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State-Space Methods for Reconstructing
Neuronal Current Sources∗

Makoto Fukushima

Abstract

Elucidating mechanisms of how functionally specialized brain regions dy-
namically interact has recently received attention in the neuroimaging com-
munity. Such dynamic integration of functional brain regions can be in-
vestigated by Magnetoencephalography (MEG) and Electroencephalography
(EEG). To discover functional brain networks from MEG/EEG sensor mea-
surements, it is indispensable to properly reconstruct neuronal current sources
from these data and identify directed interactions (i.e., effective connectivity)
between the current sources.

State-space approaches for MEG/EEG source reconstruction potentially
provide ways to solve the above estimation problems. The state-space frame-
work can incorporate a priori knowledge on neuronal current dynamics into
the dynamic model of current sources. Imposing realistic priors on the source
dynamics allows reconstructing current sources from MEG/EEG data more
accurately. The richness of the prior assumptions also contributes to identifi-
cation of functional brain networks. This can be achieved by first introducing
model parameters of the source interactions based on prior knowledge, and
then estimating these parameters from the measurements.

In this thesis, to realize accurate source reconstruction and discovery of
functional brain networks, two novel extensions on state-space methods are
applied. First, a limitation of previous state-space methods in reconstructing

∗Doctoral Dissertation, Department of Information Science, Graduate School of Informa-
tion Science, Nara Institute of Science and Technology, NAIST-IS-DD1161010, March 13,
2014.
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spatially focal current sources has been resolved. By replacing spatially ho-
mogeneous dynamic source model in existing methods to spatially inhomo-
geneous one, focal current sources are successfully reconstructed under the
state-space framework for the first time. Second, inference of functional brain
networks has became available by incorporating long-range directed interac-
tions into the dynamic source model, under prior knowledge on structural
brain connectivity. The new state-space method extends previous dynamic
models in which spatially local (or self) source interactions are only assumed
and from which the functional networks cannot be identified.

Keywords:

MEG/EEG, Source reconstruction, State-space model, Neuronal dynamics,
Prior knowledge, Effective connectivity
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Chapter 1

Introduction

1.1. MEG and EEG: Functional brain imaging with
high temporal resolution

There are two fundamental functional principles of the brain: functional spe-
cialization and functional integration [23,24]. Identifying functionally special-
ized brain regions (e.g., for sensory processing, motor control, and cognitive
processing) has been a long-term focus of neuroimaging studies. However, for
a true understanding of the mechanisms underlying brain function, elucidat-
ing the scheme of dynamic integration between these functionally specialized
brain regions is indispensable. This topic has received growing interest in
recent years [47].

Magnetoencephalography (MEG) and electroencephalography (EEG) pro-
vide ways to investigate such dynamic integration of brain functions [65, 74],
because of their high temporal resolution and large reflection of neuronal elec-
trical activity [37,60]. The richness of the temporal information in MEG/EEG
allows capturing temporal propagation, or event-related dynamics, of neu-
ronal activity occurring over millisecond time scales, which cannot be easily
detected by slow blood oxygenation level dependent (BOLD) signals of func-
tional magnetic resonance imaging (fMRI).

17



18 Introduction

1.2. Reconstruction of neuronal current sources from
MEG/EEG data

In contrast to the excellent temporal resolution, the spatial resolutions of MEG
and EEG are limited; the spatial distribution of neuronal current sources can-
not be uniquely determined from the measurements, unless a priori knowl-
edge or assumptions are imposed as constraints on current sources [3]. Nu-
merous source reconstruction methods have been proposed with various con-
straints: dipole methods assuming a small number of focal sources [56, 72],
distributed source methods with purely spatial constraints [25, 38, 67, 71, 83],
and distributed source methods with both spatial and temporal constraints
[2,7,13,62,73,80]. Throughout this thesis, we employ distributed source mod-
eling for formulation of the source reconstruction problem (details are shown
in Chapter 2).

