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Musical-Noise-Free Speech Enhancement Based on
Higher-Order Statistics Pursuit∗

Ryoichi Miyazaki

Abstract

In this dissertation, I propose a new speech enhancement theory for hearing aid and
video conference systems, where the output speech quality of nonlinear signal process-
ing is controlled using higher-order statistics. In these systems, since interference sig-
nals and noise deteriorate the quality of a users input speech, it is desirable to develop
a digital signal processing technique to clean microphone signal before it is stored. In
order to remove background noise, there have been many studies on noise reduction
methods that have high noise reduction performance. However, the reduction of noise
spectra often introduces an artificial distortion in the residual noise, which is the well-
known phenomenon of so-called musical noise, leading to a serious deterioration of
sound quality.

In this study, I first theoretically clarify that iterative spectral subtraction with a
specific parameter generates almost no musical noise even with high noise reduction
performance. On the basis of the fact, I propose a musical-noise-free theory for single-
channel speech enhancement using iterative nonlinear signal processing. In the pro-
posed theory, the fixed point in kurtosis yields the no-musical-noise state; we call this
the “musical-noise-free condition.” In addition, I mathematically derive the optimal
internal parameter settings to satisfy the musical-noise-free condition based on higher-
order statistics pursuit.

Next, I propose a new iterative blind signal extraction method that integrates blind
noise estimation and iterative noise reduction to reduce nonstationary noise. This
method includes a dynamic estimation of the noise power spectral density based on in-
dependent component analysis and multichannel Wiener filtering, which can provide
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effective noise reduction even in the case that the noise has time-varying properties.
From the experimental evaluation, it is asserted that the proposed methods are superior
to conventional speech enhancement methods in terms of total sound quality.

Keywords:

Iterative spectral subtraction, musical-noise-free speech enhancement, blind speech
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1. Introduction

1.1 Background

Over the past few decades, many applications of speech communication systems, such
as hands-free telecommunication systems,hearing aid systems, and video conference
systems have been developed because speech is the most convenient medium for com-
munication among human beings. However, since we live in an environment (noisy
offices, crowded public spaces, and railway stations) where noise is inevitable and
ubiquitous, speech signals are generally immersed in noise and can seldom be ac-
quired and processed in a pure form. To make speech communication feasible, natural,
and comfortable even in the presence of noise, it is desirable to develop a digital signal
processing technique to clean a microphone signal before it is stored.

In order to remove background noise, there have been many studies on noise reduc-
tion. Noise reduction is concerned with improving some perceptual aspects of speech
that has been degraded by additive noise. As single-channel noise reduction methods,
subtraction-based methods [1, 2, 3], Wiener filtering approaches [4, 5], and statistical-
model-based methods [6, 7, 8, 9, 10, 11] have been widely studied. These methods
have high noise reduction performance with low computational complexity. However,
in these methods, the enhancement of the noise spectra from the noisy spectra intro-
duces an artificial distortion in the residual noise signal, which is known as musical
noise, leading to a serious deterioration of sound quality.

To address the musical noise problem, there have been many studies on the analysis
of musical noise generation in nonlinear signal processing, and methods aimed at its
mitigation have been proposed [12, 13]. Such conventional musical noise mitigation
methods are, unfortunately, designed to reduce musical noise generation at the cost
of degrading the noise reduction performance. To achieve both high noise reduction
performance and low musical noise generation, an iterative spectral subtraction (SS)
method has recently been proposed [14, 15, 16, 17, 18, 19]. This method is performed
through signal processing in which weak SS processes are recursively applied to the
input signal. The methodology used in iterative SS is of great interest to researchers
working on nonlinear signal processing and machine learning because it addresses the
inherent question of whether or not recursive weak (nonlinear) signal processing can
provide better performance. Although the effectiveness of the iterative SS method has
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been reported experimentally, to the best of our knowledge, there have been no studies
on the theoretical advantages of iterative SS. One reason for this is the difficulty of
theoretical study due to the fact that no objective metric to measure how much musical
noise is generated has been proposed.

Recently, it has been demonstrated that the amount of generated musical noise
strongly correlates with the difference between higher-order statistics of the power
spectra before and after nonlinear signal processing [20, 21, 22, 23]. This fact en-
ables us to analyze the amount of musical noise generated through nonlinear signal
processing. Furthermore, on the basis of higher-order statistics, a mathematical met-
ric for musical noise generation that can be used as an objective measure has been
established [20, 21]. Some researchers have theoretically clarified features of the
musical noise generation in various speech enhancement methods based on this find-
ing [24, 25, 26, 27, 28, 29]. However, no noise reduction method that generates no
musical noise has been proposed.

On the other hand, in commonly used noise reduction methods, it is assumed that
the input noise signal is stationary, meaning that we can estimate the expectation of a
noise signal from a time-frequency period of a signal that contains only noise, i.e.,
speech absence. In contrast, under real-world acoustical environments, such as a
nonstationary noise field, it is necessary to dynamically estimate noise. As a well-
known single-channel noise power spectral density (PSD) estimation method, Martin
proposed an algorithm for noise estimation based on minimum statistics [3]. In this
method, the noise is estimated from the minimum values of a smoothed power esti-
mate of the noisy signal, which is multiplied by a factor to compensate for the bias.
However, this noise estimate is sensitive to outliers and less stable when the noise is
rapidly varying and speech is continuously present at a certain frequency. More re-
cent spectral noise power estimators allow quicker tracking of noise power spectra,
e.g., minimum-mean-square error (MMSE) based approaches [30, 31]. In the MMSE
based estimator, a limited maximum likelihood estimate of the a priori SNR is used to
estimate the periodogram of the noise signal. However, the accuracy of noise estima-
tion is not sufficient.

It is well known that an approach using a microphone array is effective for im-
proving the accuracy of noise estimation, and many methods of integrating micro-
phone array signal processing for noise estimation and nonlinear signal processing
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for noise reduction have been studied with the aim of achieving better noise reduc-
tion [32, 33, 34, 35, 36, 37, 38, 39]. These integrating methods can achieve higher
noise reduction performance than that obtained using conventional adaptive micro-
phone arrays. However, these methods always suffer from musical noise owing to
nonlinear signal processing.

In conclusion, there is no effective method for achieving perfect “musical-noise-
less” properties, even under stationary noise conditions. Also, in case of the nonsta-
tionary noise, the development of such a musical-noise-less method is strongly re-
quired. The above-mentioned problems require urgent attention.

1.2 Scope of thesis

1.2.1 Theory of musical-noise-free speech enhancement

To achieve high-quality speech enhancement with less musical noise, in this disser-
tation, I propose a new method for optimization of the performance in iterative SS.
Although commonly used noise reduction methods have high noise reduction perfor-
mance, musical noise arises, leading to a serious deterioration of sound quality (see
Fig. 1). Therefore, it is desirable and very challenging to achieve both high noise
reduction performance and less (or ideally no) musical noise generation.

Recently, a very interesting phenomenon has been found: the recursive use of
very weak SS with appropriate parameters gives equilibrium behavior in the growth
of higher-order statistics with increasing number of iterations. This means that almost
no musical noise is generated even with high noise reduction (see Fig. 1), which is one
of the most desirable properties of single-channel nonlinear noise reduction methods.
Hereafter, I refer to this phenomenon as a musical-noise-free condition. In this study,
I theoretically derive a closed-form solution of the internal parameters that satisfy the
musical-noise-free condition based on the analysis of higher-order statistics.

1.2.2 Toward musical-noise-free blind speech extraction

In the previous proposed methods, however, it was assumed that the input noise signal
is stationary, meaning that we can estimate the expectation of the noise power spectral
density from a time-frequency period of a signal that contains only noise. In contrast,

3
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Fig. 1. Relation between conventional noise reduction methods and proposed method.

under real-world acoustical environments, such as a nonstationary noise field, although
it is necessary to dynamically estimate noise, this is very difficult.

Therefore, in this dissertation, I propose a new iterative signal extraction method
using a microphone array that can be applied to nonstationary noise. This proposed
method consists of iterative blind dynamic noise estimation by independent compo-
nent analysis (ICA) [40] and musical-noise-free speech extraction by modified itera-
tive SS, where multiple iterative SS is applied to each channel while maintaining the
multichannel property reused for ICA. This method can be applied to nonstationary
noise, and almost no musical noise is generated because noisy speech is extracted
by musical-noise-free speech extraction. Figure 2 shows the relationship between the
conventional single-channel/multichannel noise reduction methods and the proposed
method. As shown in Fig. 2, it is expected that the proposed method will generate less
speech distortion than the conventional single-channel noise reduction methods and
less musical noise than the conventional multichannel speech extraction methods.

Next, in relation to the proposed method, I discuss the justification of applying
ICA to signals nonlinearly distorted by SS. I theoretically clarify that the degradation
in ICA-based noise estimation obeys an amplitude variation in room transfer function
between the target user and microphones. Furthermore, to reduce speech distortion, I
introduce a channel selection strategy into ICA, where less varied inputs are automati-
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Fig. 2. Relationship between conventional single-channel/multichannel noise reduc-
tion method and proposed methods.

cally chosen to maintain the high accuracy of noise estimation. In addition, I introduce
a time-variant noise PSD estimator [41] instead of ICA to improve the noise estimation
accuracy.

1.3 Overview of dissertation

The dissertation is organized as follows.
First, I describe related works on non-iterative and iterative SSs in Sect. 2. In this

section, the mathematical metric of musical noise generation is also explained.
In Sect. 3, a theoretical analysis of iterative SS is given. It is clarified by mathe-

matical analysis that iterative SS with very weak processing can realize high-quality
speech enhancement with a small amount of musical noise generated.

On the basis of this findings, I propose a new speech enhancement theory, i.e.,
musical-noise-free speech enhancement, in Sect. 4. In this section, I discuss a theorem
of musical-noise-free conditions in iterative SS, and I mathematically derive the inter-
nal parameter settings to satisfy the musical-noise-free condition. It is clarified that the
optimal parameters satisfying the musical-noise-free condition can generate almost no
musical noise even with high noise reduction.

Next, I propose a musical-noise-free blind speech extraction method using a micro-
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phone array that can be applied to nonstationary noise in Sect. 5. Also, in relation to
the proposed method, I discuss the justification of applying ICA to signals nonlinearly
distorted by SS. Moreover, to achieve higher accuracy of noise estimation, I propose
the introduction of a channel selection strategy in ICA and a time-variant noise PSD
estimator.

Finally, I summarize the contributions of this dissertation and provide suggestions
for future work in Sect. 6.
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2. Conventional Single-Channel Nonlinear Speech En-
hancement Methods and Mathematical Metric of Mu-
sical Noise Generation

2.1 Introduction

In this section, I describe conventional speech enhancement methods and its problem.
In recent years, many types of single-channel speech enhancement methods have been
proposed and studied. Then, in this section, I review commonly used speech enhance-
ment methods, non-iterative SS and iterative SS, respectively. These methods have
high noise reduction performance with low computational complexity. However, these
methods always suffer from artificial distortion, so-called musical noise, owing to non-
linear signal processing, leading to a serious deterioration of sound quality. Also, there
is no general measure of the amount of musical noise. Moreover, it is well known that
the degree of musical noise varies according to the noise environment; this leads to
difficulty of parameter settings in SS.

Firstly, I review two types of single-channel nonlinear speech enhancement meth-
ods in Sect. 2.2. Next, I give a brief review of musical noise and its objective metric
based on higher-order statistics in Sect. 2.3. Finally, Sect. 2.4 concludes this section.

