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Latent Variable Models for Discrete Data and
the Learning Methods”

Takuya Konishi

Abstract

Latent variable models are probabilistic models that are widely applied in
modern data analysis. Latent variable models have unobserved random vari-
ables, which are beneficial for revealing hidden structures behind observations
and giving meaningful interpretation to complex data. In the last two decades,
many researches have shown the efficiency and applicability in a variety of re-
search areas.

While the latent variable models became known as popular methods, there
are still research questions remaining. A practical issue is how to design latent
variable models according to the properties of tasks. Unless suitable models are
used, the users will fail to obtain desirable latent representation. Another issue
on latent variable models is how to learn the models when observed data are
given. While efficient learning algorithms have been proposed for many models,
several models have not been explored enough. Such exploration is important for
clarifying the characteristics of learning methods and finding better ones.

On the basis of the above perspectives, this thesis studies two specific prob-
lems about the latent variable models. In Chapter 3, we focus on search queries
on the Web search engines. A search query consists of a combination of terms
and the possible number of them is enormous. However, the search queries can
be represented as common low-dimensional patterns. We propose a probabilistic

topic model that extracts such patterns as pairs of latent topics. Using two real
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query datasets, we demonstrate that the obtained topics are intelligible by hu-
mans and are highly accurate in keyword recommendation and query generation
tasks.

In Chapter 4, we study the variational Bayesian inference methods of the in-
finite relational model for network data that have not attracted attention. We
derive the collapsed variational Bayesian inference that we obtain by marginaliz-
ing out the parameters analytically. The collapsed variational Bayesian inference
empirically outperforms the standard variational Bayesian inference in many real
network datasets. The results also imply the collapsed variational Bayesian in-

ference indicates even better performances in dense networks.

Keywords:

query log, network data, latent variable model, probabilistic topic model, Bayesian

nonparametric model
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Chapter 1

Introduction

1.1 Motivations and Contributions

Probabilistic modeling is a fundamental approach in modern data analysis. It
is a statistical method that views data as random variables and mathematically
formulates input /output relations or generative processes of data. Clarifying such
unseen mechanisms leads to discover knowledge from complex data. A charac-
teristic of probabilistic models is to account for uncertainty of variables and pa-
rameters. Because real-world data are intrinsically noisy and sparse, information
about uncertainty enhances the models and is effective in predicting data.

A powerful class of probabilistic models is latent variable models. Latent vari-
able models include latent variables that are unobserved random variables, which
represent hidden aspects of data such as cluster structures, semantic patterns and
true states of noisy data [14]. Revealing such latent structures gives meaningful
interpretation to the observations. A popular example of latent variable models
is mixture models [6]. Mixture models represent data by the mixture of base
probability distributions (components), and the latent variables map each data
point to a component. Mixture models have been applied to a wide variety of
problems such as text classification in natural language processing [37], speaker
identification in speech recognition [43], and background subtraction in computer
vision [48].

While many researches have shown the efficiency and applicability of latent

variable models in the last two decades, there are still problems remaining as



typified by the following two issues. Modeling) A practical issue is how to
design latent variable models according to the properties of tasks. Unless suitable
models are used, the users will fail to obtain desirable latent representation. In
recent years, it is expected to solve more domain-specific tasks where the basic
models do not necessarily work well. Hence, developing latent variable models is
a significant step for extracting unique and meaningful latent information behind
each task. Learning) Another issue on latent variable models is how to learn
the models when observed data are given. Exact inference of latent variable
models is mostly intractable, thus, approximate learning methods are substituted.
While the learning methods have been proposed for many models, several models
have not been explored enough. Such exploration is important for clarifying the
characteristics of the learning methods and finding better ones.

On the basis of above perspectives, this thesis studies two specific problems
about the latent variable models. In Chapter 3, we focus on search queries on the
Web search engines. A search query consists of a combination of terms and the
possible number of them is enormous. However, the search queries can be rep-
resented as low-dimensional hidden patterns. For example, queries “NY restau-
rant” and “boston hotel” are instances of a common semantic pattern “location
service.” To obtain such latent patterns, existing approaches require data pre-
processing by humans or limitation of the target query domains, which hinders
their applicability.

We propose a probabilistic topic model that extracts such patterns as pairs
of latent topics (i.e., latent variables). The key idea is that we consider topic
co-occurrence in a query rather than a full combination of topics, which sig-
nificantly reduces computational cost yet enables us to acquire coherent topics
without preprocessing. Using two real query datasets, we demonstrate that the
obtained topics are intelligible by humans and are highly accurate in keyword
recommendation and query generation tasks.

In Chapter 4, we focus on the learning methods of the infinite relational model
(IRM) for network data. The IRM is a latent variable model for discovering clus-
ter structures of relational data. Specifically we study the variational Bayesian
(VB) methods for the IRM. The VB methods are a major inference algorithms for

Bayesian models with latent variables, however, they have not attracted attention



on the IRM. Clarifying the performance of the VB methods leads to understand
the learning methods for the IRM more deeply.

We derive the VB inference algorithms of the IRM for network data. After
showing the standard VB inference, we derive the collapsed variational Bayesian
(CVB) inference and its variant called the zeroth-order collapsed variational
Bayesian (CVBO) inference. The CVB and CVBO inference empirically outper-
formed the standard VB inference in most real network datasets. The results
imply the CVB and CVBO inference indicates even better performance than in
dense networks.

Note that Chapter 3 and 4 are common in that both of them deal with discrete
data, which further motivate us to use latent variable models. To obtain latent
representation from data, one possible approach is to employ classical dimension
reduction methods such as principal component analysis that assume that the
observations take continuous values. When these methods are used for discrete
data, we need to regard them as continuous ones. However, such assumption may
be violate when the methods apply to the prediction of missing values because
these methods are allowed to output continuous predicted values. In contrast,
latent variable models can be constructed flexibly for the type of observations,
e.g., we can use the Bernoulli, multinomial, and Poisson distributions for discrete

observations.

1.2 Organization of This Thesis

The remaining contents of this thesis is as follows. In Chapter 2, some statisti-
cal methods based on this thesis are introduced. In Chapter 3, we address the
problem of extracting search query patterns with topic models. In Chapter 4, we
study the VB methods for the IRM on network data. In Chapter 5, we finally

summarize this thesis and give future directions for each problem.

Notation

In this thesis, we sometimes describe generative processes of random variables.

We write  ~ P as that a random variable x follows distribution P, and also



call that = is drawn (generated) from distribution P. For example, if a random
variable x is drawn from the multinomial distribution with parameter 6, we write

it as © ~ Multinomial(@).



Chapter 2
Preliminaries

In this Chapter, we overview statistical methods on the basis of this thesis. Since
this thesis adopts Bayesian approaches in the main contents, we first confirm the
basic points of Bayesian models with latent variables. Next, we briefly review
probabilistic topic models for Chapter 3 and the Dirichlet process for Chapter 4.

2.1 Bayesian Models with Latent Variables

Probabilistic modeling starts from the specification of probability distribution
over data points. Assuming that a random variable x; denotes an observed data
point and the distribution is parameterized by 0, the probabilistic model is repre-
sented as distribution p(z|@). Given N observations = {z;}¥,, a fundamental
approach to learn 6 in such parametric models is the maximum likelihood (ML)

estimation:

O\i1, = argmax p(z|0), (2.1)
0

where p(x|0) is called the likelihood function. However, it is less likely to ob-
tain a sufficient amount of data in practical analysis. Thus the ML estimator
often suffers over-fitting problem where the model fits observations in surplus
and degrades generalization performance.

One solution to prevent the over-fitting is to construct Bayesian models that

assume parameters are random variables themselves and drawn from distribution



p(0), which is called prior distribution. In Bayesian models, the objective to eval-
uate is posterior distribution p(@|x). Given a model p(x|@) and prior distribution
p(0), the posterior distribution is derived by Bayes rule:

p(x,0) _ p(x|6)p(6)

PO) == = Tpl(@0)p(6)de (22)

where p(x) is called the marginal likelihood or model evidence. If we are only

interested in a mode of the posterior, the maximum a posteriori (MAP) estimation

is used:

Oriap = argmax p(0|x). (2.3)
0

On the other hand, Bayesian estimation requires computing the full posterior
distribution, which is used for obtaining important quantities such as Bayesian
predictive distribution. However, as discussed later, the computation of the pos-
terior is intractable in many useful models.

Bayesian models often include latent variables, which are unobserved ran-
dom variables and associate the observations and parameters. Constructing such
Bayesian models requires the specification of the joint distribution over variables
and parameters. As an example, we consider a mixture model that is formulated
as the most simple Bayesian models with latent variables. Consider a K compo-
nent mixture model having a set of parameters 8 = {6, }5_ . Suppose z; denotes
a discrete latent variable that associates parameters with a data point z;, and
p(z;|7) is the multinomial distribution parameterized by . We also assume the
set of latent variables z = {z;}}¥, and p(#) as prior distribution. In the mixture

model, the joint distribution p(x, z, 0, ) is written as follows:
p(x, 2,0, 7) = p(x|z, 0)p(z|m)p(0)p(w)

= [T (wil0-)p(=:|m)p(@)p(m). (2.4)

This is derived from the conditional independence assumptions of the mixture
model. How to design Bayesian latent variable models is how to define the joint
distribution and comes into an essential issue in Bayesian modeling. The joint

distribution also provides another view of the Bayesian models as a generative



Figure 2.1. The graphical model of the mixture model

model of data. The mixture model represents a sequential generative process of
variables; draw 0 and 7, z, and x from corresponding distribution in order. To
visualize such dependencies among variables, probabilistic graphical models are
also used [27]. For example, the graphical model of the above mixture model is de-
scribed as Figure 2.1. These views are helpful for designing hierarchical Bayesian
models, where multiple latent variables and parameters have more complicated
and elaborate dependencies. In Chapter 3, we argue a specific example: proba-
bilistic modeling for search query logs.

Bayesian models with latent variables also require to evaluate the posterior
distribution. The posterior of the above mixture model is defined on the parame-
ters and the latent variables given observations, i.e., p(z,0,m|x). Asin Eq. (2.2),

the posterior distribution is derived by Bayes rule:

p(x, z,0,m) _ p(x|z,0)p(z|7)p(0)p(T)
p(x) I 22z p(x|2, 0)p(2|m)p(0)p(m)dOdn

However, obtaining the full posterior distribution is intractable in many mod-

p(z,0,7|x) = (2.5)

els including mixture models. This is caused by the computation of marginal
likelihood p(x) where the marginalization with respect to all the latent variables
and parameters is required. How to solve such intractable computations is an-
other significant issue about Bayesian models. There are mainly two approaches;
Markov chain Monte Carlo (MCMC) methods and VB methods. While MCMC
methods realize the posterior by sampling from the distribution, VB methods

approximate the posterior by assuming mean-field approximation. In Chapter 4,
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we study the VB methods for the IRM of network data.

