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Abstract

Ocean Wave Monitoring is an essential activity that provides valuable data

used for travel statuses of maritime transportations, for modeling offshore in-

frastructures and for producing wave forecasts. There are various ocean wave

monitoring systems that are utilized nowadays ranging from in-situ to remote or

a combination of both. The complexity of the mechanism and technology utilized

by the wave monitoring system defines its construction and operation cost. This

study utilized and operated a low cost local wave monitoring system that is reli-

able and robust. This system is an alternative to sophisticated wave monitoring

systems. This consists of wave sensors that are relatively cheap and ubiquitous

such as MEMS-enabled devices. These devices are popular to the sensing commu-

nity because they are easy to build, program and use, and they can be utilized in

any application and environment. These devices are advantageous because they

can be connected to a network that can be smartly expanded to monitor the area

of interest.

This study aims to explore on processing techniques that enables the local

wave monitoring system to (1) detect severe wave conditions (2) process data

from its multiple sensors and (3) properly classify wave conditions. By having

these functions, the system will have similar abilities to sophisticated wave mon-

itoring systems but with relatively much lower construction and operation costs.

Since the system considered for this is an alternative system, there is one major

challenge encountered. The wave sensors in the system have certain limitations
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in processing power, memory and battery power of the devices hence, the data

collected are short length time series data. Typically in conventional methods,

they require longer time series data for generating significant wave height and

period hence, these methods cannot be utilized in the alternative system. Due to

this, the processing techniques should be able to address this issue. Also, if this

issue is properly addressed, the alternative system will have an advantage to the

conventional systems because acquiring and processing short time series data can

be done quickly hence immediate publication of wave information is possible.

For the detection of severe wave conditions, two signal processing techniques

are explored. First technique is the thresholding technique that processes in-

stantaneous data gathered by the sensors. This technique enables the sensors

to judge the condition of its area and preprocess the data before sending rele-

vant information to the central receiver of the network. This aims to compress

the data that is relayed to the network. This is rather a straight-forward and

stringent approach because the threshold levels are fixed. It is important to note

that wave conditions in different areas can vary depending on the bathymetry

of the location even if they are experiencing the same conditions. The threshold

level set in one location might not be enough for the other location. Because of

this, the second technique is explored. The second technique uses higher order

statistics to evaluate data segments gathered by sensors. The sensors are allowed

to gather data first on the specific location on a relatively calm day to have a

base data and then, the statistical parameters are generated. These values are

location specific and are the bases of comparison for each of the wave segment

gathered by the sensors. Higher differences from the base data indicate that the

wave conditions are more severe.

For the processing of the multiple sensors in the monitoring system, this study

explored Independent Component Analysis (ICA). This technique is utilized in

separating source signals from multiple sensors in a network or in an area. This

is useful in getting or estimating dominant patterns of source signals in a very

noisy environment which are typically experienced in field experiments or in real

data. Though of its potential, this technique falls short to the aim of the study.

Wave data has certain characteristics that does not meet the requirements for a

good implementation of independent component analysis.
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For the classification of wave conditions, this is done through employing Sup-

port Vector Machines (SVM). This technique initially uses spectral analysis tech-

nique which decomposes the wave data into frequencies. The significant wave

height and wave period are then calculated from the wave spectra. These two

values are the features considered for the SVM. The SVM trains the data to

create a classification model for ocean wave conditions. By having the classifi-

cation model, identification of wave conditions can be done immediately hence

information can be readily published.

All of the processing techniques used the short time series data and were able

to assess the data. These techniques were able to provide information immediately

hence immediate publication of wave condition is possible.

Keywords:

Ocean Wave Monitoring, Low Cost Wave Sensors, Signal Processing, Sensor Net-

work, Statistical Analysis, Machine Learning, Support Vector Machine
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Chapter 1

Introduction

This chapter introduces the theme of the dissertation: Section 1.1 presents the

significance of building an effective local ocean wave monitoring system which

can provide valuable data that can be used in modeling offshore structures, safe

marine transportation and wave forecasts. Section 1.2 explains the current prob-

lems of wave monitoring and the challenges of finding an effective signal process-

ing technique that will address these problems. Section 1.3 to 1.4 present the

contribution and merits of the signal processing techniques utilized in the study.

Lastly, Section 1.5 gives the outline for the chapters of this dissertation paper.

1.1 Research Motivation

Ocean wave monitoring is a thorough assessment activity on ocean surfaces. This

activity is done by researchers and organizations who are interested in the dy-

namics of the ocean waves. The data collected in this activity are significant for

constructing robust offshore marine structures. They are also used in characteriz-

ing a location’s potential for wave energy farms which can be an alternative source

of energy. Also, the data is directly important in producing wave alarm systems

for sea farers. There are several wave monitoring systems that utilize different

techniques ranging from simple to complicated. These techniques vary depending

on the purpose and coverage area of the wave monitoring system. In-situ wave

monitoring targets a more detailed point measurement type of data while remote

wave monitoring aims for a wider coverage type of data. Most current wave
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monitoring system are expensive to build because they usually utilize sophisti-

cated and dedicated devices as sensors. Construction and operational costs sky

rocket as the wave monitoring system is utilized. These systems are not easily

assembled and sometimes, they are not so user friendly since the operators need

certain trainings to operate it. Because of the expensive undertaking, building

them for independent and small scale research might not be practical. Also, they

are expensive for massive deployments in third world countries. This work is a

continuing activity of [5] which is largely motivated with the necessity of wave

alarm systems in the Philippines.

The Philippines is an archipelago located in an area surrounded by big bodies

of water namely the Pacific Ocean and the South China Sea. Because of this

geographical characteristic, a large percent of its population live in coastal areas

hence the primary source of living and economy greatly relies on seas. Also,

because of its location, it is bombarded with harsh monsoon systems that causes

violent seas. With a rate of 20 typhoons per year, sea related activities are of

constant threat. The two most vulnerable industries are the transportation and

tourism industries. Watercraft ranging from small boats, barges to ships that

are mainly used to transport people and products are prone to accidents when

there are typhoons or unexpected rouge waves. Figure 1.1 shows the recorded

maritime accidents from year 1995 to 2006. Due to the fact that tourism in the

Philippines rely on island hopping activities, the safety of the tourists is always

at stake because of the lack of warning systems.

There is an existing wave monitoring system in the Philippines but it is cur-

rently tied with a government agency. They have a buoy that is capable of

measuring barometric pressure, wind speed and direction, air and sea surface

temperature and wave height. Though of its sophistication, it is not sufficient

to gather data that is representative of the whole Philippines. Also, since this is

under a government agency, data access is limited for researchers.

Clearly, there is a call to build alternative wave monitoring systems that can

provide information to the public. These monitoring systems do not have to be

expensive since these systems can utilize readily available MEMS-based sensors

that are easy to construct and use. The motivation of this study is to explore

signal processing techniques that can be used in these sensors that will make
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Figure 1.1: Summary of Maritime Accidents in the Philippines from 1999 to 2006

the system effective and accurate. This is interesting because wave monitoring

processes are complex to do and conventional methods have certain requirements

that aren’t necessarily met by the considered devices.

1.2 Overview of the problem

This study aims to enable the alternative local ocean wave monitoring system (1)

detect severe wave conditions, (2) process data from its multiple sensors and (3)

properly classify wave conditions. These functions make the local wave monitor-

ing system similar to sophisticated and expensive monitoring systems. Enabling

the alternative system to do these functions needs a good consideration of the

kind of data that the system gathers. Since the system’s sensors are deployed

on seas, the sensors are configured to save battery and memory hence the data

acquisition duration is kept short producing short time series wave data.
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These short time series wave data has both advantages and disadvantages.

Other than promoting the system’s battery and memory conservation as an ad-

vantage, this kind of data allows the system to publish immediate wave infor-

mation. This is because the system only takes a short duration to collect and

process such data assuming that the system utilizes a good processing technique.

The major disadvantage of these short time series wave data is that most

algorithms used in conventional systems cannot be utilized to process these data.

Note that conventional wave monitoring systems have enough battery and mem-

ory capacity to gather long time series data. Naturally, the methods conceptu-

alized and utilized in these systems address and use long time series data. Also,

short time series data are very dynamic and prone to noise. They are also not

stationary data. Conventional methods such as Fast Fourier Transform (FFT)

considers stationary data. There is significant information loss if FFT is utilized

in short time series data. Therefore, the processing techniques considered for

this short time series data should have a different mechanism as compared to the

conventional methods.

1.3 Research contribution

The main contribution of this dissertation is to enable an alternative local ocean

wave monitoring system to (1) detect severe wave conditions, (2) to process data

from its multiple sensors and (3) to properly classify wave conditions using tech-

niques that process short time series data. This promotes the system to be an

equal counterpart of sophisticated systems but at a lower cost. For the detection

of severe wave conditions, thresholding technique and statistical analysis tech-

nique are explored. For the processing of data from multiple sensors, independent

component analysis is explored. For the classification of wave conditions, support

vector machine is used to generate a classification model of wave conditions.

1.4 Research tasks and limitations

This study has two sets of main activities in gathering data for the techniques.

First set of activities is the field experiments. The local ocean wave monitoring
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system was deployed on five different locations in the Philippines as shown in

Figure 1.2. One location is located in Manila Bay and the other four are lo-

cated in Davao Gulf. The locations are chosen because they have unique coastal

characteristics. The first one is on Manila Bay which is a sheltered bay. Second

location is in the strait between Davao City and Island Garden City of Samal

(IGACOS). This location is deep enough for ships to navigate to a nearby pier.

Third location is on the coast of Davao which is in close proximity of a nearby

island, IGACOS. Fourth location is on the coast of IGACOS which is opposite

to the third location. The fifth location is on the coast of Davao which is far

from IGACOS. This location has access to open seas. It is noted that most part

of Davao Coast is obstructed from open sea due to IGACOS. Also, in order to

keep the other factors from affecting the experiments, the deployment weather

conditions were relatively fair.

The second set is the computer simulations. One simulation is done through

Matlab which generates various m-sequence or pseudorandom binary data. These

data are utilized in testing ICA. Other simulation is for generating wave data.

This is done through a program that uses the JONSWAP wave spectra model.

Different wave conditions are generated through this program. This simulation

offers a quick way to have labelled data needed for Support Vector Machines.

Despite that the wave data is to be generated through a spectra model, the

input variables in the model are taken with the consideration of the statistical

characteristics from the long term data [4]. This treatment makes the data more

realistic than theoretical.

The limitation of this study is that it does not modify the hardware of the

sensors in the local wave monitoring considered. The processing techniques use

the short time series data as produced in the local wave monitoring system.