2.2 Conventional single-channel nonlinear speech enhancement meth-
ods

2.2.1 Non-iterative SS

We apply short-time Fourier analysis to the observed signal, which is a mixture of tar-
get speech and noise, to obtain the time-frequency signal. We formulate conventional
non-iterative SS [1] in the time-frequency domain as follows:

y( f , τ) =


√
|o( f , τ)|2 − β · E[|N|2]e jarg(o( f ,τ))

(where |o( f , τ)|2 − β · E[|N|2] > 0),
ηo( f , τ) (otherwise),

(1)

where y( f , τ) is the enhanced target speech signal, o( f , τ) is the observed signal, f
denotes the frequency subband, τ is the frame index, β is the oversubtraction parameter,
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and η is the flooring parameter. Here, E[|N|2] is the expectation of the random variable
|N|2 corresponding to noise power spectra. Calculation of E[|N|2] is a problem of noise
PSD estimation. In practice, if we can use a voice activity detector (VAD), we can
approximate E[|N|2] by averaging the observed noise power spectra |n( f , τ)|2 in the
specific K-sample frames, where we assume speech absence in this period;

̂E[|N|2] ≈ 1
K

k′+K∑
τ=k′
|n( f , τ)|2. (2)

In addition, many methods for dynamic estimation of the expectation of the noise PSD
have been proposed [3].

Generally speaking, conventional SS suffers from the inherent problem of musical
noise generation. For example, a large oversubtraction parameter affords a large noise
reduction but considerable musical noise is also generated. To reduce the amount of
musical noise generated, we often increase the flooring parameter, but this decreases
noise reduction; thus, there exists a trade-off between noise reduction and musical
noise generation.

2.2.2 Iterative SS

In an attempt to achieve high-quality noise reduction with low musical noise, an im-
proved method based on iterative SS was proposed in previous studies [14, 15, 16, 17,
18, 19]. This method is performed through signal processing, in which the following
weak SS processes are iteratively applied to the noise signal (see Fig. 3):

(I) The average power spectrum of the input noise is estimated.

(II) The estimated noise prototype is then subtracted from the input with the parame-
ters specifically set for weak subtraction, e.g., a large flooring parameter η. Note
that in this dissertation we still call such a large flooring case “weak” even when
we employ a large oversubtraction parameter β because many subtracted com-
ponents are floored.

(III) We then return to step (I) and substitute the resultant output (partially noise-
reduced signal) for the input signal.
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Fig. 3. Block diagram of iterative SS.

Although the efficacy of the iterative SS method has been reported experimentally,
the theoretical or mathematical justification of its principles has not yet been presented.
Intuitively, it appears that weak subtraction generates little musical noise in each iter-
ation. However, if we require sufficient noise reduction, a huge number of iterations
are needed, causing the amount of musical noise to accumulate. Moreover, it is not
self-evident that the accumulated musical noise is smaller than that obtained by con-
ventional non-iterative SS. Therefore, the lack of justification for iterative SS reduces
its applicability to general noise reduction. Also the proof of the theoretical basis of
the method remains as an open problem.
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Fig. 4. (a) Observed spectrogram and (b) processed spectrogram.

2.3 Mathematical metric of musical noise generation via higher-
order statistics [20]

2.3.1 Relation between kurtosis and musical noise generation

It is well known that the amount of musical noise is highly correlated with the number
of isolated power spectral components and their level of isolation. In this disserta-
tion, I call these isolated components tonal components. Figure 4 shows an example
of a spectrogram of musical noise in which many tonal components can be observed.
Since such tonal components have relatively high power, they are strongly related to
the weight of the tail of their probability density function (p.d.f.). Therefore, quan-
tifying the tail of the p.d.f. makes it possible to measure the number of tonal com-
ponents. Thus, Uemura, et al. have introduced kurtosis, one of the most commonly
used higher-order statistics, to evaluate the percentage of tonal components among all
components [20]. A larger kurtosis value indicates a signal with a heavy tail, meaning
that the signal has many tonal components.
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2.3.2 Kurtosis and kurtosis ratio

Kurtosis is one of the most commonly used higher-order statistics for the assessment
of non-Gaussianity. Kurtosis is defined as

kurt =
µ4

µ2
2

, (3)

where “kurt” is the kurtosis and µm is the mth-order moment, given by

µm =

∫ ∞

0
xmP(x)dx, (4)

where P(x) is the p.d.f. of the random variable X. Note that µm is not a central moment
but a raw moment. Thus, (3) is not kurtosis in the mathematically strict definition but
a modified version; however, we still refer to (3) as kurtosis in this dissertation.

In this study, I apply such a kurtosis-based analysis to a noise-only time-frequency
period of subject signals for the assessment of musical noise, even though these sig-
nals contain target-speech-dominant periods. Thus, this analysis should be conducted
during, for example, speech absence periods. This is because we aim to quantify the
tonal components arising in the noise-only part, which is the main cause of musical
noise perception, and not in the target-speech-dominant part.

Although kurtosis can be used to measure the number of tonal components, note
that the kurtosis itself is not sufficient to measure the amount of musical noise. This
is obvious since the kurtosis of some unprocessed noise signals, such as an interfering
speech signal, is also high, but we do not recognize speech as musical noise. Hence, we
turn our attention to the change in kurtosis between before and after signal processing
to identify only the musical-noise components. Thus, the kurtosis ratio [20] has been
proposed as a measure to assess musical noise:

kurtosis ratio =
kurtproc

kurtorg
, (5)

where kurtproc is the kurtosis of the processed signal and kurtorg is the kurtosis of the
observed signal. This measure increases as the amount of generated musical noise
increases. In Ref. [20], it was reported that the kurtosis ratio is strongly correlated
with the human perception of musical noise.
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2.4 Conclusion

In this section, conventional single-channel nonlinear speech enhancement methods
were denoted. Next, mathematical metric of musical noise generation via higher-order
statistics was reviewed.
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3. Theoretical Analysis of Iterative SS

3.1 Introduction

In the previous section, I described the two types of conventional noise reduction meth-
ods and the objective measure for the musical noise generation on the basis of higher-
order statistics. In this section, I conduct an analysis of the amounts of noise reduc-
tion performance and musical noise generation through iterative SS using higher-order
statistics.

In this analysis, I first model a noise signal as a gamma distribution (see Sect. 3.2)
and formulate the resultant p.d.f. after non-iterative SS (see Sect. 3.3). Then, the
generalized form of the mth-order moment is derived (see Sect. 3.4). Next, on the
basis of the above-mentioned analysis, I formulate the behavior of iteratively applied
SS and compare the kurtosis values upon changing the parameter settings under the
same amount of noise reduction (see Sect. 3.5).

Note that in Ref. [24] Inoue, et al. have partly formulated the mth-order moment
only in the case that the flooring process is omitted. In contrast, the derivation of the
mth-order moment in this study is a more general form taking into account the flooring
effect that plays an important role for controlling the degree of weakness in SS.

3.2 Modeling of input signal

I assume that the input signal x in the power spectral domain can be modeled by the
gamma distribution as [42, 43]

P(x) =
xα−1exp{−x/θ}
θαΓ(α)

, (6)

where α is the shape parameter corresponding to the type of noise, θ is the scale pa-
rameter of the gamma distribution. In addition, Γ(α) is the gamma function, defined
as

Γ(α) =
∫ ∞

0
tα−1 exp(−t)dt. (7)

If the input signal is Gaussian noise, its complex-valued DFT coefficients also have
the Gaussian distributions in the real and imaginary parts. Therefore, the p.d.f. of its
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power spectra obeys the chi-square distribution with two degrees of freedom, which
corresponds to the gamma distribution with α = 1. Also, if the input signal is super-
Gaussian noise, the p.d.f. of its power spectra obeys the gamma distribution with α<1.
I make assumption here that θ is assumed to be the deterministically known noise PSD
and estimation artifacts of the noise PSD are not taken into account in this dissertation.

3.3 Process of deforming p.d.f. of noise via conventional non-iterative
SS

In conventional non-iterative SS, the long-term-averaged power spectrum of a noise
signal is utilized as the estimated noise power spectrum. Then, the estimated noise
power spectrum multiplied by the oversubtraction parameter β is subtracted from the
observed power spectrum. When a gamma distribution is used to model the noise
signal, its mean is αθ. Thus, the amount of subtraction is βαθ. The subtraction of the
estimated noise power spectrum in each frequency band can be considered as a shift of
the p.d.f. in the zero-power direction, given by

1
θαΓ(α)

(z + βαθ)α−1 exp
{
−z + βαθ

θ

}
, (8)

where z is the random variable of the p.d.f. after SS.
As a result, negative-power components with nonzero probability arise. To avoid

this, such negative components are replaced by observations that are multiplied by a
positive value η (flooring parameter). This means that the region corresponding to the
probability of the negative components, which forms a section cut from the original
gamma distribution, is compressed by the effect of the flooring, resulting in

1
(η2θ)αΓ(α)

zα−1 exp
{
− z
η2θ

}
. (9)

Note that the flooring parameter η is squared in the p.d.f. because the multiplication of
η is conducted in the amplitude spectrum domain (see the second branch in (1)) but we
now consider its effect in the power spectrum domain.

Finally, the floored components are superimposed on the laterally shifted p.d.f.
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Thus, the resultant p.d.f. after SS, PSS(z), can be written as

PSS(z) =


1

θαΓ(α) (z + βαθ)
α−1 exp

{
− z+βαθ

θ

}
+ 1

(η2θ)αΓ(α)z
α−1 exp

{
− z
η2θ

}
(0 ≤ z < βαη2θ),

1
θαΓ(α) (z + βαθ)

α−1 exp
{
− z+βαθ

θ

}
(βαη2θ ≤ z).

(10)

3.4 The mth-order moment of PSS(z) in conventional non-iterative
SS

To characterize non-iterative SS, the mth-order moment of z is required. For PSS(z),
the mth-order moment is given by

µSS
m =

∫ ∞

0
zm · PSS(z)dz

=

∫ ∞

0
zm 1
θαΓ(α)

(z + βαθ)α−1 exp
{
−z + βαθ

θ

}
dz

+

∫ βαη2θ

0
zm 1

(η2θ)αΓ(α)
zα−1 exp

{
− z
η2θ

}
dz, (11)

where z is the random variable of the p.d.f. after SS. We now expand the first term of
the right-hand side of (11). Here, let t = (z + βαθ)/θ, then θdt = dz and z = θ(t − βα).
Consequently,∫ ∞

0
zm 1
θαΓ(α)

(z + βαθ)α−1 exp
{
−z + βαθ

θ

}
dz

=

∫ ∞

βα

θm(t − βα)m 1
θαΓ(α)

(θt)α−1 exp{−t}θdt

=
θm

Γ(α)

∫ ∞

βα

m∑
l=0

(−βα)l Γ(m + 1)
Γ(l + 1)Γ(m − l + 1)

tm−ltα−1 exp{−t}dt

=
θm

Γ(α)

m∑
l=0

(−βα)l Γ(m + 1)
Γ(l + 1)Γ(m − l + 1)

Γ(α + m − l, βα), (12)

where we use the binomial theorem given by

(t + a)m =

m∑
l=0

al Γ(m + 1)
Γ(l + 1)Γ(m − l + 1)

tm−l, (13)
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and Γ(a, b) is the upper incomplete gamma function defined as

Γ(a, b) =
∫ ∞

b
ta−1 exp{−t}dt. (14)

Next we consider the second term of the right-hand side of (11). Here, let t = z/(η2θ),
then η2θdt = dz. Thus,∫ βαη2θ

0
zm 1

(η2θ)αΓ(α)
zα−1 exp

{
− z
η2θ

}
dz =

∫ βα

0
(η2θt)m 1

(η2θ)αΓ(α)
(η2θt)α−1 exp {−t} η2θdt

=
η2mθm

Γ(α)

∫ βα

0
tα−1+m exp {−t} dt

=
η2mθm

Γ(α)
γ(α + m, βα), (15)

where γ(a, b) is the lower incomplete gamma function defined as

γ(a, b) =
∫ b

0
ta−1 exp{−t}dt. (16)

As a result, the mth-order moment after SS, µSS
m , is a composite of (12) and (15), and

is given as

µSS
m = θ

mM(α, β, η,m), (17)

where we refer toM(α, β, η,m) as normalized moment function as

M(α, β, η,m) =
1
Γ(α)

m∑
l=0

(−βα)l Γ(m + 1)
Γ(l + 1)Γ(m − l + 1)

Γ(α + m − l, βα)

+
η2m

Γ(α)
γ(α + m, βα). (18)

3.5 Analysis of behavior of iterative SS

3.5.1 Amount of musical noise generated

In this subsection, we formulate the amount of musical noise generated in the itera-
tive SS method using the analytical result obtained in Sect. 3.4. Here we conduct a
recursively applied kurtosis analysis in the following manner, where the subscript i
represents the value in the ith iteration:
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for (i+1)th iteration,
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kurtosis of ith iteration

P.d.f. after ith iteration

0

Step (I) Step (II) Step (III)
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βα θ
[i]

n βα η2θ
[i]

n

Fig. 5. P.d.f. deformation and approximated gamma-distribution p.d.f. for (i + 1)th
iteration, which has same kurtosis of p.d.f. after ith iteration.

