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Bilingual Dictionary Extraction via Multilingual Topic
Models ∗

Xiaodong Liu

Abstract

A machine readable bilingual dictionary plays a crucial role in many natural lan-
guage processing tasks, such as statistical machine translation and cross-language in-
formation retrieval. In this thesis, we propose a framework for extracting a bilingual
dictionary from comparable corpora by exploiting a novel combination of topic mod-
eling and word aligners, such as the IBM models. Using a multilingual topic model,
we first convert a comparable document-aligned corpus into a parallel topic-aligned
corpus. This novel topic-aligned corpus is similar in structure to the sentence-aligned
corpus frequently employed in statistical machine translation and allows us to extract
a bilingual dictionary using a word alignment model.

The main advantages of our framework are that (1) no seed dictionary is necessary
for bootstrapping the process, and (2) multilingual comparable corpora in more than
two languages can also be exploited. In our experiments on a large-scale Wikipedia
dataset, we demonstrate that our approach can extract higher precision dictionaries
compared to previous approaches, and that our method improves further as we add
more languages to the dataset.
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多言語トピックモデルを用いた対訳辞書の抽出 ∗

劉曉東

内容梗概

機械翻訳、情報抽出などの自然言語処理のタスクでは、対訳辞書は極めて重要
な役割を果たしている。本研究では、トピックモデル及び IBMなどの単語アライ
ナーを組み合わせ、対照コーパスから対訳辞書を抽出するフレームワークを提案
する。多言語トピックモデルを利用することにより、まずドキュメント整列の対
照コーパスをトピック整列の対訳コーパスに転換する。このトピック整列のコー
パスは、機械翻訳によく使われる対訳コーパスに構造的に類似するため、単語整
列モデルを利用し、対訳辞書を抽出することが可能となる。
このフレームワークの利点として：（１）プロセスのブートストラップとして、
シード辞書は不必要である；（２）二つの言語以上の多言語対照コーパスも同様
に利用できる。ウィキペディアのデータセットを使っての大規模実験では、提案
手法が先行研究より高精度の辞書を抽出できることが実証された。それに、より
多くの言語をデータセットに追加すれば、本手法の性能はより一層高くなる。

キーワード

対照コーパス、対訳辞書、多言語トピックモデル

∗奈良先端科学技術大学院大学情報科学研究科情報処理学専攻博士論文, NAIST-
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Chapter 1

Introduction

This chapter sets the topic of the dissertation. Section 1.1 discusses the background
and the motivation for studying bilingual lexicon extraction from comparable corpora.
Then, Section 1.2 summarizes the contributions of this thesis. Finally, the outline of
the dissertation is provided in Section 1.3.

1.1 Motivation
A machine-readable bilingual dictionary plays a very important role in many natu-

ral language processing tasks. In Statistical Machine Translation (SMT), dictionaries
can help in the domain adaptation setting [13]. In Cross-Lingual Information Retrieval
(CLIR), dictionaries serve as efficient means for query translation [52]. Many other
multilingual applications also rely on bilingual dictionaries as integral components.
For example, Volkova et al., [60] used a bilingual dictionary to analyze multilingual
sentiment in social media; Zhang et al,. [64] incorporated a Chinese-English dictio-
nary into a probabilistic topic model to explore bilingual latent topics in Chinese and
English texts.

In the last two decades, researchers have focused on building bilingual dictionaries
either from parallel corpora or comparable corpora. A parallel corpus usually refers
to a collection of texts, which consist of sentence-to-sentence translation between two
languages, as shown in Figure 1.1. On the other hand, a comparable corpus is defined
as a collection of document pairs written in different languages, but talking about the
same topic [31], such as interconnected Wikipedia articles, as shown Figure 1.2.



Figure 1.1: An example of a parallel corpus. Note that each line denotes a Japanese-
English pair, which can be directly translated into each other.

One typical approach for building a bilingual dictionary resource uses parallel cor-
pora. This is often done in the context of SMT, using word alignment algorithms such
as the IBM models [12, 48]. Unfortunately, parallel corpora may be scarce for cer-
tain language-pairs or domains of interest (e.g., medical and microblog). On the other
hand, comparable corpora are more abundant than parallel corpora. Thus, the use of
comparable corpora for bilingual dictionary extraction has become an active research
topic [24, 61, 39]. The challenge with bilingual dictionary extraction from comparable
corpus is that existing word alignment methods developed for parallel corpus cannot
be directly applied because of assumptions of sentence alignment. Some researchers
have tried a framework by 1) converting comparable corpora into parallel corpora and
then 2) using word alignment models [55]. However, such kind of models rely on large
seed dictionaries and complicated features, e.g., orthographic features and translation
features derived from SMT model. On the other hand, the standard approach (also
known as context vector approach) usually needs large seed dictionaries to boost new
translation pairs under the distributional hypothesis [51, 19, 57]. However, such kind
of large seed dictionaries are difficult to obtain. Moreover, polysemy words, which
have multiple meanings or senses, e.g., bank referring to either “the land alongside to
a river or lake” or “a financial establishment”, may be translated into different words
in foreign languages. Such a problem, which is always ignored, plagues the accuracy
of bilingual lexicons.
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Figure 1.2: An instance of interconnected Wikipedia articles (a.k.a comparable cor-
pora). Note that the Chinese-English document pair cannot be translated into each
other directly, but both articles are about the same story.

The motivation of this thesis is that we focus on developing a serial of algorithms
to extract the bilingual dictionary from comparable corpora. Furthermore, to facilitate
further work in the area, we release the extracted dictionaries by using our framework.
Last, we believe there are several desiderata for bilingual dictionary extraction algo-
rithms:

• Low Resource Requirement: The model should only use cheaper corpora, e.g.,
one should rely on comparable corpora instead of parallel corpora, and should
not rely on any language-specific knowledge, e.g., suffix or prefix of specific
language properties, or seed lexicons.

• Polysemy Handling: One should handle the fact that a word form may have

3



multiple meanings, known as polysemy phenomenon, e.g., the English word
“free” may refer to the sense of “given without charge” that could be translated
into Japanese as “無料”, or, the sense of “not restrained” that can be translated
into Japanese as “自由”. Such kind of multi-meaning phenomenon, which is
very common in many languages, may plague the accuracy of bilingual extrac-
tion systems and related multilingual processing systems, e.g., statistical ma-
chine translation and cross-language information retrieval systems.

• Flexibility: The approach should be very flexible to encoding additional infor-
mation if available. For example, additional languages for comparable corpora
can be encoded in our framework to enhance the accuracy of bilingual dictionary
extraction, as shown in Chapter 4.

• Scalability: The approach should run efficiently on massively large-scale datasets.
Precisely, our model is 70 times faster than the baseline models and work very
well on small number of topics, as shown Chapter 3 and Chapter 4.

1.2 Contribution
Our contribution is summarized as follows:

• We propose a bilingual dictionary extraction framework that simultaneously
achieves all the desiderata introduced in the previous section: low resource re-
quirement, polysemy handling, flexibility and scalability.

• Our framework is extremely flexible and simple-to-implement, consisting of a
novel combination of existing topic modeling tools from machine learning and
word alignment tools from machine translation.

• We further propose a hybrid system for bilingual dictionary extraction by: 1)
firstly, extracting seeds using the previous framework and then 2) boosting the
context-vector based approaches.

• To facilitate further work in this area, all preprocessed data, extracted lexicons
and topic modeling code are available at https://bitbucket.org/allenLao/topic-
modeling-gibbs.
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1.3 Outline of Dissertation
The outline of this dissertation is as follows.
In Chapter 2, we introduce some preliminaries, which include latent semantic mod-

els, such as Latent Dirichlet Allocation (LDA) and word alignment models (a.k.a IBM
models), the main components of our framework.

In Chapter 3, we introduce our proposed framework, which is a novel combination
of Multilingual Topic Model (MLTM) with the word alignment model. The basic idea
is to

1. Segment the comparable corpora into Topic-Aligned corpora, which is the key
component of our framework, via multilingual topic models.

2. Extract a bilingual lexicon using word alignment models.

We show that the proposed bilingual dictionary extraction framework is effective com-
pared to other baseline systems. Furthermore, we show how our framework disam-
biguate polysemy in terms of topic specific translations, which is a translation proba-
bility, p(w f |we, tk), given a topic, tk and a source word we.

In Chapter 4, we extend the multilingual topic model to handle the partial-aligned
comparable corpora, such as Wikipedia articles. Additionally, multilingual compa-
rable corpora in more than two languages, which is becoming increasingly prevalent
due to the spread of the multilingual web, are used to enhance the performance of
our proposed framework, as introduced in Chapter 3. We show how we can improve
the extraction of Japanese-English dictionaries using comparable data not only from
Japanese and English, but also from other languages such as Chinese and French.

Chapter 5 shows an extension of our framework to boost the context vector approach
by:

1. Extracting bilingual lexicons using our proposed models.

2. Using such lexicons as seeds to boost the context vector model.

Note that all our models and approaches do not use any extra lexicons or dictionaries,
and all are in an unsupervised regime.

Finally, we give a summarization for our dissertation in Chapter 6. We discuss
several open questions in bilingual lexicon extractions and future works as well.
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Chapter 2

Preliminaries

2.1 Topic Models
In the last decade, a variety of probabilistic topic models, such as Probabilistic Latent

Semantic Indexing (PLSI) [27] and Latent Dirichlet Allocation (LDA) [9], have been
used to analyze the content of documents and the meaning of words. The basic idea
behind those models is that a document is a mixture of topics, where a topic is a prob-
ability distribution over words. A topic model is a generative model for documents:
it specifies a simple probabilistic procedure by which documents can be generated. In
the following of this section, we mainly describe the basic topic model, LDA.

2.1.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation, proposed by Blei et al. [9], is an extension of PLSI [27]
with the Dirichlet distribution prior to prevent the over-fitting problem. The aim of
LDA is to explore the latent structure of semantic concepts (a.k.a topics), based on the
co-occurrence between words, in a document collection. The experiments show that
such learned topics can capture synonymy and polysemy, which are common phenom-
ena in linguistics. Thus, LDA is widely used in Natural language processing systems
[39, 36, 38], and information retrieval systems [46, 20]. To facilitate the understanding
of LDA, we introduce the common notations as follows:

1. M: number of documents to generate (constant).

2. K: number of topics or mixture components (constant).



3. V : number of vocabularies in the corpus (constant).

4. α and η : hyperparameters of the Dirichlet distribution for the topic proportion
and the topic-word distribution.

5. θm: parameters for the topic distribution of a given document dm, p(z|dm). Note
that θm is a vector of variables with K dimension. Thus, the topic distribution
parameters for the whole corpus, which includes M documents, can be notated
as an M by K matrix, Θ.

6. βk: topic-word distribution of the mixture component of topic k, p(w|z = k).
Note that βk is a vector of variables with V dimension. Thus, the global topic-
word distribution for the whole corpus can be denoted by an K by V matrix,
B.

7. N: length of a document, here modeled with a Poisson distribution with constant
parameter [9].

8. zm,n: index of topic for the n-th word in the m-th document.

9. wm,n: the n-th word in the m-th document.

10. dm: m-th document in the corpus.

11. D or W : the corpus with M documents, {dm}M
m=0.

Conventionally, LDA is represented as a directed graph in terms of the graphic model
as shown in Figure 2.1. The basic idea is that documents are represented as random
mixtures over topics, where a topic is a distribution over words. Its generative story is
shown in Algorithm 1:

For each document dm, a K-dimensional Dirichlet random variable θm can take val-
ues in the (k−1)-simplex, and has the following probability density on this simplex:

p(θm|α) =
Γ(∑K

i=k αk)

∏K
k Γ(αk)

θ α1−1
1 ...θ αK−1

K (2.1)

On the other hand, for each topic k, its topic word distribution has a V -dimensional
Dirichlet over the vocabulary V as:

p(βk|η) =
Γ(∑V

i=v αv)

∏V
v Γ(ηv)

β η1−1
k,1 ...β ηV−1

k,V (2.2)

8



Figure 2.1: Graphic model representation of LDA. The boxes are ”plates” representing
relocates. The outer plate represents documents, while the inner plate represents the
repeated choice of the topics and words with in a document. The gray node wm,n de-
notes observations (a.k.a words in a document). M, N denote the number of documents
in the corpus and the number of words in a specific document, respectively.