1.5 Dissertation layout

The dissertation is presented and organized as follows:

This chapter introduced the importance of ocean wave monitoring systems

for research, modeling offshore structures and construction of wave alarm sys-

tems. It also presented the challenges encountered in wave monitoring systems
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(a) Philippine Map

(b) Davao City Map

Figure 1.2: Deployment Locations of the Local In-situ Ocean Wave Monitoring System
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and the motivation of this study. It also described the research contributions,

tasks, limitations and the dissertation layout. Chapter Two gives the related

literature and works. In order to have a thorough understanding of the mechanics

and purpose of the wave monitoring system, the theoretical concepts of waves and

the descriptions of wave conditions are discussed. The conventional processing

techniques are also discussed. Since there are several existing ocean wave moni-

toring systems, the types of monitoring systems are thoroughly expanded in this

chapter. Chapter Three presents the overview of the local wave monitoring sys-

tem considered in this study. It also discusses the individual components and the

features of the system. It also expounds the system processes. Chapter Four

gives the detailed exploration and testing of techniques for the detection of severe

wave conditions. It discusses the concepts of the Threshold technique and the

Statistical Analysis technique. It also shows the results of these explorations and

testing. Chapter Five presents the details of the processing of multiple sensors

through the Independent Component Analysis technique. It will discuss the ex-

perimental setups for the simulations and the experiment results. Chapter Six

presents the details on the classification of ocean wave conditions. This section

presents the conventional method utilized in sophisticated systems. It shows the

mechanism, advantage and disadvantages to this method. Since the conventional

method does not suffice the needs of the local ocean wave monitoring system,

this section presents the proposed method which uses Support Vector Machine

to classify wave conditions. It gives a thorough discussion on the preprocessing

steps done for the data, kernel setups for SVM and the considerations. It also

shows and discusses the results of the experiments. Chapter Seven provides

the conclusion of this study. Chapter Eight presents the recommendations and

the future works of this study.

7



Chapter 2

Related Works

2.1 Theoretical Concepts of Waves

In order to properly establish an ocean wave monitoring system, it is important

to understand the theoretical concepts of waves [6] [1]. Through the basic under-

standing of ocean waves and the forces that govern them, considerations can be

made in the design of a robust ocean wave monitoring system [7].

A sinusoidal wave profile can be mathematically expressed as:

ζ = a cos(kx− ωt) =
H

2
cos(

2πx

L
− 2πt

T
) = a cos θ, (2.1)

where ζ is the elevation of the water surface relative to the mean water level,

a is the wave amplitude, k = 2π/L is the wave number, ω = 2π/T is the angular

or radian frequency, H is the wave height, T is the wave period and θ = kx−ωt.

This expression describes a periodic, sinusoidal, progressive wave traveling in the

positive x direction. For waves moving in negative x direction, the minus sign

before the 2πt
T

is replaced with a plus sign.

Equation (2.1) presents that a sinusoidal wave profile solves the linearized

equations of motions. A real sea surface may be represented as the sum of a large

number of simple sinusoids with independent amplitudes and phases [8]. This is

shown in Figure 2.1. The time history of sea surface wave height viewed at fixed

location are expressed as a combination of sinusoids:
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Figure 2.1: Superposition of long crested, sinusoidal wave trains that produces a random

sea surface [1]

The sinusoidal wave profile can also be mathematically expressed as:

ζ(t) =
∑

n

an sin(ωnt− φn), (2.2)

where the subscript n refers to the nth component, ζ surface elevation about

the mean sea level, ωn is the angular frequency, and φn is the phase angle. Values

of ζ are real independently distributed random variables with finite variances.

Values of φn are independently and uniformly distributed in the interval (0, 2π).

For actual wave records or data, wave-by-wave analysis can be done. It deter-

mines the wave properties by finding average statistical quantities of individual
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wave components present in the wave record. Wave records are required to be

long enough to contain several hundred waves for the calculated statistics to be

reliable. This is a manual process of identifying the heights and periods of the

individual wave components followed by simple counting of zero-crossings and

wave crests in the wave record.

There are many short term parameters which are used in defining statistics

of actual wave data. The most common ones are the characteristic wave height,

Hc and the characteristic wave period, Tc.

Characteristic wave height can be defined in many ways. These include mean

height, root-mean-square height and mean height of the highest one-third of all

waves known as significant wave height, Hs or H 1

3

. The characteristic wave period

could also be defined as mean period or average zero-crossing period.

Significant wave height, Hs or H 1

3

, is the most important wave parameter used

in describing sea states. The most direct way of getting this parameter is to rank

waves in a wave record and then choose the highest one-third of the waves. The

average of this highest one-third of the waves is the significant wave height:

Hs = H 1

3

=
1
N
3

N/3
∑

i=3

Hi, (2.3)

where N is the number of individual wave heights Hi in a record ranked from

highest to lowest.

The statistical properties of a random signal like the wave surface profile

can be obtained from a set of many observations taken in different locations

(i.e. multiple sensors in a network) which are called an ensemble. In order to

determine wave properties from the process ζ, there are assumptions made with

its time and spatial variations.

ζ should be stationary which means that its statistical properties are inde-

pendent of the origin of the time measurement. It should be homogenous which

means that its properties are invariant with the locations. It should also be er-

godic. The statistics of any measured ζ is same as the average across the whole

ensemble.
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The mean or expected value of the sea state, µn or E[ζ] is defined as:

µn = E[ζ(t)] =
1

τ

∫ τ

2

−τ

2

ζ(t)dt. (2.4)

The variance of ζ is expressed as:

σ2

n = E[ζ2]− µ2

n. (2.5)

The standard deviation σn is the square root of the variance and is also called

as the second central moment of ζ(t). It shows the spread of the values of ζ(t)

about its mean.

Actual waves are considered as random signals. It is very difficult to mathe-

matically calculate hence some probability laws are followed so that wave statis-

tics can be readily obtained analytically [9] [10]. [11] proposed to use statistical

theory to the random water surface elevation of ocean waves to describe their

statistics. There are two probability distributions that are used in the study of

random ocean waves - Gaussian distribution and Rayleigh distribution.

Gaussian probability density is given by the equation:

p(x) =
1

σx

√
2π

exp

(

−(x− µx)
2

2σ2
x

)

, (2.6)

where µx is the mean of x and σx is the standard deviation.

Rayleigh probability density is:

p(x) =
πx

2µ2
x

exp

[

−π

4

(

x

µx

)2
]

, (2.7)

for x ≥ 0 where µx is the mean.

The heights of the individual waves can be regarded as a stochastic variable

represented by a probability distribution. For the Rayleigh distribution, wave

heights are:

p(x) =
2H

H2
rms

exp

[−H2

H2
rms

]

, (2.8)
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where:

Hrms =

√

√

√

√

1

N

N
∑

j=1

H2

j . (2.9)

The significant height Hr 1

3

from Rayleigh distribution is the centroid of the

area for H ≥ H∗ under the density function where H > H∗ corresponds to waves

in the highest one-third range. This is expressed as:

P (H∗) = 1− 1

3
= 1− exp

(

− H2

∗

H2
rms

)

, (2.10)

which makes H∗ = 1.05Hrms. From Equation 2.10, wave parameters can be

calculated:

Hr 1

3

= 4
√
m0 = 1.416Hrms, (2.11)

Hr 1

10

= 1.27H 1

3

= 1.8Hrms, (2.12)

Hr 1

100

= 1.67H 1

3

= 2.36Hrms. (2.13)

Parameters Hr 1

10

and Hr 1

100

are useful in coastal engineering designs.

Note that Rayleigh distribution is good in narrow-band condition but not

always true for shallow waters which deviate from it. Narrow-band condition

means that if wave energy is concentrated in a very narrow range of wave period,

the maxima of the wave profile will coincide with the wave crests and the minima

of the troughs.

Another method in understanding the wave data is through the wave spectra.

This method determines the distribution of wave energy and average statistics for

each wave frequency by converting time series of the wave record into a wave fre-

quency spectrum. This is usually done using the Fast Fourier Transform (FFT).

To better understand the wave spectrum through FFT, consider the wave

surface profile of a single-amplitude and frequency wave given by:

η(t) = a sinωt, (2.14)
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where a and ω are amplitude and angular frequency of sine wave. The variance

of this over 2π is:

σ2 = [η(t)]2 =
1

2π

∫

2π

0

a2 sin2 ωtd(ωt), (2.15)

σ2 =
a2

2
= 2

∫ ∞

0

S1(ω)dω =

∫ ∞

−∞

S2(ω)dω, (2.16)

where S(ω) is the wave spectrum.

Using these equations to apply for a random signal, the variance becomes:

σ2 =
∞
∑

n=1

a2n
2

=

∫ ∞

0

S(ω)dω = m0, (2.17)

where m0 is the zero-th moment of the spectrum. m0 represents the area

under the curve of S(ω).

The moments of the spectrum can be calculated by:

m1 =

∫ ∞

0

ωiS(ω)dω, (2.18)

where i = 0, 1, 2, .... From this, significant wave height from the wave spectrum

can be calculated by:

Hwss = 4
√
m0. (2.19)

The sea surface spectrum is very difficult to approximate. Under certain

conditions of the sea surface, the spectrum has a shape that can be parameterized

[12]. The commonly used is the Pierson-Moskowitz or PM spectrum. This is a

single parameter spectrum which assumes fully-developed seas. Fully developed

sea means that a sea is produced by winds blowing steadily over hundreds of

miles for several days. The equation of the PM spectrum is:

S(ω) =
0.0081g2

ω5
exp (−0.74g4(Uwω)

4), (2.20)

where ω is the angular frequency and Uw is the wind speed at 19.5m above

mean sea level. Wind speed is the parameter considered in this spectrum. An-

other popular spectrum is the Joint North Sea Wave Project or JONSWAP spec-

trum. In this study, this spectrum is utilized in the simulations to generate wave

13



data. This is an extension of PM with an assumption that seas do not fully de-

velop and seas are fetch-limited. They added a peak enhancement factor, γ, to

the PM spectrum. The JONSWAP spectrum is expressed as:

S(ω) =
αg2

ω5
exp

[

−5

4

(ωp

ω

)4
]

γr, (2.21)

r = exp

[(

−(ω − ωp)
2

2σ2ω2
p

)]

. (2.22)

The values for the constants in above equations:

α = 0.076

(

U2

10

Fg

)0.22

, (2.23)

ωp = 22

(

g2

U10F

)
1

3

, (2.24)

γ = 3.3, (2.25)

σ =

{

0.07 ω ≤ ωp

0.09 ω > ωp,
(2.26)

where g = 9.80665m/s2, U10 is wind speed at height of 10m and F is the fetch.

The energy of the waves increases with fetch is calculated as:

〈ζ2〉 = 1.67× 10−7
U2

10

g
F. (2.27)

2.2 Ocean Wave Monitoring Technologies

Technologies in ocean wave monitoring are evolving at same rate as other tech-

nologies. They are either solely created for ocean wave monitoring or commission

along with other functions like detection. Generally, ocean wave monitoring tech-

nology is classified into two - in-situ and remote, however, there are systems that

utilize both technologies.
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(a) Ocean Wave Meteorological Buoys

(b) Ocean Wave Gliders

Figure 2.2: In-situ Ocean Wave Monitoring Technology Devices

In-situ technology requires a more direct deployment of devices on the sea such

as surface buoys, drifting buoys, underwater buoys, oceanographic vessels, towed

vehicles, Autonomous Underwater vehicles (AUVs), Remote Operated Vehicles

(ROVs), and surface gliders [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]

[25] [26] [27] [28] [29] [30]. The devices usually take point measurements and are

highly accurate. The collected data closely represents the motions of the sea.

