation

of existing custom search engines (e.g., Google, Digg, Bing, and Eurekster), which

most likely to be used for collaboratively while searchers perform search tasks

together. In this section will be explained about the limitation of the tools and

missing features for community search.

Usually, there are a lot of information flowing around when people are per-

forming search tasks, but at the same time many of them are “information rich

and knowledge poor” [18]. Morris et al. [19] discussed why people don’t share and

use collaborate tools. One of the reasons is that people just don’t seem willing
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to move from a standard search tool to another tool for a collaborative search.

Tools dedicated to collaborative information-seeking have not enjoyed widespread

success to date [19,20].

However if people want to share their search results among community mem-

bers, they need to put some efforts toward that. The study by Michale et al. [21]

revealed that when people are searching in pairs and in larger groups, they are

doing it without the benefit of specialized search tools. Instead, they are using

out-of-channel-of-communication tools, such as email, texting, phone calls, and

social media communication [19,20,22].

The question is what’s missing from a collaborative search? The first feature

in the next generation of collaborative search should be focused on offering in-

dividuals the ability to define their personal constraints or preferences as they

search. The research by Fisher et al. [23] has shown that people can build on

simple representations that already created by others, so if a search tool can

recognize that, it could make more intelligent suggestions.

In order to collaborate, the second feature is the search tool should be able to

recognize what has been viewed by anyone in the group of searchers. It should

rerank based on this information, for example Querium [24] has made searchers’

explicit ratings visible, but the evaluations of this tool are done in laboratories

in which the environment and variable are fixed.

The last key feature, and the most important one, is to help searchers discover

new and unknown information. The tool should be able to compare what has

already been added to a community and deliver new results which are relevant

to the searchers’ and communities’ topics.

As far as I know, there is no simple, high-usability tools, which concern about

these key features available for community and the part that automated knowl-

edge extraction from search results has not been studied yet. So these questions

remain open.
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Chapter 3

Knowledge Sharing Through

Search Activity

“KM involves individuals making knowledge requests of ex-
perts associated with a particular subject on an ad hoc basis”

3.1. Knowledge Asset Management model (KAM)

The purpose of this research [25] is to suggest a model for knowledge asset man-

agement as a foundation for correlating human capital management to organiza-

tional performance. This model suggests moving people to the center of an asset

management model to correlate their value to an organization’s performance. A

systems engineering approach is suggested as a model where inputs develop the

knowledge asset, mechanisms inventory the asset and outputs utilize the asset

In the knowledge economy, people are an organization’s most valuable asset, yet

a methodology that correlates their value to organizational performance. The

model is lacking The goal is to propose a knowledge asset model for human cap-

ital management. Future research will be performed to substantiate the model

and develop a measurement instrument to investigate the correlation between

knowledge asset management and organizational performance.
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3.2. Search Activity Knowledge Extraction Model

(SAKE)

To extract the knowledge from search behavior and share it through the commu-

nity is one of the goal in this research. I created a model called Search Activity

Knowledge Extraction (SAKE), which is shown in Figure 3.1.

SAKE is a mixture of individual capital, technology, strategy, and social capi-

tal approaches [25], which were derived from the KAM model ,which mentioned in

the Section 3.1, SAKE model starts with the individual, which represents searcher

inside CoI, a searcher searches for the information from outside resources using

web search engine. After the searcher had obtained the results, the results and

searcher interaction are sent to extract knowledge in technology and strategy

parts. In technology and strategy part, search results are clustered to the topics

,which are related to the community of interest and reranks based on the popu-

larity inside the community. Searher’s search behavior are also considered as a

varible to to rerank the search results Once the information has been processed,

it is ready to be shared throughout the community.

I designed the process of the usage implement SAKE model as shown in

Figure 3.2. In the community, a searcher usually uses a search engine to search

information. The searcher passes the keyword to the search engine to obtain the

results. After the searcher clicks, looks at the results or maybe bookmarks them,

those search results remain as individual information. The aim of the process is

to change the nature of the individual search results into public knowledge. In

the technology part, it analyzes search results using search-result clustering to

cluster them to our pre-defined topics. Pre-defined topics are the specific topics,

which relate to the community. I have to defines the topics ahead of time in

order to make it easy to classify our search results. Then the results is ranked

using our re-ranking algorithm to enrich search results. When other searchers

inside the community perform a search, relating to the previous search and topic,

the process will be able to return a more relevant search. This gets more direct

results than conventional search engines.
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Figure 3.1. On the left is Knowledge Asset Management model (KAM). To

manage the knowledge asset four attributes, which are Social capital, Individual

capital, Strategy, and Technology are involved. On the right is Search Activity

Knowledge Extraction model (SAKE). SAKE model derived the attributes from

KAM and added actions between each attribute in order to extract the knowledge

from search behavior.
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Figure 3.2. The process of the SAKE model. The process converts individual

information to public knowledge in community.
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Chapter 4

Evolution Information Retreival

of Search Engine

“Every search engine wants to be more relevant. However,
what is relevant to you might not be relevant to someone
else.”

4.1. Web Search Engine

A web search engine is designed to search for information in World Wide Web.

The search results that come from a search engine are generally presented in a

list of results often referred to as SERPS, or “search engine results pages”. The

information may consist of web pages, images, information and other types of

files. Some search engines also mine data available in databases or open directo-

ries. Unlike web directories, which are maintained only by human editors, search

engines also maintain real-time information by running an algorithm on a web

crawler. In late 1990, Search engines were known as some of the brightest stars

in the internet investing frenzy. A lot of companies entered the market spec-

tacularly, Some of them have taken down their public search engine. Around

2000, Google’s search engine innovated PageRank and achieved better results for

many searches. This iterative algorithm ranks web pages based on the number

and PageRank of other web sites and pages that link there, on the premise that
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good or desirable pages are linked to more than others. Google also maintained

a minimalist interface to its search engine. In contrast, many of its competitors

embedded a search engine in a web portal.

Figure 4.1. High-level architecture of a standard web crawler. based on image

from “Effective Web Crawling” PhD. Thesis of Carlos Castillo [1]

A web search engine operates as follows:

• Web crawling

• Indexing

• Searching

Web search engines work by storing webpages’ information, which they re-

trieve from the HTML markup of the pages. These pages are retrieved by a web

crawler (sometimes also known as a spider) an automated web crawler which fol-

lows every link on the site. Web crawling and indexing are performed alternately

in a cycle as shown in Figure 4.1. At the beginning of a cycle, a web crawler

retrieves all the webpages contents and stores them as files in a proper format

(i.e. Stanford WebBase format). Next, each webpage is parsed into a plain text
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format and sent to an indexer to be analyzed. The web indexer then extracts each

term in the page and adds the information to an index database. For example,

the indexer extracts terms from the titles, headings, or special fields called meta

tags. The purpose of indexing is to allow information to be looked up as quickly

as possible. The cycle ends here, with the index database serving as a snapshot

of the whole webpage set for the users queries. The web crawler then starts the

operation again for the next cycle, and the index database will be updated again

at the end of the cycle. The search engine then analyzes the contents of each

page to determine how it should be indexed (for example, words can be extracted

from the titles, page content, headings, or special fields called meta tags). Data

about webpages are stored in an index database for use in later queries. A query

from a user can be a single word. The index helps finding information relating to

the query as quickly as possible [26]. When a user enters a query into a search

engine (typically by using keywords), the engine examines its index and provides

a listing of best-matching webpages according to its criteria, usually with a short

summary containing the document’s title and sometimes parts of the text. The

index is built from the information stored with the data and the method by which

the information is indexed [26].

The usefulness of a search engine depends on the relevance of the result set

it gives back. While there may be millions of webpages that include a particular

word or phrase, some pages may be more relevant, popular, or authoritative than

others. Most search engines employ methods to rank the results to provide the

“best” results first. How a search engine decides which pages are the best matches,

and what order the results should be shown in, varies widely from one engine to

another [26]. The methods also change over time as Internet usage changes and

new techniques evolve. There are two main types of search engine that have

evolved: one is a system of predefined and hierarchically ordered keywords that

humans have programmed extensively. The other is a system that generates an

“inverted index” by analyzing texts it locates. This first form relies much more

heavily on the computer itself to do the bulk of the work.

Most Web search engines are commercial ventures supported by advertising

revenue and thus some of them allow advertisers to have their listings ranked

higher in search results for a fee. Search engines that do not accept money
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for their search results make money by running search related ads alongside the

regular search engine results. The search engines make money every time someone

clicks on one of these ads.

4.2. Taxonomy vs Folksonomy

With the need for managing and organization information in a structured manner

was need of the hour in the information age. Taxonomy came in as one of the

most common way to organize and structure content. Taxonomy is the practice

and science of classification. The word is also used as a count noun: a taxonomy,

or taxonomic scheme, is a particular classification. Originally taxonomy referred

only to the classifying of organisms or a particular classification of organisms. [27]

In a wider, more general sense, it may refer to a classification of things or concepts,

as well as to the principles underlying such a classification. Taxonomy was used

by web designers to organize the content in their web sites. And with information

constantly getting appended to their site, taxonomy seemed to be a good approach

for content management. But all was not well with this approach, soon the

problems surfaced and web architects were looking for other alternatives. The

primary reasons were:

• Taxonomy worked well with classification of living organisms, as it was

about dealing with the same kind of information. However the case of

websites was different. Every web site had different content so there was no

particular classification scheme possible for the web sites and it called for

unique classification schemes for different websites.

