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A Study of Assist-As-Needed Robotic Training

Based on Reinforcement Learning∗

Chihiro Obayashi

Abstract

This study proposes a novel robotic trainer for motor learning. It is user-

adaptive inspired by assist-asneeded principle well known in the filed of physical

therapy. Most of the previous studies in the field of robotic assistance of motor

skill learning requires predetermined desired trajectories which was not examined

intensively if they were optimal for each user. Furthermore, it has been known

as guidance hypothesis that humans tend to rely too much on external assist,

resulting in interference with internal feedback necessary for motor skill learning.

A few studies proposed such a system that adjust its assist-strength according

to the user’s performance in order to prevent the user from being too much

relying on the robotic assistance. There are, however, problems in those studies;

The physical model of the user’s motor system is required, which is inherently

difficult.

In this study, I propose a framework for such a robotic trainer that is user-

adaptive, and that does not require a specific desired trajectory nor the physical

model of the user’s motor system, which is achieved by a model-free reinforcement

learning. We chose darts throwing as an example motor-control task as it is one

of the simplest throwing task, and its performance can be easily and quantatively

measured by score. Training experiments with novices, aiming at maximizing the

score of the darts and minimizing the physical robotic support demonstrate the

feasibility and the plausibility of the proposed framework.

∗Doctoral Dissertation, Department of Bioinformatics and Genomics, Graduate School of

Information Science, Nara Institute of Science and Technology, NAIST-IS-DD1061004, March

13, 2014.
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強化学習を用いたユーザ適応型運動スキル学習支援ロ

ボットに関する一研究 ∗

大林 千尋

内容梗概

近年，ユーザの動作データに基づいたパワーアシストや視聴覚フィードバック

等の運動学習支援システムの研究が盛んに行われている．しかし，多くの支援シ

ステムは予め用意された運動軌道の学習を目的としており，ユーザの多様性を許

容しにくい．本来ヒトは支援に依存し易く，ユーザの内在的なフィードバックを阻

害し運動スキル学習が妨げられる．学習状態を推定し支援量を調整する支援シス

テムが提案されているが，あらかじめユーザの身体モデルが必要であり，ヒトの

運動制御系全体を精密にモデリングすることは困難である，という課題があった．

本論文では，運動スキルなどの運動学習指標を報酬関数に組込んだモデルフ

リー型の強化学習により，非軌道追従型支援をユーザ適応的に行うロボット支援

フレームワークを提案し，最も単純な投擲運動の一つであるダーツ投げ運動を題

材に，その有効性を示す．まず，支援方法の設計のために熟達者と非熟達者の動作

データや表面筋電位による比較を行い，投げ動作中のユーザの肩や肘の移動量が，

ダーツ投げ熟達度の定量指標となり得ることを確認する．次にこの指標を状態変

数とし，非軌道追従型のロボット支援法を方策とし，ダーツのスコア最大化と支

援量最小化を報酬関数としたモデルフリー強化学習システムを設計する．行動実

験を実施し，提案手法がダーツ投げの運動学習に最も有効であることを示した．

キーワード

Assistive Robotics, Motor Skill Learning, Human-Robot Interaction, Throwing

motion, Reinforcement Learning
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1. Introduction

In future, robots are expected to be closely involved with human life, rather

than just being a simple machine. We consider that robots need to perform

assistive tasks such as playing the role of an instructor in the case of motor

learning. An adaptive assist robot that uses physical interaction to help human

motor learning is expected to be developed. In a scenario of motor learning

assisted by an instructor, the instructor’s assist method can be adapted to the

performance and physical characteristics of the learner. For example, imagine a

robot assisting a learner to ride a bicycle by holding the carrier of the bicycle.

Here, the robot needs to adjust the assistance to suit the learner’s characteristics:

physical characteristics, training experiences, etc.

Robots developed in previous studies for assisting motor learning are based

on the idea that the best way to learn a movement is to track the underlying

movement for a motor task [1], [2], [3], [4], [5]. Although the learner’s physical

characteristics and motor learning experience was different, the learner automat-

ically tracked simple uniform trajectories provided by a special robot and learned

these trajectories. Developing an assistive robotic system that can adjust to in-

dividual differences in the learner’s physical and training experience factors is a

challenging research topic. The basic technology challenges were related to mo-

tion sensing, motion analysis, and development of the control system of the assist

robots. Another challenge involved in developing such a system is related to hu-

man motor control and motor learning. Therefore, this topic is being researched

from the perspective of not only robotics and biomechanics but also neuroscience

and rehabilitation/sports science.

In rehabilitation, researchers have focused on re-learning of motor functions

by brain injury patients. They have developed a robot-assisted system based

on quantification of training. This research field is called rehabilitation robotics

or neuro-rehabilitation. In rehabilitation robotics, such systems have been stud-

ied separately from the perspective of developing movement-assisting hardware

for physical assistance and applications using such hardware. Different motor

learning assist hardware systems have been proposed based on a tracking method

[1], myoelectric potential information control [2] and adaptive learning assist that

tracks patient performance [6]. Many rehabilitation robotics studies have focused
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on cases involving brain damage to take advantage of the plasticity of the brain

[7]. By training, a limb that has lost its function can be forced to generate sen-

sory stimulation activity in the brain; owing to the plasticity of the brain, the

somatotopic representation (map) of movement changes and somatosensory po-

tentials in the normal part of the brain are intercepted so that the limb function is

recognized [8], [9]. In recent years, robot-assisted training utilizing the plasticity

of the cerebellum has also been proposed [10]. By adding a motion stimulus, a

patient can be forced to use and learn the internal model of a new motor task

[11].

The high adaptation ability of humans to a movement environment could be

problematic when learning the internal model of a new motor task. For example,

consider a person using a tool as though it is a physical part of the body and

is known to realize movement to achieve the purpose of movement [12], [13].

One of the motor learning properties called the “after effect” was demonstrated.

Consider a scene in which we attempt to learn the linear motion of the upper

extremity in a certain force field. When the force field is removed suddenly, the

upper extremity’s trajectory exhibits curves. This is called the “after effect” [14].

This is because when the force field is changed suddenly, the internal model of the

next force field is not reshuffled. Therefore, it is thought that the adaptation to a

training environment with assistance obstructs the realization of smooth transfer

of the training in a real environment.

In sports science, the phenomenon of motor learning is known as guidance

hypothesis [15]. When novices practice with too much assistance in the early

stage of motor learning, they tend to rely on the assistance and are not able to

give their best performance without the assistance. Therefore, it is desirable to

develop a computer agent that automatically adapts the assistance to the trainer

based on quantitative indices of skillful movements that clarify the difference

between experts and novices.

The adaptability of robotic assistance for motor skill learning was investigated

with the aim of applying it to robotic assistance for humans with/without stroke.

Most previous studies on robotic assistance have required predetermined desired

trajectories; it has not been examined intensively whether these trajectories were

optimal for each person. Furthermore, it has been inferred from guidance hy-

2



pothesis that humans tend to rely excessively on external assistance, resulting

in interference with internal feedback that is necessary for motor skill learning.

A few studies proposed a system that adjusts its assist-strength according to

a person’s performance in order to prevent the person from relying excessively

on robotic assistance. However, these studies have some problems; the physical

model of the person’s motor system is required, which is inherently difficult.

1.1 Problem of Motor Skill Learning

Under the new movement environment, motor learning is explained by the knowl-

edge of computational neuroscience to build the internal model of the training en-

vironment dynamics, including the skeletal system of the body dynamics. When

we assist the learning of the internal model for a new motion, it is necessary

to consider the following problems: difference in the motor learning experience,

physical differences (individual differences), and motor learning properties. Re-

garding individual differences, even for persons of the same age and gender, the

body characteristics are different depending on everyday training. Actually, in

the study, the average muscle mass is calculated by linear regression using the

height and weight because one part of the body (hand, leg, etc.) had larger vari-

ance. Therefore, it is difficult to estimate the quantity of muscle mass for each

person. In addition, the learning speed is also different in individual persons [16],

[17].

Regarding motor learning properties, we can consider the effect called “after

effects” as one of the properties of motor learning [14]. When the disturbing force

field is unexpectedly removed, subjects make erroneous movements in directions

opposite to the perturbing forces. The force field is changed suddenly, and a

learner is explained when reshuffing is not carried out well for the internal model

of the next force field. In addition, the person uses a tool as though it is a physical

part of the body. This embodiment function is known to realize movement to

achieve an action [12], [13]. Because such a property exists, it is necessary to

prevent it from being used in some learning environment as the assistance tool

realizes an action.

Thus, it is necessary to consider the properties of motor learning (individual

differences, and so on) when we design the assist method or machine for motor

3



learning.

