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Human Activity and Environment Recognition

on Mobile Devices∗

Yuki Maruno

Abstract

mHealth, the use of mobile devices and other wireless technology in health care

and public health, is a rapidly expanding area of research and practice. mHealth

applications help people manage their own health, promote healthy living, and

gain access to useful information. In building such applications, advanced mobile

sensors are used. However, they consume too much energy.

In this dissertation, we propose methods toward mHealth applications, which

deals with the limitation in available electric power. To reduce energy consump-

tion, we use a single sensor for each of the following tasks, which are recognition

of human activity and recognition of the user’s environment. For human activity

recognition, we use a three-axis accelerometer, which is equipped with almost

any mobile device. In order to maintain high accuracy in recognition with low

computational cost, we employ the wavelet transform and the singular value de-

composition during feature extraction. For environment recognition on the other

hand, we use a microphone to capture the environmental sounds. To ensure suf-

ficient location coverage, the data collection is designed based on people’s daily

routines, which enables coverage of a wide range of environments including pub-

lic transportation, offices, streets, and shopping malls. In order to classify the

17 environments, we make use of several audio features from time domain and

frequency domain.

With regard to experimental results, the algorithm used was able to classify

user activities into walking, running, standing still and being in a moving train

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1261015, January 30, 2015.
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with accuracy of over 90%. As for environment recognition, accuracy of over

80% for the 17 environments was achieved. The proposed method deals with the

limitation in available electric power, thereby addressing an mHealth application

issue.

Keywords:

Context Awareness, Mobile devices, Accelerometer, Microphone, Wavelet trans-

form, Singular value decomposition
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モバイルデバイスを用いたユーザの行動

および環境推定 ∗

丸野 由希

内容梗概

近年，スマートフォンやタブレットなどのモバイル端末が急速に普及し，そ
のアプリケーションは多様化してきている．中でも，ユーザの状況（コンテキス
ト）に応じたサービス提供のためのアプリケーションが近年注目をあびている．
それらのアプリケーションには，ユーザがおかれた状況や環境を知ることが重要
である．
そこで本論文では，モバイル端末上で動作するアプリケーションのためのユー

ザ行動認識手法およびユーザの環境推定手法を提案する．技術の発展により，モ
バイル端末には，カメラ，GPS，加速度センサ，マイク，照度センサ，地磁気セ
ンサ，温度センサなど，様々なセンサが搭載されている．センサの多様化により，
複数センサを組み合わせるなどして，より高度なユーザの状況推定が可能になっ
た一方で，消費電力の問題が大きな課題となっている．例として，GPS による測
位においては，通信により多大な電力を消費する．
本研究においては，ユーザ行動認識ではモバイル端末で一般的になっている

単一の３軸加速度センサのみを使用し，低消費電力で高い認識精度の実現を試み
た．特徴抽出には衝撃的な信号をよく抽出できるとされるウェーブレット変換を
用いた．さらに特異値分解を用いて特徴選択を行い，ユーザ行動を「走行」，「歩
行」，「静止」，「乗車中」の４状態に識別した結果，90%以上の識別率を実現した．
一方，ユーザの環境推定では，モバイル端末に搭載されたマイクロフォンを使用
して，公園やレストランといった，ユーザが現在おかれている環境を推定するこ
とを試みた．特徴量を工夫する事で，17種類の環境において 80%以上の識別率を
実現した．

∗奈良先端科学技術大学院大学情報科学研究科情報科学専攻博士論文, NAIST-IS-DD1261015,

2015年 1月 30日.
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Chapter 1

Introduction

The use of portable electronic devices such as mobile phones, tablet computers

and personal digital assistants (PDAs) has been widely recognized as an efficient

way to improve our daily life. In fact, most people always have their mobile

devices with them [1]. These mobile devices are equipped with powerful embedded

sensors, such as accelerometers, Global Positioning System (GPS), microphones,

and cameras, which enable new applications across a wide range of domains,

including business, healthcare, social networks, safety, environmental monitoring,

and transportation [2]. The data from such sensors could be harnessed to provide

valuable services or applications based on a user’s situation or context without

prompting the user, which is known as context awareness [3, 4]. For example,

context aware devices could automatically turn on silent mode (no ring tone, but

vibration) when the user is on a train. Context aware devices may also be used

for health care purposes. If mobile devices record a user’s context constantly, the

information would be helpful when doctors give a diagnosis. It would also be

practically useful for people to pay attention in time to their recent unhealthy

behavior patterns and change them, such as adding more exercise, which could

improve their health.

There have been various researches to estimate the user contexts from sev-

eral sensor data. Iso et al. [5], for example, proposed a gait analyzer with an

acceleration sensor on a mobile phone. They extracted features by the wavelet

packet decomposition and classified them with a self-organizing algorithm based

on Bayesian theory. Their algorithm could identify gaits such as walking, run-
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ning, going up/down stairs and walking fast with an accuracy of about 80% in

their experiments. Cho et al. [6] estimated the user contexts with a combination

of acceleration sensor and GPS. They overcame the problem of confusion between

standing still and being in a moving train in classifying walking, running, and

the previous two contexts by using the GPS information in addition to the ac-

celeration sensor. Although they achieved an accuracy of 90.6%, GPS sensors

do not work well indoors or underground [7]. Moreover, high-load computation

and using multiple sensors are energy consuming though a long standby time is

another important aspect of a mobile phone.

1.1 Context Awareness in Healthcare

Context awareness in healthcare is a rapidly expanding area of research and

practice. The use of mobile devices and other wireless technology in health care

is commonly referred to as mHealth, which has the potential to change when,

where, and how healthcare is provided. mHealth applications help people manage

their own health and wellness, promote healthy living, and gain access to useful

information. Apple and Google have recently announced their mHealth platforms

successively. Apple introduced the HealthKit [8], an mHealth platform that allows

health and fitness applications to share their data. Google developed Google

Fit [9] for mHealth which allows various applications to share health data for

individual users to create a complete picture of their fitness. Such mHealth

platforms require sensing and inference to determine the user context.

In this dissertation, we propose methods toward mHealth applications, which

deals with the limitation in available electric power. In building such applications,

the following technical problems need to be solved: a) recognition of human activ-

ity and b) recognition of the user’s environment. Instead of relying on advanced

mobile sensors, we use a single embedded sensor, a three-axis accelerometer for

human activity recognition and a microphone for human environment recognition,

which are equipped with almost any mobile phone.