2.2 Probabilistic Topic Model

Probabilistic topic models are latent variable models to discover topics from a col-
lection of documents [9,20]. In general, a document is written about one or more
themes (i.e., topics), and such topics provide a clue to searching the relevant doc-
uments and visualizing the contents. Topic models extract the topical structures
behind document collections by probabilistic modeling. In the following sections,

we briefly introduce two topic models that are closely related to Chapter 3.

2.2.1 Latent Dirichlet Allocation

Nowadays, latent Dirichlet allocation (LDA) is known as the most basic topic
model [9]. LDA is a hierarchical Bayesian model that incorporate the prior dis-
tribution over parameters into the model and a probabilistic generative model
that represents the generative process of terms in the documents. In LDA, doc-
uments are regarded as “the bag of words” where a document is represented
by an exchangeable sequence of terms, i.e., the order of terms in the document is
ignored. The idea of LDA is available to not only document collections but also
any grouped data assuming the bag of words.

In the following, we describe the detail of LDA. K is the number of topics, D
is the number of documents in the collection, and V' is the vocabulary size. LDA
assumes that each term in a document is assigned a topic. Let wy = {wdﬂ-}fv:dl
denote Ny terms in document d, z4 = {zd,i}f\;‘ll denote the corresponding topics.
Topics are drawn from document-specific multinomial distribution whose param-
eter denotes 84 = (041, ...,04xk). Once the topic is specified, the term is drawn
from multinomial distribution associated with the topic, i.e., the term is condi-
tionally independent to other terms given the topic. Suppose ¢, = (¢x1, .- ., Prv)
is a parameter of multinomial distribution over terms associated with topic k, and

¢ = {d,}5, is a set of the multinomial parameters. The joint distribution over



wy and z,4 is modeled as
p(wg, zq|p, 04) = p(wa|za, d)p(24|0a)

Ng
= Hp(wd,i‘zd,h ®)p(24,i|04)
i=1

Ny
= H ¢Zd,ivwd,i8dvzd,i' (26)
i=1
LDA assumes that the Dirichlet distribution over parameters as follows:
L(C0ms B) T 4t
p(@plB) = =7 =" || %% > (2.7)
[To=i T (5) H
P 00) T ot
p(Odla) = == =— | | 00 - (2.8)
kal (o) kli[l
where a = (aq,...,ax) and B = (f,...,By) are parameter vectors of the cor-

responding Dirichlet distribution. In total, for all D documents, the joint dis-
tribution over terms w = {w,}7_ |, topics z = {24}, 0 = {04}, and ¢

18

p(w,z,¢,0|a, B) = p(w|z, §)p(2]0)p(0|c)p($|B)

D K

= Hp('wd|za @)p(za|04)p(04|cx) HP(Q%W)- (2.9)

d=1 k=1
From a view of mining knowledge from a document collection, parameters of
LDA provides the interpretable latent structures. ¢, denotes the term occurrence
probabilities in topic k, which represents the relationship among terms on topic
k. 84 is the proportion of topics in document d. This realizes the representation

of multiplicity of topics in a document.

2.2.2 The Biterm Topic Model

The biterm topic model (BTM) is a topic model for short texts which appear
frequently on the Internet services, e.g., Twitter [13,55]. As mentioned above,

LDA assumes the bag of words representation for each document, and models



the document-specific topic proportions. However, these assumptions are not
necessarily suitable for short texts. Because short texts consists of the less number
of terms than that of standard documents, LDA suffers from the sparsity in
documents. To overcome this problem, the BTM has been proposed. The key
idea is to construct the generative model for not a collection of documents but
term pairs.

We describe the BTM (We continue to use the notation of LDA with respect
to the same symbols). For the BTM, all term pairs in a document are extracted
and aggregated among the collection of documents. In the BTM, one shared
topic is assumed for one term pair, and the topic is drawn from collection-level
multinomial distribution whose parameter is @ = (64, ...,0). Once the topic is
specified, both terms in the pair are drawn from the same multinomial distribution
associated with the topic. Let b; = (w; 1, w; 2) denote ith term pair, and z; denote

the corresponding topic. The joint distribution over b; and z; is

p<bi7 Zi|¢7 9) = p(bi‘zia ¢)p(2z‘|0)
= p(wi,l |2, ¢)p(wi,2|2ia ¢)p(2i|‘9)
= sti,l,ziqﬁwi’g,ziezi' (210)

For all N term pairs, the joint distribution over b = {b;}¥,, z = {z;}}¥,, ¢, and

0 is as follows:

p(b, z, ¢, 0|c, B) = p(b|z, ¢)p(2]0)p(6]a)p(4]|B)
:H plw;,

where p(0|a) is the Dirichlet distribution over parameters of topic distribution
as in Eq. (2.8).
In spite of the simple assumption, Yan et al. showed that the BTM outper-

K
@)p(wizlzi, #)p(z]0)p(0]c) H (#r18), (2.11)

formed LDA in some empirical experiments [13,55]. LDA arises in the sparsity
of the topic distribution because of the shortness of documents and this hurts the
performance. In contrast, the BTM avoids modeling the document-specific topic
distribution, and describe the generative process of term pairs that have primi-
tive term co-occurrence information in the document collection. While the BTM

has no document-specific topic distribution, it is possible to recover to the topic

10



proportions on a document if the term occurrence information in the document

collection is stored in advance.

2.3 The Dirichlet Process

The Dirichlet process is a stochastic process that is often used in Bayesian non-
parametric models. Recall that Bayesian models assume prior distribution over
parameters. Bayesian nonparametric models particularly use prior distribution
defined on infinite-dimensional space with stochastic processes such as the Dirich-
let process.

The basic application of the Dirichlet process is to extend the mixture models,
which are called the Dirichlet process mixture models. In model selection of mix-
ture models, setting the number of components is essential task. Dirichlet process
mixture models extend the mixture models with incorporating the Dirichlet pro-
cess. This modeling does not assume the fixed number of components, and the
number is also estimated according to the complexity of observations.

The definition of the Dirichlet process has been introduced by Ferguson [15].
The Dirichlet process is distribution over probability measures, which draws dis-
crete random probability measure G over measurable space (€2, B), where € is
sample space and B is o algebra of Q. Suppose a finite partition (Ay, ..., Ag) of
2, then (G(A4,),...,G(Ak)) indicates a random vector. For any finite partition
(A1,...,Ak), G according to the Dirichlet process satisfies following property:

(G(A)), ..., G(Ag)) ~ Dirichlet(aGo(A,), . .., aGo(Ax)), (2.12)

where Dirichlet(-) is the Dirichlet distribution, « is concentration parameter, and

Gy is base measure. We write that G is drawn from the Dirichlet process as

G ~ DP(a, Gy).

2.3.1 The Stick-breaking Process

A more intuitive representation of the Dirichlet process is the stick-breaking pro-

cess [46]. Suppose the sets of random variables {v}22,, {7}, and {0x}72,. A

11



random measure G is specified with the stick-breaking process as follows:

VE ~ Beta(l, Oé), Hk ~ Go,

k—1
T — Uk H(l —Um),
m=1

G = Zﬂ'k(SQk, (213)
k

where Beta(:) is the Beta distribution, and dg, is Dirac measure centered on 6.
The construction satisfies > ".° m; = 1 and is equivalent to G ~ DP(«, Gy). Intu-
itively, this process provides infinite discrete distribution {m;}?2, associated with
random variables {6 }72, drawn from base measure. In the Dirichlet process mix-
ture models, base measure corresponds to prior distribution over parameters, and
the process is incorporated as a generative process on parameters of components

and their proportions whose number is countably infinite.
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Chapter 3

Extracting Search Query
Patterns via Topic Model

3.1 Introduction

When people want to find new information on the Internet, they commonly use
search engines. Users interact with search engines by queries, and their intents
and personal backgrounds are expected to be preserved in query logs. Thus, data
mining and analysis of query logs are important problems for many applications.

To obtain user information from diverse and unorganized queries, extracting
the low-dimensional hidden structures behind the queries is an essential task.
This is motivated by our intuition that, while the number of possible queries
are nearly infinite, most real queries fall into a combination of a few terms from
multiple categories. For example, a query “NY restaurant” consists of the term
“NY”, which indicates a location, and the term “restaurant”, which specifies
the type of service. If we know such is-a relationship, we can infer that the
user intends to use that service and lives in or will go to the location in
the near future. Such knowledge gives us a rich interpretation of user needs,
which is beneficial to better search experiences in related applications. Keyword
recommendation in Internet advertising is a typical example [2,41]; by using the
obtained structure of query patterns, we can generate a query for advertising
clients such that the query is long-tail (i.e., not popular and low advertising rate)

but has the same structure of some hot keywords and is expected to have a

13



similar advertising effectiveness. Furthermore, meaningful query patterns would
potentially applicable to predicting click through rate [25], profiling users [18],
and improving search results [47].

The identification of such categories and is-a relationships has emerged as a
new area in information retrieval, which is referred to as query templates [1] and
several approaches has been proposed to solve the query template task [1,17,40].
Although such approaches have demonstrated the usefulness of query templates
for real applications, they have several limitations. First, they need the specifi-
cation of target domain beforehand [1,40], i.e., we must collect queries that are
related to a certain theme, such as automobiles, travels, and movies. This pre-
processing reduces the number of queries and the diversity drastically; however,
it loses the generality and much useful information, such as cross-domain knowl-
edge. Another issue is that the need for human assistance [17]. While humans
can identify the term-category relationships with high accuracy, its expensive re-
source cost and low throughput hampers the applicability to large-scale query
logs. In addition, due to the expensive computational cost, the number of the
category (K) is considerably restricted to be small such as K ~ 6.

The use of topic models [8,9,55] can be an alternative approach for the query
template task. Topic models learn the relationships between a term and a cat-
egory as a topic from a large number of documents (i.e., queries) in an unsu-
pervised manner. A desirable property of this approach is that they are feasible
with K > 100 categories. However, they typically assume that each document
contains many terms; therefore, topic models are not suitable for sparse data,
such as query logs [8,9]. In addition, there is no straightforward way to incorpo-
rate information from a combination of topics, which plays a significant role in
search queries. For example, a topic combination (location, service) appears
frequently in real queries, but (service, service) is very rare.

To address the above issues, we propose pairwise coupled topic model (PCTM)—
a probabilistic topic model for query logs. The PCTM approximates the combi-
national information over queries by co-occurrences of topics, which significantly
enriches the model and overcomes the shortness and sparseness of queries. On the
basis of the approximation, we derive a fully-Bayesian inference algorithm with

collapsed Gibbs sampling (CGS), which allows us to handle queries as a collec-
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tion of term pairs, which significantly reduces computational cost from O(K™M)
to O(M?K?) where M is the length of a query; in the PCTM, M is essentially
very small and we can manage sufficient sizes of K ~ 100. Our contributions are

summarized as follows.

Versatility of the model: The PCTM can handle queries of any domains, and
it is not necessary to specify them. In addition, the PCTM does not require

human assistance.

