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Bayesian Cell Force Estimation Considering

Force Directions∗

Satoshi Kozawa

Abstract

Traction force microscopy is a useful technique for measuring mechanical

forces generated by cells. In this method, fluorescent nano beads are embed-

ded in the elastic substrate in cell culture, on which cells are cultured. Then,

cellular forces are estimated from bead displacements, which represent the force-

induced deformation of the substrate under the cell. Estimating the forces from

the bead displacements is not easy when the bead density is low or the locations

of cellular attachments are unknown. In this study, I propose a Bayesian algo-

rithm by introducing a prior force direction that is based on cellular morphology.

I apply the Bayesian framework to synthetic and real datasets in conditions under

which the bead density is low and cellular attachment points are unknown. We

demonstrate that the Bayesian algorithm improves accuracy in force estimation

compared with the previous algorithms.
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方向情報を考慮した細胞の力推定 ∗

小沢 哲

内容梗概

細胞運動の原理を解明するため，細胞が発生する物理的力の計測が近年盛ん

である．代表的な実験的手法として，細胞の培養基質の表面に埋め込まれた蛍光

ビーズを用いるものがあり，細胞の力は蛍光ビーズの変位データから推定する．

しかし，物理的な制限により推定すべき力点の候補数よりも蛍光ビーズの数を抑

える必要があるため，変位からの力推定は計算困難な逆問題である．この問題を

解くために，本研究では細胞の形態と力ベクトルの方向に関する事前分布を用い

たベイズ推定により，力を推定する手法を提案する．パラメータ推定にはEM ア

ルゴリズムを利用した．本手法により力推定が劇的に改善されることを示す．
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1. Introduction

Cell morphogenesis and migration are essential for various physiological and

pathological processes, including metastasis and permeation of a cancer cell [1, 2],

immune responses [3, 4], and precise wiring of intricate neuronal circuitry [5, 6,

7, 8, 9].

Kleeberger et al. investigated Nestin expression and function in common lethal

cancers [1]. Their results specify a function for Nestin in cell motility and iden-

tify a novel pathway for prostate cancer metastasis. O’Hayre et al. indicated

chemokines are involved in the progression of cancer [2]. One of the reasons is

specific chemokine-receptor pairs are involved in tumor metastasis. This is not

surprising, in view of their role as chemoattractants in cell migration.

Originally described as a T lymphocyte-derived factor that inhibited the ran-

dom migration of macrophages, the protein known as macrophage migration in-

hibitory factor (MIF) was an enigmatic cytokine for almost 3 decades. In recent

years, the discovery of MIF as a product of the anterior pituitary gland and the

cloning and expression of bioactive, recombinant MIF protein have led to the

definition of its critical biological role in vivo.

Recent studies have begun to analyze traction forces generated by non-neuronal

[10, 11, 12, 13, 14] and neuronal [15, 16, 17, 18] cells, as cellular morphogenesis

and migration depend on their ability to produce traction forces.

1.1 Force estimation methods

Traction force microscopy (TFM) is a framework to analyze the forces. TFM

uses fluorescent nano beads that are embedded in the surface layer of an elastic

gel substrate. When cells cultured on the substrate generate traction force, the

beads change their locations due to the deformation of the gel substrate. The

bead displacements can be quantified from time-lapse imaging data. Therefore,

an important question is how to estimate cellular traction forces from bead dis-

placements precisely.
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1.1.1 Related works

Various algorithms have been proposed to estimate cellular traction forces [19].

The majority of previous studies introduce the equation of the forward model that

converts forces to each bead displacement with the Boussinesq Green function

with Poisson’s ratio and Young’s modulus of the substrate [20]. These studies in-

troduced a computational mesh that is sufficiently smaller than the cell size. The

boundary element method (BEM) is the first algorithm to estimate traction forces

from bead displacements [21, 22]. The main results of this study are a transform

the bead displacement field as an integral over the traction forces field and in-

versely solves the forward model with Tikhonov regularization. Fourier-transform

traction cytometry (FTTC) [28] transforms the forward model to frequency space.

Then the model can be written by simple matrix multiplication and the estimated

forces are obtained to the multiple inverse matrix to the transformed bead dis-

placements because the dimension of bead and force vector aligned through the

DFFT process. 3D finite element methods [29] are also used to analyze bead dis-

placement data. In general, cellular attachments to the substrate are formed at

discrete regions within the cell. If such point-like positions of cellular attachments

can be determined by microscopy, it is possible to estimate forces more precisely

[30]. In addition, a high density of two different-colored nano beads improves the

spatial resolution of the force estimation [31]. Sabass et al. compared BEM and

FTTC in same settings, and reported the estimation accuracy of both methods

is almost the same and the both methods occur underestimation [31].

1.2 Purpose of this thesis

In spite of such progress, there still remain problems in estimating the cellular

forces. For example, when the number of marker beads is less than that of force

points, calculating the force with the previous algorithms would become ill-posed.

There is a limitation in the bead density, as the elastic property of the substrate

would be disturbed by the high density of the beads. In addition, there are cases

when it is difficult to measure point-like force positions due to experimental lim-

itations. If these positions are unknown, estimated forces would be distributed

widely to the place where cells do not exist [31]. Specifically, parameter con-
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straints such as Tikhonov regularization make the forward model robust, but at

the same time, they produce a large number of small forces. Conversely, with a

weak constraint, a small number of larger forces are estimated. However, they

may have low resistance to data noise. Therefore, it is useful to estimate forces

with a moderate number of beads in a condition where point-like force positions

are unknown.

In this study, I present a novel technique for estimating cellular force with

a Bayesian framework. I use the previous observations that cells always gener-

ate forces inwardly by actin treadmilling [32, 33, 34, 35]. Using the Bayesian

algorithm, I estimate the cellular forces of the synthetic dataset, which has low-

density beads and unknown point-like forces. Bayesian force estimation shows

high performance in estimating the cellular traction force compared with other

previous algorithms.

1.3 Organization of Dissertation

In chapter 2, I explain how to estimate forces in the TFM framework. this

chapter provides a fundamental information about TFM studies. In chapter

3, I explain about calculation of the bead displacements from the pair of bead

images. In chapter 4, I describe my proposed force estimation method. Chapter

5 shows experimental results. Chapter 6 discusses the limits of my method and

applications. I end this dissertation with chapter 7 which concludes my work and

provides suggestions for future directions.
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2. Traction force microscopy

Traction force microscopy (TFM) is a method to measure traction force of the cell

adhesions. The basic idea of TFM dates back to the paper of Harris et al.[37].

They were the first to use a thin edible silicone sheet as wrinkling assay that

gave a qualitative measure for the mechanical activity of cells Fig. 1. To see the

location of the wrinkling of the sheets, one can know the locations where cells

exert forces to the sheets.