Remote technology uses long capturing devices such as HF radars and satel-

lites which do not make physical contact to object measured. Unlike in-situ,

devices can take wider area measurements [31] [32] [33] [34] [35]. The data col-

lected are ensemble data within the area of interest.

There are also integrated wave monitoring technologies which combine in-situ
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(a) Environment Monitoring Satellites

(b) High Frequency

Radar

Figure 2.3: Remote Ocean Wave Monitoring Technology Devices
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and remote devices in their systems [36] [37] [38] [39] [40] [41] [42] [43]. Compared

to the in-situ, it has a better and wider coverage area. Compared to the remote, it

can provide better resolution to the data. Since it collects data in both methods,

it has comparative data which can lead to a more accurate data. Examples of

such are the US Integrated Ocean Observing System (US-IOOS), Pacific Islands

Ocean Observing System (PacIOOS) and Dart II System.

2.3 Ocean Wave Monitoring Technology Chal-

lenges

As with other emerging technologies, there are various challenges in ocean wave

monitoring technologies. Each kind of wave monitoring technology provides both

advantages and disadvantages.

In in-situ monitoring, it is limited to its deployment area. To extend its

limited coverage, it needs multiple sensors deployed in the area of interest. This

will enable the in-situ monitoring to provide an ensemble data. This issue creates

another problem. More sensors could mean additional costs in the production and

maintenance. Given in sophisticated in-situ monitoring systems, they usually

have expensive in-situ devices hence an increase of number of sensors equates

more expensive system. There is also an issue with the maintenance. Since this

technology requires individual devices, maintaining each of them is a tedious task

[44].

In remote monitoring, its limitation lies on its resolution. It is dependent

on the coverage of the radars and satellites. Most environmental satellites can

provide 1 kilometer resolution. This may not be enough for some applications.

Also, since it deals with the operation of radars and satellites, special licenses and

trainings are needed to operate the equipments. They are not easily accessible

to an ordinary public or researcher. Operation and maintenance costs are also

expensive for this technology.

Despite the advantages of the integrated monitoring, it still has a major dis-

advantage. Since it combines both technologies, production, installation, deploy-

ment, operation and maintenance are expensive. In most cases, it is the most

expensive to build and use out of the three technologies.
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(a) US Integrated Ocean Observing System (US-IOOS)

(b) Dart II System

Figure 2.4: Integrated Wave Monitoring Technologies
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Also, most wave monitoring technologies utilize the conventional algorithms

for the data processing which require long sets of data for accurate evaluation.

Nowcasting is a challenge for in-situ because longer sets are needed in conventional

algorithms hence it resorts to prediction models to generate approximations of

the current wave conditions. It is also a challenge for remote because of its low

resolution hence when it resorts to prediction models, its sparse data does not

really help in giving accurate approximations of current wave conditions.
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Chapter 3

System Overview of Ocean Wave

Monitoring System Utilized

3.1 Definition of the Local In-situ Ocean Wave

Monitoring System Utilized

The local in-situ ocean wave monitoring utilized in this study is a wireless network

system of ocean wave sensors [5] [45]. This is an integrated monitoring system

that monitors current wave conditions and reports wave information. Figure 3.1

shows the system diagram of the ocean wave monitoring system. This monitoring

system is tested and deployed in different locations in the Philippines found in

Figure 1.2.

3.2 Components of the System

The system consists of wave sensors and a central receiver. The wave sensors are

deployed on seas while the central receiver is located on the shore or any place

near the sea. The wave sensors are tasked to measure wave motions, gather wave

data, do a pre-processing to the data and send the produced data evaluation to

the central receiver. The central receiver receives the data sent by the modules.
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Figure 3.1: System Diagram of the Local In-Situ Ocean Wave Monitoring System
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Figure 3.2: Configuration of a Deployed Wave Sensor

3.2.1 Wave Sensors

The wave sensors contain a sensor unit, processing unit, wireless communication

module, battery and charging unit, and data storage unit. They are heavily

waterproofed and mounted on a buoy or a floating platform. They are also

moored through a slack rope to a dead-weight placed on the sea floor. This is to

allow movements but at the same time, this fixes the wave sensor at a location.

The configuration of the deployed wave sensors is shown in Figure 3.2.

They monitor the wave conditions through gathering of data. They can be

programmed with various signal processing techniques to give them autonomy

in distinguishing wave conditions before relaying the information to the central

receiver. The pre-processing step ensures lesser but more accurate data and lesser

traffic in the system. The processing techniques are explored heavily in this study.

There are two kinds of wave sensors in this system. One is an arduino-based and

the other is an android based wave sensor.

The arduino-based wave sensor in Figure 3.3(a) is built through the arduino

open-source electronics prototyping platform based on easy-to-use hardware and

software. The system diagram of the arduino-based wave sensor is shown in

Figure 3.4.
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The arduino board utilized for the wave sensors is the Arduino Pro. This micro

controller board is based on the ATMega168. It requires 3.3V for power which is

supplied by external LiPo battery with solar charger through the USB header and

it runs at 8MHz. It has 14 digital input/output pins, 6 analog inputs, a battery

power jack, a power switch, reset button, an ICSP header and pin headers. The

micro controller has a 16KB Flash memory for storing code with 2KB used for

bootloader. It has 1KB SRAM and 512 bytes of EEPROM. The microcontroller

is programmed using the Arduino programming language based on Wiring and

the Arduino development environment. For communication, the Arduino uses

serial port (UART or USART). It communicates through the digital pins 0 for

RX and 1 for TX as well as with the computer via USB. For the sensors, inertial

measuring units (IMUs) are utilized which are connected to the microcontroller.

The IMU contains an accelerometer and gyroscope sensors which together mea-

sure the relative change in positions of an object in 3D space as it moves [46]. To

recall, a gyroscope is a device for measure orientation based on the principles of

conservation of angular momentum. An accelerometer is a device that measures

acceleration associated with the phenomenon of weight experienced by any test

mass at rest in the frame of reference of the accelerometer device. Accelerome-

ters are very sensitive to small vibrations and mechanical noise [47]. Through the

aid of the gyroscope, accelerometer error can be corrected. Gyroscopes are less

sensitive to linear mechanical movements. Since the microcontroller has limited

memory, the storage unit is expanded through microSD. The user can opt for

higher storage but for this wave sensor, only a 1GB microSD card is utilized. In

order to connect the wave sensors to the sensor, wireless communication links

are added. For the wireless communication links, Zigbee communication units

are used. The arduino prototyping platform has ready to connect zigbee shields

through which zigbee modules can be attached. Zigbee units allows one-to-one

or peer-to-peer networks. It allows sending and receiving data with the standard

arduino serial commands. The details of the Zigbee wireless communication unit

are shown in Table 3.1.

The android-based wave sensor in Figure 3.3(b) consists of an android phone

and a battery and charging unit. Android phones are generally well-equipped

with embedded motion sensors such as accelerometers and gyroscopes and com-
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Table 3.1: Zigbee Wireless Communication Unit Specifications (Xbee-Digi)

Parameter Value

RF Data Rate 250 Kbps

Indoor/Urban Range 90m

Outdoor/RF Line-of-Sight Range 1500m

Transmit Power 10mW (+10dBm)

Receiver Sensitivity (1% PER) -102dBm

Adjustable Power yes

I/O Interface 3.3V CMOS UART, SPI, I2C, PWM, DIO, ADC

Configuration Method API or AT commands

Frequency Band 2.4 GHz

Interference Immunity DSSS

Serial Data Rate 1200 bps - 1Mbps

Antenna Wire Whip

Encryption 128-bit AES

Reliable Packet Delivery Retries/Acknowledgements

IDs and Channels PAN ID, 64-bit IEEE MAC, 15 channels

Supply Voltage 2.7 - 3.6VDC

Transmit Current 205mA

Receive Current 47mA

munication modules such as GSM/3G which are suitable for the system. The

android phone can be in any kind since there is an android application created

for the system but for this system, it utilized HTC Wildfire and Samsung Galaxy

Y. It sends processed data through text message to the central receiver.

3.2.2 Central Receiver

The central receiver receives all the data sent by the modules. It is a computer

that has communication links connected to receive data. It has a zigbee explorer

to receive data from the arduino wave sensor shown in Figure 3.5(a) and a gsm

communication module to receive data from the android wave sensor shown in

Figure 3.5(b). The central receiver is connected to the internet and it publishes
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(a) Arduino-Based Wave Sensors and its components

(b) Android Based Wave Sensors and its components

Figure 3.3: Wave Sensors Utilized in the Local In-situ Ocean Wave Monitoring System
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Figure 3.4: System Diagram of the Arduino-based Wave Sensor

data through a website.

3.2.3 Website

The website seen in Figure 3.6 publishes the data from all the sensors. It shows

the wave height data, histogram of the wave height data, date and time stamps,

location of each of the sensors, sensor signal strength and sensor battery levels.

From the website, previous data from different locations can also be accessed.

3.3 Data Collected in the Local Ocean Wave

Monitoring System

The wave sensors are tested in five different locations in the Philippines as shown

in Figure 1.2(a). The data are sampled at 10Hz for 60 seconds. The wave

sensors are equipped with six (6) types of data - 3 axis gyroscope data and 3

axis accelerometer data. These are utilized to correct the processing of vertical

acceleration data. This process is thoroughly discussed in [47]. The examples

of wave data from the experiments in the five locations are seen in Figures 3.7

to 3.11.
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(a) Zigbee Explorer

(b) GSM Communication Module

Figure 3.5: Wave Sensors Utilized in the Local In-situ Ocean Wave Monitoring System
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Figure 3.6: Screenshot of the Website of the Local In-situ Ocean Wave Monitoring

System
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Figure 3.7: Acceleration data from Manila Bay Deployment

Figure 3.8: Acceleration data from Strait between Davao and IGACOS Deployment

Figure 3.9: Acceleration data from Davao Coast near IGACOS Deployment
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Figure 3.10: Acceleration data from IGACOS Coast near Davao Deployment

Figure 3.11: Acceleration data from Davao Coast far from IGACOS Deployment
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Chapter 4

Detection of Severe Wave

Conditions

This section presents the first aim of the study which is to enable the local ocean

wave monitoring system to detect severe ocean wave conditions. Severe wave

conditions indicate that there are harsh wind systems around the area of interest

or in very rare occurrences, tsunami events. For this study, it does not distinguish

the two events.

In the wave monitoring system, the wave sensors which are deployed on seas

are given the task and autonomy to discern wave conditions before relaying in-

formation to the central receiver. In order to do this, processing techniques are

programmed in the wave sensors. These processing techniques assess the short

time series data and recognize whether the data indicate severe wave conditions.

In this chapter, two processing techniques are explored for the detection of

severe wave conditions. First is the thresholding technique and the second one is

the statistical analysis technique.