Validity of pairwise approximation: We derive the PCTM as an approxima-
tion of a simple fully-dependent query model, which provides a legitimate
procedure to estimate a query pattern while drastically reducing the com-

putational cost.

Extraction of sparse cross-domain relation: The PCTM estimates topic co-
occurrence as a sparse covariance matrix, which gives us cross-domain

knowledge as an interpretable network of topics.

Applicability to real data: We evaluate the PCTM with two query logs in
different languages and show that (1) the obtained topics are coherent and
natural for humans, which we examined by crowdsourcing, (2) the PCTM
is highly accurate in terms of query recommendation, and (3) the PCTM

can generate the nearest queries to the real queries.

3.2 Modeling Query Logs

3.2.1 Problem Definition

Given a set of queries, we would like to obtain the following knowledge: (a)
a set of distinct categories of terms used in query logs, (b) is-a relationships
between the categories and terms, and (c¢) a mapping from a query to query
pattern represented by a combination of the categories. Let us explain the de-
tail by using an example. Suppose we have the query, “chicago hotel cheap-
est” where “chicago”, “hotel”, and “cheapest” are instances of the categories

location, service, and condition, respectively. Such categories are related
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to many other terms, e.g., location is associated with a variety of terms that
indicate the names of places. Note that a term can possibly belong to multi-
ple categories, e.g., “chicago” may be associated with a movie category in other
queries. With such many-to-many relationships, the query pattern is recovered
as a combination of categories (location, service, condition).

We notice that it is difficult to obtain the category information from any
other external resources in advance (e.g., dictionaries and thesauruses) because
the concepts defined by external resources do not always correspond to desirable
categories that reflect the actual query activities. For example, both “houston”
and “miami” are names of places; however, queries containing “houston” and
queries containing “miami” could be very different in terms of user intent and
personal backgrounds. The former is in a residential area, and would likely be
used with dailylife keywords, such as “houston apartment” or “houston job.”
In contrast, the latter is in a resort area and would likely be used with travel
keywords, such as “miami hotel” or “miami restaurant.” Treating these two terms

as the same category loses such query-specific information.

3.2.2 A Naive Query Model

To obtain knowledge from query logs, we consider a simple probabilistic model
of a query based on a topic model. Suppose we have an M-long query q =
(wi,...,wp) where each term w,, has a latent topic z, and these terms are
conditionally independent given the topics. Under this assumption, the joint

probability of g and z = (21, ..., z)) is expressed as follows:

p(q,z) = p(q|z)p(2)
= H P(Win|2m)D(21, - - -5 200)- (3.1)

wmeq

This formulation satisfies the requirements mentioned in Section 3.2.1: (a) cate-
gories (i.e., topics) are represented as the latent variables z, (b) is-a relationships
between w,, and z,, are represented as term distribution p(w,,|z,,) that indicates
the probability of term occurrences given a topic, and (c¢) a combination of the
categories is represented as a topic combination (21, ...,z ), and p(z1,..., 2um)

is the distribution that indicates the probability of the occurrences of the topic
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combination. Note that representing is-a relationships by the term distribution
enables that one term can be associated with multiple topics.

Without loss of generality, model (3.1) is rewritten as a product of the multi-
nomial distribution for terms and the tensor-variate multinomial distribution for

a topic combination as follows:

p(q,z): H (bwm,zmﬂ'zl,...,sz (32)

wmeq

where ¢, . is the probability of the term w,, given topic z,,, and 7, . .,, is the
probability of topic combination (z1, ..., za); thus, 7., .., can be considered as
an M-th order tensor having K™ elements, which represent the probabilities of
all possible combinations of topics z1, ..., 2.

Model (3.2) is general and flexible; however, it requires huge computational
cost in parameter estimation. Bayesian inference needs to marginalize the latent
variables z, which is equivalent to computing a summation of all possible values
of 7., ., in Eq. (3.2) and this requires O(K™) computation. Even though query
length M is relatively small compared to that of normal documents, practically
M could be more than 10 in real query logs and it would easily make parameter

estimation computationally infeasible.

3.3 The PCTM

As discussed above, the main computational cost of model (3.2) arises from the
full dependency of p(z1,...,zy). In this section, we consider relaxation of this

assumption.

3.3.1 Pairwise Decomposition of Topics

Our key idea is that, in most queries, the full dependency of a topic combination is
sufficiently approximated by a collection of pairwise relationships among topics.
For example, let us reconsider query “chicago hotel cheapest.” Here, we can
recognize that “chicago” is used as location rather than movie because it is
jointly used with “hotel.” Similarly, “hotel cheapest” sufficiently determines the

context of both “hotel” and “cheapest.” Therefore, in this example, two word
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pairs “chicago hotel” and “hotel cheapest” are sufficient to estimate the intent of
this query.

By following this observation, we assume that p(z1, ..., z)/) is decomposed as
the product of the second-order tensors with respect to z. For example, if M = 3,

the joint probability of topics is written as:

N[

(21, 29, 23) = (W(21, 22) ¥ (21, 23) (22, 23)) 2, (3.3)

where W(+, ) is a potential function representing a pairwise interaction of topics.

This approximation can be generalized as follows:

_1
M-1

plzi, o) = | [ P z) : (3.4)

where B), is the set of all pair indices in an M-long sequence. Note that we intro-
duce exponential weight ﬁ for later convenience. Substituting decomposition
(3.4) into model (3.1) yields:

M-—1
p(g.2) = [] pwnlzn) | T] ©(z.2)
wmeq (i,5)€Bum
1\/1171
= [ plwilz)pw;lz)¥(z, ) : (3.5)
(i.4)€Bar

3.3.2 Modeling Term and Topic Pairs

Interestingly, Eq. (3.5) implies that pairwise decomposition of topics (3.3) allows
us to deal with the entire model as the product of the sub model with respect
to term pairs (w;, w;) and topic pairs (z;, z;) for (7,j) € By. By inspiring this
notion, we directly model these pairs instead of a query and a topic combination.

Let b= {b; }}24 = {(w;1,w;2)}2Y! denote | By| term pairs! and @ = {z;}/%% =

1Clearly, |By| = M(M —1)/2.
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{(zi1, 212)}1511” " denote the corresponding topic pairs, and we model them as

| Bl

p(b,x) = H p(bilzi)p(xi), (3.6)

where  p(bi|z;) = p(wi1lzi1)p(wizlziz2)
= uwi 201 Pwi 224
p(xi) = p(zi1, 2i2)
= Vet 20

Note that .. denotes the probability of the K x K matrix-variate multinomial
distribution, which represents co-occurrences of topics.

While both p(q, z) in Eq. (3.5) and p(b,x) in Eq. (3.6) look similar, there
exists a major difference in terms of a treatment of the latent variables. In model
(3.5), z; is shared over the product, i.e., z; in (2;, 2;) is the same latent variable of
z; in (z;, zx) if both pairs belong to the same query. However, model (3.6) ignores
the information of a query, and all zs are considered as different latent variables.

Inconsistency of the latent variables in p(b,x) provides a tradeoff between
accuracy and computational cost. Since we deal with z;s in (2, 2;) and (z;, )
are different variables, p(b, ) possibly assigns different topics into the z;s; thus,
accuracy of topic estimation may suffer. However, since all latent variables are
independent in p(b, x), we can separately take the marginalization with respect
to x, which significantly reduces computational cost from O(K™) to O(M?K?).

3.3.3 A Hierarchical Bayesian Model

On the basis of the above idea, we construct the PCTM as a hierarchical Bayesian
model. Given query logs, Let b = {b;}Y, = {(w;1,w;2)}Y, be a set of term

2 converted from the query logs and @ = {z;}Y; = {(2i1, 2i2)}}*, be the

pairs
corresponding topic pairs. Note that IV is all the number of term pairs in the query
logs. In the PCTM, term pairs in a query are not distinguished from those in the

other queries no longer. As explained above, a topic pair is regarded as a single

2In the following, we assume that each query contains more than two terms and ignore
single-term queries. We also assume that a query does not include the same terms; thus, we
eliminate duplicate terms, e.g., we deal with “NY NY restaurant” as “NY restaurant.”)
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Algorithm 1 Generative process of the PCTM
Draw 1 ~ Dirichlet(y)
for all topics k =1... K do
Draw ¢, ~ Dirichlet(3)

end for

for all term pairs b; ¢ =1... N do
Draw topic pair z; = (21, zi2) ~ Multinomial(t))
Draw term w;; ~ Multinomial(é,, )
Draw term w;» ~ Multinomial(¢,, ,)

end for

latent variable; a topic pair is drawn from a multinomial distribution having a
K2-dimensional parameter vector 1. Once a topic pair z; is generated, individual
topic assignments z;; and z; 2 are determined. If topics z;1 = k and 2; 5 = [, then
w; 1 and w; 9 are drawn from multinomial distributions that are associated with
the kth and [th topics, respectively. These K multinomials are parameterized by
V-dimensional parameter vectors ¢ = {¢,}, where V denotes the number of
words in the vocabulary.

The PCTM assumes multinomial parameters are drawn from the Dirichlet
distributions. 3 is a V-dimensional parameter vector for the Dirichlet over
¢, (k=1,...,K), and v is a K%-dimensional parameter vector for the Dirichlet
over 9. We assume the symmetric Dirichlet distribution for ¢, and 1p; thus,
Bp=0w=1,....,V)and y,; =~ (k,l =1,..., K). The generative process and

graphical model are shown in Algorithm 1 and Figure 3.1(a), respectively.
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3.3.4 An Inference Algorithm

The joint distribution of the PCTM is written as:

p(b,z, 9. 9|3,7)

N

K
= [T p®ilai. d)p(zilw) [ p(enlB)p(w])
k=1

1

-
Il

K

p(winlzi, @)p(wizglziz, @)p(xi|) Hp<¢k|ﬁ)p(¢h’) (3.7)

k=1

L

.
Il
—_

Then, the distribution after marginalizing out parameters ¢ and ) is given as:

p(b,x|B,v) = p(blx, B)p(x|y)
- [ vioie. o1 qblﬁdcb/ (@l)p(ply) e

_ (F(Vﬂ ) Hv 1 I'(nope + 5)

I'(K?y) Hk 1Hl 1 (nkl"‘”Y)
T TN +K%)

(3.8)
where I'(-) is the gamma function, n,; is the number of terms v assigned to topic

k, n.j is the total number of terms assigned to topic k, and ny; is the number of

term pairs assigned to the pair of topic k and [, which are written as follows:

Nolk = Z]Iv [wi Tk [2i1] + Lo [wi 2] Tk [2i 2], (3.9)

=1

v=1

Nl = Z]Ik: [2i1 ]I [232], (3.11)
i=1

where I,,[b] is an indicator function that takes 1 when a = b.