Given the hyperparameters α and η , the joint distribution of all hidden variables and
observed document, denoted as a sequence of words wm, is given by the following:

p(wm,z,θm,B|α ,η) =
K

∏
k=1

p(βk|η)
N

∏
n=1

p(wm,n|βzm,n)p(zm,n|θm)p(θm|α) (2.3)

Marginalizing all hidden variables, the likelihood of the given document, denoted as a
sequence of words wm, is computed by:

p(wm|α ,η) =
∫∫

p(β |η)p(θm|α) ·
N

∏
n=1

p(wm,n|θm,β )dβdθm (2.4)

Finally, the likelihood of the whole corpus W = {wm}M
m=1 is determined by the product

of the likelihood of all the independent documents as:

p(W |α,η) =
M

∏
m=1

p(wm|α ,η) (2.5)

9



Algorithm 1: Generative story for LDA.

for each topic k do
sample βk ∼ Dirichlet(η)

end
for each document dm in corpus do

sample θm ∼ Dirichlet(α)

for each word wm,n in dm do
sample z ∼ Multinomial(θm)

sample wm,n ∼ p(wm,n|z,β )
end

end

2.1.2 Inference

The central computational problem for LDA is approximating the posterior given a
document. Exact inference for LDA is generally intractable. Therefore, the approx-
imate inference methods are always selected. For simplicity, we will only develop a
collapsed Gibbs sampling [46, 25, 42], a type of Markov Chain Monte Carlo (MCMC),
to estimate the posterior given a document in this thesis.

MCMC is a procedure for obtaining samples from complicated probability distri-
butions, allowing a Markov chain to converge to the target distribution and then draw
samples from the Markov chain. Each state of variable being sampled is assigned to
a value, and transitions between states follow a simple rule. Here, the next state is
reached by sequentially sampling all variables from their distributions when condi-
tioned on the current values of all other variables and data. In the case of LDA, we
only sample a topic assignment, zm,n, given each word, wm,n. For simplicity, we use
an index i = (m,n) to denote a word index or a topic index. Thus, a document is no-
tated by a word vector, w = {wi = t,w¬i} and corresponding topic states is denoted
by z = {zi = k,z¬i}. Note that we use w¬i to indicate the word vector excluding the
word wi and z¬i indicates a topic vector excluding the i-th states. Thus, the conditional
posterior for zi = k given the current states of topic assignments, z, words, w, and hyper
parameters α and η , is computed by:

p(zi = k|z¬i,w,α ,η) =
p(w,zi|α,η)

p(w,z¬i|α ,η)
(2.6)
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The problem becomes how to compute p(w,z|α ,η)1. From Figure 2.1, we further
factorize the p(w,z|α,η) as follows:

p(w,z|α ,η) = p(w|z,η)p(z|α) (2.7)

Note that given variables topic index z and hyperparameter η , w and α are independent
of each other according to the probability graph theories.

The first term of Eq 2.7, p(w|z,η), is derived from a multinomial on the observed
word, with the Dirichlet priori η . It can be further factorized as:

p(w|z,η) =
∫

p(w|z,β )p(β |η)dβ . (2.8)

The multinomial distribution and Dirichlet distribution is a pair of the conjugate dis-
tribution for each other. Therefore, the Eq 2.8 is also a Dirichlet distribution and can
be computed by:

p(w|z,η) =
K

∏
z=k

∆(nz +η)

∆(η)
, nz = {n(v)z }V

v=1. (2.9)

Where ∆(η) is computed by ∏V
v=1 Γ(ηv)

Γ(∑V
v=1 ηv)

2 and ∆(nz +η) is computed by ∏V
v=1 Γ(ηv+n(v)z )

Γ(∑V
v=1 ηv+n(v)z )

.

n(v)z denotes the number of time that a word, v, has been assigned to the topic z.
Similarly, we compete the second term of Eq 2.7 as:

p(z|α) =
∫

p(z|θ)p(θ |α)dθ

=
M

∏
m=1

∆(nm +α)

∆(α)
, nm = {n(k)m }K

k=1. (2.10)

Where ∆(α) is computed by ∏K
k=1 Γ(αk)

Γ(∑K
k=1 αk)

and ∆(nm +α) is computed by ∏K
k=1 Γ(αk+n(k)m )

Γ(∑K
k=1 αk+n(k)m )

.

n(k)m indicates the number of times that topic k has been assigned with a word of docu-
ment m.

By putting the two terms together, Eq 2.7 becomes:

p(w,z|α,η) =
K

∏
z=k

∆(nz +η)

∆(η)

M

∏
m=1

∆(nm +α)

∆(α)
. (2.11)

1The term p(w,z¬i|α,η) can be computed similarly. For simplicity, we omit the subscript i.
2The gamma function is defined for all complex numbers except the negative integers and zero as:

Γ(t) =
∫ ∞

0 xt−1e−xdx.
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Note that this formula has the same structure as Eq 2.7. Similarly, p(w,z¬i|α ,η) is
computed:

p(w,z¬i|α,η) =
K

∏
z=k

∆(nz,¬i +η)

∆(η)

M

∏
m=1

∆(nm,¬i +α)

∆(α)
. (2.12)

The update equation from which the Gibbs sampler draws from the hidden variable,
Eq 2.6, yields:

p(zi = k|z¬i,w,α ,η) =
p(w,zi|α,η)

p(w,z¬i|α ,η)

∝
∆(nz +η)

∆(η)

∆(nm +α)

∆(α)

∆(η)

∆(nz,¬i +η)

∆(α)

∆(nm,¬i +α)

=
∆(nz +η)

∆(nz,¬i +η)

∆(nm +α)

∆(nm,¬i +α)

=
∏V

v=1 Γ(ηv +n(v)z )

Γ(∑V
v=1 ηv +n(v)z )

Γ(∑V
v=1 ηv +n(v)z,¬i)

∏V
v=1 Γ(ηv +n(v)z,¬i)

· ∏K
t=1 Γ(αt +n(t)m )

Γ(∑K
t=1 αt +n(t)m )

Γ(∑K
t=1 αt +n(t)m,¬i)

∏K
t=1 Γ(αt +n(t)m,¬i)

=
n(v)z=k,¬i +ηv

∑V
v=1 n(v)z=k,¬i +ηv

·
n(k)m,¬i +αk

∑K
t=1 n(t)m,¬i +αt

=
n(v)z=k,¬i +ηv

∑V
v=1 n(v)z=k,¬i +ηv︸ ︷︷ ︸

global topic word distribution

·
n(k)m,¬i +αk

Nm +Kαt −1
.︸ ︷︷ ︸

local topic proportion

(2.13)

where the counts n(.).,¬i indicate that the token i is excluded from the corresponding
document or topic. To derive the gamma function, we use the fact Γ(t + 1) = tΓ(t),
in other words, Γ(t + 1)/Γ(t) = t. Note that from Eq 2.13, we observe that given
hyperparamters α and η , words w in a document and its corresponding topic states z,
the probability of a word wi is governed by the global topic word distribution and the
local topic proportion of a document. In the following derivatives of the other topic
models, we will directly use this fact.

Finally, we obtain the variables, θ and β , which we are interested in, based on the
state of the Markov chain w and z. Since the Dirichlet distribution is a conjugate
distribution of the multinomial distribution, the probability of θn of the component z =
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k, given the m-th document, wm, its corresponding topic states, z, and hyperparameters
α , is computed by:

p(θm,k|wm,z,α) = Dirichlet(θm|nm +α)

=
n(k)m +αk

∑K
k=1 n(k)m +αk

. (2.14)

Similarly, the probability of β of the component z = k and vocabulary v, given all the
documents, w, its corresponding topic states, z, and hyperparameters η , is computed
by:

p(βk|w,z,η) = Dirichlet(βk|nk +η)

=
n(v)k +ηv

∑V
v=1 n(v)k +ηv

. (2.15)

2.2 Statistical Alignment Model
The task of statistical machine translation is that given a foreign sentence, f , we

seek an English sentence, e, that maximize probability p(e| f ),

argmax
e

p(e| f ). (2.16)

Applying Bayes’ rule, Eq 2.16 is equal to

argmax
e

p(e| f ) = argmax
e

p( f |e)p(e)
p( f )

= argmax
e

p( f |e)p(e) (2.17)

where p( f |e) is referred as the translation model, which evaluates how likely an En-
glish sentence, e, is translated into a foreign sentence, f . The second term p(e) is
referred to as the language model, which is the chance that someone would say the En-
glish sentence e. This model is also known as ”the Noisy Channel Model” [31, 2, 40].

In the following sections, we focus on the translation model, p( f |e), and omit the
language model p(e). Since it is difficult to compute p( f |e) directly in the sentence
level, it is always decomposed into words or phrases for different purposes.
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Assume that e has le words and f has l f words, thus there are le ∗ l f different con-
nections that can be drawn between them (each of the l f foreign words can be aligned
to any of the le English words). Conventionally, the connections of foreign words be-
tween the English words are modeled by an alignment function, a(e, f ), which is why
it is referred as ”alignment models”.

Now, we factorize the p( f |e) in terms of the conditional probability p( f ,a|e) as:

p( f |e) = ∑
a

p( f ,a|e) (2.18)

where a is an alignment function to connect English words, e, with foreign words, f .
Without loss of generality, the English sentence is denoted as e= ele

1 = e1e2...ele with le
words, and the foreign sentence is denoted as f = f

l f
1 = f1 f2... fl f , with l f words. The

alignment function, a, is defined as a
l f
1 = a1a2...al f , each of which has value between

0 and l such that if the word in position j of the foreign sentence is aligned to the word
in position i of the English sentence, then a j = i, and if it is not aligned to any English
word, then a j = 0. Further, p( f ,a|e) is written as:

p( f ,a|e) = p(l f |e)
l f

∏
j=1

p(a j|a j−1
1 , f j−1

1 , l f ,e)p( f j|a j
1, f j−1

1 , l f ,e) (2.19)

Since we only use the simplest statistical word alignment model, a.k.a IBM Model 1
[40], which will be introduced in the following sections.

2.2.1 IBM Model 1

In IBM model 1, we assume that p(l f |e) is independent of e and l f , in other words,
the length of a foreign sentence is independent of the given English sentence; the prob-
ability of the current state of the alignment function, p(a j|a j−1

1 , f j−1
1 , l f ,e), depends

only on the length of the English sentence, le, which is equal to 1
le+1 ; and that the trans-

lation probability of current foreign word f j, p( f j|a j
1, f j−1

1 , l f ,e), depends only on ea j ,
which is p( f j|a j

1, f j−1
1 , l f ,e) = t( f j|ea j). Based on such assumptions, the Eq 2.19 is

simplified as:

p( f ,a|e) = ε
(le +1)l f

l f

∏
j=1

t( f j|ea j). (2.20)
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Note that the alignment is determined by specifying the values of a j for 0 to l f , each
of which can take any value from 0 to le. Thus, Eq 2.18 can be rewritten as:

p( f |e) = ε
(le +1)l f

le

∑
a1=0

...
l f

∑
al f =0

l f

∏
j=1

t( f j|ea j)

=
ε

(le +1)l f

l f

∏
j=1

le

∑
a j=0

t( f j|ea j) (2.21)

The probabilities of alignment given the English and foreign sentences are computed
by using Bayes’ rule:

p(a|e, f ) =
p( f ,a|e)
p( f |e)

=
l f

∏
j=1

t( f j,ea j)

∑le
a j=0 t( f j,ea j)

(2.22)

To estimate the parameters of IBM model 1, Expectation Maximization (EM) algo-
rithm shown in Algorithm 2, is used. EM algorithm is an iterative method for finding
the maximum likelihood of p( f |e) as Eq 2.21. Since it is in the probability space,
given an English word e, the translation probability to a foreign word is constrained to
∑ f t( f |e) = 1. This problem can be done in terms of Lagrange multipliers as

L(t,λ ) =
l f

∏
j=1

t( f j,ea j)

∑le
a j=0 t( f j,ea j)

−λe(∑
f

t( f |e)−1) (2.23)

Taking partial derivatives of L(t,λ ) with respect to λ and t, respectively, and setting
them to zero, we solve the equations and obtain the following equation:

t( f j|ea j) =
∑(e, f ) c( f j|ea j ;e, f )

∑e ∑(e, f ) c( f j|ea j ;e, f )
. (2.24)

where the function c is a count function that collects evidence from a sentence pair
(e, f ) that a particular English word, ea j , is translated into a foreign word f j.