• It is difficult for the web architects to implement and maintain taxonomy.

• With existing sites which already have huge data, it was more difficult for

the designers to implement taxonomy.

• The language or code used for taxonomy was not as user friendly as a system

like this needs to be. This led to user dissatisfaction and led to user being

averse of using taxonomy.
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Folksonomy is the evolution of taxonomy. It is a way of describing crowd-

driven categorisation of information. This practice is also known as collaborative

tagging [28], social classification, social indexing, and social tagging. A broad

folksonomy is the one in which multiple users tag particular content with a va-

riety of terms from a variety of vocabularies, thus creating a greater amount of

metadata for that content. A narrow folksonomy, on the other hand, occurs when

a few users, primarily the content creator, tag an object with a limited number

of terms. While both broad and narrow folksonomies enable the searchability of

content by adding textual description - or access points - to an object, a narrow

folksonomy does not have the same benefits as a broad folksonomy, which allows

for the tracking of emerging trends in tag usage and developing vocabularies [29].

Folksonomies became popular on the Web around 2004 as part of social software

applications such as social bookmarking and photograph annotation. Tagging,

which is one of the defining characteristics of Web 2.0 services, allows users to

collectively classify and find information. Some websites include tag clouds as

a way to visualize tags in a folksonomy. However, tag clouds visualize only the

vocabulary but not the structure of folksonomies, as do tag graphs.

Areas where Folksonomy is better with respect to Taxonomy are:

• It reduces the support and maintenance effort. This is because the folk-

sonomies are organized and maintained by the user. So the burden on the

web architects is reduced.

• Users can tag the information in a way which is easy for him to recollect

and use later. So it leads to a lot of satisfaction. That is you can say that

there is no confusion, the words used by the users are the words in the site.

4.3. Search results clustering

Annotation and clustering of search results are key parts of the solution proposed

here. Clustering of search results groups webpages from the search results into

categories. Some keywords return highly varied results. For example, the key-

word “Apache” can return a set of links to the Apache tribe, Apache helicopter,

Apache software foundation, and other types of Apache. Grouping these results
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into categories makes it easier for users to find the webpages they desire. There

are several search result clustering tools, such as Apache Carrot2, Vivisimo, and

IBM Mapuccino. In this research, Apache Carrot2, which is an open source li-

brary augmented with a set of supporting applications is used to build a search

results clustering engine simply, without any limitation on the number of uses.

Such clustering engines can organize a set of search results into topics, com-

pletely automatically and without external information such as taxonomies or

pre-classified content. Since Apache Carrot2 is a clustering engine designed for

online use, clustering search results needed only URL, title, and snippet fields.

However, this same simplicity may indicate a lack of in-depth contents, which

may not achieve outstanding accuracy in the clustering result.

Carrot2 is an Open Source Search Results Clustering Engine that I use in our

framework. It can automatically organize small collections of documents (search

results but not only) into thematic categories. Apart from two specialized doc-

ument clustering algorithms, Carrot2 offers ready-to-use components for fetching

search results from various sources including GoogleAPI, Bing API, eTools Meta

Search, Lucene, SOLR, and more. Carrot2 is implemented in Java. Other non-

Java platforms, such as PHP or Ruby, can call Carrot2 clustering through its

REST interface. Carrot2 has 3 different algorithm (Lingo, ETC, Lingo3G) pro-

vided to use. Each of them has their own unique significant. I decided to use

the default Carrot2’s algorithm which is Lingo because it cluster and give stan-

dard result sets. The other two algorithm are also great but one of them is a

commercial and the other one give a different type of result set.

4.4. Social Bookmarking

A social bookmarking service is a centralized online service, which enables users

to add, annotate, edit, and share bookmarks of web documents [30]. In a social

bookmarking system, users save links to webpages that they want to remember

and/or share. These bookmarks are usually public, and can be saved privately,

shared only with specified people or groups, shared only inside certain networks,

or another combination of public and private domains. The allowed people can

usually view these bookmarks chronologically, by category or tags, or via a search
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engine. Most social bookmark services encourage users to organize their book-

marks with informal tags instead of the traditional browser-based system of fold-

ers, although some services feature categories/folders or a combination of folders

and tags. They also enable viewing bookmarks associated with a chosen tag,

and include information about the number of users who have bookmarked them.

Some social bookmarking services also draw inferences from the relationship of

tags to create clusters of tags or bookmarks. Many social bookmarking services

provide web feeds for their lists of bookmarks, including lists organized by tags.

This allows subscribers to become aware of new bookmarks as they are saved,

shared, and tagged by other users. It also helps to promote your sites by network-

ing with other social book markers and collaborating with each other. As these

services have matured and grown more popular, they have added extra features

such as ratings and comments on bookmarks, the ability to import and export

bookmarks from browsers, emailing of bookmarks, web annotation, and groups

or other social network features.

In this section three popular social bookmarkings are picked and will be de-

scribed in details and their features in order to make the reader has a clear un-

derstand about what is social bookmarking. The social bookmarks have a very

similar idea to this research in order to solve the problem of irrelevant results

from conventional search engines and would like to optimize search results for a

specific group.

4.4.1 Del.icio.us

Del.icio.us is a social bookmarking web service for storing, sharing, and discov-

ering web bookmarks. Del.icio.us uses a non-hierarchical classification system

in which users can tag each of their bookmarks with freely chosen index terms

(generating a kind of folksonomy). Del.icio.us allowed users to group links with

similar topics together to form a “Stack”, and include title and descriptions for

the Stack page. Stacks could be worked on collaboratively with other users, and

could be followed and shared with other users. Stacks were added in September

2011 and removed in July 2012. Del.icio.us has a“hotlist” on its home page and

“recent” pages, which help to make the website a conveyor of Internet memes and

trends. Users can also explore stacks on the home page by navigating categories.
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Table 4.1. List of popular social bookmarking websites that are still active.

Delicious The site was bought by Avos Systems on April 27,

2011 though was operated by Yahoo! until July

2011.

delicious.com

StumbleUpon StumbleUpon is a discovery engine that finds and

recommends web content to its users.

stumbleupon.com

Digg Digg is a news aggregator with an editorially

driven front page

digg.com

BibSonomy BibSonomy is a system for sharing bookmarks and

lists of literature.

bibsonomy.org

CiteULike CiteULike is a web service which allows users to

save and share citations to academic papers.

citeulike.org

Diigo Diigo is a social bookmarking website which allows

signed-up users to bookmark and tag web-pages.

Additionally, it allows users to highlight any part

of a webpage and attach sticky notes to specific

highlights or to a whole page

Pearltrees Collaborative bookmark exploration and curation

tool organized and presented like a mind map.

pearltrees.com

Pinterest Pinterest is a web and mobile application company

that offers a visual discovery, collection, sharing,

and storage tool.

pinterest.com

Reddit Users submit content in the form of either a link

or a text (“self”) post. Links and content can be

voted on.

reddit.com

We Heart It We Heart It is an image-based social network for

inspiring images

weheartit.com

ZEEF A curated directory, they filters the world’s infor-

mation with human intelligence, multiple curators

can curate their own subject.

zeef.com
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Figure 4.2. The delicious user interface

To facilitate newcomers, Delicious provides an option to import bookmarks from

the web browsers to its site so that new users can quickly get started with the

site. Del.icio.us is one of the most popular social bookmarking services. Many

features have contributed to this, including the website’s simple interface, human-

readable URL scheme, a novel domain name, a simple REST-like API, and RSS

feeds for web syndication. Use of Del.icio.us is free. The source code of the site

is not available, but a user can download his or her own data through the site’s

API in an XML or JSON format, or export it to a standard Netscape bookmarks

format. All bookmarks posted to Del.icio.us are publicly viewable by default,

although users can mark specific bookmarks as private, and imported bookmarks

are private by default. The public aspect is emphasized; the site is not focused

on storing private bookmark collections. Del.icio.us linkrolls, tagrolls, network

badges, RSS feeds, and the site’s daily blog posting feature can be used to display

bookmarks on weblogs.
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4.4.2 StumbleUpon

StumbleUpon is a discovery engine (a form of web search engine) that finds and

recommends web content to its users. Its features allow users to discover and rate

Web pages, photos, and videos that are personalized to their tastes and interests

using peer-sourcing and social-networking principles.

StumbleUpon uses collaborative filtering (an automated process combining

human opinions with machine learning of personal preference) to create virtual

communities of like-minded Web surfers. Rating Web sites update a personal

profile and generate peer networks of Web surfers linked by common interest.