We infer the parameters by CGS algorithm. Samples are obtained by the
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(a) PCTM (b) LDA (c) BTM

Figure 3.1. Graphical models of the PCTM, LDA, and the BTM. For the LDA
and BTM, we follow the notation from Chapter 2.

following conditional distribution:

plz; = (k,1)|b,z™")

(5! )
(ntVB) (] +VE) (k#1)
(s BN +B) ’

—3 ws 1| w; 2| _
(2, + )(n;,j+1+v5)(n;,§+v,3) (k=1)

(ngs +7)
(3.12)

where the notation —: indicates the set of variables or the counts excluding the
variable at the ¢th position. The formula changes slightly when z;; and z; » take
the same topic because two terms are excluded from this particular count. From
the obtained samples of topic assignments, we estimate the integrated parameters
¢ and 1) as follows:

2 Nk + ﬁ
= — e 3.13
B gk + VP (3:13)
5 N+
=M= 3.14
L e (3.14)

This inference requires K? computations to check the probabilities of each topic

pair, and the total time complexity is O(NK?).
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3.3.5 Recovery of Topic Combination

The PCTM also gives us an approximate way to recover the most probable topic
combination z = (z1,...,2y) from the original query g = (wy,...,wy). In the
PCTM, the posterior of the topic pair z = (zz, z;) given the term pair b = (w;, wy)

and the estimated parameters, i.e. (,b and 1/) is written as follows:

wk,l¢k,wi ¢l,wj
K K 7 n n :
Zk’:l Zl’:l wk/,l, (bk/,wi ¢l’,wj

By combining this and Bayes’ rule, we approximate the joint posterior of the

(l"b) (Zl7zj|wl7wj>kl = (315)

topics by the following Markov chain:

p(zlq)
~ p(21lq)p(z2|21, @)p(23]22,q) - - - p(2m|2m-1, )
~ p(z1|wr, wa)p(z1| 29, wi, w2)p(23]| 29, wa, w3) ... p(zpr|2ar—1, War—1, war)  (3.16)
where
P(zis zilwi, i) _ Pz, 2| wi, w))w
p(zilws, wi)e Do P23 Zlwi, wy)wn

denotes the conditional posterior of z; given z;. The last line of Eq. (3.16) enables

p(2il 2, wi, wi) = (3.17)

us to compute the most probable combination of topics by forward algorithms,
such as the Viterbi algorithm [50]. In the Viterbi algorithm, we can compute the
most probable combination z™* = (2" ... 21"%) as in Algorithm 2.

Note that z,, has K-different topics, and the original joint probability p(z|q) is
represented by the M-th order tensor where each dimension is given by K. In this
representation, there is no efficient way to find the most probable combination,
and the naive computation requires O(K™) complexity. In contrast, the proposed
approach is computable by multiplication and summation on K x K matrices,

which requires only O(M K?) complexity.

3.4 Related Works

3.4.1 Topic Models for Search Logs

Topic models have been widely used for modeling search log datasets with dif-

ferent motivations. One motivation has been to improve search results based on
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Algorithm 2 The Viterbi algorithm for the recovery of the topic combination
Input: Conditional probabilities (3.16)
for ; =1...K do
t(1,z1) = log p(21|wy, ws)
end for
for m=2...M do
for z,,=1... K do

t(m, zym) = max, _, [logp(zmlzm_1, Wm_1, W) +t(m — 1, zp,_1)]

s(m, zp,) = argmax, 108 D(2m|Zm—1, Wm—1, W) +t(m — 1, 2p,_1)]
end for
end for
mar — argmax, t(M, z)
form=M-1...1do

e = s(m + 1, 29%)

z

end for

max

Output: z

search log histories [11,18,47]. For example, Harvey et al. proposed a topic model
that incorporates search engine users for user profiling to improve personalized
searches [18]. Other researchers have explored topic models for traditional search
log tasks, such as predicting click-through rates [25,26]. Jiang et al. proposed
a topic model for some information included in search logs, such as URLs and
timestamps [25]. Search logs are valuable sources of information for obtaining
web-based knowledges. Xu et al. proposed a topic model for named entity min-
ing with an efficient semi-supervised learning algorithm [54].

As in the above models, topic models have been used for modeling search log
datasets that contain not only queries and other information, such as users, time
stamps, URLs, and click-through logs. On the other hand, we focus on modeling
the queries themselves. In our setting, we require only raw queries, which extends

the range of application.
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3.4.2 Query Templates

Query template methods have been explored to obtain query patterns [1,17,40].
Agarwal et al. advocated concepts of query templates and proposed a probabilis-
tic inference framework for mining templates based on tripartite graphs among
queries, websites, and templates [1]. Han et al. studied a human-assisted method
for analyzing query templates that incorporates crowdsourcing for query inter-
pretation [17].

Pandey and Punera proposed a probabilistic generative model for queries and
query templates [40]. In that model, templates are defined as a topic combina~
tion without duplication, which is not an actual topic assignment for each term.
Given a template per query, the model generates the number of terms assigned
to the topics included in the template with the Poisson distribution and assigns
the topics for each term. For example, the query “toyota 2002 seat cover” is
assumed to have a template (brand, year, parts) and is generated by the topic
assignments (brand, year, parts, parts), that is, the model generates “toyota”
from brand, “2002” from year, and “seat” and “cover” from parts.

Although these methods have been demonstrated to extract meaningful query
patterns, they only dealt with queries in a particular domain. This restriction
improves the quality of query templates for that domain; however, it must perform
preprocessing to limit target domains by using such as query classification. For
example, one proposed method [1] assumes that is-a relationships in a domain
are given a priori using other methods, such as named entity mining, and they
only focused on query pattern extraction. Another proposed model [40] does not
employ assumptions about domains; however, it also requires domain limitation
due to the computational cost that arises from the dependencies among topics.
Compared to those methods, we tackle a more challenging task, i.e., extraction of
category and query patterns simultaneously without domain limitation and other

preprocessing methods.

25



3.4.3 Relation to Other Topic Models
LDA

The PCTM is related to other topic models. One major topic model is LDA [9].
A graphical model of LDA is shown in Figure 3.1(b). We can apply LDA to
query logs by considering a single query as a document; however this may fail
due to the following reasons. First, although LDA assumes that a topic assigned
to a term is drawn from a document-specific topic distribution, short texts such
as queries have no more than a few terms in a document. This would cause
the sparsity problem, i.e., LDA suffers from the lack of information for each
query in estimating the topic distribution [55]. Moreover, if a dataset contains
D documents, LDA has a parameter of size D x K, and since D is normally
very large in query logs, we must consider memory usage for parameter inference
carefully. In contrast, the PCTM has only one distribution that generates topic
pairs over the dataset. This avoids the sparsity problem, and the topic pair
distribution is represented by a K2 matrix, which does not depend on the number
of documents. In the parameter inference, LDA requires O(K) computation
to check the probability of a single term. Therefore, if the average length of
documents is L, the total time complexity is O(DLK).

The BTM

Yan et al. proposed the BTM [55]. The graphical model of the BTM is shown
in Figure 3.1(c). While the BTM and PCTM can be considered topic models for
term pairs, the key difference is that the BTM assumes that a term pair shares the
same topic; this assumption leads a great success of the BTM in application to
short texts because term pairs in general short texts would rarely take completely
different topics. However this assumption is not suitable for modeling queries
because a query consists of terms having a variety of topics, and it is violent to
assume only one shared topic.

To clarify this difference, we illustrate the generative processes of the BTM
and PCTM in Figure 3.2. Recall the example “NY restaurant” (Section 3.1). The
BTM generates this term pair from one term distribution associated with a topic.

Because the location names and service names, such as “NY” and “restaurant,”
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NY restaurant NY restaurant
(a) BTM (b) PCTM
Figure 3.2. Generative processes of (a) BTM and (b) PCTM

have high probabilities in this term distribution, the BTM estimates them as an
integrated topic of service and location. In the PCTM, “NY” and “restau-
rant” is generated by term distributions associated with different topics. This
leads to learn topics that separately indicate location with high probability for
“NY” and service with high probability for “restaurant.” Such separated topic
representation is more intuitive for humans and is suitable for our task. In Sec-
tion 3.5.5, we show topics estimated by the BTM and PCTM from real query
logs.

The Correlated Topic Model

The correlated topic model (CTM) has been proposed to extract topics and their
correlations from documents [8]. The CTM assumes the logistic normal distri-
bution to model the correlation and has been shown to be successful meaningful
topic correlation from the academic journal dataset. However, since the CTM
also models topic distribution for each document, it would suffer from the sparsity

problem and use huge amount of memory space as discussed in LDA. Moreover,
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while a VB inference algorithm has been proposed, there is no analytical solution
because of the non-conjugacy between the logistic normal and the multinomial
distributions. Thus, it requires to perform the conjugate gradient method, which

consumes more memory space.

The Product Space Mixture Model

Note that the PCTM has the same structure as the product space mixture model
(PMM) [21]. Compared to the PMM, we provide the following contributions: (1)
we associate the PMM with a fully-dependent topic model (3.2), (2) we demon-
strate applicability to query log modeling, and (3) we formulate a fully-Bayesian
framework and derive an efficient inference algorithm with CGS rather than an

annealed expectation-maximization algorithm [21].

3.5 Experiments

3.5.1 Experimental Setting

We prepared two real query logs: AOL and Yahoo! Japan datasets. The AOL
dataset consists of approximately 20 million queries [42]. The Yahoo! Japan
dataset consists of approximately 600 million queries sampled from one week
search logs. Before conducting our experiments, we performed the following pre-
processing. We eliminated queries from the datasets that included low frequency
terms or stop words. We then performed random sampling to reduce the data
size. This processing allowed us to select queries that occur often in the dataset;
however, the datasets were not limited by the query genre. In addition, for the
AOL dataset, we performed stemming with the Porter’s algorithm?®. Table 3.5.1
summarizes the preprocessed datasets.

Throughout the experiments, we compared the PCTM with the LDA and
BTM. As explained in Section 3.4.3, LDA handles a query as a document. Note

that we also attempted to evaluate the CTM with an R implementation?; however,

3http://tartarus.org/martin /PorterStemmer/
4http://cran.r-project.org/web /packages/topicmodels/index.html
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Table 3.1. Information about query log datasets. D is the number of documents,

V' is the number of words in the vocabulary.
Average number

D V| of terms per query | Language

Yahoo | 996K | 15K 2.31 Japanese
AOL | 583K | 14K 2.77 English

this did not work in our experimental environment® due to memory overflow. All
models were inferred with CGS. We iterated 1,000 samples for the LDA and
BTM, and 500 samples for the PCTM. We obtained the last sample in a Markov
chain and made use of this sample to estimate parameters, which was required
in some experiments. In all experiments and the models, the number of topics
was fixed to 100, and S, which is a common hyperparameter, was fixed to 0.1.
Since a of LDA is a sensitive parameter [51], we assumed an asymmetric prior
and estimated by using Minka’s fixed point iteration [34]. For a of the BTM and
v of the PCTM, we assumed a symmetric prior and used fixed values; we set «
of the BTM to 22 and ~ of the PCTM to 23° [55].