2



1.2 Organization of Dissertation

This dissertation is organized as follows. In Chapter 2, we propose a new ap-

proach to recognize human activity for mobile applications. We first introduce

the components of the proposed method, the wavelet transform and the singular

value decomposition, and then describe the details of the experiments as well as

the results. We also discuss the mother wavelet and an alternative of the wavelet

transform. In Chapter 3, we propose a new approach to recognize the user’s

environment for mobile applications. We first give a review of previous studies

on environmental sound recognition, and then describe data collection and data

labeling in multi-task. We discuss audio feature extraction for environmental

sound classification and then analyze the environmental sound towards sound

health understanding. Chapter 4 concludes this study with detailed discussions

and recommendations for future research.

3



Chapter 2

Human Activity Recognition on

Mobile Devices

2.1 Introduction

Mobile devices including mobile phones are daily necessities in modern society.

Since modern mobile devices are equipped with multiple sensors such as micro-

phones, cameras, Global Positioning System (GPS) and accelerometers, the data

from such sensors could be harnessed to provide valuable services or applications

based on user’s context. In this chapter, we propose a method for mobile devices

to recognize a user’s context. In order to reduce the electric-power consumption,

the method uses only a single three-axis accelerometer equipped with almost ev-

ery mobile device. The signal of the accelerometer is transformed by the wavelet

transform [10] since its effectiveness was shown by Mantyjarvi et al. [11] after

a normalization so that the signal is device-direction-free. Here, we employ the

Haar mother wavelet for a low computational load. The high dimensionality of

the wavelet coefficients is reduced using the singular value decomposition (SVD)

for a high accuracy and a low computational cost [12, 13]. The largest and the

second largest singular values are used as the input of the classifier to four states:

walking, running, standing still and being in a moving train. Our classifier is a

multi-layer perceptron (MLP) [14].

4



2.2 Proposed Method

Our method classifies the user’s contexts into four states, walking, running, stand-

ing still and being in a moving train, with a single three-axis accelerometer on

a mobile device. Its flow is depicted in Fig. 2.1. The three-axis accelerometer

outputs time-series of the X-, Y- and Z-axis accelerations. These are preprocessed

to a direction-free sequence. Then, the wavelet transform extracts its features,

which the SVD reduces to a two-dimensional signal at a time. Finally, the signal

is classified by an MLP trained with learning data. The details are described in

the following subsections.

Figure 2.1. Workflow of the proposed method

2.2.1 Preprocessing for Direction-Free Signals

In this study, we assume that a user carries a mobile device steadily but unre-

strictedly in the direction. This means we consider the case where a mobile phone

is in a pocket or a handbag. Fig. 2.2 shows examples of “standing still” data and

“train” data. Although both Fig. 2.2 (a) and (b) are “standing still” data, they

were measured at different device direction. Since the signal produced by the

three-axis accelerometer in the device is three-dimensional time-series dependent

on the direction of the device (Fig. 2.2 (a)(b)), it should be preprocessed so as to

5



be device-direction-free. We chose the magnitude of the acceleration (Fig. 2.3) as

a device-direction-free signal calculated from the three-dimensional signal, that

is,

f(t) =
√
X2(t) + Y 2(t) + Z2(t), (2.1)

where X(t), Y (t) and Z(t) are the values of X-, Y - and Z-axis accelerations at

time t, respectively. Note that (a), (b), and (c) of Fig. 2.2 correspond to those of

Fig. 2.3.

2.2.2 Feature Extraction

Cho et al. [6] reported that “standing still” and “train” were frequently confused

due to their similar waveforms (Fig. 2.3) and statistics (Table 2.1). Note that

(a), (b), and (c) of Table 2.1 correspond to those of Fig. 2.3.

Table 2.1. Basic statistics of Fig. 2.3.

Max Average Variance

(a) standing still 1.064 1.012 0.00013

(b) standing still 0.996 0.956 0.00012

(c) train 1.079 0.993 0.00054

To discriminate these states and two others, we employed the wavelet trans-

form that is a tool for nonstationary time-series analysis [10]. The wavelet coeffi-

cient W (a, b) of a time-series f(t) with scale parameter a and translation param-

eter b is defined as

W (a, b) = ⟨f(t),Ψa,b(t)⟩ (2.2)

=

∫ ∞

−∞
f(t)

1√
a
Ψ∗

(
t− b

a

)
dt, (2.3)

where Ψ(t) is a fixed function called the mother wavelet and ∗ denotes the complex

conjugate. We used the Haar mother wavelet

Ψ(t) =


1, if 0 ≤ t < 1

2

−1, if 1
2
≤ t < 1

0, otherwise

(2.4)
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Figure 2.2. Examples of data. X- (light gray), Y- (dark gray), Z- (black) axis

acceleration of two“ standing still”data (a, b) and one“ train”data (c).
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(a) standing still

(b) standing still

(c) train

Figure 2.3. The magnitude of the acceleration in Fig. 2.2.
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since the wavelet coefficients are calculated without multiplications, which leads

to a low computational load. See Fig. 2.4 for examples of the wavelet transform.

2.2.3 Dimensionality Reduction

In general, the wavelet coefficients are high-dimensional. For example, if win-

dow length is 100 and scale parameter is 55, wavelet coefficients are 5,500. High

dimensionality leads to not only an electric-power consumption but also degra-

dation of performance due to overfitting [15]. To overcome these problems, we

reduced the dimensions using the singular value decomposition (SVD).

The SVD decompose an m× n real-valued matrix X ∈ Rm×n to X = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices and Σ ∈ Rm×n is

a diagonal matrix. The diagonal elements of Σ, σ1, . . . , σmin(m,n) are called the

singular values. By convention σ1 ≥ σ2 ≥ · · · is assumed.

The conventional dimensionality reduction based on the SVD projects data

into the subspace spanned by the k principal components for a fixed k. However,

our method employed the singular values themselves. That is, the feature vector

of our method was (σ1, σ2, . . . , σk). In fact, our preliminary experiments showed

that the four states were well separated in the space of (σ1, σ2), that is, in the

case of k=2 (Fig. 2.5).

2.2.4 Classification

The final procedure is to classify feature vectors to one of the four states, walk-

ing, running, standing still, and being in a moving train. Since the states were

well separated in the space of (σ1, σ2), we employed the standard multi-layer

perceptron (MLP) with five hidden nodes. We selected the number of hidden

nodes based on our preliminary experiments. The MLP was trained using the

Broyden-Fletcher-Goldfarb-Shanno quasi-Newton method [16].

2.3 Experiments

In order to confirm the effectiveness of our method, the authors carried out some

experiments for user-state recognition.