1.3. State-space methods for source reconstruction

In source reconstruction, introducing prior constraints on the spatiotempo-
ral dynamics of source activities is of particular interest; this type of con-
straint complements other commonly used constraints (typically spatial) and
introduces additional knowledge into the source reconstruction process, for
example, on dynamic properties of neuronal populations, structural connec-
tions between brain areas, and transmission delays of neuronal activities. This
knowledge potentially facilitates the extraction of information on directed in-
teractions (i.e., effective connectivity) between sources, while reconstructing
spatial source distributions from MEG/EEG data. The spatiotemporal dy-
namics reflects the generative nature of neuronal current sources, and is read-
ily incorporated into a state-space representation. To formulate such dynam-
ics, previous state-space methods have adopted linear autoregressive models
with spatially local interactions [30, 51] and self-interactions [11, 87]. These
methods extend an approach that imposes a simple prior assumption (such
as a temporal smoothness prior in [73]) on the source dynamics (the effective-
ness of imposing simple temporal smoothness is critically evaluated by [9]).
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1.4. Extensions of state-space methods

In principle, dynamic integration of functional brain regions can be clarified
by applying state-space methods in the context of MEG/EEG source recon-
struction. However, limitations of previous state-space methods in source re-
construction accuracy and source dynamics modeling make the estimation of
functional brain networks impossible. In this thesis, to overcome these prob-
lems, the reconstruction accuracy of state-space methods is first improved by
extending the dynamic source model, with special emphasis on reconstruct-
ing spatially focal source activity. The dynamic model of current sources is
then further extended to incorporate long-range source interactions, in order
to allow identifying whole-brain functional brain networks.

1.4.1 Reconstruction of focal current sources (Chapter 3)

Previous state-space methods have not paid attention to reconstructing spa-
tially focal current sources. Spatially focal solutions are important because
they are consistent with the notion of functional specialization, which states
that cortical activities specialized to specific stimulus attributes or experimen-
tal contexts are restricted to small regions [22]. In particular, these solutions
provide good matches to brain activities evoked by external triggers such as
visual, auditory, and somatosensory stimuli. To reconstruct such spatially
focal current sources based on the state-space framework, we introduce a
new model of the source dynamics in Chapter 3, by taking its spatially in-
homogeneous temporal evolution into account, departing from a simplifying
assumption that all current sources follow the same temporal evolution over
the entire brain [11] or over a given cortical area [30, 87].

1.4.2 Reconstruction of sources with identifying long-range in-
teractions (Chapter 4)

Representing spatially local interactions or self-interactions by simple autore-
gressive modeling [11,30,51,87] is insufficient to discover the functional brain
networks. To identify all source interactions on these functional networks,
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we therefore newly incorporate long-range interactions into the autoregres-
sive modeling of source dynamics. A similar approach has been proposed by
[61] using a full multivariate autoregressive (MAR) model. However, in this
model, the spatiotemporal dynamics was formulated in a low-dimensional
latent space rather than in the high-dimensional source space. In Chapter 4,
we parameterize long-range interactions directly in a source space full MAR
model, with help of prior knowledge of structural brain connectivity. Estimat-
ing parameters on this model allows identifying the functional brain networks
in detail under a state-space framework.

1.5. Thesis organization

In Chapter 2, basic formulations of source reconstruction and state-space
models, as well as estimation algorithms of current sources and model param-
eters, are described. Then, the extensions of state-space methods overviewed
above are detailed in Chapters 3 and 4. Finally, contributions and future di-
rections of the work in this thesis are presented in Chapter 5.



Chapter 2

Background

2.1. Model formulation

2.1.1 MEG/EEG source reconstruction

The distributed source approach of MEG/EEG source reconstruction is for-
mulated as a linear inverse problem. In this problem formulation, the follow-
ing linear relationship is provided between MEG/EEG sensor measurements
and cortical source distributions [37]:

Bt = GJt + εt, (2.1)

where Bt and Jt denote the measurement data1 and current source activities,
respectively, G is the lead field matrix (constant), εt is the observation noise,
and t is an index of time samples (where t ≤ T). Bt and Jt are M- and N-
dimensional vectors that vertically concatenate the single channel data Bm,t

with m ∈ {1 : M} and the single source activity Jn,t with n ∈ {1 : N}, respec-
tively. G is obtained by solving the forward problem [57], accounting for the
structure of the human head.