These social networks coordinate the distribution of Web content, so that users

“stumble upon” pages explicitly recommended by friends and peers. Giving a site

a thumbs up results in the site being placed under the user’s “favorites”. Fur-

thermore, users have the ability to stumble their personal interests like “History”

or “Games”.

Users rate a site by giving it a thumbs up, thumbs down selection on the

StumbleUpon toolbar, and can optionally leave additional commentary on the

site’s review page, which also appears on the user’s blog. This social content dis-

covery approach automates the “word-of-mouth” referral of peer-approved Web

sites and simplifies Web navigation.

In the settings section of Stumbleupon you can further filter the types of

webpages you may come across. There are interest filters which allow you to

include only content for all ages, R rated content, or X rated content. There are

also content filters in which you can choose to allow stumbles with audio, video,

flash, and images.

4.4.3 Digg.com

Digg is a social news website that allows people to discover and share content from

anywhere, with members of the community “voting” for material. The site’s main

function is to let users discover, share and recommend web content. Members of

the community can submit a webpage for general consideration. Other members

can vote that page up (“digg”) or down (“bury”). Although voting takes place

on digg.com, many websites add “digg” buttons to their pages, allowing users to
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Figure 4.3. The stumbleUpon homepage

vote as they browse the web. The end product is a series of wide-ranging, con-

stantly updated lists of popular and trending content from around the Internet,

aggregated by a social network. The website, which shown in Figure 4.4 provides

tools for members of the community to discover content, discuss topics, and con-

nect with people with similar interests. Digg builds lists of popular content from

across the web.

4.5. Enterprise bookmarking

Enterprise bookmarking is derived from Social bookmarking that got its modern

start with the launch of the web site del.icio.us in 2003. The idea is to encour-

age Enterprise 2.0 users to tag, organize, store, and search bookmarks of both

webpages on the Internet and data resources stored in a distributed database or

fileserver. This is done collectively and collaboratively in a process by which users

add tag (metadata) and knowledge tags [31].

Social bookmarking vs Enterprise bookmarking In a social bookmark-
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Figure 4.4. The digg user interface

ing system, individuals create personal collections of bookmarks and share their

bookmarks with others. These centrally stored collections of Internet resources

can be accessed by other users to find useful resources. Often these lists are pub-

licly accessible, so that other people with similar interests can view the links by

category or by the tags themselves. Most social bookmarking sites allow users

to search for bookmarks which are associated with given “tags”, and rank the

resources by the number of users which have bookmarked them.

Enterprise bookmarking is a method of tagging and linking any information

using an expanded set of tags to capture knowledge about data. It collects and

indexes these tags in a web-infrastructure knowledge base server residing behind

the firewall. Users can share knowledge tags with specified people or groups,
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shared only inside specific networks, typically within an organization. Enterprise

bookmarking is a knowledge management discipline that embraces Enterprise 2.0

methodologies to capture specific knowledge and information that organizations

consider proprietary and are not shared on the public Internet.

Enterprise bookmarking provides Tag management which is the combination

of uphill abilities (e.g. faceted classification, predefined tags, etc.) and downhill

gardening abilities (e.g. tag renaming, moving, merging) to better manage the

bottom-up folksonomy generated from user tagging.

The most significant new release was the Jumper 2.0 platform1, which is an

open source web application script for collaborative search and knowledge man-

agement powered by a shared enterprise bookmarking engine that is a fork of

KnowledgebasePublisher2. Jumper empowers users to compile and share collab-

orative bookmarks by crowdsourcing their knowledge, experience and insights

using knowledge tags. Users tag, link, and rate structured data and unstructured

data sources, including relational databases, flat file databases, medical imaging,

content management systems, and any network file system. It is an interactive,

user-submitted recommendation engine which uses peer and social-networking

principles to reference any information located in distributed storage devices, ei-

ther inside or outside the firewall, and capture the collective knowledge about

that content, media, or data. Jumper 2.0 lets you search and share high-value

content, media, or data across remote locations using knowledge tags to capture

knowledge about the information in distributed storage. It collects these tags in

a tag profile. The tag profiles are stored in an interactive knowledge base and

search engine.

4.6. Adaptive Search Engine

Most of the conventional search engines today give back search results based

on the popularity of the webpages, however the concept of an Adaptive Search

Engine is that of a search engine that will be able to learn from the data collected

from each individual user, predict the interests of each user from that information,

1http://www.trilexnet.com/labs/jumper/
2http://sourceforge.net/projects/kbpublisher/
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and return search results related to the topics of interest to that user. In other

words, a user is more likely to be interested in search results related to things

that the user usually searches for. An adaptive search engine puts today’s search

in the context of the user history of searches.

4.6.1 Google Custom Search

Google custom search allows users to create a search engine that searches only the

contents of a specific website or that focuses on a particular topic. With Google

custom search, users can select, prioritize, or ignore specific websites. This allows

the user to tailor the search engine to the interests of specific users, taking into

account the context and purpose of the search. For example, when a car salesman

searches for lotus on Google search, there are many results about lotus flowers

and IBM lotus software. The generic Google search does not limit the context to

that of the lotus which is a brand of car. A Google custom search, on the other

hand, could search only preselected websites about cars, providing more relevant

results to the car salesman. However, the Google custom search engine does not

provide any way for users to collaborate to perform searches, nor are the results

adapted to the interests of specific users in an organization. The results are still

based on popularity measures produced by the majority of users in the world.

4.6.2 Bing: Adaptive Search

Bing is a web search engine developed by Microsoft. In September 2011, Bing

announced its newest feature which was called “Adaptive Search”. As explained

by Adrian Cook, the concept of Adaptive Search is that “Every time you search

on Bing, the information provided helps Bing understand what you’re trying to

do. The more you search, the more Bing can learn and use that information

to adapt the experience so you can spend less time searching and accomplish

what you set out to do.” With Bing, search results for each individual user are

personalized based on data collected during previous uses of the search engine.

This data is used to determine the individual context of search queries and deliver

more personalized results.
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Chapter 5

Social Ranking Algorithms

5.1. Backgroud

5.1.1 HITS

Hyperlink-Induced Topic Search [32] (HITS; also know as hubs and authorities)

is a link analysis algorithm that rates Web pages. The idea behind Hubs and

Authorities stemmed from a particular insight into the creation of web pages

when the Internet was originally forming; that is, certain web pages, known

as hubs, served as large directories that were not actually authoritative in the

information that it held, but were used as compilations of a broad catalog of

information that led users directly to other authoritative pages. In other words,

a good hub represented a page that pointed to many other pages, and a good

authority represented a page that was linked by many different hubs

In the HITS algorithm, the first step is to retrieve the most relevant pages

to the search query. This set is called the root set and can be obtained by

taking the top n pages returned by a text-based search algorithm. A base set is

generated by augmenting the root set with all the web pages that are linked from

it and some of the pages that link to it. The web pages in the base set and all

hyperlinks among those pages form a focused subgraph. The HITS computation

is performed only on this focused subgraph. According to Kleinberg the reason

for constructing a base set is to ensure that most (or many) of the strongest

authorities are included. Authority and hub values are defined in terms of one
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another in a mutual recursion. An authority value is computed as the sum of the

scaled hub values that point to that page. A hub value is the sum of the scaled

authority values of the pages it points to. Some implementations also consider

the relevance of the linked pages.

The algorithm performs a series of iterations, each consisting of two basic

steps:

Authority Update: Update each node’s Authority score to be equal to the sum

of the Hub Scores of each node that points to it. That is, a node is given

a high authority score by being linked from pages that are recognized as

Hubs for information.

Hub Update: Update each node’s Hub Score to be equal to the sum of the

Authority Scores of each node that it points to. That is, a node is given a

high hub score by linking to nodes that are considered to be authorities on

the subject.

The Hub score and Authority score for a node is calculated with the following

algorithm:

• Start with each node having a hub score and authority score of 1.

• Run the Authority Update Rule

• Run the Hub Update Rule

• Normalize the values by dividing each Hub score by square root of the sum

of the squares of all Hub scores, and dividing each Authority score by square

root of the sum of the squares of all Authority scores.

• Repeat from the second step as necessary.

To begin the ranking, ∀p, auth(p) = 1 and hub(p) = 1. Two types of updates

are considered: Authority Update Rule and Hub Update Rule. In order to calcu-

late the hub/authority scores of each node, repeated iterations of the Authority

Update Rule and the Hub Update Rule are applied. A k-step application of the

Hub-Authority algorithm entails applying for k times first the Authority Update
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Rule and then the Hub Update Rule.

Authority Update Rule ∀p, auth(p) is updated to be the summation:

auth(p) =
n∑

i=1

hub(i)

where n is the total number of pages connected to p and i is a page connected

to p. That is, the Authority score of a page is the sum of all the Hub scores of

pages that point to it.

Hub Update Rule ∀p, hub(p) is updated to be the summation:

hub(p) =
n∑

i=1

auth(i)

where n is the total number of pages p connects to and i is a page which p connects

to. Thus a page’s Hub score is the sum of the Authority scores of all its linking

pages

Normalization The final hub-authority scores of nodes are determined after

infinite repetitions of the algorithm. As directly and iteratively applying the Hub

Update Rule and Authority Update Rule leads to diverging values, it is necessary

to normalize the matrix after every iteration. Thus the values obtained from this

process will eventually converge.