A quantitative approach has been proposed by Iwadate et al. [23, 24]. They

applied finite element method [25] to calculate gel stress field instead of forces

directly. The method calculated gel strains and stresses on the mesh nodes

(Fig. 2 (c)). The strains on meshes obtained from the bead displacements and the

stresses obtained from the strains by normal physical calculation. In the normal

finite element method, the size of the elements should be small and the density of

the elements should be high in the area where the stress is expected to be large,

while the size should be large and the density should be low in the area where

the stress is expected to be small for accurate and fast calculation. In this study,

however, small triangle meshes were distributed uniformly because the distribu-

tion of the stresses cannot be predicted. The accuracy of FEM based method

highly depend on mesh size and mesh shapes. FEM requires fully observed gel

displacement data, but gel displacement observed only on the beads. To solve

this problem, they employ the displacements that were calculated as mean values

of that of the neighboring beads.

An another quantitative methodology of TFM has been proposed by Dembo

et al. [21, 22]. They use prestressed silicone gel rubber alternative silicone sheet,

and can measure rubber deformations quantitatively to embed fluorescent beads

into surface layer of the gel. The bead displacements calculate by capturing bead

images with microscopy and image processing. To use bead displacements as

observation data, cell traction forces are computed inversely. In this method,

forces are estimated in some positions in the gel surface 2D-plane. The number

of beads is finite and fewer than the number of force estimated position in most

cases, then, the estimation is ill-posed problem. To solve this problem, they

introduced the Bayesian framework and prior distribution.

Dembo’s method is fundamental of TFM studies [28, 30, 31]. For example,
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Fourier et al. [26] used a variant of Dembo’s method that is computationally much

faster [27].

In this chapter, I introduce details of forward model of the inverse problem

that used Dembo and other TFM studies, and explain solving methods the prob-

lem.

2.1 Forward model

In traction force microscopy, beads are randomly scattered on the surface layer of

the culture gel substrate, indicating that bead displacement is almost restricted

in a 2D plane. Let us define x = [x, y]t as the coordinate of the plane. When a

cell produces a traction force, it deforms the substrate and displaces the beads

(Fig. 3). The relationship between a given force and resultant bead displacement

was modeled by Landau and Lifshitz [20]. If the bead displacement by the force,

f(x), is written as u(x) = [ux(x), uy(x)], it can be formulated by using

u(x) =

∫
Ω

G(x− x′)f(x′)dx′ (1)

G(x) =
1 + ν

πEr3

[
(1− ν)r2 + νx2 νxy

νxy (1− ν)r2 + νy2

]
, (2)

where ν and E are the Poisson ratio and Young’s modulus, respectively. Σ is a

area of interest to calculate displacement. The Poisson ratio and Young’s modulus

describe physical characteristics of gel substrates and can be calculated from the

substrates. The purpose of TFM is to estimate force f(x) from displacement u(x).

In implementation, I discretized forces and displacement in this model. So I

can estimate forces on only finite mesh grid. The number of the grid is limited by

the number of bead displacement because if the number of the grid is smaller than

the number of beads, this problem become ill-posed problem. In real settings,

however, the number of force grid I would like to know is more than the number

of beads.

2.2 Boundary element method (BEM)

Measurements of substrate deformation, even if they are very accurate, are merely

secondary reflections of the biologically generated tractions. Therefore, to deduce
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the actual traction stresses being exerted upon a substratum point by point it is

necessary to process the information inherent in displacement measurements by

some sort of statistical procedure. To calculate of such traction images, Dembo et

al. [21] approximate the distribution of traction stresses acting on the substratum

as superposition of elementary delta function influences.

The main result of Boundary element method (BEM) [21] is representing the

bead vector u by the sum of the forces. To estimate force vector, I solve this

model inversely. The problem is ill-posed because the number of force estimated

points larger than the number of beads in most cases. To solve this problem BEM

method introduced Tikhonov regularization scheme. The estimated force f̂(x) is

obtained to minimize the following objective function:

||u(x)− Σx′G(x− x′)f(x′)||2 + λ||f(x)||2. (3)

This method frequently occurs underestimation due to the regularization

term.

2.3 Fourier-transform traction cytometry (FTTC)

Butler et al. describe the foundations of Fourier transform traction cytometry

(FTTC), a new and computationally efficient method for computing the trac-

tion field given the displacement field [28]. FTTC divides into two subclasses

(unconstrained and constrained), described below, and in several respects are

fundamentally different from the BEM method. The first key difference is that

the BEM method requires the cell boundary to be drawn by hand and con-

strains the tractions exterior to the boundary to be zero while still retaining

approximate matching of the exterior displacements. By contrast, unconstrained

FTTC exactly matches all the displacement data, independent of the perceived

cell boundary; constrained FTTC forces the tractions exterior to the cell bound-

ary (drawn by hand) to be zero, as in the BEM method, but ignores the exterior

displacement data. The second key difference is that the BEM approach utilizes

Tikhonov regularization with a particular choice and intensity of smoothing func-

tional. By contrast, FTTC utilizes no smoothing and is exact in the sense that

it yields a traction map for which the induced displacements exactly match the

given displacement field.

6



FTTC transformed the forward model to the frequency space. Transformed

force f̃ and displacement ũ are expressed by following equation:

ũ(v) = G̃(v)̃f(v) (4)

where G̃ is the converted Green function G of Eq. (1) to the frequency space.

Then the degrees of freedom of the traction and the displacement are aligned.

The transformations of displacement u can be done with standard techniques

for fast Fourier transform (FFT), and inverting FFT also applies to transform

the obtained f̃ to real space. The use of the FFT-algorithm to compute the

Fourier transform of the displacement field requires a regular, rectangular grid

covering the whole image, which is obtained from irregular fields by biquadratic

interpolation.

2.4 3D TFM

3D TFM is the 3D-force estimation method from fully observed 3D-displacement

field [36]. This method can be calculated without any assumption or restriction,

but this is required the bead displacement fully observed in 3D space.

First, submicron-sized fluorescent particles are embedded within the transpar-

ent biomaterial of interest and three-dimensional time-lapsed volumetric images

are recorded using laser scanning confocal microscopy (LSCM). Next, cell-induced

material deformations (i.e., displacements) are calculated using a recently devel-

oped digital volume correlation (DVC) algorithm that tracks the center displace-

ment of individual spatial subsets of the recorded LSCM images in all three

dimensions. Once the full-field displacements are obtained the three-dimensional

strain tensor ϵ is calculated using a displacement-gradient method. To calculate

the cell-induced three-dimensional full-field stresses or the stress tensor (σ), the

material properties (e.g., Young’s modulus and Poisson’s ratio) or the material’s

constitutive behavior need to be determined through independent mechanical

testing. Finally, cell-applied traction forces can be directly calculated along any

plane (represented by its normal vector (n)),within the material as well as on its

surface, by simple matrix multiplication of the normal with the material stress

tensor as follows:

T = σ · n. (5)

7



As the schematic illustrates, this method does not rely on any mathematical

frameworks or stress-state assumptions, such as the Boussinesq theory or FEM

analysis. Because all material displacements can be calculated from three-dimensional

LSCM images, the tractions can be calculated in a forward way based solely on

mechanics principles as described in detail in the following sections. This obviates

the need for any inverse formulation and stabilization schemes that are generally

necessary for 2D TFM calculations.

