
NAIST-IS-DD1261027

Doctoral Dissertation

Techniques to Reduce the Overhead and to

Improve the Robustness in a Fault Tolerable

Reconfigurable Architecture

Tanvir Ahmed

March 12, 2014

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Tanvir Ahmed

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Michiko Inoue (Co-supervisor)

Associate Professor Jun Yao (Co-supervisor)

Associate Professor Yuko Hara-Azumi (Co-supervisor)

Techniques to Reduce the Overhead and to

Improve the Robustness in a Fault Tolerable

Reconfigurable Architecture∗

Tanvir Ahmed

Abstract

Nowadays, fault tolerance has been playing a progressively important role in

covering increasing soft/hard error rates in electronic devices that accompany

the advances of process technologies. Research shows that wear-out faults have

a gradual onset, starting with a temporal/transient fault and then eventually

leading to a permanent fault. Error detection is thus a required function to

maintain execution correctness. Currently, however, many highly dependable

methods to cover permanent faults are commonly over-designed by using very

frequent checking, due to lack of awareness of the fault possibility in circuits used

for the pending executions.

In this dissertation, to address those issues, a technique has been proposed

to add check instructions selectively on the data-path, where a metric has been

introduced for permanent defects, as operation defective probability (ODP), to

quantitatively instruct the check operations being placed only at critical positions.

By using this selective checking approach, I can achieve a near-100% dependabil-

ity by having about 53% less check operations, as compared to the ideal reliable

method, which performs exhaustive checks to guarantee a zero-error propagation.

By this means, I am able to reduce 21.7% power consumption by avoiding the

non-critical checking inside the over-designed approach.

Further, by additionally taking the data importance into account, extra energy

savings is possible from the current over-designed fault tolerable system. Partial

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1261027, March 12, 2014.

i

redundancy is a well used method to cover single event effects (SEEs) on critical

data while leaving less important data unprotected. Under a low SEE rate, the

method can provide a good cost-effective fault tolerance, while many silent data

corruptions (SDCs) may occur under a high fault rate due to incomplete fault

coverage.

Thus, a system-level approach is proposed to additionally cover SDCs in a

partial redundancy by a light-weighted error prediction. Simulation results under

a stress radiation test condition show that with an average 8% cost in energy

consumption, which can reduce the SDC rate from 12% to 0.37%, for the work

loads those have been studied.

Keywords:

Fault-tolerance, Reconfigurable architecture, Low-power, Soft error, Permanent

fault, Partial redundancy

ii

Contents

1 Introduction 1

1. Motivation and Objective . 1

2. Contributions . 3

2.1 Selective Check of Data-Path 3

2.2 Improvement of Robustness of Partial Redundancy by Us-

ing SDC Rate Prediction 4

3. Organization . 5

2 Related Work 7

1. Permanent Fault Detection . 7

2. Soft Error Detection . 8

3 Evaluation Framework 11

1. LAPP/EReLA Architecture . 11

2. Level of Redundancy of EReLA 13

4 Selective Check of Data-Path 16

1. Introduction . 16

2. Construction ODP-Aware Data-Path 18

2.1 Selective Check Instruction in Redundant Data-Path . . . 18

2.2 Calculation of Defective Probability 20

2.3 Optimizing of the ODP for Constant Input 23

2.4 Adding Check Instructions According to ODP 25

3. Results . 28

3.1 Workloads and Characteristics 28

iii

3.2 Reduction of Check Instructions 31

3.3 Dependability and Energy Savings 34

4. Summary and Discussion . 36

5 Improvement of Robustness of Partial Redundancy by Using

SDC Prediction 39

1. Introduction . 39

2. Proposed Technique . 41

2.1 Outline of the Proposal . 41

2.2 SDC Rate Prediction . 43

2.3 Effectiveness of using SDC Prediction 45

3. Experiment setting: assuming error rates from a radiation stress test 46

3.1 Error rates . 46

3.2 Baseline platform and simulator settings 48

4. Results . 48

4.1 Overall Reliability Vs. Energy Consumption 48

4.2 SDCs in individual program 51

4.3 Number of Test Blocks . 52

5. Summary and Discussion . 52

6 Conclusion and Future Work 56

1. Conclusion . 56

2. Limitation and Future Work . 58

Acknowledgements . 60

References . 62

iv

List of Figures

3.1 Structure of LAPP. 12

3.2 Modified LAPP Architecture for EReLA. 14

3.3 Different redundancy level for EReLA. 15

4.1 DMR-based permanent fault locating. 17

4.2 Algorithm to selectively add check instruction. 19

4.3 Cost-effective permanent fault locating. 21

4.4 NAND gate error analysis for constant Inputs. 24

4.5 Area required for the constant input operations. 25

4.6 Adding check instruction on a DFG based on Eq. 4.1. 27

4.7 Three kinds of data flow graphs. 29

4.8 Incidence of instructions. 31

4.9 Incidence of instructions with a fixed input. 32

4.10 Ratio of check instructions for different thresholds. 37

4.11 Vulnerability to the second error for different check instructions. . 38

4.12 Energy savings for 10M executions. 38

5.1 Dependability of the traditional partial redundancy under different

SEEs. 41

5.2 Example of partial redundancy. 42

5.3 Proposed partial redundancy. 43

5.4 Our predicted SDC rate as a function of err count. 45

5.5 Improved error detectability by using PrSDC 47

5.6 Breakdown energy consumption under different SEE rate. 51

5.7 SDC reduction in individual benchmarks from original to error

prediction based partial redundancy. 54

v

5.8 Varying the number of test programs. 55

vi

List of Tables

4.1 ODP of the baseline ISA for this study. 22

4.2 Benchmark programs. 28

4.3 Simulator specification. 30

5.1 Evaluation setup . 49

5.2 Benchmark functions . 50

5.3 Erroneous loop iterations of different redundant technique 50

vii

Chapter 1

Introduction

T
his chapter introduces and motivates the current reliability problems in mod-

ern micro-architectures. It contains a list of contributions and a description

of the organization of the rest of the dissertation.

1. Motivation and Objective

For decades, the number of on-chip transistors has grown at an exponential speed

which was empirically predicted in Moore’s Law. The growth of the transistors is

achieved by advanced CMOS technology. The advanced CMOS technology pro-

vides many advantages in modern microprocessor design such as low energy con-

sumption per transistor, low manufacturing cost, high operating frequency, and

high density of transistors. On the other hand, while modern computer systems

are utilizing the benefits of continued device scaling, there is a growing concern

for the reliability of theses systems. Furthermore, high operating frequency and

chip-level overheat accompanying the shrinking of the technology also increase

the potential wear-out rates of transistors and inner-connections. These features

also add new pressures on the correct states of transistors, especially, when work-

ing under an environment with Single Event Effects (SEE) occurrence [28]. As

a result, the lifetime of the microprocessors and digital circuits becomes shorter

and less predictable [14,17,23,25]. Thus, architecture-level fault-tolerance [24] in

microprocessor is becoming essential to maintain the correct calculation by using

current scaled transistors which have been demonstrated to be increasingly prone

1

to faults.

Since the problem of building fault-tolerant systems is not new, one may argue

that traditional solutions involving redundancy in space, time, and/or informa-

tion [7, 18] can be leveraged to neutralize this pending reliability threat. The

difference between the traditional reliability problem and the current growing

threat caused by device scaling, however, lies in the affected segments of comput-

ing markets. Traditionally, hardware reliability mainly concerned high-end niche

systems such as transaction processing systems for banks and mission-critical sys-

tems for space applications. As the main priority for designing these systems is to

meet reliability goals, the budget spent on ensuring reliability is less constrained

than mainstream systems and the use of solutions that involve heavy amount of

redundancy, such as triple modular redundancy, is acceptable.

On the other hand, the scaling-induced reliability problem is fundamentally

different. Modern computer systems have taken advantage of the ever-growing

system integration made possible by device scaling, which will still continue in

coming years. The reliability problem caused by scaling, therefore, will become a

major issue of the computing market and hardware reliability will be a concern

for the relatively low end but largely sold systems including personal computers,

mobile devices and car control systems. In these market segments, because the

budget that can be spent on reliability is much more limited than that of the

high-end systems, an effective solution must incur low overheads in area, power,

and performance in order to be broadly deployable. This precludes the use of tra-

ditional solutions that rely on expensive redundancy. To put it into perspective,

the research challenge is to derive a low cost yet effective reliability solution that

can be useful to the mass computing market. This dissertation also investigates

such cost aware reliability solutions. However, while these previously proposed

schemes have either focused on low-cost detection mechanisms or detection and

recovery mechanisms for transient faults, we take a holistic system design ap-

proach to derive a complete reliability solution including detection, and recovery

that handles both permanent and transient faults.

2

2. Contributions

2.1 Selective Check of Data-Path

Dual modular redundancy (DMR) is usually used to detect the fault in the com-

binational logic, where all the instructions are duplicated and check to keep a

full understanding of defective units in the data-path, which adds pressure to the

power utilization, and over-designed by not considering the criticality of fault in

different operations. An alternative way is the light-weighted technique, which

adds only one check at the end of the data-path. However, it allows the tainted

data from the early stage to propagate inside the path. The erroneous data may

taint more data, which possibly downgrades the reliability and becomes unpre-

dictable when a second fault occurs. Thus, we have proposed:

• A technique to insert selective checks into the data-path based on the op-

eration defective probability (ODP) in which the ODP has been calculated

based on the number of gates used by an operation.

• The ODP calculation also takes the influence of constant input into account,

i.e., certain inputs of the circuits can put parts of the circuit into a don’t

care zone. Potential errors in these gates will not contribute to the final

potential error rate.

• The calculated ODPs have been used in the data-path to add check instruc-

tions. The branch of the data-graph with ODP larger than the threshold

as a potential candidate to contain permanent fault, and check instruction

has been added to that branch.

• The result has been shown that this technique achieves near-optimal de-

pendability by reducing the check instructions to 60% and 22% energy can

be saved by avoiding the thorough checking.

Published papers related to this work:

• T. Ahmed, J. Yao, Y. Hara-Azumi, S. Yamashita, and Y. Nakashima, “Se-

lective Check of Data-Path for Effective Fault Tolerance”, IEICE transac-

tion of Information and Systems (Special Section on Reconfigurable Sys-

tems), Vol. E96-D, No. 8, pp. 1592-1601, Aug., 2013.

3

• T. Ahmed, J. Yao, and Y. Nakashima, “Introducing OVP Awareness to

Achieve an Efficient Permanent Defect Locating”, in proceedings of the

2012 IEEE/ACM Symposium on Nanoscale Architecture, Nanoarch,’12, pp.

43–49, July, 2012.

• T. Ahmed, J. Yao, and Y. Nakashima, “Achieving Effective Fault-Tolerance

in FU Array by Adding AVF Awareness”, IPSJ SIG NOTEs, vol-2012, no-5.

2.2 Improvement of Robustness of Partial Redundancy by

Using SDC Rate Prediction

In order to achieve the reliability in program executions with the smallest hard-

ware cost or performance loss, partial redundancy is becoming popular. This

method categorizes the program into zones of different importance and then treats

them accordingly. As an example, loop index calculation in an image process-

ing application is more important than the calculations of the pixels. Thus, the

loop index calculations are duplicated whereas the rest of the loop body cal-

culations remain same. In this way, this method guarantees 100% correct loop

execution with smallest performance loss and energy consumption. Under partial

redundancy, the loop body calculations are executed once, and a fault strike on

these calculations cannot be detected, which are treated as silent data corrup-

tions (SDC). Thus, the partial redundancy lacks the ability to tolerate worst-case

situations. Under a burst of single event effect (SEEs), it is still possible that

the rate of SDCs reaches an intolerable level, even though the program control

flow is carefully maintained. Moreover, the data calculation part is more likely to

accumulate errors because of its code size, which is usually 4x or 5x larger than

the control part. The dependability of the traditional partial redundancy under

different SEEs. In order to overcome the problem we have proposed:

• A method to predict the error rate in the next loop execution, and predict

the error rate in the next loop execution, and calibrating the redundancy

level according to the prediction.

• A self-test program has been used to collect the error samples of past several

cycles.

4

• Results show that with 8% cost, the proposed technique can reduce the

silent data corruption from 12% to a 0.37% level under a Stress Radiation

Test simulation.

Published papers related to this work:

• T.Ahmed, J. Yao, and Y. Nakashima, “A Tow Order Increase in Robust-

ness of Partial Redundancy Under a Radiation Stress Test by Using SDC

Prediction”, IEEE Transaction on Nuclear Science (accepted).

• T. Ahmed, J. Yao, and Y. Nakashima, “A Two Order Increase in Robust-

ness of Partial Redundancy Under Radiation Stress Test by Usign SDC

Prediction”, in proceedings of the 2013 European Conference on Radia-

tion Effects on Components and Systems, RADECS 2013, Oxford, United

Kingdom, Sept., 2013.