1.2 Assist Framework

The robotic assistance system for motor learning started with the development

of an exoskeleton robot system assisting a person with a high-risk training task

that involves a physical burden that is too heavy for a person to lift, including

the lifting of heavy weights. The most pioneer work in this field is Hardiman

(Human Augmentation Research and Development Investigation), which was de-

veloped by U.S. General Electronics in 1965. This exoskeleton is an external

skeleton-type robot aimed at lifting heavy things [18],[19]. However, it was not

commercialized because it had low operability. Recent wearing-type exoskeletons

for improving the power of the person are compact and have high response be-

cause the basic technology used has advanced, the control unit and the actuator

have been downsized, and the operability has been improved [20], [21], [22]. A

rehabilitation robotic system for lower limbs was developed by MIT Media lab

[23]. A wearable walking assistive robotic system (called HULC) was developed

by Sarcos Company for military use [24], [23]. In Japan, the most representative

study was the robot suit HAL, which is versatile to improve a non-healthy per-

son to a healthy person; it was developed by Sankai Lab in Tsukuba University

[22],[25]. In addition, a power assist suit for older farm workers was developed by

Endo lab in Tokyo University of Agriculture and Technology [26]. WAS-LiBERo,

which assists the waist joint at the time of lifting a farm product collection gauge

and the hip joint at the time of walking with the gauge, was developed by Yagi

lab in Wakayama University [27], [28], [29]. A muscular strength assistance har-

ness using an elastic body for the waist joint was applied to firefighting work and

skill assistance; it was developed by Tanaka team in Hokkaido University [30].

An exoskeleton that could assist the main joint group of the whole body using

a pneumatic actuator to realize safe, natural care movement such as the lifting

movement of the care-giver was developed by Yamamoto lab in Kanagawa Insti-

tute of Technology [31], [32]. An assist suit for the hip joint, which used CPG

for a control system for the purpose of a natural walk assist, was developed by

Hashimoto lab in Shinsyu University [33].

In recent years, car companies have entered in the assistive robotic system
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research field. HONDA Motor Co., Ltd., announced that they are conducting

research on rhythm walk assistance and its development to downsize the sensor

control system and hence realize a natural walk. In 2008, they proposed to im-

prove the mobility of a person [21]. Honda collaborated with the National Center

for Geriatrics and Gerontology in 2012. Honda proposed the care preventive effect

of walking assistance using the assist suit. In 2011, TOYOTA Motor Co., Ltd.,

announced the development of many assist robots for walking assistance to reha-

bilitate person [20]. Toyota has conducted a clinical trial since the development

of assist robots in collaboration with Fujita Health University.

In this section, various assist robots have been introduced. Most studies are

based on hardware development. There are a few studies based on the control

problem to operate the assist suits or the robots. In the case of the control of

the assist suit for motor learning, it is necessary to determine the function for

the estimate of “how much quantity of assistance is necessary.” The problem to

estimate the intention of movement has been discussed in the field of the devel-

opment of a high-performance artificial arm and wheelchair controller by using

biological information. There are a few studies on the estimation of the intention

of the person by using movement information [34], [35], [36]. There are also a few

robot control studies based on electroencephalographic informationThere are also

a few robot control studies based on electroencephalographic information [37], by

using surface electromyography information [38], [39], [40], [41], [42]. However, in

recent years, the function for the estimate of “how much quantity of assistance is

necessary” is just beginning to be discussed in the field of rehabilitation robotics;

this will be the key technology for more useful assistive robotic systems.

In initial rehabilitation robotics, the purpose of the research and the devel-

opment were aimed at reducing the physical load of a therapist’s daily work by

robotic automation. Specifically, these developed systems aimed at robotic au-

tomation for training therapy carried out by a therapist on a non-healthy person.

Next, an assistive robotic system is not used to perform power assist for the

therapist, such as PAS. The rehabilitation robotic system was developed to assist

motor learning for non-healthy persons. The system was of the deferment type for

safety purposes. In addition, a robot to realize tracking-based assistance for motor

learning restrains the body of persons. The system traces the prepared trajectory
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for a non-healthy person to realize the task-oriented assistance, which is a famous

manual rehabilitation method. Therefore, motor learning assistance with the

robotic system for exclusive use of the movement was performed. However, this

method is not versatile to be used for other movements.

Concrete studies on the rehabilitation robot system are as follows. The MIT

Manus system was proposed for assisting point-to-point upper limb movement

on the horizontal plane [1]. MIME was proposed to be able to perform both

upper limb mirror training on the hand space by a 6-DOF manipulator [2]. Arm

Guide was proposed for assisting the reaching movement of arm space. Arm

Guide has a 3-DOF flexibility arm comprised of a straight slide-type actuator [3].

Next, a motor learning assistive robotic system for locomotion was also developed.

The assist robot performs power assist for non-healthy persons to realize the

joint trajectories for locomotion [4], [5]. It was shown that there was a constant

effect by carrying out training early in the stroke, and these systems performed

the role of indicating quantitative scientific grounds for neuro-rehabilitation [43].

However, in the study on the walk assist robot, in comparison with the therapy

by the therapist using Body Weight Assisted Treadmill Training, the problem

was that the effect around the training time was low [44].

In contrast, it was thought that the problem is uniform assist to a differ-

ent non-healthy person having individual skeletal systems for lower limbs. The

training system, which provided desired trajectories in consideration of the phys-

ical difference of the learner, was suggested [45]. The assistive robotic system

using elastic devices like springs and the assistive robotic system having virtual

impedance control by software were developed to realize the play for individuality

of the learner [6], [46], [47]. Only animal experiments suggested that tracing the

trajectory with play by the assist robot is effective [48]. However, even these

methods were not able to suggest more possibilities than the effects of the ther-

apy by the therapist using Body Weight Assisted Treadmill Training in humans.

Recently, in order to solve this problem, a study that aimed at training effect im-

provement by offering more widespread assisting circumstances was conducted.

This robotic assistance problem is that the robot assistance performs repeated

monotonic movements. Therefore, the learner’s trial and error learning and op-

portunity to challenge are easily spoiled. It is thought that the training of the
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learner will decrease because of such factors. The learner tends to rely on the

robotic assist gradually. In recent years, various approaches for the rehabilitation

robotic system’s problem were proposed. The first is the study of the communi-

cation between learners and the robot to solve this problem. This robot learned

the distance to decrease the psychological burden on each learner for fitting the

learner [49], [50], [51]. The second is the study that introduced the presentation

using sound, visual information, and other modalities [52], [53], [54], and the

inclusion of the gaming property into the training task with robotic assistance

[55], [56], [57]. Furthermore, the robot providing adaptive physical assist to the

state of the learner is studied. This study is in coordination with the quantity of

assistance based on the performance of the learner [6], [46], [58], [10], [59].

Krebs et al. proposed performance-based robotic assistance [6]. Their sys-

tem regulated the quantity of assistance by manual adjustment. Emken et al.

expressed a combination of an error and voluntary display of the tip of the foot

position of the walking subjects for the cost function based on Assist-As-Needed

strategy [58], [60]. They designed the learning control system for assisting the

motion of“ put up foot”to coordinate the assist force. They used the model of

the brain-muscle-skeletal system of a human in a control system to estimate the

output force of the lower limbs. They suggested that when the assist ratio was

set to perform a large force by a human, the motor learning effect was improved.

Their results the after effect in the adaptive condition were smaller than the con-

stant assist condition. It was suggested that even if they were assisted by an

adaptive assist robot, they can learn the internal model in the environment with-

out robotic assistance. However, they have not shown that the adaptive robotic

assistance promotes motor learning. In addition, it is necessary to identify the

learner’s musculoskeletal model, and there are many identification parameters to

coordinate the model because rehabilitation training is needed to apply various

persons quickly. The model-based approach spent time to identify the parameters

before each training. Therefore, we think that the model-based control approach

was not suitable to use the rehabilitation system.

In these circumstances, we propose a novel framework of the robot assistive

robotic system based on the Assist-As-Needed strategy. The proposed framework

adopts a model-free algorithm that does not need the model construction of each
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learner. Specifically, we will use an online-type reinforcement learning algorithm

that can realize the Goal-Oriented assist for the learner [61], [62]. In addition, our

proposed assist framework realizes the minimum contact assist for examination

of the possibility of the assist with not an exclusive machine but with a general

robot. We build non-trajectory-based movement assistance to promote voluntary

training participation of the learner and avoid relying on the robot.

1.3 Organization of Dissertation

This dissertation is organized as follows. Section 2 proposes a new approach

to realizing non-trajectory-based adaptive robotic support system. Section 3

describes the comparison between experts and novices in darts and the results to

measure the dart trajectory. Section 4 describes the development of an adaptive

learning assistive robotic system for dart -throwing and the experimental setup

to investigate the feasibility and plausibility of our approach. We summarize

this study with detailed discussions and recommendations for future research in

section 5.
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2. Proposed Adaptive Robotic Assist Framework

2.1 Specification

Providing excessive assistance may adversely affect learning; therefore, a com-

monly stated objective of active assist training is to provide ”assistance-as-

needed”(AAN), which means to provide the participant with only as much assis-

tance as is needed to accomplish the task (sometimes called ”faded guidance”in

motor learning research). Examples of strategies to encourage participant effort

and self-initiated movements include allowing some error variability around the

desired movement using a dead band (an area around the trajectory in which no

assistance is provided), triggering assistance only when the participant attains a

force or velocity threshold, making the robot compliant, and including a forget-

ting factor in the robotic assistance scheme. A pioneering study was conducted

by Krebs et al. [6] who used a robotic device with the robotic assist optimized for

a person on the basis of the developer’s hand coding. In recent studies, the devel-

oper has designed the cost function and created a mechanism for determining the

assist (e.g., assist force) in order to minimize the cost function (e.g., error between

desired trajectory and person with robot one) automatically [60], [46]. In such ap-

proaches, it is necessary to carefully design a model of the neuro-musculoskeletal

system of a person. However, it is difficult to develop such a model precisely.