4.1 Threshold Technique

Threshold technique is a signal processing method which the wave sensor counts

the events at which the gathered values exceed the value of the threshold criterion

[45]. This comes from the idea that when a condition exceeds the expected regular

condition, it signifies an abnormality. The main mechanism of this technique is
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Figure 4.1: Double Pendulum suspended at a fixed point in the ceiling with the axes at

the upper end of each rod allow for frictionless rotation in the plane. The upper mass

is m1 and the lower is m2. The lengths of the rods are a1 for upper and a2 for lower.

that all generated values are compared to a certain threshold value. If current

value exceeds the threshold value, it will be counted as a crossing. If there is a

crossing detected, the count number is increased. This process is repeated until

the programmed sampling is over. After the sampling duration, the count number

is compared again to the acceptable count number. If this exceeds the acceptable

count number, the wave sensors sends this data to the central receiver.

Since this technique relies on a threshold value, choosing the proper threshold

value is important. It defines the sensitivity which the wave sensor evaluates and

identifies the severe wave conditions. The threshold criterion utilized for the wave

sensors are taken from the double pendulum experiments. Double pendulum is

a simple mechanical system that has two simple pendula attached end to end

that exhibits nonlinear behavior [48] [49]. This system is utilized for simulating

wave conditions because it is difficult to get actual severe wave conditions. Since

double pendulum machine exhibits nonlinear behavior, it is assumed in [5] that

it closely resembles actual wave conditions as shown in Figure 4.2.

The double pendulum consists of two particles, of masses m1 and m2, con-

nected by two light rods of lengths a1 and a2, respectively, which are connected

as shown in Figure 4.1. In the double pendulum set up, there are parameters
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Figure 4.2: Comparison of the double pendulum dynamics and actual wave dynamics

in acceleration

that are varied to create different types of motions. For the experiments, the pa-

rameters - a2 and θ2 are changed. It was discovered in several experiments that

changing these two parameters generated significant changes in the motions. The

monitoring of the motion is done by attaching a sensor on m2. Also, to ensure

that the two masses are equal, an additional mass is added to m1 so that it will

be equal to m2.

The double pendulum is set to simulate abnormal wave conditions expected

in ocean waves. For the first wave condition, the length a2 is set to 20cm and the

angle φ2 is set to 30 degrees. For the second condition, the length is 40cm and the

angle is 60 degrees. Table 4.1 shows the number of data points at corresponding

acceleration values. It can be observed that the second wave condition generated

larger acceleration as compared to the first wave condition hence, it can represent

a severe wave condition. As mentioned before, setting the threshold influences

the sensitivity of the wave sensor. It is shown in Figure 4.3 that the number of

data points exceeding the threshold varies as the threshold criterion is varied.

Based from the double pendulum experiments, it is sufficient to set threshold

levels at 1g, 1.5g and 2g where g=9.8m/s2. Figures 4.4 to 4.5 shows the resultant

acceleration plotted with the three threshold levels. The figures show that when

threshold is increased, fewer crossings are detected. Table 4.2 shows the values

of the count number at each threshold value. Note that the wave data have 600
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Table 4.1: Number of data points per acceleration value range

Acceleration Value Wave Condition 1 Wave Condition 2

Range (g) l = 20cm, θ2 = 30 deg l = 40cm, θ2 = 60deg

-1 to -0.5 0 1

-0.5 to 0 0 1

0 to 0.5 36 90

0.5 to 1 262 197

1 to 1.5 258 206

1.5 to 2 31 78

2 to 2.5 12 20

2.5 to 3 1 5

3 to 3.5 0 1

3.5 to 4 0 1

Figure 4.3: Histogram of data points per acceleration value with threshold set at 1g,

1.5g, 2g
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Table 4.2: Count of crossings at each threshold value

Acceleration Threshold Value Count Number

T = 1g 336

T = 1.5g 99

T = 2g 35

instantaneous values for 1 minute sampling duration. If the count exceeds 50

percent of the total number of instantaneous values then that current wave data

are considered to have a severe condition. At this kind of wave condition, the

wave sensor reports to the central receiver that it has detected a severe wave

condition. Larger counts signifies more severe wave condition. As mentioned

before, the threshold value defines the sensitivity of the wave sensor. This value

can be set according to the user’s preference.

Figure 4.4: Resultant acceleration of sensor node with threshold set at 1g

35



Figure 4.5: Resultant acceleration of sensor node with threshold set at 1.5g

Figure 4.6: Resultant acceleration of sensor node with threshold set at 2g
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4.2 Statistical Analysis Technique

In the previous technique, processing the data is quite straightforward because

it compares each instantaneous data with the fixed threshold criterion. It is

easy to apply as long as the threshold criterion is chosen well. Despite of its

simplicity, there are many disadvantages in setting up the threshold criteria. The

threshold criteria are determined by the acceleration values generated from the

simulated abnormal wave conditions on the double pendulum machine. This is

not so favorable because the values are too rigid. Actual wave conditions can

vary according to the coastal characteristics of the deployment location. Values

for normal wave conditions in a location might be higher than the other locations

hence setting fixed threshold criterion for all the wave sensors might not be so

practical and effective. Assessment of wave conditions should be associated with

the local normal wave conditions in a specific area [50] [51].

In order to generate these values, the statistics of the wave heights from normal

conditions are utilized. A statistical wave distribution is generated from the wave

heights. Significant wave height which is the average of the highest one third of

the waves [52], is normally extracted from the distribution but in this study,

higher order statistics are utilized. The higher order statistics considered to be

utilized are the kurtosis and skewness. These two statistical parameters describe

the shape of the distribution which closely accounts the wave record. Outliers,

which signify severe wave conditions, can also be observed and detected by means

of determining the shape of the distribution. Kurtosis and skewness are also good

indicators of nonlinearity. The probability density function (pdf) of the waves

with higher order interactions between the component waves considered is given

as:

p(η) =
1√

2πm0

e
− η

2

2m0 (1 +
1

6
λ3H3 +

(
1

24
λ4H4 +

1

72
λ2

3
H6) + ...) (4.1)

where m0 is the variance, Hi represents hermite polynomials and λ3 and λ4

are associated with skewness and kurtosis. This equation 4.1 is just a proba-

bility function density of a normal distribution multiplied by a nonlinear factor
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wherein the parameters skewness and kurtosis are included. This shows that by

considering the nonlinear theory of ocean waves, skewness and kurtosis have to be

accounted for hence setting skewness and kurtosis values as comparative values

is a good course of action in improving the previous signal processing method.

This signal processing technique is different from the previous method since

it utilizes wave height data. To have wave height data, data transformation is

needed. The acceleration data gathered from the wave sensors are converted to

wave height by integrating twice. After the conversion, the skewness and kurtosis

values are calculated from the wave height data. It is expected that locations

may have different values for normal conditions. It is important that the wave

sensor gather several data and collate the possible average values for kurtosis and

skewness on a specific area. These values are considered as values for normal

wave conditions in the area. From these values, the severity of the new wave

conditions introduced to the locations are evaluated.

For each new wave data, skewness and kurtosis are calculated and compared

to the comparative values. If the new wave data generate higher values, this

signifies that the new wave condition is severe. The higher the difference, the

more severe is the wave condition.

Another difference of this technique to the previous technique is that it re-

quires gathering of data for the whole sampling duration before processing the

data. This refrains the wave sensor to constantly make decision at every instan-

taneous data. However, this second technique is still similar to the first because

it utilizes certain values to compare and evaluate the present conditions.

By definition, kurtosis is the measure of whether the distribution is peaked or

flat. It is given as:

Kurtosis =

∑N
i=1

(Hi −H)4

(N − 1)σ4
(4.2)

where Hi is the wave height, H is the mean wave height, σ is the standard

deviation and N is the number of data points.

The higher kurtosis value, the more peaked is the distribution at a specific

point. It means that higher kurtosis signify that there is a significant number of

readings that fall at specific value. If that specific value is large, it would mean

that there are large amplitude waves in the wave record.
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Table 4.3: Wave Height Statistics from the Five Locations

DATA Kurtosis Skewness

1 Manila Bay 3.2106 0.1889

2 Strait between Davao

and IGACOS 2.0859 0.0357

3 Davao Coast

near IGACOS 3.1035 0.2073

4 IGACOS Coast

near Davao 3.7276 0.1704

5 Davao Coast

far from IGACOS 8.5712 1.9068

Skewness is the measure of the vertical symmetry of the distribution of the

wave heights. Positive skewness means that there is an elongated tail to the

higher values. It is given as:

Skewness =

∑N
i=1

(Hi −H)3

(N − 1)σ3
(4.3)

where Hi is the wave height, H is the mean wave height, σ is the standard

deviation and N is the number of data points.

If both parameters have high and positive values, the observed condition is

abnormal. It indicates that there are frequent occurrences of high amplitude

waves.

To test this technique, the raw acceleration data from the wave sensors in

the five locations are transformed into wave height time series data. After the

transformation, statistical wave height distribution is generated. Kurtosis and

skewness are then extracted and shown in Table 4.3.

Based from Table 4.3, most of the locations show kurtosis higher than 3 and

skewness greater than 0. Note that values of kurtosis and skewness for normal

distribution are 3 and 0 respectively. Typically coastal areas have higher values

for kurtosis and skewness as compared to deeper seas. This is because landforms

influence interaction of the waves.

The conventional circular path of water particles, shown in Figure 4.7, which
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is followed by the buoy, is deformed to an elliptical shape which produces white

caps. White caps produces indiscernible sea pattern due to polychromatic ocean

waves. White caps can also be seen in areas experiencing strong wind systems.

Since there are more waves that have different amplitudes and frequencies, the

kurtosis and skewness values are expected to be higher than the Gaussian values.

Locations 1, 3, 4 and 5 exhibit these characteristics. It is interesting to observe

that location 2 has lower kurtosis and skewness as compared to the other loca-

tions. This is because this location is not a coastal area and is in deeper waters.

In contrast, location 5 has high kurtosis and positively skewed. This shows that

this coast experiences larger waves due to access of open seas. Open seas are

more prone to entry of random waves from nearby storms [53]. This is opposite

to location 1, a sheltered bay, which has rock formations that limit the entry of

these random waves. Locations 3 and 4 have similar range of values due to wave

reflections since they are opposite coasts of a strait.

Figure 4.7: Circular path of water particles

Since the kurtosis and skewness values are already generated from the loca-

tions, these can now be used as comparative values to the wave sensors. In order
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Table 4.4: Differences of the statistical parameters of the two new sets of data from

the baseline data generated from the locations

Difference

LOCATION Kurtosis Skewness

Simulated

Waves 2 1.7795 0.8789

K = 3.8654 3 0.7619 0.7073

S = 0.9146 4 0.1378 0.7442

Actual Wave

Data 2 2.6517 0.90167

K = 4.7376 3 1.6341 1.07327

S = 0.86597 4 1.01 1.03637

to test these values, the kurtosis and skewness values are calculated from the two

test data - the simulated severe condition wave data and the actual wave data

from a severe condition. The kurtosis and skewness values of locations 2, 3, 4 are

used in the comparison and evaluation since the second set of data is gathered

within these areas.

The difference of the kurtosis and skewness values from each of the compar-

ative value to the new test data are calculated and shown in Table 4.4. From

Table 4.4, it can be observed that the two test data have significant differences

from the normal kurtosis and skewness values particularly the second test data.