5.1.2 PageRank

PageRank is a link analysis algorithm and it assigns a numerical weighting to

each element of a hyperlinked set of documents, such as the World Wide Web,

with the purpose of “measuring” its relative importance within the set. The

algorithm may be applied to any collection of entities with reciprocal quotations

and references. The numerical weight that it assigns to any given element E is

referred to as the PageRank of E and denoted by PR(E). Other factors like

Author Rank can contribute to the importance of an entity.

A PageRank results from a mathematical algorithm based on the webgraph,

created by all World Wide Web pages as nodes and hyperlinks as edges, taking

into consideration authority hubs such as cnn.com or usa.gov. The rank value

indicates an importance of a particular page. A hyperlink to a page counts as a
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vote of support. The PageRank of a page is defined recursively and depends on

the number and PageRank metric of all pages that link to it (“incoming links”).

A page that is linked to by many pages with high PageRank receives a high rank

itself.

Numerous academic papers concerning PageRank have been published since

Page and Brin’s original paper [33]. In practice, the PageRank concept may be

vulnerable to manipulation. Research has been conducted into identifying falsely

influenced PageRank rankings. The goal is to find an effective means of ignoring

links from documents with falsely influenced PageRank [34].

Other link-based ranking algorithms for Web pages include the HITS algo-

rithm invented by Jon Kleinberg (used by Teoma and now Ask.com) [32], the

IBM CLEVER project, the TrustRank1 algorithm and the hummingbird algo-

rithm2.

5.2. Related Algorithms

5.2.1 FolkRank

The FolkRank algorithm [13] operates on the folksonomy model context as tag

clouds specified in folksanomy [35] which is a quadruple F := (U, T,R, Y ), where

U , T , R are finite sets of instances of users, tags, and resources. Y defines

a relation, the tag assignment, between these sets,that is,Y ⊆ UTR. A tag

cloud can be computed for users, tags, and resources, e.g. the tag cloud for a

user u can be defined as TCU(u) = {{t, w(u, t)}|(u, t, r)Y,w(u, t) = |{r ∈ R :

(u, t, r) ∈ Y }|}. Hence, the weight assigned to a tag is simply corresponds to

the usage frequency of the tag. We normalize the weights so that the sum of

the weights assigned to the tags in the tag cloud is equal to 1. Furthermore,

we use TCUk(u), TCTk(t), and TCRk(r) respectively to refer to the tag cloud

that contains only the top k tags, which have the highest weight. FolkRank

transforms the hypergraph that is spanned by the tag assignments into a weighted

tripartite graph GF , where an edge connects two entities (user, tag, or resource)

1http://en.wikipedia.org/wiki/TrustRank
2http://en.wikipedia.org/wiki/Google corollaryHummingbird
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if both entities occur together at a tag assignment within the folksonomy, and

the weight of an edge corresponds to the amount of their co-occurrences. For

example, the weight of an edge connecting a tag t and a resource r is defined as

w(t, r) = |{u ∈ U : (u, t, r) ∈ Y }| and thus corresponds to the number of users,

who have annotated r with t. The constructed graph GF serves as input for an

adaption of the Personalized PageRank [33]: −→w ← dAGF
−→w + (1d)−→p , where the

adjacency matrix AGF models the folksonomy graph GF ,
−→p allows to specify

preferences (e.g. for a tag) and d enables to adjust the influence of the preference

vector. FolkRank applies the adapted PageRank twice, first with d = 1 and

second with d < 1 (in our evaluation we set d = 0.7 as done in [36]). The final

vector, −→w = −→wd < 1−→wd = 1 , contains the FolkRank of each folksonomy entity.

5.2.2 GFolkRank

GFolkRank [37] is a context-sensitive ranking algorithm that is based on FolkRank.

It expects a group context folksonomy which is a 5 tuple F = (U, T,R,G, Y ) as

input and adapts the process of transforming the hypergraph spanned by the

folksonomy into the weighted folksonomy graph GF . It interprets groups as ar-

tificial tags and creates new tags tg ∈ TG, TG ∩ T = ϕ, for each group g. These

artificial tags are assigned to all resources contained in g, whereby the user who

added a resource to the group, is declared as the tagger. The set of nodes is thus

extended by TG : VB = VA ∪ TG. The edges added to VF by the GFolkRank algo-

rithm are: EB = EA[{{u, tg}, {tg, r}, {u, r}|u ∈ U, tg ∈ TG, r ∈ Ř, u has added r

to group g. We use a constant value wc to weight these edges because a resource

is usually added only once to a certain group.

5.2.3 GRank

GRank [38] is a group-sensitive ranking algorithm as well as GFolkRank. How-

ever, GRank is not based on FolkRank, but exploits group context folksonomy

in a straightforward way. Given a query tag tq, the GRank algorithm detects a

set of tag assignments (u, t, r, g) ∈ Y̌q, where the resource r ∈ (̌R) is (a) directly

annotated with tq, (b) contained in a group that is tagged with tq, (c) grouped to-

gether with a resource directly annotated with tq, or (d) a group which contains a
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resource directly annotated with tq. The entities (users, tags, andresources) are

then weighted according to their occurrence frequency within the tag assignments

of Y̌q. For more details on GRank we refer the reader to [37,38].

5.2.4 Ranking user’s relevance to a topic

This iterative ranking algorithm [39] approach is to calculate web-user’s relevance

through link analysis under a unified framework where the importance of web-

pages and web-users mutually reinforce each other in an iterative way.

This algorithm similar with HITS algorithm [32], There are two assumptions

in calculating the importance of users and webpages. The first assumption is that

the importance of a webpage is influenced not only by the link structure of the

webpages but also by the frequency and expertise of user visited them.

Expert detection using link analysis

Expert finding system can identify experts for a given query topic and differentiate

their level of expertise. For example, for the query such as find expert in image

retrieval, our system may return a list of individuals ranked by their level of

expertise in the field of image retrieval. For clarity, we first describe the general

model and the link analysis algorithm and then we describe the procedure of how

to get the ranked experts for the given query topic.

a(p) = β
∑

q→p h(q) + (1− β)
∑

r→p u(r)

h(p) = β
∑

p→q a(q) + (1− β)
∑

r→p u(r)

u(r) = (1− β)
(∑

r→p a(p) +
∑

r→q h(q)
)

5.3. Proposed Algorithm: SAKERank

In this section I first recapitulate ranking algorithms developed in previous work

before I introduce a new algorithm: SAKERank. Our proposed SAKERank algo-

rithm derived from Kleinberg’s HITS algorithm [32] and Ranking user’s relevance

to a topic [39].

The underlying assumptions are: 1) the more high quality webpages the user

has visited, the more experienced the user is. 2) the more frequently a webpage
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Figure 5.1. The directed graph model of expert finding system

is cited by other pages and visited by experienced users, the higher quality the

webpage is. 3) the importance/quality of the users and pages may reinforce each

other in an iterative way.

SAKERank calculates score for webpages and users based on hubs, authori-

ties and user’s level of expertise inside the community of interest. As shown in

Equation 5.1, in this algorithm, the authority weighting of a webpage a(p) cal-

culated by combining the sum of the hub values of all pages h(q) pointing to p

and the sum of the weights of all people u(r) visited (weight by ω2), individual

bookmarks (weight by ω3), and group bookmarks p. This combination forms the

final authority weight of p. The hub weight is similarly calculated. The weight

of a user u(r) is calculated by summing up the authority and hub weights of all

pages he has visited (weight by ω2), or bookmarked by himself (weight by ω3)

or group (weight by ω4). Another term is indirectly influenced by the user r ’s

weight which comes from his group participation (weight by 1-ω4) The score in

this term comes from webpages that all people in a group have bookmarked as a

group.
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a(p) = ω1

∑
q→p

h(q) + (1− ω1)

(
ω2

∑
r→p

u(r) + (1− ω2)

(
(ω3

∑
s→p

u(s) + (1− ω3)
∑
t→p

u(t))

))

h(p) = ω1

∑
p→q

a(q) + (1− ω1)

(
ω2

∑
r→p

u(r) + (1− ω2)

(
(ω3

∑
s→p

u(s) + (1− ω3)
∑
t→p

u(t))

))

u(r) = ω2(
∑
r→i

a(i) +
∑
r→j

h(j)) + (1− ω2)

(
ω3(
∑
r→k

a(k) +
∑
r→l

h(l)) + (1− ω3)

+

(
ω4(

∑
r→m

a(m) +
∑
r→n

h(n)) + (1− ω4)(
∑
r→o

a(o) +
∑
r→p

h(p))

))
(5.1)

One of the most important things we must pay attention to is the convergence

of our algorithm. Due to the difficulty of mathematical proof, we can only perform

a series of experiments to test it. The difference of the page authority and hub

scores and user weight is plotted for each iteration, which ranged from iteration

1 to iteration 20. The difference di is defined as di =
∑

(wi − wi−1)
2 , where wi

represents the user importance and authority/hub values at iteration i. The value

of ai, hi, ui after each iteration is plotted in Figure 5.3. From Figure 5.3 we found

that the difference of the webpages authority/hub values and users importance

weight between adjacent iterations will drop significantly after 5 iterations and

show a strong tendency to zero. This proves the convergence of our algorithm in

a practical way.