In addition, the training entails high physical strain and a long setting time. In

addition, most assistive robots have the ability to follow a trajectory traversed

by a person. Such assistive robotic systems are called ”trajectory-based assistive

robotic systems”. The advantage of such systems is that a person can learn sim-

ple motion. However, learning basic motion may not be the primary requirement

of every person because people have different physical characteristics and mo-

tion skill levels. Such systems may not have an across-the-board learning phase

from relearning of motor skills to their advancement. On the other hand, a non-

trajectory-based hands-on approach involving minimally assistive robot training

for proprioception enhancement based on the AAN paradigm is proposed[63].

This approach provides minimal assistance passively. In other words, movements

are assisted, not enforced, by the robotic assist. However, this approach was not

evaluated in sufficient detail, as the aforementioned study incorporated visual
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feedback in an experiment for evaluating the proposed assist.

2.2 Our Assistive framework

In this study, I propose an assistive robotic system, i.e., an AAN-based assist

robotic system using a model-free online reinforcement-learning algorithm and

non-trajectory assist, in order to provide assistance to persons with different

needs. The key features of the framework are summarized below.

Task-goal oriented In general, it is not trivial to predetermine a desired tra-

jectory for motor skill learning because each person has his/her own motor skills

and control system. Since one of the most important aims of motor skill learning

is to accomplish a task, the aim of the robotic trainer should be task-goal oriented,

which requires a method for measuring a person’s achievement (performance) on

the task.

Assist-as-needed According to guidance hypothesis, humans tend to be over-

reliant on external assistive feedback, which reduces the efficacy of the internal

feedback necessary for motor skill learning. Therefore, the robotic trainer should

adjust its assist-strength according to the measured task performance of a person,

i.e., it should decrease its assist-strength when the person’s performance increases,

and vice-versa.

Model-free It is nontrivial to define the optimal throwing trajectory for each

person in advance, owing to individual differences in body dynamics and in the

neural controller. Therefore, the robotic trainer should employ a model-free assist

algorithm.

Minimum constraint It is also nontrivial to determine the optimal assisting

policy for each person in advance; the robotic trainer should attempt to minimize

the constraints on a person’s motion, which would enhance the safety of the

system.

10



2.2.1 Task-goal oriented

In general, it is not trivial to predetermine some desired trajectory for motor skill

learning because each person has his/her own motor skills and control system.

Since one of the most important aims of motor skill learning is to accomplish a

task, the aim of the robotic trainer should be task-goal oriented, which requires

a method for measuring a person’s achievement on the task. Trajectory-based

rehabilitation robots were developed for the purpose of re-learning lost motor

functions in the event of brain damage. The required assistance is provided by

joint torque to generate a motion trajectory for each joint of the lower extremities,

and to realize walking motion by tracking the desired trajectories. A typical walk-

ing pattern was presented for each person. However, the human musculoskeletal

system exhibits individual variations. The purpose of walking rehabilitation is

to enable subjects to walk by themselves. It is unlikely that learning to track a

typical walking trajectory would serve this purpose. Therefore, assistive robots

need to adjust the assist to achieve not only the learning of a motion trajectory

but also the essential purpose.

2.2.2 Assist-as-needed

According to guidance hypothesis, humans tend to be over-reliant on external

assistive feedback, which reduces the efficacy of the internal feedback necessary

for motor skill learning. Therefore, the robotic trainer should adjust its assist-

strength according to the measured performance task of a person, i.e., it should

decrease its assist- strength when the person’s performance increases, and vice-

versa.

Guidance hypothesis experimentally describes how assistance inhibits learn-

ing in sports psychology [64]. Most recently proposed adaptive assistive robotic

systems are based on this hypothesis. Because providing too much assistance may

adversely affect learning, a commonly stated objective of active assist training is

to provide ”assistance-as-needed”, which means to provide the participant with

only as much assistance as is needed to accomplish the task (sometimes termed

”faded guidance”in motor learning research). Examples of strategies to encour-

age participant effort and self-initiated movements include allowing some error

variability around the desired movement using a dead band (an area around the
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trajectory in which no assistance is provided), triggering assistance only when

the participant attains a force or velocity threshold, making the robot compliant,

and including a forgetting factor in the robotic assistance, as reviewed below.

When we perform an action under a certain environment, we learn an internal

model of the environment by performing a repeat trial. This is shown as the

nature of motor learning to perform reaching movements between two points by

using a robot system, which is capable of generating any force field. In the ex-

periment of Shadmehr and Mussa-Ivaldi et al.[14], when a person is repeatedly

exposed to a robot-generated force field applied to the hand (forces as a func-

tion of hand position and/or hand velocity) that systematically disturbs limb

motion, he/she is able to recover his/her original kinematic patterns over a short

period of practice. The subject does this by cancelling the disturbance with an

appropriate preplanned pattern of forces. This is a form of feed-forward control

that is revealed by characteristic after-effects: when the disturbing force field is

unexpectedly removed, subjects make erroneous movements in directions oppo-

site to the perturbing forces. Adaptation and its related after-effects have been

demonstrated for different types of force fields, simple position-, velocity- and

acceleration-dependent force fild to Coriolis forces caused by moving in a rotating

room to skew-symmetric” curl “field that produce forces in direction perpendic-

ular to the velocity of hand. In the experiment of Osu et al. [65], when a learner

learns two actions with the corresponding visual stimuli, he/she estimates the

force field by using information of the visual stimulus and performs an action

based on estimated its. Therefore, we change the internal model corresponding

to situations and perform actions by using it. Thus, a person tends to obtain

the internal model of the environment and uses it to achieve his/her objectives.

This means that with continued physical assistance from the robot, a person will

learn to operate only in environments where robotic assistance is available. In

other words, the person become dependent on the assist. For example, in [66],

the impedance control of the learning assist for walking was used, but the energy

consumption of learners in training 60 percent compared with the help of a ther-

apist was small. In [67], learning assist of musculoskeletal upper extremities is

studied, but since the robot assist is performed unnecessarily, the driving force of

the learner is essentially decreased compared with before training. These findings
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suggest what might be termed the ”Slacking Hypothesis”: a robotic device could

potentially slow down recovery if it encourages slacking; i.e., a decrease in motor

output, effort, energy consumption, and/or attention during training. If you do

assist the body in motor learning, it is not possible to ignore this effect. In order

learn the action of the learner himself corresponding to the real environment, the

robot uses a method to match the needs of the learner assist.

For example, in rehabilitation for walking, the goal of the patient is to be able

to walk without assistance. Even if the patient can walk with any assistance,

the purpose of the rehabilitation cannot be achieved because the purpose of the

rehabilitation is that the patient should eventually be able to move as much

as possible without assist. In manual rehabilitation, by checking the status of

the patient, the therapist performs assistance. This is called Assist-As-Needed

by rehabilitation robot researcher. Therefore, it is necessary to tailor the assist

robot to the learning of the patient. An adaptive assist robot tailored to patients

was proposed. The adaptation of the control parameters based on each patient’s

physical characteristics and learning character to adjust the assist automatically

is an essential advantage of the adaptive assist system.

2.2.3 Model-free

It is nontrivial to define the optimal throwing trajectory for each person in ad-

vance, owing to individual differences in body dynamics and in the neural con-

troller. Moreover, the learners’ age and gender may vary. The musculoskeletal

system also varies from individual to individual. Furthermore, each person has a

different movement experience. Thus, because learners have varying characteris-

tics, it is difficult to precisely model the motor learning system of the brain based

on the training experience and accurate modeling of the musculoskeletal system

in order to provide rich adaptability. Further, in order to make the system ready

for a training environment in a short period, it is necessary to use an easy exper-

imental protocol with a simple experimental system. The model-free approach

adapted successively to the learner in every trial by a data-driven approach. We

can design the adaptive system without the need for prior information of the

learner. It is not necessary to identify the parameters and modeling in advance;

the model-free adaptive algorithm can perform the training of individuals in a
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short time. For existing rehabilitation robots, most studies built the control sys-

tem based on iterative learning control (ILC) to determine the amount of assist

tailored to the learner [68]. Because these assistive robotic systems were used

for the target trajectory, their adaptability is realized by repeating the control

input to track the target trajectory (assist). Duschau-Wicke et al. designed a

control system based on iterative learning control as cooperative-assist. Their

system estimated the appropriate knee joint torque auxiliary amount of learning

assist by Lokomat [46]. Crespo et al. and Emken et al. obtained an estimate

of the amount of assist by using a combination algorithm of musculoskeletal and

ILC [69], [60]. Their method needs modeling of the contact between the robot

and the human musculoskeletal system of the foot. However, it is necessary to

identify the learner model by their technique beforehand, and there are many

identification parameters to coordinate because the rehabilitation training needs

to be applied to various persons quickly. The model-based approach needs the

identification of the parameter before the training. Therefore, the robotic trainer

should employ a model-free assist algorithm.