9



(a) walking (b) running

(c) standing still (d) being in a moving train

Figure 2.4. Examples of wavelet transform of the magnitude of the acceleration
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(a) all contexts

(b) standing still and in a train (the enlarged figure of

Fig. 2.5(a) )

Figure 2.5. Plot of feature vectors in our preliminary experiments.
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2.3.1 Materials

The data for walking, running and standing still were collected from HASC2010

corpus ∗ while those for being in a moving train were originally measured since

the corpus did not include such data. HASC2010 corpus originally include six

activities: “stay”, “walk”, “jog”, “skip”, “stair up”, and “stair down”. In our

research, we only used “stay”, “walk”, and “jog”, which corresponds to “stand-

ing still”, “walking”, and “running”, respectively. In general, signal data may

vary over time or situation in real world practice. For example of moving train,

signals may differ when person is standing or sitting in a train. Thus, several

measurements were conducted at different situations and trains to ensure the sit-

uation coverage of data collection. Eight participants (seven in the corpus; one

in our experiment) carried their mobile phones as they liked (Table 2.2). Each

participants conducted the measurement five times for each activity, which means

each activity has 35 data files. In total, 140 data files were used. We divided our

dataset at random into training (20%) and test (80%) sets.

Table 2.2. Position of mobile phones

Participant No. Sensor position

1 waist pocket or hand

2 waist pocket

3 waist pocket

4 breast pocket

5 waist pocket or hand

6 waist pocket or hand

7 upper arm (fixed)

8 bag or hand

2.3.2 Recognition Accuracy

Since the recognition accuracy and electric-power consumption increase as the

sampling rate and the time-window width increase in general, we saw the de-
∗http://hasc.jp/hc2010/HASC2010corpus/hasc2010corpus-en.html

12



pendency of the recognition accuracy on the sampling rate and the time-window

width.

The recognition accuracy of each condition was described in Table 2.3. We

used F-measure for our evaluation. First, we calculated the Precision and Recall

defined as:

Precision = TP / (TP + FP) (2.5)

Recall = TP / (TP + FN) (2.6)

where TP, FP and FN mean True Positive, False Positive and False Negative,

respectively. Then, F-measure for each context was calculated defined as

F = (2Recall× Precision) / (Recall + Precision). (2.7)

F-measure in Table 2.3 is mean value of four contexts.

Our method achieved an accuracy of more than 90 % if the sampling rate

is more than 25 Hz and the time-window width is more than 1 second. The

Table 2.3. Average Accuracy

Rate \Width 0.5 sec 1 sec 2 sec 3 sec

10 Hz 84.9% 88.1% 90.7% 91.8%

25 Hz 89.2% 92.6% 92.5% 92.5%

50 Hz 90.5% 92.9% 94.1% 93.0%

100 Hz 91.0% 93.9% 93.6% 93.6%

accuracy of our method is better than the conventional method in [6] except three

conditions where time window of the wavelet transform is less than 1 second (Fig.

2.6).

2.3.3 Computation Time

Since the electric-power consumption is proportional to the computational com-

plexity, we evaluated the computation time instead. The authors performed our

method and the conventional method in [6] with R on a PC with Intel XEON(R)

3.20 GHz.
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Figure 2.6. Accuracy comparison of our method (solid lines) with the conventional

method (dashed lines).
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The results of our method and the conventional method show that the com-

putation time of our method increases in the order of O(N) and that it is only

twice as much as that of the conventional method when the sampling rate is 10

Hz (Fig. 2.7). This implies that our method is available to smart devices since

the conventional method has already worked on smart devices and the hardware

performance of smart devices improves according to Moore’s Law [17]. In fact,

the Geekbench 3 scores of iPhone 4, iPhone 5 and iPhone 6 are 207, 710 and

1610, respectively [18].

Figure 2.7. Computation time comparison of our method (solid lines) with the

conventional method (dashed line).

2.4 Discussion

In our experiments, our method performed better than and had twice as much

computation time as the conventional method. Since the conventional method

uses the GPS [6], it might consume more electric power than ours.
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2.4.1 Mother Wavelet Comparison

We used the Haar mother wavelet because of its computation load. However, there

are several mother wavelets such as Gaussian and Mexican hat. We compared

them in terms of accuracy and computation time.

Tables 2.4 and 2.5 show the accuracy for each mother wavelet and the cal-

culation time per estimation, respectively. Although the accuracy is almost the

same, the calculation time of Haar mother wavelet is less than half of the others,

indicating that the Haar mother wavelet is suitable for our method.

Table 2.4. Dependency of accuracy on mother wavelet

Time-window width 0.5s 1s 2s 3s

Haar 91.0% 93.9% 93.6% 93.6%

Mexican hat 91.1% 94.3% 93.9% 93.9%

Gaussian 91.2% 94.1% 93.5% 94.1%

Table 2.5. Dependency of computation time on mother wavelet

Time-window width 0.5s 1s 2s 3s

Haar 0.014sec 0.023sec 0.041sec 0.058sec

Mexican hat 0.029sec 0.062sec 0.129sec 0.202sec

Gaussian 0.029sec 0.061sec 0.128sec 0.200sec

2.4.2 Comparison with Short-Time Fourier Transform

An alternative of the wavelet transform is the short-time Fourier transform (STFT).

We visualized them to compare as below.

Fig. 2.8 shows examples of the STFT for the same signals as Fig. 2.4. The

difference between “standing still” and “in a moving train” in Fig. 2.8 as that

in Fig. 2.4. This is because the time duration of the STFT should be fixed over

the whole time course. This means that the STFT has a low time resolution for

low frequency and a high time resolution for high frequency, which is not suitable
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to extract the difference between the confusing states. In fact, the accuracy of

STFT is 25%, which is much lower than ours.

2.5 Conclusion

We proposed a method for mobile devices that recognize the user’s contexts.

This requires only a single three-axis accelerometer and extracts features using

the wavelet transform with the Haar mother wavelet. The feature space is reduced

to two dimensions by the SVD, where the largest and the second largest singular

values are features. The two features are classified by a multi-layer perceptron to

one of the four user-states, walking, running, standing still and being in a moving

train.

We investigated the dependency of its performance and computation time on

the sampling rate and the time-window width by experiments with public data.

The proposed method discriminated the user’s contexts with accuracy of over

90% in most cases, which is better than the conventional method although its

computation load is comparable.
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(a) walking (b) running

(c) standing still (d) being in a moving train

Figure 2.8. Example of STFT. The x- and y-axis represent the time and the

frequency.
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Chapter 3

Environment Recognition on

Mobile Devices

3.1 Introduction

In our daily life, we are exposed to many types of sounds including environmental

sound, which has both positive and negative impact on our health although the

relationship of noise to the human environment is complex. Health is defined

by the Constitution of the World Health Organization as ‘a state of complete

physical, mental and social well-being and not merely the absence of disease or

infirmity’ [19], suggesting that sound exposure affects not only our health but

also quality of life and well-being. In many studies, sound levels are used as

noise metrics, which represents loudness of the sound. However, they are just one

factor of sounds and are not enough for understanding the relationship between

environmental sound and our health. In order to analyze the relationship from

several points of view, we capture the sound in real environment with mobile

phones, because mobile devices, including mobile phones and smart phones, have

become indispensable in our daily lives. People carry their mobile devices almost

everywhere at all times. One of the advantages of using the environmental sounds

is that we are able to address the following technical problems simultaneously: a)

to recognize environment wherever people go to; and b) to identify the health sta-

tus of the environment. Other sensors such as Global Positioning System (GPS)

or sound-level meter can not address the problems at the same time. In the case
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of GPS, we can only know the environment but can not identify health status.