(I) First, model the input noise p.d.f. as a gamma distribution with shape parameter αi

(initially i = 0).

(II) Next, apply SS to the signal using the oversubtraction parameter β and flooring
parameter η. We calculate the kurtosis using (17); this is considered as the result
of the ith iteration.

(III) Next, approximately remodel the resultant processed signal as a gamma distribu-
tion with the modified shape parameter αi+1 corresponding to the resultant kur-
tosis obtained in step (II) (see Fig. 5). Then return to step (I) with the updated
value of αi+1.

Note that this analysis includes an approximation of the p.d.f. modification in
which the p.d.f. is always remodeled as a gamma distribution in each iteration. This is
necessary because it is difficult to derive an exact analytical expression for the change
in kurtosis of a non-gamma distribution. The proposed approximation is, however,
still valid if the SS process in each step is weak and thus does not change the p.d.f.
significantly (see appendix A).
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In the following, full details of the iterative analysis are given. The kurtosis in the
ith iteration is obtained via steps (I) and (II) using (17) with α = αi as

kurt(αi, β, η) =
µSS

4

(µSS
2 )2

=
θ4M(αi, β, η, 4)
{θ2M(αi, β, η, 2)}2

=
M(αi, β, η, 4)
M2(αi, β, η, 2)

. (19)

In step (III), a new αi+1 can be calculated using the following relation between the
kurtosis and the shape parameter. First, I obtain the 2nd-order moment of the gamma
distribution with αi+1 as

µ2 =

∫ ∞

0
x2P(x)dx =

∫ ∞

0
x2 1
θαi+1Γ(αi+1)

· xαi+1−1exp{−x/θ}dx. (20)

Here, let X = x/θ, then this moment can be rewritten as

µ2 =
1

θαi+1Γ(αi+1)
· θαi+1+2

∫ ∞

0
X(αi+1+2)−1exp{−X}dX

=
θ2

Γ(αi+1)
Γ(αi+1 + 2)

= θ2(αi+1 + 1)αi+1, (21)

where I use the following well-known functional equation of the gamma function:

Γ(α + j) = (α + j − 1)(α + j − 2) · · · (α)Γ(α). (22)

Next, in the same manner, the 4th-order moment can be expressed as

µ4 =

∫ ∞

0
x4 1
θαi+1Γ(αi+1)

· xαi+1−1exp{−x/θ}dx

=
θ4

Γ(αi+1)
Γ(αi+1 + 4)

= θ4(αi+1 + 3)(αi+1 + 2)(αi+1 + 1)αi+1. (23)

Using (21) and (23), I have

µ4

µ2
2

=
(αi+1 + 3)(αi+1 + 2)

(αi+1 + 1)αi+1
= kurt(αi, β, η). (24)
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This results in the following quadratic equation in αi+1 to be solved:

(1 − kurt(αi, β, η))α2
i+1 + (5 − kurt(αi, β, η))αi+1 + 6 = 0, (25)

and I can derive a closed-form estimate of the shape parameter from the given kurtosis
as

αi+1 =
kurt(αi, β, η) − 5 −

√
kurt(αi, β, η)2 + 14 kurt(αi, β, η) + 1

2 − 2 kurt(αi, β, η)

= A(kurt(αi, β, η)), (26)

where I define

A(k) = (k − 5 −
√

k2 + 14k + 1)(2 − 2k)−1. (27)

Note that in the derivation of (26), I chose the shape parameter αi+1 to be greater than 0,
assuming that the p.d.f. of the noise power spectra is Gaussian or super-Gaussian and
thus kurt(αi, β, η) ≥ 6. By applying the updated αi+1 to the new gamma distribution, I
can obtain the following recursive equation for the kurtosis in the (i + 1)th iteration:

kurt(αi+1, β, η) =
θ4M(αi+1, β, η, 4)
{θ2M(αi+1, β, η, 2)}2

=
M(A(kurt(αi, β, η)), β, η, 4)
M2(A(kurt(αi, β, η)), β, η, 2)

. (28)

Thus, I can calculate the resultant kurtosis ratio as

kurtosis ratio =
kurt(αi+1, β, η)
kurt(α0, 0, 0)

=
α0(α0 + 1)

(α0 + 3)(α0 + 2)
M(A(kurt(αi, β, η)), β, η, 4)
M2(A(kurt(αi, β, η)), β, η, 2)

. (29)

3.5.2 Amount of noise reduction

In this subsection, I analyze the amount of noise reduction by carrying out the same
iterative analysis as that described in Sect. 3.5.1, including the approximation of the
gamma distribution modeling. Hereafter, I define the noise reduction rate (NRR) as a
measure of the noise reduction performance, which is defined as the output SNR in dB

19



minus the input SNR in dB [44]. The NRR is

NRR = 10 log10
E[s2

out]/E[n2
out]

E[s2
in]/E[n2

in]

≃ 10 log10

E[n2
in]

E[n2
out]
, (30)

where sin and sout are the input and output speech signals, respectively, and nin and
nout are the input and output noise signals, respectively. In addition, I assume that
the amount of noise reduction is much larger than that of speech distortion in , i.e.,
E[s2

out] ≃ E[s2
in].

Here, the NRR achieved after the ith iteration is defined by NRRi(β, η). It is obvious
that the NRR additionally accumulates in each iteration because it is the logarithm of
the power ratio between the input and processed noises. The relative improvement in
the (i + 1)th iteration can be given via the 1st-order moment with α = αi+1, as

10 log10
E[x]
E[z]

= 10 log10
θM(αi+1, 0, 0, 1)
θM(αi+1, β, η, 1)

= 10 log10
αi+1

M(αi+1, β, η, 1)
. (31)

Thus, using (26) and (31), the resultant NRR after the (i + 1)th iteration is recursively
expressed as

NRRi+1(β, η)

= 10 log10
A(kurt(αi, β, η))

M(A(kurt(αi, β, η), β, η, 1))
+ NRRi(β, η).

(32)

In summary, I can derive theoretical estimates for the amount of musical noise gen-
erated and NRR using (29) and (32), respectively. This greatly simplifies the analysis
because both equations are expressed analytically in a form that does not include any
integrals.

3.6 Example of Theoretical Behavior

According to the previous analysis, I can trace the amount of musical noise generated
in iterative SS along with the NRR. In addition, this can be compared with the amount
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generated in the conventional non-iterative SS method under the same amount of noise
reduction.

Figure 6(a) shows the theoretical behavior of the kurtosis ratio and NRR for sev-
eral parameter settings, where the shape parameter α0 is set to 1.0, i.e., the input noise
signal is assumed to be Gaussian. In the iterative SS method, the oversubtraction
parameter β is fixed to 2.4, and the flooring parameter η is set to 0.5, 0.7, and 0.9, cor-
responding to normal, moderately weak, and very weak processing in each iteration,
respectively. In conventional non-iterative SS, the oversubtraction parameter β is man-
ually adjusted (the flooring parameter η is fixed to 0.1) so that the NRR is varied as 0,
0.5, 1.0, ..., 12.0 dB. I plot black circles symbolic of the conventional non-iterative SS
on the coordinates of the NRR and kurtosis ratio, which are given by

(NRR, kurtosis ratio)

=

(
10 log10

α0

M(α0, β, η, 1)
,
α0(α0 + 1)

(α0 + 3)(α0 + 2)
M(α0, β, η, 4)
M2(α0, β, η, 2)

)
(33)

for different β independently.
From Fig. 6(a), I can confirm the following interesting results:

• The iterative use of very weak SS (e.g., η = 0.9) can simultaneously achieve a
large NRR and a small kurtosis ratio after a large number of iterations, meaning
that I can realize high-quality speech enhancement with a small amount of musi-
cal noise generated. This is strong theoretical evidence of the advantageousness
of iterative SS.

• Moreover, there exists an appropriate parameter setting (η = 0.9) that gives equi-
librium behavior in the growth of the kurtosis ratio, i.e., a flat kurtosis ratio
trajectory with a value of appropriately unity. This corresponds to the remark-
able phenomenon that almost no musical noise is generated in iterative SS (i.e.,
musical-noise-free), unlike conventional single-channel nonlinear noise reduc-
tion, which always generates musical noise to some extent.

• In contrast, if we use strong subtraction with a small flooring parameter (e.g., η =
0.5), the above-mentioned equilibrium is violated, resulting in a large kurtosis
ratio compared with that of conventional non-iterative SS under the same NRR.

21



This suggests that the iterative method is not always advantageous, and that the
values of the parameters should be carefully set.

Next, Fig. 6(b) depicts the kurtosis ratio and NRR for another example, where the
shape parameter α0 is set to 0.2 with the assumption of super-Gaussian noise. The
oversubtraction parameter β and flooring parameter η are set to 8.5 and 0.9, respec-
tively, in iterative SS. From Fig. 6(b), I can also confirm that the iterative SS method
generates less musical noise even for super-Gaussian noise, producing the equilibrium
behavior of the kurtosis ratio.

3.7 Conclusion

In this section, I gave the theoretical analysis of iterative SS in terms of noise reduc-
tion performance and the amount of musical noise generation. My theoretical analysis
indicates that the first-, second-, and fourth-order moments of the power spectra can be
used to estimate the amount of noise reduction and musical noise generation. Also, I in-
troduced a gamma-distribution approximation for simulating iteratively applied weak
SS.

Next, I conducted a comparison of the amount of musical noise generated for dif-
ferent parameter settings under the same noise reduction performance. It was clarified
from mathematical analysis that iterative SS with very weak processing can result in
less musical noise being generated.
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(a) Gaussian noise case (α0 = 1) and (b) super-Gaussian noise case (α0 = 0.2).
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4. Theory of Musical-Noise-Free Speech Enhancement

4.1 Introduction

In this section, I propose a new theory on musical-noise-free speech enhancement
based on iterative SS. In the previous section, I analyzed the amounts of noise reduc-
tion performance and musical noise generation through iterative SS using higher-order
statistics. It is of great interest now to know when the above-mentioned equilibrium
behavior of the kurtosis ratio arises, i.e, which parameter settings give the output signal
with the highest quality in iterative SS. However, the specific parameter settings was
heuristically discovered. Therefore, in this section, I theoretically derive a closed-form
solution of the internal parameters to satisfy the musical-noise-free condition.

I first describe an overview of the theory of the musical-noise-free condition (see
Sect. 4.2). Next, I mathematically derive more general solution on the musical-noise-
free condition (see Sect. 4.3). In Sect. 4.4, I show the example of the internal parameter
settings that satisfy the musical-noise-free condition in iterative SS. In Sect. 4.5, I show
the procedure of the musical-noise-free iterative SS. In Sect. 4.6, I conducted objective
evaluation to confirm the validity of the musical-noise-free theory. Finally, I conducted
objective and subjective evaluation experiments to compare the sound quality of the
proposed method with those commonly used noise reduction methods (see Sect. 4.7).