2.2.4 Minimum constraint

It is also nontrivial to determine the optimal assisting policy for each person in

advance; the robotic trainer should attempt to minimize the constraints on a

person’s motion, which would also enhance the safety of the system. A human’s

actions are slightly different in each trial although it is desired to perform the

same action. This occurs because of noise called the signal-dependent noise: SDN

mixed in control command from the brain. As one possible factor, it is considered

that a human performs a variety of actions to cope with uncertain environments

or situations. An assistive robot can tolerate these differences in operation by

imposing a weak constraint. For example, in the training of patients with a spinal

cord injury, when the robot completely assists the learner, the learner’s nervous

system does not shown voluntarily activities. In such cases, the learning will fail

despite the efforts of the robotic assistance. The learner’s attempt to voluntarily

recognize his/her own performance is important in motor learning. The robotic

assistance is not fixed completely; it should provide assistance tailored to the

learner so that the learners are able to face the challenge of learning on their
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own.
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3. Analysis of Darts Throwing

3.1 Introduction

Recently, throwing motions of experts and non-experts have been compared based

on biological information such as motion and electromyographic (EMG) signals

[70]. For example, Proximal-to-Distal segmental Sequencing (PDS) is found in

both joint-angular velocities and EMG signals[71]. PDS indicates such a phe-

nomenon that limb motions are described by successive transitions of a velocity-

peaked joint and the beginning of the EMG activation of a muscle from the body

trunk to the periphery. PDS can also be observed in gaiting. Finding PDS is

attractive because it is strongly related to synergetic motor control and humans

can take an optimal motor-control strategy such as minimum-jerk control. On the

other hand, the computational property of PDS has not been discussed, though it

is widely accepted that humans can take an optimal motor-control strategy such

as minimum-jerk control. However, most motor-control experiment were only a

reaching movement task between two points, and there was not evaluated in a

real exercise skilled motion.In order to understand the human strategy for opti-

mal motor-control, we investigate the motion of dart throwing by quantitatively

comparing experts and non-experts based on their scores, motions.

3.2 Darts Throwing

We chose dart throwing because it is essentially different from ball throwing in

previous studies, as follows. Throwing a dart is one of the discrete skill. The

discrete skill is a skill that is organized in such a way that the action is usually

brief and has a well-defined begining and end. Discrete skills are tasks such as

throwing and kicking a ball, firing arifle, or casting fishing lure. In addition, the

dart throwing is the relatively early movement that movement finishes throwing

it as 0.5[s]. It is required to learn internal model so that a person realizes such a

movement. Because it is thought that the dart throwing is one of the tasks that

throwing it needs learning of the internal model in this way, it is thought that we

can think about what kind of optimization model it is optimized.

Figure 1 shows an example of throwing motion which captured by high speed
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Figure 1. Example darts throwing motion captured by High Speed Camera

(1000Hz)

camera (1000Hz). Throwing darts is simple because it usually performed by fixing

the body trunk and is primarily driven by an upper-limb(Figure 1). The weight

of a dart is much lighter than a ball, and acceleration required in the hand tip for

throwing a dart is much smaller than that of a ball. Big acceleration need not be

given in the motion of throwing a dart. The possibility of muscle fatigue is much

lower in throwing darts. Hence, the influence on the muscle activity caused by

fatigue should be much smaller in throwing darts. In contrast to previous studies,

we examine the difference between experts and non-experts from the viewpoint

of optimal motor control.

3.3 Evaluating by Optimization Criteria

3.3.1 Optimization Criteria

Each subject’s trajectories for each throw were analyzed in terms of the following

optimization criteria.

Sum of squared jerk

Minimum jerk is an optimization criterion proposed by Flash and Hogan
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[72] to explain human motor control. It is known that it precisely explains

human reaching movements as long as there is no interaction with external

objects. In this study, the arm of each subject did not interact with an

external object, except a dart. Because the weight of a dart is much lighter

than an arm, throwing trajectories may be well explained by this criterion.

The objective function of the minimum-jerk optimization is defined in the

task (world) coordinates, and is integration of the squared jerk of a hand

for each coordinate during an arm movement.

In this study, we defined an optimization function of the minimum-jerk

criterion as

C =
1

2

tf∑
k=ts

(z[k + 3]− 3z[k + 2] + 3z[k + 1]− z[k])2 , (1)

where z is coordinate of the hand, ts is the starting time of a throwing

motion and tf is the ending time.

Sum of squared joint-torque change

To overcome the problem of the minimum-jerk criteria which is purely kine-

matic, minimum torque-change criterion was proposed by Uno, et al. [73] to

cover the minimum jerk trajectory model’s demerits. The objective func-

tion of the minimum torque-change optimization is defined in the joint

coordinates, and is integration of squared joint-torque change for each joint

during an arm movement. The following is the objective function used in

this study.

C =
1

2

tf∑
k=ts

(τ [k + 1]− τ [k])2 , (2)

where τi is joint torque of the ith joint, ts is the starting time of a throwing

motion and tf is the ending time.

Minimize joint Jerk model

This evaluation model is to minimize each joint jerk, was proposed Osu [74].

Caj =
1

2

∫ tend

tstart

(
d3θi
dt3

)2

dt (3)
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where，θi，tstart, tend are ith joint angle, begining time of take-back, time

of releasing the dart, respectively.

The correlation between optimization criteria and score is used for comparison

the each criteria.
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Table 1. Subjects

Subject A B C D E F

Weight[kg] 80 65 61 67 67 80

Height[cm] 183 172 172 176 182 171

2440 [mm]

1730[mm]

Figure 2. Experimental environment

Table 2. Detail of dart
Height[mm] Weight[g] Flights Shape Diameter[mm] Shaft length[mm]

141 10 Standard Max. 5 46

3.4 Methods

3.4.1 Subjects

Six healthy subjects (adult males, age 25 ± 1 years ) participated in this exper-

iment. Their body parameters are shown in TABLE 1. We classified them into

two groups based on their darts scores.

3.4.2 Experimental setup and data preprocessing

The task was soft-tip darts. The goal of this task was to shoot a bull’s eye

on a dart board. The setting of the dart board and the standing location of
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Bull

Figure 3. Define the section name of

darts-board

Figure 4. Attached marker positions

based on Helen Hays marker set

the subjects followed the official rules of the World Darts Federation (WDF) as

shown in Fig. 2. Fig. 3 shows the define of the score. Scores of bull’s eye, inner

single ring, triple ring, outer single ring and double ring are 5, 4, 3, 2 and 1

point, respectively. Subjects were instructed to shoot for the bull’s eye as much

as possible with their preferred rhythm. Before the actual task, the subjects were

asked to throw darts 30 times. The actual task consisted of 12 trials. In one trial,

the subjects initially held four darts with their right hand, and threw them one

by one.

We used PC DARTS (Epoch CO., LTD) consisting of a board with a USB

connection to a PC, and darts with a soft tip. The scores were automatically

calculated by the PC DARTS. We used a MAC3D System (Motion Analysis

Corp.) for measuring upper-limb motion.Markers for optical motion measurement

were attached to each subject’s upper-limb (shoulder, elbow, and hand) according

to the Helen Hayes Marker set.

The measured marker positions were low-pass filtered by second order But-

terworth filter with a cutoff frequency of 5 Hz. Angular position, angular velocity

and angular acceleration of each joint were calculated from the marker positions.

In general, it is said that one throwing motion consists of three phases: the

aiming phase, the take-back phase, and the throwing phase. Fig. 6 shows defined

these phase on the motion data. We particularly focused on the timing when the

aiming phase and the take-back phase was switched, and defined it as the end of
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Transmitter

Reciever

Figure 5. Measurement system for darts throwing

the take-back phase by finding the time when the vertical velocity of the hand

tip in the world coordinates became zero. All recorded data were aligned at this

switching timing from the take-back phase to the throwing phase.

3.4.3 Estimation of joint torque change

We estimate joint torque that calculates inverse dynamics using the Newton Euler

method. Required parameters of mass, center of mass (COM) and inertia were

set based on body length and body mass according to [16]. The upper-limb was

modeled by three segment mechanical links with five degrees of freedom (DOFs).

The shoulder joint was modeled as a 3 DOFs balland-socket, and the elbow and

the hand joint were modeled as 1 DOF hinges.
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[ms]

[m/s²]

[mm/s]

[mm]
End of Aiming End of Take-back Release dart

Z-axis position of 
Hand’s Marker

Z-axis Velocity of
Hand’s Marker

Z-axis Acceleration of 
Hand’s Marker

A

B

C

Take-Back Follow-ThoughThrowingAiming

Figure 6. Diagram illustrating how 3 timings of throwing were measured during

a throw.

3.4.4 Computation method of correlation

Figure 7 shows the computation method of correlation. We use all subjects all

data for comparison the property of human.

23



45

1

6

Correlation

Figure 7. Computation method of correlation between optimization criteria and
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Figure 8. Score distribution of all subjects

3.4.5 Results

Figure 8 shows each subject’s score. In the results, subjects C, D and F (lower

panels) hit the bull’s eye better (over 30% of throws) than subjects A, B and E
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Figure 9. Trajectories of the hand tip of all subjects

(upper panels). Hence, we decided that subjects C, D and F were experts and

subjects A, B and E were non-experts for this study.

In Fig. 9, each panel shows whole trajectories of the z-coordinate of each

subject’s hand during one throw consisting of aiming, take-back, and throwing

phases. Hand trajectories are shown by the red lines. Each black error bar shows

the variance at a time over trajectories. The left three panels were of non-experts

and the right three panels were of experts. In each panel, the horizontal axis is

normalized time. ’*’ indicates the time points at the beginning of the throwing

phase, and their variance was shown to be significantly different (p < 0.05). This

figure clearly shows the significant difference between the experts and the non-

experts such that the experts’ variance of the hand position in the aiming and

take-back phases was much smaller than that of the non-experts.