Sound-level meter can be useful to identify the health status but not to know the

environment. In addition, some mobile phones are not equipped with some ad-

vanced mobile sensors. On the other hand, all mobile phones are equipped with a

microphone sensor, which allows to capture environment sounds. Although many

research addresses either environmental sound recognition or sound exposure and

health, we consider both of them for mHealth application.

To explore health understanding of environmental sounds, we derive sound

health analysis as three correlated sound pattern recognition: a) routine and envi-

ronment classification, to recognize which environment that the sound is recorded

from; b) space categorization, to categorize open or closed space of the sound;

and c) health distinction, to distinguish sound health impact in terms of people

opinion. In this chapter, we propose using transfer learning for health under-

standing. Transfer learning is motivated by the fact that people can intelligently

apply knowledge learned previously to solve correlated new problems faster or

with better solutions. The core of transfer learning is the modeling of knowledge

transfer (KT), which aims to extract the knowledge from one or more source

tasks and applies the knowledge to a target task. We expect that a system can

smartly address the above three tasks at the same time, then the system must

have a good knowledge of environmental sound toward health understanding.

3.2 Related Work

3.2.1 Sound Exposure and Health

Noise exposure could induce hearing impairment, hypertension and ischemic heart

disease, annoyance, sleep disturbance, and decreased school performance [20]. Ta-

ble 3.1 gives an overview of the noise effects research based on the report by the

Committee on Noise and Health, an international committee of the Health Coun-

cil of the Netherlands [21]. A scientific evidence of causal relationship between

noise and health has been rated in terms of ‘sufficient’, ‘limited’, ‘inadequate’, or

‘lack’, respectively. The observation threshold as the lowest noise exposure level

also has been defined only if the evidence is sufficient.
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Table 3.1. Long term effects of noise exposure

Effect Scientific

Evidence

Measurement/

Threshold

Reference

Hearing impairment Sufficient LAeq,24h, 70 [22]

Hypertension Sufficient Lden, 70 [21]

Ischaemic heart disease Sufficient Lden, 70 [21]

Biochemical effects Limited N/A [21]

Immune effects Limited N/A [21]

Birth weight Limited N/A [21]

Prenatal disorders Lack N/A [21]

Annoyance Sufficient Lden, 42 [23]

Psychosocial well-being Limited N/A [21]

Performance at School Sufficient LAeq,school, 70 [20]

Noise can be described by various metrics such as the A-weighted decibel

scale, sound level equivalents, day-night average sound levels, and percentile lev-

els. Since the human hearing organ is not equally sensitive to sounds of different

frequencies, the sound pressure level (L) is ’A-weighted’ and expressed as dB(A),

which is the most common metrics of sound and environmental noise. The A-

weighted equivalent continuous sound level is denoted LAeq. If the level is nor-

malized to an 8-hour workday, it is denoted LAeq,8h. If it is over a period of T

hours, then it is denoted LAeq,T and is defined as follows:

LAeq,T = 10 log

(
1

T

∫
10L(t)/10

)
dt (3.1)

where L(t) is the A-weighted sound level at time t and T is the duration of the

exposed period in seconds. The day-evening-night equivalent level is denoted Lden

and is defined as follows:

Lden = 10 log
1

24

(
12 ∗ 10Lday/10 + 4 ∗ 10(Levening+5)/10 + 8 ∗ 10(Lnight+10)/10

)
(3.2)

where Lday is the A-weighted average sound level over the 12 hour day period

of 7 – 19 h, Levening is the A-weighted average sound level over the 4 hour day
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period of 19 – 23 h, and Lnight is the A-weighted average sound level over the 8

hour day period of 23 – 7 h. Levening and Lnight have an adjustment of 5 and 10

dB(A) respectively to take account of the difference in annoyance due to the time

of day.

As seen above, noise impacts our health in the ways as listed in Table 3.1.

However, no deterministic relationship has been discovered so far about how

environmental sound leads to a certain health status. This paper discovers fea-

ture and conducts classification towards predictive environmental sound health

understanding. In addition, we propose using transfer learning for health under-

standing.

3.2.2 Environmental Sound Recognition

Environmental sound recognition has received more attention in recent years.

Several features have been used to describe audio signals. Mel-frequency cepstral

coefficients (MFCCs) are one of the popular features in audio classification and

speech recognition. Due to a lack of a standard database for environmental sound

recognition, MFCCs are often used by researchers for benchmarking their work

[24]. Other commonly-used features for audio signals include Zero-crossing rate

(ZCR), Short-time average energy, Spectral centroid, Bandwidth, Band-energy

ratio, Spectral roll-off, Linear prediction coefficients (LPC), and Cepstral coeffi-

cients [25].

Peltonen et al. [25] classified auditory scenes into 17 scenes out of 26 scenes,

which were Street, Road, Nature, Construction site, Market place and Amuse-

ment park for outdoors, and Car, Bus, Train and Subway train for vehicles,

and Restaurant/cafe, Pub, Supermarket, Lecture pause and Crowd/indoors for

public/social places, and Office, Lecture/meeting and Library for offices/meeting

rooms/quiet places, and Living room, Kitchen, Bathroom and Music for home,

and Church, Railway Station, Subway station and Hall for reverberant. For

data collection, they considered various configurations: a binaural setup (a Brel

& Kjaer 4128 head and torso simulator), a stereo setup (AKG C460B micro-

phones), and a B-format setup (Sound-Field MkV microphone). They recorded

the sounds on a digital multitask recorder with a 16-bit, 48-kHz sampling rate and

a Sony (TCD-D10) digital audio tape recorder with a 16-bit, 48-kHz sampling
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rate. They made a comparison with different features such as LPC, Band-energy

and ZCR, and showed that MFCCs used in conjunction with Gaussian Mixture

Model (GMM)-based classifier performed well for an auditory scene recognition

experiment involving identifying 17 different auditory scenes from 26 scenes. They

obtained a recognition accuracy of 63.4%. Ma et al. [26] classified the acoustic en-

vironment into 10 environments, which were Office, Lecture, Bus, Urban driving,

Railway station, Beach, Bar, Laundrette, Soccer match and City center street.