To achieve source reconstruction with spatial resolution of several millime-
ters, intensities of thousands of current sources are necessary to be estimated
from only hundreds of sensor data (N > M). Thus reconstructing current

1In the following chapters, we only assume MEG.

21



22 Background

sources (i.e., estimating Jt with given Bt and G) in such a high spatial reso-
lution is an ill-posed inverse problem, where no unique solution is provided
unless any constraint is imposed on the current sources.

The key to high accuracy in reconstructing current sources is how well
prior assumptions of sources behind the constraint match real source charac-
teristics (both in spatial and temporal). By reflecting a variety of real prop-
erties of current sources into prior assumptions, a great number of source
reconstruction methods have been proposed for over the last two decades [3].

Norm Regularization

In a classical approach, imposing a constraint on current sources is imple-
mented by norm regularization. Under this framework, reconstructed sources
are obtained by minimizing the cost function

E =
T

∑
t=1

{
(Bt − GJt)

T(Bt − GJt) + λg(Jt)
}

, (2.2)

where g(Jt) denotes a norm regularization term, which works as a constraint.
The constant λ controls the strength of regularization. The simplest and most
popular method uses g(Jt) as the l2-norm of Jt [38], where the total energy
of current sources is regulated. Another example employs Laplacian of Jt as
norm regularization, imposing a spatial smoothness prior on current sources
[67]. The l1-norm of jt serves as a constraint as well [55,81]. By using l1-norm
regularization, one can reconstruct sources with a prior assumption of spatial
sparse neuronal activities.

In addition, norm regularization methods can incorporate a temporal con-
straint into the regularization term. [73] regularizes differences between Jt−1

and Jt to account for temporal smoothness of current sources. A more sophis-
ticated method combines spatial sparseness and temporal smoothness pri-
ors [62]. A spatiotemporal l1l2-norm regularizer is adopted in this method,
where l1-norm regularization is applied to a spatial domain while l2-norm
regularization is imposed on a temporal domain (coefficients of temporal ba-
sis functions).
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Bayesian Approach

Source reconstruction can be formulated within a Bayesian framework. The
goal of Bayesian source reconstruction is to compute a posterior distribution
of current sources using the well-known Bayes theorem:

T

∏
t=1

P(Jt |Bt) =
T

∏
t=1

P(Bt | Jt)P(Jt)

P(Bt)
. (2.3)

If one assume that the likelihood function P(Bt | Jt) and the prior distribution
P(Jt) are linear Gaussian with a spherical noise covariance matrix, then the
mean of the posterior distribution P(Jt |Bt) becomes equivalent to the inverse
solution with the l2-norm regularization [38]. The Bayesian approach imposes
a constraint on current sources via the prior distribution. This allows incorpo-
rating prior assumptions on current sources in a more intuitive manner than
employing a norm regularization term.

An example of the prior distribution on current sources is the automatic
relevance determination (ARD) prior [71]. Similar to the l1-norm regularizer
in [55, 81], the ARD prior imposes spatial sparseness on the inverse solu-
tion, which provides spatially focal source estimation. Variants of ARD-based
source reconstruction have been recently proposed in, e.g., [25, 83]. Another
example of source prior is temporal smoothness. This prior is incorporated
into [2, 7, 13, 80] by method-specific forms.

Importantly, the Bayesian approach can combine knowledge of spatial
brain activity patterns from functional magnetic resonance imaging (fMRI)
data [8, 12, 42, 63, 71]. Integration of fMRI with MEG in source reconstruction
improves the reliability of estimated spatial patterns of source activity, owing
to relatively higher spatial resolution of fMRI (in the order of millimeters)
than MEG.