• T. Ahmed, J. Yao, and Y. Nakashima, “Achieving Near-Optimal Depend-

ability with Minimal Hardware Costs in an FU Array Processor by Soft

Error Rate Monitoring”, SWoPP’12, IPSJ SIG Notes, 2012-ARC-201(19),

Aug., 2012.

3. Organization

The rest of this dissertation is organized as follows:

• Chapter 2 describes the related works to detect and recover the permanent

fault, as well as the soft error.

• Baseline architecture for these experiments and the workloads for the eval-

uation are discussed in Chapter 3.

• Chapter 4 shows the technique to detect the permanent fault by adding

selective check inside the data-path, and the experimental results are also

discussed.

• Method the improve the robustness of partial redundancy by SDC predic-

tion and the experimental results of this method are discussed in Chapter 5.

5

• Finally, Chapter 6 concludes this thesis with the conclusion, limitation and

future works.

6

Chapter 2

Related Work

T
his chapter describes the previous works those are either used in, or directly

related to this dissertation. In Section 1, related works on permanent fault

detection are described, and partial redundant techniques to detect and recover

the soft errors on micro-architecture are described in Section 2.

1. Permanent Fault Detection

Different techniques have been proposed to protect microprocessors from elec-

tronic errors. Error correcting code (ECC) is applicable on memory to detect

and recover bits of errors. However, it can hardly be applied in non regular pat-

tern units such as ALUs and is also unaffordable for pipeline latches due to the

delay issue. Redundant exexution on the processor core shows a tolerable perfor-

mance impact on error detection. A number of redundancy techniques [4, 7, 16]

have been proposed to detect and recover from errors. These approaches mostly

use redundant multi-threading to detect erroneous execution. In this kind of

approach, two or three identical program threads are generated in the micro-

architecture and are then executed in the same time frame. The output values

are compared to verify the execution correctness. This provides fault detection

throughout the entire lifetime of a processor, so no errors will go undetected.

Error detection by duplicated instructions for a super-scalar processor has

been proposed in [16], where all the instructions are duplicated and checked

thereafter. Similarly, a fault-tolerant framework for a VLIW processor has been

7

proposed in [3, 4]. This approach also detects the errors by duplication, and

the results are checked with additional checkers. Sensitive applications such as

multiplication and addition are replicated thrice and compared with a majority

voting to select the correct results. This architecture supports real-time fault-

tolerance.

In order to meet the challenges of the increasing speed and performance re-

quirements of various applications, reconfigurable hardware [8, 9, 27] has shown

its popularity under the demands of flexibility and low non-recurring engineering

cost. A fault-tolerant coarse grained architecture [2] has been proposed for recon-

figurable architecture. In this architecture, an error correcting code and residue

arithmetic have been used on the memory structure and processing units, respec-

tively. However, keeping the reliable execution in the coarse grain architecture by

means of residue arithmetic is of relatively high cost, in the area and power con-

sumption overhead, as every functional unit of the array uses additional circuitry

for the verification of data correctness.

Thus, in this work our main target was to reduce the checking instructions

with a negligible penalty in reliability. In order to achieve the goal, we add

selective check instructions on the data-path. Check instructions are added on the

data-path based on the operation defective probability (ODP) of an operation.

The ODP of an operations is calculated according to the number of gates the

operation uses. The branch of the data-flow-graph (DFG) with ODP larger than

a threshold is regarded as a potential candidate to contain permanent faults,

and a check instruction will be inserted at that branch to help a deterministic

verification. Furthermore, our ODP calculation also takes the influence of special

inputs into account, i.e., certain inputs of circuits can put parts of the circuits

into dont care zones. Potential errors in these gates will not contribute to the

final potential error rate and are thus carefully removed from the influence chain,

in order to further reduce the number of check operations without affecting the

dependability.

8

2. Soft Error Detection

Likewise, dual modular redundancy [16,18,30] is also used to detect the transient

faults in a micro-architecture. However, due to the duplication of the full execu-

tion, given by both the time and the spatial redundancy, the energy consumption

is doubled, which is not desirable in most circumstances given that energy con-

sumption has already become the most important constraint for microprocessor

design. A partial redundancy with an awareness of data importance was thus

proposed for this purpose [6, 13, 20] and has gained in popularity, especially in

systems with critical requirements for battery life. This technique categorizes

the data into zones of different importance and then treat them accordingly. For

example, in an image processing application loop index controls all pixels calcu-

lations and is therefore regarded to be more important than the pixel data. The

corruption of the loop index usually leads to the abnormal end of the program

and thus need to be fully covered by error-resilience techniques. The other data

including processed pixels can tolerate a limited number of errors. The partial

redundancy can thus use an imperfect but low-cost fault-tolerance.

Apart from image processing, applications based on approximate calculations

such as decision making from probability exploration, machine learning, computer

vision, and so on, may similarly apply different dependability/cost methods for

their various types of internal data [13].

Basically, partial redundancy trades dependability for low power, and is thus

best suited for approximate programming. A typical approximate programming—

EnerJ [20]—has been proposed based on information-flow tracing. In EnerJ, vari-

ables and objects are declared as either approximate or precise. The approximate

data are then processed, for energy saving purposes, on low-power but less reliable

units than the precise data. A follow-up research [6] gives a detailed architecture

support for the programming model of EnerJ, where an extra bit is added to

the instruction set architecture (ISA) to serve as the precise or the approximate

annotation. Compiler supports are also discussed in paper [6] to generate the

binary with the new annotation. Their results showed that by treating the data

differently, significant energy savings (10% – 50%) can be achieved at a very low

accuracy cost. On average, 43% energy can be saved according to the workloads

in their study.

9

Different from the EnerJ system that works on in-core level reliability control,

error resilient system architecture (ERSA) [13], was proposed to handle approx-

imate computation in a multi or many core system. The target applications are

mainly probabilistic-based ones such as K-mean clustering, Low-Density Parity-

Check, and Bayesian network inference. In ERSA, the cores are respectively

divided into super reliable and relaxed reliable categories. Super reliable cores

are responsible for executing the main threads, in which critical data like control

flow are processed. They are also responsible for supervising the relaxed reliable

cores. Super reliable cores are very limited in number. Most of the cores are

relaxed reliable cores, where only the memory management unit and the instruc-

tions cache are reliable. The tasks were distributed among the super reliable and

relaxed reliable cores based on their importance. Results showed that, ERSA can

still achieve an accuracy of 90% while 2× 10−4 error/cycle/core was injected into

the architecturally-visible register.

Silent data corruptions (SDCs) will be the major QoS drawback for these en-

ergy saving systems based on approximate computation. The SDCs arise from

either unreliable execution as the low-power execution or the relaxed core in-

tentionally ignores the error for better energy-efficiency. Due to its simple and

light-weight design, this technique is not even able to keep track or report on the

SDC damage. These SDCs will add uncertainty to the QoS, and execution may

become unpredictable especially under a relatively high error rate. Research was

recently carried out on error propagation execution [29], indicating that most

errors will become derated ones. However, SDCs still give 57% future abort,

when the erroneous data are further used as control data or for memory accesses.

Reducing the SDCs is our target in this study.

Therefore, in this work our target is to reduce the SDC by calibrating the

past execution and predicting the future error rate. In order to achive the target,

a small test program is executed along with the program data-flow-graph (DFG)

to sample the error rate. A strategy unit is then used to provide a bias between

the partial and the full redundancies based on on-the-fly error monitoring of SEE

data, together with the instructive program characteristics of the coming program

interval.

10

Chapter 3

Evaluation Framework

T
he purpose of this chapter is to give an overview of the evaluation frame-

work used for both of the experiments. EReLA framework has been used

for the experiments in this dissertation. EReLA is a dependable reconfigurable

architecture, which can detect and recover the soft error as well as detect, locate

and recover the permanent fault. EReLA has been developed based on Linear

Array Pipeline Processor, which was previously proposed in the Computing Ar-

chitecture Lab. LAPP architecture is described in Section 1, and in Section 2, a

detail about the EReLA framework with different level of redundancies is given.

1. LAPP/EReLA Architecture

LAPP architecture is depicted in Fig. 3.1. In can be found in Fig. 3.1 that LAPP

has two major blocks: (1) pipeline processor, and (2) the functional unit (FU)

array. Stage-0 in Fig. 3.1 is a normal VLIW pipeline processor, which executes

the normal instructions in a program. Stage-0 has been extended to several stages

of FU array by extending the EX and MEM units, which is used to accelerate

the parallel loop kernel in a program. Each stage of the FU array contains: (1)

an instruction mapping unit (MAP), which maps all the VILW instructions of

the loop kernel onto the array, (2) an EAG unit to perform the memory access

operations, (3) EX units depending on the size of the VLIW instruction, and (4)

a BRC unit to perform the branch operations. A 4-way L0$ cache is used at

every stage.

11

Inst. Memory

...

st c[i]Mapped DFG

Data
Memory

Inst. Fetch

Inst. Decode DFG Mapper

Reg. Read

RegFile

Exec[0] Mem Access[0]
L0$

Exec[1] MA[1]
L0$

Exec[2] MA[2]
L0$

...

Exec[n] MA[n]
L0$

Register File

for (i=N;i>0;i--)
 c[i] = a[i] + b[i];

i-- @i

i>0

b[i]

a[i]@i

@i

MAP[1]

MAP[2]

MAP[n]

...

Stage 0

Array Stages

Figure 3.1. Structure of LAPP.

The basic idea for acceleration is to map each instruction in a loop kernel cycle

by cycle onto the FUs in each stage. As a result, instructions of different loop

iterations can exist simultaneously inside the array and the executions will be

accelerated. The FU array takes a two dimensional form, in which each row can

map multiple instructions of the same execution cycle, and the vertical direction is

used for a full speedup by exploiting parallelism between different loop iterations.

In order to improve the usage of the FUs, instructions without dependences, which

can be executed in the same cycle should be mapped along the row direction of the

FU array. LAPP use FR-V, which is a widely used commercial VLIW architecture

and is supported by GCC, as the target ISA.

LAPP achieves high IPC by mapping VLIW instructions onto the FU array

efficiently. The LAPP has 3 execution modes: (a) Normal-Execution, (b) Array-

Setup, and (c) Array-Execution.

During Normal-Execution, the VLIW pipeline only executes VLIW instruc-

tions as a traditional VLIW processor and the array pipeline is halted. However,

in Array-Execution, LAPP additionally uses the FU array to exploit parallelism.

12

Array-Setup is invoked when a loop kernel is detected. In Array-Setup, MAPs

start mapping each VLIW instruction in a loop kernel cycle by cycle onto the

FUs in each stage. The MAPs also start configuring the interconnection between

the FUs by arranging multiplexers to forward values of registers from one stage

to its succeeding stages. Further details about mapping are explained in [31].

Data prefetching between the L1$ and level-2 unified cache (L2$) is started at

the same time. Using this overlapping time, the overhead of mapping and net-

work configuration can be hidden by the prefetch delay, as the data prefetching

is usually longer than mapping and configuration time.

LAPP invokes Array-Execution, after the mapping, network configuration

and prefetching are completed. Based on the well mapped VLIW instructions

and interconnections, Array-Execution can process these instructions in a highly

parallel fashion. Data from L1$ flows into the level-0 Data cache (L0$), which

is a kind of local memory for each stage, toward the following stages. The inter-

connection for forwarding the contents of registers and the L0$ is maintained in

Array-Execution. According to this design, the LAPP can produce the result of

one loop iteration per clock cycle. The resulting data are stored back into L1$.

LAPP architecture has been used for EReLA framework. In order to achieve

high dependability LAPP architecture has been modified such as module for

automatic instruction duplication, error propagation chain to carry the error at

the end of the array stage, and permanent fault recovery scheme are added.

Fig. 3.2 shows the modified Architecture of LAPP. It Can be found in Fig. 3.2

that a chain of flip-flop, multiplexers, and XOR gate has been used to propagate

the error information of different stages. In each stage a multiplexers has been

used to select the proper signals, which is basically a check instruction. The error

flag of each stage is propagate using the flip-flops and XOR gates.

2. Level of Redundancy of EReLA

EReLA uses different level of redundancies, which have different energy require-

ments and reliability. Three levels of redundancies have been proposed for EReLA.

Different levels of redundancies along with an original source program has been

depicted in Fig. 3.3.

13

Stage [0]

Stage [2]

Stage [n]

FU FU FU FU

FU FU FU FU

FU FU FU FU

FU FU FU FU

Stage [1]
ef[0]

ef[1]

ef[2]

ef[n]Functional Unit Array

Figure 3.2. Modified LAPP Architecture for EReLA.

Level-1 in EReLA duplicates and checks only the loop index calculation of a

program, and the loop body calculations are not duplicated. This level of redun-

dancy is same as the partial redundancy discussed in Chapter 2, and the main

objective of this technique to overcome the loop abortion error. Fig. 3.3(b) shows

an example of level-1 redundancy. It can be found in the program that the loop

index calculation is duplicated and checked in the next instruction. The dupli-

cated instruction in Fig. 3.3 is shown in small letters. The rest of the instructions

remain same as in Fig. 3.3(a).