A high quality microphone and portable recorder were used to capture the au-

dio examples. They used MFCC features and a hidden Markov model (HMM)

classifier, and achieved over 90% accuracy although humans averaged only 35%

on the same data. Chu et al. [27] proposed to use the Matching Pursuit (MP)

based algorithm to obtain effective time-frequency features. They compared the

recognition accuracy using MP, MFCC and their combination for 14 classes of

sounds, which were Inside restaurants, Playground, Street with traffic and pedes-

trians, Train passing, Inside moving vehicles, Inside casinos, Street with police

car siren, Street with ambulance siren, Nature-daytime, Nature-nighttime, Ocean

waves, Running water/stream/river, Raining/shower, and Thundering. They ob-

tained sound clips from BBC Sound Effects Library - Original Series [28] and the

Freesound Project [29]. For classification, k-nearest neighbor and GMM classifiers

were tested. The MP features performed better than MFCC. By combining MP

and MFCC features, they obtained a recognition accuracy of 83.9%. They also

compared with other commonly used features such as ZCR, Band-energy ratio,

and Spectral centroid. The average recognition accuracy was 55.2%, which was

much worse than using combined MFCC and MP features. In a subsequent pa-

per by Chu et al. [30], they proposed a framework for a composite of deep belief

networks (composite-DBNs) to recognize 12 different types of everyday environ-

ments obtained sound clips from BBC Sound Effects Library - Original Series

[28], which were Inside casino, Playground, nature-daytime, Inside restaurants,

Next to rivers/streams, Train passing, Inside vehicles, Raining, Street with traf-

fic, Ocean waves, and Thundering. MP-features and MFCC were used, and DBN

was compared with GMM. The DBN provided the better performance.

Our target application is on life environment sound and health analysis. De-

spite all previous efforts on environmental sound recognition, sound is recorded
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by special device. This does not satisfy the scenario of our life environment

application. Moreover, there is no previous work reviewed in this section on pre-

dicting sound relation to health. On the other hand, our work is environmental

sound health understanding, which covers firstly environment recognition, and

then sound and health correlation analysis.

3.3 Environmental Sound Health Understand-

ing

For health understanding, we firstly consider the basic problem, that is, which

environment the sound comes from. As we know, some environment such as

park and beach have mostly positive impact on our health, whereas others like

airport noise have negative impact. Thus environment, in some sense, determines

the health impact of sound. To address this, we specifically observe routine

including going to the office/school, relaxing in a park, and doing some exercise,

as sound may generate because of some specific human (i.e., people who conduct

sound recording) activities. We also observe environment (i.e., the location of the

sound) including street, park, and shopping mall, as sound comes from objects

in a specific environment.

On top of environment and routine, we also look at the space characteristic

of the sound. Sound from open space differs to that from closed space, in terms

of not only sound spectrum but also health impact. At this point, we observe

characteristic of each environment as indoor, outdoor, nature, and transport.

Here we separate natural environment from outdoor, because nature does not

include the sound related to technology. Nature is almost equivalent to the label

of health. And we specifically look at environment related to transport because

transport is one of the important daily life activities, and it includes both indoor

and outdoor.

Most importantly, we certainly consider health distinction. In practice, it is

often difficult for us to judge the health impact of one type of sound, unless we

conduct a long term medical experiments on people. For the convenience, we

simply distinguish sound health impact in terms of the comfortableness to peo-

ple, as comfortableness in most cases represents the health, according to [19]. For
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the convenience of expression, we will use the term “health” instead of comfort-

ableness throughout the rest of paper.

Although the environment and space characteristic does not determine the

health status of sound directly, the above three concepts are correlated in a way

that environment and space characteristic of sound present different types of

evidence to health status; and compared to the environment concept, the space

characteristic of sound gives more sense of health status.

It is natural to think about using knowledge of environment and space char-

acteristic to facilitate the health understanding of environmental sound, in terms

of machine learning. Thus, we consider three classification tasks, environmental

classification, space categorization, and health distinction, and conduct transfer

learning for an enhanced health understanding.

Specifically, this includes three transfer learning as (1) environment to health;

(2) space to health; and (3) environment to space, where the third transfer learn-

ing guarantees the validity of the first two knowledge transfer. Fig. 3.1 gives

the general system dialog of transfer learning based environmental sound health

understanding.

Figure 3.1. System dialog of transfer learning based environmental sound health

understanding
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3.4 Audio Feature Extraction for Environmen-

tal Sound Classification

Signals have both time and frequency domain representations.

3.4.1 Time-Domain Features

Root Mean Square (RMS) [31, 32], often used as a measure of loudness, is defined

as follows:

RMS =

√∑N
n=1 F

2
n

N
(3.3)

where N is the number of samples in a frame, and Fn is the value of the n-th

sample of a frame. It is computationally inexpensive and easy to implement.

Zero-crossing rate (ZCR), an indicator for the noisiness of the signal, is defined

as the number of times that a signal changes signs within a particular frame,

which has been widely used in voice activity detection, voiced/unvoiced speech

classification and music/speech classification [33, 34]. It also, together with RMS,

can be used to make a simple speech/no speech distinction. ZCR is calculated as

follows:

ZCR =
1

N

N∑
n=1

|sgn[Fn]− sgn[Fn−1]| (3.4)

where sgn[.] is a signum function, N and Fn are as defined previously.

3.4.2 Frequency-Domain Features

Frequency-Domain features are calculated using the frequency spectrum of a sig-

nal.

Spectral Roll-off point [32, 35], a measure of the skewness of the spectral

sharp, is defined as the frequency Rt below which a certain amount (threshold)

of the magnitude distribution is concentrated

Rt∑
n=1

Mt[n] = P ∗
N∑

n=1

Mt[n] (3.5)
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where Mt[n] is the magnitude of Fourier transform at frame t and frequency bin

n, P is the threshold in percentage, and N is the number of samples in a frame.

The threshold in our experiments is 0.85.

Spectral Centroid (SC) [32, 35], a measure of brightness and general spectral

shape, represents the balancing point of the spectral power distribution. The SC

for a frame is computed as follows:

SC =

∑N
n=1 n ∗ |Mt[n]|2∑N

n=1 |Mt[n]|2
(3.6)

where N , Mt[n] and n are as defined previously.

Bandwidth (BW) [36] is computed as the magnitude weighted average of the

distance between the SC and the spectral components. BW is defined as

BW =

∑N
n=1 (n− SC)2 ∗ |Mt[n]|2∑N

n=1 |Mt[n]|2
(3.7)

where N , Mt[n], n and SC are as defined previously.

Band Energy Ratio (BER) [37] is the ratio of the energy in a certain frequency-

band to the total energy. BER is defined as

BER =

∑n=K2

n=K1
|Mt[n]|2∑N/2−1

n=1 |Mt[n]|2
(3.8)

where K1 and K2 are the frequency points of the given frame, N and Mt[n] are

as defined previously. In our experiments, four logarithmic sub-bands are used.