Although this method required fully displacement field in the interest region,

the method can calculate traction field by simply matrix multiplication.

2.5 Issue of related works

FTTC and 3D TFM methods require fully observed bead displacement data. A

advantage of these methods is their can be calculated the traction force without

any assumption if once the displacement data obtained because they don’t have

ill-poseness. However, it is difficult to obtain the fully observed displacements

because no bead area has no information about displacement. Some displace-

ment estimation method can be estimate the displacement in such area, but the

estimated displacements have error with large value frequently.

BEM can use only the displacements around beads, but the method occurred

underestimation [31]. The reason of the underestimation is effect of the prior that

have effect of shrunk to the traction forces.
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Figure 1. A microscopic image that is captured in a cell, which is an individual

heart fibroblast, on a silicone rubber seat [37]. Vertical lines are wrinkles of the

seat. The bar is 50µm long. The wrinkles are made by the cell forces, so that

one can know where the cell exert forces by seeing the wrinkled locations.
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Figure 2. Schematic drawing of Iwadate methods [24]. (a) Experimental setting.

A Cell addressed on a gel surface. The cell exerted forces on the gel, and gel de-

formed by the forces. The gel displacements are observed as bead displacements.

In this method, the cell stresses obtained from bead displacements. (b) Bead

image. The white dots are beads in gel surface, and the white line is cell edge.

(c) Mesh map. Gel strains and stresses of the gel are calculated on the nodes of

the meshes. The mesh shape is uniform triangle. (d) The estimated force map.

The stresses are calculated on the white circles and the white lines on the circles

indicate direction and magnitude of the stresses. The yellow line indicates the

direction of cell migration. The color map represents magnitude stresses. This

figure shows cell moves to the direction on which is distributed weak stresses.
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Figure 3. Experimental setting of TFM [31]. This shows cell on the gel as

top view. The forces, which are red arrows, exerted on the red points, and the

beads, which are represented as blue points, move as blue arrows. Bead displace-

ments u(x) can be calculated from traction forces f(x) with the forward model

Eq. (1). TFM is a method to estimate the forces from the bead displacements.
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3. Calculation of the bead displacement

3.1 Introduction

In this chapter, I explain the method to extract bead displacement from consec-

utive two beads embedded images. To extract the bead displacements, I referred

to the optical flow estimation methods in the computer vision area.

Optical flow is the motions of the objects in a scene and is typically expressed

with the vector field that moves the objects to the position in the next scene.

In this study, I used the flow field as bead displacements field. Optical flow

estimation is the methods to extract such fields from two images in consecutive

scenes. To estimate optical flow, Horn and Schunck [38] assume the condition

that image intensity on a point of one image equals to that on the matched point

of the other image. The condition expressed as follows:

I1(x) = I2(x+ u), (6)

where Ii(i ∈ {1, 2}) is image intensity, x = [x, y]t is a coordinate in 2-D plane

and u = [ux, uy]
t is the flow vector. In addition, Horn and Schunck added a

regularization term to improve robustness to observation noise. As a result, the

optical flow estimation was formulated as a such objective function minimization

problem:

argmin
u∈R2

||I1(x)− I2(x+ u)||+ (regularization term). (7)

argminx f(x) returns set of x that minimize the function f(x). If f(x) is a

quadratic function, argminx f(x) returns a value of x. Various methods have

been developed based on this equation and such methods is called the variational

framework. Variational framework is often occurred bad estimation when the

true displacements are large, due to inadequateness of the linear approximation.

So, the variational framework is unsuitable for estimating the bead displacement

because the large bead displacement often occurred by the cell adhesion in my

setting.

Optical flow estimation also formulated as point (or descriptor) matching

problem by Brox et al. [39]. In my study, this approach was introduced, and the

bead centroids were treated as the descriptors. The reason is no bead area of the

12



bead image is no informative to estimate displacements, so I avoid to add noise

to estimate the displacements in the such areas.

Brox et al. also said about the reasons of descriptor matching has not been a

success story as follows:

• “The most successful descriptors are all based on spatial histograms. His-

tograms are not well localized, and thus the precision of the motion esti-

mates, especially at motion discontinuities, is lower than with, e.g., varia-

tional techniques.“

• “Although most descriptors can be uniquely matched between images, some

of them are confused or their counterpart in the other image is missing due

to occlusions. This causes a certain amount of mismatches that are very

disturbing for most optical flow applications.“

• “Descriptor matching is a discrete technique, which only allows for pixel

accuracy. This quantization effect prevents distinguishing small motions

and causes drift in tracking applications.“

The first problem can avoid to add the position constraint to matching cost

function as follows:

argmin
u∈R2

∥∥∥∥I1(x)− I2(x+ u)

(maxIntensity)

∥∥∥∥+ ∥x− (x+ u)∥ , (8)

where Ii(i ∈ {1, 2}) is image intensity and {x,x+u} are locations in each images.

The second problem can be translated that “overlapped beads problem“ in my

setting (shown in Fig. 4). The overlapped beads cannot estimate easily because it

is difficult to judge which bead is overlapped or not. I focused on the diameter of

each bead is almost same and modeled the bead image as summation of synthetic

bead-patch with fixed diameter. I will explain the details in the next section. To

overcome the third problem, I provided the set of candidates of one bead centroid,

and defined the coordinate of the centroid as the mean of its positions. So, I can

estimate bead displacements with sub-pixel accuracy.
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3.2 Formulation of bead detection as linear problem

I formulated bead detection problem as a linear problem (Fig. 5). Let us define

x as a bead image, A as a matrix that column represents synthetic bead images

and each of element of b represents position of the synthetic bead image . In

this formulation, I assumed the synthetic bead size is fixed to 4 pixel. The mean

of bead diameters in real setting (described in chapter 5) is roughly 200nm, and

the length of a side of the pixel is roughly 100nm. Thus, the real bead diameter

is 2 pixels in reality, but beads are blurred in microscope image. That’s why I

employed 4 pixels as diameter of synthetic bead image.

I can get the positions of the beads to solve this linear problem.