Figure 10 shows hand jerk trajectories of all subjects. The left three figures

were of the non-experts, while the right ones were of the experts. The trajectory
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Figure 10. Jerk trajectories of the hand tip of all subjects

amplitude of subject A seems the largest, while both trajectory variances of

subjects B and D seem large. The amplitude of vibration and wave pattern were

different among subjects. Moreover, significant correlation was not found between

the sum of squared jerks and scores of all subjects.

Estimated joint-torque change trajectories of subject F (expert, right panels)

and subject A (non-expert, left panels) are shown in Fig. 3.4.5. Five panels in

each column correspond to 3 DOFs shoulder-torque trajectories of all throws, 1

DOF elbow-torque trajectories and 1 DOF hand-torque trajectories, respectively.

This figure clearly shows that the variance of the non-expert’s torque-trajectory

was higher than that of the expert. In contrast to the case of the sum of squared

jerk, significant correlation was found between the scores of all subjects and their

sum of squared torque-change values around the shoulder joint (rotation around

x-axis and y-axis), the elbow joint, and the hand joint. The correlation values

were -0.26, -0.17 and -0.19 (p < 0.05).
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(b) Joint torque change trajectory

of SubjectF

Figure 11. Estimated joint torque change trajectories of an expert (a) and a

non-expert (b)

As shown in Fig. 1, subjects stood with their right shoulder forward. With

this standing posture, rotation around the x-axis of the shoulder joint corresponds

to elevating motion and is caused by shoulder adduction and abduction. Rotation

around the y-axis of the shoulder joint also corresponds to elevating motion and

is caused by horizontal shoulder flexion and extension. It is reasonable that these

two axes of the shoulder joint were elaborately controlled for throwing darts

because they mainly contributed to the throwing motion, while rotational arm

motion around the z-axis should not. The obtained negative correlation between
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the sum of squared torque change and the scores of all data suggests that the

experts optimally controlled the shoulder elevations, rotation around the elbow,

and rotation around the hand joint, in terms of the dynamics, for throwing darts.

score

C_aj

Figure 12. All subject’s jerk time series

Fig. 12 shows scatter graph of each joint jerk and score over subjects. Shoulder

joint:x,y axis shows positive correlation (p < 0.05)，hand joint shows also positive

correlation (p < 0.05).

3.5 Summary

The most interesting finding of this study was acquired by analyzing the upper-

limb motions of all subjects in terms of trajectory optimization criteria. That

is, their sum of squared joint-torque changes was negatively correlated with their

scores (p < 0.05), whereas their sum of squared jerks was not, suggesting that the

experts optimally controlled the shoulder elevations, rotation around the elbow

and the hand joint in terms of dynamics. In the joint-jerk, the shoulder joint:x,y

axis shows positive correlation (p < 0.05)，hand joint shows also positive corre-

lation (p < 0.05).
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3.6 Estimating Release Time

3.6.1 Motivation

Acquiring skillful movements of experts is a difficult task in many fields. Novices

often fail to find out how to improve their skill even by watching the expert’s

demonstration. Therefore, it is desirable to develop a computer agent that can

automatically find quantitative indices of skillful movements that clarify the dif-

ference between experts and novices. Although the quantitative indices can be

described not only in the motion space, but also in different spaces such as the

torque and the muscle space [34], this article focuses on the indices described

in the motion space, as it is the most fundamental and important space, and is

therefore frequently used for instructors.

On the other hand, teaching skillful movements to novices by experts is also

inherently difficult, because unseen activities such as muscle and neural ones gen-

erate the movements. Although there are studies aiming at finding the difference

in muscle activities [40] and neural activities [75] between experts and novices

in many fields, there is little study that applied those findings to actual training

assistance. Although the robot essentially assists its trainee in the motion space,

the plausibility of the system is shown by the recent results of our application to

darts-throwing training. The most important key of our system is that the robot

physically, partially, and adaptively restrains the trainee’s motion based on the

assist-as-needed principle. The assist-as-needed(AAN) principle is well known

in the field of physical therapy empirically, and its physiological rationality was

indicated at least in the case of rat locomotion [76].

The AAN principle can be intuitively explained: If there is an assist, trainees

tend to rely on it, and thus, their training efficiency is generally lower than in the

case without the assist. To estimate the skill level of a person for more natural

assistance by ANN, we need to collect more data from experts and novices and

compare the data on the basis of other features (release time of the dart and so

on). Therefore, I developed a measuring environment for estimating the release

time. The measurement devices do not disturb the finger motion and sensing. It

has the ability to measure the trajectory of the dart simultaneously with the body

motion. In this section. I describe the feasibility of our measurement system and
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detection of the release time of the dart by 2 subjects. We show that our system

can use darts throwing comparing task.

3.6.2 Release timing

① ②

①

②

Figure 13. Example of darts throwing

Depending on how the dart is thrown, the score differs. Because, human

neural control signals have a noise called signal dependent noise (SDN). We have

to control the perturbation to control dart accuracy. Thus, we needed to throw

darts at different release timings.

In rigid body space, it is assumed that the dart and hand is one rigid body

grasping the dart. We see that a high correlation is shown during the grasping

of the dart and highest correlation at release time. We investigated whether

the correspondence could be defined by the inner product of the hand and dart

velocity, empirically.

3.6.3 Experimental setup

The measurement system was prepared based on some conditions: the measure-

ment devices would not disturb the finger motion. The measurement system

would have the ability to measure the trajectory of the dart and detect the re-

lease time of the dart. Because it is difficult to measure the release time during

natural throwing motion by any attached finger devices, we should avoid attach-

ing any devices to the subjects hand. Then the 6[mm] marker is attached to the

flights of the dart. The subject’s motion with the darts was measured by motion
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Figure 14. Comparing our method and other studies

capture system this way. Other previous throwing studies did not measure the

throwing equipment, quantitatively. It is difficult to perform a number of trials

and measure them quantitatively.

Subjects Two healthy subjects (age 23, male and female) participated. Eigh-

teen markers, of Helen Hays marker-set, were attached to their body. Their task

was to throw 30 darts, aiming for bullseye.

Experimental environment In this experimental setup, 9 IR cameras were

used and put around the subject and the dart-board to measure the thrown dart.

Almost all subjects threw the dart using their right hand. Also, 6 IR cameras

were set on the right-side and others set on the left-side to measure the accuracy

of the throwing motion and dart.

Darts We measured the finger motion for detecting the dart release time. How-

ever, it was difficult to detect the marker, which was attached on the finger during

throwing. Thus, we chose to measure the dart and attached the small marker on

the back of the flight of dart (Fig.16).
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Figure 15. Camera Setting

Post Data Process Figure 17 shows the post processing of the motion data.

The velocity profile is used to automatically remove outliers using the velocity

profile. Further, more outliers were checked and removed manually. Then, lin-

ear interpolation was applied. After that, a second-order low-pass filter (cut-off

Freqency: 5 Hz) was applied.

Similarity of hand velocity vector and dart velocity vector The similar-

ity refers to that of the inner product of the hand velocity and the dart velocity.

In rigid body space, it is assumed that the dart and hand constitute the same

rigid body when the dart is grasped. We believed that the high correlation shown

during grasping of the dart and the highest correlation would be at release time.

the correlation was calculated as follwing:

⟨vdart,vhand⟩ (4)

where,vdart and vhand are the velocity of the dart’s marker and velocity of the

hand’s marker.
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(a) Side view of Flight

(b) Back view of Flight

Figure 16. Flight setting

3.6.4 Results

Fig. 18(a) and Fig.18(b) show the trajectory of the hand marker of subjects and

the trajectory of dart. Each panels’ point (0,0) is the end-time of take-back’s

hand marker’s position.

Figure 19 shows the time change of similarity of each subjects. The boxplot

contain each time’s similarity of all throws. Figure 19(a) and Figure 19(b) have

small variance and high similarity time step. Therefore, we believe that the high
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Figure 17. Post Data Process and outlier and missing value examples

similarity time could be assumed to correspond to the release time.

Fig. 20(a) and Fig.20(b) show the distance between the hand and the dart of

each subject, respectively. The end-time of take-back which was defined by [77]

is set time at 0[s]. The distance shows monotonic increase after the end-time of

take-back. It assumes that the release time can be detected after the end-time of

take-back. Therefore, the inner product the hand velocity and the dart velocity

after the end-time of take-back were executed. Then, the release time was defined

as the peak of the inner product.

Fig. 21(a) and Fig.21(b) show all the release time for all trial, which is the

time with respect to the end-time of take-back. The vertical lines are the number

of darts thrown by each subjects. The horizontal line is the time that set the
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(a) Subject1’s hand trajectory and darts trajec-

tory

(b) Subject2’s hand trajectory and darts trajec-

tory

Figure 18. Subject’s hand marker trajectories (Blue Line) and darts marker

trajectories (Red Line). Upper panel’s vertical line is y-axis(mm) and horizontal

line is x-aixs(mm). Bottom panel’s vertical line is y-axis(mm) and horizontal line

is x-aixs(mm)

end-time of take-back at 0[s]. The variance of subject 1 was larger than that of

subject 2. The differences in the release time between subject 1 and 2 are shown
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(a) Subject1’s time change of similarity

(b) Subject2’s time change of similarity

Figure 19. Time change of Similarity of velocity direction of Hand and Darts

during throwing phase. Blue circls means estimated release time

by these figures. However, the correlation between the release time and score is

not shown.
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[mm]

[s]

(a) Subject1’s Time change of distance

of subject1’s hand and dart during

throwing

[mm]

[s]

(b) Subject2’s Time change of distance

of subject2’s hand and dart during

throwing

Figure 20. Time change of distance of hand and darts during throwing. Vertical

line is distance (mm) and horizontal line is time(s)

[s]

[throw]

(a) Subject1’s estimated Release Times

of 30 throws

[s]

[throw]

(b) Subject2’s estimated Release Times

of 30 throws

Figure 21. Subjects’ release time (circles) of the dart. Vertical line is number of

throw (mm) and horizontal line is time(s)

3.6.5 Discussion

In this section, the experiment environment to measure a dart was prepared and

the pre-experiment was performed. In the results, we suggested that the release
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time could be estimated by similarity between hand velocity and dart velocity.