2.3 Summary
In this chapter, we briefly introduced two key components to understand the pro-

posed framework for bilingual lexicon extraction. More precisely, we reviewed one of
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Algorithm 2: EM learning algorithm for IBM Model 1.
Input: sentence pairs (e, f)
Output: translation probabilities, t( f |e)
initialize t( f |e) uniformly
while not converged do

for each word e in English Vocabulary Ve do
for each word f in foreign vocabulary Vf do

count( f |e) = 0
end
total(e) = 0

end
for all sentence pairs (e, f) do

for all words f in f do
total( f ) = 0
for all words e in e do

total( f )+ = t( f |e)
end

end
end
for all words f in f do

for all words e in e do
count( f |e)+ = t( f |e)

total( f )

total(e)+ = t( f |e)
total( f )

end
end
for all English words e do

for all foreign words f do
t( f |e) = count( f |e)

total( f ) (Eq 2.24)

end
end

end
[1cm]
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the most popular probability models, LDA, which is used as a building block for many
applications. Then, we briefly reviewed the word alignment model, especially IBM1.
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Chapter 3

Bilingual Dictionary from
Comparable Corpus via Topic Models

In this chapter, we propose a flexible framework for bilingual dictionary extraction
via topic models and word alignment models. It is organized as follows: In Section 3.1,
we introduce the background of bilingual dictionary extraction from comparable cor-
pora. Then, related works are reviewed in Section 3.2. Our framework is proposed in
Section 3.3. In Section 3.4, we conduct a serial of experiments to evaluate our systems.
At last, we summarize this chapter.

3.1 Introduction
A machine-readable bilingual dictionary plays a very important role in many natural

language processing tasks. In machine translation (MT), dictionaries can help in the
domain adaptation setting [13]. In cross-lingual information retrieval (CLIR), dictio-
naries serve as efficient means for query translation [52]. Many other multi-lingual
applications also rely on bilingual dictionaries as integral components.

Conversional approaches for building a bilingual dictionary resource use parallel
corpora. This is often done in the context of Statistical MT, using word alignment
algorithms such as the IBM models [12, 48]. Unfortunately, parallel corpora may be
scarce for certain language-pairs or domains of interest (e.g., medical and microblog).
Thus, the use of comparable corpora for bilingual dictionary extraction has become an
active research topic [24, 61]. Here, a comparable corpus is defined as collections of
document pairs written in different languages but talking about the same topic [31],



Figure 3.1: The proposed framework for a bilingual dictionary extraction. Multilin-
gual topic model is used for converting a document-aligned comparable corpus to
topic-aligned corpora. Given a topic, word alignment models are used to model co-
occurrence across languages.

such as interconnected Wikipedia articles. The challenge with bilingual dictionary
extraction from comparable corpora is that existing word alignment methods developed
for parallel corpus cannot be directly applied to bilingual dictionary extraction from
comparable corpora.

We believe there are several desiderata for bilingual dictionary extraction algo-
rithms:

1. Low Resource Requirement: The approach should not rely on language-specific
knowledge or a large scale seed lexicon.

2. Polysemy Handling: One should handle the fact that a word form may have
multiple meanings, and such meanings may be translated differently.

3. Scalability: The approach should run efficiently an massively large-scale datasets.

Our framework addresses the above desired points by exploiting a novel combina-
tion of topic models and word alignment, as shown in Figure 3.1. Intuitively, our
approach works by first converting a comparable document-aligned corpus into a par-
allel topic-aligned corpus, then apply word alignment methods to model co-occurence
within topics. By employing topic models, we avoid the need for a seed lexicon and op-
erate purely in the realm of unsupervised learning. By using word alignment on topic
model results, we can easily model polysemy and extract topic-dependent lexicons.

Specifically, let we be an English word and w f be a French word. One can think of
traditional bilingual dictionary extraction as obtaining (we,w f ) pairs in which the prob-
ability p(we|w f ) or p(w f |we) is high. Our approach differs by modeling p(we|w f , t) or
p(w f |we, t) instead, where t is a topic. The key intuition is that it is easier to tease out
the translation of a polysemous word e given p(w f |we, t) rather than p(w f |we). A word
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may be polysemous, but given a topic, there is likely a one-to-one correspondence for
the most appropriate translation. For example, under the simple model p(w f |we), the
English word “free“ may be translated into the Japanese word 自由 (as in free speech)
or 無料 (as in free beer) with equal 0.5 probability; this low probability may cause
both translation pairs to be rejected by the dictionary extraction algorithm. On the
other hand, given p(w f |we, t), where t is “politics“ or “shopping“, we can allow high
probabilities for both words depending on context.

Our contribution is summarized as follows:

• We propose a bilingual dictionary extraction framework that simultaneously
achieves all three of the desiderata: low resource requirement, polysemy han-
dling, and scalability. We are not aware of any previous works that address all
three.

• Our framework is extremely flexible and simple-to-implement, consisting of a
novel combination of existing topic modeling tools from machine learning and
word alignment tools from machine translation.

3.2 Related Work
The numerous works on bilingual lexicon from comparable corpora can be divided

into two broad categories: context vector approaches (Section 3.2.1) and projection-
based approaches (Section 3.2.2).

3.2.1 Context Vector Approach

The context vector approach, starting with seminal works of [51, 19], is built on the
assumption that a word and its corresponding translation tend to appear in similar con-
texts across languages, also known as the distributional hypothesis. A typical context
vector approach for the bilingual dictionary extraction consists of three steps, as shown
in Figure 3.2:

1. Represent contexts of a word using an existing seed dictionary. This ranges from
simple representations based on bag-of-words [51, 19] or TF-IDF of words in a
context window [51], to more elaborate representations such as dependency trees
[3].
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Figure 3.2: An example of context vector approach. Each word in the source language
(English), e.g., China is represented as a vector of the context features, we=[Asian:1.0,
Beijing:2.0, U.S.A:1.0, Japan:0.6], with Ve dimension, and each word in the target
language (Japanese), e.g. 中国 is represented as a vector of the context features, w j=[ア
ジア:1.0, 国:3.0, アメリカ:2.0, 日本:1.0], with Vj dimension. The similarity, e.g,
cosine similarity, between the two words, China and 中国, via an existing dictionary
is: score(we,w j) = cosine(we,w j) =

1.0∗1.0+1.0∗2.0+0.6∗1.0√
1.02+1.02+0.62

√
1.02+2.02+1.02 = 0.957. Note that

words which are not in the seeds dictionary are not used to compute similarity score.

2. Measure similarity/distance between words in this common space, e.g., using
cosine similarity [32, 19] or Manhattan distance [51].

3. Extract word pairs with high similarity.

Methods differ in how the seed dictionary is acquired [32, 16] and how similarity is
defined [18, 57]. It is important to note that all these methods critically rely on a seed
dictionary to ensure that word in different languages are represented in the same space.
To alleviate the dependence on the size of the seed dictionary, Tamura et al., [57] have
used an unsupervised label propagation method to improve robustness.

22



3.2.2 Projection-based Approach

Figure 3.3: An example of projection-based approach. Usually, it is difficult to com-
pute similarity between a source word, we, and a target word, w j, directly, since they
are in different spaces, which have different dimensions. The projection-based ap-
proach 1) first maps both source words with Ve dimension and target with Vj dimension
into a latent semantic space with S, ze = Mewe and z j = M jw j, where matrices Me (Ve

by S) and M j (V j by S) can be optimized by an EM algorithm; 2) then compute the
similarly, i.e., cosine similarity, between a source word and a target word in semantic
space, score(we,w j) = cosine(we,w j) = cosine(Mewe,M jw j) = cosine(ze,z j).

Projection-based approaches have also been proposed, though they can be shown to
be related to the aforementioned distributional approaches [21]; for example, Haghighi
[24] uses canonical correlation analysis (CCA) to map vectors in different languages
into the same latent space. Laroche [35] presents a good summary for the projection-
based approaches. A typical example of projection-based approach is shown in Fig-
ure 3.3.

Vulić et al. [61] pioneered a new approach to bilingual dictionary extraction. The
main idea is: firstly, map words in different languages into the same semantic space us-
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ing multilingual topic models; and then, several statistical measures, such as Kullback-
Leibler divergence, are used to compute similarity between words in cross-languages;
finally, extract word pairs with high resulting probability. This method is totally unsu-
pervised learning style and do not require any seed dictionary.

Our approach is motivated by [61]. However, we exploit the topic model in a very
different way (explained in Section 3.3.3). They do not use word alignments like we
do, and as a result their approach requires training topic models with a large number of
topics, which may limit the scalability of the approach. Further, we explore extensions
of multilingual topic models in more than two languages.

Recently, there has been much interest in multilingual topic models (MLTM) [29,
42, 47, 11]. Many of these models give p(t|e) and p(t| f ), but stop short of extracting
a bilingual lexicon. Although topic models can group related e and f in the same topic
cluster, the extraction of a high-precision dictionary requires additional effort. One of
our contributions here is an effective way to do this extraction using word alignment
methods.

3.2.3 Parallel Corpora based Approach

Figure 3.4: The framework of parallel corpora based approach.

There are a few researches, which extracted bilingual dictionaries from comparable
corpora by 1) converting comparable into parallel corpora and then 2) constructing
bilingual dictionaries via word alignment models [44, 55], as shown in Figure 3.4.
Methods differ in how the parallel corpora were constructed. Munteanu and Marcu
[44] employed bilingual suffix trees to build parallel corpora, which worked well on
language pairs having similar word order, e.g., English-French, however, it can not be
extended language pairs having different language order, e.g, English-Japanese. On
other hands, Smith, Quirk and Toutanova [55] constructed parallel corpora relying on
a large amount of manually designed features, such as seed dictionaries features and
orthographic features, which are difficult to extend to other languages pairs.
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Our multilingual topic model framework differs in that we construct topic-aligned
corpora, in which each topic-aligned sentence is semantic related, rather than a frag-
ment of parallel sentence. Furthermore, our framework do not rely on any language-
specific features or seed dictionaries.

3.3 Proposed Framework for Bilingual Dictionary Ex-
traction

The general idea of our proposed framework is sketched in Figure 3.1: First, we
run a multilingual topic model to convert the comparable corpora to topic-aligned cor-
pora. Second, we run a word alignment algorithm on the topic-aligned corpora in
order to extract translation pairs. The innovation is in how this topic-aligned corpora
is defined and constructed, the link between comparable corpora and parallel corpora.
We describe how this is done in Section 3.3.2 and show how existing approaches are
subsumed in our general framework in Section 3.3.3.

3.3.1 Multilingual Topic Model

Any multilingual topic model may be used with our framework. We use the one by
Mimno et al. [42], which extends the monolingual Latent Dirichlet Allocation model
[9]. Given a comparable corpus E in English and F in a foreign language, we assume
that the document pair boundaries are known. For each document pair di = [de

i ,d
f
i ]

consisting of English document de
i and Foreign document d f

i (where i ∈ {1, . . . ,D}, D
is number of document pairs), we know that de

i and d f
i talk about the same topic. While

the monolingual topic model lets each document have its own so-called document-
specific distribution over topics, the multilingual topic model assumes that documents
in each tuple share the same topic prior (thus the comparable corpora assumption)
and each topic consists of several language-specific word distributions. The generative
story is shown in Algorithm 3 and corresponding graphical representation is shown in
Fig 3.5.