In this thesis, source reconstruction is performed from the Bayesian ap-
proach. The observation noise εt in Eq. (2.1) is assumed to follow a Gaussian
distribution N (εt | 0, β−1S), where β is a scaling parameter and S is the noise
covariance matrix scaled by β (S is normalized to satisfy tr(S) = M and is
typically determined from pre-stimulus rest period measurements). Then the
likelihood function for the assumed Gaussian observation noise can be writ-
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ten by

P(Bt | Jt, β) = N
(

Bt |GJt, β−1S
)

. (2.4)

2.1.2 State-space modeling

State-space modeling for MEG/EEG source reconstruction provides a frame-
work of imposing prior assumptions on the spatiotemporal source dynamics.
The state-space model consists of the observation process of sources from
sensors (Eq. (2.1)), together with an equation that specifies the dynamics of
neuronal current sources. Choices on which dynamic properties of sources
are modeled in this equation determine which dynamic phenomena can be
extracted from model parameters to be estimated from the data.

A general form of source dynamics can be represented by

Jt = f (J1:t−1) +ωt, (2.5)

where the first term f (J1:t−1) is Jt predicted from J1:t−1 via a dynamic source
model f . The second term ωt denotes the system noise; the input term to
this dynamic model. By assuming a dynamic source model as a prior con-
straint on current sources, one can exploit past data samples in reconstructing
the present state of current sources via the model prediction. Moreover, by
parameterizing the dynamics f and estimating these model parameters from
measurement data, latent factors specifying the brain dynamics (e.g., dynamic
interactions between current sources) can be extracted.

The simplest dynamic model, proposed in [73], is

Jt = Jt−1 +ωt, (2.6)

whose prior assumption on sources corresponds to the temporal smoothness
prior. Similar linear source dynamics incorporating temporal smoothness are
proposed in [2, 11, 13]. The dynamic model in Eq. (2.6) is extended by [51]
to account for temporal smoothness between neighboring sources, where the
model can be written as

Jt = F Jt−1 +ωt, (2.7)
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however the matrix F is constant and its entries for other than neighboring
source interactions are set to zero.

The ideal source modeling for extracting knowledge of directed source
interactions on functional brain networks is to assume

Jt = A Jt−1 +ωt, (2.8)

where the MAR matrix A is a model parameter to be estimated from the
data. Although previous methods [30, 61, 87] estimate the autoregressive pa-
rameter along with current sources, A is still parametrized in a region-wise
manner; that is, a single autoregressive parameter (say a) is assumed for every
entry of A in a corresponding brain region [30, 87] or A is assumed in a low-
dimensional latent space [61]. Indeed, region-wise dynamic modeling has a
limitation on reconstructing spatially focal sources. Focal sources typically
mistakenly blurred according to shared source dynamics in inverse solutions.
By parameterizing A directly in the high-dimensional source space, inverse
solutions, where focal sources follow their own source dynamics, could be
reconstructed.

As a first step to the model parameter estimation in the source space, we
initially restrict the MAR matrix A in Eq. (2.8) as a diagonal matrix in Chapter
3, but decompose these diagonal entries in an element-wise manner:

Jt = diag(a) Jt−1 +ωt. (2.9)

This allows estimating spatially inhomogeneous source temporal evolution,
where the inhomogeneity is crucial for reconstructing spatially focal sources
(see Section 3.2.1 also).

Then, we incorporate non-diagonal entries into A in Chapter 4, also in an
element-wise manner to identify directed source interactions. An intuitive
form of the dynamic source model can be written as

Jt = A Jpast +ωt. (2.10)

Here, entries of A are estimated for only those corresponding to structurally
connected pairs of current sources. Since we further extend the model by
assuming connection-specific time lags in the MAR model, Jt−1 in Eq. (2.8) is
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replaced with Jpast in Eq. (2.10). Indeed, using the single vector Jpast in Eq.
(2.10) is not a proper form of expression for connection-specific time lags. The
exact form of dynamic source model is shown in Eqs. (4.1) and (4.3) in Section
4.2.1.