MFCCs [38] were extracted applying the discrete cosine transform (DCT) to

the log-energy outputs of mel-scaling filter-bank.

3.5 Transfer Learning towards Sound Health un-

derstanding

Transfer learning is motivated by the fact that people can intelligently apply

knowledge learned previously to solve correlated new problems faster or with

better solutions. The core of transfer learning is the modeling of knowledge

transfer (KT), which aims to extract the knowledge from one or more source tasks
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and applies the knowledge to a target task. Note that the roles of the source and

target tasks are not symmetric, transfer learning in contrast to multitask learning

cares most about the target task [39].

3.5.1 Existing Knowledge Transfer Approaches

Research on transfer learning has attracted more and more attention since 1995

[40]. Based on characteristics of KT bridges, the different approaches in the

literature can be divided into the following categories: inductive bias sharing ap-

proaches, memory item sharing approaches, and probability sharing approaches.

In inductive bias sharing approaches, the learning system gives a prior as-

sumption to the previous knowledge, which is considered as an inductive bias

to knowledge transfer implementation [41]. In memory item sharing approaches,

the learning system performs knowledge transfer based on the training examples

stored in long-term memory, known as memory items [42]. In probability sharing

approaches, the learning system utilizes the hierarchical Bayesian framework to

provide knowledge transfer for a new learning task [43]. These knowledge transfer

approaches mentioned above attempt to discover the relatedness between tasks

into an embedding learner/classifier for MTL. This type of method is called a

learner-dependent knowledge transfer model [44].

The problem with the previous knowledge transfer methods is that the pro-

cess of transferred knowledge is not transparent. Various classifiers have the

advantages in addressing different data distributions, and no single classifier can

perform well in all classification problems. Thus from the viewpoint of learner in-

dependence, transferred knowledge is irrelevant to the learner, which is considered

to be essential for a desirable knowledge transfer.

3.5.2 Raw Data Knowledge Transfer

With the assumption that two correlated tasks shares the same feature space,

Pang et al. [44] proposed a new KT bridge, where the knowledge in transfer is

decomposed as raw data, thus can be incorporated into any learner as additional

training data input to facilitate the learning rate.
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3.5.3 Task Relatedness Calculation

Let T 0 be a primary task, and T k be a secondary task with training data D0 =

[X0, Y 0], and Dk = [Xk, Y k], respectively. Theoretically, k = 1, . . . ,m as there

certainly exist more than one task correlated to T 0. In KT research, k = 1 as a

total of two tasks are given for KT. The relatedness R0k of T 0 and T k is typically

defined over the available training samples and the hypotheses for these related

tasks as,

R0k = fR(L(D0),L(Dk), D0, Dk), (3.9)

where fR can be either a static relatedness measure such as Hamming Distance or

Linear Coefficient of Correlation, or a dynamic measure, between the developing

hypothesis of the primary task and that of the secondary task. L is a learning

system for MTPR, which could be any type of classifier, e.g., in ηMTL [45], it is

specified as an ANN.

In raw data KT, task relatedness is independent to any classifiers/learners,

thus we exclude the influence of L in (3.9) as,

R0k = fR(D
0, Dk). (3.10)

The correlation of tasks is defined as the set of samples that are mutually bene-

ficial to perform the learning task. Specifically, given subspace S0 spanned by a

subset of D0, cast S0 into T k space, if S0 in T k space, denoted as S0→k has no

‘class confliction’ for T k, then S0 is correlated to T k, and the correlation C0→k is

extracted by S0 as,

C0→k(S0) = argmaxS0∈SD0
|S0|

∀(x⃗k, y⃗k) ∈ S0→k, yk ≡ c,
(3.11)

where |S0| represents the size of S0, and SD0 is a space spanned by D0. ‘class

confliction’ here is interpreted as ∀(x⃗k, y⃗k) ∈ S0→k, yk ≡ c, in which (xk, yk) ∈
[Xk, Y k], and c is a class label from T k.

Summarizing all subsets related to T k in D0, we have the correlation of T 0 to

T k as

C0→k =
∪

∀S0∈SD0

C0→k(S0), (3.12)
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which is reflected as a complete set correlation from T 0 to T k. Because of the

symmetry between the primary and secondary tasks, we can also have Ck→0 from

the above definition.

3.5.4 Knowledge Carrier

In practice, the above raw data KT relies on knowledge (i.e., selected raw data)

carrier/container (KC), while knowledge transferring.

Given dataset D0 and Dk from two correlated tasks T 0 and T k respectively,

for any subset d0 ⊂ D0 in one class, a subspace is spanned as,

B0
c,r = KC(d0i ) (3.13)

where c is the center of the space and r is the radius, by which the B0
c,r is able to

tell whether a new input instance is enclosed by the KC or not.

To verify the utility of B0
c,r for T k, we cast the KC into T k data space, and

we have

B0→k
c0→k,r0→k = CAST (B0

c,r, D
0, Dk) (3.14)

where B0→k
c0→k,r0→k is the resulting KC from casting B0

c,r in T k data space, and the

CAST function is implemented by calculating the casting KC center c0→k and

the casting KC radius r0→k, respectively.

c0→k = (c0 − ck
rkmax

r0max

), (3.15)

and

r0→k =
rkmax

r0max

r0. (3.16)

where r0max is the radius of KC over D0, and rkmax is the radius of KC over Dk.

The obtained B0→k
c,r is expected to cast a subset Sk instances in Dk. B0

c,r is

judged as a sharable data space by T k, if all instances of Sk belong to one class

in T k. The instances enclosed by B0
c,r are the correlation data of T 0 to T k. In

this way, given ∀d0 ⊂ D0 the entire sharable data is obtained as a merge of all

KCs that satisfy the correlation definition and the smoothness assumption [46]
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as: given two instances located in a high-density region, if one is enclosed in a

sharable KC, so for the other instance,

B∗
x = {b0i } ∪ {x} subject to b0i ∈ one of D1class, and b0→k

i ∈ one of Dkclass

d(c, xj) > r, d(c, xi) < r, and d(xi, xj) < θ

(3.17)

where θ is a distance threshold that represents the density of data distribution.

3.5.5 Environmental Sound Health Analysis

We derive sound health analysis as three correlated sound pattern recognitions:

(1) routine and environment classification, to recognize which environment that

the sound is recorded from; (2) space categorization, to categorize open or closed

space of the sound; and (3) health distinction, to distinguish sound health impact

in terms of people opinion.

Let TE, TO and TH be the above three tasks respectively. We set up on pur-

pose three transfer learning TE → TH , TO → TH and TE → TO, in finding those

set of data that have always positive contribution to the health understanding.