This signal processing technique considers wave data as severe when the kurto-

sis and skewness values exceed 50% than the location’s values for normal wave

conditions. In these two tests, locations 2 and 3 detected the abnormality for the

second test data since this test data has values that are 50% higher than their

normal values.

Based from the results of the statistical analysis technique, it has successfully

detected severe wave conditions. This technique offers better and improved way

in the detection since it considers the deployment location and the normal values

of waves expected in the location. There are times that a normal condition in

a particular area might be different from another location due to bathymetry
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and by considering this, the technique avoids false or inaccurate detection. This

technique is also better than the previous method because it processes data at

specific time hence it limits the need to utilize the system’s resources.
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Chapter 5

Processing of Data From

Multiple Sensors

5.1 Blind Signal Deconvolution through Inde-

pendent Component Analysis

The local in-situ ocean wave monitoring considered for this study has multiple

wave sensors. Each wave sensor collects data for a predetermined sampling du-

ration. The second aim of this study is to separate the signals coming from the

multiple wave sensors. This section presents the technique that deals with signal

separation.

In theory as presented in Chapter 2, ocean waves are linear superposition of

waves that have different amplitudes and phases. If a sensor gathers wave data

at a specific point, the wave data are mixtures of these waves. These individ-

ual waves are considered as source signals and the gathered wave data are the

observed signals in this context. There is no a priori information about these

waveforms or polarizations of the source signals and the mixing system hence it

is difficult to retrieve these source signals from the wave data without resorting

to blind signal deconvolution (BSD) methods.

Blind signal deconvolution method is used to recover input signal of a dynam-

ical system (mixer) from its output signal but a striking feature is that both the

system and the input are unknown[54]. Under a set of assumptions, the recovery
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is usually achieved by adjusting an inverse system (demixer) based on statistical

independence of the signal. In order to make statistically independent signals,

independent component analysis is utilized.

Consider the input (source) signal u(t) = (u1(t), · · · , um(t))
T , which is a

vector-valued function of discrete-time t = 1, · · · , T . Assume that the com-

ponents of u(t) are random variables with the following properties; zero mean,

spatially and temporally independent, identically distributed, and at most one of

them is Gaussian distribution [55].

Suppose that the observe output signal is

y(t) = G ∗ u(t), (5.1)

where G is the impulse response of a dynamical system (mixer) and ∗ denotes

discrete-time convolution.

The z-transformation of G is denoted by G(z) with the same symbol. Assume

that G(z) is unknown but a square, biproper rational, and stable transfer matrix

of minimal phase. By this assumption, y(t) = (y1(t), · · · , ym(t))T ; i.e., it has the
same dimension as u(t), and G(z)−1 is also a stable rational matrix.

The objective is to recover the source signal u(t) from y(t) (shown in Fig-

ure 5.1) observed for a certain period (hence this is a batch processing), in the fol-

lowing sense: connect a tunable filterH(z) whose output is û = (û1(t), · · · , ûm(t))
T ,

and adjust H(z) so that the components of û(t) are as independent as possible

(a criterion is minimized). It is known that after minimization:

H(z)G(z) = PΛ(z),

Λ(z) = diag
(

α1z
−ν1 , . . . , αmz

−νm
)

,

for some permutation matrix P , scalars αi, and integers νi (i = 1, . . . ,m). This

means that the resulting û is a recovery of u within indeterminacy of scalar

multiplication, permutation, and time lag.

The above indeterminacy is typical in BSD. If this is removed via prior knowl-

edge, then H(z) plays a role of inverse system, and hence G(z) can be identified

in this sense.
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Figure 5.1: Problem of blind signal deconvolution

There are several schemes for blind signal deconvolution. A well-known scheme

for BSD is based on FIR (Finite Impulse Response) approximation of the demixer.

This scheme considers the state space representation

x(t+ 1) = Ax(t) + By(t) (5.2)

û(t) = Cx(t) +Dy(t) (5.3)

where

A =













Om · · · Om Om

Im 0
...

. . . Om

0 Im Om













, B =













Im

Om

...

Om













, (5.4)

C =
(

H1 H2 · · · HL

)

, D = H0. (5.5)

Note thatA andB have a special structure that makesH(z) = C (zI − A)−1 B+

D an FIR filter.

On the other hand C and D have nontrivial block elements which will be

adjusted.
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Figure 5.2 is a block diagram of this FIR filter, where z−1 denotes one step

delay and L is the number of taps. The parameters Hi(i = 0, 1, . . . , L) are

adjusted so that the components of û is independent. Based on the Kullback

Leibler Divergence of û and the above system representation, this is achieved by

minimizing the cost function:

ℓ(û, H) = − log |det (D)| −
m
∑

i=1

log qi (ûi) , (5.6)

where qi(·) is the probability density function of the source signal ui. Since these

are unknown, replace them with some suitable function is done.

The function ℓ(û, H) is non-negative and is equal to zero if and only if signals

û are mutually independent. Hence, the objective is to find H which minimizes

this cost.

Since it is impossible to obtain the optimal solution analytically, resorting to

a gradient descent algorithm is done. The update law based on the gradient of

parameter is described by

∆C(k) = −η(k)ϕ (û) xT, (5.7)

∆D(k) = η(k)
(

Im − ϕ (û) yTDT(k)
)

D(k), (5.8)

where k denotes the iteration time and η(k) > 0 is a learning rate, and ϕ (û) is

the score function.

The function ϕ (ûi) = tanh (ûi) is used, if the distribution of the random

variable ûi is super-Gaussian, while ϕ (ûi) = û3

i is used, if ûi is sub-Gaussian.

The FIR scheme is effective in signal deconvolution however it requires a large

number of parameters. In standard identification schemes, parameters space of

a dimension given by prior knowledge is set and then adjust the parameter by

the input/output behavior. This is in contrast to signal processing methodology,

which motivated others and the present author in developing BSD schemes that

fit into system identification. Tanaka et al. developed a scheme that represents

the demixer via polynomial matrix fraction of a given order and derived a learning

law by projecting the FIR learning law onto the polynomial coefficient space. The
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Figure 5.2: Demixer by FIR filter

projection is given by solving a certain set of linear equation in every iteration.

Instead of (5.4) and (5.5), the demixer is

H(z) = D(z)−1N(z), (5.9)

where

D(z) = Im +D1z
−1 + · · ·+Dpz

−p, (5.10)

N(z) = N0 +N1z
−1 + · · ·+Nqz

−q. (5.11)

This is called right fractional representation by polynomial matrices. The degrees

p and q are given from prior knowledge and not so large in practical situations.

Figure 5.3 shows a block diagram of the demixer. Note that this is an IIR filter.

The learning law in this case is derived by projecting that by FIR approxima-

tion. Let

D := (D1 · · · Dp), N := (N0 N1 · · · Nq)
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Figure 5.3: Demixer by IIR filter

Then the update law is given by

(D,N ) → (D +∆D,N +∆N )

∆D = −(Im D)∆HR · HT
R(HRHT

R)
−1

∆N = (Im D)∆HL +∆D · HL,

where

(HL HR) = (H0 H1 · · ·HL). (5.12)

∆HL and ∆HR are given by FIR learning scheme. Though this scheme is effective,

it is indirect since it resorts to the same FIR learning law utilized in Zhang et al.

Because there are some disadvantages in the two previous schemes, an im-

provement is developed [56]. A new learning law is derived.

The improved scheme adopts the demixer H(z) in the right fractional repre-

sentation (5.9) and computes the gradient of the coefficients more directly than

the previous projection scheme.
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It starts by considering how the estimation û (i.e., output of H(z)) is affected

when H(z) is changed. If H → H + dH, then

dℓ = ℓ(û, H + dH)− ℓ(û, H)

= −tr(dH0H
−1

0
) + ϕT (û)dû, (5.13)

ϕ(û) =







ϕ1(û1)
...

ϕm(ûm)






, (5.14)

ϕi(ûi) = − d

dûi

log qi(ûi) = −q′i
qi
, (5.15)

where ϕi is called the score function.

In Zhang et al., H(z) is adjusted with an FIR filter (namely A and B are in

the special form and not adjusted), hence

dû = dCx+ dH0y + Cdx

with x being the state vector.

On the other hand, in this framework, the parameters in (5.10), (5.11) are ad-

justed. From (5.9), there is D(z)H(z) = N(z) hence, dD(z)H(z)+D(z)dH(z) =

dN(z). Therefore,

dû = dH(z)y

= D(z)−1(dN(z) dD(z))

(

I

−H(z)

)

y. (5.16)
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Observing that z−τy(t) = y(t− τ) for τ = 1, 2, · · · ,

dû(t) = D(z)−1(dN0 · · · dNq dD1 · · · dDp)ξ(t), (5.17)

ξ(t) :=























y(t)
...

y(t− q)

û(t− 1)
...

û(t− p)























.

The right-hand side of (5.17) contains D(z)−1, which means that this is again IIR

filter. Namely, by means of the power series expansion

D(z)−1 = ∆0 + z−1∆1 + · · · =: ∆(z),

(5.17) can be rewritten as

dû(t) =
∞
∑

τ=0

∆τ (dN0 · · · dNq dD1 · · · dDp)ξ(t− τ). (5.18)

In actual calculation without much loss of accuracy the above infinite summation

can be truncated up to some finite number of terms, say τ = 20. The above

formula can be substituted to (5.13) and observe that N0 = H0. Now recall that,

in general, if df = aTdXb for a matrix differential dX and column vectors a, b,

then
∂f

∂X
:=

(

∂f

∂xij

)

= abT .

Here, note the order of multiplication.
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Therefore,

∂ℓ

∂N0

= −N−T
0

+ ϕ(û(t))yT (t)

+∆T
1
ϕ(û(t))yT (t− 1) + · · ·

∂ℓ

∂N1

= ϕ(û(t))yT (t− 1)

+∆T
1
ϕ(û(t))yT (t− 2) + · · ·

...
∂ℓ

∂D1

= ϕ(û(t))ûT (t− 1)

+∆T
1
ϕ(û(t))ûT (t− 2) + · · ·

Note that ∆τ can be obtained as follows. By definition, D(z)∆(z) = I hence,

∆0 = I

D1 +∆1 = 0

D2 +D1∆1 +∆2 = 0

D3 +D2∆1 +D1∆2 +∆3 = 0
...

Thus,

∆τ = −Dτ −
τ−1
∑

ν=1

Dτ−ν∆ν , τ = 1, 2, · · · (5.19)

The above result gives the learning law for reducing mutual information

ℓ(û, H). Initializing the adjusting parameter of the demixer as

D(z) = I and N(z) = I (5.20)
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Then the renewal law is given by

δN0 = η(k)
(

NT
0
− ϕ(û(t))yT (t)

−∆T
1
ϕ(û(t))yT (t− 1)− · · ·

)

δN1 = η(k)
(

−ϕ(û(t))yT (t− 1)

−∆T
1
ϕ(û(t))yT (t− 2)− · · ·

)

...

δD1 = η(k)
(

−ϕ(û(t))ûT (t− 1)

−∆T
1
ϕ(û(t))ûT (t− 2)− · · ·

)

...

for small learning rate η(k) > 0.

Note that this is writen as “on-line learning.” Theoretically “batch process

learning” based on the expectation E is more appropriate. In actual calculation,

resorting to “time average” instead of using E is done.