4.2 Overview of musical-noise-free theory

As indicated by (28), iterative SS theory has an interesting domino-toppling phe-
nomenon as follows. Given a specific parameter setting, if I am fortunate enough
to obtain the same kurtosis as that of the input noise, i.e., kurt(α0, 0, 0), after the 1st
iteration, i.e.,

kurt(α0, β, η) = kurt(α0, 0, 0) =
(α0 + 3)(α0 + 2)

(α0 + 1)α0
, (34)

then from (26) I have α1 = α0. Obviously, this leads to the relation

kurt(α1, β, η) = kurt(α0, β, η) = kurt(α0, 0, 0), (35)

proving that the kurtosis in the 2nd iteration is also identical. The inductive result is that
the kurtosis ratio never changes even at a large number of (ideally “infinite”) iterations.
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Fig. 7. Relation between NRR and kurtosis ratio from theoretical analysis with in-
creasing β for (a) Gaussian noise case (α0 = 1) and (b) super-Gaussian noise case
(α0 = 0.2).

In this situation, sufficient noise reduction can be gained if the NRR improvement in
each iteration is even small but positive. In this study, since first-, second-, or fourth-
order statistics affects our sense of hearing [20, 21], I ignore the effect of a variation

25



of fifth- or more higher-order statistics. This corresponds to musical-noise-free noise
reduction. Here, since the kurtosis (28) and the NRR (31) are not equations in terms
of the scale parameter θ, we do not need to estimate the scale parameter theta in each
iteration.

In summary, I can formulate a new theory on musical-noise-free conditions as fol-
lows.
(I) Fixed-point kurtosis condition: The kurtosis should be equal before and after SS
in each iteration. This corresponds to a fixed point for the 2nd- and 4th-order mo-
ments.
(II) NRR growth condition: The amount of noise reduction should be larger than
0 dB in each iteration, relating to a change in the 1st-order moment.

In the previous section, I have discovered the limited number of examples in which
the musical-noise-free conditions can hold, as shown in Fig. 6 (see the case of η = 0.9).
Except for the parameter settings used in Fig. 6, I can also find the other cases that
satisfy the musical-noise-free conditions. For example, Fig. 7 shows hysteresis loops in
the relation between the NRR and kurtosis ratio of non-iterative SS (calculated by (29)
and (31)) with various parameter settings. Note that each hysteresis loop corresponding
to each η has its own intersection at the point of the kurtosis ratio of unity, showing the
existence of multiple cases for realizing the fixed point in the kurtosis. In the following
subsections, I mathematically derive more general solutions on the musical-noise-free
conditions.

4.3 Musical-noise-free condition

4.3.1 Fixed-point kurtosis condition

Although the parameters to be optimized are η and β, I hereafter derive the optimal η
given a fixed β for ease of closed-form analysis. First, I change (19) for

kurt(α0, β, η) =
S(α0, β, 4) + η8F (α0, β, 4)(S(α0, β, 2) + η4F (α0, β, 2)

)2 , (36)
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where

S(α0, β,m) =
m∑

l=0

(−βα0)lΓ(m+1)Γ(α0+m−l, βα0)
Γ(α0)Γ(l+1)Γ(m−l+1)

, (37)

F (α0, β,m) =
γ(α0+m, βα0)
Γ(α0)

. (38)

Next, the fixed-point kurtosis condition corresponds to the kurtosis being equal before
and after SS, thus

S(α0, β, 4) + η8F (α0, β, 4)(S(α0, β, 2) + η4F (α0, β, 2)
)2 =

(α0 + 3)(α0 + 2)
(α0 + 1)α0

. (39)

LetH = η4, and (39) yields the following quadratic equation inH .(
F (α0, β, 4)(α0+1)α0−F 2(α0, β, 2)(α0+3)(α0+2)

)
H2

−2S(α0, β, 2)F (α0, β, 2)(α0+3)(α0+2)H
+S(α0, β, 4)(α0+1)α0−S2(α0, β, 2)(α0+3)(α0+2)=0. (40)

Thus, I can derive a closed-form estimate ofH from the given oversubtraction param-
eter as

H ={F (α0, β, 4)(α0+1)α0−F 2(α0, β, 2)(α0+3)(α0+2)}−1[
S(α0, β, 2)F (α0, β, 2)(α0+3)(α0+2)

±
[
{S(α0, β, 2)F (α0, β, 2)(α0+3)(α0+2)}2

−
{
F (α0, β, 4)(α0+1)α0−F 2(α0, β, 2)(α0+3)(α0+2)

}
{
S(α0, β, 4)(α0+1)α0−S2(α0, β, 2)(α0+3)(α0+2)

} ] 1
2

]
. (41)

Finally, η = H1/4 is the resultant flooring parameter that satisfies the fixed-point kur-
tosis condition.

4.3.2 NRR growth condition

In this subsection, I reveal the range of the flooring parameter η that increases the NRR.
From (31), the NRR growth condition is expressed as

NRR=10 log10
α0

S(α0, β, 1) + η2F (α0, β, 1)
>0. (42)
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Here, since η > 0, I can solve the inequality as

0 < η <

√
α0 − S(α0, β, 1)
F (α0, β, 1)

. (43)

In summary, I can choose the parameters simultaneously satisfying the fixed kur-
tosis point condition and NRR growth condition using (41) and (43).

4.4 Parameter example for musical-noise-free condition

According to the previous analysis, I can calculate combinations of the oversubtrac-
tion parameter β and the flooring parameter η that satisfy the musical-noise-free con-
dition under the three types of shape parameter α0, namely, 0.2, 0.5, and 1.0. Figure 8
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shows examples of traces. It is worth mentioning that the specific setting (α, β, η) =
(1.0, 2.0, 0.97) appears in Fig. 8, which was heuristically discovered in Sect. 3.6, but
our theory can provide more wide-ranging solutions. Also, I show the typical example
of the optimal parameter settings in Appendix B.

4.5 Procedure of musical-noise-free iterative SS

In this subsection, I conduct the procedure of the musical-noise-free iterative SS in the
following manner.

(I) First, set the obersubtraction parameter β to arbitrary value.

(II) Next, estimate the shape parameter α0 in the speech absence periods using the
maximum likelihood estimation method as follows

α̂ =
3 − γ +

√
(γ − 3)2 + 24γ
12γ

, (44)

where γ = log( ̂E[|N|2]) − ̂E[log |N|2] (see Refs. [45, 46]).

(III) Next, calulate the flooring parameters η using (41) and choose is satisfying (43).

(IV) Finally, perform iterative SS with the oversubtraction parameter β and the floor-
ing parameter η calculated by step (III).

4.6 Evaluation experiment for iterative SS with optimal parameter
settings

4.6.1 Experimental conditions

I conducted objective evaluation to confirm the validity of the theoretical analysis de-
scribed in the previous section. Noisy observation signals were generated by adding
noise signals to target speech signals with an SNR of 0 dB. I conducted our experi-
ments on white Gaussian noise and babble noise. The target speech signals were the
utterances of two male and two female speakers in Japanese (4 sentences) from the
JNAS database [47]. The noise signals were white Gaussian noise and babble noise,
where the babble noise was recorded human speech emitted from 36 loudspeakers (this
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simulates a crowded place). The estimated shape parameter of the power spectra of the
white Gaussian noise was 0.97 and that of the babble noise was 0.21. The length
of each signal was 7 s, and each signal was sampled at 16 kHz. The FFT size was
1024 and the frame shift length was 256. In these experiments, I calculated the noise
PSD E[|N |2] in the first 1 s frames, where I assume speech absence in this period in
conventional non-iterative SS and iterative SS. In conventional non-iterative SS, the
oversubtraction parameter β is manually adjusted (the flooring parameter η is fixed to
0.1) so that the NRR is varied as 0, 0.5, 1.0, ..., 12.0 dB. In iterative SS, the parameter
settings of β and η are 2.4 and 0.9 for white Gaussian noise case and 8.5 and 0.9 for
babble noise case. Those parameter settings satisfy the musical-noise-free condition.

4.6.2 Comparison between theoretical analysis and experiments

I conducted an objective evaluation experiment and evaluated the sound quality of
processed signals on the basis of the kurtosis ratio and cepstral distortion [48]. Here,
I calculated the kurtosis ratio from the noise-only period and the cepstral distortion
from the target speech components. The cepstral distortion is a measure of the degree
of distortion via the cepstrum domain. The cepstral distortion indicates the amount of
distortion among two signals, which is defined as

CD [dB] ≡ 20
T log 10

T∑
τ=1

√√√ B∑
ρ=1

2(Cout(ρ, τ) −Cref(ρ, τ))2, (45)

where T is the frame length, Cout(ρ, τ) is the ρth cepstral coefficient of the output signal
in frame τ, and Cref(ρ, τ) is the ρth cepstrum coefficient of the original speech signal.
B is the number of dimensions of the cepstrum used in the evaluation; I set B = 22. A
small value of cepstral distortion indicates that the sound quality of the target speech
part is high.

The results of the experiment are depicted in Figs. 9 and 10, where the kurtosis
ratio, cepstral distortion, and NRR were calculated from the observed and processed
signals. All of the scores are the averages in terms of four target speakers. Figure 9(a)
shows that the kurtosis ratio decreases as the flooring parameter increases, and from
Figs. 9(a) and (b) I can confirm the efficacy of iterative SS for white Gaussian noise and
babble noise if I use weak processing in each iteration. This tendency is in good agree-
ment with the results of the theoretical analysis in Sect. 3.6. The discrepancy between
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the kurtosis ratio obtained from the real processed data and the theoretical estimate
is thought to be mainly due to the gamma-distribution approximation introduced in
our analysis. For reference, the histogram of the noise power spectra in each iteration
of iterative SS is shown in Appendix C and the result of the signal-to-distortion ratio
(SDR) and the source-to-interference ratio (SIR) is shown in Appendix D.

In addition, from Figs. 10(a) and (b), I can see that cepstral distortion in the case
of iterative SS is smaller than that for conventional non-iterative SS. This indicates
that there are no side effects in the utilization of the iterative method because I con-
firmed the decrease in both kurtosis ratio and cepstral distortion in Figs. 9 and 10.
Consequently, in all cases, I can achieve high sound quality upon setting appropriate
parameters in iterative SS.

4.7 Comparison between proposed method and conventional noise
reduction methods

4.7.1 Experimental Conditions

I conducted objective and subjective evaluation experiments to compare the sound
quality of the proposed method with those of commonly used noise reduction methods.
Noisy observation signals were generated by adding noise signals to target speech sig-
nals with SNRs of -5, 0, 5, and 10 dB. The target speech signals were the utterances of
two male and two female speakers in Japanese (4 sentences) from the JNAS database
[47]. The noise signals were white Gaussian noise, babble noise, railway station noise,
museum noise and factory noise. The estimated shape parameter of the power spectra
of the railway station noise was 0.33, that of the museum noise was 0.21, and that of
the factory noise was 0.21. The length of each signal was 7 s, and each signal was
sampled at 16 kHz. The FFT size was 1024 and the frame shift length was 256. I
calculated the noise PSD E[|N|2] by using the following two methods. (A) The noise
PSD is calculated in the first 1 s frames, where I assume speech absence in this pe-
riod (VAD-based). (B) The noise PSD is dynamically estimated by using minimum
statistics method [3] (minimum-statistics-based).
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4.7.2 Objective Evaluation

I conducted an objective evaluation under the same NRR condition. Figures 11–14
show the kurtosis ratio and cepstral distortion obtained from the experiment with real
noisy speech data for (a) white Gaussian noise, (b) babble noise, (c) railway station
noise, (d) museum noise and (e) factory noise, where I evaluate 10-dB-NRR (i.e., out-
put SNRs = 5, 10, 15, and 20 dB) signals processed by three conventional methods,
namely, non-iterative SS, Wiener filtering [4], and the MMSE short-time spectral am-
plitude (STSA) estimator [7], and our proposed method, iterative SS with the optimal
parameter settings (I apply two types of noise PSD estimators to each method). Here,
I use the decision-directed approach for a priori SNR estimation in both of Wiener
filtering and the MMSE STSA estimator. From Figs. 11–14, I can confirm that VAD-
based and minimum-statistics-based iterative SS methods outperform other conven-
tional methods in both the kurtosis ratio and cepstral distortion, except for the compar-
ison with the MMSE STSA estimator in terms of the cepstral distortion for high input
SNR cases. In particular, the kurtosis ratios of the proposed methods are mostly close
to 1.0. Since Wiener filtering and the MMSE STSA estimator are often referred to as
less musical noise method, this result greatly emphasizes the iterative SS’s advantage,
i.e., musical-noise-free property I have theoretically predicate.