Note that although TE → TO is not health targeted transfer, the positive trans-

fer of TE → TO ensures the validity of the rest of two transfers towards health

understanding.

In doing that, we apply eq (3.12) to the above three transfers respectively,

and collect data sharable across all three tasks as,

C = CE→H ∪ CO→H

subject to CE→Ois positive.
(3.18)

With C, systems are able to maximize health understanding of environmental

sound, based on a good environment and space recognition rate. In our sys-

tem implementation, we used Minimum Enclosing Ball [47, 48] as the knowledge

carrier.

3.6 Mobile Environment Sound Data Collection

Environmental sound in daily life is our interest since we are exposed to many

types of sounds in our lives, such as the sounds from TV, household appliances,
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and traffic.

The use of portable electronic devices such as mobile phones, tablet com-

puters and personal digital assistants (PDAs) has been widely recognized as an

efficient way to improve the provision of healthcare. These mobile devices are

equipped with powerful embedded sensors, such as accelerometers, Global Posi-

tioning System (GPS), microphones, and cameras, which are enabling new ap-

plications across a wide range of domains, including business, healthcare, social

networks, safety, environmental monitoring, and transportation [49].

3.6.1 Setup

Consider mobile phone is widely used in our life and actually it has become an

important part of our lives, we conveniently choose smart phone as voice recording

device. To ensure good location coverage, our data collection is designed to be

based on people’s daily life routine, which enables to cover a wide range of life

environments including public transport, office, street, and shopping mall. In

addition, the timepoint of sound recording is another important factor that we

care. As we know, environmental sound varies over time in real world practice.

For example of swimming pool environment, the number of swimmers in public

holidays is often several times than that in working days, which produces rather

different levels of sound. Thus for each environment/routine, several recording

sessions are conducted at different times to ensure the time coverage of data

collection.

We collected environmental sound data mainly in Auckland, New Zealand

during the Autumn of 2014. The devices that we used for sound recording are

two types of smart phone which include iPhone 5 (sampling rate 44.1 kHz) and

Samsung Galaxy S4 mini (sampling rate 16 kHz). For each observed environment,

we conducted multiple sessions of sound recording at different locations as well

as different time and/or dates. For example of park environment, we recorded

sound in the morning and afternoon for 7 different parks of Auckland. In general,

addressing 17 routines of 13 environments, we conducted total 121 sessions of

recording at 43 different locations in Auckland. The obtained sound data forms

our experimental dataset whose statistical information is given in Tables 3.2 and

3.3.
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3.6.2 Labelling Data in Multi-task

To explore health understanding of environmental sounds, we labeled obtained

data by manually skimming the sound. Firstly, we labeled them with the envi-

ronment which the sound belongs to, including train, beach, shopping mall, and

street, as shown in Table 3.2.

Then, we defined on purpose four bigger categories: transport, outdoor, indoor

and nature, which is the space characteristic of the sound (Table 3.3). Sound from

open space differs to that from closed space, in terms of not only sound spectrum

but also health impact. Here we separate natural environment from outdoor,

because nature does not include the sound related to technology. Nature is almost

equivalent to the label of health. And we specifically look at environment related

to transport because transport is one of the important daily life activities, and it

includes both indoor and outdoor. The space characteristic is close to our target

concept although it is not equivalent.

Finally, we labeled data with positive (P) or negative (N) impact on our

health, according to the feeling of people who did the sound recording (Table

3.4). Because in practice, it is often difficult for us to judge the health impact of

one type of sound, unless we conduct a long term medical experiments on people.

We expect that a system can smartly address the above three tasks at the

same time, then the system must have a good knowledge of environmental sound

toward health understanding.

3.7 Experiments

3.7.1 Setup

For each experiment, we use a 10-fold cross-validation, where accuracy is averaged

over 10 runs and at each run, one tenth of the data is used as a testing set and the

rest as the training set. The analysis window length for all features was 1024 ms

and the used windowing function was Hamming window. The overlap between

successive frames was 50% of the frame length. k-Nearest Neighbors (kNN) are

the conceptually simplest of classifiers [50]. kNN are a simple algorithm that uses

the majority vote of the k nearest training patterns to assign a class label.
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Table 3.2. Routine and Environment
No Routine Environment Duration (minute)

1 Train to school/office Train 376

2 Walk in beach Beach 38

3 Drive to school/office Car 8

4 Walk near MW Street 34

5 Bus to school/office Bus 180

6 Wait for train Train Station 6

7 Bus in city Bus 100

8 Shopping in mall Shopping mall 14

9 Restaurant Restaurant 4

10 Walk to school/office Street 116

11 Walk in park Park 218

12 Trip Plane 2

13 Relax in park Park 254

14 Swimming pool Pool 220

15 Walk in city Street 60

16 Walk in library Library 16

17 Exercise Gym 2

1648 in total
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Table 3.3. Health Related Category

Health Related Category Environment Duration (minute)

Transport Plane 2

Train 376

Car 8

Bus 280

Outdoor Street 210

Indoor Train Station 6

Shopping mall 14

Restaurant 4

Swimming pool 220

Library 16

Gym 2

Nature Beach 38

Park 472

The proposed system is implemented on the platform of Matlab R2012a, and

the experiments are carried out on a PC with an Intel Core i7 1.7GHZ CPU and

8G-byte memory.

3.7.2 Optimal number of Sound Duration Time

The recognition rates are obtained for the 17 environments using different fea-

tures with the kNN classifier. For kNN, we used the Euclidean distance as the

distance measure and the 17-nearest neighbor queries to obtain the results. As

features, ZCR, RMS, SR, SC, BW, BER(4) and MFCC(20) are used. The F-

measures under 5-fold cross validation are shown in Table 3.5. The training and

test sequence duration were 1 to 30 seconds, respectively. We obtained a recog-

nition accuracy of 87.08% with 20 MFCC features. With all of the features, we

obtained a recognition accuracy of 88.19%. From this result, 3 seconds are enough

for classification.
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Table 3.4. Health and Environment
People’s opinion Environment Duration (minute)

N Train 330

Beach 4

Car 0

Street 210

Bus 242

Train Station 6

Shopping Mall 14

Restaurant 4

Park 60

Plane 2

Swimming Pool 220

Library 0

Gym 2

P Train 46

Beach 34

Car 8

Street 0

Bus 38

Train Station 0

Shopping Mall 0

Restaurant 0

Park 412

Plane 0

Swimming Pool 0

Library 16

Gym 0
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Table 3.5. Average F-measure with different features using the kNN

ZCR RMS SR SC BW BER(4) MFCC(20) ALL

1 sec 0.1400 0.1570 0.1615 0.1497 0.1463 0.3662 0.8529 0.8637

2 sec 0.1496 0.1604 0.1680 0.1518 0.1469 0.3699 0.8703 0.8769

3 sec 0.1525 0.1718 0.1700 0.1561 0.1467 0.3651 0.8708 0.8819

5 sec 0.1576 0.1659 0.1696 0.1557 0.1516 0.3687 0.8641 0.8688

10 sec 0.1643 0.1713 0.1798 0.1724 0.1530 0.3339 0.8295 0.8362

20 sec 0.1756 0.1703 0.1737 0.1601 0.1564 0.3133 0.7199 0.7368

30 sec 0.1657 0.1510 0.1773 0.1596 0.1585 0.3152 0.6391 0.6264

3.7.3 Optimal number of MFCCs

The optimal number of the MFCC coefficients was examined for each task.