In this paper, we develop a collapsed Gibbs sampling [25, 42, 47], a type of MCMC,
to estimate the posterior given a tuple of documents. Concretely, given a tuple of

25



Figure 3.5: Graphical representation of multilingual topic model.

documents m, the possibility of the topic k of the i word in the language l yields:

p(zl
i = k|w⃗l, z⃗l¬i,β 1, ...,β L,α) ∝

n(v)l,k,¬i +η l

∑V l

v′=1 n(v
′)

l,k,¬i +η l ·V l
· (

L

∑
l′=1

(n(k)l′,m)¬l,i +α) (3.1)

Here, the document in language l denotes w⃗l = {wl
i = v,wl

¬i} with the corresponding
topic states z⃗l = {zl

i = k, z⃗l¬i}; the counts n(v)l,k,¬i indicate that the token i is excluded

from the corresponding document l in the tuple; the counts (n(k)l′,m)¬l,i denote that the
token i is excluded from the corresponding topic k when l = l′ is held in the tuple; V l

denotes vocabulary in language l.
Finally, we compute the multinomial parameter sets of Θ and B:

β l
k,v =

n(v)l,k,+η l

∑V l

v′=1 n(v
′)

l,k +η l ·V l
(3.2)

θm,k =
∑L

l′=1 n(k)l′,m +α

∑k′ ∑L
l′=1 yl′

m ·n(k
′)

l′,m

(3.3)

Direchlet hyperparameters α and η can be optimized by a simple and stable fixed-
point iteration for a maximum likelihood estimator as [43].
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Algorithm 3: Generative story for the multilingual topic model [42]. θi is the
topic proportion of document pair di. Words wl are drawn from language-specific
distributions p(wl|zl,φ l), where language l indexes English e or Foreign f . Here
pairs of language-specific topics φ l are drawn from Dirichlet distributions with
prior β l .

for each topic k do
for l ∈ {e, f} do

sample φ l
k ∼ Dirichlet(β l);

end
end
for each document pair di do

sample θi ∼ Dirichlet(α);
for l ∈ {e, f} do

sample zl ∼ Multinomial(θi);
for each word wl in dl

i do
sample wl ∼ p(wl|zl,φ l);

end
end

end

3.3.2 Topic-Aligned Corpora

Suppose the original comparable corpus has D document pairs [de
i ,d

f
i ]i=1,...,D. We

run a multilingual topic model with K topics, where K is user-defined (Section 3.3.1).
The topic-aligned corpora is defined hierarchically as a set of sets: On the first level,
we have a set of K topics, {t1, . . . , tk, . . . , tK}. On the second level, for each topic tk,
we have a set of D “word collections“ {Ck,1, . . . ,Ck,i, . . . ,Ck,D}. Each word collection
Ck,i represents the English and foreign words that occur simultaneously in topic tk and
document di.

For clarity, let us describe the topic-aligned corpora construction process step-by-
step together with a flow chart in Figure 3.6:

1). Train a multilingual topic model (Section 3.3.1).

2). Infer a topic assignment for each token in the comparable corpora, and generate a
list of word collections Ck,i occurring under a given topic.
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Figure 3.6: Construction of topic-aligned corpora.

3). Re-arrange the word collections such that Ck,i belonging to the same topic are
grouped together. This resulting set of sets is called topic-aligned corpora, since it
represents word collections linked by the same topics.

4). For each topic tk, we run IBM Model 1 [12, 48] on {Ck,1, . . . ,Ck,i, . . . ,Ck,D}. In
analogy to statistical machine translation, we can think of this dataset as a parallel
corpus of D “sentence pairs“, where each “sentence pair“ contains the English and
foreign word tokens that co-occur under the same topic in the same document. Note
that word alignment is run independently for each topic, resulting in K topic-dependent
lexicons p(we|w f , tk).

5). To extract a bilingual dictionary, we find pairs (we,w f ) with high probability under
the model:

p(we|w f ) = ∑
k

p(we|w f , tk)p(tk|w f ) (3.4)

The first term is the topic-dependent bilingual lexicon from Step 4; the second term is
estimated as follows using topic model parameters:

p(tk|w f ) =
p(tk,w f )

∑k p(tk,w f )
∝ p(w f |tk)p(tk) (3.5)
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If we assume that p(tk) is the uniform distribution over topics, p(tk|w f ) is defined as:

p(tk|w f ) ∝ p(w f |tk) (3.6)

Here, p(w f |tk) is the topic posterior from the topic model in Step 1.
In practice, we compute the probabilities of Equation 3.4 in both directions: p(we|w f )

as in Eq. 3.4 and p(w f |we) = ∑k p(w f |we, tk)p(tk|we). Subsequently, several options
are conceivable for extracting bilingual lexicon: Option (a) is to set a threshold δ and
extract all pairs (ẽ, f̃ ) with p(w f = f̃ |we = ẽ)+ p(we = ẽ|w f = f̃ ) > δ . Option (b) is
to set thresholds δ1 and δ2, and extract lexicons based on the following bidirectional
constraint that a pair (ẽ, f̃ ) is extracted only if:

p(we = ẽ|w f = f̃ )> δ1

p(w f = f̃ |we = ẽ)> δ2 (3.7)

We show results from both options in our experiments. Option (a) is useful for
generating a ranked list and computing precision-recall curves since δ can be adjusted
to allow for different number of extracted pairs. Option (b) gives very high precision
extractions since it takes the intersection from both p(w f |we) and p(we|w f ); however,
it is not easy to tune δ1 and δ2 to extract a given number of pairs, since the intersection
is not known beforehand. In our experiments, we ”set” δ1 and δ2 to retrieve only one
candidate translation per model, extracting a pair (ẽ, f̃ ) if the following holds:

ẽ = argmax
we

p(we|w f = f̃ )

f̃ = argmax
w f

p(w f |we = ẽ). (3.8)

3.3.3 Alternative Approaches

To the best of our knowledge, [61] is the only work that focuses on using topic mod-
els for bilingual lexicon extraction like ours, but they exploit the topic model results in
a different way. Their “Cue Method“ computes:

p(we|w f ) = ∑
k

p(we|tk)p(tk|w f ) (3.9)

This can be seen as a simplification of our Eq. 3.4, where Eq. 3.9 replaces p(we|w f , tk)
with the simpler p(we|tk). This is a strong assumption which essentially claims that
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the topic distribution tk summarizes all information about w f for predicting we. Our
formulation can be considered more realistic because we do not have the assumption
that we is independent of w f given tk; we model p(we|w f , tk) directly and estimate its
parameters with word alignment methods.

Another variant proposed by [61] is the so-called Kullback-Leibler (KL) method. It
scores translation pairs by:

KL(we,w f ) = Divergence(p(tk|we)||p(tk|w f ))

=−∑
k

p(tk|we) log p(tk|we)/p(tk|w f ) (3.10)

The information content is the same as the Cue Method (Eq. 3.9); it is simply a dif-
ferent scoring equation. In our experiment, we find that a symmetric version of KL,
known as Jensen Shannon Divergence, gave better results:

JS(we,w f ) =
1
2

KL(we,we f )+
1
2

KL(w f ,we f ) (3.11)

where we f denotes the average of the word-topic distributions of both e and f , i.e. we f =

[p(t|we)+ p(t|w f )]/2.1

3.4 Experimental Setup

3.4.1 Data Set

We perform experiments on the KyotoWiki Corpus2. We chose this corpus because
it is a parallel corpus, where the Japanese edition of Wikipedia is translated manually
into English sentence-by-sentence. This enables us to use standard word alignment
methods to create a gold-standard lexicon for large-scale automatic evaluation. We
trained IBM Model 4 using GIZA++ for both directions p(e| f ) and p( f |e). Then, we
extract word pair (ẽ, f̃ ) as a “gold standard“ bilingual lexicon if it satisfies Eq. 3.8.
Due to the large data size and the strict bidirectional requirement imposed by Eq. 3.8,
these “gold standard“ bilingual dictionary items are of high quality (94% precision by
a manual check on 100 random items). Note sentence alignments are used only for
creating this gold-standard.

1The third and final variant by [61], TF-ITF, performs poorly and is not reported.
2http://alaginrc.nict.go.jp/WikiCorpus/index E.html
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Dataset #doc #sent(e/j) #voc(e/j)

Comp100% 14k 472k/472k 152k/116k
Comp50% 14k 236k/472k 100k/116k
Comp20% 14k 94k/472k 62k/116k
Wiki 3.6k 127k/163k 88k/61k

Table 3.1: Datasets: the number of document pairs (#doc), sentences (#sent) and
vocabulary size (#voc) in English (e) and Japanese (j). For pre-processing, we did
word segmentation on Japanese using Kytea [45] and Porter stemming on English. A
TF-IDF based stop-word lists of 1200 in each language is applied. #doc is smaller
for Wiki because not all Japanese articles in Comp100% have English versions in
Wikipedia during the crawl.

From this parallel data, we prepared several datasets at successively lower levels of
comparability. As shown in Table 3.1, Comp100% is a comparable version of original
parallel data, deleting all the sentence alignments but otherwise keeping all content on
both Japanese and English sides. Comp50% and Comp20% are harder datasets that
keep only 50% and 20% (respectively) of random English sentences per documents.
We further use a real comparable corpus (Wiki)3, which is prepared by crawling the
online English editions of the corresponding Japanese articles in the Kyoto Wiki Cor-
pus. The Comp datasets are controlled scenarios where all English content is guaran-
teed to have Japanese translations; no such guarantee exists in our Wiki data.

3.4.2 Experimental Results

1. What is the best topic number K and what multilingual topic model can learn?

Due to the manually setting the topic number K requirement, it is important question to
select the best K for the experiments. Our strategy is using the per-word log-likelihood
on the hold-out data (dev-data) set for model selection. Per-word log-likelihood, which
is widely used in the machine learning and statistics community, is defined as the
geometric mean of the inverse marginal probability of each word in the held-out (dev)
set of documents Ddev:

3The English corresponding dataset, gold-standard and ML-LDA software used in our experiments
are available at https://sites.google.com/site/buptxiaodong/home/resource
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Figure 3.7: Per-word Likelihood by number of topics. Note that it is a reasonable
unsupervised metric for model selection and a higher per-word log-likelihood score
indicates better performance.

likelihoodpw =
∑t∈Ddev

log p(t|Dtrain)

∑t∈Ddev
nt

(3.12)

Here, nt denotes the number of words for the tth tuple of documents in dev corpus.
Following [58], we estimate p(t|Dtrain) = ∏l p(wl

t |Dtrain) = ∏l ∏w∈wl ∑k θt,kβ l
k,w. The

hidden variables θt,k and β l
k,w can be computed as Eq 4.2 and Eq 4.3. A higher per-

word log-likelihood score indicates better performance [9, 26, 58].
We print the top 20 words of four randomly selected topics to validate the multilin-

gual topic model. Table 3.2 and Table 3.3 summarize the those examples, i.e., topic
5 is more related the religion which associate words (i.e., English words: shinto, god,
religion and Japanese words: 神道,信仰,祀る,宗教 ) and topic 18 is more related the
food which associate words (i.e., English words: dish, curri, rice, meat and Japanese
words:料理,食べる,食,肉). All the words in the same topic are coherent to each other
in both English and Japanese, which shows the power of multilingual topic model.
2. How does the proposed framework compare to previous work?