A fault strike on the instructions, those calculate the loop index, can be

detected by the check of the next instruction, and the error generated by the

check instruction will propagate through the error propagation chain. The error

is usually recovered by re-executing the loop. Thus, this level of redundancy

ensures 100% loop execution. However, fault strike on the loop body calculations

cause silent data corruption (SDC). Experimental results have proofed that Level-

14

BRC1

BRC2

SUB sub
 CSUB

EX1 ex1

EX2 ex2

EX3 ex3
EX4 ex4

LD1
LD2
LD3

ST1

SUB

EX1 EX2
EX3
EX4

BRC1

BRC2

EAG ALU BRC
LD1
LD2
LD3

ST1

SUB sub
 CSUB
EX1 EX2
EX3
EX4

BRC1

BRC2

EAG ALU BRC
LD1
ld1
LD2
ld2
LD3
ld3

ST1
st1

EAG ALU BRC

BRC1

BRC2

SUB sub
 CSUB

EX1 ex1 CEX1

EX2 ex2 CEX2

EX3 ex3 CEX3
EX4 ex4 CEX4

LD1
ld1
LD2
ld2
LD3
ld3

ST1
st1

EAG ALU BRC

(a) Non-Redundant Program
(Program for LAPP)

(b) Level-1 Redundancy
in EReLA, loop index

calculation is duplicated

(c) Level-2 Redundancy in
EReLA, all the instructions

are duplicated and the store
operations is checked by

hardware

(d) Level-3 Redundancy in
EReLA, all the instructions
are duplicated and checked

to locate the faulty FU

Figure 3.3. Different redundancy level for EReLA.

1 has a very good balancing between reliability and energy consumption while

the fault injection rate is very low.

Level-2 redundancy is depicted in Fig. 3.3(c), which is mainly proposed to over-

come the limitations of Level-1. Level-2 ensure 100% fault free execution of a

program. It can be found in Fig. 3.3(c) that all the instruction of Fig. 3.3(a) is

duplicated according to the availability of resources. For example, there is only

one load/store unit in and thus the load and store instructions are duplicated

in different level. On the other hand, the arithmetic and logic operations are

duplicated in the same level. In the EReLA architecture of the store instructions

has been implemented with a built in check instructions. Therefore, there is no

additional check instruction on the pseudo code. Level-2 also recover the error

by re-execution.

Level-3 has been proposed to detect and locate the permanent fault of the ar-

ray. An example of the Level-3 program is shown in Fig. 3.3(d), where all the

instructions are duplicated and checked in the later instruction. While the Level-

2 redundancy will report very frequent error Level-3 is used to locate the faulty

functional unit of array. With the help of the check instructions faulty pair of the

functional units can be located. However, to locate the exact faulty functional

unit a technique has been proposed in [10].

15

Chapter 4

Selective Check of Data-Path

T
his chapter describes the technique to add selective check instructions on

the data-path to detect the permanent fault. Calculation and optimization

of operation defective probability (ODP), results and summary of this technique

are also discussed.

1. Introduction

Error check and correction (ECC) is a conventional fault tolerant technique.

Although ECC logic has been effectively working for data-center memory sys-

tems [12], it may be not suitable for reconfigurable systems with many FUs,

which mainly consist of combinational logic. In order to detect the faults in

combinational logic, on-line tests [1,22] and explicit checks [16] have been used.

On-line test [22] is not real-time, while the real-time explicit check [16] increases

power consumption continuously and visibly. Fig. 4.1(a) gives an example of ex-

haustive check to keep a full understanding of defective units in the data-path.

The thorough check adds pressure to the power utilization limitation, and may be

an over-design by not considering the criticality of faults in different operations.

An alternative way is a light-weighted technique, which add only one check at

the end of the data-path (Fig. 4.1(b)). However, it allows the tainted data from

the early stage, such as I1’ in Fig. 4.1(b), to propagate inside the path. The

erroneous data may taint more data, which possibly downgrades the reliability

and becomes unpredictable when a second fault occurs.

16

(a) (b) (c)

Fault

I1 I1’ I1’

I2 I2’ ==?

==?

In I’n

==?

I1

I2

In I’n

==?

I1 I1’

I2’ I2 I2’

In I’n

==?

==?

Figure 4.1. DMR-based permanent fault locating: (a) Exhaustive check tech-

nique, (b) Light-weighted technique, and (c) Selective check based technique.

Unlike both Fig. 4.1(a) and Fig. 4.1(b), in this research we propose to insert

selective checks into the data-path based on the operation defective probability

(ODP), as shown in Fig. 4.1(c). The ODP of an operations is calculated according

to the number of gates the operation uses. The branch of the data-flow-graph

(DFG) with ODP larger than a threshold is regarded as a potential candidate to

contain permanent faults, and a check instruction will be inserted at that branch

to help a deterministic verification. Furthermore, our ODP calculation also takes

the influence of special inputs into account, i.e., certain inputs of circuits can put

parts of the circuits into don’t care zones. Potential errors in these gates will not

contribute to the final potential error rate and are thus carefully removed from

the influence chain, in order to further reduce the number of check operations

without affecting the dependability.

The results show that our proposed technique achieves near-optimal depend-

ability by reducing the checking instructions to 60%. By allowing a slight in-

crease of the error propagation rate (2%), our approach is able to further reduce

the number of check instructions to a 37% level, as compared to the exhaustive

check method. The removal of non-critical check instructions can contribute to

the energy saving in the dependable execution. Under the allowance of 2% error

propagation rate execution, 22% energy can be saved by avoiding the thorough

17

checking.

2. Construction ODP-Aware Data-Path

2.1 Selective Check Instruction in Redundant Data-Path

In this research, we mainly focus on reconfigurable architectures [8,9] which con-

tain a large pool of resources to exploit extreme parallelism. We use LAPP [5,31]

as our baseline architecture, which is a reconfigurable architecture containing an

array of FUs for accelerating image processing applications. LAPP consists of a

large set of combinational units and networks to which ECC protection cannot

be applied as easily as in the data-center research [12] with an acceptable cost.

Several architectural methods have already been proposed to achieve a relatively

effective fault tolerance in combinational logic. Specifically, dual modular redun-

dancy (DMR) with a check after the dual executions can guarantee that no soft

error goes undetected [16]. As reconfigurable architectures such as LAPP [5,31]

are originally rich in resources, DMR with checks from software level can be

applied flexibly and efficiently with the understanding of the DFG inside the

architecture.

To detect the permanently defective unit inside the DMR execution, the

straightforward method is to exhaustively check all the instruction executions in

order to gain the information of all units used, as have been shown in Fig. 4.1(a).

After that, on-line test or tuning can locate the defective unit at that erroneous

spot. An alternative way is to add one check instruction at the end of data-path

(Fig. 4.1(b)). However, it downgrades the dependability as described in Section 1.

In this research, we use selective check instructions together with DMR to create

correct executions and locate the possible erroneous spots. Fig. 4.2 gives a brief

introduction of this method.

Fig. 4.2 gives the algorithm to put the duplicated DFG into the FU array.

During the mapping of the DFG, basically, each instruction will be duplicated by

map(i,i’). Along with the mapping, we also study the vulnerability of each

instruction by using get vulnerability(), which provides the possibility of

permanent fault inside this hardware unit. Later sections will give a detailed

18

sum = 0; /* Accumulated vulnerability in data-path */

last need check = 0; last inst = NOP;

while (!end(DFG)) {
/* To map data-flow-graph (DFG) in FU array */

i = fetch inst(PC);

/* Duplicate & selective check in map */

if (last need check)

map(i, i’, check(last inst));

else

map(i, i’);

/* Analyze vulnerability of instruction */

sum += get vulnerability(i);

if (sum > th) {
/* Critical spot */

last need check = 1;

sum = 0;

}
else

last need check = 0;

last inst = i;

PC++;

} /* end of this cycle */

Figure 4.2. Algorithm to selectively add check instruction.

explanation of get vulnerability(). Only when the accumulated vulnerabil-

ity ‘sum’ becomes larger than a predetermined threshold ‘th’, a check instruction

will be added, following map(i,i’,check(last inst)), where ‘last inst’ is the

instruction in previous cycle. ‘last inst’ is used in the check because the re-

sults of the duplicated instructions will be known in this cycle. By this way, the

19

data-path in Fig. 4.1(c) is obtained.

By introducing a selective check according to ODP, the number of check in-

structions is reduced, as shown in Fig. 4.3(b). With the help of selective check

instructions, only the segment with an error report needs to be checked in detail

for the defective unit. For example, in Fig. 4.3(b) the chk-I5 is the first check

instruction to report an error, since I2 is mapped on a defective unit. Thus,

only the dependent instructions (in Fig. 4.3(a)), I2 and I3, need to be checked

to locate the permanent failure as shown in Fig. 4.3(c). At the same time, due

to the previous checks, the instructions inside other segments are judged to be

previously mapped inside the correct units. Therefore, they need to be inside the

DFG only for the completion of the data-path. No DMR execution is necessary

for these instructions, as is shown in Fig. 4.3(c). Consequently, the number of

check and redundant instructions is reduced significantly during the permanent

defect location. Although the period of locating permanent fault in Fig. 4.1(a)

is short, we are not increasing 1/3 power consumption by avoiding exhaustive

checking. The burst of power hungry mode as in Fig 4.1(a) is thus avoided.

2.2 Calculation of Defective Probability

Mukherjee and et al. [15] have stated that various programs will respond differ-

ently to the same fault rate, according to their different architectural vulnerability

factors (AVFs). AVF gives a measure of the probability that a fault will turn into

a visible error. Given that the soft error occurs in a certain memory block, it will

become an error only when the latter calculation depends on this faulty block.

The AVF of a program depends on its working behaviors, especially the memory

access intensity and frequency.

Similarly, we are using the idea of operation defective probability (ODP) in

this research to selectively add data verification instructions. We extend the above

AVF, which is for soft errors only, to handle permanent faults. In this research,

we treat the permanent fault occurrence probability as in proportion to the gate

number inside the functional unit. It is expected that the possibility of the

wear-out faults as well as the manufacturing faults is increased with the number

of gates used inside the functional unit. For example, a 1-bit AND operation

requires two 2-input NAND gates, while a 1-bit XOR operation uses four 2-input

20

I1 I2 I3

I4 I5

I6 I7

I8

1
2
3

0

4
5
6
7
8

FU0 FU1 FU2Stage

I1 I1’

I2 (x) I2’

I3 I3’

I4 I4’

I5 I5’

I6 I6’

I7 I7’

I8 I8’

chk-I4

chk-I5

chk-I8

1
2
3

0

4
5
6
7
8

FU0 FU1 FU2Stage

I1

I2 I2’

I3 I3’

I4

I5 I5’

I6

I7

I8

chk-I2

chk-I3

chk-I5

(a)

(b) (c)

Sum > th

Sum > th

Sum > th

Zone1 Zone2

Zone3

Figure 4.3. Cost-effective permanent fault locating: (a) DFG, (b) DMR mode

with reduced check instructions, (c) Locating a permanent fault after chk-I5

reports error.

NAND gates. As a result, the lifespan of the XOR will be relatively shorter

than the AND unit under a given gate defect ratio. Applying the consideration

to arithmetic operations, the defective probability to a permanent defect may be

even larger due to the large area and the complex wire interconnections inside the

arithmetic operations. For example, a 1-bit full adder takes nine 2-input NAND

gates to finish the calculation. A large word-length multiplication uses several

stages of adder chains and partial product generators. These units are thereby

21

vulnerable to soft error and permanent defects because of their large hardware

areas and relatively long data paths.

Table 4.1. ODP of the baseline ISA for this study.

Types of
Operations

Number Defective

Operations of Gates Probability (%)

Logic

AND 176 0.10

OR 176 0.10

XOR 208 0.12

SLL/SRL 1, 020 0.58

Arithmetic

ADD 892 0.50

SUB 1, 022 0.58

MUL 5, 130 2.90

SLA 1, 005 0.57

Media

MSRL 792 0.45

BYTE-HALF 219 0.12

SUML/H 996 0.57

HALF BYTE 854 0.48

SAD 2, 970 1.69

UADD 1, 320 0.75

USUB 1, 398 0.86

MUL 2, 569 1.46

Memory
LOAD 892 0.50

STORE 892 0.0

We give ODP to permanent defects in Table 4.1 by studying the typical op-

erations from the FRV Instruction-set architecture [26]. As shown in Table 4.1,

these operations can be categorized into four types: logic, arithmetic, media and

memory. Although the FUs for these operations may merge and share circuits

between operations to achieve the optimized design in both power and area, in

this research, we implement these operations into separated units, from the view-

point that each operation takes an independent and individual path in the FUs

22

and for every calculation, only the corresponding path is activated. The FUs are

implemented into Verilog HDL modules and then synthesized by Design Com-

piler with a 180nm cell library to obtain the area in the number of gates, as

listed in Table 4.1. In addition, we treat AND operation as having a defective

probability of 0.1%1. The other vulnerable probabilities are thus calculated by

0.1% × AreaOP
AreaAND

. As discussed above, logic operations are relatively less complex

in hardware than other units, and their ODPs are thus relatively small. The

arithmetic instructions take medium ODPs, except for the very large multipli-

cation unit whose ODP reaches 2.9%. The media operations are a combination

of logic and arithmetic operations and thus tend to show large ODPs. Finally,

for LOAD instruction, it has been assumed that the memory is protected with

error correcting code (ECC) so that the loaded data can be regarded as error

free results. The only vulnerability in LOAD comes from the address calculation

part which is the same as the ADD operation. To guarantee that there will be

no tainted value by faults to the data storage, in our high dependable LAPP,

the STORE operation is originally designed to take checked data before the real

commitment, by embedding a check instruction inside it to check both data and

address. For this reason, although the address calculation part of STORE still

contains 892 gates, the ODP of this address calculation will be updated to 0%

as the in-store check determines the correctness of the address and makes the

defective possibility to 0%.