It is necessary to allow a natural arm throw motion without putting physical

burden on the person throwing and to measure the learning degree of progress of

the movement. The measurement sensor was small and light and built according

to the measurement environment, with IR motion capture system. We used a

spherical marker to avoid disturbing the movement of a body and the finger.

Using this system, we could measure the movement of throwing an arrow by

measuring the movement of the finger of the person of throwing it, but it was

necessary to measure the movement of the body limb at the same time, and

the number of the markers increases significantly. As for the build, such an

individual difference really affects the measurement; every subject has different

measurements. It is necessary to regulate the camera layout and focus to prevent

occlusion, and a measurement of many arm throw movements becomes difficult in

a short time. Even if we could measure the flight by using many small markers, the

measured data is lost due to occlusion or the resolution of the camera. Therefore,

post-process becomes complex and time-consuming.

Figure 17 shows an example of measured data of a real dart. We understand

that a loss is often mixed during throwing movement, even using a few markers.

Therefore, we adopted a technique to estimate the time from when I separated

an arrow without increasing the number of the markers as much as possible.

Specifically, I threw the dart with the IR motion capture system and built a

movement and dart orbit simultaneous measurement environment by attaching a

small and light marker to the arrow of the dart. We decided to attach a spherical

object of diameter 9[mm] to the flight tail of the dart, and a marker to attach the

considered mounting location so that influence of the occlusion by finger and flight

became small and do not greatly change the flight’s aerodynamic characteristics.

Fig. 18(a) and Fig.18(b) show that we can measure the marker trajectory of

a dart and the fingers. The two subjects were of different gender, but we could

measure the movement of the person and the trajectory of the dart simultane-

ously. Fig. 21(a) and Fig.21(b) suggest that it is possible to estimate the time

a dart separates by this measurement set up. We need to measure the correct

release time, and our method will be necessary to verify the accuracy of the data

in future.
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3.7 Summary

In this section, we build a measurement method to estimate the release time

of dart throwing. The most interesting part of this study was that the release

time was estimated by using only a motion capture system. The measurement

environment for the human motion and the dart was prepared by IR motion

capture system. The number of the markers and size on the flight of dart were

determined experimentally. We suggested that the estimated release time by the

dart’s position and velocity. We needed to measure the correct release time, and

it is necessary to verify the accuracy of the data in future.
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4. Development of an Adaptive Robotic Trainer

for darts throwing

4.1 Adaptive Robotic Trainer

The goal of the adaptive robotic trainer for darts throwing was maximizing the

subject’s score of the darts throwing and minimizing the physical support to avoid

learning to keep relying on the physical support.

It is nontrivial for each subject to define the optimal throwing trajectory as

well as the optimal policy for the physical support in advance, due to individ-

ual differences in the body dynamics and in the neural controller. Therefore,

we employed an on-line version of GARB algorithm [78], a policy-gradient based

reinforcement learning algorithm, to achieve the goal. An advantage of the pol-

icy gradient method is that the policy representation can be chosen so that it

is meaningful for the task and can incorporate domain knowledge. This often

requires fewer parameters in the learning process than in value-function based

methods. Another advantage is that the policy gradient method is a model-free

approach. Because of these advantages, it has been applied to robot learning

studies including human-robot interaction (HRI) studies [50] [49] [79].

4.1.1 Training system overview

This training system (Fig. 22) integrated the following three subsystems through

Ethernet: the motion capture subsystem (Mac3D system, Motion Analysis Corp.

USA), the dartboard observation subsystem and the manipulator (PA10, Mit-

subishi Heavy Industries, Japan) control subsystem. The distance between the

dartboard and each subject was 244[cm], and the height of the dartboard from the

floor was 173 [cm]. The three-dimensional coordinates of the motion capture sub-

system is depicted, and throwing motions are mainly described in the X-Z plane.

The experimental setup (Fig. 22) for this learning task was almost the same as

the one described in section 3 except that a manipulator was involved. This ma-

nipulator (Fig. 23(b)) was employed to physically assist the upper arm of each

subject (Fig. 23(b)), but the subject’s upper limb was not fixed completely. The

manipulator’s end-effector was fitted with a soft rubber attachment(Fig. 23(a))
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Human with Robot

Robot control
sub-system

Motion Capture
sub-system

Dartsboard observation
sub-system

USB Darts-board
Camera

Z

X
Y

Hub

Ethernet

Figure 22. Overview of the training system which integrates the following three

subsystems through Ethernet: motion capture subsystem, dartboard observation

subsystem and robot control subsystem. The three-dimensional coordinates of the

motion capture subsystem is depicted, and throwing motions are mainly described

in the X-Z plane.

to partially hold the subject’s upper arm safely.

The manipulator’s end-effector’s initial position was set up based on the fol-

lowing: (1) the subject’s upper limb pointed to the dartboard; (2) its posture was

level. We chose this setup for the following two reasons. First, we have already

shown that elbow displacements de and shoulder displacement ds were larger in

novices than in experts. The second reason was for minimum constraint (see

Sec. 4). As we have discussed, the state vector for reinforcement learning at the

kth learning iteration was chosen as sk = [ds, de]
T .

To compliantly assist the subject’s upper limb, and to implement the assist-
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(a)

End-effector of PA10

6DOF-Force-
Moment sensor

(b)

Figure 23. Interface to hold a human upper limb. It is made of rubber (a), and

attached to the robot as shown in (b)

as-needed function, active impedance control was applied to the manipulator.

The active impedance control enabled the manipulator to emulate a spring-mass-

damper system with the help of a 6 degree of freedom (DOF) force-moment

sensor mounted at the manipulator’s end-effector (Fig. 23(b)). The dynamics of

the robot’s end-effector in the xyz-coordinates are given by

M
d2P (t)

dt2
+ C

dP (t)

dt
+KP (t) = F , (5)

where M , C and K are mass, viscosity and spring (stiffness) of the robot hand.

(please see appendix 5) The desired joint angular velocity θ̇ was calculated in

real-time through the Jacobian of the robot from P (t) and was sent to the robot
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motion

Environment

force

score

Motion capture

ADC   (12bit)

Darts-board and camera

Mac3D system

Darts board observation system

PA10 control system
Sampling frequency: 200 [Hz] Control freqency: 200[Hz]

RL controller

θJoint angular velocity : 

Impedance
controller

・

Human with Robot

Figure 24. Data flow for the reinforcement learning controller and the impedance

controller of the robot

Table 3. Impedance parameters

Impedance parameter K[N/m] C[N/m2] M [kg]

Maximum value 400 10 2

Minimum value 0 10 2

controller. The position of the manipulator’s end-effector, P (t), was determined

by the force F that was measured by the force sensor at a sampling rate of 200

[Hz] (Fig. 24). The control frequency was also the same.

To minimize the strength of the physical assistance according to the increase

in subject’s skill measured by the score, we employed the online GARB algo-

rithm ([78]), a popular policy-gradient type of reinforcement learning algorithm

that has often been used in robot learning studies ([50], [49], and [79]). The policy

for the online GARB algorithm in this study was designed to change the stiffness

parameter K of the robot’s impedance as

ak ∼ N (·;µk, σk), (6)

µk = [w1,k, w2,k]sk, (7)

σk =
1

1 + exp(−w3,k)
, (8)

Kk = Kdef/(1 + exp(−ak/Kdef )), (9)

where the index k means the kth iteration (number of throws) and Kdef is the

default stiffness value. The initial values of the virtual impedance were deter-
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mined by referring to human hand impedance ([80]). Kdef was set to a high

value, which enabled the upper arm of the subject to be placed reliably on the

robot arm. Table 3 shows the maximum and the minimum value of K, Kdef ,

and other initial values for viscosity (C) and mass (M). wi (i = 1, 2, 3) are the

weights to be optimized via the online GARB algorithm.

The reward function was designed to be positively proportional to the score

and negatively proportional to the assistive force given by the robot as

rk = d̂k − ηf̄k, (10)

where η, d̂k and f̄k are the balancing constant, normalized score and mean assis-

tive force during the throwing, respectively.

d̂k =
dmax − dk

dmax

, (11)

f̄k =
fk
∆tk

, (12)

where dk is the kth distance between the center of the dartboard and the location

that a dart hit on the dartboard, and dmax is equivalent to the radius of the

dartboard. fk and ∆tk are the accumulated assistive force during the kth throw,

and the duration of the kth throw, respectively. Qualitatively speaking, this

reward function is designed to be high when the score is high while the assistive

force is low. Thus, the goal described by this reward function is to get high

scores without the physical assistance of the robot. η was empirically set to 0.6.