SAKERank has been created in order to calculate the score for each user and

each webpage related to the specific topic. The score allows us to rank the users

inside the CoI and also re-rank the webpages related to the topic inside CoI.
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Figure 5.2. This directed graph model shows the interaction of users and web-

pages. It is an example how to calculate webpage P’s score using SAKERank.
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Part III

Design & Implementation
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Chapter 6

Adaptive Search Framework

To prove that the SAKE model can help communities solve the problems I men-

tioned in Section 3.2, I developed a framework called Adaptive Search Framework

(ASF). The framework completes the technology part as shown in Figure 3.2 and

applies the idea of the SAKE model.

6.1. Architecture

Figure 6.1 presents an overview of the ASF architecture. The framework is com-

posed of three layers: interface, server, and job. Each layer serves different pur-

poses and works independently from each other.

The top layer is the user interface layer, where people perform searching and

obtain results the same as using normal search engines. I also developed a browser

extension which allows people to organize search results.

The middle layer is the server layer, which returns search results related to the

keywords and topics focused in the community. This layer communicates with

search engines, which in this case are Google and Bing, by using their APIs. Then

I submit a user’s query and obtain search results. The framework uses Apache

Carrot2 to cluster the results into groups. Tags will be added to those groups

to make them more descriptive and meaningful. Those data will be cumulatively

stored in the ASF database. Then the server layer returns the combined search

results, which contains both results from the conventional search engines and

those retrived from ASF. After the user interacts with these results, the system
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Figure 6.1. Architecture of Adaptive Search Framework.

stores information about the query, web pages, and tags that the user interacts

with.

The bottom layer, called job layer, is scheduled on a regular basis. It calculates

scores for people and web pages using data stored in the database.

6.2. User Interface Design

Adaptive Search Framework has two separate interfaces which are Internet browser

extension and web application interface. The design in Figure 6.2 shows the user

interface of the result page after the user has submitted the search keyword to

ASF. The Section 1 in Figure 6.2 2 called a suggestion area. This section shows

only the top 10 search results that have been analyzed by people inside the com-

munity and are already stored inside our database. Also, the results are already

ranked by iterative re-ranking algorithm, which will be described in Section 6.3.

Section 2 in Figure 6.2 is related topics section, which lists all the topics that
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related to the community keywords that have been predefined. The last section

shows general results retrieved from Google and Bing in each category. After the

user hits the search button to submit the keyword, ASF uses Google and Bing

APIs to obtain the general results for the keywords. After I got the general result

set, ASF uses Apache Carrot2 to cluster results into categories. AFS will select

categories related to the topics in the community by using Tag Mapping method.

Irrelevant results obtained from a major web search engine will be in section 3.

Section 1 only contains results related to the topics inside the community. Section

1 contains the top-10. Section 2 is the topics, not yet reached in the top-10. I

will describe the technique of our data flow in the next section.

The purpose of Internet browser Extension as shown in Figure 6.3 is to help

users easily interact with websites. For example, bookmark, create groups and

categories, etc. The web browser interface gives users a fully control on their

account inside the framework.

6.3. Data Flow

In ASF, people perform two main activities, searching and bookmarking. In this

section, I explain an implementation of our data flow by using town example

illustrated in Figure 6.4.

To begin with searching, as shown in figure 6.2 a user has submitted query q,

it will be sent to conventional search engine API. Top n ranked web pages will

be returned as a search result set of W . Each wi also contains 3 components,

those are“url”, “title”, and “snippet”. For a further process, I send the whole set

W to Carrot2 API where each component of wi’s will be treated as search result

clustering source that return clustered labels of each wi. I call these clustered

label as tags (t), and I denote a set Ti as a set of wi’s corresponding tags. At

this step, I process two sets, W and T . Next, I check each member of W if it

has already been stored in our framework database. Note that I will explain

the store’s condition soon later in this section. In case wi has already been in

the database, I will update Ti to the stored wi record called w′
i. That is the

replacement of wi’s tags will be T ′
i ∪ Ti. For each tag ti, it will later be assigned

to several categories Cx or group categories GX . I also have to update the linkage
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Figure 6.2. The UI design of Adaptive Search Framework is devided into 3 sec-

tions (Suggestion, topic, Other results). Suggestion area shows the results top-10

restuls that have been analyzed by users inside the CoI. Topic area shows the

related topics involve with the search keyword and CoI. Other results area shows

the normal results which are retrived from Google and Bing.
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Figure 6.3. Example of web browser extension

between new tags and the stored categories and group categories (CxT and GxT ).

That is ∀t|t ∈ Ti will be update to each category Cx in CxT linkage where Cx is

its corresponded category to ti.

On the other hand, in case that wi is nonexistence in the database, it will only

be processed for our suggestion feature. The web pages suggestion list consists of

web pages the database, which has at least one category corresponded to at least

one tag of a web page returned from the top n ranking search result set. To achieve

that, first of all I merge all Ti into T (T =
∪n

1 Ti) and list all Cx that have a link

to ti into CT (CT =
∪n

1 CxT |∃ti ∈ CxT ) and GT (GT =
∪n

1 GxT |∃ti ∈ GxT ).

I then do a reverse mapping from CT and GT to obtain T ′ that consist of all

t′i in CT ∪ GT , and do a reverse mapping again from T ′ and get a set W ′ that

satisfied the aforementioned condition. I also need to combine some records from

the current search result set W in to the suggested web page set W ′. Since I have

precessed T ′, I can map if a t′ has a link with a wi in W and obtain the suggestible

web page list from W . At last web pages suggestion list W ′′ come from W ′ which

are web pages those are existed in the database, merging with W that satisfied

the tag condition. So that it will become W ′′|∀w′′
i ∈ (W ′ ∪W )→ w′′

i ∈ W ′′ pairs

with T ′′
i |∃t′′i ∈ (CT ∪ GT ) → t′′i ∈ T ′′

i To show the original result set form the

conventional search engine, I render only W in that area.
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Figure 6.4. Proposed Framework’s Data Flow
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Clicking a Result Link

As shown in Figure 6.2, After a search result has been clicked in the user interface,

the URL of the clicked link wi and the user identity u will be passed to the

framework. If wi has never been clicked by any user, its identity will not be

stored in the database. So I need to create it with its initialized click counter

by one. I then store user-click with wi record as a tuple (u, wi), and the wi’s

corresponding tags Ti in the database. If wi is already existed, I just update tuple

(u, wi) by increased the click counter by one.

Bookmarking a Web Page

In ASF there are two bookmarking types , bookmarking for oneself and for group.

The difference between both of them is the feedback scope of suggesting a new

web page to a user. Individual bookmarking only influences altogether group of

the user.

In case when bookmarked web page has been clicked through from the user

interface, the identity of that web page wi must be stored in the database. Then,

the required parameters in this bookmark case are wi , u and the bookmark

category Cx. At first I bind u with wi and store (wi ,u) as a bookmark record

and store it in the database as a bookmark identity. If Cx has just been created

right before a user bookmarked it, I have to store it as a record in the database

at first. I then map all Ti, which correspond to the bookmark page wi to Cx as

CxT , and store all of them in the database.

However, if a user chooses to bookmark any web pages without searching

from the framework, I need to process its corresponding tags at first. I choose to

pass that web page’s basic components such as title and URL through the search

interface as query that allows tags to be processed as well as the ordinary routine.

Bookmarking a Web Page into a group

In-group bookmarking, tags and categories will be similarly processed to individ-

ual bookmarking. A bookmark page wi and its corresponding tags Ti are bound

with a group category Gx as GxT and all of them will be stored in the database.

The difference between the bookmarked records are bound from user, group, and
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web together as a tuple (u, g, wi) instead of (u,wi) in an individual bookmarking.

I also do the same if a bookmarked page did not come from the search result by

passing a query of the web page’s basic components to the framework.

6.4. Database

For the database, ASF uses MYSQL1 as a relational database management sys-

tem. In figure 6.5 shows the database schema in my Adaptive Search Framework.

It is quite easy to understand because there are only five domains that I need to

focus on: User table stores the personal information of each users. (e.g. ID, email,

password, etc.) User also links with click and bookmark tables which store the

interaction of the users and webpages. User can belong to any group and be able

to create the category which can store the webpages. The details of the website

such as title, snippet, and score are stored in Web and WebContent table. Tag

store keywords or terms assigned to category, website, and group. Tag describe

and categorize an item and allows it to be found again by browsing or searching.

6.5. Category Classification

Adaptive Search Framework identifies experts for a given query topic and rank

users’ level of expertise by collecting the keywords that user search and then

categorize webpages that users interact with (clicks and bookmarks). Then the

SAKERank algorithm is used to calculate the score for each user and webpage.