2.3 Optimizing of the ODP for Constant Input

In Section 2.2, we calculated the ODP of a particular operation based on the size

of the circuit. Due to the behavior of certain gates such as NAND2, NXOR2,

the sensitivity to faults—measured as ODP in our approach—can be further

reduced when a constant value is provided to an operation. As an example, given

a constant LOW input in an AND gate, it will always have the LOW output.

Thus, any fault (stuck at 0 or stuck at 1) on the other input wire of this AND

gate is masked and turned into don’t care. Similarly, with an input provided to

be logic HIGH, an OR gate can ignore the sensitivity of faults in its other input

1Although the value may be far larger than practical meanings, we simply use it here to
demonstrate how our methods work accordingly to these assumed ODP values.

23

ports. As a result, compared to operations with variable inputs from prior circuits

or register files, an operation with an immediate source operand will demonstrate

less sensitivity to faults, since part of its sub-circuits can be logically masked into

don’t care zones which contribute 0% ODP.

Rather than counting the insensitive inputs, we use don’t care gates by the

constant value in order to update the ODP with immediate operand in our ap-

proach. Fig. 4.4 shows the method to calculate the sensitive gates of an adder

while one input is constant. In Fig. 4.4, the gate-level schematic of the adder

and a table containing the gate usages for different constant input patterns have

been shown. For the pattern <X, 0, 0>= <A,B, Cin> the input ‘A’ is a variable

and ‘B’ and ‘Cin’ are LOW. Two XOR gates are used for calculating the sum.

However, two AND gates can be replaced with wires since both have a constant

LOW input. Again, similarly for the input pattern <X, 1, 0> AND gate 1 can

be ignored. This illustrates the sensitive gates for a constant input has been

reduced. Accordingly, we change the ODP calculation from 0.1% × AreaOP

AreaAND
to

0.1% × AreaOP×S(#imm)
AreaAND

, where S(#imm) represents the ratio of sensitive circuit

area under the given #imm inputs.

A

B

Cin

Sum

Cout

Inputs
Gate Usage

X 0 0

X 0

X 0

X

1

1

1 1

XOR AND OR

2 0 0

2

2

2

1 1

1 1

12

1
2

1

2

1

Figure 4.4. NAND gate error analysis for constant Inputs.

Based on the above assumption, the sensitive gates are calculated for the

operations of our baseline ISA. The average of different constant values of the

benchmark functions for an operation is included in Fig. 4.5. Specifically, the

operations with large areas under variable inputs can be significantly reduced

to a level of halved or even smaller circuit areas. The originally small-sized

operations such as AND, OR and BYTE-HALF do not show visibly important

area reduction, due to their relatively less complex implementation. All these

24

results thus give a more accurate estimation of the ODP inside a real program,

which is able to help reduce further the number of exhaustive checks and lower

the resource utilization. The approach to calculate the ODP of operations in

data-flow-graph (DFG) will be introduced in the next subsection by using the

updated ODPs.

 200

 400

 600

 800

 1000

N
um

be
r

of
 g

at
es

 0

Variable inputs

Constant inputs

ADD
SUB

SRL
SLL

AND OR

BYTE-H
ALF

M
SRL

SUM
L/

H LD ST

Figure 4.5. Area required for the constant input operations.

2.4 Adding Check Instructions According to ODP

Table 4.1 shows the defective probability of each instruction. Assuming that each

operation takes two source operands and produces one result, we can design

get vulnerability() in Fig. 4.2 by calculating the probability of the error of

the result as follows:

1− Pr(out) = (1− Pr(op))
2∏

i=1

(1− Pr(si)) (4.1)

Pr(s1) and Pr(s2) are the probabilities of errors in the source operands, while

Pr(op) is the error probability coming from the operation itself. It can be imag-

ined that the Pr(op) has a direct connection to the defective probability in Ta-

25

ble 4.1, augmented with the insensitivity from constant inputs in Section 2.3.

Assume that the whole data path starts from several checked inputs such as val-

ues from the ECC-ed register file which has 0% probability of error. The output

of the first operation will have a probability of error regarding the operation itself.

The successive dependent data will inherit this probability of error and adds a new

probability when the data goes forward through the data flow graph. Although

the values of defective probability in Table 4.1 are actually much larger than a

practical probability of error, we are still directly using these values as Pr(op) in

the remaining parts of this chapter to introduce the idea. By this means, we are

able to tag the results with the probability of permanent error inside the whole

data path.

Fig. 4.6 gives a detailed illustration of using ODP in get vulnerability()

in algorithm of Fig. 4.2. For simplicity, we assume that the threshold of error

probability is 1.0%. The data flow graph starts by taking inputs R1, R2, R3 and

R4 from the register file or memory, which are previously checked results and

protected by ECC. It ends by committing the final result R6 into the memory.

Basically, every operation will be doubly executed and the final result R6 will be

compared before being written to memory.

In Fig. 4.6, the defective probability of each operation is shown inside the

operation. After stage 2, both R1 and R2 get error probabilities that exceed the

threshold. The check instruction is thus added to make a fast determination

whether or not an error has happened there. This also covers Zone1 and Zone2,

as shown in Fig. 4.6.

It is possible that the data-path will take backward bypassing data, such

as OP7(R4+=R5) in Fig. 4.6. Considering that this data path represents a loop

body, operation R4+=R5 takes its first operands from the register file in the first

iteration and updates itself afterward. For the first iterations, the vulnerability

of the output of OP7 denoted as Pr(R4[1]), is calculated as previous equation (4.1).

From the second iteration using Bayes’ theorem the correctness of the output of

OP7, as Pr(R4[2] correct) is calculated as:

Pr(R4[2] correct) =Pr(R5, OP7 correct)×Pr(R4[1] correct |R5, OP7 correct)

(4.2)

26

OP8
0.2%

OP7
0.5%

OP6
0.5%

OP4
0.5%

OP5
0.5%

OP1
0.5%

OP2
0.5%

OP3
0.2%

R
1

(0%
)

R
2

(0%
)

R
3

(0%
)

R
4

(0%
)

R
5

(0%
)

R
6

(0.5%
)

R
3

(0%
)

R
7

(0.5%
)

R
8

(0.2%
)

R
5

(0%
)

R
1

(1.0%
)

R
2

(1.2%
)

R
5

(0%
)

R1(0%
)

R2

(0
%

)

R
4

(0.5%
)

R
3

(0.5%
)

R
6

(1.2%
)

R
6

(0%
)

S
tage 1

S
tage 2

S
tage 3

S
tage 4

Zone1

Zone3

Zone2

Chk-op4

Chk-op5

Chk-op8

Figure 4.6. Adding check instruction on a DFG based on Eq. 4.1.

However, as R4[1] depends on R4[0], R5 and OP7, when R5, OP7 are correct,

the only dependency becomes R4[0]. For this reason, we can have:

Pr(R4[1] correct |R5, OP7 correct) = Pr(R4[0] correct) (4.3)

Using equation (4.3) in equation (4.2) we can have

27

Table 4.2. Benchmark programs.

Functions
Number of Number of Types of

Instructions Independent Trees Program

Expand4k 73 2

A

Unsharp 63 1

Wdifline 57 1

FI-1 40 1

Blur 20 1

FI-3 14 1
B

Tone 12 1

FI-2 68 8 C

Pr(R4[2] correct) =Pr(R4[0] correct)×Pr(R5, OP7 correct)

=Pr(R4[1]correct)
(4.4)

Therefore, we can expect that from the second iteration Pr(R4[n]) = Pr(R4[n− 1]).

We thus fixed the possibility of faults in loop-back R4 by the above means.

3. Results

3.1 Workloads and Characteristics

In this section, we present the results of our proposed technique based on ODP-

aware selective checking. We tried our techniques on eight image filter functions.

The size and the number of independent tree of the functions are described in

Table 4.2. Fig. 4.7 show three different types of data flow graph in FU array.

There is a long data graph in Fig. 4.7(a), and a small data path in Fig. 4.7(b).

Both of them have a final single output to the memory. Fig. 4.7(c) gives a data

graph with many independent branches, where all the branches are end up in

writing results to memory. The benchmark functions are classified as Type A,

Type B and Type C according to Fig. 4.7(a), 4.7(b) and 4.7(c), respectively.

We used a cycle-accurate architectural simulator [5] to get the energy data

28

OP OP OP OP

OP OP

ST

OP OP

(a) A long data-path with many in-
structions.

OP OP OP OP

OP

OP

ST

(b) A small data-path with few in-
structions.

OP OP OP OP OP OP OP OP

STSTSTST

Branch 1 Branch 2 Branch 3 Branch n

(c) A program with many independent branches.

Figure 4.7. Three kinds of data flow graphs.

of the executions of the programs with the selective check instructions. The

parameters of the baseline processor in the architectural simulator are listed in

Table 4.3. Specifically, power data of each unit in the baseline processor has

been obtained by the PrimeTime with a 180nm cell library, under the working

condition of a 1.8V supply voltage. Together with the utilization of each unit,

which is extracted from the simulator itself, the total energy consumption with

the fine-grained power gating scheme can be obtained. Paper [19] has introduced

the accuracy of this simulator, verified by the real data from a 180nm-based

prototype ASIC.

As can be expected, this study mostly depends on the instruction types and

their distribution. Thus, we calculate the incidence rate of the different instruc-

tions of the benchmark functions, which are shown in Fig. 4.8. We categorize

29

Table 4.3. Simulator specification.

Stage0

Decode Width max. 8 inst./cycle

General Register 32

Media Register 32

Data transfer speed
8bytes/cycle

(with ext. cache)

Instruction Cache 4 ways 16 KB (64byte/line)

L1 Data Cache 4 ways 16 KB (64byte/line)

L1$ → L0$ Data Transfer Rate 16bytes/cycle

Store Buffer 4 entries

50 Stages

Number of FUs 200 (4 FUs × 50 rows)

Instruction Mapping Speed 4 ways 256B (16bytes/cycle)

Inter L0$ Data propagation rate 16bytes/cycle

L1$→L0$ Data transfer rate 16byte/cycle

L0$→LSU Data transfer rate 4byte/cycle

Store Buffer 1 entry

the instructions by memory accesses and logic/arithmetic/media operations. As

can be easily observed from Fig. 4.8, the ratio of instructions in a function varies

according to the application characteristics. For example, FI-2 and FI-3 have

only memory accesses and logic operations. Differently, Expand4k, Unsharp and

Blur have a high ratio of media operations. According to our technique, these

functions require more check instructions, since media operations have a higher

level of ODP and may be more possibly turned into a defective unit.

Furthermore, we optimized the ODP of the instructions with a constant input

to reduce the number of check instructions further as introduced in Section 2.3.

Fig. 4.9 shows the ratio of instructions with a constant input inside the functions.

Note that most of the address calculations for the memory access operations

have one constant input as the offset to the base address. As an example, LD

R1,@(R10,#4) is a memory access operation, in which, (R10,#4) calculates the

memory address by taking an immediate input #4. Therefore, there is a rough

30

 0

 20

 40

 60

 80

 100
R

at
io

 o
f i

ns
tr

uc
tio

ns
 (

%
)

Exp
an

d4
k

Uns
ha

rp

W
dif

lin
e

FI-1 Blur FI-3
Ton

e
FI-2

Media Logic & Arithmetic Memory Access

A B C

Figure 4.8. Incidence of instructions.

tendency that programs with a large portion of load operations is likely to have

a higher ratio of operations with constant inputs. As an example, the difference

between FI-2 and Expand4k in Fig. 4.8 and Fig. 4.9 gives a good demonstration of

this tendency. Another rough observation is that media operations contribute far

less constant inputs than other types. As a result, for Wdifline, the low ratio of

constant inputs overwhelms the gaining of high ratio from the memory operations,

which results in a medium level of fixed input ratio in this benchmark in Fig. 4.9.

Overall, the average result shows that it is possible to update the ODP more

precisely in 65% instructions with the insensitivity from constant values, which

may have a visible increase in the accuracy in avoiding non-critical checking.