Furthermore, the forgetting factor and the discount factor of learning for the

online GARB algorithm were empirically set to 0.92 and 0.98, respectively.

4.2 Training experiments

To validate the plausibility and feasibility of the proposed training method, we

used three experimental conditions: (1) without robot, (2) with non-adaptive

and fixed stiffness (NA-FS) robot, (3) with adaptive robot, and (4) with non-

adaptive and decreasing stiffness (NA-DS) robot. In the conditions (2)- (4), we

used the same robot. The robot joints were complete fixed and not controlled in

the condition (2). Our proposed method was employed in the condition (3). We

expected the learning of darts throwing would be facilitated in the condition (3)
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TrainingTraining

Day2Day1

Post-TestPost-Test Pre-TestPre-Test

Figure 25. Experimental procedure over two days. In the test blocks, each subject

threw darts without the robot in the all conditions so that we can compare the

subject’s performance after training and before training.

compared not only to (1) but also (2) since the learned skill of the subjects in

the condition (2) would heavily rely on the fixed robot. In the condition (3), the

initial Kdefvalue was set to a large value so that it was impossible for subjects to

move the robot by their upper limb, which is the same in the condition (2). In the

condition (4), the same impedance controller with the condition (3) was used, but

its stiffness parameter was constantly decreased over throws. The same constant

slope was used in this condition (4). The slope was determined to investigate

whether the learned performance in this condition could be comparable to the

one in the condition (3). Therefore we determined the slope by linear fitting of

the time evolution of the stiffness values obtained in the all experiments in the

condition (3) (see the dashed line in Fig. 26(b)). Six different novices among the

24 novices were randomly assigned to each condition. Six different novices among

the 18 novices were randomly assigned to each condition. These novices had

participated in the experiment that compared experts and novices. Fig.25 shows

the experimental procedure over 2 days. Each subject was involved in the first test

block (Pre-Test), then in the training block (Training), and finally in the second

test block (Post-Test). In the test blocks, each subject threw darts without the

robot in all conditions. Thus, we could compare the subject’s performance after

training with that before training. The numbers of throws in these blocks were

30, 60, and 30, respectively. At the beginning of each training block, the initial

height of the robot’s end-effector was set according to the subject’s preference.

The whole procedure was conducted over 2 successive days.

To eliminate some factors affecting motor learning during the experiment ([81]),

all subjects read the instructions. They committed to only training dart-throwing

during our experiment. They were motivated by the experimenter to improve

their performance in the experiments across the 2 days.
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4.3 Results

10 20 30 40 50 60
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0

0.5

1.0

R
e

w
a

rd

Number of throw [times]

(a) Reward

10 20 30 40 50 60
50

100

150

200

250

300

350

400

450

Number of throw [times]
R

o
b

o
t’
s
 S

ti
ff
n

e
s
s
[N

/m
]

(b) Stiffness

10 20 30 40 50 60

0

1

2

3

4

5

6

A
s
s
is

ti
v
e

 F
o

rc
e

 [
N

]

Number of throw [times]

(c) Assistive force

Figure 26. Time evolution of (a) reward, (b) stiffness, and (c) assistive force in

the case ”with adaptive robot” condition. Each panel shows the mean and the

standard deviation over subjects and days for each throw. Dashed line in (b)

shows fitted slope which was used in the case ”with NA-DS robot.”

Fig. 26 shows the mean and standard deviation of the reinforcement learn-

ing variables from six subject in ”with adaptive robot” condition over 2 days.

Fig. 26(a) shows that the reward increased over the 60 throws. Fig. 26(b) shows
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that the stiffness of the robot decreased over the 60 throws, according to the ac-

quired rewards in our system. Fig. 26(c) shows that the assistive force f̂k(Eq.(12)),

measured at the end-effector of the robot, gradually decreased as the reward in-

creased. This is non-trivial, because the subject had a possibility of laying their

elbow on the robot even if the stiffness parameter was set low. Therefore we

can conclude that these panels demonstrate the feasibility of our system in that

subjects were trained to increase their score and to decrease their dependency on

the robotic physical assistance.

Fig. 27 shows the performance on the 1st day’s test. There was a significant

difference in normalized score between the ”with adaptive robot” condition and

the other conditions except the ”with NA-DS robot” condition (Tukey-Kramer,

p<0.05), and also in the shoulder and the elbow displacement among the all

conditions (Tukey-Kramer, p<0.05). Although the subject group of the ”with

adaptive robot” condition was more untrained than of the other two conditions,

more untrained novices do necessarily improve their skill easily.

Fig. 28 shows the amount of increase in the normalized scores of novices,

acquired in the post-test block in the second day and in the pre-test block in the

first day, over six subjects in each condition. The mean amount of increase in the

”with adaptive robot” condition was significantly higher than in the ”without

robot” condition as well as the ”with NA-DS robot” condition (Steel-Dwass,

p<0.05). In addition, we found the variance of the increase in normalized score

in the ”with adaptive robot ” condition was significantly smaller than in the

”with NA-FS robot ”condition (f-test, p<0.05), suggesting consistent increase in

normalized score was achieved in the ”with adaptive robot” condition.

Fig. 29 shows distributions of the daily increase in normalized score in each

condition. The mean increase in normalized score of the second day in ”with

adaptive robot” condition was significantly larger than in ”without robot” con-

dition and ”with NA-DS robot” condition.

Fig. 30 shows the normalized score distributions in each condition of the final

post-test phase. The mean normalized scores in the ”with NA-FS robot” con-

dition and ”with adaptive robot” condition were significantly higher than in the

”with NA-DS robot” condition (Steel-Dwass, p< 0.05).

Fig. 31(a) and Fig. 31(b) show the amount of change in the mean shoulder
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Figure 27. Distributions of (a) score, (b) shoulder displacement, and (c) elbow

displacement in the pre-test on the 1st day for each condition. These data for all

subject in the group were used for plotting each group’s distribution.

displacement and elbow displacement between the post-test on the second day

and the pre-test on the first day in each condition. As shown in this figure, the

mean changes in both shoulder and elbow in the three experimental conditions

with the robot used were significantly smaller than ”without robot” condition

(Steel-Dwass, p<0.05).
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Figure 28. Increase in normalized score in each condition. Each bar and error-bar

stand for the mean and the standard deviation over the subjects and the days in

each condition.

Fig. 32(a) and Fig. 32(b) show the amount of change of the elbow displacement

and the shoulder displacement on each day. The displacements tended to increase

in the ”without robot” condition and to decrease in the other conditions.

4.4 Discussion

Learning results

• Subjects performance

The results presented in the last section together suggest the plausibility

of our adaptive training system. The normalized score was significantly

higher than in the ”without robot” condition as well as the ”with NA-DS
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Figure 29. Distributions of the daily increase in normalized score in each condi-

tion. Each bar and error-bar indicate the mean and standard deviation over the

subjects and the day in each condition.

robot” condition(Fig. 28), which is congruent with our expectation. Al-

though Fig. 27(a) shows the subjects of the ”with adaptive robot” condition

were more untrained than of the other two conditions, this should not the

only reason why we obtained the result shown in Fig. 28. The final normal-

ized score in the ”with adaptive robot” condition, indeed, became equal or

higher than in the other conditions (Fig. 30) despite it was the lowest before

learning. Increase in normalized score in ”with NA-DS robot” condition is

significantly lower than ”with adaptive robot” condition (Fig. 28-Fig. 30).

These facts suggest the validity of our implementation of user-adaptation

(assist-as-needed) to accelerate learning.

• Three Learning parameters How learning progressed (learning profile) in

”with adaptive robot” condition has been shown by Fig. 26. It seems that

learning progress was rapidly at the beginning and almost got saturated
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in 10 to 20 throws, which is congruent with the profile of the three weight

parameters shown in Fig. 33. The three weights started increasing after 10

to 20 throws, which is because the actual stiffness was saturated although

the learning controller kept trying to set a higher stiffness to the impedance

controller. The large variances observed in these panels reflect the subjects’

individual variability in their training.

• Displacements Fig. 31 and Fig. 32 suggest that the elbow and the shoulder

positions got stable when the subjects were involved in the experiments

using the robot. Note that stabilizing their positions was not the explicit

goal of our training system, but we also had expected this outcome since it

is what experts in darts throwing do.
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Figure 31. Change in shoulder (a) and elbow (b) displacement over two days in

the test block for each condition. Each bar and error-bar indicate the mean and

the standard deviation over the subjects in each condition.

Factors for learning There are three factors for learning used in this study

(see Sec.4.1.1). First, Eq. (10) is the reward function which directly describes our

implementation of the assist-as-needed principle. η controls the penalty given

by the mean assistive force, relative to the normalized score. We empirically set

this value to 0.6, through pilot experiments, to see increase in the average reward

and decrease in the mean assistive force simultaneously in tens of trials. Second,

we also needed to set the forgetting factor and the discount factor for using the

online GARB algorithm. The forgetting factor was set to 0.92, a greater value

than the average of the human forgetting factor value of 0.76 estimated by [60], in

which the ”assist-as-needed” controller attempted to reduce its assistance, but at

a rate slower than that of the average unimpaired learning human. The discount

factor was set to 0.98 which is near 1 and shown to be effective in [78] and [79]

Differences with other model-free and assist-as-needed training meth-

ods In this study, we have proposed a model-free and assist-as-needed training

method for learning assistance, and have shown its feasibility and plausibility
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Figure 32. Daily change in shoulder (a) and elbow (b) displacement in the test

block in each condition. Each bar and error-bar indicate the mean and the stan-

dard deviation over the subjects in each condition.

through the learning experiments on darts throwing with healthy subjects. There

are also model-free and assist-as-needed training methods designed for rehabilita-

tion, e.g., [82], [46], and [47], but they mostly required the predetermined desired

trajectory. Note that it is nontrivial to define the optimal trajectory for each

individual in advance, owing to their differences in body kinematics/dynamics

and in the neural controller. The aim of our proposed framework is task-goal

oriented, instead of the desired-trajectory oriented. Recently [83] proposed a

Bayesian approach to robot-assisted motor skill learning and rehabilitation, but

their approach does not maximize the expected task-achievement. The key fea-

ture of their approach is to develop the direct mapping between the performance

and the assistance. In contrast to our method, it is therefore difficult to utilize

human domain knowledge as state variables and a policy function to accelerate

learning.