We focus on comparing with previous topic-modeling approaches to bilingual lexicon
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Topic 5 Topic 10

Japanese English Japanese English

word probability word probability word probability word probability
神道 0.04891 shinto 0.03313 絵 0.04055 print 0.04464
信仰 0.03777 god 0.03025 浮世絵 0.03094 geisha 0.03712
祀る 0.02023 spirit 0.02920 画 0.01983 edo 0.02472
宗教 0.01404 kami 0.02367 着色 0.01542 artist 0.01922
魂 0.01098 altar 0.02279 北斎 0.01514 ukiyo 0.01887
巫女 0.01006 ritual 0.02134 所蔵 0.01500 popular 0.01302
霊 0.00963 religion 0.01982 美人 0.01444 seri 0.01144
祭り 0.00813 worship 0.01516 歌川 0.01411 woodblock 0.01127
祭祀 0.00753 sacr 0.01492 芸妓 0.00924 district 0.01005
神事 0.00748 shrine 0.01396 絹本 0.00910 hokusai 0.00978
民俗 0.00721 believ 0.01252 美術館 0.00886 hiroshig 0.00961
神楽 0.00721 ceremoni 0.01003 斎 0.00750 women 0.00865
塚 0.00683 ancient 0.00995 舞妓 0.00741 entertain 0.00865
民間 0.00640 offer 0.00995 天保 0.00708 publish 0.00839
習合 0.00619 practic 0.00963 枚 0.00699 utagawa 0.00795
祭る 0.00560 perform 0.00891 国芳 0.00661 produc 0.00777
自然 0.00543 anim 0.00883 太夫 0.00652 art 0.00743
儀礼 0.00538 deiti 0.00883 広重 0.00642 maiko 0.00716
祭 0.00533 divin 0.00875 遊女 0.00600 genr 0.00690
依る 0.00527 word 0.00818 英 0.00595 gion 0.00681

Table 3.2: Examples of topic-word distribution part 1. Note that we only give top 20
words for each topic pairs (Japanese and English). Here topic number K is set to 400.

extraction, namely [61]. Note that topic model hyperparameters for Proposed, Cue,
and JS are α = 50/K and β = 0.01 following [61]. The methods are:

• Proposed: The proposed method which exploits a combination of topic model-
ing and word alignment to incorporate topic-dependent translation probabilities
(Eq. 3.4).

• Cue: From [61], i.e. Eq. 3.9.
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Topic 18 Topic 22

Japanese English Japanese English

word probability word probability word probability word probability
料理 0.07008 dish 0.03497 建築 0.04109 build 0.04369
食べる 0.02059 curri 0.02410 建物 0.01949 palac 0.03868
食 0.01696 meat 0.02226 屋根 0.01549 roof 0.02638
肉 0.01524 rice 0.02180 柱 0.01335 style 0.02285
店 0.01481 sauc 0.02048 造 0.01289 built 0.02226
調理 0.01441 cuisin 0.01956 瓦 0.01103 tile 0.01578
丼 0.01183 cook 0.01864 様式 0.00899 architectur 0.01572

カレー 0.01154 food 0.01660 壁 0.00868 construct 0.01454
卵 0.00903 fri 0.01594 階 0.00857 hall 0.01319
焼く 0.00899 veget 0.01383 建てる 0.00846 structur 0.01219
焼き 0.00767 ingredi 0.01337 設ける 0.00818 gate 0.01189
鍋 0.00764 fish 0.01093 棟 0.00815 wall 0.01148
野菜 0.00760 restaur 0.00975 メートル 0.00769 hous 0.01131
具 0.00744 chicken 0.00935 発掘 0.00730 locat 0.01125

ソース 0.00678 egg 0.00915 東西 0.00695 resid 0.01048
魚 0.00668 tempura 0.00876 施設 0.00678 design 0.01030

揚げる 0.00661 popular 0.00836 調査 0.00650 heian 0.01030
食材 0.00661 prepar 0.00836 構造 0.00601 floor 0.01019
天ぷら 0.00658 usual 0.00823 敷地 0.00597 room 0.01019
カツ 0.00635 soup 0.00817 内部 0.00583 north 0.00889

Table 3.3: Examples of topic-word distribution part 2. Note that we only give top 20
words for each topic pairs (Japanese and English). Here topic number K is set to 400.

• JS: From [61]. Symmetrizing KL by Jensen-Shannon (JS) divergence improves
results, so we report this variant.

We also have a baseline that uses no topic models: IBM-1 runs IBM Model 1 directly
on the comparable dataset, assuming each document pair is a “sentence pair“.

Figure 3.8 shows the ROC (Receiver Operating Characteristic) Curve on the Wiki
dataset. The ROC curve lets us observe the change in Recall as we gradually accept
more translation pairs as dictionary candidates. In particular, it measures the true pos-
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Figure 3.8: ROC curve on the Wiki dataset. Curves on upper-left is better. Cue, JS,
Proposed all use K=400 topics. Note that Proposed is best.

itive rate (i.e. recall = |{Gold(e, f )}
∩
{Extracted(e, f )}|/#Gold) and false positive

rate (fraction of false extractions over total number of extractions) at varying levels of
thresholds. This is generated by first computing p(e| f )+ p( f |e) as the score for pair
(e, f ) for each method, then sorting the pairs by this score and successive try different
thresholds.

The curve of the Proposed method dominates those of all other methods. It is also
the best in Area-Under-Curve scores [14], which are 0.96, 0.90, 0.85 and 0.71, for
Proposed, IBM-1, Cue, and JS, respectively.4

ROC is insightful if we are interested in comparing methods for all possible thresh-
olds, but in practice we may desire a fixed operating point. Thus we apply the bidirec-

4The Precision-Recall curve gives a similar conclusion. We do not show it here since the extremely
low precision of JS makes the graph hard to visualize. Instead see Table 3.4.
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K Method Prec ManP #Extracted

100

Cue 0.027 0.02 3800
JS 0.013 0.01 3800

Proposed 0.412 0.36 3800

400

Cue 0.059 0.02 2310
JS 0.075 0.02 2310

Proposed 0.631 0.56 2310
- IBM-1 0.514 0.42 2310
- IBM-1* 0.493 0.39 3714

Table 3.4: Precision on the Wiki dataset. K=number of topics. Precision (Prec) is
defined as |{Gold(e, f )}

∩
{Extracted(e, f )}|

#Extracted . ManP is precision evaluated manually on 100
random items.

tional heuristic of Eq. 3.7 to extract a fixed set of lexicon for Proposed. For the other
methods, we calibrated the thresholds to get the same number of extractions. Then we
compare the precision, as shown in Table 3.4.

1. Proposed outperforms other methods, achieving 63% (automatic) precision and
56% (manual) precision.

2. The JS and Cue methods suffer from extremely poor precision. We found that
this is due to insufficient number of topics, and is consistent with the results by
[61] which showed best results with K > 2000. However, we could not train
JS/Cue on such a large number of topics since it is computationally-demanding
for a corpus as large as ours. The experiments in [61] has vocabulary size of 10k,
compared to 150k in our experiments. We also tried large K ≥ 1000, however
Cue still obtains a bad result (10.4% with K = 2000). Furthermore, we also
use per-word log-likelihood, a typical metric for model selection in machine
learning community, as shown in Figure 3.7. This figure shows the best topic
number is K = 400. In this regard, the Proposed method is much more scalable
and reasonable, achieving good results with low K, satisfying one of original
desiderata. We have a hypothesis as to why Cue and JS depend on large K. Eq.
3.4 is a valid expression for p(we|w f ) that makes little assumptions. We can view
Eq. 3.9 as simplifying the first term of Eq. 3.4 from p(we|tk,w f ) to p(we|tk).
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Both probability tables have the same output-space (we), so the same number of
parameters is needed in reality to describe this distribution. By throwing out w f ,
which has large cardinality, tk needs to grow in cardinality to compensate for the
loss of expressiveness.

3. IBM-1 is doing surprisingly well, considering that it simply treats document
pairs as sentence pairs. This may be due to some extent to the structure of the
Kyoto Wiki dataset, which contains specialized topics (about Kyoto history, ar-
chitecture, etc.), leading to a vocabulary-document co-occurrence matrix with
sparse block-diagonal structure. Thus there may be enough statistics train IBM-
1 on documents.

Figure 3.9: Robustness of method under different data conditions.

3. How does the proposed method perform under different degrees of “compara-
bility“?

We next examined how our methods perform under different data conditions. Figure
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3.9 plots the results in terms of Precision evaluated automatically. We observe that
Proposed (K=400) is relatively stable, with a decrease of 14% Precision going from
fully-comparable to real Wikipedia comparable corpora. The degradation for K=100
is much larger (31%) and therefore not recommended. We believe that robustness
depends on K, because the topic model of [42] assumes one topic distribution per
document pair. For low-levels of comparability, a small number of topics may not suf-
ficiently model the differences in topical content. This suggests the use of hierarchical
topic models [23] or other variants in future work.

4. What are the statistical characteristics of topic-aligned corpora?

First, we show the word-topic distribution from multilingual topic modeling in the
K = 400 scenario (first step of Proposed, Cue, and JS). For each word type w, we
count the number of topics it may appear in, i.e. nonzero probabilities according to
p(w|t). Fig. 3.10 shows the number of word types that have x number of topics. This
power-law is expected since we are modeling all words. This means that it is not
possible to directly extract lexicon by taking the cross-product (w f ,we) of the top-n
words in p(w f |tk) and p(we|tk) for the same topic tk, as suggested by [42]. When we
attempted to do this, using top-2 words per p(w f |tk) and p(we|tk), we could only obtain
precision of 0.37 for 1600 extractions. This skewed distribution similarly explains the
poor performance of Cue.

Next we compute the statistics after constructing the topic-aligned corpora (Step 3 of
Fig. 3.6). For each part of the topic-aligned corpora, we compute the ratio of distinct
English word types vs. distinct Japanese word types. If the ratio is close to 1, that
means the partition into topic-aligned corpora effectively separates the skewed word-
topic distribution of Fig 3.10. We found that the mean ratio averaged across topics is
low at 1.721 (variance is 1.316), implying that within each topic, word alignment is
relatively easy.

5. What kinds of errors are made?

We found that the proposed method makes several types of incorrect lexicon extrac-
tions. First, Word Segmentation “errors“ on Japanese could make it impossible to
find a proper English translation (e.g., 高市皇子 should translate to “Prince-Takechi“
but system proposes “Takechi“). Second, an unrelated word pair (we,w f ) may be in-
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Figure 3.10: Power-law distribution of number of word types with X number of topics.

correctly placed in the same topic, leading to an Incorrect Topic error. Third, even if
(we,w f ) intuitively belong to the same topic, they may not be direct translations; an
extraction in this case would be a Correct Topic, Incorrect Alignment error (e.g. も
んじゃ焼き, a particular panfried snack, is incorrectly translated as “panfry“).

Table 3.5 shows the distribution of error types by a manual classification. Incorrect
Alignment errors are most frequent, implying the topic models are doing a reason-
able job of generating the topic-aligned corpus. The amount of Incorrect Topic is not
trivial, though, so we would still imagine more advanced topic models to help. Seg-
mentation errors are in general hard to solve, even with a better word segmenter, since
in general one-to-one cross-lingual word correspondence is not consistent–we believe
the solution is a system that naturally handles multi-word expressions [6].

Since word alignment errors were frequent, we conducted an additional experiment
to compare several popular word alignment methods in statistical machine translation
as follows:

1. Giza-vb: a modification of IBM Models training using Variational Bayes EM
learning [53]
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Word Segmentation Error 14
Incorrect Topic 29
Correct Topic, Incorrect Alignment 40
Reason Unknown 7

Table 3.5: Counts of various error types.

Figure 3.11: Comparison of different word alignment tools: Precision-vs-#Extracted
pairs curve. The Dirichlet parameter α is set to 0.01 in Giza-vb; parameters of Giva-L0
are set to default and bi-direction joint IBM1 setting is used in Berkeley Aligner.