4.7.3 Subjective Evaluation

First, I conducted subjective evaluation by comparing iterative SS with other com-
monly used noise reduction methods. I presented a pair of 10-dB-NRR signals pro-
cessed by minimum-statistics-based non-iterative SS, minimum-statistics-based Wiener
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filtering, minimum-statistics-based MMSE STSA estimator, and minimum-statistics-
based iterative SS with the optimal parameter settings in random order to 10 exam-
inees, who selected which signal they preferred from the viewpoint of total sound
quality, e.g., less musical noise, less speech distortion, etc.

The result of the experiment is shown in Fig. 15 for (a) white Gaussian noise, (b)
babble noise, (c) railway station noise, (d) museum noise and (e) factory noise. It was
found that the output signal of minimum-statistics-based iterative SS with the optimal
parameters is preferred to those of conventional methods. This result is also consistent
with our theoretical analysis, thus confirming the validity of the proposed method of
theoretical analysis.

From the previous subjective evaluation experiment, I reveal that our proposed
method outperforms other conventional methods in total sound quality. However, I
did not compare the processed signal using the proposed method with the unprocessed
signal that has no musical noise, no speech distortion, but no noise reduction. Some
people may guess that the unprocessed signal is more preferable from the viewpoint
of the amounts of musical noise and speech distortion except for the amount of noise.
Therefore, secondly, I conducted another subjective evaluation experiment for direct
comparison between the unprocessed and processed signals. I presented a pair of un-
processed signal and 10-dB-NRR processed signal by minimum-statistics-based iter-
ative SS with the optimal parameter settings in random order to 10 examinees, who
selected which signal they preferred from the viewpoint of total sound quality.

The result of the experiment is shown in Fig. 16 for (a) white Gaussian noise,
(b) babble noise, (c) railway station noise, (d) museum noise and (e) factory noise.
It was found that the output signal of minimum-statistics-based iterative SS with the
optimal parameters is preferred to the unprocessed signal. This result indicates that
noise reduction performed by the proposed method is essentially valid in terms of
human hearing.

4.8 Conclusion

In this section, I mathematically derived the internal parameter settings to satisfy the
musical-noise-free condition. It was clarified that the optimal parameters satisfying
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the fixed kurtosis point condition and NRR growth condition can generate almost no
musical noise even with high noise reduction. This desirable property of iterative SS
was well supported by the comparative experiment between iterative SS and commonly
used noise reduction methods, e.g., conventional non-iterative SS, Wiener filtering, and
the MMSE STSA estimator. In summary, proposed theory mathematically proves that
iterative SS with the optimal parameters is advantageous for achieving high-quality
noise reduction, which has only been experimentally shown in previous studies.
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5. Extension to Microphone Array Signal Processing

5.1 Introduction

In the previous section, we assumed that the input noise signal is stationary, meaning
that we can estimate the expectation of a noise signal from a time-frequency period of a
signal that contains only noise, i.e., speech absence. However, in actual environments,
e.g., a nonstationary noise field, it is necessary to dynamically estimate the noise PSD.

To solve this problem, Takahashi previously proposed blind spatial subtraction
array (BSSA) [36], which involves accurate noise estimation by ICA followed by a
speech extraction procedure based on SS (see Fig. 17). BSSA improves the noise re-
duction performance, particularly in the presence of both diffuse and nonstationary
noises; thus, almost all the environmental noise can be dealt with. However, BSSA
always suffers from musical noise owing to SS. In addition, the output signal of BSSA
degenerates to a monaural (not multichannel) signal, meaning that ICA cannot be reap-
plied; thus, we cannot iteratively estimate the noise power spectra. Therefore, it is
impossible to directly apply iterative SS to the conventional BSSA.

In this section, I propose a new multi-iterative blind signal extraction method in-
tegrating iterative blind noise estimation by ICA and iterative noise reduction by SS,
where multiple iterative SS is applied to each channel while maintaining the muli-
channel property reused for ICA. Hereafter, I refer to this proposed method as iterative
BSSA.

I first describe an overview of iterative BSSA (see Sect. 5.2). Next, I discuss the ac-
curacy of the estimated noise signal in each iteration of iterative BSSA (see Sect. 5.3).
In Sect. 5.4, I introduce the improvement scheme for poor noise estimation in iterative
BSSA. Finally, in Sect. 5.5, I show the results of objective and subjective evaluation
experiment.

5.2 Iterative blind spatial subtraction array

As mentioned previously, the conventional BSSA cannot iteratively and accurately es-
timate noise by ICA because the conventional BSSA performs a delay and sum (DS)
operation before SS. To solve this problem, we propose a new BSSA structure that
performs multiple independent SS in each channel before DS; we call this structure
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channelwise SS [37, 38, 39]. This structure can reduce the amount of musical noise
generation compared with conventional structure (see Appendix E). Using this struc-
ture, we can equalize the number of channels of the observed signal to that of the
signals after channelwise SS. Therefore, we can iteratively apply noise estimation by
ICA and speech extraction by SS (see Fig. 18). Also, the advantage of the proposed
structure is that ICA has the possibility of adaptively estimating the distorted wave-
front of a speech signal to some extent even after SS, because ICA is a blind signal
identification method that does not require knowledge of the target signal direction.
Details of this issue will be discussed in Sect. 5.3.

We conduct iterative BSSA in the following manner, where the superscript [i] rep-
resents the value in the ith iteration of SS (initially i = 0).

(I) The observed signal vector of the K-channel array in the time-frequency domain,
x[0]( f , τ), is given by

x[0]( f , τ) = h( f )s( f , τ) + n( f , τ), (46)

where h( f ) = [h1( f ), h2( f ) . . . , hK( f )]T is a column vector of the transfer func-
tions from the target signal position to each microphone, s( f , τ) is the target
speech signal, and n( f , τ) is a column vector of the additive noise.

(II) Next, we perform signal separation using ICA as [40]

o[i]( f , τ) =W[i]
ICA( f )x[i]( f , τ), (47)

W[i][p+1]
ICA ( f ) =µ[I − ⟨φ(o[i]( f , τ))(o[i]( f , τ))H⟩τ]

·W[i][p]
ICA ( f ) +W[i][p]

ICA ( f ), (48)

where W[i][p]
ICA ( f ) is a demixing matrix, µ is the step-size parameter, [p] is used to

express the value of the pth step in the ICA iterations, I is the identity matrix,
⟨·⟩τ denotes a time-averaging operator, and φ(·) is an appropriate nonlinear vector
function. Then, we construct a noise-only vector,

o[i]
noise( f , τ) =[o[i]

1 ( f , τ), . . . , o[i]
U−1, 0,

o[i]
U+1( f , τ), . . . , o[i]

K ( f , τ)]T, (49)

where U is the signal number for speech, and we apply the projection back
operation to remove the ambiguity of the amplitude and construct the estimated

44



noise signal, z[i]( f , τ), as

z[i]( f , τ) =W[i]
ICA( f )−1o[i]

noise( f , τ). (50)

(III) Next, we perform SS independently in each input channel and derive the multiple
target-speech-enhanced signals. This procedure can be given by

x[i+1]
k ( f , τ) =

√
|x[i]

k ( f , τ)|2 − β|z[i]
k ( f , τ)|2 exp( j arg(x[i]

k ( f , τ)))

(if |x[i]
k ( f , τ)|2 > β|z[i]

k ( f , τ)|2),
ηx[i]

k ( f , τ) (otherwise),

(51)

where x[i+1]
k ( f , τ) is the target-speech-enhanced signal obtained by SS at a spe-

cific channel k. Then we return to step (II) with x[i+1]( f , τ). When we obtain
sufficient noise reduction performance, we proceed to step (IV).

(IV) Finally, we obtain the resultant target-speech-enhanced signal by applying DS to
x[∗]( f , τ), where ∗ is the number of iterations after which sufficient noise reduc-
tion performance is obtained. This procedure can be expressed by

y( f , τ) = wT
DS( f )x[∗]( f , τ), (52)

wDS( f ) = [w(DS)
1 ( f ), . . . ,w(DS)

K ( f )], (53)

w(DS)
k ( f ) =

1
K

exp(−2 j( f /N) fsdk sin θU/c), (54)

θU = sin−1
arg

( [
W[∗]

ICA( f )−1
]
kU[

W[∗]
ICA( f )−1

]
k′U

)
2π fsc−1(dk − dk′)

, (55)

where y( f , τ) is the final output signal of iterative BSSA, wDS is the filter coef-
ficient vector of DS, N is the DFT size, fs is the sampling frequency, dk is the
microphone position, c is the sound velocity, and θU is the estimated direction of
arrival of the target speech. Moreover, [A]l j represents the entry of A in the lth
row and jth column.
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5.3 Accuracy of wavefront estimated by ICA after SS

In this subsection, we discuss the accuracy of the estimated noise signal in each iter-
ation of iterative BSSA. In actual environments, not only point-source noise but also
non-point-source (e.g., diffuse) noise often exists. It is known that ICA is proficient
in noise estimation rather than speech estimation under such a noise condition [36].
This is because the target speech can be regarded as a point-source signal (thus, the
wavefront is static in each subband) and ICA acts as an effective blocking filter of the
speech wavefront even in a time-invariant manner, resulting in good noise estimation.
However, in iterative BSSA, we should address the inherent question of whether the
distorted speech wavefront after nonlinear noise reduction such as SS can be blocked
by ICA or not; thus, we determine whether the speech component after channelwise
SS can become a point source again.

Hereafter, we quantify the degree of point-source-likeness for SS-applied speech
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signals. For convenience of discussion, a simple two-channel array model is assumed.
First, we define the speech component in each channel after channelwise SS as

ŝ1( f , τ) = h1( f )s( f , τ) + ∆s1( f , τ), (56)

ŝ2( f , τ) = h2( f )s( f , τ) + ∆s2( f , τ), (57)

where s( f , τ) is the original point-source speech signal, ŝk( f , τ) is the speech compo-
nent after channelwise SS at the kth channel, and ∆sk( f , τ) is the speech component
distorted by channelwise SS. Also, we assume that s( f , τ), ∆s1( f , τ), and ∆s2( f , τ) are
uncorrelated with each other. Obviously, ŝ1( f , τ) and ŝ2( f , τ) can be regarded as be-
ing generated by a point source if ∆s1( f , τ) and ∆s2( f , τ) are zero, i.e., a valid static
blocking filter can be obtained by ICA as

[WICA( f )]11 ŝ1( f , τ) + [WICA( f )]12 ŝ2( f , τ)

= ([WICA( f )]11h1( f ) + [WICA( f )]12h2( f ))s( f , τ)

= 0, (58)

where we assume U = 1 and, e.g., [WICA( f )]11 = h2( f ) and [WICA( f )]12 = −h1( f ).
However, if ∆s1( f , τ) and ∆s2( f , τ) become nonzero as a result of SS, ICA does not
have a valid speech blocking filter with a static (time-invariant) form.