3.2 Reduction of Check Instructions

Fig. 4.10(a) gives the number of check instructions by using algorithm (Fig. 4.2)

and ODPs in Table 4.1. Fig. 4.10(b) shows the results of more precisely updated

ODP by taking constant inputs into account. For comparison, both figures also

include the ratio of check instructions from the light-weighted technique, which

31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

R
at

io
 o

f t
he

 fi
xe

d
in

pu
t i

ns
tr

uc
tio

ns
 (

%
)

Exp
an

d4
k

Uns
ha

rp

W
dif

lin
e

FI-1 Blur FI-3
Ton

e
FI-2

Ave
ra

ge

A B C

Media Logic & Arithmetic Memory Access

Figure 4.9. Incidence of instructions with a fixed input.

only adds the check instruction at the end of the execution-path. It can be ob-

served from Figs. 4.10(a) and 4.10(b) that the light-weighted method can achieve

the smallest number of check instructions. However, we can also find in these

figures that the difference of the check instruction ratio is very small between

the light-weighted method and our proposal when ODPth=10%, as compared to

other ODPth values. A detailed analysis indicates that the difference between

ODPth=10% and the light-weighted method is usually within one check instruc-

tion, which helps divide the loop kernel into two branches and accordingly isolates

the error propagation so as to increase the dependability. From this view, we can

roughly represent the light-weighted method by taking a large ODPth such as

10% or more. However, although these large ODPths help reduce the check in-

structions largely, their corresponding reliability will be traded off, which will be

discussed in detail in Section 3.3.

It can be predicted that the number of check instructions will be dominant by

the ODP threshold used in our method. However, there are some other param-

eters that change the final insertion of selective check instructions, such as the

32

type of instructions, the length of the critical paths, and the number of branches

inside the functions. For example, in Fig. 4.10, functions from Unsharp to FI-1

(Type A) contain a lot of media operations. A low ODP threshold 0.1% leads to

about 95% selective check instructions, and they will divide the program into 1-

instruction zones. However, this represents situations of impractically high error

rates. With a threshold 0.5% or higher, the number of selective check instruc-

tions can be largely reduced. Specifically, for a threshold of 10%, the number of

check instructions can be averagely reduced to a 7% level, in which the added

check instructions segment the data path into 5 or 6 zones, each contains 17%

instructions.

Secondly, programs with a short critical path (Type B), as Blur, FI-3 and

Tone, behave differently from the programs in Type A. The increase ratio of the

check instructions is high for low ODP thresholds. However, for the thresholds

over 5%, no additional check instructions are required other than checking the

final result. On average, these programs have 15% check instructions, and for

large thresholds, only the check instruction for the final result covers the whole

data path.

Finally, the Type C function, FI-2, which contains many independent data

paths, also behaves in the same way as the Type B function. In FI-2, there is

one store per each independent data branch, which has been designed to contain

a built-in check. These in-store checks have already segmented the whole data-

path into small zones, which do not eagerly require additional checks to lower

the criticality of the ODP accumulation. For this reason, the number of check in-

structions stops growing at ODPth = 5%. The total number of check instructions,

including the in-store checks, remains at 8% even when ODPth = 10%.

According to the Figs. 4.10(a) and 4.10(b), the number of check instructions

differs by taking or not taking the influence from the constant input into ac-

count. The maximum difference can be found when ODPth=0.5%, averagely.

Furthermore, studying the individual programs, we can have the following de-

tailed observations:

1. Under ODPth=0.5%, benchmark programs Unsharp, Wdifline, Blur, Tone

and FI-2, show large differences by using the insensitivity from the fixed

input in calculating ODP. These benchmark programs contribute to most of

33

the reductions from Figs. 4.10(a) to 4.10(b), which is 13.2% under ODPth=0.5%.

This may come from their relatively high ratios of constant input opera-

tions. However, in other than ODPth=0.5%, minor changes can be found

between Figs. 4.10(a) and 4.10(b) for these benchmarks.

2. Programs Expand4k and FI-1, show very minor changes under most ODPths.

3. The best ODPth to distinguish Figs. 4.10(a) and 4.10(b) for benchmark FI-3

is ODPth=1.0%.

The above observations can be connected to the combination of the program

characteristics such as the ratio of the operations with a fixed input, the distri-

bution of operations with a fixed input among all the operation types, and the

weight of all input operation types. For example, Expand4k and FI-1 have a

small number of operations with a fixed input, they therefore have less changes

after taking the fixed input into account. FI-3 has a medium ratio of operations

with a fixed input. However, it has a relatively short data-path, which is 14 op-

erations in Table 4.2. In addition, the 14 operations in FI-3 are mainly the logic

and arithmetic ones, which have a simpler distribution as the other benchmarks.

Therefore, FI-3 shows some differences between Figs. 4.10(a) and 4.10(b) under

ODPth=1.0%, which is slightly different from other benchmarks.

3.3 Dependability and Energy Savings

By adding different numbers of check instructions, we are changing the depend-

ability of the data-path by preventing the tainted data from the defective unit

propagating inside the data path. The data propagation is usually safe when

every instruction is duplicated and checked at the output point of the data-path.

However, a prior research [12] on hard error in a data-center also states that the

hard error rate will be very high for the servers that have previously experienced

a hard fault. Therefore, it is possible that during the propagation of the tainted

data, the dependability will go unpredictable when facing a second error before

the tainted data is detected. For this reason, we use the metric of error propa-

gation distance to measure the dependability of the data-path. The propagation

distance is defined as the delay between the error generation node and the de-

tection node inside the DFG. For a 10-node single branch data-graph, if we have

34

only one check instruction at the end, the propagation distance will be 9 if an

error occurs in the first node.

Accordingly, the reliability is calculated in term of vulnerability to a second

error, as follow:

E =
n∑

i=1

Pi ×Di (4.5)

In Eq. 4.5, n is the number of instructions in a segment. This segment refers

to a DFG segment between two check instructions added according to the ODPth

in this research. Pi is the ODP of an instruction and D is the error propagation

distance. According to Eq. 4.5, the vulnerability to a second error is 0% when

all the instructions are protected by a check instruction, as the distance Di is

0. With the decreasing number of check instructions under an increasing ODP

threshold, the vulnerability to a second error, as E in Eq. 4.5, will increase.

The reliability of our proposed technique with considering and without con-

sidering the fixed input is depicted in Fig. 4.11. Fig. 4.11 clearly shows that

the propagation distance decreases sharply from the light-weighted method to

ODPth=10% and then to ODPth=5.0%, which indicates that these large ODPths

may suffer more from the occurrence of a second error when the first error is still

inside the data-path before detection. However, the decrease of error propaga-

tion distance goes rapidly flat when ODPth corsses 1.0%, indicating a saturation

in the check instructions. This also matches the expectation that the depend-

ability increase will be exponentially difficult after it reaches a certain level so

that balancing cost and efficiency is necessary. In addition, from another view,

at ODPth=1.0%, when a 1.0% longer error propagating distance is allowed, the

check instructions can be further reduced to a 66% level.

Studying the influence of applying constant inputs in ODP, it can be easily

observed that two lines are almost overlapping each other, which indicates that

applying the insensitivity of fixed input to decrease ODP does not hurt the re-

liability. There is almost no difference between ODPth=0.5% and ODPth=0.1%,

and for ODPth=0.5%, 39% check instructions can be saved while the influence of

the fixed input are not considered. There are 52% check instructions that can be

removed from the DFG by considering the influence of fixed inputs for the same

ODPth. Another observation, at ODPth=0.1%, is that when a 1.0% longer error

35

propagating distance is allowed, the check instructions can be further reduced to

the 66% level.

Fig. 4.12 gives the energy saving results by the proposed method, as normal-

ized by the energy of the original exhaustive checking method. Fig. 4.12 also

shows that we can save more energy by means of optimized ODP than the nor-

mal ODP especially for ODPth=0.5%. Combining with the results in Fig. 4.11,

we can achieve the same near-optimal reliability at ODPth = 0.5% ODPth = 0.1%

by saving 17% more energy. If 1.0% downgrading of reliability is allowed, further

22% energy reduction is possible by using ODPth = 1.0%.

4. Summary and Discussion

In this dissertation, we have presented a technique to remove check instructions

from non-critical positions to avoid an exhaustive checking for fault-tolerable

execution. The method can efficiently work with a reconfigurable FU array ar-

chitecture to achieve high dependability with awareness of the fault possibility.

In our approach, check instructions are added selectively according to the error

probability (ODP) along the data path when the accumulated possibility exceeds

a threshold. In addition, we also studied the influence of constant inputs as they

can turn parts of the circuit into don’t care zones and therefore help reduce the

sensitivity to the faults.

Our study of the dependability of the updated data-path has shown that the

reliability can still be kept at a near-optimal level when properly removing 52%

non-critical check operations. This results in an energy saving of 17% for high

dependable execution. With an allowance of downgrading 1.0% reliability, it is

possible to reduce the energy further by 22%. In summary, a cost-effective high

dependability method has been achieved by using our ODP metric in the FU

array processor.

36

Exp
an

d4
k

Uns
ha

rp

W
dif

lin
e

FI-1 Blur FI-3
Ton

e
FI-2

Ave
ra

ge

R
at

io
 o

f c
he

ck
 in

st
ru

ct
io

ns
 (

%
)

Exp
an

d4
k

Uns
ha

rp

W
dif

lin
e

FI-1 Blur FI-3
Ton

e
FI-2

Ave
ra

ge

A B C

(a)

(b)
A B C

 0

 20

 40

 60

 80

 100
Ratio of check instructions w/o considering fixed inputs

Ratio of check instructions /w considering fixed inputs

0.1% 0.5% 1.0% 5.0% 10% Light-weighted

R
at

io
 o

f c
he

ck
 in

st
ru

ct
io

ns
 (

%
)

 0

 20

 40

 60

 80

 100

Figure 4.10. Ratio of check instructions for different thresholds.

37

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0.10.51.05.010.0Light
weighted

P
ro

pa
ga

tio
n

di
st

an
ce

ODP threshold (%)

W/ considering fixed inputs
W/O cosidering fixed inputs

Figure 4.11. Vulnerability to the second error for different check instructions.

 0

 5

 10

 15

 20

 25

 30

 35

0.10.51.05.010.0

E
ne

rg
y

sa
vi

ng
s

(%
)

ODP threshold (%)

W/ considering fixed inputs
W/O cosidering fixed inputs

Figure 4.12. Energy savings for 10M executions.

38

Chapter 5

Improvement of Robustness of

Partial Redundancy by Using

SDC Prediction

T
echnique to improve the robustness of partial redundancy by using SDC

prediction is discussed in this chapter. Results and discussion of this tech-

nique are also included.

1. Introduction

Fully duplicated execution of either the temporal [18] or the spatial [16, 30] re-

dundancy can provide a good fault-tolerance for SEEs. However, the increased

chip area, execution time and energy consumption due to the full duplication

are usually not preferred in most circumstances, since they interfere with power-

efficiency, and power efficiency is the most important requirement of the mar-

ket. Many techniques have already been used to exploit possible trade-offs be-

tween efficiency and dependability. A well-used method is to categorize the data

into zones of different importance and then treat them accordingly. The ERSA

method [13] has demonstrated a way to put a different fault tolerance on the

control and the data paths in an image processing application. For example, the

program characteristics in image processing applications can be abstracted into

loops, as shown in Fig. 5.2(a), where the loop index controls all pixels calculations

39

and is therefore regarded to be more important than the pixel data. The corrup-

tion of the loop index usually leads to the abnormal end of the program and thus

needs to be fully covered by error-resilience techniques. The other data including

processed pixels can tolerate a limited number of errors. The partial redundancy

can thus use an imperfect but low-cost fault-tolerance. Fig. 5.2(b) demonstrates

this idea of partial redundancy by only adding a duplicate execution and a check

on the loop index.

Apart from image processing, applications based on approximate calculations

such as decision making from probability exploration, machine learning, computer

vision, and so on, may similarly apply different dependability/cost methods for

their various types of internal data [13].

However, as the calculations and data inside the loop body are not cov-

ered by any redundancy (Fig. 5.2(b)), they may suffer from silent data corrup-

tions (SDCs), especially in a worst-case situation. Fig. 5.1 gives a general de-

scription of this problem. The full redundancy, i.e. dual modular redundancy,

can detect and address every SEE, while its cost is, however, doubled due to the

duplication. The partial redundancy cost is minor, since it only covers the most

important data such as the control instructions of the program. Under a low

SEE rate, the correct execution of the control flow can provide a sharp increase

in the dependability, as compared to the non-redundancy execution, in which the

execution may abort before completion if SEE hits the control flow. However,

when the fault rate increases, SEEs are more likely to accumulate inside the un-

protected loop body execution zones and then become SDCs. The relatively large

code size of the loop body will increase the SDC rate, and thus lower visibly the

dependability, as is seen in Fig. 5.1.