2. Giza-L0: a modification of IBM Models to generate sparser alignments using
approximate L0-norm optimization [59]

3. Berkeley Aligner: a symmetrical aligner, which enforces agreement in bi-direction
word alignment [37]

Figure 3.11 shows the lexicon extraction results using different alignment tools. While
the differences are in general not very large, we observe that the Berkeley Aligner
appears slightly better than all other IBM Model variants, implying that bi-directional
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constraints may be helpful in this kind of topic-aligned data.

English Japanese1(gloss), Japanese2(gloss)

interest 関心 (a sense of concern),利息 (a charge of money borrowing)
count 数え (act of reciting numbers),伯爵 (nobleman)
free 自由 (as in “free“ speech),無料 (as in “free“ beer)
blood 血縁 (line of descent),血 (the red fluid)
demand 需要 (as noun),要求 (as verb)
draft 提案 (as verb),草稿 (as noun)
page ページ (one leaf of e.g. a book),侍童 (youthful attendant)
staff スタッフ (general personel),参謀 (as in political “chief of staff“)
director 長官 (someone who controls),理事 (board of directors)監督 (movie director)
beach 浜 (area of sand near water),海水浴 (leisure spot at beach)
actor 役者 (theatrical performer),俳優 (movie actor)

Table 3.6: Examples of topic-dependent translations given by p(w f |we, tk). The top
portion shows examples of polysemous English words. The bottom shows examples
where English is not decisively polysemous, but indeed has distinct translations in
Japanese based on topic.

6. What is the computation cost?

K topic giza Eq.3.4 Eq.3.9 Prp Cue
100 180 3 20 1440 203 1620
200 300 3 33 2310 336 2610
400 780 5 42 3320 827 4100

Table 3.7: Wall-clock times in minutes for Topic Modeling (topic), Word Align-
ment (giza), and p(we|w f ) calculation. Overall time for Proposed (Prp) is
topic+giza+Eq.3.4 and for Cue is topic+Eq.3.9.

Timing results on a 2.4GHz Opteron CPU for various steps of Proposed and Cue are
shown in Table 3.7. The proposed method is 5-8 times faster than Cue. For Proposed,
computation time is dominated by topic modeling while GIZA++ on topic-aligned
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corpora is extremely fast. Cue additionally suffers from computational complexity in
calculating Eq.3.9, especially when both p(we|tk) and p(tk|w f ) have high cardinality.
In comparison, calculating Eq.3.4 is fast since p(we|w f , tk) is in practice quite sparse.

3.5 Summary
We proposed an effective way to extract bilingual dictionaries by a novel combina-

tion of topic modeling and word alignment techniques. The key innovation is the con-
version of a comparable document-aligned corpus into a parallel topic-aligned corpus,
which allows word alignment techniques to learn topic-dependent translation models
of the form p(we|w f , tk). While this kind of topic-dependent translation has been pro-
posed for the parallel corpus [65], we are the first to enable it for comparable corpora.
Our large-scale experiments demonstrated that the proposed framework outperforms
existing baselines under both automatic metrics and manual evaluation. Furthermore,
we showed that our topic-dependent translation models can capture some of the poly-
semy phenomenon important in dictionary construction.
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Chapter 4

Enhancing Bilingual Dictionary
Extraction via Multilingual
Comparable Corpora

In this chapter, we use multilingual comparable corpora (more then two languages)
to enhance the accuracy of bilingual dictionary extraction. Although multilingual dic-
tionaries can be built by using the previous proposed framework in Chapter 3, we
focus on how additional languages help to improve the accuracy of bilingual (English-
Japanese) lexicon extraction. This chapter is organized as follows: In Section 4.1, we
introduce the background of bilingual lexicon extraction from multilingual comparable
corpora. Then related works are reviewed in Section 4.2. In Section 4.3, we propose
a multilingual topic model to encode more information. Next, we conduct a serial of
experiments to evaluate our proposed systems in Section 4.4. At last, we summarize
this chapter.

4.1 Introduction
Due to the scarcity of parallel corpora for certain language-pairs or domains of in-

terest (e.g., medical and microblog), extracting bilingual dictionaries from comparable
corpora, introduced in Chapter 3, arouses many attention in recent years [24, 61, 39].
Such kind of researches are divided into two broad categories: context vector ap-
proaches and projection-based methods. One of the biggest problems for those ap-
proaches is that they all need either big seed dictionaries or fully-connected compara-



ble corpora, which are refered to a collection of tuples of documents containing all the
different languages, as shown in Figure 4.2.

Figure 4.1: The rates of inter-linked different languages (Chinese, English and
Japanese) in Wikipedia [5]. Note that more than half of documents do not have in-
terlink to other languages on average.

Figure 4.2: The full-connected comparable corpora in three different languages, e.g.,
Chinese, English and Japanese.

In fact, the fully-connected comparable corpora are still difficult to obtain, e.g., the
rate of interlinked documents between different languages in Wikipedia is very low,
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as shown in Figure 4.1 [5]. It implies that most of information, which is provided by
monolingual document or partially connected document pairs, is wasted by standard
multilingual topic models [61, 39]. Furthermore, it is believed that a small propor-
tion of mono-language documents may help estimate true word topic distributions and
reveal the relationship between topics across languages. Thus, we propose a new mul-
tilingual topic model for partially-connected comparable corpus that maximizes the
information usage of the data. Here, partially-connected comparable corpora are re-
ferred a collation of tuples of documents, where a tuple does not necessarily contains
documents in all languages, as shown in Figure 4.3.

Figure 4.3: The partially-connected comparable corpora in three different languages,
e.g., Chinese, English and Japanese.

In this section, we extend the standard multilingual topic model, which is the key
component of the proposed framework, to exploit partially-connected comparable cor-
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pora in more than two languages which are partially-connected. Such kind of corpus
is easier to obtain in the real world, such as Wikipedia corpora. We show how we
can improve the extraction of Japanese-English dictionaries using comparable data
not only from Japanese and English, but also from other languages such as Chinese
and French, in our previous framework. Furthermore, it shows the flexibility of our
proposed framework, which a novel combination of topic models and word alignment
models. Note that due to using the multilingual comparable corpora, we can build mul-
tilingual dictionaries by using the proposed framework. However, we only focus on
how addition languages help to improve the accuracy of finding English and Japanese
translation pairs, as shown in Figure 4.4.

Figure 4.4: The proposed framework for English-Japanese dictionaries extraction from
multilingual comparable corpora (English, Japanese and Chinese).

4.2 Related Work
The numerous works on bilingual lexicon from comparable corpora can be divided

into two broad categories: context vector approaches and projection-based approaches,
which were introduced in Section 3.2. We also briefly touch upon research on pivot
languages in (Section 4.2.1) and multilingual word representation learning (Section
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4.2.2); to the best of our knowledge, these are promising approaches but have not yet
been employed for bilingual lexicon extraction.

4.2.1 Pivot-Language in Lexicon Extraction and Machine Trans-
lation

Multilingual corpora in more than two languages have been exploited to various
degrees. This is often done using a pivot language: for example, given a Japanese-
English dictionary and an English-Chinese dictionary, one can exploit transitive prop-
erties with English serving as the pivot to find Japanese-Chinese translations. When
available, such multilingual information has been shown to improve the quality of
bilingual lexicons [34, 54, 1].

This pivot language idea has proven beneficial in applications such as cross-lingual
information retrieval [22], and machine translation [50, 62]. It is also used for boot-
strapping the construction of WordNet for low resource languages [10], and for directly
creating multilingual lexical resources [56, 15, 41].

Our multilingual topic model approach differs in that there is no concept of pivot:
data in all languages are treated equally. In this respect, extension to many languages
is straightforward, as long as computation efficiency issues can be solved.

4.2.2 Multilingual Word Representation Learning

Multilingual word representation learning, which is an extension of monolingual
word representation learning, is a set of deep learning algorithms that enables new
ways to do cross-lingual processing. It works by mapping words in different lan-
guages into the same low-dimensional space in order to capture syntactic and semantic
similarities across languages. For instance, Klementiev et al. [30] proposed training
bilingual word representations by jointly training monolingual neural language models
together with a regularizer that enforces seed translations to have similar representa-
tions. Chandar et al. [49] proposed a novel autoencoder algorithm for learning bilin-
gual word representations; importantly, their algorithm only depends on bag-of-words
representations of aligned sentences, and does not rely on word alignments.

These works focus on cross-lingual classification tasks, but conceivably their results
could be adapted to our comparable lexicon extraction task. For example, the vectors
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might be used as seed within context-based models like [51]. Alternatively, these vec-
tors could be used within our framework to generate something like the topic-aligned
corpora; i.e. words with similar vectors are grouped together and given to our word
aligner, analogously to how we group words with the same topic together. We believe
the use of vector representations is an interesting area of future work.

4.3 Multilingual Topic Model
We adopt the Multilingual Topic Model (MLTM) proposed by Ni et al. [47] and

Mimno et al. [42], which extends the monolingual Latent Dirichlet Allocation model
[9]. MLTM learns word-topic distributions and topic-document distributions from
comparable corpora. In the original works, it is assumed that each document tuple tm
in the comparable document is fully-connected; for example, if we have a quad-lingual
comparable corpus consisting of Chinese (c), English (e), French (f), and Japanese (j),
it is assumed that all document tuples in the collection contains documents in all four
languages, i.e. tm = [dc

m,d
e
m,d

f
m,d

j
m] ∀m, where m indexes tuples in the collection and

dc
m represents a Chinese document, de

m represents an English document, etc.
However, such fully-connected comparable corpora are rare in practice. Taking the

entire Wikipedia as an example, Arai et al., [5] showed that among all Japanese docu-
ments, only 64.4% have links to English entries and only 22.5% have links to Chinese
entries. In our own Wikipedia crawl (described in Section 4.4.1), we find that within
our target set of 14k Japanese documents, the proportion of linked English, Chinese,
and French documents is only around 20-30%; if we restrict to tuples that contain
documents in all four languages, this number drops to 12%. In some cases, this is
because the interlanguage-link information is missing; but in most cases, this disparity
is largely the result of different human editors contributing independently in different
languages [17].

We assume that a tuple does not necessarily contain documents in all languages
and call such comparable corpora partially-connected. In the following, we extend
the MLTM of [47, 42] to handle partially-connected corpora with a maximum of L
languages per tuple.
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4.3.1 Generative Process

The generative process of our proposed partially-connected multilingual topic model
is this: First, we define our comparable corpus as a collection of M tuples in dif-
ferent languages, i.e. tm = [d1

m, ...,d
l
m, ...,d

L
m] with m ∈ {1, ...,M}. Given a tuple of

documents tm = [d1
m, ...,d

l
m, ...,d

L
m], there is a corresponding auxiliary variable ym =

[yl
m, ...,y

l
m, ...,y

L
m], which is a L-dimensional binary vector that indicates the presence

or absence of documents in the language l in tuple m. The value of l-th of vector m,
yl

m ∈ {0,1}, where 1 indicates presence and 0 indicates absence. For example, a tuple
of documents which may contain Chinese, English and Japanese can be represented
by a 3-dimensional binary vector: [1,1,1] denotes that it contains all of the three lan-
guages; while [0,1,0] denotes that it only contains English document. It is not difficult
to see that it is very flexible to encode the relationship of a tuple of document for the
multilingual topic model.

The generative story is shown in Algorithm 4 and a graphical representation is shown
in Figure 4.5.

Here, language-specific topic word distributions β l are drawn from symmetric Dirich-
let distributions with prior η l; θm is the topic proportion of a tuple of documents
tm drawn from symmetric Dirichlet distribution with prior α; zl are topic indices in
language l; words wl are drawn from language-specific distributions p(wl|zl,β l,yl

m),
where l ∈ {1, ...,L}.

4.3.2 Inference

The central computational problem for partial multilingual topic model is approxi-
mating the posterior given a tuple of documents. In general, it is hard to estimate the
posterior of a Bayesian model using exact inference methods. Therefore, approximate
inference algorithms are always selected to deal with these kind of models. One of
the approximate inference methods is based on Markov Chain Monte Carlo (MCMC)
[42, 7], a sampling approach. The basic idea of MCMC is that first, a Markov chain
is constructed; and then its stationary distribution, which is the posterior of interest, is
computed.