I show the result of this problem with three linear problem solvers (Least

squares, Lasso [40], Dantzig Selector [41]) in Fig. 6. Dantzig selector is better

than other methods to extract bead positions. Especially, an advantage of Dantzig

selector is its result have value only on the beads, in constant that of other two

method have value not only beads. Then I choose the Dantzig selector as a solver

of this problem.

3.3 Least squares methods

Least squares method is a mathematical procedure for finding the best-fittings

lines to a given set of points by minimizing the sum of the squares of the residuals

as follows.

argmin
b

||x− Ab||22. (9)

The sum of the squares of the residuals is used instead of the offset absolute values.

This method is easy to implement because the cost function can be differentiated

analytically, and the optimal solution is written as follows:

b̂ = (AtA)−1Aty. (10)

In my setting, the number of parameters x is larger than the number of

observations y, so AtA often becomes singular matrix. the inversion of the matrix

don’t exist. There are several way to approximate the inversion numerically, but

one should take care of the error of the calculate.
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Prediction error ||y−Ab̂||2 can be decomposed to two terms, bias and variance.

Both of terms are represented about property of the bias term is represented with

the mean value of the error in some data, and the variance term is represented

with the variance of the data. Least squares method is often referred as high bias

and low variance method, that is, estimator of the least squares method is stable

by difference of data sample, but the estimator has some error in anytime.

3.4 Ridge regression

Ridge regression estimate method with subject to shrinkage parameter vector b

to 0.

The ridge regression is formulated as following:

argmin
b

||x− Ab||22 + λ||b||22 (11)

The difference to the Least squares is that the ridge regression add to penalty

term to shrink the parameter. λ is the hyper-parameter to control the effect of

the 2nd term. If λ is zero, the ridge regression is equal to least squares.

The estimator of ridge regression is represented as following form:

b = (AtA+ λI)−1Aty (12)

In mathematics sight of view, (AtA + λ) is full rank symmetric matrix, then

the matrix have inverse matrix when λ ̸= 0 and ridge regression can be calculate

the estimated vector without some approximation.

However, the estimated vector is not interpretable, that the vector don’t have

some zero elements, because both term of the ridge regression are quadratic cost

function. Especially, in my setting, I would like to find the locations of beads. I

hope that the element of the vector correspond to no-bead area fill close to 0.

3.5 LASSO (Least Absolute Shrinkage and Selection Op-

erator)

The LASSO [40] is a linear regression method that is penalized by sum of the

absolute value of the parameters. By penalizing of the term, the LASSO tends
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to produce some parameters that are exactly 0 and results of the method are

interpretable. In other words, we can specify the set of parameters that effect to

the model.

The LASSO is formulated as follows

argmin
b

||x− Ab||22 + λ||b||1, (13)

where λ is the parameter controls the effect of the second term on the optimiza-

tion.

The LASSO also have another form as following:

argmin
b

||x− Ab||22 s.t. ||b||1 < ϵ, (14)

where ϵ is the parameter corresponding to λ in the above equation. This equation

indicates some elements of the estimated vector b tends to be 0 compared with

LS and Ridge regression, because the optimized vector is in a diamond area

in p-dimensional Euclidean space made by the term ||b||1 < ϵ, where p is the

dimension of the vector b.

3.6 Dantzig selector

Dantzig selector [41] is a estimator to overcome ill-posedness that the number of

variables or parameters, p, is much larger than the number of observations, n.

Dantzig selector is a solution to the ℓ1-regularization problem

argmin
b

||b||1 s.t. ||A∗(x− Ab)||∞ < ϵ (15)

The objective function of Dantzig selector evaluates A∗(x − Ab) instead of

x−Ab. One of the reasons is invariance to orthonormal transformation. Suppose

b′ = Ub where I = UU∗. A∗(x− Ab) equals to A∗(x− Ab′). Then the Dantzig

selector don’t depend on U .

3.7 Short results: effect of the fixed diameter beads

To confirm the legality of my detection approach, I compared detection result

with a bead detection method (spot detector) that used in TFM area [42]. My
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method and spot detector applied to a bead image. The results are shown in

Fig. 8. In Fig. 8, my method with Dantzig selector can detected beads in dense

bead areas by comparison with the spot detector.

Fig. 9 shows proposed approach have capability of catch each overlapped bead

position, in constant spot detector treat the overlapped-beads as a lump bead. In

addition, proposed approach don’t detect the beads embedded in deeper space.

That beads occur estimation error in the force estimation and, detection of that

beads are unstable each images due to darkness than other beads.

To validate detection performance quantitatively, I evaluated 3 methods (pro-

posed with Dantzig selector and LASSO, and spot selector) with true positive

and false positive ratios using a image (Fig. 7 (a)). In this thesis, true positives

represent detected points on bead areas correctly and false positives represent

detected points on no bead ares. Then, true positive and false positive ratios

defined that

true positive ratio = # of true positives
thenumber of beads

(16)

false positive ratio = # of false positives
the pseudo #of no bead area blocks

. (17)

To obtain the denominator of the true positive ratio, the image labeled by hand

(Fig. 7 (b)). The number of labels are the denominator of the true positive ratio.

In this image, the number of the no beads areas cannot count correctly (the

denominator of the false positive ratio). To obtain the pseudo number of the no

bead area, I calculate the ratio of the bead and no bead areas of Fig. 7, and then

I defined the pseudo number of the no bead area as following:

# of no bead areas = the ratio beads and no beads ·# of beads. (18)

From true positive and false positive ratio, I illustrated result with ROC curve

(Fig. 10). Each point represent detection result of 3 methods with different hyper

parameters (λ in Eq. (13) and ϵ in Eq. (15)). In ROC curve, left top is best

performance because the point has high true positive ratio and low false positive

ratio. Fig. 10 shows that my methods with Dantzig selector detected beads more

than LASSO version and the spot detector.
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Figure 4. Bead image that have overlapped beads (red circle). Blue points are

detected bead points.
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Figure 5. Beads detection model. I suggested a summation of synthetic bead

images model. To estimate the weight vector b of this model, beads locations are

detected.
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Figure 6. Estimated weight vectors of Dantzig selector (a), LASSO (b) and

Least squares (c). The red lines that represent estimated weight vectors b are

overlaid on the bead image. The weight vector of Dantzig selector represents

beads location exactly.
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(a)

(b)

Figure 7. Bead image (a) and the labeled image (b). The images prepared to

evaluate proposed detection method and spot detector. In the labeled image,

each other colored areas indicates the bead area that have another label.
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(a)

(b)

Figure 8. Bead detection results with spot detector (a) and proposed approach

(b). The detection positions (white dots) are overlapped on the binarized bead

image. The advantage of proposed approach especially arises in dense bead areas.
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(a)

(b)