Second, the cosine distance between speech power spectra |ŝ1( f , τ)|2 and |ŝ2( f , τ)|2

is introduced in each frequency subband to indicate the degree of point-source-likeness
as

COS( f ) =
∑
τ |ŝ1( f , τ)|2|ŝ2( f , τ)|2√∑
τ |ŝ1( f , τ)|4

√∑
τ |ŝ2( f , τ)|4

. (59)

From (59), the cosine distance reaches its maximum value of unity if and only if
∆s1( f , τ) = ∆s2( f , τ) = 0, regardless of the values of h1( f ) and h2( f ), meaning that
the SS-applied speech signals ŝ1( f , τ) and ŝ2( f , τ) can be assumed to be produced
by the point source. The value of COS( f ) decreases with increasing magnitudes of
∆s1( f , τ) and ∆s2( f , τ) as well as with increasing difference between h1( f ) and h2( f );
this indicates the non-point-source state.

Third, we evaluate the degree of point-source-likeness in each iteration of iterative
BSSA by using COS( f ). We statistically estimate the distorted speech component of
the enhanced signal in each iteration. Here, we assume that the original speech power

47



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
s
in

e
 d

is
ta

n
c
e

Noise reduction rate [dB]

(c) Input SNR is set to 0 dB.

i = 1 i = 2 i = 3
i = 4 i = 5 i = 6 i = 7

 0.97

 0.98

 0.99

 1

3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
s
in

e
 d

is
ta

n
c
e

Noise reduction rate [dB]

(a) Input SNR is set to 10 dB.

i = 7i = 6i = 5i = 4i = 3i = 2i = 1

 0.85

 0.9

 0.95

 1

3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
s
in

e
 d

is
ta

n
c
e

Noise reduction rate [dB]

i = 7i = 6i = 5i = 4i = 3i = 2i = 1

(b) Input SNR is set to 5 dB.

Value of TFR(f) (|h1(f)/h2(f)|
2
)

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Fig. 19. Relation between number of iterations of iterative BSSA and cosine distance.
Input SNR is (a) 10 dB, (b) 5 dB, and (c) 0 dB.

spectrum |s( f , τ)|2 obeys a gamma distribution with a shape parameter of 0.1 (this is a
typical value for speech) as

|s( f , τ)|2 ∼ x−0.9

Γ(0.1)θ0.1s
exp(−x/θs), (60)

where θs is the speech scale parameter. Regarding the amount of noise to be subtracted,
the 1st-order moment of the noise power spectra is equal to θnαn when the number of
iterations, i, equals zero. Also, the value of αn does not change in each iteration when
we use the specific parameters β and η that satisfy the musical-noise-free condition
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because the kurtosis ratio does not change in each iteration. If we perform SS only
once, the rate of noise decrease is given by

M(αn, β, η, 1)/αn, (61)

and thus, the amount of residual noise after the ith iteration is given by

µ[i]
1 = θnαn {M(αn, β, η, 1)/αn}i

= θnMi(αn, β, η, 1)α1−i
n . (62)

Next, we assume that the speech and noise are disjoint, i.e., there are no overlaps in the
time-frequency domain, and that speech distortion is caused by subtracting the average
noise from the pure speech component. Thus, the speech component |ŝ[i+1]

k ( f , τ)|2 at the
kth channel after the ith iteration is represented by subtracting the amount of residual
noise (62) as

|ŝ[i+1]
k ( f , τ)|2 =
|ŝ[i]

k ( f , τ)|2 − βθnMi(αn, β, η, 1)α1−i
n

(if |ŝ[i]
k ( f , τ)|2 > βθnMi(αn, β, η, 1)α1−i

n ),
η2|ŝ[i]

k ( f , τ)|2 (otherwise).
(63)

Here, we define the input SNR as the average of both channel SNRs,

ISNR( f ) =
1
2

(
0.1|h1( f )|2θs
αnθn

+
0.1|h2( f )|2θs
αnθn

)
=

0.1θs
2αnθn

(|h1( f )|2 + |h2( f )|2). (64)

If we normalize the speech scale parameter θs to unity, from (64), the noise scale
parameter θn is given by

θn =
0.1(|h1( f )|2 + |h2( f )|2)

2αnISNR( f )
, (65)

and using (65), we can reformulate (63) as

|ŝ[i+1]
k ( f , τ)|2 =
|ŝ[i]

k ( f , τ)|2−β 0.1(|h1( f )|2+|h2( f )|2)
2ISNR( f ) Mi(αn, β, η, 1)α−i

n

(if |ŝ[i]
k ( f , τ)|2>β 0.1(|h1( f )|2+|h2( f )|2)

2ISNR( f ) Mi(αn, β, η, 1)α−i
n ),

η2|ŝ[i]
k ( f , τ)|2 (otherwise).

(66)
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Furthermore, we define the transfer function ratio (TFR) as

TFR( f ) = |h1( f )/h2( f )|2, (67)

and if we normalize |h1( f )|2 to unity in each frequency subband, |h1( f )|2 + |h2( f )|2

becomes 1 + 1/TFR( f ). Finally, we express (66) in terms of the input SNR ISNR( f )
and the transfer function ratio TFR( f ) as

|ŝ[i+1]
k ( f , τ)|2 =
|ŝ[i]

k ( f , τ)|2−β 0.1(1+1/TFR( f ))
2ISNR( f ) Mi(αn, β, η, 1)α−i

n

(if |ŝ[i]
k ( f , τ)|2>β 0.1(1+1/TFR( f ))

2ISNR( f ) Mi(αn, β, η, 1)α−i
n ),

η2|ŝ[i]
k ( f , τ)|2 (otherwise).

(68)

As can be seen, the speech component is subjected to greater subtraction and distortion
as ISNR( f ) and/or TFR( f ) decrease.

Figure 19 shows the relation between the TFR and the corresponding value of
COS( f ) calculated by (59) and (68). In Fig. 19, we plot the average of COS( f ) over
whole frequency subbands. The noise shape parameter αn is set to 0.2 with the assump-
tion of super-Gaussian noise the input SNR is set to 10 dB, 5 dB, or 0 dB, and the noise
scale parameter θn is uniquely determined by (65) and the previous parameter settings.
The TFR is set from 0.4 to 1.0 (|h1( f )| is fixed to 1.0). Note that the TFR is highly
correlated to the room reverberation and the interelement spacing of the microphone
array; we determined the range of the TFR by simulating a typical moderately rever-
berant room and the array with 2.15 cm interelement spacing (see the example of the
TFR in Fig. 20). For the internal parameters used in iterative BSSA in this simulation,
β and η are 8.5 and 0.9, respectively, which satisfy the musical-noise-free condition.
In addition, the smallest value on the horizontal axis is 3 dB in Fig. 19 because DS is
still performed even when i = 0.

From Figs. 19(a) and (b), which correspond to relatively high input SNRs, we can
confirm that the degree of point-source-likeness, i.e., COS( f ), is almost maintained
when the TFR is close to 1 even if the speech components are distorted by iterative
BSSA. Also, it is worth mentioning that the degree of point-source-likeness is still
above 0.9 even when the TFR is decreased to 0.4 and i is increased to 6. This means
that almost 90% of the speech components can be regarded as a point source and thus
can be blocked by ICA. In contrast, from Fig. 19(c), which shows the case of a low
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input SNR, when the TFR is dropped to 0.4 and i is more than 3, the degree of point-
source-likeness is lower than 0.6. Thus, less than 60% of the speech components can
be regarded as a point source, and this leads to poor noise estimation.

5.4 Improvement scheme for poor noise estimation

5.4.1 Channel selection in ICA

In this subsection, we propose a channel selection strategy in ICA for achieving high
accuracy of noise estimation. As mentioned previously, speech distortion is subjected
to ISNR( f ) and TFR( f ), and the accuracy of noise estimation is degraded along with
speech distortion. Figure 20 shows a typical example of the TFR. From Fig. 20, we
can confirm that the TFRs in different combinations of microphones are not the same
in each frequency subband; in a specific frequency, one microphone pair has higher
TFR( f ) than another pair, and vice verse in another frequency. Thus, we are able to
select the appropriate combination of microphones to obtain a higher TFR.

Therefore, we introduce the channel selection method into ICA in each frequency
subband, where we automatically choose less varied inputs to maintain high accuracy
of noise estimation. Hereafter, we describe the detail of the channel selection method.
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First, we calculate the average power of the observed signal xk( f , τ) at the kth channel
as

Eτ[|xk( f , τ)|2]=Eτ[|s( f , τ)|2]|hk( f )|2+Eτ[|nk( f , τ)|2]. (69)

Here, Eτ[|s( f , τ)|2] is a constant, and if we assume a diffuse noise field, Eτ[|nk( f , τ)|2]
is also a constant. Thus, we can estimate the relative order of |hk( f )|2 by comparing
(69) for every k.

Next, we sort Eτ[|xk( f , τ)|2] in descending order and select the channels correspond-
ing to a high amplitude of |hk( f )|2 satisfying the following condition:

max
k

Eτ[|xk( f , τ)|2] · ξ ≤ Eτ[|xk( f , τ)|2], (70)

where ξ(< 1) is the threshold for the selection.
Finally, we perform noise estimation based on ICA using the selected channels in

each frequency subband, and we apply the projection back operation to remove the
ambiguity of the amplitude and construct the estimated noise signal.

5.4.2 Time-variant noise PSD estimator

In the previous section, we revealed that the speech components cannot be regarded
as a point source, and this leads to poor noise estimation in iterative BSSA. To solve
this problem, we introduce a time-variant noise PSD estimator [41] instead of ICA to
improve the noise estimation accuracy. This method has been developed for future
high-end binaural hearing aids and performs a prediction of the left noisy signal from
the right noisy signal via the Wiener filter, followed by an auto-PSD of the difference
between the left noisy signal and the prediction. By applying the noise PSD estimated
from this estimator to (51), we can perform the speech extraction. The procedure of
this noise PSD estimator is described in Appendix F.

5.5 Experiment in real world

5.5.1 Experimental conditions

We conducted objective and subjective evaluation experiments to confirm the validity
of the proposed methods under the diffuse and nonstationary noise condition. The
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size of the experimental room was 4.2 × 3.5 × 3.0 m3 and the reverberation time was
approximately 200 ms. We used a two-, three-, or four-element microphone array with
an interelement spacing of 2.15 cm, and the direction of the target speech was set to
be normal to the array. All the signals used in this experiment were sampled at 16
kHz with 16-bit accuracy. The FFT size was 1024, and the frame shift length was 256.
We used 10 speakers (5 males and 5 females) as sources of the original target speech
signal. The input SNR was -5, 0, 5, and 10 dB.

5.6 Objective evaluation

We conducted an objective experimental evaluation under the same NRR condition.
Figures. 21, 22, 23, and 24 show the kurtosis ratio and cepstral distortion obtained
from the experiments with real traffic noise and railway station noise, where we eval-
uate 10-dB NRR (i.e., output SNRs = 5, 10, 15, and 20 dB) signals processed by
five conventional methods, namely, the minimum mean-square error (MMSE) short-
time spectral amplitude (STSA) estimator [7], the Log MMSE estimator incorporating
speech-presence uncertainty [9], single-channel musical-noise-free iterative spectral
subtraction, the multichannel speech enhancement method integrating the minimum
variance beamformer and the Log MMSE estimator for postfiltering, and BSSA, in
addition to our proposed methods of iterative BSSA (using ICA or a time-variant noise
estimator with/without channel selection). Here, we did not apply the channel selec-
tion method to the two-microphone case because ICA or time-variant noise estimation
needs at least two-channel signals. Also, we applied a minimum statistics noise PSD
estimator [3] to the MMSE STSA estimator, the Log MMSE estimator and musical-
noise-free iterative SS, and we use the decision-directed approach for a priori SNR
estimation in the MMSE STSA estimator. From Figs. 21 and 23, we can confirm that
iterative BSSA methods outperform the MMSE STSA estimator, the Log MMSE esti-
mator and the conventional BSSA in terms of kurtosis ratio. In particular, the kurtosis
ratios of the proposed methods are mostly close to 1.0. This means that the proposed
iterative methods did not generate any musical noise. However, the iterative BSSA
methods lead to greater speech distortion compared with the conventional BSSA (see
Figs. 22 and 24). Therefore, a trade-off exists between the amount of musical noise
generation and speech distortion in the conventional BSSA and iterative BSSA meth-
ods.
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5.7 Subjective evaluation

Since we found the above-mentioned trade-off, we next conducted a subjective evalu-
ation for setting the performance competition. In the evaluation, we presented a pair
of 10-dB NRR signals processed by the conventional BSSA and four of our proposed
iterative BSSAs (using ICA or a time-variant noise estimator with/without channel se-
lection) in random order to 10 examinees, who selected which signal they preferred
from the viewpoint of total sound quality, e.g., less musical noise, less speech distor-
tion, and so forth.