There is another improvement of the third BSD scheme [57] [58]. This im-

provement arise because in the third BSD it deals with the D(z)−1 which involves

power series expansion. This method is sometimes difficult to treat. In the im-

proved third scheme, the time signal is v(t) is computed as:

v := DT (z−1)−1ϕ(û) (5.21)

or in time domain, starting at t = Tf (final time), computing in reverse time:

v(t) := DT
1
v(t+ 1)− · · · −DT

p v(t+ p)

+ϕ( ˆu(t)), sp, t = Tf , Tf − 1, · · ·
(5.22)

For simplicity, v(t) = 0 for t > Tf . Note that these values remain finite for
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any large Tf because D(z) is Hurwitz. The update law is given by:

δN0 = η(k)
(

N−T
0

− [v(t)yT (t)]t)

δNq = −η(k)
[

v(t)yT (t− q)]t

δDp = η(k)
[

v(t)ûT (t− p)]t

for small learning rate η(k) > 0.

The proof of the above scheme is as follows. For a vector time sequence

{f(t)}∞t=0
, consider its z-transform f̃(z) :=

∑∞
t=0

f(t)z−t. For f, g ∈ ℓ2, the inner

product is defined as:

〈f, g〉 :=
∞
∑

t=0

fT (t)g(t). (5.23)

where 〈., .〉 represents sesquilinear form.

Given the lemma,

〈f, g〉 = 1

2π

∫

2π

0

f̃ ∗(ejω)g̃(ejω)dω (5.24)

where ∗ denotes the complex conjugate transposition.

To prove this, consider:

f̃(z−1)g̃(z) =
∞
∑

−∞

atz
t, (5.25)

where a0 = 〈f, g〉 and for any nonzero integer t 6= 0

∫

2π

0

ejωtdω = 0 (5.26)

and this completes the proof.

A proposition is presented that for f, g ∈ ℓ2 and a stable transfer matrix H(z):

〈f,Hg〉 = 〈H♯f, g〉 (5.27)
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where Hg = Z−1[H(z)g̃(z)] and H♯f = Z−1[HT (z−1)f̃(z)] are written with

slight abuse. H♯ is an adjoint of H. This can be seen as a generalization of the

adjoint matrix of a square matrix which has a similar property involving the

standard complex inner product.

The proof is given by lemma:

〈f,Hg〉 =
∫

2π

0

f̃ ∗(ejω)H(ejω)g̃(ejω)dω (5.28)

=

∫

2π

0

(f̃ ∗(ejω)HT (ejω)g̃(ejω))∗dω (5.29)

=

∫

2π

0

(g̃∗(ejω)HT (e−jω)f̃(ejω))∗dω (5.30)

=〈g,H♯f〉 = 〈H♯f, g〉 (5.31)

To test the algorithms, source signals are simulated. Source signals u =

(u1, u2)
T are M-sequence or pseudorandom binary signal ui(t) ∈ {−1, 1}, for i

= 1, 2 and t = 1, . . . , 213 − 1 = 8191 (or 27 − 1 = 127, 210 − 1 = 1023).

Figure 5.4 shows the source signals but showing only 1st to 100th samples for

optimal viewing of the data.
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Figure 5.4: Source Signals for ICA

Next, in order generate the observed signals which are representative of sensor

signals, the source signal is fed through a mixer.

Consider the transfer matrix

G(z) = D̄−1(z)N̄(z) (5.32)
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with

D̄(z) =

(

1.00 0.00

0.00 1.00

)

+

(

0.40 −0.70

0.70 0.40

)

z−1 (5.33)

N̄(z) =

(

1.00 0.00

0.00 1.00

)

+

(

−0.50 −0.60

0.60 −0.50

)

z−1 (5.34)

which is to be identified. This is stable and minimum phase, and its pole-zero

map and impulse response are given in Figs. 5.5 and 5.6, respectively. The poles

are −0.40±j0.70 and the zeros are 0.50±j0.60. Note that the system is vibrative

to some extent.
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Figure 5.5: Pole Zero Map of the Mixer

This is regarded as the mixer. The observed signal is observed as:

y = G(z)u (5.35)

as shown in Figure 5.7. The simulation conditions for the experiments are shown

in Table 5.1.

The FIR method by Zhang, IIR method by Tanaka and the author’s method

are applied to the observed signals. Figures 5.8 to 5.10 give the recovered sig-

nals from the three methods respectively. Figure 5.11 shows the error between
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Figure 5.6: Mixer Impulse Response
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Figure 5.7: Observed Signals

the source and recovered signals. The recovery errors by the third method are

significantly smaller than those generated by the conventional FIR method by

Zhang and the IIR method by Tanaka. Figure 5.12 shows the comparison of the

three methods in the test for dependency of RMSE after learning on the sample

number. It is observed that the third method has the lowest RMSE in the three

different sample numbers with the same iteration. Figure 5.13 shows the RMSE

versus the number of iteration. This also shows that out of the three methods,
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Table 5.1: Simulation Conditions
Parameter Value

Number of samples 1023 (unless otherwise stated)

Number of iterations 2000 (unless otherwise stated)

Learning rate η 0.005

Number L of taps in

FIR approximation
30
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û
1

0 10 20 30 40 50 60 70 80 90 100

−2

0

2

time [step]

û
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Figure 5.8: Recovered Signals by FIR Approximation Scheme [2]
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Figure 5.9: Recovered Signals by projected IIR Scheme [3]

the third one converges faster. The accuracy for blind identification is also tested

by means of Bode diagrams of the mixer. This is shown in Figure 5.14. At first
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Figure 5.10: Recovered Signals by Improved Scheme
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Figure 5.11: Error between the source and recovered signals (blue (dotted): FIR ap-

proximation, blue (solid): Projected IIR, green (solid): First Improved Scheme)

sight it appears that the upper right phase plot fives different results, but the

phase difference is 360 degrees hence they are same in reality. This means that

the identified systems are fairly close to the true value for all the methods. Note

that all of the methods in this section are sufficiently iterated up to 5000.
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Figure 5.12: RMSE after learning vs. Number of Samples
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Figure 5.13: RMSE versus iteration (blue (dotted): FIR approximation, green (solid):

Improved Scheme)
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Figure 5.14: Bode Diagram of G(z) (red: true, blue (dotted): FIR approximation, blue

(solid): Projected IIR, green (solid): Improved Scheme)

Seeing the good performance of the third BSD scheme, a test to its improve-

ment is done to compare its performance with the two BSD schemes. The same

mixer is utilized shown in Figure 5.5 and the input (source) signals u = (u1, u2)
T

are M-sequence (pseudo random binary signal) ui(t) ∈ {−1, 1}, for i = 1, 2 and

t = 1, · · · , 213−1 = 8191 as shown in Figure 5.15. The output signal, y = G(z)u

is shown in Figure 5.16. Figures 5.17 - 5.19 show the recovered signals from

the conventional scheme, Tanaka et. al. scheme and the further improved third

scheme. Figure 5.20 shows the error versus the iteration. It can be observed
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from this graph that the further improved third method has a significantly lower

RMSE as compared to the two schemes. Also, the scheme converges faster than

the two.

Figure 5.15: Source Signals

Figure 5.16: Observed Signals

Based from all the results, the proposed techniques have successfully recovered

the signals from the mixed observed signals. These are helpful in recovering

signals from multiple sensors in the system. At this point in the study, only

simulated data are utilized in the BSD techniques. Using real wave data are yet

to be explored in the future works of this study.

61



Figure 5.17: Recovered Signals from Conventional Scheme
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Figure 5.18: Recovered Signals from Tanaka et. al Scheme
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Figure 5.19: Recovered Signals from Further Improved Third Scheme

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

−6

10
−4

10
−2

10
0

10
2

Number of Iteration

N
o
rm

 o
f 
E

s
ti
m

a
ti
o
n
 E

rr
o
r

Figure 5.20: RMSE versus iteration (blue (dotted): FIR approximation,blue (solid):

Tanaka et. al., green (solid): Further Improved Third Scheme)
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Chapter 6

Classification of Wave Conditions

In this section, the third goal of this study is explored. Detection of wave condi-

tions is practical in wave monitoring systems as they provide information about

the current wave conditions however, the information sometimes are not so suffi-

cient. The eventual goal of a wave monitoring system is to be able to classify wave

conditions given the gathered data. This is very difficult to do since it requires

methods that properly treats wave data and selectively classifies it.

First part of this section discusses the popular method in classifying wave

conditions which is the spectral analysis. The second part of this section presents

the proposed technique which utilizes the Support Vector Machine.

6.1 Spectral Analysis

Spectral analysis technique utilizes the wave spectra to classify the wave condi-

tions. The concept of wave spectra is fully discussed in Chapter 2. This technique

is conventionally used by sophisticated monitoring system. To recall, if the wave

data is analyzed in frequency domain, a wave is seen as a superposition of infinite

number of sinusoidal wave components with different amplitudes, frequencies and

phases. The decomposition of the data is done through Fast Fourier Transform

(FFT). Through this, the irregularity of the waves are now expressed through

wave spectrum. The sea state can be described by the characteristic parameters

computed from the spectrum.

The technique starts by letting the wave sensors gather data at its predeter-
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mined time. After the sampling period, FFT algorithm is applied to the wave

data. It implements the Fourier transform equation with slight difference because

the numeration starts at 1.

Xn =
1

N

N
∑

j=1

ηj exp
−i2π(j − 1)(n− 1)

N
(6.1)

where N is the length of the discrete time series. The real amplitudes, an can

be calculated as:

an = 2
√

ℜ(Xn)2 + ℑ(Xn)2 (6.2)

The calculation of Equation 6.1 for all n-frequencies can be interpreted as the

product of a matrix which is the exponential part multiplied by vector which is the

surface elevation. The efficiency of FFT depends on the proper decomposition of

such matrix and the permutations that reduce the number of operations needed.

The possible number of decompositions depend on the length of the vector. The

time it takes to execute and the required memory for FFT relies on the length

or number of data points of η. FFT is fast for data which the number of points

are of power of two and almost as fast for length that have only small prime

factors. The smaller prime factors lead to further matrix decomposition and a

fewer number of operations are required.

There are several parameters that are related with the surface elevation. These

are:

mean wave height:

Hmean =
√
2πm0, (6.3)

significant wave height:

Hs ≈ 4
√
m0, (6.4)

root-mean square:

Hrms =
√
8m0 (6.5)

mean zero crossing period:

T0 =

√

m0

m2

, (6.6)

65



mean wave period:

Tm =
m0

m1

, (6.7)

and significant wave period:

Ts = Tpeak, for swell

Ts = 0.95Tpeak, for wind sea
(6.8)

The advantage of the spectral analysis technique is that each of the wave com-

ponents are treated individually. Since the frequencies and their corresponding

amplitudes is shown through the energy density graph, the dominant frequencies

can be distinguished hence the specific type of wave condition can be also be dis-

tinguished. In this study, there are three types of wave conditions are aimed to

be classified which are swells, wind sea waves and mixed seas shown in Figure 6.1

Figure 6.1: The three types of wave conditions

It is assumed that as winds blow the water surface, it will create many random

waves. Since the winds are blowing in different directions, the waves tends to

collide with each other making complicated patterns. These waves tend to have

shorter periods. Due to the presence of wind, these waves are sometimes called

wind sea waves. As the waves travel farther, the individual waves travel together,
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add energy and produce more define waves. These swell waves tend to have higher

energy and longer periods. Since wind systems can occur in different parts of the

sea, there are tendencies that swell waves meet with new wind sea waves created

by wind systems. This wave condition is called mixed sea.