Figure 9. Bead detection results with spot detector (a) and proposed approach

(b). The blue point is the detected points in each method. Proposed method can

be obtained overlapped beads in red circle and don’t detect in background areas.
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Figure 10. ROC curves of beads detection task from one image with Dantzig

selector (red), LASSO (green) and spot detector (blue). False positive of the

spot detector is close to zero. In other word, spot detector doesn’t catch no-bead

areas as bead areas. However, beads detection rate (true positive) is lower than

Dantzig selector. In Dantzig selector, false positive is low and true positive is

high. Then, this picture shows Dantzig selector is best performed in this task.
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4. Proposed force estimation method

4.1 Introduction

In this chapter, I explain our model and the optimization method. At first, I will

show a little example to show difficulty of the force estimation problem. Fig. 11

is a estimation result from real data with three methods. The methods are BEM,

FTTC and Dantzig selector. Fig. 11 shows the estimated forces raised only on

the beads positions. The reason is the Green function in Eq. (1) is so localized

and then the estimated force raised only on the beads if the number of beads is

insufficient. This phenomenon is a serious issue because I cannot know true force

site.

There are two way to overcome this issue: the number of beads increasing

and the number of force decreasing. The beads increasing way is often tried in

TFM area. However, the way also have the follow issues:

• difficulty of beads detection in dense beads area.

• effect to the physical property of the gel-substrate.

Especially, the effect of the latter is unpredictable then I not use this way. The

decreasing way don’t also use because I cannot know true force position in this

way.

I introduce a novel method that introduce the force-centripetal point. It

determines force direction toward the point. Then I can estimate only force

amplitude and the centripetal point. So, the effect of introducing the point is

the skipping estimation of the force directions. In other words, the dimension of

force vector I should estimate is decreased to a half.

I extended the model to multi centripetal points. In next section, I will explain

the model and the way of how to estimation parameters.

4.2 Generative model

Let us define x = [xn, yn]
t as the coordinate of the n-th force action point and

ck = [ckx, cky]
t (k = 1, . . . , K) as the coordinate of the k-th force-centripetal point.

I suppose that each force belongs to one of the force-centripetal points (Fig. 12).
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Since the definition of ck prescribes only the direction of the forces, their ampli-

tudes are independent from the locations of ck. Considering these restrictions, I

can formulate the model force at x, which points to the k-th centripetal point by

using

fk(x) = rk(x) (ck − x) + nfk(x), (19)

where nfk(x) is the noise term that represents fluctuations in the direction and

amplitude of the force and obeys the 2-D Gaussian distribution N(f(x)|0, α−1I)

with a known hyperparameter, α. The coefficient, rk(x), is estimated from the

bead displacement around x and does not correspond to a spring constant. Here,

I introduce a hidden binary variable, zk(x), that represents which centripetal-

point f(x) points to; zk(x) = 1 if f(x) belongs to ck, and zk(x) = 0 otherwise.

Using zk(x), f(x) can be expressed as,

f(x) =
K∏
k=1

(rk(x) (ck − x) + nfk(x))
zk(x) . (20)

On the basis of this formulation, I provided a prior distribution for zk(x) as

described in the next section.

The relationship between a force and bead displacement was modeled as

Eq.(1). To treat this model in Bayesian framework, I added a noise term, nu(x),

as follows

u(x) =

∫
Ω

G(x− x′)f(x′)dx′ + nu(x). (21)

nu(x) obeys the Gaussian distribution, N(nu(x)|0, β−1I), with the known hy-

perparameter β. Eq. (1) is the observation model, and I use this for calculating

likelihood. The relationship of the variables and parameters represented graphi-

cally in Figs. 13 and 14.

4.3 Transformation to probabilistic model

Using the generative model described as Eqs. (20) and (1), I estimate f(x), zk(x),

rk(x), and ck from the observation of the bead displacement, u(x). Because it

is difficult to estimate these parameters in a continuous space, the gel substrate
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needs to be discretized. If the location on the substrate is discretized to xn

(n = 1, . . . , N), I can replace Eq. (20) to the discretized probability distribution

of f ≡ [f1x, f1y, . . . , fnx, fny]
t conditioned by z with

P (f|z) =
N∏

n=1

K∏
k=1

N(fn|rnk(ck − xn), α
−1I)znk . (22)

The probability distribution of z is given by using

P (z|π) =
∏N

n=1

∏K
k=1 π

znk
k (23)

P (π) = Dirichlet(π|a0) = C(a0)
∏K

k=1 π
a0−1
k , (24)

where C(·) is the normalization term, and the random variable, πk, is the occur-

rence frequency for zk = 1. The hyperparameter, a0, is given as a small number

(< 1), by which f(x) belongs to only one centripetal point. In this paper, I set

a0 to 0.1.

For the observation model, by using the discretized location of a bead, xi

(i ∈ Ni ⊂ {1, . . . , N}), we have

ui ≡ u(xi)

Gi ≡ [G(xi − x1), . . . , G(xi − xN)]

f ≡ [f(x1), . . . , f(xN)] .

Then, the likelihood function of Eq. (1) can be replaced to

P (ui|f) = N(ui|Gif, β
−1I). (25)

Using the priors (Eqs. (22)-(24)) and the likelihood (Eq. (25)), the posterior

distribution,

P (f|u, z, π) ∝ P (ui|f)P (f|z)P (z|π)P (π), (26)

is defined.

4.4 Calculation for optimized solution

It is practically impossible to calculate Eq. (26) analytically, so I approximate it

by using the Variational-Bayes method. I introduce a trial distribution, q(f, z, π),
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that maximizes the variational-energy function,

F (q) =

∫∫∫
q(f, z, π) ln

p(u, f, z, π|r, c)
q(f, z, π)

dfdzdπ. (27)

The trial distribution, q, is known as the approximation of p(f, z, π|u) since the

maximization of the variational-energy function with respect to q is equivalent

to the minimization of the Kullback-Leibler divergence between p(f, z, π|u) and

q(f, z, π). Although q can be an arbitrary distribution for unknown variables f,

z, and π, for the sake of tractability, I assume that it can be factorized as

q(f, z, π) = q(z)q(f, π).

By this assumption, the optimal trial distribution, q∗(f, z, π) = q∗(z)q∗(f, π), that

maximizes Eq. (27) is analytically given as

q∗(z) =
N∏

n=1

K∏
k=1

mznk
nk (28)

q∗(f, π) = q∗(f)q∗(π)

q∗(π) = Dirichlet(π|a) (29)

q∗(f) = N(f |µf,Σf), (30)

where

mnk =
ρnk∑
j ρjk

(31)

ln ρnk = E[ln πk]− ln(2π) + lnα− α

2
E
[
∥fn − rnk(ck − xn)∥2

]
(32)

a = [a1, . . . , ak, . . . , aK ]
t (33)

ak = a0 +
∑
n

mnk (34)

Σf =

(
β
∑
i

Gt
iGi + αI

)−1

(35)

µf = Σf

(
β
∑
i

Gt
iui + α

∑
k

MkRk(ck − x)

)
(36)

Mk ≡ diag(m1k,m1k, . . . ,mNk,mNk) (37)

Rk ≡ diag(rk1, rk1, . . . , rkn, rkn). (38)
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I take µf in Eq. (36) as the estimation of f.