In this paper, we develop a collapsed Gibbs sampling [25, 42, 47], a type of MCMC,
to estimate the posterior given a tuple of documents. Concretely, given a tuple of
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Figure 4.5: Graphical representation of partially-connected multilingual topic model.

documents m, the possibility of the topic k of the i word in the language l yields:

p(zl
i = k|w⃗l, z⃗l¬i,β 1, ...,β L,α) ∝

n(v)l,k,¬i +η l

∑V l

v′=1 n(v
′)

l,k,¬i +η l ·V l
· (

L

∑
l′=1

yl′
m · (n(k)l′,m)¬l,i +α) (4.1)

Here, the document in language l denotes w⃗l = {wl
i = v,wl

¬i} with the corresponding
topic states z⃗l = {zl

i = k, z⃗l¬i}; the counts n(v)l,k,¬i indicate that the token i is excluded

from the corresponding document l in the tuple; the counts (n(k)l′,m)¬l,i denote that the
token i is excluded from the corresponding topic k when l = l′ is held in the tuple; V l

denotes vocabulary in language l.
Finally, we compute the multinomial parameter sets of Θ and B:

β l
k,v =

n(v)l,k,+η l

∑V l

v′=1 n(v
′)

l,k +η l ·V l
(4.2)

θm,k =
∑L

l′=1 yl′
m ·n(k)l′,m +α

∑k′ ∑L
l′=1 yl′

m ·n(k
′)

l′,m

(4.3)

Direchlet hyperparameters α and η can be optimized by a simple and stable fixed-
point iteration for a maximum likelihood estimator as [43].
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Algorithm 4: Generative story for partially-connected multilingual topic model

for each topic k do
for l ∈ {1, ...,L} do

sample φ l
k ∼ Dirichlet(β l)

end
end
for each tuple tm in corpus do

sample ym

for each document pair tm do
sample θm ∼ Dirichlet(α)

for l ∈ {1, ...,L} do
if yl

m == 1 then
sample zl ∼ Multinomial(θm)

for each word wl in dl
i do

sample wl ∼ p(wl|zl,φ l,yl
m)

end
end

end
end

end

4.4 Experiments
First, we describe our experiment setup in Section 4.4.1. Section 4.4.2 compares

our method with previous works, and Section 4.4.3 shows how our method improves
given additional languages in the comparable data. Section 4.4.4 discusses practical
issues such as hyper-parameter selection and run-time, while Section 4.4.5 provides
with detailed analyses of the results. Finally, Section 5 demonstrates how our approach
can be used to provide high-precision dictionaries to bootstrap existing context vector
methods.

51



Wiki #document #vocabulary #( j∩ e) #( j∩ e∩ c) # ( j∩ e∩ c∩ f )

Japanese (j) 14,033 40k - - -
English (e) 4,087 20k 4,087 - -
Chinese (c) 3,494 23k - 2,338 -
French (f) 2,871 12k - - 1,719

Table 4.1: Statistics of our multilingual Wiki crawl dataset. Here, #(l∩ l′) denotes the
number of ”fully-connected” document tuples by intersecting languages l and l′.

4.4.1 Experiment Setting

We perform experiments based on the Kyoto Wiki Corpus1. We choose Kyoto Wiki
Corpus because it is a parallel corpus, where the Japanese edition of Wikipedia is
translated manually into English sentence-by-sentence (14k document pairs, 472k sen-
tences). This enables us to use standard word alignment methods to create a ”gold-
standard” lexicon for large-scale automatic evaluation. First, we ran IBM Model 4 on
this parallel corpus. Then we extracted 166k the (ẽ, f̃ ) pairs based on the strict bidirec-
tional requirement of Eq. 3.7, with threshod δ1 = δ2 = 0.3. We refer to these pairs as a
”gold standard” bilingual lexicon. Due to the large data size and the strict bidirectional
requirement, these “gold standard“ bilingual dictionary items are of high quality (92%
precision by a manual check on 500 random items). Note that sentence alignments are
used only for creating this gold-standard and are not used in subsequence experiments.

To evaluate the proposed framework, we use a real comparable corpus crawled from
Wikipedia (denoted as Wiki). We keep the Japanese side of the original Kyoto Wiki
Corpus, but crawl the online English, Chinese and French editions by following the
inter-language links from the Japanese page. The statistics of the crawl are shown in
Table 4.1. Observe that this is a partially-connected comparable corpus: the number
of corresponding articles in English, Chinese, and French is much smaller, consisting
of only 20-30% of the original Japanese. The number of fully-connected tuples in all
four languages is only 12%, as seen in the intersection ( j∩ e∩ c∩ f ).

For pre-processing, we did word segmentation on Japanese and Chinese using Kytea
[45]; Porter stemming on English and French using NLTK Version 3.02. Finally, we
remove the 2,000 rarest words and stop-words from each language: English, Chinese,

1http://alaginrc.nict.go.jp/WikiCorpus/index E.html
2www.nltk.org/api/nltk.stem.html
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Language Japanese English Chinese French

Number of stop-words 44 571 125 463

Table 4.2: Statistics of stop-words in different languages.

French and Japanese as shown in Table 4.2. To facilitate future work in this area, our
stop-word lists for these four languages are released at:
https://bitbucket.org/allenLao/stopwords.

4.4.2 Lexical Extraction Results: Comparison with Baselines

We begin by comparing with previous topic-modeling approaches to bilingual lexi-
con extraction, namely [61]. Using the automatically-created ”gold-standard” lexicon,
we evaluate methods by Precision, defined as |{Gold(e, f )}

∩
{Extracted(e, f )}|

#Extracted .
Table 4.3 shows the precisions of our proposed method, compared with the baseline

Cue and JS methods from [61]. All these methods first run our MLTM with K = 400
topics3 on the partially-connected Japanese-English Wiki dataset, which consists of
14,033+4,087 = 18,120 documents.

Our method extracts a total of 1,457 pairs using the bidirectional constraint in Eq.
3.8. This achieved a precision of 0.742. For comparison, we adjusted the threshold δ
(Option (a) discussed in Section 3.3.2), such that the Cue (Eq. 3.9) and JS (Eq. 3.11)
methods give roughly the same number of extracted pairs as our proposed method. The
resulting precision of Cue and JS are very poor, at 0.073 and 0.091, respectively. Vulic
[61] reports that a large number of topics is necessary for good results, so we re-ran
the baselines with K = 2,000, the suggested value in [61]. Despite the long run-time
of MLTM for large K, the precision only increased to 0.104 and 0.123 for Cue and JS,
respectively.

It can be seen that our proposed method is much more effective at extracting bilin-
gual lexicon, in particular in large-vocabulary datasets (The vocabulary size in [61] is
7k and 9k in Italian and English respectively). We have a hypothesis as to why Cue
and JS depend on large K. Eq. 3.4 is a valid expression for p(we|w f ) that makes
little assumptions. We can view Eq. 3.9 as simplifying the first term of Eq. 3.4 from
p(we|tk,w f ) to p(we|tk). Both probability tables have the same output-space (we), so
the same number of parameters is needed in reality to describe this distribution. By

3MLTM hyperparameters are α = 50/K and β = 0.01 following [61].
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System Precision #Extracted

Proposed (K=400) 0.742 1,457
Cue (K=400) 0.073 1,400
JS (K=400) 0.091 1,400
Cue (K=2,000) 0.104 1,400
JS (K=2,000) 0.123 1,400
IBM-1 0.521 1,400

Table 4.3: Comparison with baselines using the Japanese-English part of Wiki dataset.

throwing out w f , which has large cardinality, tk needs to grow in cardinality to com-
pensate for the loss of expressiveness.

As an additional baseline, we directly run IBM Model 1 on the fully-connected
Japanese-English comparable corpora, treating each document pair as ”sentence pair”.
This IBM-1 baseline does not employ MLTM and the score of a pair (e, f ) is defined
as the average lexical probabilities obtained from IBM Model 1 in both directions.
Interestingly, this baseline achieves a precision of 0.52, better than Cue and JS. But
our proposed method still performs better, implying that the combination of existing
word alignment models and MLTM attains good synergy.

4.4.3 Lexicon Extraction Results: Additional Languages

We now examine the effects of adding additional languages on Japanese-English
lexicon extraction. Table 4.4 shows how precision improved as we add Chinese (3,494
comparable documents in addition to the original 18,120 Japanese-English corpora), as
well as both Chinese and French (3,494+2,871=6,365 comparable documents). Since
the number of extractions changes (because probability value changes affects the bidi-
rectional constraint of Eq. 3.8), we also manually evaluated precision (ManualPrec)
on a fixed random set of 100 pairs.

From Table 4.4, we see that adding Chinese documents improves the (automatic)
precision from 0.742 to 0.761. Adding both Chinese and French documents further
improves results, with (automatic) precision gaining 3% (0.742 → 0.774) and manual
precision gaining 9% (0.62 → 0.71). We observe these improvements because adding
more languages and data improves the estimation of the MLTM. Specifically, in our
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System Precision ManualPrec #Extracted

Full-Japanese-English 0.612 0.51 1,745
Japanese-English (= Proposed in Table 4.3) 0.742 0.62 1,457
Japanese-English-Chinese 0.761 0.64 1,365
Japanese-English-Chinese-French 0.774 0.71 1,372

Table 4.4: Comparison of proposed method using additional languages in the Wiki
dataset. K = 400 and MLTM hyperparameters are same as described in Section 4.4.2.

bilingual extraction equation (Eq 3.4), more data can directly improve the estimation
of the topic distribution p(tk|w f ); further, more data may also indirectly improve the
estimation of the the topic-dependent bilingual lexicon p(we|w f , tk) via better posterior
inference results for input into the word alignment step. Note that the word alignment
part is the same for the various systems in Table 4.4, so improvements come from
better MLTM.

Figure 4.6: Effect of using additional languages: Precision-vs-threshold curve.

We also show results using only the fully-connected Japanese-English comparable
corpus (Full-Japanese-English). This system only runs MLTM on 4,087 document
pairs, and as a result the precision is lower than the partially-connected case (0.612

55



Figure 4.7: Effect of using additional languages: Number of extraction-vs-threshold
curve.

vs 0.742). This demonstrates that our MLTM is effective in exploiting monolingual
documents in estimating its parameters.

Finally, we also compare the systems not by using the bidirectional constraint, but
by varying the threshold δ (as discussed in Option (a) at the end of Section 3.3.2.
Figure 4.6 shows how precision varies as we lower the threshold. Figure 4.7 plots
the number of extracted pairs vs. threshold on the same data. We observe a large
overall gain in precision regardless of threshold as we move from fully-connected
to partially-connected data, which corroborates with the results in Table 4.4. The
number of extractions are roughly similar for the various partially-connected systems,
while fully-connected has slightly larger number (but lower precision). The differ-
ences between the various systems using partially-connected corpora does not seem
very large. But this is not surprising, given the large amount of monolingual Japanese
documents (140,033) in our dataset compared to additional Chinese and French docu-
ments (around 3,000). Nevertheless, we do observe that the Japanese-English-Chinese-
French system does indeed have the best precision curve.
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4.4.4 Practical Issues: Model selection and Run-time

The most important parameter in our approach is the number of topics K in MLTM.
As K goes to one, the proposed approach becomes equivalent to running word align-
ment directly on comparable documents, treating each document pair as a ”sentence
pair.” As K increases, the topic-aligned corpora become more fine-grained and the
lexicon extraction precision improves. However, if K is too large, then each word
collection Ck,i in the topic-aligned corpora becomes too small; and if the topic model
incorrectly assigns translation pairs to different topics, it becomes impossible to extract
it in subsequent word alignment step.