Fig. 3.2 shows the example of MFCCs range from 1 to 300. Since the latter

half of the plot has the same tendency as the first half, we only analyze the num-

ber of MFCCs up to 180. We calculated the F-measures with several number of

MFCCs. Note that MFCC 1 to 5 were used in the case of MFCC(5), and similarly

MFCC 1 to 100 were used in the case of MFCC(100), for instance.

Fig. 3.3 shows the accuracy of each number of MFCCs for three tasks: (a)

Impact on Health, (b) Environment, and (c) Indoor, Outdoor, Transport, Nature.

As seen, using MFCC(15), MFCC(25) and MFCC(20) gives better accuracy for

each task.

3.7.4 Importance of Fundamental Features

As mentioned in Section 3.4, ZCR, RMS, SR, SC, BW and BER(4) are often used

to capture the characteristics of environmental sound in addition to MFCCs. We

call them fundamental features in this paper. In order to confirm the importance

of fundamental features, we compared the accuracy with three conditions: only

fundamental features, only MFCCs, and both fundamental features and MFCCs.

Fig. 3.3 shows the result of the comparison for each task. Although only using

the fundamental features shows poor accuracy, the combination of fundamental
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Figure 3.2. Example of MFCCs range from 1 to 300　

features and MFCCs gives better accuracy than only MFCCs, which implies

fundamental features are also important.

Fig. 3.4 shows the more details. We compared with and without MFCCs

against each fundamental feature, fundamental features (fnd(9)). Based on the

result of previous experiment, MFCC(15), MFCC(25) and MFCC(20) are used

for each task, respectively. The red dashed line in Fig. 3.4 represents the accuracy

of using only MFCCs, and the ’+’ after the feature name means with MFCCs.

As seen, although each fundamental feature shows less accuracy, the combination

of fundamental features and MFCCs gives better accuracy than only MFCCs,

which implies again that fundamental feature set gives some contribution.

3.7.5 Knowledge Transfer

For each cross validation, we define two classification tasks. We set one task as

the primary task, and the other task is set as the secondary task. Knowledge

transfer (KT) is always conducted from the primary task to the secondary task.

The obtained correlated data is then used as additional training data for the
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(a) Impact on Health

(b) Environment

(c) Indoor, Outdoor, Transport, Nature

Figure 3.3. Accuracy Comparison for each task
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(a) Impact on Health

(b) Environment

(c) Indoor, Outdoor, Transport, Nature

Figure 3.4. Contribution of Fundamental Features
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secondary task. As the proposed KT is classifier independent, classifiers with

different characteristics are applied to MTL. For comparison, we report the results

of MTL without KT. The proposed MEB-based KT algorithm is implemented on

the platform of Matlab 7.80 (R2009a), and the experiments are carried out on a

PC with an Intel(R) Core(TM) i7-2600 3.40GHZ CPU and 8G-byte memory.

We did three transfer learning as (1) environment to health; (2) space to

health; and (3) environment to space, where the third transfer learning guarantees

the validity of the first two knowledge transfer. Fig. 3.5 shows the classification

accuracy differences between MTLs with and without KT. As seen in Fig. 3.5,

positive transfer is happened on SVM. This indicates that through transfer learn-

ing, health understanding of environmental sound is enhanced.

(a) Environment to health

Figure 3.5. Accuracy difference
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3.8 Conclusion

This chapter addressed a new mobile Health (mHealth) application that helps

people track the daily activity, and determines the health status automatically for

each activity people experienced. Instead of relying on advanced mobile sensors,

we focused on a microphone with which all mobile phones are equipped, and

collected the environmental sounds toward health understanding. In order to

discover new knowledge in sound feature space and improve health understanding

of our daily life environment, we perform a knowledge transfer (KT), the key of

multi-task learning. The experimental results show that KT with knowledge

carrier perform better than without KT.

Future work includes the implementation on real mHealth application.
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Chapter 4

Conclusion

We considered an mHealth application toward helping people track their daily

activities. In order to build such applications, in this disseration, we solved the

following technical problems: a) recognition of human activity and b) recognition

of the user’s environment. We first proposed a new approach to recognize user

activity for mobile applications. The key of the proposed method is using a three-

axis accelerometer, which is equipped with almost any mobile devices. In order to

keep high accuracy in recognition with low computational cost, We employed the

wavelet transform and the singular value decomposition during feature extraction.

We investigated the dependency of its performance and computation time on the

sampling rate and the time-window width by experiments with public data. Our

method discriminated the user activity with accuracy of over 90% in most cases,

which is better than the conventional method although its computation load is

comparable. We also discussed the mother wavelet and an alternative of the

wavelet transform, which is the STFT. Our experimental results showed that the

calculation time of Haar mother wavelet is much shorter than others although the

accuracy is almost the same. As for the STFT, the accuracy using STFT is 25%,

which is much lower than the accuracy using our proposed method. These results

indicate that the proposed method can be successfully applied to commonly used

mobile devices.

We also proposed a new approach to recognize the user’s environment for

mobile applications. Instead of relying on advanced mobile sensors, we focused

on a microphone with which all mobile phones are equipped, and collected the

43



environmental sounds. To ensure sufficient location coverage, our data collec-

tion was designed based on people’s daily routines, which enable coverage of a

wide range of environments including public transportation, offices, streets, and

shopping malls. In order to classify the 17 environments, we employed several

audio features from time domain and frequency domain, and obtained over 80%

accuracy for the 17 environments.

Future work includes the implementation on real mHealth application. When

dealing with real applications, it is necessary to remove or reduce the noise during

the operation of mobile devices. One of the possible solutions is to filter out the

noise. However, we need to take into account energy consumption.

In addition to environment recognition, environmental sound in daily life to-

wards health understanding is our interest since we are exposed to many types

of sounds in our lives, such as the sounds from TV, household appliances, and

traffic. In order to improve health understanding of our daily environment, we

need to conduct furthur analysis of environmental sound.
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