The unknown parameters, Rk and ck, remain to be estimated and cannot

be obtained analytically. I numerically estimated these parameters by using

the expectation-maximization (EM) algorithm. The approximated force, µf,

(Eq. (36)) is calculated in the E-step, while in the M-step, I compute Rk and

ck, by which the error function,

F (R, c) = E

[∑
n

∑
k

znk∥f−Rk(ck − x)∥2
]

=
∑
n

∑
k

mnk∥µf −Rk(ck − x)∥2, (39)

is minimized. From the necessary condition,

∂F

∂rnk
= −2mnk(µfnx − rnk(ckx − xn))(ckx − xn)

−2mnk(µfny − rnk(cky − yn))(cky − yn) = 0

∂F

∂ckx
= −2

∑
n

mnk(µfnx − rnk(ckx − xn))rnk = 0

∂F

∂cky
= −2

∑
n

mnk(µfny − rnk(cky − yn))rnk = 0,

I obtain

r̂nk =
µfnx(ckx − xn) + µfny(cky − yn)

(ckx − xn)2 + (cky − yn)2
(40)

ĉkx =

∑
n mnkµfnxrnk +mnkxnr

2
nk∑

n mnkr2nk
(41)

ĉky =

∑
n mnkµfnyrnk +mnkynr

2
nk∑

n mnkr2nk
. (42)

Due to the constraint rnk ≥ 0, rnk is set to zero if rnk < 0. By repeating the E-

and M-step described above, f(x), rk(x), and ck converge to stable values.
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(a)

(b)

(c)

Figure 11. Estimated results with BEM (a), FTTC (b) and Dantzig selector (c).

The green represents the amplitude of the estimated forces and the white is the

beads.

30



Figure 12. Prior knowledge considered force direction. Biological cells always pro-

duce inward forces. This fact can be modeled by introducing the force-centripetal

points (c1 and c2), which all of the forces (f) point to. r is proportional force

magnitude. That is, r is considered the parameter represent force magnitude.
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Figure 13. Graphical model of the proposed method with single afferent point.

I would like to obtain force f from observation u. r and c are treated as just

parameters, and estimated with EM algorithms.
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�

Figure 14. Graphical model of the proposed method with multi afferent point.

I would like to obtain force f from observation u. z and π are the variables to

regulate the rates of the effects of each afferent point on each point force. r and

c are treated as just parameters, and estimated with EM algorithms.
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5. Experiments

This chapter show two synthetic data result and one real data result. To test

the effectiveness of our Bayesian approach, we analyzed synthetic images and

compared the results with the BEM method [31]. In Real data, I show the

validity to apply our method to real settings.

5.1 Synthetic image for single centripetal point

I provided a synthetic image with the following steps.

• The virtual image was subdivided by 30 × 30 grid lines, and a single cen-

tripetal point, c, was defined as one of grid intersections.

• Ten forces were generated on the basis of Eq. (20) at the locations dis-

tributed around c. The amplitudes were randomly chosen.

• 200 beads were distributed randomly over the image, and the bead displace-

ment, u, was calculated from Eq. (1) with fs.

• Finally, 15 [dB] noise was added to u (Fig. 15).

Using the synthetic image, I compared our approach with ridge regression

[21, 22](Fig. 16). The error was evaluated by using the mean square error be-

tween the estimated and the synthetic forces. Since ridge regression gave a good

estimation only if a sufficiently large number of bead measurements is given, our

Bayesian approach was superior to ridge regression with a smaller number of

beads. This result suggests that by using our method, it is possible to estimate

cellular force precisely even with less beads. The error of the Bayesian approach

slightly increased in the range of a large number of beads. This may be due to

an over-fitting phenomenon.

To validate the locality of the estimated force distribution, I compared the es-

timated forces by using both approaches with different numbers of beads (Fig. 16).

When the numbers of beads were both 150 and 800 beads, the Bayesian approach

succeeded in estimating the local forces, whereas ridge regression failed and scat-

tered forces around the true forces. Moreover, as shown in Fig. 18, the Bayesian
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approach could detect a force even if the bead density was locally low. It was

difficult for ridge regression to detect a force in such a condition.

5.2 Synthetic image for multiple centripetal points

Most biological cells have a complicated morphology and change their shape dra-

matically in order to sense the external environment and move to a target direc-

tion. In such a realistic case, there must be multiple force centripetal points. I

applied our algorithm to another synthetic image that was generated in the same

way as the single centripetal point but had multiple centripetal points. Each

force points to one of the centripetal points.

The simulation results for the data of two centripetal points are shown in

Fig. 17. The algorithm with two centripetal points succeeded in estimating forces

with small errors (Fig. 17a). In addition, the locations of the centripetal points

were also well estimated. Apparently, forces could not be estimated properly if

the algorithm with a single centripetal point was applied (Fig. 17b). In the ridge

regression algorithm, the error became larger, and in particular, the localities of

the cellular forces failed to be estimated (Fig. 17 c).

To check the advantages of the algorithm as well as the data in Fig. 16, I

computed the estimation errors for the data of two centripetal points with the

ridge regression and the Bayesian algorithm (Fig. 18). I estimated the forces with

various parameter values of centripetal points in the Bayesian algorithm. As a re-

sult, the Bayesian force estimation showed better performance than did the ridge

regression. Even if the parameter of the centripetal points in the Bayesian algo-

rithm was larger than that of the bead displacement data, all of the centripetal

points converged to one of two points of the data.