In order to solve the above problems, we propose a method to achieve an

improved dependability by calibrating the past executions and predicting the

future error rate. A small test program is executed along with the program data-

flow-graph (DFG) to sample the error rate. A strategy unit is then used to provide

a bias between the partial and the full redundancies based on on-the-fly error

monitoring of SEE data, together with the instructive program characteristics

of the coming program interval. Under a very high fault injection rate with 10

errors being injected into our baseline microprocessor per second, the SDCs of

40

the traditional partial redundancy is 12%. By our method, it has been reduced

to 0.37%, and a two-order improvement in the error rate, with an additional 8%

energy cost.

Energy Consumption & Hardware Overhead

Non
Redundant

Partial Redundancy
with out test program

Full Redundancy
(DMR)

 0

 20

 40

 60

 80

 100

D
ep

en
da

bi
lit

y
(%

)

Low SEE
Medium SEE

High SEE

Figure 5.1. Dependability of the traditional partial redundancy under different

SEEs.

2. Proposed Technique

2.1 Outline of the Proposal

In this work, our target is to improve the dependability of partial redundancy for

all kinds of SEE rates, while maintaining its low cost. Our approach is built on a

sampling and prediction of the coming SDC rate. Partial redundancy is still the

main working mode in our system. Additionally, for the purpose of robustness,

we add a small full-redundant portion as a supporting mode, at the necessary

points indicated by the SDC prediction result.

Fig. 5.3 shows the basic flow of the proposed method. For the error sampling

we added instruction blocks with a self error detection ability along with the

41

i=0; i<N ?

loop body:
inst1:
inst2:

instN:

Next i;

(a)

Single
loop index

(b)

i1=0; i1<N;
i2=0;

i1==i2?

recover();loop body:
inst1:
inst2:

instN:

Next i1,i2;

Y

N

Duplicated
loop index

Redundancy

Figure 5.2. Partial redundancy example: (a) A non-redundant loop execution,

(b) Partially redundant loop execution by explicitly duplicating the loop index

calculation.

program execution to keep a sample of the fault rate. In this work, we used a

test program originated from the XOR operation: C=XOR(A, B); D=XOR(A, C);

e flag = (B!=D);. When the two XOR operations are correctly executed, the

values of B and D will be identical. The e flag thus indicates that an SEE has

struck on any one of the three operations. Note that this error detection is in-

dependent of the executing programs. The test program blocks will be inserted

into the program execution at a certain frequency. As shown in Fig. 5.3, during

period t1 to t2, this test instruction block continuously collects the fault occur-

rences during program execution. Detected error occurrences are accumulated

in a counter (err counter, in Fig. 5.3), and later used as sampling values of the

fault rate.

The sampled fault rate will be used to predict the potential SDC rate, based on

information from the next program to be executed. The loop execution, as shown

in Fig. 5.2, is the typical program behavior that we explored to use for our SDC

42

inst1:
inst2:

i3=0; i3<N2;
i4=0;

i3==i4?

Test block

+ err_counter

SDC > th?

recover();

Y

DMR();

t0 t1 t2
loop execution

XOR

XOR

B!=D

A B

C

D e_flag

+

Sequential
instructions
execution,
w/ test blocks
inside.

instN:

Test block

Y: goto full DMR

N: partial redundancy

Test block

loop body:
 inst1:
 inst2:

instN:

Next i3,i4;

e_flag

SDC prediction:
based on the
err_counter,
and the loop
parameters.

Execution &
fault rate sampling

err_counter

Figure 5.3. Proposed partial redundancy.

prediction approach. Because most loops usually contain a predefined number of

iterations, given by the maximum loop index value, and an in-loop instruction

number, it is relatively easy to estimate the possible error rate in the program

about to be executed. Thus, before starting the loop at time t3 (Fig. 5.3), the

processor will make an SDC rate prediction based on the current fault rate,

indicated by the error counter, and the loop parameters. The mechanism of this

prediction will be introduced in detail in the next section. If the SDC rate reaches

a predefined threshold th, the loop execution will select full redundancy, indicated

in Fig. 5.3 as function DMR() where every instruction is duplicated and the values

from the two copies are compared at the end of the loop body graph. Otherwise,

the partial redundancy approach, which only duplicates the loop index execution

(Fig. 5.2(b)), will still be applied to save energy cost.

2.2 SDC Rate Prediction

Since we are predicting the SDC rate for the coming loop execution with current

fault rate, the following equation is used.

43

PrSDC = [1− (2× err)]N [1 − (1 − I × err)N] (5.1)

In Eq. 5.1, I is the number of instructions inside a loop, excluding the loop

index computation, and N is the number of loop iterations. err is the sampled er-

ror rate, calculated from err counter in Fig. 5.3. err represents the accumulated

number of errors detected by the test blocks in each execution interval. As the

partial redundancy approach itself has already considered the error check inside

the duplicated loop index execution, the predicted SDC rate should only indicate

the possibility of errors that escape the loop index checks and that strike on the

data execution in all of the N loop iterations. Therefore, Eq. 5.1 is designed to

follow Bayes’ theorem. It contains the following parts:

1) [1− (2×err)]N : Here, err gives the cycle-level per unit-sampled error rate,

calculated from err count in Fig. 5.3. This part of Eq. 5.1 gives the possibility

of correct execution for all the N loop indices by assuming that the error rate is

equally distributed inside the processor. The value “2” refers to the two instruc-

tions assigned to the loop index. A very high err leads to a small [1− (2×err)]N ,

which implies that errors can be captured with high possibility inside the dupli-

cated N loop indices, so that the probability of SDC decreases accordingly.

2) [1 − (1 − I × err)N]: This part is related to the rate of SDCs in the loop

body. (1− I × err)N is the possibility of correct execution of the remaining loop

body, for all the N iterations. The [1− (1− I× err)N] is then given the expected

SDC rate during the loop body calculation, which has I instructions. This part

has a tendency to increase when err increases, which increases the chances of the

processor using full redundancy by our baseline algorithm.

Fig. 5.4 shows the change in estimation of PrSDC , as a function of err count

by plotting Eq. 5.1. In Fig. 5.4, the PrSDC grows normally until point (A), at

which point the fault struck the test program. However, after point (A), the

PrSDC decreases due to the decreased [1 − (2 × err)]N , which means that, to

detect the error, we can rely more on the loop index check than on the test

program. In Fig. 5.4, the horizontal line “L”, which represents the threshold,

intersects with the estimated error curve at two points, denoted respectively as

(a) and (b). As shown in Fig. 5.3, when the predicted PrSDC is larger than a

predefined threshold th, a full redundancy will be scheduled. Therefore, full

44

redundancy will be applied to the region between (a) and (b) in Fig. 5.4 by using

the SDC prediction. The region below (a) and beyond (b) will be covered by the

partial redundancy approach.

L

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06

E
st

im
at

ed
 e

rr
or

 r
at

e

Number of detected error

(a) (b)

(A)

Threshold

Figure 5.4. Our predicted SDC rate as a function of err count.

2.3 Effectiveness of using SDC Prediction

Fig. 5.5(a) and Fig. 5.5(b) show the scenarios of SDC reductions before and after

applying our prediction mechanism to the original partial redundancy approach.

In the two tables, we use Y and N, respectively, to represent whether or not there

is a fault attack given by SEE. We also use + and - to denote whether the error

detection scheme is able or not able to figure out the fault attack. Therefore,

Y(+) represents a successful detection of SEE and N(-) also gives a good and

safe judgment. Y(-) is the scenario in which a fault occurs without detection,

and which thus becomes an escaped error.

As shown in Fig. 5.5(a), in the traditional partial redundancy, when there is

a fault strike on the loop index, it is detected, and the loop is then restarted for

the processor to recover from the erroneous state. Any fault striking on the loop

body will also be covered by this restart, so that any such fault is marked “Don’t

45

Care”. When the SEE only strikes on the loop body, the fault will escape the

loop index check and then lead to a Y(-), which then becomes an SDC.

Fig. 5.5(b) gives the scenarios of our proposed partial redundancy. In this fig-

ure, unlike Fig. 5.5(a), with an extra SDC prediction we are able to get additional

chances for checking by using the approach seen in Fig. 5.3 and in Eq. 5.1. For

example, faults that hit the test program will be detected, and a full redundancy,

such as DMR, will be used when PrSDC reaches the th. The SEEs on the loop

body will be addressed by DMR execution, which leads to a true-positive Y(+)

prediction scenario and reduces SDCs. An inaccurate (denoted as false-positive)

prediction occurs when there are actually no SEEs hitting on the loop body after

the DMR is scheduled. This leads to some energy consumption loss while the

execution is still safe.

3. Experiment setting: assuming error rates from

a radiation stress test

3.1 Error rates

In our research, high, medium, and low error injection rates are applied in our

workload simulation. As the purpose of the research is mainly to address SEEs,

we used a test chain of 1,080 Flip-Flops (FFs) to obtain the SEE rate under an

accelerated radiation. The irradiation test is performed by applying an alpha

particle source, 3 MBq 241Am, directly to the test FF chain in a bare chip. The

chip was manufactured with 180nm technology, which was originally designed

to work at 1.8V supply voltage. We applied, however, a 1.25V supply voltage

to accelerate the fault occurrence. A detailed discussion about the experimental

setup can be found in [30]. Our experiment has shown that the average erroneous

flipping rate in the FF chain is in the order of 10−4 flips/second. A preliminary

implementation of our baseline processor indicates that the number of unpro-

tected FFs reaches roughly the 105-bit level. When the processor works under a

1GHz frequency, the fault rate in each cycle is 10−8 flips, which is then adopted

as our high error injection rate. Hence, we apply 10−10 and 10−12 flips/cycle as

the medium and low error injection rates, respectively.

46

(a) Error detection in partial redundancy

On loop body only:
Y(-) //SDC

N(-) //no error

SEE
strikes

Y

N

On loop index:
Y(+) //Restart

On loop body:
Don’t Care by restart

Not on loop body:
N(-) //no SDC

(b) Error detection in proposed partial redundancy

N(-) s//no error
N

On test insts:
Y(+) //err_count ++SEE

strikes

Y

On loop index:
Y(+) //Restart

On loop body:
Don’t Care by restart

Not on loop body:
N(-) //no SDC

On loop body only:
Y(-) //SDC

PrSDC>th

On loop body:
Y(+) by DMR // no SDC

Not on loop body:
N(-) //over-estimated DMR

New in this proposal

PrSDC ≥ th

PrSDC < th

Figure 5.5. Improved error detectability by using PrSDC .

In addition, proton radiation has been tested on an IBM Power6 processor [21],

and the results showed that there are ∼1,748 flips in 2 days, while the operating

frequency of the processor is 5GHz, and the number of transistors is 790 mil-

lion. This processor was developed by 65nm technology. Also, a neutron test on

90nm CMOS technology [11] has shown that the fault rate increases at a 1.18x

exponential speed for an 10% reduction in voltage, and 8% increment in the fault

rate per generation. Based on the above results, then, SEE has been calculated

for our platform, and the calculated SEE for a neutron radiation is 10−14. This

value is lower than the low SEE injection rate in our setting. From our results

47

in latter parts, we assume the 10−12 SEE rate can represent this 10−14 rate from

the proton radiation.

3.2 Baseline platform and simulator settings

We use a cycle-accurate simulator, which abstracts the behavior of our reconfig-

urable architecture to get the performance and energy consumption data. Ta-

ble 5.1 lists the parameters in the simulator. Specifically, the FU array in the

reconfigurable architecture takes 80 rows, which is designed to be sufficient to

map the full DMR execution the DFGs we studied. Besides the 4 FUs in each

row, an L0 buffer with 4 entries is embedded in each FU array row to help the

fast load/store operations from/to the L1 cache. Both the L1 instruction cache

and the data cache are defined to be of 4-way 16KB storage size [31].

In this study, we tried our proposed technique on seven image filter functions,

as listed in Table 5.2. The purpose of each individual loop and the number

of instructions inside the loop body of each are also given in Table 5.2. Note,

for example, that Edge, Tone and Blur have fewer than 20 instructions, while

Wdifline, Unsharp, FI and Expand4k are relatively large loop bodies with more

than 40 instructions. Their behaviors are thus expected to differ even under the

same error injection rate, and may therefore respond differently under both the

traditional partial redundancy scheme and our biased partial/full redundancy

system.

4. Results

4.1 Overall Reliability Vs. Energy Consumption

The error rate data in Table 5.3 are the average numbers of erroneously executed

iterations among our workloads under a non-redundancy, original partial redun-

dancy and our SDC-prediction based approaches. Applied to image processing

applications, these rates are related to pixel errors, assuming that each iteration

processes one pixel.