The result of this experiment is shown in Fig. 25 for (a) traffic noise and (b) railway
station noise. It is found that the output signals of some iterative BSSAs are preferred
to that of the conventional BSSA, indicating the higher sound quality of the proposed
method in terms of human perception. This result is plausible because humans are
often more sensitive to musical noise than to speech distortion as indicated in past
studies, e.g., [21].

5.8 Conclusion

In this section, I addressed a musical-noise-free blind speech extraction method using a
microphone array that can be applied to nonstationary noise. First, I proposed iterative
BSSA using a new BSSA structure, which generates almost no musical noise even with
increasing noise reduction performance. The proposed method consists of iterative
blind dynamic noise estimation by ICA, and musical-noise-free speech extraction by
modified iterative SS, where multiple iterative SS is applied to each channel while
maintaining the multichannel property reused for the dynamic noise estimators.

Secondly, in relation to the proposed method, I discussed the justification of apply-
ing ICA to signals nonlinearly distorted by SS. I theoretically clarify that the degra-
dation in ICA-based noise estimation obeys an amplitude variation in room transfer
functions between the target users and microphones. Therefore, I proposed the in-
troduction of a channel selection strategy in ICA to achieve higher accuracy of noise
estimation. Furthermore I introduced a time-variant noise PSD estimator instead of
ICA to improve the noise estimation accuracy.

Finally, from the objective evaluation experiments, it was shown that there is a
trade-off between the amount of musical noise generation and speech distortion in
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both the conventional BSSA and iterative BSSA. However, in a subjective preference
test, iterative BSSA obtained a higher preference score than the conventional BSSA.
Thus, iterative BSSA is advantageous to the conventional BSSA in terms of total sound
quality.
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Fig. 21. Kurtosis ratio obtained from experiment for traffic noise under 10-dB NRR
condition.
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Fig. 22. Cepstral distortion obtained from experiment for traffic noise under 10-dB
NRR condition.
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6. Conclusion

6.1 Summary of dissertation

In this dissertation, I proposed a new speech enhancement theory, i.e., musical-noise-
free speech enhancement, which can be applied to the musical noise mitigation prob-
lem. From a theoretical behavior and objective experiments, it was revealed that the
proposed method outperforms conventional methods in both the amount of musical
noise generation and speech distortion. Furthermore, I proposed a new iterative signal
extraction method that can be applied to nonstationary noise. Also, I discussed the jus-
tification of applying ICA to signals nonlinearly distorted by SS. From the theoretical
analysis, it was clarified that the degradation in ICA-based noise estimation obeys an
amplitude variation in room transfer function between the target user and microphones.
According to the results of objective and subjective evaluations, the a proposed method
is superior to the conventional BSSA in terms of total sound quality.

In Sect. 3, a theoretical analysis of iterative SS was given. The theoretical analysis
indicates that the first-, second-, and fourth-order moments of the power spectra can
be used to estimate the amount of noise reduction and musical noise generation, and
I introduced a gamma-distribution approximation to simulate iteratively applied weak
SS. Next, I conducted a comparison of the amount of musical noise generated for dif-
ferent parameter settings under the same noise reduction performance. It was clarified
from mathematical analysis that iterative SS with very weak processing can realize
high-quality speech enhancement with a small amount of musical noise generated.

On the basis of the above-mentioned findings, I proposed a new speech enhance-
ment theory, i.e., musical-noise-free speech enhancement, in Sect. 4. In this section, I
discussed a theorem of musical-noise-free conditions in iterative SS, and I mathemati-
cally derived the internal parameter settings to satisfy the musical-noise-free condition.
It was clarified that the optimal parameters satisfying the musical-noise-free condition
can generate almost no musical noise even with high noise reduction. This desirable
property of iterative SS was well supported by the results of a comparative experiment
between iterative SS and commonly used noise reduction methods, including conven-
tional non-iterative SS, Wiener filtering, and the MMSE STSA estimator. In summary,
the proposed theory mathematically proves that iterative SS with the optimal parame-
ters is advantageous for achieving high-quality noise reduction, which has only been
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experimentally shown in previous studies.
Next, I proposed a musical-noise-free blind speech extraction method using a mi-

crophone array that can be applied to nonstationary noise in Sect. 5. Also, in relation
to the proposed method, I discussed the justification of applying ICA to signals non-
linearly distorted by SS. From the theoretical analysis, I showed that the degradation
in ICA-based noise estimation obeys an amplitude variation in room transfer function
between the target user and microphones. Moreover, to achieve higher accuracy of
noise estimation, I proposed the introduction of a channel selection strategy in ICA
and a time-variant noise PSD estimator. From objective evaluation experiments, it was
shown that there is a trade-off between the amount of musical noise generation and
speech distortion in both the conventional BSSA and iterative BSSA. However, in a
subjective preference test, the iterative BSSA obtained a higher preference score than
the conventional BSSA. Thus, the iterative BSSA is superior to the conventional BSSA
in terms of total sound quality.

6.2 Future work

In this dissertation, I have reported a method for improving the sound quality for
human-hearing applications. However, the following problems still remain to be solved.

Although I have mathematically optimized the internal parameter settings based
on higher-order statistics in iterative SS, this is merely one example of a nonlinear
speech enhancement technique. There is a strong possibility that a musical-noise-free
theory can be applied to other nonlinear speech enhancement methods (e.g., Wiener
filtering and Bayesian MMSE estimator). These speech enhancement methods are
often considered to generate as less musical noise and less speech distortion than SS.
Therefore, it is expected that the development of a musical-noise-free theory for these
speech enhancement methods will greatly improve the sound quality.

Moreover, in the musical-noise-free theory, I pursued higher-order statistics in only
the speech absence periods, and optimized the internal parameters in terms of musical
noise generation. However, I have not taken into account of the distortion of speech
component by speech enhancement. The calculation of the distorted speech component
by speech enhancement, e.g., cepstral distortion, requires a reference (clean) speech
signal. However, in actual situations, the speech component is always overlapped with
noise, and we cannot obtain a clean speech signal. To overcome this problem, as an
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unsupervised measure of speech distortion estimated in a reference-free manner, the
kurtosis of the speech power spectrum has recently been proposed, which is effective
for optimizing parameters in the speech enhancement method and the speech recog-
nition performance [39, 49, 50, 51]. This method is based on a moment-cumulant
transformation technique with respect to the statistical estimates of observable noise
and noisy speech signals. In the future, internal parameters can be optimized in terms
of both speech distortion and musical noise generation on the basis of this finding.
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Appendix

A. Approximate Accuracy of Noise Power Spectra after
Weak SS

In this appendix, I conduct the goodness-of-fit test for the noise power spectra to mea-
sure the goodness of fit an approximated gamma distribution p.d.f. (see Fig. 5). I test
the null hypothesis that the histogram of the noise power spectra in 1st iteration of SS
and the approximated p.d.f. of a gamma distribution come from populations with the
same distribution, using the Kolmogorov-Smirnov test.

Noisy observation signal was generated by adding noise signals to target speech
signals with an SNR of 0 dB. I conducted the experiment on white Gaussian noise. The
target speech signal was two male and two female speakers in Japanese. In iterative
SS, the parameter settings of β and η are 2.4 and 0.9. This parameter setting satisfies
the musical-noise-free condition.

From this test, I can confirm that the Kolmogorov-Smirnov test dose not reject the
null hypothesis at the default 5% significance level. Figure 26 shows an example of the
histogram of the noise power spectra and p.d.f. of a gamma distribution corresponding
to its histogram. Therefore, it can be said that the approximation of the noise power
spectra after weak SS using a gamma distribution is valid.

B. Typical Example of Optimal Parameter Settings Sat-
isfying Musical-Noise-Free Condition

This appendix shows a typical example of the optimal parameter settings satisfying the
musical-noise-free condition. I calculate combinations of the oversubtraction param-
eter β and the flooring parameter η under three types of shape parameter α0, namely
0.2, 0.5, and 1.0. Tables 1, 2, and 3 show the typical value of the optimal parameter
settings in each shape parameter α0.
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Fig. 26. Histogram of noise power spectra in 1st iteration of iterative SS and p.d.f. of
gamma distribution corresponding to its histogram.

C. Histogram of Noise Power Spectra in Each Iteration
of Iterative SS

This appendix provides a typical example of the histogram of the noise power spectra in
each iteration of iterative SS. Noisy observation signal was generated by adding noise
signals to target speech signals with an SNR of 0 dB. I conducted the experiment on
white Gaussian noise. The target speech signal was two male and two female speakers
in Japanese. In iterative SS, the parameter settings of β and η are 2.4 and 0.9. This
parameter setting satisfies the musical-noise-free condition.

Figure 27 shows an example of the histogram of noise power spectra in each iter-
ation. From Fig. 27, since the SS process in each step is weak, the histograms are not
changed significantly. Also, it is confirmed that the average of noise power spectrum
is reduced without change in kurtosis.
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Table 1. Example of oversubtraction parameter β and flooring parameter η satisfying
musical-noise-free condition for α0 = 0.2

Oversubtraction parameter β Flooring parameter η
8.0 0.9314
8.1 0.9269
8.2 0.9226
8.3 0.9182
8.4 0.9140
8.5 0.9098
8.6 0.9057
8.7 0.9017
8.8 0.8977
8.9 0.8938
9.0 0.8899

D. Evaluation of Total Sound Quality for iterative SS

I conduct an objective evaluation to assess the total sound quality of the signal en-
hanced by iterative SS in this appendix. The SDR and SIR are defined in [52] as the
evaluation scores. Here, the estimated signal ŝ (t) is defined as

ŝ (t) = starget (t) + sinterf (t) + sartif (t) , (71)

where starget (t) is the allowable deformation of the target source, sinterf (t) is the al-
lowable deformation of the sources that account for the interferences of the undesired
sources, and sartif (t) is an artifact term that may correspond to the artifacts of the sepa-
ration algorithm, such as musical noise, or simply undesirable deformation induced by
the nonlinear property of the separation algorithm.

The formulas for SDR and SIR are defined as

SDR = 10 log10

∑
t starget(t)2∑

t {einterf(t) + eartif(t)}2
, (72)

SIR = 10 log10

∑
t starget(t)2∑
t einterf(t)2 . (73)
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Table 2. Example of oversubtraction parameter β and flooring parameter η satisfying
musical-noise-free condition for α0 = 0.5

Oversubtraction parameter β Flooring parameter η
4.0 0.9637
4.1 0.9540
4.2 0.9446
4.3 0.9356
4.4 0.9268
4.5 0.9183
4.6 0.9101
4.7 0.9021
4.8 0.8943
4.9 0.8867
5.0 0.8794

SDR indicates the quality of the separated target sound and SIR indicates the degree
of separation between the target and other sounds. Therefore, SDR indicates the total
evaluation score that involves SIR.

Noisy observation signal was generated by adding noise signals to target speech
signals with an SNR of 0 dB. I conducted the experiment on white Gaussian noise
and babble noise. The target speech signal was two male and two female speakers in
Japanese. This parameter settings satisfy the musical-noise-free condition.