5.3 Real data experiments

I applied our method to real neuronal cell images to confirm validity for real

datasets. To test effectiveness in real data, I compared estimated forces from real

cell data. The data is obtained by Dr. Toriyama, which is my collaborator. To

explain the property of the data, I cited his paper [18] to the next section for

convenience.
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5.3.1 Experimental procedure

Cell Culture, Transfection, and RNAi Hippocampal neurons

prepared from E18 rat embryos were cultured on glass coverslips (Mat-

sunami) coated with L1-CAM-FC as described [43]. All experiments

except for the measurement of forces were carried out on L1-CAM-

coated glass surfaces. Neurons were transfected with plasmid DNA

using Nucleofector (Lonza) before plating. For RNAi experiments, to

ensure a high level of expression of miRNA before axon outgrowth,

neurons were cultured in suspension on non-coated polystyrene dishes

for 24 h [44], and then collected and seeded onto coated-glass cov-

erslips, polyacrylamide gels, or glass bottom dishes. For the im-

munoblot analyses in Figures 2B, S4D, and S4E, we used cortical

neurons, which also respond to Netrin-1 [45], as the experiments re-

quired large numbers of neurons. These were prepared from E18

rat embryos using the same protocol as above. For RNAi experi-

ments, we used a Block-iT Pol II miR RNAi expression kit (Invit-

rogen). The targeting sequence of shootin1 miRNA was reported

previously [44]; that of another miRNA (shootin1 RNAi # 2), 5 ’-

GTTAGAGGAACGGCTAGAGAA-3 ’, corresponds to nucleotides

867-887 in the coding region of rat shootin1. Reduction of endoge-

nous shootin1 in neurons was confirmed by immunocytochemistry

with anti-shootin1 antibody.

DNA Constructs Preparation of the vectors to express wild-type

shootin1 has been described previously [44]. RNAi-refractory shootin1

mutants were generated using a QuickChange II site-directed mutage-

nesis kit (Stratagene) as described [43]. Unphosphorylated (S101A/S249A:

AA) or phosphomimic (S101D/S249D: DD) mutants of shootin1 were

generated with the same kit, to replace each serine with alanine or

aspartate, using the following primers: S101A,

5’-CGTTGAAAAGAATCGCCATGTTGTACATGGCCAAGCTGGGACC-

3 ’; S101D,

5’-CGTTGAAAAGAATCGACATGTTGTACATGGCCAAGCTGGGACC-
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3 ’; S249A,

5’-CAAGCTAAAGAGACAAGCCCACCTTCTGCTGCAGAGCTCCATC-

3 ’; and S249D,

5’-CAAGCTAAAGAGACAAGACCACCTTCTGCTGCAGAGCTCCATC-

3 ’.

cDNAs were sub-cloned into pGEX-6P-1 (GE Healthcare), pEGFP-

C1 (Clontech) and pCMV-myc-3B (Stratagene). Pak1 plasmids were

kindly provided by Drs. M. Inagaki and L. Lim. Constitutively active

Pak1 (CA-Pak1) was described previously [46]. The autoinhibitory

domain (AID; aa 83-149) of Pak1 and its mutant AID-L107F were

used as dominant negative Pak1 (DN-Pak1) and control, respectively,

as reported previously [47]. Plasmids for constitutively active Cdc42,

Rac1, and RhoA [48] were kindly provided by Dr. K. Kaibuchi.

Protein and Antibody Preparation Recombinant shootin1 was

expressed in Escherichia coli as a GST fusion protein and purified on

a Glutathione Sepharose column (GE Healthcare), after which GST

was removed from shootin1 by PreScission protease (GE Healthcare).

L1-CAM-FC was prepared as described [43]. Polyclonal antibodies

against shootin1 phosphorylated at Ser101 (anti-pSer101-shootin1 an-

tibody) and Ser249 (anti-pSer249-shootin1 antibody) were raised by

immunizing rabbits with the synthetic phosphopeptides TLKRI[pS]MLYMC

and KLKRQ[pS]HLLLC, respectively. The antibodies were purified

using a phosphopeptide affinity column, and absorbed by non-phosphopeptide

affinity column to ensure their specificity [49]. Preparation of anti-

shootin1 antibody has been described previously [44]. Netrin-1 and

Tuj1 were obtained from R&D Systems and Covance, respectively.

In Vitro Kinase Assay Kinase reactions were carried out in 120 µl

kinase buffer (50 mM HEPES (pH 7.5), 10 mM MgCl2, 2 mM MnCl2,

1 mM DTT, 10µ Ci [γ−32P]ATP, and 25µ M ATP) containing 50 ng

active GST-Pak1 (Invitrogen) and 250 ng purified shootin1-WT or its

unphosphorylated mutants. After incubation at 30◦C for 30 min, the
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reactions were stopped by adding 5x SDS sample buffer and boiled.

The reaction mixtures were subjected to SDS-PAGE and analyzed

using autoradiography and Coomassie Brilliant Blue staining.

Immunocytochemistry, Immunoblot, and Microscopy Cul-

tured neurons were fixed with 3.7% formaldehyde in Krebs buffer for

10 min at room temperature, followed by treatment for 15 min with

0.05% Triton X-100 in PBS on ice and 10% fetal bovine serum in PBS

for 1 h at room temperature. They were then stained with antibodies

and Alexa-594 phalloidin (Invitrogen), as described [43]. Immunoblot

was performed as described [44]. Fluorescence and phase-contrast

images of neurons were acquired using a fluorescence microscope (Ax-

ioplan2; Carl Zeiss) equipped with a plan-Neofluar 40x 0.75 NA or

63x oil 1.40 NA objective (Carl Zeiss), a charge-coupled device cam-

era (AxioCam MRm; Carl Zeiss), and imaging software (Axiovision3;

Carl Zeiss). The length of filopodia and axons, and the relative fluo-

rescence intensity of shootin1 or F-actin, were measured using Multi

Gauge software (Fujifilm). Fluorescent speckle imaging and speckle

tracking analysis were performed as described previously [43].

Rac1 and Cdc42 Activity Assays Rac1 and Cdc42 activity as-

says were performed as described [50]. Cells were lysed with GSH-

FISH buffer (50 mM Tris-HCl (pH 7.5), 100 mM NaCl, 2 mM MgCl2,

10% glycerol, 1% NP-40, 2 mM phenylmethylsulfonyl fluoride, and 2

µg/ml leupeptin) and centrifuged for 15 min at 17,400 g at 4◦C. The

supernatants were incubated with 2 µg of GST-Pak1-CRIB protein

bound to Glutathione Sepharose 4B for 90 min at 4◦C. The beads

were washed three times with GSH-FISH buffer and bound proteins

were eluted in 1x SDS sample buffer. Bound Rac1 and Cdc42 were an-

alyzed by immunoblot using anti-Rac1 (Upstate Group) or anti-Cdc42

(BD Transduction Laboratories) antibodies.
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Traction Force Microscopy Polyacrylamide gel substrates were

prepared as reported [51, 52, 53], with slight modifications. Briefly,

glass bottom dishes (No. 0, Matsunami) were treated with 0.1 N

NaOH for 15 min and incubated with 2% (v/v) 3-aminopropyltrimethyoxysilane

(Sigma) in 2-propanol for 15 min. After washing with H2O, 0.5 %

glutaraldehyde (Sigma) solution was dropped onto the glass and in-

cubated for 30 min. The glass bottom dishes were then washed with

H2O and dried before use. The acrylamide and Bis-acrylamide stock

solutions (Nacalai tesque) were diluted to 3.75% and 0.03%, respec-

tively, as reported [53]. Five hundred µl of solution was degassed for

30 min, and then 50 µl of fluorescent microspheres (2% solid, 200

nm diameter; Invitrogen), 1 µl of 10% (w/v) ammonium persulfate

(GE Healthcare), and 1 µl of N,N,N,N-tetramethyl ethylenediamine

(Nacalai Tesque) were added to initiate polymerization. Twenty-five

?l of the mixture was immediately pipetted onto 18-mm glass cov-

erslips (No. 1, Matsunami) and the previously treated glass bottom

dishes were placed, inverted, on the coverslips. After polymerization,

the glass coverslips were peeled off and the surfaces of the gels were

covered with H2O to prevent drying until use. Sulfo-SANPAH (1 mM;