3.5.2 Human Evaluation of Topic Quality

In our first experiment, we investigated about the interpretability of estimated
topics for humans, i.e., how natural and meaningful topics are compared to hu-
man knowledge. We conducted three evaluation tasks via crowdsourcing: word
intrusion and topic intrusion tasks proposed in [12], and query selection task,
which we explain in detail in the following subsections. In these experiments, we
used the Yahoo! dataset, and the tasks were performed through using the Yahoo!
Japan crowdsourcing service”. All jobs contained ten tasks and were assigned to
eight different workers [12].

SCPU:Intel Corei7-3770 3.40GHz, Memory:16GB RAM
6While we did not estimate o of the BTM and ~ of the PCTM, these prior effects will be

relatively less than that of LDA because topic (topic pair) distribution is shared among all the

latent variables.
"http://crowdsourcing.yahoo.co.jp/
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Word Intrusion

The word intrusion task evaluated the cohesion of a group of terms belonging
to the same topic. In this task, several terms that belong to the same topic,
except for one term (an intruder), were displayed and, a crowdworker attempted
to locate the intruder. The intruder was selected randomly at low probability in
the topic, but at high probability in another topic. The other displayed terms
were selected with high probability in the topic. Therefore, if the topic was
significantly cohesive, the intruder was clearly isolated from the other terms, and
the crowdworker could find the intruder easily. We performed this task by varying
the number of displayed terms (6 and 8). We used 50 topics, from which a large
number of terms were assigned in the last samples of the inference. Performance
was measured according to the precision of intruders detection. We compute the
fraction of intruder detection by 8 workers for each topic.

The results are shown in Figure 3.3. At first glance, we see that LDA is
significantly worse than the BTM and PCTM; actually, there was significant
difference® between LDA and the others. Although the PCTM was slightly worse
than the BTM, the difference was not significant. We discuss the reason why the
performances of the BTM and PCTM are nearly the same in Section 3.6.

Topic Intrusion

The topic intrusion task examined how relevant topics were assigned to queries.
For each task, we displayed a query and four topics such that three of the topics
were the most relevant to the query but the remaining topic was chosen ran-
domly from the top-10 most irrelevant topics. Then, similar to the word intrusion
task, a crowdworker attempted to identify the irrelevant topic. Each topic was
represented as T' terms having the top-T highest probability in the topic. We
performed this task with varying 7' (3, 5, and 8). Note that as the number of
displayed terms increased, topics became more identifiable. We used 50 queries in
total, which were chosen randomly from the dataset. As the same manner of the
word intrusion task, we evaluated the performance by the precision. Note that

we excluded LDA from this experiment because the estimated topic distributions

8 In terms of the one side paired t-test with 95% confidence.
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Figure 3.3. Results of the word intrusion task. Each panel shows the results for

the number of displayed terms.

were very sparse; thus, we could not select three relevant topics.

For the BTM and PCTM, to collect relevant topics for a given query, we esti-
mate topic probability of the query by taking the average of the topic probability
of the term pairs. In the BTM, the probability of topic 2z, in an M-long query ¢
is expressed as follows:

Pl = =g 2 Pl (318)

b;eB(q)
where B(q) is the set of term pairs in ¢ and p(z;|b;) is the posterior probability
of topic z; given term pair b;, which can be estimated in the same manner as
Eq. (3.15). For the PCTM, we first compute the probability of topic pair z, in

query g:

2
_ - (b 3.19
b;€B(q)
where p(z;|b;) is given by Eq. (3.15). To obtain the probability of individual topic
24, we then compute the following probability as follows:

K

P(zgla)e = % ZP(%\Q)M + (x|, (3.20)
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Figure 3.4. Results of the topic intrusion task

i.e., we take the average for each element and its diagonal element and marginalize
out topic (.

The results are shown in Figure 3.4. We observe that there was no signif-
icant difference® between the BTM and PCTM; however, the performances of
the PCTM tends to increase as the number of displayed terms increases. This
is in contrast to the BTM, in which performance does not change with respect
to the number of displayed terms. This implies that the PCTM obtained more
coherent topics; thus, crowdworkers could use the increased terms as meaningful

information effectively.

Query Selection

The query selection task evaluates how topic models recover a user intent as a
query pattern. In each task, we display an actual (target) query and three groups
of artificial queries, which are respectively generated by LDA, the BTM, and the
PCTM. We let crowdworkers infer the search intent of the target query and then
select a group having the most number of queries that have the same intent. For
example, we consider a target query as “NY restaurant” in which the intent is
assumed to be (location service). If a crowdworker infer the intent correctly,
a group consisting of (Location service)-queries, such as “chicago lottery” and
“florida hotel”, should be selected.
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Figure 3.5. Results of the query selection task

We randomly selected 300 2-long queries from the training dataset and used
as the target queries. For these 2-long target queries, we estimated the topic
pair which takes maximum posterior probability at the last of the inference. For
each model, we fixed the length of generated queries to 2 and selected by the
following procedure. Given the estimated topic pair in a target query, we compute
the posterior probability of 2-long queries, i.e., term pairs. For the PCTM, we
computed the probability of term pair b = (wy,ws) given topic pair x = (z1, 22)

and the estimated parameter cAb as follows:

p(b = (wh w2)|x = (217 22)7 (}) = (ﬁwhzﬁgwmzz' (321)

The BTM and LDA computed the probabilities in the same manner. Finally,
we used the top-5 term pairs taking the most high probability as the displayed
queries. We measured the score which is the fraction of the selected by 8 workers
for each target query.

The results are shown in Figure 3.5. The PCTM was significant better® than
the BTM and LDA. This means that the PCTM could obtain topic pairs where

the intents are closer to ones interpreted by humans than the others.
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3.5.3 Keyword Recommendation

In this experiment, we evaluated prediction performance in terms of keyword
recommendation, i.e., given several terms as a part of a query, we attempted
to predict the term that a user will input next. From the whole dataset, we
randomly selected 10% of the queries and picked one term for each query as
test data. We repeated this procedure 10 times and created training and testing
datasets. We randomly initialized the latent variables for each trial. Then, after
learning the parameters with the training dataset, we calculated the perplexity
for each dataset using the last 100 samples for prediction.

While LDA can perform this experiment simply without modifications, the
BTM and PCTM could not. Therefore, we computed the predictive probability
for a single term rather than for a term pair. We computed this by assuming
that positions of missing terms in the test queries were known in advance, and
that the set of term pairs preserved the missing positions. We regarded missing
terms as latent variables in the models and performed CGS on these variables in
the parameter inference. The sample of the jth term in the ith term pair was
obtained by following the conditional distribution in the PCTM:

plw; =v|b™ ™" x; = (k1) = —F——, (3.22)
n. + Vi
where b~/ denotes that the set of term pairs excluding only w; ;. The samples
of the BTM were obtained in the same manner. After parameter inference, the
predictive probability of missing term w; ; was calculated by Eq. (3.22). We then
took the average of the terms, which was contained in separate term pairs but
was identical in a query”.

The results are shown in Figure 3.6. For both datasets, the PCTM outper-
formed the BTM. Indeed, the PCTM was significantly better® than the BTM in

both datasets.

9Compared to the training dataset of LDA, that of the BTM and PCTM includes the
position information about the missing terms. Since LDA does not require such information in
the traditional way to compute the perplexity, we did not perform the sampling of the missing
terms for LDA.
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Figure 3.6. Results of the keyword recommendation task. Lower perplexity indi-

cates the better performance.

3.5.4 Query Generation

In this experiment, we investigated the ability of the topic models as query gen-
erators, which is important for query recommendation application in Internet
advertising. To evaluate the performance, we learned each model by using train-
ing data and computed the top-10,000 most frequent 2-long queries. Then, we
measured AUC against the test queries, which we randomly selected another
100,000 2-long queries'®. In addition, we investigated the total number of gen-
erated queries detected in the test data. Note that, while we also performed
query generation in the query selection task (Section 3.5.2), the evaluation cri-
terion is different in terms of that the query selection takes the user intent into
account; this experiment purely evaluate how the topic models can generate nat-
ural queries, regardless of the user intents. We computed the probability of term

pair b = (wq, ws) whose topic pair is marginalized out as follows:
p(b - <w17 wg)‘(Aﬁ, ":b) = Z Z ngl,zl ngz,zﬂ?;zl,zz- (323)
zZ1 z2
The BTM and LDA computed the probability as well as in the query selection
task.

10We allowed the test data to include queries consisting of duplicate terms, such as “NY NY”

and “restaurant restaurant”.

35



Table 3.2. Results of AUC in the query Table 3.3. Reéult's of the total numbeli of
detected queries in the query generation

generation task

| [ LDA [ BTM | PCTM | sk
Yahoo | 0.5743 | 0.5729 | 0.6080
AOL | 0.5634 | 0.6021 | 0.6144

LDA | BTM | PCTM

Yahoo | 645 | 2,173 | 3,196
AOL | 632 | 1,437 | 1,880

The results are shown in Table 3.2 and 3.3. The AUC of the PCTM was
higher than the BTM and LDA in both datasets. This result implies that the
occurrence probability of a query computed by the PCTM reflects the occurrence
of the real query logs. Moreover, the PCTM detected the most queries from
test data in both datasets. The result indicates the PCTM has more natural
generative process for real query logs than the BTM and LDA.

3.5.5 Estimated Topics and Topic Co-occurrences

Here, we compare the obtained topics as a qualitative evaluation using the AOL
dataset. We show the location topic in Table 3.4; for each model, we selected a
topic such that the most number of terms related to locations in the top-20 topic
terms were used. The result shows that the PCTM obtained the most cohesive
topic that only contains the terms related to location, while the BTM and LDA
topics are corrupted by some non-geographical terms, such as “lottery” and “ho-
tel.” This is a reasonable result for LDA because it counts the topic probability
for every document, (i.e., query) and a document is extremely short; thus, terms
appearing in the same query were likely to be assigned to the same topic. A sim-
ilar interpretation holds for the BTM. As described in Section 3.4.3, the BTM
mitigates the shortness problem of queries and assumes that term pairs must be
assigned to the same topic, which causes contamination of “not-geographical-but-
jointly-used” terms, such as “hotel”.

Figure 3.7 shows ’(,Ab, which represents the relationships among topics, i.e., @kl
indicates the probability of how often topics k and [ are jointly used in term pairs.

Note that in Figure 3.7 the elements are shown in gray where ng; in Eq. (3.14)
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Table 3.4. Estimated topics about location

Top 20 terms

lottery state universe florida lotto california ny
LDA | texas unit ohio map michigan job pa

georgia result nj illinois virginia service

san la vegas diego hotel francisco antonio
BTM | casino california nevada jose nv mission citi

cabo reno valley mexico grand lo

florida ny texas san nj ohio chicago

PCTM | nc virginia nyc houston fl va pa

lo orlando michigan angel la california

takes 0, which shows that 17) is actually very sparse. This indicates that each
topic co-occurs with only a few other topics. This result agrees with common
sense; people possibly search “NY hotel” but not “lottery hotel.”