Toward neuro-rehabilitation As described in section 4 and as discussed

above, the framework proposed in this paper is general and can also be applied to
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Figure 33. Time evolution of learning parameters (a) w1, (b) w2 and (c) w3 in

the case ”with adaptive robot” condition. Each panel shows the mean and the

standard deviation over subjects and days for each throw.

rehabilitation. Since the central engine in our framework is reinforcement learn-

ing, the critical point for applications is whether we can specify (i) state variables,

(ii) policy function, and (ii) reward function. Note that they should be specified

in a low dimensional space for efficient assistance. One natural application would

be to gait rehabilitation for patients with spinal cord injury (SCI), like [46]. They
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proposed to apply the iterative learning control to the robotic gait rehabilitation,

but no results with patients have been shown yet, which might be caused by

the fact that they required the desired trajectory to be followed by the impaired

limb. Instead of using the desired trajectory, we would use such goals as walking

speed and walking distance. Biological signals such as electromyogram (EMG)

and cortical activities measured by near infrared spectroscopy (NIRS) could be

used to describe the state variables and the reward function.
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5. Conclusion

In this thesis, I have proposed an adaptive robotic training framework. In ad-

dition, I have developed a robotic training system for novices of dart throwing,

based on proposed framework. An experiment was setup to investigate the feasi-

bility of the proposed training system.

Section 2 proposed a new framework to realizing non-trajectory based adap-

tive robotic assistive robotic system. Section 3 described the comparison between

an expert and a novice in dart throwing from the aspects of some optimization

criteria for motor skill and the features of the measurement environment to es-

timate the release timing. Section 4 described the development of the proposed

adaptive learning assistive robotic system for novice in dart throwing.

How a robot can physically assist a novice was determined based on motion

comparisons between a novice and an expert. The novice tends to show large

displacement compared with an expert. Since motion comparisons revealed that

a novice had larger displacement on their shoulder and elbow during throwing

compared to an expert, a robot was used to give assistive force to the upper

limb of the novice. Our assist approach was based on four properties: goal-

oriented, assist-as-needed, model-free, minimum constraint. Specifically, we al-

lowed for variability in the subject’s throwing motion and prevented the subject

from learning to rely on the physical assist. The subject’s upper-limb was not

fixed completely, but was adaptively assisted by a robot control employing a pol-

icy gradient type learning algorithm with the aim of maximizing the score of the

darts throwing and minimizing the robotic physical assist. Four conditions, i.e.,

“without robot”, “with NA-FS robot”, “with NA-DS robot”, and “with adaptive

robot” conditions, were used to validate the plausibility of the developed system.

After screening experiment, 24 healthy novices participated under three types of

conditions. In the experimental results, only the score for “with adaptive robot”

condition showed statistically significant improvement over 2 days’ of training.

These results suggest that the subjects in the “with NA-FS robot” and “with

NA-DS robot” condition did not increase their score compared with those in

the “with adaptive robot” condition. Furthermore, the displacement decreased

in “with adaptive robot” condition despite the fact that subjects had minimal

assistance (i.e., without strong correction). These results demonstrate that the
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proposed system is feasible. Under the theme of learning to throw darts, without

the track-based assist with a restraint, in this study, we show the leaner could

learn dart throwing under minimal restraint and adaptive assist in the proposed

framework. Further, the assist robots can also show an example of learning aid to

encourage motor learning of a person. The proposed framework performs a task

aided design and adaptation algorithms goal-oriented. I believe that it is capable

of application in the rehabilitation of stroke patients, such as in existing applica-

tions like track-based rehabilitation. The proposed framework requires a quanti-

tative index for evaluating the movement task. However, quantitative indicators

exist in rehabilitation and sports fields. Thus, for an adaptive rehabilitation sys-

tem based on the proposed scheme, we can construct a training system to apply

adaptive assist to a person using a quantitative index correlated strongly with

training and evaluate the learning state of a learner. It is not necessary to per-

form learning of the track base by constraining the person. The assistive robotic

system has the flexibility of operation for a person’s learning and improves safety.

The existing paradigm of adaptive rehabilitation robot has been used mainly in

the plane of movement at a precise force field production environment. In this

case, the person is bound firmly to the assistive robotic system. In our method,

there is no need to restrain the person as long as there is no fatal reason to do

so, such as for fall prevention. It also does not require a dedicated training to

use. We suggest that a humanoid robot can also be used for motor learning as-

sist. Our assist framework was based on repetitive motor learning method that

is employed in the training experiments of many motor learning studies. To use

the framework in rehabilitation and sport, it is recommended that the training

system is built considering psychological aspects such as attention and motiva-

tion. Some cases have been implemented in robotic-assisted system considering

psychological aspects. However, it was not to perform smooth communication

such as by a therapist. The case of increasing the motivation of the person by in-

troducing games have also been shown in recent years. In rehabilitation, I believe

that the rehabilitation system allows a comprehensive assist more flexibility by

building a system in conjunction with doctors and therapists. In sports training,

I believe a more niche learning assist can be expected by designing the system in

cooperation with the instructors nor the athlete. Next, my work will demonstrate

57



a proposed assistive control framework application for rehabilitation.
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p

Figure 34. Assistive robot’s hand as virtual impedance control

Appendix

Virtual Impedance control

The control dynamics of the robot hand is given by

p̈ =
C

M
ṗ+

K

M
p− F , (13)

where M , C and K are the mass, viscosity and stiffness set to the robot hand,

respectively. In this study, virtual impedance control was applied on only z-axis

of the robot hand. Therefore, the velocities of x and y axis were controlled as 0.

The controlled joints of the robot were θ = [θ1, θ2, θ3]
T , as shown in Fig.34. The

angular velocities sent to the robot, θ1 and θ2, were calculated by:[
θ̇1

θ̇2

]
= J(θ)−1ṗ, (14)

where J(θ)−1 was the inverse of Jacobian matrix, and θ3 was obtained by:

θ3 = −(θ1 − θ2), (15)

so that the robot hand should be kept vertical direction.
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Detail of Experimental Environment

This section trace the history of experimental environment and describes detail

of it.

1st Season: Inovation Center 3F

Figure 35. Experimental Environment: Inovation Center 3F

Fig. 35 shows the measurement environment for the dart throwing. This area

is used following period, -2010 Nov. In the begining, this area is unfitted for

behavior experiment. Becuase, It is not covered arround the experiment space by

curtain. The control desks are put in experimental space. The subject dees not

undisturbedly train by other persons. Therefore, I set up the control desk out of

experimental space and put the curtain along the sides of the space.
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Figure 36. Experimental Environment: A111 Robot Experiment Room1

2nd Season: A111 Robot Experiment Room1

Fig. 36 shows the measurement environment for the experiment of darts throwing.

This area is used following period, 2010 Dec. - 2011 April. This area is shared

other laboratory. Setting up camera position and calibration were needed in

each experiment. After experiment, these systems(Motion capture, DartsBoard,

robotic arm) need to put out of this area.

3rd Season: B213

Fig. 37 shows the measurement environment for the experiment of darts throwing.

This area is used following period, 2011 April - 2011 Dec. This area is set up

for the dart throwing learning experiment. late season, the cloasing assistance

experiment is began. Therefore, the problem that booking my experiemnt and

cloasing assistance experiment is occured. So, the environment for dart throwing

experiment need to move the other room like A111.
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Figure 37. Experimental Environment: B213

Figure 38. Experimental Envirnoment: A111 Robot Experiment Room2

4th Season: A111 Robot Experiment Room2

Fig. 38 shows the measurement environment for the experiment. This area is

used following period, 2012 April - 2012 June. This area is set up for the dart
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Figure 39. Experimental Environement: A111 Robot Experiment Room3

throwing learning experiment.

5th Season: A111 Robot Experiment Room3

Fig. 39 and Fig. 40 show the experimental environment and exapmle of the

measurement of dart throwing with dart. This area is used following period,

2012 June -. This area is set up to be able to measure the dart and soccer kick

motion.

6th Season: B213

Fig. 41 shows the measurement environment for the experiment on Sep. 2013.

This season we used the B213 again but we need to re-build the measurement

environment on Sep. 2013. Becuase the study of the cloasing assistance using the

dual-arm robot had used until Aug. 2013. Therefore, dart-measurement system

move to the B213 from A111 again and set up the cameras for darts throwing.
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Figure 40. Example of the experiment of measurering of the dart with darts

throwing

Figure 41. Experimental Environement: A111 Robot Experiment Room3
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