Figures 28 and 29 show the relation between the number of iterations and SDR
or SIR in each noise case. From Figs. 28 and 29, the SDR and SIR increase with
increasing the number of iterations: this indicates that the total sound quality improves
while reducing noise in each iteration.
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Table 3. Example of oversubtraction parameter β and flooring parameter η satisfying
musical-noise-free condition for α0 = 1.0

Oversubtraction parameter β Flooring parameter η
2.0 0.9683
2.1 0.9458
2.2 0.9248
2.3 0.9052
2.4 0.8869
2.5 0.8697
2.6 0.8535
2.7 0.8382
2.8 0.8238
2.9 0.8101
3.0 0.7971

E. Theoretical Analysis of Amount of Musical Noise Gen-
eration and Speech Distortion

This appendix provides a brief review of the amount of musical noise generation and
speech distortion in parametric BSSA.

E-I Analysis of amount of musical noise

E-I-I Analysis in the case of parametric BSSA

In this section, I analyze the kurtosis ratio in a parametric BSSA. First, using the shape
parameter of input noise αn, we express the kurtosis of a gamma distribution, kurt(n)

in ,
as [20]

kurt(n)
in =

(αn + 2)(αn + 3)
αn(αn + 1)

. (74)
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Fig. 27. Histograms of noise power spectra in each iteration of iterative SS. (a) 1st
iteration, (b) 2nd iteration, (c) 3rd iteration, and (d) 4th iteration.

The kurtosis in the power spectral domain after DS is given by [37]

kurt(n)
DS ≃ J−0.7 · (kurt(n)

in − 6) + 6. (75)

Similarly to Eq. (74), the shape parameter αDS corresponding to the kurtosis after DS,
kurtDS, is given by solving the following equation in αDS:

kurt(n)
DS =

(αDS + 2)(αDS + 3)
αDS(αDS + 1)

. (76)

This can be expanded as

α2
DS(kurt(n)

DS −1) + αDS(kurt(n)
DS −5) − 6 = 0, (77)

and we have

αDS =
− kurtDS +5 +

√
kurt2

DS +14 kurtDS +1

2 kurtDS −2
. (78)
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Then, using Eqs. (74) and (75), αDS can be expressed in terms of αn as

αDS =

[
2J−0.7 ·

{
(αn + 2)(αn + 3)
αn(αn + 1)

− 6
}
+ 10

]−1

·
[{(

J−0.7 ·
{

(αn + 2)(αn + 3)
αn(αn + 1)

− 6
}
+ 6

)2

+ 14J−0.7 ·
{

(αn + 2)(αn + 3)
αn(αn + 1)

− 6
}
+ 85

}0.5

−
(
J−0.7 ·

{
(αn + 2)(αn + 3)
αn(αn + 1)

− 6
})
− 1

]
. (79)

Next, we calculate the change in kurtosis after parametric BSSA. With the shape pa-
rameter after DS, αDS, the resultant kurtosis after the parametric BSSA is represented
as

kurt(n)
BSSA =M(αDS, β, 4, n)/M2(αDS, β, 2, n), (80)

whereM(α, β,m, n) can be expressed as [24]

M(α, β,m, n) =
m/n∑
l=0

(−β)lΓl(α + n)Γ(m/n + 1)
Γl+1(α)Γ(l + 1)Γ(m/n − l + 1)

Γ

α + m − nl,
(
β
Γ(α + n)
Γ(α)

) 1
n
 , (81)

where Γ(α, z) is the upper incomplete gamma function

Γ(α, z) =
∫ ∞

z
tα−1 exp(−t)dt. (82)

Finally, using Eqs. (5), (74), and (80), we can determine the resultant kurtosis ratio
through a parametric BSSA as

kurtosis ratio(n)
BSSA = kurt(n)

BSSA / kurt(n)
in . (83)

E-I-II Analysis in the case of parametric chBSSA

In this section, we analyze the kurtosis ratio in a parametric chBSSA. First, we cal-
culate the change in kurtosis after channelwise GSS. Using Eq. (80) with the shape
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parameter of input noise αn, we can express the resultant kurtosis after channelwise
GSS as

kurt(n)
chGSS =M(αn, β, 4, n)/M2(αn, β, 2, n). (84)

Next, using Eqs. (75) and (84), we can derive the change in kurtosis after a parametric
chBSSA as

kurt(n)
chBSSA ≃ J−0.7 · (kurt(n)

chGSS − 6) + 6. (85)

Finally, we can obtain the resultant kurtosis ratio through a parametric chBSSA as

kurtosis ratio(n)
chBSSA = kurt(n)

chBSSA / kurt(n)
in . (86)

E-II Analysis of amount of speech distortion

E-II-I Analysis in the case of BSSA

In this section, we analyze the amount of speech distortion on the basis of the kur-
tosis ratio in speech components. Hereafter, we define s( f , τ) and n( f , τ) as the ob-
served speech and noise components at each microphone, respectability. Assuming
that speech and noise are disjoint, i.e., there is no overlap in the time-frequency do-
main, speech distortion is caused by subtracting the average noise from the pure speech
component. Thus, the distorted speech after BSSA is given by

|sBSSA( f , τ)| =
2n
√
|s( f , τ)|2n − β|zDS( f , τ)|2n

=
2n
√
|s( f , τ)|2n − βCBSSA|s( f , τ)|2n, (87)

where sBSSA( f , τ) is the output speech component in BSSA. Also, calculating the nth-
order moment of the gamma distribution, CBSSA is given by

CBSSA = |zDS( f , τ)|2n/|s( f , τ)|2n

= J−n|n( f , τ)|2n/|s( f , τ)|2n

= J−n

(
αs

αn

)n
Γ(αn + n)/Γ(αn)
Γ(αs + n)/Γ(αs)

 |n( f , τ)|2

|s( f , τ)|2

n

, (88)
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where αs is the shape parameter of the input speech. Equation (88) indicates that the
speech distortion increases when the input SNR, |s( f , τ)|2/|n( f , τ)|2, and/or the number
of microphones, J, decreases. Using Eqs. (81) and (88) with the input speech shape
parameter αs, we can obtain the speech kurtosis ratio through BSSA as

kurtosis ratio(s)
BSSA

=
M(αs, βCBSSA, 4, n)
M2(αs, βCBSSA, 2, n)

αs(αs + 1)
(αs + 2)(αs + 3)

. (89)

E-II-II Analysis in the case of chBSSA

In chBSSA, since channelwise GSS is performed before DS, CBSSA is therefore re-
placed with

CchBSSA = (|n( f , τ)|2n/|s( f , τ)|2n)

=

(
αs

αn

)n
Γ(αn + n)/Γ(αn)
Γ(αs + n)/Γ(αs)

 |n( f , τ)|2

|s( f , τ)|2

n

. (90)

Equation (90) indicates that the speech distortion increases only when the input SNR
decreases, regardless of the number of microphones. Thus, the distortion does not
change even if we prepare many microphones, unlike the case of a parametric BSSA.
Using Eqs. (81) and (90) with αs, we can obtain the speech kurtosis ratio through
chBSSA as

kurtosis ratio(s)
chBSSA

=
M(αs, βCchBSSA, 4, n)
M2(αs, βCchBSSA, 2, n)

αs(αs + 1)
(αs + 2)(αs + 3)

. (91)

E-III Comparison of amounts of musical noise and speech distor-
tion under same amount of noise reduction

According to the previous analysis, we can compare the amounts of musical noise
and speech distortion among a parametric BSSA and a parametric chBSSA under the
same noise reduction rate (NRR) [36] (output SNR - input SNR in dB). Figure 30
shows the theoretical behaviors of the noise kurtosis ratio and speech kurtosis ratio. In
Figs. 30(a) and 30(b), the shape parameter of input noise, αn, is set to 0.95 and 0.83,
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corresponding to almost white Gaussian noise and railway station noise, respectively.
Also, in Figs. 30(c) and 30(d), the shape parameter of input speech, αs, is set to 0.1,
and the input SNR is set to 10 and 5 dB, respectively. Here, we assume an eight-
element array with the interelement spacing of 2.15 cm. The NRR is varied from 11 to
15 dB, and the oversubtraction parameter β is adjusted so that the target speech NRR
is achieved. In the parametric BSSA and parametric chBSSA, the signal exponent
parameter 2n is set to 2.0, 1.0, and 0.5.

Figures 30(a) and 30(b) indicate that the noise kurtosis ratio of chBSSA is smaller
than that of BSSA, i.e., less musical noise is generated in a parametric chBSSA than
in a parametric BSSA, and a smaller amount of musical noise is generated when a
lower exponent parameter is used, regardless of the type of noise and NRR. However,
Figs. 30(c) and 30(d) show that speech distortion is lower in a parametric BSSA than
in a parametric chBSSA, and a small amount of speech distortion is generated when
a higher exponent parameter is used, regardless of the type of noise and NRR. These
results theoretically prove the existence of a tradeoff between the amounts of musical
noise and speech distortion in BSSA and chBSSA.

F. Time-Variant Nonlinear Noise Estimator

This appendix provides a brief review of the time-variant nonlinear noise estimator.
For more detailed information, Ref. [41] can be available.

Let xL( f , τ) and xR( f , τ) be noisy signals received at the left and right microphones
in the time-frequency domain, defined as

xL( f , τ) = hL( f )s( f , τ) + nL( f , τ), (92)

xR( f , τ) = hR( f )s( f , τ) + nR( f , τ), (93)

where hL( f ) and hR( f ) are the left and right transfer functions, respectively. Next, the
left and right auto-power spectral densities, ΓLL( f ) and ΓRR( f ), can be expressed as
follows:

ΓLL( f , τ) = |HL( f )|2ΓSS( f , τ) + ΓNV( f , τ), (94)

ΓRR( f , τ) = |HR( f )|2ΓSS( f , τ) + ΓCNN( f , τ), (95)
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where ΓSS( f , τ) is the power spectral density of the target speech signal, and ΓNT( f , τ)
is the power spectral density of the noise signal. In this paper, we assume that the left
and right noise power spectral densities are approximately the same, i.e., ΓNLNL( f , τ) ≃
ΓNRNR( f , τ) ≃ ΓANN( f , τ).

Next, we consider the Wiener solution between the left and right transfer functions,
which is defined as

HW( f , τ) =
ΓLR( f , τ)
ΓRR( f , τ)

, (96)

where ΓLR( f ) is the cross-power spectral density between the left and the right noisy
signals. The cross-power spectral density expression then becomes

ΓLR( f , τ) = ΓSS( f , τ)HL( f )H∗R( f ). (97)

Therefore, substituting (97) into (96) yields

HW( f , τ) =
ΓSS( f , τ)HL( f )H∗R( f )

ΓRR( f , τ)
. (98)

Furthermore, using (94) and (95), the squared magnitude response of the Wiener solu-
tion in (98) can be also expressed as

|HW( f , τ)|2= (ΓLL( f , τ)−ΓNS( f , τ))(ΓRR( f , τ)−ΓNO( f , τ))
Γ2

RR( f , τ)
. (99)

Equation (99) is rearranged into a quadratic equation as in the following:

Γ2
NR( f , τ) − ΓNI( f , τ) (ΓLL( f , τ) + ΓRR( f , τ))

+ ΓSEE( f , τ)ΓRR( f , τ) = 0, (100)

where

ΓWE( f , τ) = ΓLL( f , τ) − ΓRR( f , τ)|HW( f )|2. (101)

Consequently, the noise power spectral density ΓNP( f ) can be estimated by solving the
quadratic equation in (100) as follows:

ΓNY( f , τ) =
1
2

(ΓLL( f , τ) + ΓRR( f , τ)) − ΓLRavg( f , τ), (102)

ΓLRavg( f , τ) =
1
2
{(ΓLL( f , τ) + ΓRR( f , τ))2

− 4ΓPEE( f , τ)ΓRR( f , τ)}0.5. (103)
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Fig. 28. (a) Relation between number of iterations and SDR and (b) relation between
number of iterations and SIR for white Gaussian noise.
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