An unique advantage of the PCTM compared to the LDA and BTM is that
we obtain the relationship among topics as 1} Figure 3.8 represents relationships
among “public” topics, which we see that topic 3 represents public facilities and
is associated with topics about location (topic 4), public service (topic 0), and
job (topic 1). Figure 3.9 shows “leisure” topics: a topic about service (topic 5)
is associated with topics about location names (topic 6), resorts (topic 8), and
leisure activities (topic 9). We clearly observe that the PCTM could obtain the
network of topics that is very reasonable to our general knowledge. This is a
surprising result because the PCTM is a fully unsupervised approach and we did

not use any human resources.

3.6 Discussions

3.6.1 The Performance in the Crowdsourcing Tasks

The PCTM did not significantly outperform the BTM in the word and topic

intrusion tasks. While the PCTM can obtain separated topic representation as
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Figure 3.7. Estimated topic co-occurrence probabilities

described in Section 3.4.3, we found that this property did not seem to contribute
to the improvement in the both tasks. For example, in the word intrusion task,
even though we displayed “hotel” and “florida” included in an integrated topic
location & service estimated by the BTM, crowdworkers possibly infer that
these terms are associated with each other more than the other intruder term,
because people frequently use location and service names in web search. Con-
versely, in the query selection task, the PCTM significantly outperformed the
BTM because this task requires the separability of topics for what crowdworkers
can recognize query intents.

In contrast to the word and topic intrusion tasks, the PCTM significantly out-
performed the LDA and BTM with respect to keyword recommendation, which is
a similar characteristic to the CTM; The CTM may select an intruder from highly
correlated topics in word intrusion. This results in degenerating the performance
because the intruder from the correlated topic confuses crowdworkers [12]. The
PCTM seems to have the same problem since it incorporates such correlations

between topics.
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Figure 3.8. A subgraph of topic relationships estimated by the PCTM. We put
an edge between the topics if the corresponding entry of 17) has larger probability
than m

show the value of fb and the larger value indicates the strong connectivity.

For each topic, the top-10 terms are displayed. For each edge, we

3.6.2 Further Reduction of the Computational Cost

The issue of the PCTM is the computational cost. CGS for the PCTM (Sec-
tion 3.3.4) requires O(N K?) time complexity. On the other hand, the LDA and
BTM require O(DLK) and O(NK) complexity, respectively. When comparing
to LDA, the difference between K and K? is dominant because O(DL) of LDA
is comparable to the O(N) of the PCTM in real query dataset. Although this
issue didn’t matter in our used datasets, this will become more problematic in
real application.

One promising approach to reduce the complexity is to use a property that the
PCTM learns sparse ’L,Ab As described in Figure 3.7, the number of active topic
pairs is considerably smaller than all possible number of them. This implies that
current CGS checks many meaningless topic pairs. Interestingly, according to our
preliminary experiment, the active number of topic pairs is constant regardless of
K. By using this property, we consider an approximate sampling algorithm that

skips unnecessary computations in the sampling procedure as follows. In CGS of
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Figure 3.9. Another subgraph of topic relationships estimated by the PCTM

the PCTM, we must check all possible assignments of topic pairs for each term
pair; thus, the PCTM requires O(K?) complexity to obtain one sample to a topic
pair. We divide this sampling procedure into the following two steps: (1) we first
sample a binary variable to determine which active or non-active topic pairs to
sample in accordance with the current proportion of the active/non-active topic
pairs, and then (2) the topic pair is sampled from only among active/non-active
topic pairs. This computational cost amounts to O(pL + (1 —p)(K? — L)), where
p is the proportion of the active topic pairs, and A is the number of current active
topic pairs. This computation requires O(K?) complexity in general; however,
if Ais at most O(K) and 1 — p is less than O(+), the complexity is reduced
from O(K?) to O((1 — £)K + =(K* — K)) = O(K). While this approximated
sampling is not guaranteed to converge to the stationary distribution and it would
not be suitable for accurate prediction tasks such as computing the perplexity,
we empirically confirmed the quality of obtained topics are almost the same as

the exact approach.
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3.7 Summary

We have proposed a new probabilistic topic model for query logs. The PCTM can
capture topic co-occurrences in a query, which make topics more coherent without
limiting the target domain of queries. For model learning, we derived a fully-
Bayesian inference algorithm with collapsed Gibbs sampling. We have examined
three types of experiments, i.e., crowdsourcing, keyword recommendation, and

query generation tasks.
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Chapter 4

VB Inference of the IRM for
Network Data

4.1 Introduction

Network data are the most basic relational data that consist of only one kind
of objects. These networks appear in many situations such as social networks,
hyperlinks on Web pages, citation networks, gene interactions, and brain re-
gion interactions. To obtain knowledges from networks, there are following two
tasks. One is to analyze latent structures behind relations. Revealing these
structures gives us summarized representations of complex interactions between
objects. The other is to predict missing relationships from observations. Relation
prediction methods can be widely used in practical applications such as friend
recommender systems in social networking services. To face these tasks, various
statistical models have contributed. As an early work, Nowicki and Snijders have
proposed the stochastic block model (SBM), which is a basic probabilistic model
for relational data including networks [38]. Compared to other graph clustering
algorithms such as The SBM is general framework for relational data such as
spectral clustering.

As a Bayesian nonparametric extension of the SBM, Kemp et al. proposed
the IRM [29]. The IRM identifies cluster structures behind networks, and auto-
matically determines the number of clusters. It can be used in various relational

data, e.g., analyzing the functional connectivity of neural elements [36]. The IRM
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can be also extended as incorporating side information such as time-series infor-
mation [22], and more sophisticated models [10,23]. One of the advantages of the
IRM is less computational complexity compared to other Bayesian nonparametric
relational models [32,33].

To compute the posterior distribution for probabilistic models such as the
IRM, MCMC methods are used. MCMC methods approximate the posterior dis-
tribution by multiple samples drawn from stationary distribution, and a practical
choice for the IRM is to use CGS. However, in principle, MCMC methods need
to assess convergence and to identify coherent latent variables across multiple
samples [49].

Another choice for the posterior inference is the VB inference methods, which
we focus on in this work. The VB inference methods are deterministic algorithms
that transform the inference problem into an optimization problem with some
approximations for computational tractability [4,5,28]. The methods maximize
a lower bound of the log marginal likelihood of the model, and make the lower
bound converge to local optima by iteration. We can easily diagnose the con-
vergence by monitoring this lower bound. The VB inference methods have been
incorporating more efficient algorithms and dealing with wider problems, e.g., the
online learning setting [19, 45].

As a special case of the VB inference, Teh et al. have proposed the CVB in-
ference [49]. The idea is to relax the assumption of the mean-field approximation
by marginalizing parameters, and can find better local optima than the standard
VB inference. The CVB inference has been applied to some statistical models,
and its efficiency has been reported [49, 52].

In this Chapter, we focus on the IRM of network data, and derive the CVB
inference algorithm and its variant called the CVBO inference algorithm [3]. We
validated the performance of these algorithms through six real network datasets.
In the experiment, the CVB inference outperformed the VB one in many datasets,

and the tendencies remarkably appeared in dense networks.
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4.2 The IRM for Network Data

The IRM is a probabilistic model for general relational data such as purchasing
histories and user rating data [29]. Relational data are specified by objects and
observed relations. The IRM models the cluster structures of the objects based
on the observed relations. For example, user rating data consist of two kinds of
objects: users and items, and a observed relation indicates a rating of a user to
a item. In this case, the IRM assigns cluster indexes to both users and items
based on the observed ratings. Note that the IRM has slightly different gener-
ative process according to observations. For modeling user ratings, the Poisson
distribution is used for generating the ratings as non-negative integers, while the
Bernoulli distribution is used for generating binary logs in purchasing histories.

In this thesis we consider the IRM for network data that consist of one kind
of objects. The objects correspond to the nodes in the networks such as humans
in social networks and proteins in protein-protein interactions. The observed
relations are represented by the edges that are relations between objects and this
thesis considers undirected binary observations, e.g., whether links or not among
humans in social networks. Given the observations, the IRM assigns a cluster
index for each object according to the generative process. Intuitively, in the
IRM, the objects assigned to the same cluster tend to have similar links to other
objects. For example, if objects A and B link to the same objects C, D, and E,
A is similar to B in the sense that both objects have links to the same objects in
the network. As a result, A and B tend to the same cluster, and otherwise C, D,
E also tend to the same cluster.

We describe the generative model of the IRM with the stick-breaking process
(SBP) representation [46]. Let us assume that we observe network data consisting
of N objects without self-link observations. Firstly, the set of link probabilities

N = {Nu} oy are generated as

Ner ~ Beta(a, B), (41)

where 7y, denotes the link probability between cluster k and cluster [. Beta(-) is
the Beta distribution, and a and (3 are its parameters. Note that because 7 is
identical to 7, for undirected networks, we unify these variables as one, and use

only n whose subscript index k < I. Next discrete hidden variables z = {z;}¥,
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Figure 4.1. Graphical model of the IRM for network data when N = 4.

are drawn from a multinomial distribution with a vector 7,
zZ;~ T, (4.2)

where z; represents a vector of object ¢ where only one element corresponding to
a cluster is 1 and the others 0. 7 is generated by the stick-breaking process,

T = Vg, 1:[(1 — Um), vk ~ Beta(l,y) (k=1,...), (4.3)

m=1

N,N

where 7 is the concentration parameter. At last observations & = {x;;};2) ;1

are generated as
zy; ~ Bern(n;, .,), (4.4)

where 1), .. is a parameter corresponding to the cluster assignments of object i
and j, and x;; is a binary variable, which means whether object 7 and j link or
not. Bern(-) denotes the Bernoulli distribution. In undirected networks, we only
use x;; whose subscript index ¢ < j. Therefore the total number of observations
is N(N —1)/2. In Fig. 4.1, we instantiate the graphical model when N = 4. The

dependencies between x and z prohibit a simple plate notation.

4.3 The VB Inference Algorithms of the IRM

We derive three VB inference algorithms of the IRM presented in Section 4.2.
We describe update equations for the standard VB inference, the CVB inference,
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and the CVBO inference.