Pierce) was dropped onto the gels, which were then exposed to UV

light under sterile conditions for 5 min, and washed three times with

0.1 M HEPES (pH 7.5) for 15 min. The gel surfaces were coated with

0.1 mg/ml poly-D-lysine (Sigma) overnight, anti-FC antibody (Jack-

son) for 3 h, and finally with L1-CAM-FC overnight. The stiffness of

the polyacrylamide gels was determined using a microsphere indenta-

tion method [52]. Briefly, a steel ball (0.6 mm diameter, 7.87 g/cm3 ;

Sato Tekkou) was placed on the gels embedded with fluorescent beads.

The indentation caused by the steel ball was measured using a mi-

croscope. Young’ s modulus was obtained as E = 3(1 − ν2)f/4d
3
2 r

1
2

, where f is the buoyancy-corrected weight of the steel ball, d is the

indentation of the gel, r is the radius of the steel ball, and v is the

Poisson’ s ratio (whose value is 0.3, as determined previously [54]).

The Young’ s modulus was 269.42 ± 24.17 N/m2 (mean ± SE, n =
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7). Time-lapse imaging of fluorescent beads and growth cones was

performed at 37◦C using a confocal microscope (LSM700 or LSM710;

Carl Zeiss) equipped with a plan-Apochromat 63x 1.40 oil M27 objec-

tive. The growth cone area was determined from EGFP fluorescence

or DIC images. In all analyses, we measured bead displacement un-

der the peripheral domain (including filopodia and lamellipodia) and

the central domain of axonal growth cones but not under the axonal

shaft. After observation, the glass bottom dishes were treated with

1% SDS to release neurons from the polyacrylamide gel substrate, and

an image of the unstrained substrate was acquired.

5.3.2 Results of real data

From a time-lapse beads images, I obtained beads displacement data as described

chapter 3. The beads displacement data used to estimate force with proposed

force estimate method and BEM. The hyper parameters of propoed method deter-

mined as a = 0.1, α = 0.1 and β = 1. The hyper parameter of BEM determined

as λ = 0.1.

The magnituge of estimated forces by two methods (proposed method, BEM)

is shown in Fig. 19. This result shows us the advantage of our method because

estimated forces are addressed on the cell edge in our approach.
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(a)

c

(b)

Figure 15. Example of synthetic force (a) and bead displacement (b). Arrows

represent forces or bead displacements. Gray points are bead locations. Black

points are centripetal points.
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Figure 16. Comparison between estimation errors with Bayesian approach and

ridge regression. The error was evaluated with the mean square error between

the estimated and the synthetic forces for 50 trials. Error bars represent s.d.
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(a)

(b)

(c)

Figure 17. Estimation results of two-centripetal-point estimation (a), single-

centripetal-point estimation (b), and ridge regression (c). White and black filled

circles represent true and estimated centripetal points.
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Figure 18. Comparison between force estimation errors with the ridge regression

and five Bayesian algorithms for the datasets of two-centripetal-points. The num-

bers with a symbol # represent the estimated centripetal points in the Bayesian

algorithms. Error was evaluated with the mean square error between the esti-

mated and synthetic forces for 50 trials. Error bars represent s.d.
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Figure 19. Estimated forces of our approach (a) and BEM method (b) for real

cell data. White lines represent cell edges.

45



6. Discussion

The results show that our proposed method has the ability to estimate the force

that no-bead area. In the synthetic experiment, the proposed had lower error

than the ridge regression method in any number of beads data. The most differ-

ence between the proposed method and the ridge regression method is the force

reconstruction of the lower or less beads areas. In the real data experiment, the

estimated force of the proposed is interpretable, that is, the forces are distributed

on the cell edges. These are effects of the centripetal-points, that is, the points

choice the information to on purpose.

The proposed method used Bayesian framework same as the ridge regression

method. Bayesian framework provides the probabilistic distribution of the forces,

then one can see not only the estimated forces, but the dependability of the forces

in each element of the force vectors. The disadvantage of the proposed method is

that parameter sensitivity is very high, and inappropriate parameter soccers the

centripetal point go away. I have to discover an appropriate parameter search

method in the hyper parameters.

The estimated results of the proposed methods have information about that

forces are assigned which centripetal-point. If a centripetal-point represents the

center of a cell, we can know which cell exerted a force of interest to see the

information in multi cell setting. It may be helpful to understand the interaction

of the cells.

My study has been focused on the forces in the 2-D plane of the cells that

exert force to extracellular matrix, but my force estimation method can extend to

the 3-D force. In this study, the observation is the 2-D beads image deformed by

the cell force and the observation model is a 2-D version. The observation model

can be extended to 3-D version easily, then, 3-D force estimation achieved if I can

get 3-D observation data. However, No adhesion cell, such as floating cell, cannot

estimate force by the proposed approach. To estimate the force exerted by such

cells, I should incorporate more information, for example, the morphology of the

cell, flow of the Liquid cultures, molecular activities and so on. To incorporate

such information, Bayesian framework is so useful. Actually, in this thesis, I

incorporated 2 models, gel model and inward force assumption, using Bayesian

framework. The prior distribution of this thesis is described in the directions of
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vectors. The prior can apply to some problem class using vector field.
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7. Conclusion

In this study, I tried to develop new the cellular force estimation method. I

achieved this by a Bayesian approach that estimates cellular force from the dis-

placements of fluorescent nano beads even under low-density bead and unknown

force point conditions. These results suggest that prior knowledge of force direc-

tions provides robust force estimation instead of Tikhonov regularization. An-

swering the question of how to determine the number of centripetal points is

future work; however, I will be able to solve this by using model selection algo-

rithms such as variational Bayes. By using this methodology, I can estimate the

cellular force with more accuracy and contribute to biological experiments.

This study is a solver of TFM force estimation approach to object improve-

ment of the estimation accuracy. A application of force estimation is prediction

of the cell shapes. To improve the estimation accuracy, the prediction accuracy

is also improved.
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