As shown in Table 5.3, under our SEE injection rates, the non-redundancy

mode does not work well, since there are abnormal program ends due to the incor-

48

Table 5.1. Evaluation setup

Simulator

Cycle accurate Yes, f=1GHz

Number of FUs 320 (4 FUs × 80 rows)

L0 data cache size 4 entries per row

L1 data cache Size 4 ways 16KB (64bytes/line)

L1 Instruction Cache size 4 ways 16KB (64bytes/line)

Error Monitoring Support

sampling interval 1012 cycles

Moving window size 1014 cycles

Error Injection Ratio (bit-flip per cycle)

Low SEE 10−12

Medium SEE 10−10

High SEE 10−8

rectly processed loop indices. This indicates that, even for a low error injection

rate, unprotected execution will result in a large loss of data correctness due to

the occurrence of critical errors in the program control parts.

The above situation can be largely alleviated by the traditional partial redun-

dancy method. Adding a simple protection of the loop index, we can observe

that the error rate is lowered to an order similar to that of the SEE injection

rate. Overall, the partial redundancy in Table 5.3 shows that it is able to achieve

the 1.24×10−7% error rate, even under a high fault injection rate. The difference

between non-redundancy and traditional partial redundancy is huge. However,

Table 5.3 also shows that the erroneous iteration rate increases linearly when

more SEEs are injected under the traditional partial redundancy execution. At a

high SEE injection rate, the error rate reaches a 1.24×10−7% level, which means

that, for about one second of execution under 1GHz, there may be about one

erroneous loop.

By using our error prediction technique, the proposed method has shown its

ability to reduce SDCs. One significant improvement is that the difference be-

tween the adjacent error rate values increase more slowly than the error injection

rate. For example, under the low injection rate, there is about 30% reduction of

49

Table 5.2. Benchmark functions

Functions Usage
Number of

operations

Edge Edge detection 10

Tone Stereo Matching 12

Blur Blurring filter 19

Wdifline Media filter 42

Unsharp Sharpness adjustment 59

FI Frame Interpolation 68

Expand4k Image Expansion 73

Table 5.3. Erroneous loop iterations of different redundant technique

Performance Redundancy Error Injection Ratio

Parameter Technique Low (10−12) Medium (10−10) High (10−8)

Error rate (%)

Non-redundancy 2.86 4.88 8.65

Partial redundancy 1.50×10−11 1.23×10−9 1.24×10−7

Proposed 1.05×10−11 3.68×10−10 3.72×10−9

Energy (%)

Non-redundancy — — —

Partial redundancy 103.8 104.1 106.2

Proposed 109.1 111.3 114.3

erroneous iterations when using our error prediction, compared to the traditional

partial redundancy. Under the high error rate, the erroneous iteration rate of our

method is only 3% of the traditional simple partial redundancy. This indicates

that even under a very high error injection rate, the occurrence of each loop itera-

tion with SDC is delayed from 1 second to 30 seconds by our scheme. The quality

of service (QoS) of the image processing like programs is thus greatly improved.

The average energy consumption results are shown in Table 5.3, where energy

consumption is normalized by the energy consumption of the non-redundant ex-

ecution when working without error injection. Energy consumption of the non-

redundant execution with error injection are not listed, as their early aborts

make the data less reliable. The energy increase under the redundancy execution

comes from two parts: (1) the power used in the duplication and comparison, and

50

(2) the time delay when restarting is required after an error is detected. Overall,

Table 5.3 shows that partial redundancy required additional 6.2% energy then the

non-redundancy mode. The result shows that, for high SEE it has 8% additional

energy consumption than traditional partial redundancy.

Figure 5.6. Breakdown energy consumption under different SEE rate.

The increase in the energy consumption from the original partial redundancy

to our proposal is mainly from the scheduled DMR execution when the sampled

SEE rate by Eq. 5.1 exceeds the threshold. Fig. 5.6 shows the breakdown of the

partial redundant and DMR executions under our proposal method. It can be

observed from Fig. 5.6 that the ratio of DMR execution is increasing with the

error rate. For example, DMR execution for low SEE is 3%, and 8% for high

SEE. This increase of DMR execution is however far slower than the increase of

the SEE injection rate.

4.2 SDCs in individual program

Fig. 5.7 gives the in-loop SDC ratio under both original partial redundancy and

our method for individual benchmark loops. The ratio varies among different

programs, since small loops tend to dodge SEE injections when the SEEs get

51

more chances to hit the unmapped units. Accordingly, the SDC rates of the

traditional partial redundancy vary visibly, from less than 5% to near 30% among

the benchmarks under the low SEE injection. A similar situation can be found

under the medium and high SEE injections. However, the different SDC rates are

still in the same order under the partial redundancy. According to the analysis

based on the average data in Table 5.3, the false-positive alarm has the ability

of reducing SDCs at a super linear speed. Therefore, the difference between

individual benchmarks decreases after applying our method, as is proved by the

data in Fig. 5.7. From another viewpoint, our method reduces a larger number of

SDCs for large SDC zones than for the small SDC zones, which makes the final

SDC ratios less sensitive to the program characteristics.

4.3 Number of Test Blocks

The above results have been achieved by using a test program in addition to the

loop index check to provide more detection ability. Fig. 5.8 explores the ideal

number of test programs that can help the program achieve the best dependabil-

ity within the partial redundancy framework. Accordingly, the lines in Fig. 5.8

give the dependability of test programs 1, 2 and 3 under all the error injection

rates. The point at zero in the figure indicates the traditional partial redundancy,

which contains only the loop index check. It can be easily observed from the line

shapes that under each injection rate, adding a test program has saturated the

reduction of erroneous executions. This indicates that the balancing point has

been reached. This fits with our original expectation that dependability in the

partial redundancy can be improved rapidly for a very small cost, while further

improvement in dependability will become exponentially more difficult.

5. Summary and Discussion

In this dissertation, we have presented a technique to achieve a balance between

dependability and cost by applying error-prediction based policies to a partial

redundant system. The level of redundancy of a program is adaptively monitored

according to SDC rate prediction, based on a sampled fault rate and a program

behavior analysis. Furthermore, by adding one self-contained test instructions,

52

we achieved a super linear SDC reduction superior to the traditional partial

redundancy method. Overall, our method reduces 12% to 0.37% the SDC ratio

of the original partial redundancy, reaching a two-order increase in dependability

even under a very high error injection rate of 10−8 flips per cycle.

53

Partial redundancy Proposed partial redundancy

 0

 5

 10

 15

 20

 25

 30

R
at

io
 o

f S
D

C
 (

%
)

R
at

io
 o

f S
D

C
 (

%
)

 0

 5

 10

 15

 20

 25

R
at

io
 o

f S
D

C
 (

%
)

(a) Low SEE 10-12 flip/cycle

(b) Medium SEE 10-10 flip/cycle

(c) High SEE 10-8 flip/cycle

Edg
e

Ton
e

Blur

W
dif

lin
e

Uns
ha

rp FI

Exp
an

d4
k

Ave
ra

ge

Edg
e

Ton
e

Blur

W
dif

lin
e

Uns
ha

rp FI

Exp
an

d4
k

Ave
ra

ge

Edg
e

Ton
e

Blur

W
dif

lin
e

Uns
ha

rp FI

Exp
an

d4
k

Ave
ra

ge

 0

 5

 10

 15

 20

 25

Figure 5.7. SDC reduction in individual benchmarks from original to error pre-

diction based partial redundancy.

54

 0

 20

 40

 60

 80

 100

 0 1 2 3

D
ep

en
da

bi
lit

y
(%

)

Number of Test Program

High SEE
Medium SEE

Low SEE

Figure 5.8. Varying the number of test programs.

55

Chapter 6

Conclusion and Future Work

T
his chapter concludes this dissertation and discusses the possible directions

of future works.

1. Conclusion

For a long time in the history of computing, CMOS has continued to scale ac-

cording to Moore’s law, allowing ever-growing system integration and providing

continuous performance improvement. On the other hand, as devices shrink per-

petually, hardware failure rates are expected to increase due to a wide variety

of error sources such as aging, wear-out, infant mortality induced by insufficient

burn-in, transient errors caused by alpha particles from the packaging material

and cosmic rays, design defects, and others. The pervasiveness of this grow-

ing reliability trend demands a low-cost in-field reliability solution that detects,

diagnoses, recovers from, and/or repairs around failed components.

This dissertation has proposed techniques to improve the reliability for the

reconfigurable architectures based on the following two key observations. First,

the overhead of the dual modular redundancy (DMR) with frequent checking

to detect the permanent fault is too high. Besides, instructions with a fixed

input can increase the probability of fault masking. Second, even though partial

redundancy is a good technique to balance the energy consumption and reliability,

and the unprotected portion of the program cause very few silent data corruption

(SDC) under a low error injection. However, our experimental results have found

56

that the SDC rate increases while the error injection ratio increased, and due to

that the quality of the processed object will decrease.

Based on theses design philosophies, this dissertation has presented two tech-

niques to improve the reliability and to reduce the cost in the redundant solu-

tions. First, in order to detect the permanent fault this dissertation presents a

techniques to add selective check instructions on the data-flow-graph that incur

low power, while keeping the same reliability. Second, a technique to reduce the

SDC in partial redundancy has been presented which is able to reduce the SDC

under a very high error injection.

First, we have proposed a technique to remove check instructions from non-

critical positions to avoid an exhaustive checking for fault-tolerable execution.

The technique can efficiently work with a reconfigurable architecture to achieve

high dependability with awareness of the fault possibility. In our approach, check

instructions are added selectively according to the error probability (ODP) along

the data path when the accumulated possibility exceeds a threshold. In addition,

we also studied the influence of constant inputs as they can turn parts of the

circuit into don’t care zones and therefore help reduce the sensitivity to the faults.

Our study of the dependability of the updated data-path has shown that the

reliability can still be kept at a near-optimal level when properly removing 52%

non-critical check operations. This results in an energy saving of 17% for high

dependable execution. With an allowance of downgrading 1.0% reliability, it is

possible to reduce the energy further by 22%. In summary, a cost-effective high

dependability technique has been achieved by using our ODP metric in the FU

array processor.

Second, we have presented a technique to achieve a balance between depend-

ability and cost by applying error-prediction based policies to a partial redun-

dant system. The level of redundancy of a program is adaptively monitored

according to SDC rate prediction, based on a sampled fault rate and a program

behavior analysis. Furthermore, by adding one self-contained test program, we

achieved a super linear SDC reduction superior to the traditional partial redun-

dancy method. Overall, our technique reduces 12% to 0.37% the SDC ratio of

the original partial redundancy, reaching a two-order increase in dependability

even under a very high error injection rate of 10−8 flips per cycle.

57

2. Limitation and Future Work

While the proposed techniques are shown very effective to serve as the reliable

solution for the reconfigurable architectures, there are many directions that can

be explored in future work. The following discuss a few of the future research

directions.

• First, we have found in our first experiment that adding selective check

on the data-path is able to reduce the checking overhead, as well as the

energy consumption. In order to evaluate our proposed technique, we use a

reconfigurable architecture, and the selective check instructions are added

on the data-path during the mapping of the instructions on the functional

unit array. An additional module has been used to calculate the ODP of

the data-path. The size of the of that module is mostly depend on the

odp calculation, which requires floating point operation, and the number of

register is almost the same as the number of register used in the ISA. Thus,

it occupy a large area of the chip. At the same time, it is not possible to

use this technique in a off-the-shelf reconfigurable architecture.

Therefore, it has been assumed that a compiler support with this technique

can overcome the above problems. The compiler will use the information of

the hardware such as, the ODP and the optimized ODP of the operations,

to calculate the defective probability in the data-path, and will generate the

binary. The generated binary can be used at any off-the-shelf commercial

reconfigurable architecture, as the there is no necessity of calculating the

ODP at run-time.

Further, the generated binary can also be used to detect and recover the

transient fault in a normal pipeline architecture. For example, the processor

will execute the binary with reduced check instructions, and a fault detected

by any check instructions can be recovered by roll back to the previous

checkpoint.

Additionally, we have found that the instructions with fixed input has a low

defective probability. It is also possible that the fixed input instructions can

mask the error of previous operations. Thus, a technique can be introduce

58

in the compiler to group the instructions in such a way that a fixed input

instruction can mask the error completely or partially of that group of

instructions.

• Second, for the SDC prediction technique, we use the same reconfigurable

architecture. That architecture has some limitations such as, it can only

process a parallel data-path, and it cannot process a data-path which has

dependencies between iterations. Thus, our SDC prediction technique is

only evaluated for the parallel data-path. It would be more interesting to

evaluate this technique on the other platform such as, a normal pipeline

architecture, or a many core architecture, which can process all kinds of

data-flow-graph.

At the same time, the equation for the SDC prediction works only for the

parallel data-path and when there is no dependencies between the iterations.

The error propagation in such kind of data-flow-graph has different impact

depending on the time of the fault strike. If a fault strike at the early stage

of the execution that cause many SDCs. On the other hand, the fault strike

at the later stage of the execution cause low number of SDCs. Therefore, a

nonlinear technique to duplicate the instructions with the time of execution

is expected to the reduction of SDCs is a dependent data-flow-graph.