First, we show how precision varies with different values of K in Figure 4.8. We
observe that for low values of K (e.g. 100, 200), the precision is relatively low around
0.4-0.6. The best precision is achieved with K = 400, followed closely by K = 600
and K = 800, all in the 0.7-0.8 range.

Figure 4.8: Precision by number of topics (K).

While it is expected that results vary somewhat by K, the important question is
whether the best K can be selected a priori in an unsupervised manner. Now we show
that the per-word log-likelihood on the held-out data set is effective for model se-
lection. Per-word log-likelihood, which is widely used in the machine learning and
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statistics community, is defined as the geometric mean of the inverse marginal proba-
bility of each word in the held-out (dev) set of documents Ddev, as Eq 3.12. A higher
per-word log-likelihood score indicates better performance [9, 26, 58].

Figure 4.9: Per-word Likelihood by number of topics. Note that this figure correlates
with Figure 4.8, suggesting per-word likelihood is a reasonable unsupervised metric
for model selection.

Figure 4.9 summaries our results for the model selection, plotting the per-word like-
lihoods of a 100-tuple held-out dev set. We observe that per-word likelihood suc-
cessively picks out K = 400 as the best model for various setups, which generally
corresponds to the best precision results in Figure 4.8.

Finally, we show the run-time of MLTM on a 2.4GHz Opteron CPU for varying K
in Figure 4.10. As expected, run-time increases with K: on datasets as large as ours,
training with K = 400 takes approximately 4 days, and K = 800 takes 8 days. Time
complexity of MLTM is O(NK ∑M

m=1 ∑L
l=1 wl

m), where N indcates number of iterations;
K, M, L denotes the number of the topics, size of corpus and numbers of the languages;
wl

m denotes the number of words in tuple m written in language l.
The overall time for various systems is shown in Table 4.5. First, note that MLTM

time dominates the overall time for all systems, so the training time does not differ
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Figure 4.10: Training time of MLTM by dataset and number of topics.

much among methods if we use the same number of topics in MLTM; but in practice
Proposed requires fewer number of topics, so it is much faster to train. Second, as-
suming the same number of topics, the breakdown of training time show that Proposed
is still relatively fast because both GIZA++ and Eq. 3.4 are fast. Comparing Eq. 3.9
of Cue to Eq. 3.4 of Proposed, we see that both need to compute p(tk|w f ), but the ∑k

in Eq. 3.4 tends to be faster because p(we|w f , tk) in Eq. 3.4 tends to be sparse while
p(we|tk) in Eq. 3.9 is dense.

4.4.5 Detailed Analyses of Results

Some examples of how the proposed multilingual model reduces translation errors
are shown in Table 4.6. Taking “music” as an example, if only use the English-Japanese
corpus, we erroneously find that “歌唱” (to sing) has high translation probability; this
is understandable, though, because the words are roughly in the same topic. However,
with additional language data (Chinese, French), the topic distributions becomes more
precise, so the error disappears and the correct translation “音楽” (music) is left with
higher probability.
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#Topic MLTM (En-Ja) Proposed(Giza++/Eq 3.4) JS(Eq 3.11) Cue (Eq 3.9)

100 3.4e4 472 + 50 631 361
200 8.2e4 491 + 99 1,312 720
400 1.6e5 608 + 202 2,345 1,031
600 2.4e5 815 + 279 3,729 1,424
800 3.3e5 830 + 371 4,216 2,043

Table 4.5: Wall-clock times in seconds for Word Alignment (giza), and p(we|w f )

calculation. Overall time for Proposed is the training time of MLTM, word alignment
(Giza++) plus Eq.3.4; for Cue it is the training time of MLTM plus Eq.3.9; for JS
it training time of MLTM plus Eq.3.11. Here, Eq.3.9 and Eq.3.11 are computed in
parallel with 100 threads. MLTM (En-Ja) denotes the training time of multilingual
topic model on English and Japanese corpus. The training time of multilingual topics
for different settings is shown in Figure 4.10.

English Words English-Japanese +Chinese +Chinese+French

music
音楽 [music](0.323) 音楽 [music](0.442) 音楽 [music] (0.445)
歌唱 [sing] (0.203)

ikoma
生駒 [ikoma] (0.497) 生駒 [ikoma] (0.574) 生駒 [ikoma] (0.619)
石切 [ishikiri] (0.205) 近鉄 [train] (0.252) 近鉄 [train] (0.254)
近鉄 [train] (0.272)

yoshino
吉野 [yoshino] (0.389) 吉野 [yoshino] (0.603) 吉野 [yoshino](0.373)

吉野山 (0.204)

Table 4.6: Error analysis on multilingual case. The words colored in red indicate
translation errors; the words in [*] are the corresponding translation; the numbers in
(*) are the translation probabilities.

4.5 Summary
We extend our framework by 1) proposing a novel multilingual topic model to han-

dle partially-connected corpora; 2) using additional multilingual comparable corpora.
On large-scale experiments, we show improvements in the precision of our Japanese-
English lexicon as we include more languages, i.e. Chinese and French, to the compa-
rable corpora.
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Chapter 5

Hybrid Systems: Boosting for Context
Vector Approach

In this chapter, we propose a hybrid system, which works as follows: 1) extracting
the bilingual seeds by the proposed framework, as Figure 3.1, and then 2) boosting
the context vector approaches. The rest of this chapter is organized as follows: in
Section 5.1, we introduce our proposed method and then we describe the experiments
and analysis in Section 5.2.

5.1 Proposed approach
Most researches on bilingual dictionaries extraction either focus on the context-

vector methods [51, 19, 32, 16] or projection-based approaches [21]. Here, we propose
a simple system, which combines two methods. Figure 5.1 shows the framework of
our hybrid system, which includes two parts: 1) the top part is the same as the topic
model + word alignment model approach introduced in Chapter 3 and the bottom is a
context-vector method. Differing with other context-vector methods, our system does
not use a ”gold” dictionary.

There are many ways to compute the similarity between a source word, we, and a
target word, w f . We will only introduce several metrics commonly used in context-
vector approaches. One of the popular similarity metric is cosine similarity measure,
defined as

score(we,wf) = simcosine(we,wf) =
∑N

i w(e,i)×w( f ,i)√
∑N

i w2
(e,i)

√
∑N

i w2
( f ,i)

. (5.1)



Figure 5.1: Hybrid system for bilingual dictionary extraction. Note that the top part
is the same as the proposed framework, shown in Figure 3.1 and the bottom part is a
context-vector method, which is similar to Figure 3.2.

The Jaccard similarity, which was originally designed for binary vectors, is also used
widely in context vector approaches [35]. It is defined as:

score(we,wf) = sim jaccard(we,wf) =
∑N

i min(w(e,i),w( f ,i))

∑N
i max(w(e,i),w( f ,i))

. (5.2)

Alternatively, we can use the Dice measure, which is defined as

score(we,wf) = simdice(we,wf) =
2×∑N

i min(w(e,i)w( f ,i))

∑N
i (w(e,i)+w( f ,i))

. (5.3)

5.2 Experiment
The data used in our experiments are the same as the data described in Section 4.4.1.

We evaluate this hybrid approach as follows:

• First, the 1,457 high precision dictionary seeds extracted by our proposed method
in Table 4.3 are used as seed for the context vector approach of [51]. This hybrid
system is called WikiSeeds and the resulting precision is reported in Table 4.4.
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• For comparison, we run the context vector approach, the same context vector
method as [51] with different amounts of “gold seeds”. The purpose is to ob-
serve how many manual gold seed translations are necessary to attain the extrac-
tion result of our purely unsupervised WikiSeeds system. In particular, for a fair
comparison, for cases under 1457 seeds (GoldSeeds500 and GoldSeeds1000),
we randomly sample 500 and 1,000 unique Japanese vocabularies in WikiSeeds
and look-up their corresponding English translation in the “gold standard” lex-
icon described in Section 4.4.1. For cases above 1,457 seeds (GoldSeeds1500
and GoldSeeds3000), we use all the gold standard lexicon associated with the
1,457 vocabulary, with additional translation pairs randomly sampled from the
gold standard lexicon.1

Figure 5.2: Comparison of different seeds for the context vector approach: Precision-
vs-#Extracted pairs curve. Note that GoldSeeds# denotes the size of “gold seeds”.
Note that we use the cosine similarity as Eq 5.1.

From Figure 5.2, we find that WikiSeeds outperforms both 500 and 1000 gold seeds
in precision across all numbers of extracted pairs. As expected, a roughly equal number
of gold seeds (1500) outperforms WikiSeeds, but the differences are not large. Such
observations imply that our extracted seeds can be used in context vector approach
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when there are no large seeds existing in certain language pairs. The code of the con-
text vector approach is released at: https://bitbucket.org/allenLao/context_
based_model_for_dic/src.

Further, we evaluate the effect of different similarity metrics to the accuracy of lex-
icons extraction. Here, we adopt the extracted seeds, WikiSeeds, and use the same
context vector approach of [51] with different similarity metrics (cosine, Jaccard and
Dice). Figure 5.3 summarizes the experiments of similarity measure comparison. We
observe that cosine and Jaccard measures are very competitive, and outperform Dice.

Figure 5.3: Comparison of different similarity metrics (cosine, Jaccard and Dice).
Note that all the experiments are are used the extracted seeds, WikiSeeds.

5.3 Summary
In this chapter, we propose a hybrid system for bilingual dictionary extraction.

We show that the context vector model by using the automatically extracted lexicons
achieves similar results as by using the “gold” seeds. Furthermore, we show that the
cosine and the Jaccard similarity metrics work better that the Dice similarity measure.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion
In this thesis, we proposed an effective way to extract bilingual dictionaries by a

novel combination of topic modeling and word alignment techniques. The key innova-
tion is the conversion of a comparable document-aligned corpus into a parallel topic-
aligned corpus, which allows word alignment techniques to learn topic-dependent
translation models of the form p(we|w f , tk). The main advantages of our approach
are that (1) it does not require any bilingual seed dictionary, and (2) it can effectively
exploit comparable corpora consists of documents in more than two languages.

Our large-scale experiments demonstrate that the proposed framework outperforms
existing baselines under both automatic metrics and manual evaluation. Further, we
show improvements in the precision of our Japanese-English lexicon as we include
more languages, i.e. Chinese and French, to the comparable corpora. Last, we use the
extracted seeds to boost the context vector based model and show that such kind of
“noisy” seeds are as good as “gold” seeds. To facilitate further work in this area, all
preprocessed data and topic modeling code are available at
https://bitbucket.org/allenLao/topic-modeling-gibbs.

6.2 Future Work
In this section, I will discuss some open challenges and future work as follows.

• Scalability: Both Table 3.7 and Figure 4.10 show that multilingual topic mod-
els take most of time in our framework, if the topic number K is big. It pre-



vents our framework from handling a very large-scale corpora, such as the whole
Wikipedia. The problem can be solved by either using distributed learning al-
gorithms [63], e.g., Zhao et al., training the topic model in the framework of
MapReduce, or stochastic online learning for topic models [26].

• Seeds: While our framework is purely unsupervised in the sense that it requires
no seed dictionary, we can imagine several interesting extensions if such a seed
dictionary is available. First, the seeds could be used as a prior for the multilin-
gual topic model, for instance by employing the Dirichlet tree prior of [4, 28].
Second, the seed translation could also be incorporated into the word alignment
step (as supervised alignments) to improve performance of the topic-dependent
translations, p(w f |we, tk). In general, the modularity of our method makes it
relatively flexible to incorporate additional resources and knowledge into the
lexicon extraction process.

• Bilingual Phrase Lexicon: To our best knowledge, there are not any researches
which focus on the bilingual phrase lexicon extraction, while it is very important
in Machine translation community. First, the phrase lexicons can be extracted
at the preprocessing step using a chunker, e.g., [33], which is not available for
many languages. Second, we can solve such problem in post-multilingual topic
model as [8], which is a purely unsupervised learning approach and can be easily
adapted to other languages.
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