The result from the algorithm will be able to tell which topic users have been

experienced on. To do this, I need to create a program to collect keywords and

be able to categorize them into their own categories that I already prepared

beforehand in the CoI. This program divided into two parts. The preparation

process part as show in the Figure 6.6 is to create a model that will be able to

predict which category the keywords should be. The model that will be used

to predict which category the keywords should belong to is needed to be train

first. In the preparation process, first, I have to prepare the categories which has

the potential to be able to relate to the target CoI. For example, If the target

1http://en.wikipedia.org/wiki/MySQL
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Communitysearch domain model

ActiveRecord::SessionStore::Session

data text
id integer ∗
session_id string ∗

Bookmark

category_id integer
id integer ∗
user_id integer
web_id integer

BookmarkGroup

group_cat_id integer

group_id integer

id integer ∗
user_id integer

web_id integer

Category

categoryName string
id integer ∗
user_id integer

CattagMap

category_id integer
id integer ∗
tag_id integer

Tag

id integer ∗
tagName string

Click

id integer ∗
nclick integer
user_id integer
web_id integer

Group

groupName string
id integer ∗

GroupCat

group_id integer
groupcatName string
id integer ∗

UsergroupMap

group_id integer
id integer ∗
user_id integer

GroupcattagMap

group_cat_id integer
id integer ∗
tag_id integer

Web

id integer ∗
url string

WebtagMap

id integer ∗
tag_id integer
web_id integer

User

current_sign_in_at datetime
current_sign_in_ip string
email string ∗
encrypted_password string (128) ∗
id integer ∗
last_sign_in_at datetime
last_sign_in_ip string
remember_created_at datetime
reset_password_sent_at datetime
reset_password_token string
sign_in_count integer

WebContent

cached_url string
id integer ∗
score decimal
snippet string
title string
web_id integer

Figure 6.5. Database schema of Adaptive Search Framework
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List of predefined 
category

Search 
Engine

Training Data Set

Bayesian Network

User

Category 
Classifier

Classification Model

"Web Programming"

"Ruby on Rails"

Preparation Process Operation Process

Figure 6.6. Show the steps of how to build a classification model

CoI is a software company, a lot of your categories should relate to the software

and programming languages. After predefined the category, the model based is

built up based on the hypothesis that if the documents have a lot of the same

keywords of the category; it means that this document should be in the category.

For example, the documents in java Programming category should have a lot of

“java” keywords inside the document. Then search engine return what keywords
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that the web pages contain and the keywords are sent to he Bayesian network2

to build the classification model.

The operation process part in the Figure 6.6 is the process to predict which

category the keyword should be by using the trained model from the Bayesian

Network process. After we got the classification model, when user performs a

search task, the keyword will be sent to search engine again and obtain the

return result. The results will be map to the model that has already been trained.

Finally ASF will be able to tell which keyword should goes to which category.

2http://en.wikipedia.org/wiki/Bayesian network
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Chapter 7

Experiment

7.1. Experimental Design and Procedure

The performance of ASF consists of two things: 1. The ability to return more

relevant search results to users compared to search results from Google and Bing,

2. ASF reduces knowledge-sharing effort with Search Activity Knowledge Ex-

traction (SAKE). In order to investigate the performance ASF , our experiment

will follow these procedures.

1. Select a community: Our target is small to medium size community

where people have a variety of knowledge skills and level and frequently use

search engines for solving tasks or searching for information.

2. Define search target area and task: We analyzed previous web search

logs of a selected community and interviewed members in order to define

the top-10 topics inside the community. We created a task which contains

three simple questions in each topic for participants to complete during the

experiment.

3. Set up the framework: ASF is deployed inside the community and is

implemented on top of Google and Bing to get initial search results.

4. Gather participants: I gathered as many participants as I can from the

community. We analyzed each participant and separate them into three
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groups: expert, experienced, and newcomer based on their profile, knowledge

and skill.

5. Create ideal result sets: Since we do not have standard result sets with

which to measure, we need to create them. An ideal result set is a set of

results, which we assume is the best results which are ranked from 1 to 10

based on the topic. We asked participants in an expert group to create a

set of ideal results for each topic. First, I asked participants to select topics

in which he/she has expertise. Then I asked them to rank 10 websites that

have the information or solution to solve the given task on their topics. We

will use the ideal result set as a standard for measuring results from ASF,

Google, and Bing later on.

6. Search, share, and complete tasks: The duration of our experiment

is two weeks, in order to gain enough data to measure the performance of

ASF. For the first week I let participants from the experienced group use

ASF to complete the given task. Then, participants from the newcomer

group will use ASF in the decode week to complete the same task.

7. Evaluate the performance: To bring clarity to our results for both ASF’s

performance and participants’ experience, I compare top-5 and top-10 re-

sults for overlapping and ranking similarity from ASF Google and Bing

in each topic based on the ideal ranking set. After that, each participant

in experienced and newcomer groups do a post-test survey to rate ASF’s

overall usage.

7.2. Evaluation measurements

Overlapping and ranking similarity

I use two standard measurement methods, which are OSim and KSim [40], when

comparing search result rankings. OSim indicates the degree of overlap between

top k search results of two ranking between t1 and t2 (t1 = Ideal results, t2 =

Retrieved results).

62



OSimk(t1, t2) =
|R1 ∪R2|

k
(7.1)

In the comparisons, to compare top 5 and top 10 I will use k = 5 and 10.

OSim score has [0,1] range. The higher OSim score means that both search

results sets have more overlap results. OSim score lets us know the extent to

which search result sets are similar to each other. The overlap measure OSim

gives an incomplete picture of the similarity of two rankings. It does not indicate

the degree to which the relative orderings of the top k results of two rankings are

in agreement.

To show the similarity of two rankings more accurately, KSim is used to

determine the degree of agreements in which pairwise distinct documents u and

v within top-k rank has the same relative order in both ranking t1 and t2.

KSimk(t1,t2)=
|(u,v):t′1,t

′
2 agree on order of (u,v),u ̸=v|

(|∪|)(|∪|−1)
(7.2)

KSim has [0,1] range. The higher KSim means that both result sets have similar

rankings. However measurement method that based on Kendall*, It will have a

disagreement on the long-range comparison between t1 and t2. In this research, I

aim to use KSim to compare only top 5 and top 10 search results.

Together, OSim and KSim are suited to measure the quality of a ranking

with respect to an optimal ranking. Our evaluation are based on ... Given 10

keywords, asking experts to create ideal ranking for each of keywords, which

represented from their perspective the most precise top 10 rankings.

7.3. Post-test survey (SUS)

To clarify participants’ experience of using ASF after two weeks, I constructed

a system usability scale (SUS) post-test survey [41] as shown in Appendix 10.4

for participants. The survey contains 10 questions, which is clustered into 3

categories: Information Seeking, Knowledge sharing and management, and Tool

usage. Each category contains three questions. Participants can give the score for

each question from 0 to 4(Strongly disagree, disagree, neutral, agree, and Strongly

agree). Also, Participants are able to leave any comment for each question. The
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Table 7.1. Selected topics in software engineering field.

ajax tutorial

text mining method

software metrics for agile software development

java programming tutorial

web service

object oriented design

empirical study in software engineering

software development effort estimation

software maintenance technique

software product line

post-test survey for both experienced and newcomer groups are given by the end

of first and second week.

7.4. Participants

Software Engineering Laboratory (SE Lab) in Nara Institute of Science and Tech-

nology was selected as an experiment community. I analyzed previous search key-

word and information related to the community to defined ten topics as shown

in Table 7.1. ASF was deployed in an Ubuntu server in the laboratory and it

used MYSQL to store the data. The framework was implemented on top of two

conventional search engines, which are Google and Bing, in order to obtain initial

search results.

Twenty participants, including three professors and seventeen students with

various levels of knowledge and skill, were recruited for this experiment. First, we

divided participants based on their profile into three groups: expert, experienced,

and newcomer. Three professors and two Ph.D. students were in the expert group.

Seven master students from second year were in the experienced group, and the

rest of eight participants, being first-year master students, were in the newcomer

group. The participants in the expert group were asked to create an ideal result

set (shown in Figure 10.1) based on the task as shown in Figure 10.2 and 10.3.

After the framework has launced, I asked seven participants from the expe-
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rienced group used ASF for one week to complete all the given tasks. Next, I

asked eight participants from the newcomer group to use our ASF to find in-

formation for the second week. Finally, I collected participants’ activities and

search results from each topic by each week since ASF startup until the end of

the second week. I compared the results by using standard measurement, which

are OSim and KSim [40], to determine the overlap and similarity of the results.

We also administered the post-test surveys and interviewed participants for the

satisfaction of our ASF usage.
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Chapter 8

Results

8.1. Overlapping and Similarity Search Results

First, I compared the degree of overlapping results, including results from Google,

Bing and ASF with ideal result sets by using OSim measurement.