Besides, the equation for the SDC predictions takes a long time for calcu-

lation, which cause additional energy consumption as well as performance

loss. A dedicated hardware based on lookup table to predict the SDC of

a coming loop is required. In this way, it is able to reduce the prediction

time of SDC, which helps to achieve low power and high performance.

59

Acknowledgements

I was waiting for the last two years to write this section of my dissertation to

thank those people who have contributed and supported me during my doctoral

study period. First of all, I would like to thank my Supervisor, Prof. Nakashima,

for giving me an opportunity to pursue Ph.D. in the Computing Architecture Lab,

and supporting me financially. He offered me the opportunity, based on a Skype

meeting, and believed in me when I had not enough background and confidence

to continue research in the area of computer architecture. His guidance helped

me to overcome the difficulties and to build a solid background in computer

architecture research and related technologies. Besides, his EReLA simulator,

has been extensively used throughout my doctoral study, which was very straight

forward and easy to learn in a quick time. Thus, it helped me to work faster than

the expected time. I would also like to thank Prof. Inoue for the comments on

my thesis and serving as a committee member of my doctoral thesis committee.

Prof. Yao is the person who has helped me since my first day in Japan. He

picked me up from the airport while I came to Japan. Not only that, he always

supported me in the last three years more as a friend than a supervisor. In last

three years he always forced me to think critically and big. It would not be

possible for me to write this dissertation without his continuous guidance. A

special thanks to Prof. Yao. The other committee member, Prof. Hara gave

valuable comments my research. Prof Yamashita from Ritsumikan University

gave many valuable comments on my first journal submission that helped to

improve the quality of the paper. Thank you, Prof. Hara and Prof. Yamashita.

There is no shortage of fellow students to thank. First of all, I met Dr.

Yoshimura who was a doctoral student when I joined in the Computing Archi-

tecture Lab. He taught me how to use the simulators and tools for hardware

development. A special thanks to him. Other than him, I met many students

who were being friendly and made my life enjoyable. Thanks to all the past mem-

bers, especially Naveen and Moritaka, as well as the current members. Secondly,

all the past EReLA members, Otani and Yamanaka, and current FUSA members,

Kwang and Koike, are greatly thanked for their friendship and Japanese language

support. I will miss all of them.

Outside the Computing Architecture Lab. but at NASIT, I found many good

60

friends. They always cheered me up and always respond to my phone calls and

went with me to the restaurants when I wanted to try different foods. Their

efforts helped me to forget about my family and concentrate on my research.

Thank you Nishanth, Salik, Kartik and Abhinav for the happy moments that I

spend with you. At NAIST, I also met two Bangladeshi couples, who were always

inviting me at their places to try Bangladeshi foods. Thank you Hasan, Mehnaz

and their families for those delicious foods and enjoyable discussion.

During my doctoral study, one of my friends has been always with me from

Barcelona, Spain. She always inspired me with her motivational speech, and

always cheered me up with her funny things when I was sad. Most importantly

She never felt irritated on my stupid jokes. A big thanks goes to Maya for her

continuous inspiration till now.

Finally, thanks to my family in Bangladesh for their support. Thanks, mom

and dad for your patience and believing in me. Although I’m not sure they ever

knew exactly what I was doing. Thanks, mom and dad, for your emails and your

conversation. I’m looking forward to seeing you again soon.

61

References

[1] S. Arslan and G. Shah. A Flexible in-Field Test Controller. In Proceedings of

the 2011 IEEE 14th International Multitopic Conference, INMIC ’11, pages

71 –75, dec. 2011.

[2] M.M. Azeem, S.J. Piestrak, O. Sentieys, and S. Pillement. Error recovery

technique for coarse-grained reconfigurable architectures. In Proceedings of

the 2011 IEEE 14th International Symposium on Design and Diagnostics of

Electronic Circuits Systems, DDECS ’11, pages 441 –446, april 2011.

[3] Yung-Yuan Chen, Shi-Jinn Horng, and Hung-Chuan Lai. An integrated

fault-tolerant design framework for VLIW processors. In Proceedings of the

18th IEEE International Symposium on Defect and Fault Tolerance in VLSI

Systems, 2003, pages 555 – 562, nov. 2003.

[4] Yung-Yuan Chen and Kuen-Long Leu. Reliable data path design of VLIW

processor cores with comprehensive error-coverage assessment. Microproces-

sors and Microsystems, 34(1):49 – 61, 2010.

[5] Naveen Devisetti, Takuya Iwakami, Kazuhiro Yoshimura, Takashi Nakada,

Jun Yao, and Yasuhiko Nakashima. LAPP: A Low Power Array Accelerator

with Binary Compatibility. In Proceedings of the 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops and PhD Fo-

rum, IPDPSW ’11, pages 854–862. IEEE Computer Society, 2011.

[6] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Archi-

tecture support for disciplined approximate programming. In Proceedings of

the 17th international conference on Architectural Support for Programming

Languages and Operating Systems, pages 301–312. ACM, 2012.

[7] J. Gaisler. A portable and fault-tolerant microprocessor based on the SPARC

v8 architecture. In Proceedings of the 2002 International Conference on

Dependable Systems and Networks., DSN ’02, pages 409 – 415, 2002.

62

[8] R. Hartenstein. A decade of reconfigurable computing: a visionary retro-

spective. In Proceedings of the 2001 conference on Design, automation and

test in Europe, DATE ’01, pages 642–649, 2001.

[9] Scott Hauck and André DeHon. Reconfigurable Computing: The Theory and

Practice of FPGA-Based Computation. Morgan Kaufmann, Amsterdam, nov

2007.

[10] Yohei Hazama, Jun Yao, Takashi Nakada, and Yasuhiko Nakashima. A DMR

based Parmanent Error Locating Method for a Dependable FU Array. IEICE

Tech. Rep., 111(328):47–52, Nov 2011.

[11] P. Hazucha, T. Karnik, J. Maiz, S. Walstra, B. Bloechel, J. Tschanz, G. Der-

mer, S. Hareland, P. Armstrong, and S. Borkar. Neutron soft error rate

measurements in a 90-nm CMOS process and scaling trends in SRAM from

0.25-µm to 90-nm generation. In Proceeding of IEEE International Electron

Devices Meeting, 2003. Technical Digest, IEDM ’03, pages 21.5.1–21.5.4,

2003.

[12] Andy A. Hwang, Ioan A. Stefanovici, and Bianca Schroeder. Cosmic rays

don’t strike twice: understanding the nature of DRAM errors and the im-

plications for system design. In Proceedings of the seventeenth international

conference on Architectural Support for Programming Languages and Oper-

ating Systems, ASPLOS ’12, pages 111–122. ACM, 2012.

[13] L. Leem, Hyungmin Cho, J. Bau, Q.A. Jacobson, and S. Mitra. ERSA: Error

resilient system architecture for probabilistic applications. In Proceedings of

Design, Automation Test in Europe, DATE ’10, pages 1560 –1565, 2010.

[14] J. W. McPherson. Reliability challenges for 45nm and beyond. In Proceedings

of the 43rd annual Design Automation Conference, DAC ’06, pages 176–181,

2006.

[15] S.S. Mukherjee, C. Weaver, J. Emer, S.K. Reinhardt, and T. Austin. A

systematic methodology to compute the architectural vulnerability factors

for a high-performance microprocessor. In Proceedings of the 36th Annual

63

IEEE/ACM International Symposium on Microarchitecture, 2003., MICRO-

36, pages 29 – 40, dec. 2003.

[16] N. Oh, P.P. Shirvani, and E.J. McCluskey. Error detection by duplicated

instructions in super-scalar processors. IEEE Transactions on Reliability,

51(1):63 –75, mar 2002.

[17] Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital inte-

grated Circuits- A Design Perspective. Prentice Hall, 2ed edition, 2004.

[18] E. Rotenberg. AR-SMT: A microarchitectural approach to fault tolerance

in microprocessors. In Proceedings of 29th Annual International Symposium

on Fault-Tolerant Computing, pages 84–91. IEEE, 1999.

[19] Mitsutoshi Saito, Shunsuke Shitaoka, Devisetti V.R. Naveen, Suguru Oue,

Kazuhiro Yoshimura, Jun Yao, Takashi Nakada, and Yasuhiko Nakashima.

Development of High Power-Efficient Processor with Linear FU Array Accel-

erator [in japanese]. IEICE TRANSACTIONS on Information and Systems

(Japanese Edition), J95D:1729–1737, Sept. 2012.

[20] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam,

Luis Ceze, and Dan Grossman. EnerJ: Approximate data types for safe and

general low-power computation. In Proceedings of the 32nd ACM SIGPLAN

conference on Programming language design and implementation, PLDI ’11,

pages 164–174. ACM, 2011.

[21] P.N. Sanda, J.W. Kellington, P Kudva, R. Kalla, R. B. McBeth, J. Ackaret,

R. Lockwood, J. Schumann, and C. R. Jones. Soft-error resilience of the IBM

POWER6 processor. IBM Journal of Research and Development, 52(3):275–

284, 2008.

[22] Smitha Shyam, Kypros Constantinides, Sujay Phadke, Valeria Bertacco, and

Todd Austin. Ultra low-cost defect protection for microprocessor pipelines.

SIGARCH Comput. Archit. News, 34(5):73–82, October 2006.

[23] J. Srinivasan, S.V. Adve, P. Bose, and J.A. Rivers. The impact of technol-

ogy scaling on lifetime reliability. In Proceedings of the 2004 International

64

Conference on Dependable Systems and Networks, DSN’04, pages 177 – 186,

june-1 july 2004.

[24] Jayanth Srinivasan, S.V. Adve, Pradip Bose, and J.A. Rivers. Lifetime Reli-

ability: Toward an architectural solution. IEEE Micro, 25(3):70 – 80, May-

June 2005.

[25] J. H. Stathis. Reliability limits for the gate insulator in CMOS technology.

IBM Journal of Research and Development, 46(2.3):265 –286, march 2002.

[26] A. Suga and K. Matsunami. Introducing the FR500 embedded microproces-

sor. Micro, IEEE, 20(4):21 –27, jul/aug 2000.

[27] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov, and E.M.

Panainte. The MOLEN polymorphic processor. IEEE Transactions on Com-

puters, 53(11):1363 – 1375, nov. 2004.

[28] Fan Wang and V.D. Agrawal. Single Event Upset: An embedded tutorial.

In 21st International Conference on VLSI Design, 2008, VLSID ’08, pages

429 –434, Jan. 2008.

[29] Xin Xu and Man-Lap Li. Understanding soft error propagation using efficient

vulnerability-driven fault injection. In Proceedings of 2012 42nd Annual

IEEE/IFIP International Conference on Dependable Systems and Networks,

DSN ’12, pages 1–12, june 2012.

[30] Jun Yao, S. Okada, M. Masuda, K. Kobayashi, and Y. Nakashima. DARA: A

low-cost reliable architecture based on unhardened devices and its case study

of radiation stress test. IEEE Transaction on Nuclear Science, 59(6):2852–

2858, 2012.

[31] Kazuhiro Yoshimura, Takuya Iwakami, Takashi Nakada, Jun Yao, Hajime

Shimada, and Yasuhiko Nakashima. An instruction mapping scheme for

FU array accelerator. IEICE Transactions on Information and Systems,

94(2):286–297, February 2011.

65

Achievements

Journal Articles

1. T. Ahmed, J. Yao, Y. Hara-Azumi, S.Yamashita, and Y.Nakashima, “Selec-

tive Check of Data-Path for Effective Fault Tolerance”, IEICE transaction

of Information and Systems (Special Section of Reconfigurable System),

Vol. E96-D, No. 8, pp. 1592–1601, Aug. 2013.

Conference (Peer Reviewed)

1. T. Ahmed, J. Yao, and Y. Nakashima, “A Two-Order Increase in Robust-

ness of Partial Redundancy under Radiation Stress Test by Using SDC

Prediction”, in proceedings of the 2013 Conference on Radiation Effects on

Components and Systems, RADECS 2013, pp. 1–7, paper no. 7, Oxford,

UK, Sept., 2013.

2. T. Ahmed, J. Yao, and Y.Nakashima, “Introducing OVP Awareness to

Achieve an Efficient Permanent Defect Locating”, in proceeding of the 2012

IEEE/ACM Symposium on Nanoscale Architecture, Nanoarch ’12, pp. 43–

49, Amsterdam, The Netherlands, July, 2012.

Conference (Not Peer Reviewed)

1. T. Ahmed, J.Yao, and Y. Nakashima, “Achieving Near-Optimal Depend-

ability with Minimal Hardware Costs in an FU Array Processor by Soft

Error Rate Monitoring”, SWoPP’12, IPSJ SIG Notes, 2012-ARC-201(19),

pp. 1–6, Aug., 2012.

2. T. Ahmed, J. Yao, and Y. Nakashima, “Achieving Effective Fault Tolerance

in FU array by Adding AVF Awareness”, IPSJ SIG Notes, Information

Processing Society of Japan, 2012, vol-2012, no-5, pp. 1–4.

66