These three wave conditions have specific dominant frequencies that can be

identified. Figure 6.2 shows the classification of waves according to its wave

period. Wind sea waves usually belong in capillary to ordinary gravity waves and

swells belong in infra gravity waves to long period waves. Mixed sea belongs in

the intermediate of the two wave conditions.

Figure 6.2: Classification of the Spectrum of Ocean Waves According to Wave Period

To demonstrate this technique, simulations of wave data using the JONSWAP

spectra model are done. Table 6.1 shows the values utilized in the JONSWAP

spectra model. The wind speed utilized in the simulation is fixed as 10m/s2. Due

to this constant value, only the changes in the period and height inputs affect the

generated wave data.

Figure 6.3 shows the generated wave data from the JONSWAP under the

wind sea condition. Figure 6.4 shows the spectrum of the generated wave data.

Figure 6.5 shows the generated wave data from the JONSWAP under the mixed

sea condition. Figure 6.6 shows the spectrum of the generated wave data. Fig-

ure 6.7 shows the generated wave data from the JONSWAP under the swell wave
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Table 6.1: Values Used for the Generation of Wave Data in the JONSWAP Spectra

Model

Values

Height (m) Period (s)

Wind

Waves 1 3.3

Mixed

Sea 1.1 6

Swell

Waves 2 16

condition. Figure 6.8 shows the spectrum of the generated wave data. Note that

the length of all the generated wave data is about 2000 seconds. It can be ob-

served that the all of the spectra have one distinctive peak which corresponds

to the dominant frequency. The wind sea notably has lower energy as compared

with the other two. This is because as mentioned previously, energy is dissipated

during random collisions of waves under the presence of the wind system. The

spectral width of the wind sea is noticeably wider as compared to the swell wave.

This corresponds that there are many waves which have distinctive frequencies.

Swell waves tend to have more defined, more peaked and higher energy wave

spectra.

With the simulated wave data, the wave spectra have more distinctive peaks

but this is not always the case if dealing with real wave data. The wave spectrum

generated would be expected to have multiple peaks. An example of real wave

data is shown in Figure 6.9. This real wave data is taken in Belmullet, Mayo

County, Ireland during a storm last January 3, 2014. Figure 6.10 shows the wave

spectrum generated from the real data. It can be observed that the spectrum

has multiple peaks. This usually happens when the wave data is taken under

a wind system. Swells that were in the area are now affected with the wind

system and the energy of these waves dissipate hence, the distinctive peaks will
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be lessened. Figure 6.11 shows the detailed evolution of the wave spectrum as

that particular storm was experienced in the deployment location. It can be

observed that the spectrum became more broadband. The energy in different

frequencies also increased as the winds blow on the water surface.

Figure 6.3: Wave Height Time Series Data of Wind Sea Condition

Figure 6.4: Spectrum of Wave Height Time Series Data of Wind Sea Condition

All of the data processed in this technique at this point have all been long time

series data since technically the spectral analysis is a method that is usually used

in sophisticated systems which has this kind of data. For the sake of exploration,

spectral analysis is used to process short time series data. This is to show the

capability and limitation of this conventional method.

In order to mimic the short time series data taken from the sensors, a segment

of 40 seconds is taken from the each of the long wave data sets from the previous
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Figure 6.5: Wave Height Time Series Data of Mixed Sea Condition

Figure 6.6: Spectrum of Wave Height Time Series Data of Mixed Sea Condition

Figure 6.7: Wave Height Time Series Data of Swell Condition

simulations. Figures 6.12 to 6.17 shows the segmented data of the three wave

conditions and the corresponding wave spectra. It can be seen that despite the
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Figure 6.8: Spectrum of Wave Height Time Series Data of Swell Condition

long wave data and segmented data are from the same wave condition, the wave

spectra are different. The wave spectra of the segmented data are more broadband

and less peaked. This is due to the fact that the segmented data are not stationary

and are prone to noise. This difference makes the chances of misclassification

higher. Despite that spectral analysis is good in determining dominant wave

frequencies, it is still not enough to have a good classification of wave conditions

using the short time series data.

6.2 Classification of Ocean Wave Conditions

through Support Vector Machines

This section is an improvement of the previous signal processing technique [59]. It

is assumed previously that lower frequency waves signify swell waves and higher

frequency means wind seas however, these greatly varies in different conditions.

Wind seas can have long periods and swells can have shorter periods as illustrated

by the classification map given by [4] shown in Figure 6.18. This is important to

consider creating a classification map for our sensor data. The goal is to make a

map that is fitted or adapted to short time series data. It is important to note

that even though the classification map in [4] can perfectly classify the three wave

conditions, the data utilized to make the map were long time series data. This
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Figure 6.9: Example of a Real Wave Time Series Data

may pose a problem because the calculated parameters, significant wave height

and period, from the wave spectra of the short time series data are significantly

different from the long time series. The values might not be as representative to

the actual classification of the wave condition.

With this in mind, an approach towards utilizing Support Vector Machines

in making the classification map is explored. This technique still transforms the

wave data to wave spectra however, it takes a step further by using SVM to make

and train a classifier for the wave conditions.

Support Vector Machines are supervised learning algorithm that analyze data

and recognize patterns for classification [60]. This algorithm corresponds to a

convex optimization to determine the model parameters. The algorithm outputs

an optimal hyperplane which categorizes new data. This hyperplane gives the
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Figure 6.10: Wave Spectrum of a Real Wave Time Series Data

largest minimum distance to the training data. In this study, three classes are

aimed to be distinguished from one another in the data. SVM is mainly a binary

classifier however, there are some extensions of it that makes it possible to classify

multiple classes.

Multiclass SVM intends to place labels to points by using the SVM where

labels are drawn from finite set of elements. There are two popular methods that

builds binary classifiers, one-versus-all and one-versus-one. One-versus-all distin-

guishes one label and the rest of the labels and the one-versus-one distinguishes

every pair of the classes. In this paper, one-versus-one method is utilized.

In this method, if k is the number of classes, then k(k − 1)/2 classifiers are

constructed and each one trains data from two classes. For training data from
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Figure 6.11: Evolution of the Waves during a Storm

Figure 6.12: Segment from the Wind Sea Wave Height Time Series Data seen in Fig-

ure 6.3

the ith and the jth classes, the binary classification problem is solved by:

min
wij,bij,ξij

1

2
(wij)Twij + C

∑

t

ξijt (w
ij)T

(wij)Tφ(xt) + bij ≥ 1− ξijt , if yt = i

(wij)Tφ(xt) + bij ≥ −1 + ξijt , if yt = j

ξijt ≥ 0.

(6.9)
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Figure 6.13: Spectrum of Segmented Data (Figure 6.12)

Figure 6.14: Segment from the Mixed Sea Wave Height Time Series Data seen in

Figure 6.5

Figure 6.15: Spectrum of Segmented Data (Figure 6.14)

where x is input data, y is class, φ(x) is basis function, w is weight, C is

penalty parameter, ξ is positive slack variable and b is bias parameter.

This method is a voting strategy. if sgn((wij)Tφ(xt) + bij) says x is in the

ith class, then the vote for ith class is added by one otherwise, jth is increased

by one. x is then predicted to belong in the class with the largest vote. This

voting is called ”Max Wins” strategy. If the two classes have same votes, the
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Figure 6.16: Segment from the Swell Wave Height Time Series Data seen in Figure 6.7

Figure 6.17: Spectrum of Segmented Data (Figure 6.16)

class appearing first in the array of storing class names will be chosen [61].

For the testing of SVM, two types of kernel functions are utilized, namely,

polynomial kernel function and radial basis function. These two are suitable for

training nonlinear models.

Polynomial kernels represent the similarity of vectors in feature space over

polynomials of original variables. By using the degree of polynomials, it can

easily create nonlinear hyperplanes.

The degree-d polynomial kernel is expressed as:

K(x,y) = (xTy + c)d (6.10)

where x and y are vectors in input space, c ≥ 0 is a constant which dictates the

effect of higher order terms against the lower-order terms of the polynomial. As

a kernel, K is the inner product in a feature space based on some mapping, φ.

For this study, a second degree polynomial kernel is utilized.
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Figure 6.18: Relationship between significant wave height and period of wind sea waves

and swells [4]

Radial basis function kernels are defined as:

K(x,x′) = exp(γ‖x− x′‖2
2
) (6.11)

where ‖x− x′‖2
2
are squared Euclidean distance of two feature vectors.

The SVM algorithm follows the general steps:

1. Grid search for optimum values of hyperparameters of the chosen SVM

Kernel

2. Utilize the optimum values generated in Step 1 to train the data and an

SVM Model is produced

3. Use the SVM Model to predict the test data classes and calculate the ac-

curacy of the classification
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Taking the first step in the SVM algorithm, hyperparameters are identified.

Setting of optimum hyperparameters for the SVM kernels is important in deter-

mining its accuracy in making the classifying models. In the polynomial kernel,

its degree reflects on how flexible its decision boundary will be. For this study, a

second degree polynomial is used. In radial basis function kernel, γ, adjusts the

flexibility of the decision boundary while the soft margin parameter, C, controls

the rigidity of the decision boundary. C penalizes margin errors. Higher values

of C tend to place higher penalty resulting to a hyperplane that comes close to

the several points. In order to find the optimum value of the hyperparameters, a

grid search is done. The best values are then used for the training of the kernels.

The standard technique for adjusting hyperparameters is through Cross -

validation (CV) technique [62]. In a K-fold cross-validation, the available data,

D, is partitioned to K subsets D1, ..., DK . Each data point in D is randomly

assigned to one of the subsets such that:

⌊ |D|
K

⌋

≤ |Di| ≤
⌈ |D|
K

⌉

. (6.12)

Then,

D\i =
⋃

j=1,...,K∧j 6=i

Di (6.13)

is the union of all data points except in Di. For each i = 1, ..., K, an individual

model is built by applying the training data D\i. This model is evaluated by

means of a cost function using the test data in Di. The average of the K outcomes

of the evaluations is called a cross-validation test performance and is used as a

predictor of the algorithm when applied to D. For every split of the available

data, the values of hyperparameters are used and the CV error is computed.

Different combinations are tested until the lowest CV error or higher CV accuracy

is achieved. This combination of the hyperparameters is then used for training

the whole set D.

For this study, a 10-fold cross-validation technique is utilized to find the opti-

mum values of C and γ. The optimum values of parameters are shown in Table

6.2. Higher CV accuracy shows that the best values for the hyperparameters do

not overfit the data.