The left side of Figure 8.1 shows the average OSim score of top 5 and top

10 search results which came from the ten selected topics as shown in Table 7.1

from Google, Bing and ASF from SE Lab. After ASF was launched, the average

OSim score of ASF was 0.24 for top 5 and 0.21 for top 10. This indicates that

five links from ASF have around one link similar to the ideal result set of 5, and

10 links from ASF have around two links appear in ideal result set of 10. In the

beginning, ASF score was a little bit lower than Google but higher than Bing.

After one week, I calculated ASF OSim score again. OSim score of ASF for

top 5 increased from 0.24 to 0.43 and top 10 increased from 0.21 to 0.43, which

are now higher than both Google and Bing. After I finished the experiment in

the second week, I calculated OSim score for ASF again and I found the score

was even higher. With the result, I now can assume that ASF is getting better

by when participants use it to search for the same target.

Then I compare the ranking similarity of the results for each search engine

with the ideal result sets. The result shows that the ranking from Google, Bing,

and ASF compared to the ideal result set are quite the same which is between

0.23 and 0.3. The KSim score of ASF in the second are 0.29 for top 5 and 0.3

for top 10, which are slightly better than Google and Bing. The reason that the
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Figure 8.1. The comparison of search results from Google, Bing, ASF (startup),

ASF (1st week), and ASF (2nd week) with ideal search result based on the topics

inside SE Lab. The diagram on the left shows OSim score for the degree of

overlap results in top 5 and top 10 search results. The diagram on the right

shows KSim score for the similarity of each raking compare with ideal search

result.

KSim score of ASF are quite similar is because I might not give more enough

time for ASF to collect data from participants which can affect the performance

of iterative re-ranking algorithm to re-rank the results.

8.2. Participants’ Experience

To evaluate the usability of ASF, I use system usability scale which was originally

developed by John Brooke [41] to survey the participants after 2 weeks. The sur-

vey consists of 10 statements to which participants rate their level of agreement.

It contains Information Seeking, Knowledge sharing and management, and Tool

usage parts. We will explain the results separately by the following. The result

as shown in Figure 8.2 is what I collected from 15 participants. 7 participants

are experienced users and 7 participants are newcomer users. Each item’s score

contribution will rage from 0 to 4.
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Figure 8.2. Post-test usage survey results from participants.

8.2.1 Information Seeking

�
�

�
�

Question 1: Which search engine gives better results that related to the tasks

given inside the community?

After one week participants are satisfied with the results from ASF more. The

average score of participants in the experienced group is 3.14, which is just a little

bit above the average. The average score of participants in the newcomer group

is 3.25/4 which is very high. The reason is because ASF can return the results

that have been already analyzed by participants in the experienced group in the

first week to the participants in the newcomer group which are using it in the

second week. One of the participants in the newcomer group reported that

“Most of the results in the suggestion area are really useful. They are

what I expected to answer the questions.”�
�

�
�

Question 2: Are the results from ASF better than conventional search engines

(Google and Bing).
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Figure 8.3. System Usability Scale (SUS) of ASF in percentage. <50: Not

acceptable, 50-70: Marginal, >70: Acceptable

The score is 1.57/4 from the experienced group, which is quite low. One of

the participants in the experienced group said

“ The results from the suggestion area are quite the same as the results

from both Google and Bing. It made me confused which link should I

click on.”

The results from the newcomer group are 3.13/4, which is significantly high. Most

of the participants from the newcomer group have said that the results from the

suggestion area are what they were looking for.�� ��Question 3: Can AFS help user reduce time on searching?

Participants from the newcomer group rated quite a high score, which is 3.13/4,

for this one. This results indicates that ASF can save time for them while search-

ing for the information inside the community.

8.2.2 Knowledge sharing and management

In this part, I aim to discover the performance of our ASF on Knowledge sharing

and management inside the SE Lab.
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�� ��Question 4: How easy is it to organize search results?

The scores, which are 2.43/4 and 2.5/4, from both the experienced and the new-

comer group are quite the same. One of the participants in the experienced group

has reported that

“ It is very simple to organize my favorite websites just like when I

add the webpages using my browser. ASF allowed me to share my

webpages to others in the community.”

�� ��Question 5 and 6: How easy participants can share the results via ASF?

Both scores from the experienced and the newcomer groups are quite accept-

able. Participants benefited from the knowledge-sharing and the management

features of ASF inside the community while doing the search collaboration with

other members.

“ ASF allows me to bookmark the webpages that I like into the top-

ics which are already created by other members inside the community.

Also I can look through all the webpages that have been shared from

others inside the topics.”

“ When I found a really cool webpage, I don’t need to waste my time

copying the URL and send it via Facebook or Line anymore. I can

just add the link into the topic and my friend will be able to see it.”

8.2.3 Tool usage

�
�

�
�

Question 7, 8, 9, and 10: Are participants satisfied by the overall usage of

ASF?

In this part participants are quite satisfied with the overall usage based on the

scores, which are all above average. Many participants said

“There are many useful features that Google and Bing do not provide

us.”
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Due to the many features inside our ASF, participants felt that ASF helped them

to get useful information. One participant said that

“This framework provides our research community to have their own

search engine.”

One person said

“It gave me better search results compared to major search engines.”

To calculate a sus score first sum the socre contributions from each type of

participant (Experienced and New comer). Each item’s score contribution will

rage from 0 to 4. Multiply the sum of the scores by 2.5 to obtain the overall SUS

Score. Consider the data in Figure 8.3. The sum of the score of experienced users

is 59.62 which is in marginal rage and the overall score for new comer is 75.37,

which is in acceptable rage.

We do note that the tasks that I asked participants to do were limited in a

small scale, but they were enough to evaluate the framework and prove our basic

assumption of our ASF that we committed at the early section.
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Chapter 9

Discussion

9.1. How can ASF return Better-suited Results

to CoI?

To provide additional insight into the results related to the first question, we

extracted data from the database to create a relation graph showing the users

and web pages from Software engineering laboratory. In this relation graph, users

are also separated into their own special groups. Figure 9.1 inside the square

blue rectangle area, also shows website ids 8, 4, 3, 117, and 116, the top 5 results

shown in Figure 9.1 for Ajax tutorial query. ASF selected these five websites for

the suggestion box because they have a high ranking as shown in Figure 9 and

are related to be Ajax tutorial keyword.

9.1.1 How does framework relate apparently unrelated URLs?

To help address the second question, I examined the ability of the ASF to suggest

websites that have not been viewed by users, but are related to keywords and

topics that the users are interested in. As an example, I arranged a scenario

to test whether the ASF would relate Superman and Clark Kent. As shown in

figure 9.2 in the search on the back, at first when a user searches for “Superman

movie” there was nothing in the suggestion box because this keyword was new to

the framework. However, after a user clicked or bookmark some of the websites

about the Superman movie, as shown in the middle search picture, another search
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Figure 9.1. Relation graph between users and websites inside Software Engineer-

ing Laboratory.

for “Superman” resulted in several websites in the suggestion box related to the

Superman movie because the framework knows that this user is interested in the

Superman movie. So when this user searches for Superman, the ASF provides

information about movies based on the data from the previous search. Finally,

the front picture in figure 9.2 shows that when a user searches for “Clark Kent,”

Superman’s secret identity, the ASF can suggest that the user should also look

for Superman. However, a similar search for “Clark Kent” on the major search

engines provides top ranked results only related to Clark Kent. This indicates

that the Adaptive Search Framework can suggest results better related to a user’s

interests and topics.

In the research paper called “Learn from Web Search Logs to Organize Search
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Figure 9.2. 1. At first, the framework cannot suggest anything when a user

searches for “Superman Movie” because it is a new topic for the framework. 2.

After a user has interacted with some of the websites that involve Superman, the

framework can suggest some websites when a user searches for “Superman” based

on the previous search data. 3. Also, the framework can suggest Superman when

a user searches for Clark Kent.

results” [42] has shown the comparison between the cluster-based method and log-

based method. The cluster-based method has to rely on the keywords extracted

from the snippets to construct the tag for each cluster. The log-based method

use the center of each star cluster [42] as the label for the corresponding cluster.

From the table 9.1, the log-based method gives more readable and more spe-

cific labels because it generates labels based on users’ queries. But in general,

when I apply our framework into the organization, I cannot gather all the mem-

bers search log data to create a structure information for the framework to learn

from. The framework will have to learn a bit by bit from the users and when I

gain enough web search logs from the members, I will also cluster our links in

the organization by using that web search log together with the clustering engine
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Figure 9.3. Returned results from Google shows that Google doesn’t give the

results that are related topics inside CoI.

In figure 9.3 shows you the results from Google when you searched for “internet

laboratory”. As the results what you expect is “iplab.naist.jp” which is the in-

ternet laboratory in Nara Institute of Science and Technology but what Google

returned at the very first top ranks are internet laboratories from other univer-

sities because those internet laboratories have higher ranking score based on the

popularity.