4.3.1 The VB Inference of the IRM

For the tractable VB inference, we replace the stick-breaking process (4.3) with
the truncated stick-breaking process [7],

k—1
T = Vg, H(l — Upm), vk ~ Beta(l,7), vp=1. (4.5)

m=1
T is the truncation level of this process, and does not necessarily mean the number
of clusters. If T is larger than effective number of clusters K, some clusters
will remain not used, and this process approximates the original stick-breaking
process. By using this representation, the joint distribution of the IRM is written

as

p<m7zanvv|avﬁa’y)
=p(ﬂ3|z 77) (z|v)p(nle, B)p(v]7)

N T T T-1
= H Ilj|zlaz]7 H ZZ|’U HHP 771~cl|04 Hp(vkh/) (46)
i1 =it i=1 k=1 1=k k=1

Each distribution is as follows:

p<$ij|zi,2], H H {lez 1 _nkl 1 mij)}(zikzjl""zilzjk)

k=11=k+1
{nkzk 1 . ,',}kk)(l—xij)}zikzjk ’ (4'7)
T k—1 Zik
plzilv) = Hwkm =11 {vk [Ja- Um)} : (4.8)
k=1 m=1
1 _ _
p(ﬁklk%ﬁ) = mﬁkza 1(1 - 77kl>6 17 (4'9)
1 1-1 —1
1— v 4.1
(ve|y) B(lﬁ)vk (1 —vg) 7, (4.10)
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where B(+) is the Beta function. By Jensen’s inequality, we obtain a lower bound
of the marginal likelihood for the IRM:

log p(x|a, B,7) = log/Zp(w,z,n,vloz,ﬁ,’y)
z

,z,n,va,p,
:log/ZQ(Z,T],'v)p( n | B 7)
z

q(z,m,v)

q(z7n7v)
p(m7z”r’7v|a7/67’)/)
o o
= L[q(z,n,v)]. (4.11)

where ¢(z,n,v) is the variational posterior distribution. This is defined as

T

N T T—
q(z,n,v)—H (zi ;) HHQ(UMWM,VM H (U |Fks Ak)- (4.12)
=1 k=1

k=1 l=k

We assume the mean-field approximation which limits the variational posterior
to fully factorized distributions. ¢(z;|¢,;) follows the multinomial distribution,
and q(nu|pr, v) and q(vg|kr, ) follow the Beta distribution. ¢ = {¢;}Y,,
on= {Nkl}k:u:ka v= {Vkl}k:Ll:k, k = {rip}1_}, and XA = {\.}1_} are variational
parameters. By optimizing these parameters, the lower bound approaches the
log marginal likelihood. It is equivalent to minimizing KL divergence from the
variational posterior to the true posterior KL(q(2z,n,v)|p(z,n,v|x)). The lower

bound L[g(z,n,v)] consists of following five expectation terms:

Llq(z,m,v)] = E, [log p(z|z,n)] + E, [log p(z|v)]
+ E, [log p(nl,a, B)] + Eq [log p(v]y)] — B, [log (2, v,v)] . (4.13)

The detail of each term is shown in Appendix A. By maximizing the lower bound

(4.13) with respect to the parameters of the variational posterior (4.12), the
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update equations of the VB inference algorithm are derived as follows:

T
Qi X exp < Z {naty () + 7ad (Vi) — (a4 M) O (o + via) }

I=k+1

+ Z {na (k) + 7ad (Vi) — (na + 1) ¥ (puk + vie) }

=1

k—1
‘HZJ (“k) - @ZJ (’fk + )\k) + Z {¢ (/\m) - @b (“m + Am)}) )

m=1

N
a+ Z Z (Pirdji + Gudji) xi; (I # k),
Hrl = ]i[:_113:;v+1
o+ Z Z ¢ik¢jk$zj (l = k),
( i=1 j=i+1
( N-1 N
B> (G + dudin) (1 — i) (1 # k),
Vil = ]i]z_llj:]i[+1
B+ Z Girdjr(1 — x4) (I=k),
( i=1 j=i+1

T

i=1 m=k+1
where

n; = Z ¢]l$1] + Z gbjlx]z»

j=i+1

Ny = Z (bjl Q:Z_] +Z¢jl x]z

j=it1

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)

and 9 (-) represents the digamma function. Note that the term ¢ (k)= (kg + Ag)
in (4.14) does not appear in the update of ¢;r. The algorithm repeats updating

equations alternately until converging to a local maximum.

We estimate the hyperparameters a and § according to Minka'’s fixed point

48



iteration method [34]. We also optimize v by maximizing the lower bound with

respect to it.

4.3.2 The CVB Inference of the IRM

Teh et al.

proposed the CVB inference for LDA [49]. Kurihara et al. also

proposed the CVB inference of the Dirichlet process mixture model [30]. On the

basis of these works, the CVB inference of the IRM are derived by marginalizing

out the parameters n and v. The joint distribution after marginalizing out n and

v is

plx, zlo, B,7) = /p(w,z,n,v!a,ﬁ,v)dndv

where

/ p(|z, mp(nla, B)dn / p(2l0)p(v]y)dv
T T
HHB / T = P gy

=k ’

N o~
LR
—

1 _
T—1

B (ny + o, g + B) H WF (nk + 1) T (nsp + )
B (a, B) P I'(nsp +v+1)

i
w

, (4.21)
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1~
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N-1
Z RikZjkTij (l = k:),
\ =1 j=i+1
(N-1 N
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ng = E Ziks

=1
N T

Ny = § E Zim
i=1 m=k+1

N>k = Nk + N>

In this derivation, we used a property of the Beta distribution: the integrals are
analytically computed as a product of the Gamma function. The conditional
distribution p(zy, = 1|z, 27, a, 8,7) is also written as follows:

_ k _
nkl—i-oznkl—i—ﬁ nlk—l—ozmk—l—ﬁ)

nkl+ankl—|—ﬁ 1 B (ng' +a, 7y + 6)

plza =1z, 27" 0, B,7) H

l=k+1
nrt k—1
n>k+’}/+1 n>m+’Y+1

13

The superscripts “—:” such as n,;li mean to exclude the counts with respect to z;.
In the CVB inference, we consider a lower bound of the marginal likelihood after

integrating out n and w:

log p(z|a, B,7) = log Zp(w,zm,ﬁ,v)

1ng p(, Z|04)5 ;)

=logE, [—(‘”’zi‘:’)ﬁﬁ)}

e

= Lla(2)) (123)

where ¢(z) is the variational posterior distribution in the CVB inference. This is
defined as

(=) = [ al=19.). (424

The variational posterior only assumes mean-field approximation to z. This

relaxation of independence assumption allows the variational posterior to get
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closer to the true posterior. We maximize the lower bound (4.23) with respect to
variational parameters ¢ = {¢,}, by using the Lagrange multipliers method.

When maximizing ¢;;, the Lagrangian function L, is defined as follows:

T
Lg,, = ¢z’qu(z*i) [p(m, zik = 1, Z_i|047577)] — Qixlog Qi — p (Z Girr — 1) )
k=1
(4.25)
where p is the Lagrangian multiplier. we set this to zero, and obtain the following

update equation:

dir <exp (Eyz-i) [logp(zik =1z, z7" o, 8,7)])

X exXp (

Z log F(ng+a) U+ 6) T (nm + gy +O‘+B)
I (ny +a) T () + B) T (nw + 7+ a+ 5)

= k:+1

—f-Zl nlk—i-oz) (ﬁlk—l-ﬂ) F(nl_ki“‘ﬁl_ki‘FOé‘Fﬁ)
I (ng! +a) (nlk B) I'(mg + g + a + )

) (426)

Although (4.26) is intractable because of the expensive computations of expecta-

_“r L+
_|_1 k + >m
g 1 Z gn;in-i-’)/-i-l

tion terms, we can use the Taylor series approximation. In general, the expecta-

tion of function f is approximated by

E[f(2)] = E[f(E[2])] +E |/ (E[2])(z — E[])] +E [1f”<E [2])(x - Emﬂ

2
= FE ) + 5/ (Ee])var[s]. (4.27)

Note that the first term vanishes. By using this approximation, the above expec-

tation terms are computed like the following manners:

. ) 1 . )
Eq [logT (ny + )] ~logT' (Eq [n/] + a) + 57/1(1) (B, [ni] + o) varg [ny/]

=a (ny/, a), | (4.28)
E, [log (ny" + 1)] ~log (E, [n;i] +1) Qv(a;j—%
=b (n;",1), (4.29)
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where ¢! (+) represents the trigamma function. Expected/variance counts with

the superscript —i are

N
D @byt dudg) vy (L#K),

N
Z Z GirkQjrkTiry (1=k),

varg [ng] = q

N
Z Z ¢i/k¢j'k (1 - ¢i/k¢j/k> Ty

Because z;; = 1 and z;. = 0 (- # k), the following counts are written as

Eq [nkl] nkl + Z ¢j’lxm + Z¢z’l$z gy

j'=i+1 =1

N i—1
varg [ni) = varg [ng'] + > b1 = i)z + Y din(l — din)a.

j'=i+l ¥=1
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(4.31)

(4.32)
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(4.34)

(4.35)



Other counts are listed in Appendix B. By using these, equation (4.26) is approx-

imated as follows:

(4.26) ~ exp ( Z {a(nw, ) —a(ny, @) +a(my, B) —a (i, B)

l=k+1
—a (N + Mg, o + B) +a(”&i+ﬁ;§i7a+5)}

—l—Z{a i, @) — a (ny, @) +a (T, B) — a (', B)
—a(ny + T, + B) +a (ny +1y0, a0+ B) }

+b (ng",1) = b (n3}, 7 + 1) +§{b (n3h.7) —b(ngg,wl)}) :

m=1

(4.36)

Note that the CVB inference gains flexibility by relaxation of independence as-
sumption in return for losing accuracy by Taylor approximation.

Next, we derive the CVBO0 inference that has firstly proposed for LDA [3].
The difference from the CVB inference is to use only the zeroth-order term in

Taylor approximation. Equation (4.26) is approximated as follows:

(4.26)
exp ZT: log L (E, [nkl.] +a) T (B[] +8) T (Eq [my] + By [7] +a+B)
St T [ng] + ) T (B[] +8) T (Bq fnwa] + Eq [ + o+ 5)
+i10g D (B[] +0) T (Eg[n] +8) T (B, [nig] + B, (] + o+ 5)
=1 I (Eq [nl—lﬂ + O‘) I (E [ﬁl_kz] + 6) I'(Eq [nue] + Eq k] + o + B)
B[] +1 N~ Ealnshl+o
+logEq n22}+7+1+mz_110g]]£q [nzfn]+’7+1>' (4.37)

This is more computationally efficient than (4.36) because it does not require to
calculate and maintain variance counts.

We also estimate the hyperparameters «, 5 and v by using Minka’s fixed point
iteration method [34].
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4.4 Experimental Comparisons

In section 4.3, we presented three types of VB inference algorithms for the IRM. In
this section, we call these algorithms “VB”, “CVB”, and “CVB0”, and compare
these VB inference algorithms and CGS. Note that for CGS we also use the
Minka’s fixed point iteration method [34] for estimating the hyperparameters «
and 3, and the Slice sampler for the hyperparameter ~.

We confirmed effectiveness of these algorithms to six real datasets. We pre-
pared the NIPS coauthorship network dataset [16]. This consists of information
about which each author published the paper together with another author in
the 1st-17th NIPS conferences!. We made a dataset with only most connected
225 authors from original data as in [33,39]. Note that we omitted the self-
link observations from the data. We also prepared five collaboration networks in
arXiv [31]2. They consist of collaboration information about authors submitted in
arXiv from January 1993 to April 2003, and are categorized to Astro Physics (As-
troPh), Condense Matter Physics (CondMat), General Relativity and Quantum
Cosmology (GrQc), High Energy Physics - Phenomenology (HepPh), and High
Energy Physics - Theory (HepTh). We also made datasets with most connected
authors in the same way as the NIPS dataset. Table 4.1 shows some statistics
of these six datasets including the number of objects, ratio of links, and average
clustering coefficient for each dataset.