Since the optimum values of the hyperparameters are obtained, these are set
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Table 6.2: Cross Validation Accuracy

Hyperparameters CV Acc.Rate

Polynomial

Kernel d=2 C = 0.5 79.9167%

Radial Basis C = 8192

Function γ=1.2e-04 90.5 %

to train the SVM kernels. After this training, a SVM model is produced. The

model provides the number of the support vectors and its location in the feature

space. As shown in Table 6.3, the total number of support vectors varies with

each of the kernel.

Table 6.3: Number of Support Vectors

# of Support Vectors

Polynomial

Kernel d=2 677

Radial Basis

Function 288

It can be seen that the RBF kernel requires lesser number of support vectors

as compared to polynomial kernel in order to establish a better decision boundary.

This signifies that the RBF kernel does not overfit the data to produce the decision

boundary.

The models produced are utilized to predict the new data. Table 6.4 shows

the accuracy of the classification of each of the SVM kernels. Higher accuracy

signifies a better classification of the new data. After classifying the test data

which are segmented data, another test is done to the classifier. 100 data points

that contain ideal significant wave height-period combination are tested to the

classifier. This is to test whether the classifier can classify similarly to the ideal

classifier map given in Figure 6.18. Table 6.5 shows the classification accuracy

of the classifier with the ideal wave data. The table shows that the accuracy for

both polynomial and RBF kernels are low. The classification maps for polynomial

kernel and radial basis function are shown in Figures 6.19 and 6.20. The graphs
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Figure 6.19: Classification map generated by polynomial kernel

show that the classifier that the experiment generated are indeed not similar to

the ideal classifier map.

Table 6.4: Classification Accuracy of All Test Data

% of Accuracy

Polynomial

Kernel d=2 85.4167

Radial Basis

Function 94.1667
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Figure 6.20: Classification map generated by RBF kernel

Table 6.5: Classification Accuracy of Ideal Wave Data

% of Accuracy

Polynomial

Kernel d=2 36%

Radial Basis

Function 40%

81



Chapter 7

Conclusion

Ocean waves have very interesting dynamics that are difficult to monitor. These

produce massive forces that destroys structures and vessels that would devastate

lives and economy. Due to this, it is important to conduct ocean wave monitoring

in order to deeply understand its behavior and effects. Ocean wave monitoring can

be a very complex process depending on what type of methods and which areas

are of interest. In this study, a local ocean wave monitoring system is considered.

The process of developing a good wave monitoring system can be split into two

parts: development of the hardware and formulating processing techniques that

will be able to process the system data accurately and immediately.

The first part which is the development of the hardware, depends heavily on

the kinds of material, devices and prototyping methods. For this study, the aim

is to consider low cost and easily constructed modular devices so that the system

can be readily built and deployed. It also has lower operation and maintenance

costs. The system was successfully constructed meeting the goals set.

The second part which is the exploration of processing techniques to be utilized

in the system, is the central focus of this study. These techniques are targeted

to enable the monitoring system to (1) detect severe wave conditions, (2) process

data from multiple sensors and (3) properly classify wave conditions. One major

challenge in this exploration is that the system gathers short time series data to

suffice the battery and memory conservation. These data range from a minute to

5 minutes worth of data. This poses a problem because the algorithms typically

used in conventional monitoring systems requires long time series data. These
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range to days worth of data. The standard data utilized in these algorithms

range from 1024 or more data points sampled at 1 Hz. Despite the disadvantage

of this kind of data, there is a merit if the processing technique is effective in

handling the data. If done properly, the short time series data allows the system

to produce immediate information about the current wave data. This is because

the system only needs shorter duration to gather and process the data. Resorting

to prediction methods which is done in conventional systems are not needed

anymore. This saves the system’s memory and power resources.

For the first goal of the processing technique which is the detection of severe

wave conditions, there are two techniques explored. The first technique is the

threshold technique which utilizes fixed threshold levels in determining the wave

conditions. The threshold levels are chosen from the response of the sensors using

the double pendulum test platform. The double pendulum test platform was

constructed because it is difficult to gather data from severe wave conditions. This

method is a straightforward approach since it counts the instantaneous values

which exceed the set threshold value. The count values are then evaluated as

to how severe the wave conditions are. The higher count signifies severe wave

conditions. The sensitivity of the wave sensors are dependent on the threshold

levels. The threshold levels can be adjusted depending on how sensitive the

user wants their wave sensors to be. This is simple and effective but this is not

sufficient because the threshold levels are too rigid and the values are taken from a

test platform. It might not be as effective if it will be utilized using the real wave

data. The second technique explored is the statistical analysis technique. This

answers the problems encountered in the threshold technique which is the rigidity

of the threshold levels. The wave sensors are first deployed to the target areas

and gather data on a fine weather condition. These data are then considered as

baseline data. The statistical parameters - kurtosis and skewness are generated

from the gathered data. These kurtosis and skewness values are considered as

the values for the normal wave condition in the particular area. Kurtosis and

skewness values of the newly gathered wave data will then be compared to these

normal values. Large difference values from the normal values signify severe wave

condition. This technique avoids the tedious comparison between instantaneous

data by processing the data by segments. It considers the data gathered within
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the sampling duration as a data segment. The two techniques enables the system

to detect severe wave conditions through comparison to the normal conditions.

The statistical analysis technique is a better method since it employs a better

comparative data which are location dependent and it processes data every after

sampling duration which minimizes the usage of the system’s resources.

For the second goal of the processing technique which is to process data from

multiple sensors, a technique that processes nonlinear multivariate data is ex-

plored. This technique is the independent component analysis (ICA). Given that

there are multiple sensors in the network, the gathered data can be used to ap-

proximate the source signals or the dominant waves that are in the area. There

are no a priori information about these waves and the mixing process hence it

is difficult to retrieve these source signals without resorting to blind signal de-

convolution (BSD). ICA works well in BSD. The concept is that the data from

the sensors are considered as the observed signals and a demixer is produced to

inversely recover the source signals. In this technique, there are several methods

in setting up the demixer and the treatment of the approximations. There are

four methods tested - FIR approximation by Zhang et al. [2] , IIR method by

Tanaka et al. [3], first improved method by the author et al. [56] and the further

improved method by the author et al. [57]. It can be seen in the results shown

in Figures 5.13 and 5.20 that the first and second improved method have faster

convergence compared to the other two methods. This is because these methods

have more direct and explicit treatment to its cost function. The methods also

have lower RMSE as compared to the other two methods. Despite that ICA

works best in signal recovery, there are issues with it on its assumptions for its

input signals. They have to be spatially and temporally i.i.d. and at most have

one Gaussian distribution. These conditions are hard to suffice with real wave

data. Also, the recovered and approximated source signals may not correctly rep-

resent the actual source waves because ICA has ambiguities such as the variance,

order and frequency ambiguities. Unfortunately, these three parameters - vari-

ance, order and frequency values are very important in dealing with ocean wave

data hence, utilizing ICA may not be so practical. Note that for the simulations

and testing of ICA in this study, a synthetic M-pseudorandom binary signal are

utilized instead of actual ocean data.
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For the third goal which is to classify the wave conditions, two techniques are

explored. The first technique is the spectral analysis. This is considered as the

conventional method utilized in sophisticated systems. This method requires long

time series data. This method firstly transforms the wave data from the time

domain to the frequency domain to prepare it for analysis. When considering

raw time series data, it is difficult to comprehend the dynamics since the wave

components are superimposed with each other. The wave record appears to have

a rather noisy or complicated pattern. This is remedied if the wave record is

transformed in the frequency domain. Through this transformation, the dominant

wave frequency in the wave data can be distinguished. Identifying dominant

wave frequencies directly determines the wave conditions. There are three wave

conditions targeted to be identified in this study. These are wind seas, swell

waves, and mixed seas. Wind seas indicate that there is a current wind system in

the area of interest. Constant pounding of the wind and clashing of waves create

shorter period waves. Swell waves indicate that there are no wind systems in the

area of interest. Since the area has no interferences from major wind system,

the waves tend to have longer periods and more defined higher energy. Mixed

seas indicate that there is a wind system in the nearby area. The waves in this

category tend to have a mix of short and long periods. Since this method can

identify the dominant wave frequency, it is effective in distinguishing these three

conditions. Having a defined dominant wave frequency requires long time series

data hence this method is utilized in sophisticated systems. Since this method

has this requirement, it cannot be utilized in short time series data and this

is shown in Figures 6.12 to 6.17. Also, despite that it can effectively classify

wave conditions, there are some cases where it might fail since there are times

that these wave conditions have different frequencies as expected. This is shown

in the map provided by [4] shown in Figure 6.18. Also, wave spectra of real

ocean waves have multiple peaks hence there are multiple dominant frequencies.

Note that for the testing and evaluation of this technique, a simulator is used to

generate wave data. The second technique explored for the classification of wave

conditions is the Support Vector Machine. Wave conditions can be identified and

mapped according to their significant wave height and period similar to the map

in [4]. This is practical since wave conditions are difficult to identify. It would be
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natural to utilize the map in [4] however, this map is for long time series data.

Using this may incorrectly identify wave conditions. Thus, this motivated this

study to make a map or a classifier model trained by SVM. In order to make

this map, the wave simulator from the previous technique is utilized to generate

several data. The simulator generated long time series data from different wave

conditions and from that, data segments are taken to mimic the short time series

data. The significant wave height and period are calculated and the data segment

is labelled according to which wave condition it was taken from. Various data

segments are processed and train data and test data are created. These data are

then used to produce a classifying model through SVM training. There are two

SVM kernels tested in this technique - polynomial and radial basis function. It

can be seen in the results that the SVM radial basis function kernel produced a

better classifying map. This efficiently classified the short time series data. This

technique sufficiently and effectively produced a classification map for short time

series data. By having this classification map, immediate identification of wave

condition can be easily done.

Given the results provided by the techniques, the three goals for the wave

monitoring system are achieved. These processing techniques overcame the chal-

lenge of dealing with short time series data. By programming these techniques to

the system, they will enable the local ocean wave monitoring system to function

in similar and even in an improved way as the sophisticated monitoring systems.
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Chapter 8

Discussion and Future Work

8.1 Recommendation

Despite the thorough testing and evaluation of the processing techniques, only

the threshold technique and the statistical analysis technique are the ones tested

on the actual wave data gathered from the local ocean wave monitoring system.

This is largely because the field deployments were limited hence data are lim-

ited. For the ICA method, it is suggested that in order for it to be fully utilized,

preprocessing of wave data (i.e. data transformations) should be done. Meth-

ods to address the ambiguities of ICA is recommended to be explored. For the

SVM method, it is recommended to explore other kernel functions. Other kernel

methods may provide a better classification map.

8.2 Future Work

Since this study is exploratory, there are several future works considered for this

study. First is for further field deployments of the local ocean wave monitoring

system. Through these deployments, several data can be acquired. These data

can be utilized by the processing techniques for further evaluation. Next future

work is to explore on other algorithms (i.e. wavelet theory) that are effective in

detecting anomalies such as rouge or extreme waves. Another one is to test other

processing algorithms that might be able to process data from multiple sensor.

87



ICA has encountered a lot of challenges in study hence, it is better to find other

algorithms that might be less complicated as ICA. Another is to explore SVM

kernels for training the classification map. These kernels might provide a better

classification map for short time series data.
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