Log-based method Cluster-based

method

jaguar animal jaguar, auto, accessories

jaguar auto accessories jaguar, type, prices

jaguar cats jaguar, panthera, cats

jaguar repair jaguar, services, boston

Table 9.1. Label comparison between Log-based method and Cluster-based

method
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Figure 9.4. The results from Adaptive Search Framework using the same keyword

to search as in figure 9.3. The results can prove that Adaptive Search Framework

knows what result is related to the topic in organization.

By using the same keyword “internet laboratory” to search for the results in

Adaptive Search Framework. The Framework is able to suggest the internet

laboratory in our university back to the user because the framework knows exactly

that this link is related to the organization and might be the one that user who

search for the internet laboratory in this organization might be looking for.

which we believe it will be more accurate to give us the label of webpages.

9.1.2 What about more general topics?

The results from the experiment shows that ASF yield better results when it is

in a community that focuses on some specific area but it may not be optimal for

the general topics. The information based on the majority of people in the world

could return the best results for the general topics.
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Figure 9.5. The results from Google, which have the same keyword but different

in meaning.

Next I tried to test if the ASF has the ability to clustering the results to be

returned to users by learning from the interested topics of each user. For example,

a student inside Software Engineering laboratory search for “java bean”, What

student expect should be related to the programming language component. Using

just a conventional search engine, The results which related to the same keyword

but different meaning can also come up.

9.2. ASF’s Effectiveness?

The experiments only show that ASF works effectively on a small-sized commu-

nity. For a larger sized community, which may have, more than hundreds of

member, we assume that people will produce noises inside the database. We plan

to do more experiments on a larger sized community in the future. One of the

ASF key purpose is to get rid of irrelevant results that do not related to the

topics inside the CoI, which can help member reduce time locating the useful

results. There are several aspects on effectiveness that can serve both high level

of knowledge member and novice member. For example, high-level members can
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Figure 9.6. The ASF solving problem by using webpages that have been analyzed

by users inside organization to map with the tags and return them back when

other users search for that keyword.

To solve the problem that web pages have the same keyword but different mean-

ing, ASF learns from the keywords and maps them to the topics inside our soft-

ware engineering laboratory and suggests the results that have been analyzed by

users inside the laboratory which related to the topics inside to the user.

earn the benefits from using ASF to get rid of irrelevant results. They are also

more likely to use ASF to contribute useful results to the community. For novice

members, ASF helps them reducing time locating the results that are useful and

relevant to the topics in the community. We are not trying to replace major web

search engine. What we are trying to do is improving the search results selection

method for a community and reduce knowledge sharing effort inside CoI. We sug-

gest that the most effectiveness method for information seeking tasks is to using

both major web search engine to search for general topics and ASF to search for

specific results that related to the community.

81



82



Chapter 10

Conclusion

This dissertation focuses on how to support effective knowledge sharing through

search activities. The motivation came from long time ago when we performed

a collaborate task which we need to use search engines to search for the infor-

mation, which is specific to the topics among the group. What we have found is

there were many irrelevant search results that returned from conventional search

engine. When we want to share the very first idea is how to improve search

results which are more relevant to the community of interest based on a collab-

orative search. The SAKE model has been proposed and ASF was developed

in order to help people inside a community of interest reduce knowledge-sharing

effort while searching and to obtain search results that are more relevant to top-

ics of interest to the community. ASF uses data gathered from users performing

ordinary searches, clicking on links, and bookmarking to enrich the data and

increase effectiveness. SAKERank algorithm calculate score for webpages and

users iteratively. We performed an experiment in a real community which is in

software engineering lab at Nara Institute of Science and Technology. The goal

is to test the performance of the SAKERank algorithm, which is able to return

more relavant results to the CoI’s topics and the users satisfaction of the usage

of ASF. The standard measurement,OSim and KSim matrics, have been used

in order to evaluate the performance of SAKERank algorithm. And the SUS’s

post-test survey was conducted to get the feedback from the participants after the

use of ASF. The results suggest the framework which applied the SAKE model

could benefit both people and community. We strongly believe that over time
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our model and framework can help people get better search results and help the

community increase productivity.

For the future work we will investigate more on:

• To test ASF in a variety type of community, ASF will be deployed in differ-

ent communities to determine whether our proposed solution should target

what size and topic of community.

• How to classify the expert from the community using search behavior. To

do this, it may be necessary to predefine a set of experts related to the

community, or to develop a method to let the ASF identify users and their

expertise from their searches.

• Personalization will be integrated into ASF in order to fine-grained the

results and make them more relevant to each user.

Finally, we believe that this research could contribute in one way or another

to the people and community which are seeking the way to retrieve the knowledge

from users’ search behavior and encourage them to share their knowledge with

no time.
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Figure 10.1. Ideal Result sets for ten topics inside Software Engineering Labora-

tory. Each topic contains 10 websites which are ranked by participants in expert

group. The highlight urls are the overlap results of ASF and Ideal results.
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Please rank 10 websites that contain the information to complete your given topics.

For participants in expert group

The following instruction was explain to each participant before they begin the tasks

For participants in experienced and newcomer group

1) First of all, please create an account on ASF. Participant need to login on your ASF account while searching for the 

information to complete the task.

2) This task contains ten topics which are related to your community.  Each topic has 3 question. Participant has one 

week to answer all the question. There are no right or wrong answers in this study. But ASF will re-ranking webpages 

based on your search activities. Just do your best to answer each question and you will be able contribute the 

knowledge for other members inside the community.

3) Before you begin to search, please check out the link inside the relevant topic that has been bookmarked from the 

previous members. Also please bookmark webpage that you think it contains good information and worth for the 

others.

4) When participant search or create topic for bookmark, please consider to use the topic name as a part inside the 

keyword.

1. Ajax tutorial

1.1 What is ajax? 

1.2 Please write a diagram how Ajax work? (server and client)

1.3 Please fill in the blank in order to make this code work.

<script>

function loadXMLDoc()

{

var xmlhttp;

 xmlhttp=new XMLHttpRequest();

xmlhttp.onreadystatechange=function()

  {

  if (xmlhttp.readyState==4 && xmlhttp.status==200)

    {

    document.getElementById("myDiv").innerHTML=xmlhttp.responseText;

    }

  }

xmlhttp.open("GET","ajax_info.txt",true);

xmlhttp.send();

}

</script>

<button type="button"__________="loadXMLDoc()">Change Content</button>

2. Text mining method

2.1 What is the definition of text mining?

2.2 Please list 4 Typical Applications for Text Mining. 

2.3 Please list 5 text mining tools that are useful for researchers.

3. Software metrics for agile software development

3.1 Why do we need matrices in software development?

3.2 What is agile software development?

3.3 Please list 6 criterias that you need to measure in agile software development.

4. Web service

5.1 What is web service?

5.2 List  2 major classes of Web services.

5.3 What is SOAP stand for? 

Figure 10.2. Sample of the given tasks. (Page 1)
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5. Java programming tutorial

4.1 How Java enabled High Performance?

4.2 List 5 features of Java?

4.3 Please fill in the blank for the missing code in order to printout number 10 to 20.

public class Test {

   public static void main(String args[]) {
      int x = 10;

      while( _______ ) {
         System.out.print("value of x : " + x );
         ???
         System.out.print("\n");
      }
   }
}

6. Object oriented design

6.1 Why do we need to use design pattern in software engineering?

6.2 list 5 object oriented designs and explain the usage.

6.3 What is the pattern that used for centralized management of internal or external resources and they provide a 

global point of access to themselves is this? (Please also write down the UML)

7. Empirical study in software engineering

7.1 Why do we need empirical study in software engineering? 

7.2 List 3 basic concepts for empirical software engineering.

7.3 Give one example of qualitative method in empirical software.

8. Software development effort estimation

8.1 Why do we need empirical study in software engineering? 

8.2 List 3 basic concepts for empirical software engineering.

8.3 Give one example of qualitative method in empirical software.

9. Software maintenance technique

9.1 Why do we need to maintain the software?

9.2 List 4 topics for software maintenance.

9.3 Give one example of tool used for software maintenance.

10. Software product line

10.1 What is software product line?

10.2 Why is software product line important?

10.3 Please explain "Mass customisation".

Figure 10.3. Sample of the given tasks. (Page 2)
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1. I think ASF gives results which are 
relevant to the tasks.

2. I think results from ASF are better 
than conventional search engines 
(Google, Bing, etc.)

1 2 3 4 5

1 2 3 4 5

3. I think help me reduce time on 
searching.

1 2 3 4 5

4. I found that It easier to organize 
search results using ASF.

1 2 3 4 5

5. I think ASF allow me to share my 

search results easily.

1 2 3 4 5

6. Sharing results is effortless

1 2 3 4 5

7. I found that ASF very enjoyable. 

1 2 3 4 5

8. I found that ASF very easy to use. 

1 2 3 4 5

9. I need to learn a lot of things before I 

could get going with this system. 

1 2 3 4 5

10. I feel that I need to have it.

1 2 3 4 5

Strongly 

disagree

Strongly 

  agree

Figure 10.4. System Usability Scale, it consists of 10 statements to which users

rate their level of agreement. three of statements are about information seeking,

another three are about knowledge sharing and management, and the last four

statement are the ease of usage.
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