We used the test log likelihood and the AUC, the area under the ROC (Re-
ceiver Operating Characteristic) curve, as evaluation metrics. We used 80% as
training data and 20% as test data, and repeated 25 times while changing the
test data, and took the average of them. For one training procedure, we repeated
the update until the difference of the lower bound gets smaller than 107% and set
the maximum number of iteration to 3,000 for VB algorithms. We also set the
truncation level T to 50. For CGS, we repeated the update by 20,000 times, and
used the last 500 samples for the test.

Results about the test log likelihood and the AUC are shown in Table 4.2 and
4.3. The higher test log likelihood and AUC indicate better performances. We
also examined the Wilcoxon signed rank test with p-value of 0.01. We highlighted

thttp://ai.stanford.edu/ gal /data.html
2http://snap.stanford.edu/data,/
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Table 4.1. Information about 6 network datasets. These are sorted by ratio of

links for comparison.

Number of objects Ratio of links (%) Average .cluster-
ing coefficient
NIPS 225 2.36 0.573
CondMat 230 5.33 0.329
HepTh 205 5.52 0.417
GrQc 236 11.11 0.800
AstroPh 220 15.74 0.500
HepPh 400 43.30 0.825
Table 4.2. Results of the test log likelihood (7" = 50)
CGS VB CVB CVBO
NIPS -353.3(38.0) -400.4(315)  -405.6(46.9)  -432.9(51.6)
CondMat | -1073.6(42.8) -922.6(41.3) -888.2(39.5) -882.8(46.7)
HepTh 555.4(27.1)  -483.9(24.9)  -466.5(25.2)  -458.8(26.6)
GrQc 1209.9(20.8) -384.1(187.9)  -219.9(22.7)  -202.6(23.5)
AstroPh | -1307.6(39.6) -1488.7(56.0) -1285.9(43.0) -1274.0(31.8)
HepPh | -2272.2(47.6) -1949.1(58.7) -1819.5(176.8) -1671.1(74.8)

the best results and those not significantly worse than them.

VB outperformed CVB and CVBO in the NIPS dataset which is the most
sparse dataset in our experiment. On the other hand, CVB and CVB0 outper-
formed VB in other five datasets. The difference is especially larger in dense
datasets. The tendencies of the performances with respect to the AUC is similar
to those of the test log likelihood.

We also validate the effects of the truncation level T. We set T' to 10, 20,
80, and 100 besides 50, and evaluated them as in a previous experiment. The
results with box plots are shown in Fig. 4.2 and 4.3. Titles in each graph denote
the name of dataset, its ratio of links (Links), and estimated average number of

clusters for CGS (CGS_K).
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Table 4.3. Results of the AUC (T = 50)

CGS VB CVB CVB0
NIPS 0.8939(0.0301) 0.8736(0.0146)  0.8573(0.0273)  0.8351(0.0388)
CondMat | 0.5738(0.0203) 0.7908(0.0175) 0.8018(0.0216) 0.8077(0.0162)
HepTh 0.7689(0.0562) 0.8983(0.0169) 0.9062(0.0152) 0.9102(0.0169)
GrQe 0.9933(0.0014) 0.9877(0.0105) 0.9954(0.0010) 0.9956(0.0013)
AstroPh | 0.9011(0.0077) 0.8465(0.0094)  0.8886(0.0069)  0.8910(0.0060)
HepPh 0.9843(0.0011) 0.9861(0.0010)  0.9872(0.0022) 0.9888(0.0010)

Although it is ideally desirable that increasing T" does not degrade the per-
formances, the results in some datasets and algorithms did not work so. This is
remarkable in datasets estimated as relatively small number of clusters by CGS. It
seems that they were unsuccessful in too large truncation levels because they are
liable to fall into local maxima. Bottom two datasets whose estimated numbers of
clusters were relatively large did not degrade the performances even when 7" = 80
and 100 except for VB. One solution to this problem will be to use the Kurihara’s
label reordering [30] although the method requires more computational costs.

To compare actual runtime, we show the evolution of the test log likelihood
for each algorithm in Fig. 4.4. We showed the results of NIPS and AstroPh, and
randomly selected 5 trials from 25 trials. For VB algorithms, we calculate the
test log likelihood for every 5 iterations, and plotted those by 300 iterations. For
CGS, we calculated the test log likelihood for every 200 iterations by using last
200 samples, and plotted those by 20,000 iterations.

CGS is much faster per iteration than other VB algorithms because it does
not require calculating the log Gamma, digamma and trigamma functions except
for when estimating hyperparameters. However the values of CGS sometimes
vary in time, and its convergence diagnosis may not be easy. On the other hand,
VB algorithms converge to a maximum for a few tens of iterations. CVB is slower

than VB and CVBO since CVB requires more computational costs.
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Figure 4.2. Results of the test log likelihood changing the 7' to 10, 20, 50, 80,
and 100.

4.5 Discussions

In Table 4.2 and 4.3, we compared empirical performance of the algorithms and
showed CVB and CVBO0 outperformed the VB in most dense networks. The re-
sults follow our intuition. Denser datasets will tend to present more complex
relations into networks. Complex relations reflect strong dependencies of param-
eters of clusters. In this situation, we will receive the benefit from CVB inference
to relax the independence assumption about the parameters by marginalizing out
n and v. Though the performances of CVB and CVBO0 are competitive, CVBO0
slightly outperforms CVB in the most of datasets in spite of its rough approxi-
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Figure 4.3. Results of the AUC changing the T to 10, 20, 50, 80, and 100.

mation. CGS does not necessarily perform better than other algorithms. Since
CGS is a MCMC method, in principle, this provides the samples from the true
posterior distribution after sufficiently many iterations. However, in practice, the
Gibbs sampling can be slow to converge and mix poorly, since it is possible to
stay around a local mode [24].

In the experiments, CVB0 was slightly better than CVB in spite of the more
rough Taylor approximation. Asuncion et al. reported CVB0 outperformed CVB
in LDA [3]. Sato and Nakagawa gave a theoretical analysis to the result: they
explained the good performance of CVBO0 in LDA by using the a-divergence [44].
Sato and Nakagawa showed that CVBO is composed of the (a = 1, —1)-divergence
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Figure 4.4. Evolution of the test log likelihood in NIPS and AstroPh datasets.

projections and that « = —1 is similar to & = 1 in LDA. The virtue of o = 1 was
discussed in Minka’s work [35], which supports the analysis of Sato and Nakagawa.
However, their work does not cover the general CVBO0 including the case of the
IRM. To clarify our results, further theoretical analysis will be required.

In this Chapter, we focused on the case when observations are represented by
an undirected network. The IRM can be used in more general relational data,
e.g., in directed networks or bipartite graphs. For modeling these observations,
we need to extend the generative process to those with more latent variables and
parameters. These generative processes will have more strong dependencies of
parameters i) and v. It is expected that, in these cases, the CVB inference algo-
rithms can be more effective, and it is possible that CVB and CVB0 outperform
VB in more datasets.

Note that the IRM suffers from falling into the local maximum. While this
causes slower mixing in CGS, we confirmed that the VB and CVB inference
also converged to worse local maximum in preliminary experiments with artificial
datasets. To avoid the problem, some measures will be taken. For example, split-
merge techniques will be effective for CGS [24], and annealing methods is another
choice for the VB and CVB inference.
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4.6 Summary

In summary, we derived three VB inference algorithms of the IRM for network
data which have not been shed light on, and compared performances of these
algorithms in real six datasets. Our contributions have two points: 1) we derived
the CVB inference algorithms of the type of block model, e.g., the SBM and the
IRM, and 2) we confirmed the performances for six real undirected networks, and
discussed the relationships between performances of algorithms and data sparsity
of the datasets.
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Chapter 5
Conclusion

This thesis dealt with latent variable models that have been successful in many
fields but still open to research questions. Latent variable models are flexible
frameworks to obtain knowledge from complex data and the efficiencies have
been shown with the spread of the machine learning approaches in data analysis.
However, individual data often have distinctive properties that is significant to
capture richer latent structures, thus, domain-specific modeling and learning are
required for obtaining more valuable knowledge.

In particular, this thesis tackled two topics about the latent variable mod-
els. In Chapter 3, we address the issue of extracting search query patterns with
topic models. After showing computational problems of a naive query model, we
proposed the PCTM that models topic co-occurrence patterns on queries. The
PCTM showed the higher empirical performance than standard topic models with
respect to human evaluation of estimated topics and some tasks supposing real
applications. In Chapter 4, we studied the VB methods of the IRM for networked
data. We derived the CVB inference algorithms of the IRM for networks, and
compared empirical performance of the VB methods and CGS algorithm. The
results implied the CVB inference algorithms are particularly superior to other

methods in dense networks.
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5.1 Future Directions

Finally we give some future directions as follows. In Chapter 3, we proposed the
PCTM as an approximated model of a naive query model. While this approxima-
tion brings computationally efficiencies, the consistencies among topic pairs on
a query preserve no longer. Moreover, since the PCTM is not a fully generative
model for queries, we need extra computations that is included in the assumption
of the PCTM to obtain the query-specific topic information. It is significant to
develop a topic model for queries while keeping the computationally efficiencies.
As another direction, it will be beneficial to improve the quality of estimated
low-frequent topics. To compensate observations about such topics, other text
resources are available. Fortunately, the PCTM is formulated as a fully-Bayesian
model, thus, it will be relatively easy to incorporate such information into the
PCTM. The extended model will be expected to enhance the quality of all the
topics.

In Chapter 4, from our experiments, it is inferred that the relative perfor-
mances of the inference algorithms for the IRM seem to depend on the density
of networks. As a future work, more theoretical analyses are needed about the
behaviors. One approach is to use the asymptotic analysis for the VB inference
algorithms [53]. This approach clarifies the asymptotic behaviors of the VB lower
bounds in the large sample size and may provide good indicator for comparing
the VB inference algorithms. Moreover, the analysis of the CVB inference is
significant. As discussed in Section 4.5, the relationship between the CVB and
CVBO inference is not clarified. Providing the further theoretical implication of
the CVB inference will be also contributed to not only the IRM but also other
models. As another direction, developing the faster VB inference algorithms will
be beneficial. The VB inference of the IRM needs to compute the gamma and
polygamma functions that is computationally expensive. The reduction of such

calculations will be important in applying large-scale data.
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Appendix

A The detail of the VB lower bound (4.13)

Each term in the lower bound (4.13) is described as follows:
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B Expected/variance counts in the CVB infer-
ence of the IRM

We list expected/variance counts that are not listed in Section 4.3.2.
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