In this thesis, the system noise ωt is assumed to follow a Gaussian distri-
bution N (ωt | 0, (β diag(q))−1). Adopting the dynamic source model in Eq.
(2.8) and the above system noise is equivalent to imposing the following prior
distribution on the current sources:

P(Jt | Jt−1, β, A, q) = N
(

Jt |A Jt−1, (β diag(q))−1
)

. (2.11)

2.2. Estimation algorithm

2.2.1 Variational Bayesian inference

Since the number of source dimension in the state-space model is rather high
(in the order of 1000), the well-known Kalman filter and smoother cannot
be easily applied for the inference of source and parameter posterior dis-
tributions, due to computational limitations. Therefore, we derived a com-
putationally efficient estimation algorithm based on the variational Bayesian
framework [1, 70].

The variational Bayesian inference allows computing approximate poste-
rior distributions of the sources and parameters. When the likelihood function
and the source prior are given by Eqs. (2.4) and (2.11), respectively, the ap-
proximate posterior distributions are obtained by taking the following steps.
First, we assume that the set of variables of interest contained in X are inde-
pendent

Q (X = {J1:T, β, A, q})

=
T

∏
t=1

{Q(Jt)} Q(β) Q(A) Q(q). (2.12)

Then, we minimize the Kullback-Leibler (KL) divergence of the true poste-
rior distributions P(X|B1:T) relative to the approximate distributions. Note
that by assuming independence among Q(J1), . . . , Q(JT) in Eq. (2.12), we
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can reduce the computation time in deriving Q(J1:T) when the dimension
of the dynamic source model is of order 1000 (cf., the variational Kalman
smoother [5, 11], where the independency within Q(J1:T) does not assumed).
Minimizing the KL divergence is identical to maximizing the free energy F,
defined as

F = ⟨log P(B1:T, X)− log Q(X)⟩Q(X). (2.13)

The free energy is monotonically increased by sequentially and iteratively
updating the approximate distribution of x (where x is one of J1, . . ., JT, β, A,
or q) using the following update rule:

log Q(x) = ⟨log P(B1:T, X)⟩Q(X\x) + const, (2.14)

where Q(X\x) is the product of all approximate distributions other than
Q(x), and const is independent of x. After convergence, the approximate
posterior distributions maximally approach the true distributions in terms of
the KL divergence, under the independence assumption of Eq. (2.12).

The actual forms of estimation algorithm are derived from model-specific
parameterization in Chapters 3 and 4. A psudecode of the estimation algo-
rithm is presented in each chapter.





Chapter 3

Reconstruction of Focal Current
Sources

3.1. Introduction

In this chapter1, we extend previous state-space methods to reconstruct focal
current sources. The proposed method here incorporates temporal evolution
of focal current activity into the probabilistic model of the hierarchical varia-
tional Bayesian method [71, 88], under a state-space representation. We focus
on linear temporal dynamics, as in existing state-space methods, but intro-
duce the dynamics model parameters in a spatially non-uniform manner; i.e.,
a current source at every cortical location is assumed to evolve under its in-
dividual temporal dynamics. The spatially focal sources are reconstructed
by estimating both the dynamics parameters and the intensities of current
sources from MEG data.

Since the assumed number of the current sources on the cortical surface

1 c⃝ 2012 IEEE. Reprinted, with permission, from [27]. In reference to IEEE copyrighted
material which is used with permission in this thesis, the IEEE does not endorse any of
NAIST’s products or services. Internal or personal use of this material is permitted. If in-
terested in reprinting/republishing IEEE copyrighted material for advertising or promotional
purposes or for creating new collective works for resale or redistribution, please go to http://

www.ieee.org/publications standards/publications/rights/rights link.html to learn
how to obtain a License from RightsLink.
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is large (of order 1000), our state-space model contains many degrees of free-
dom. As a result, the currents and the parameters are not readily deter-
minable because of high sensitivity to unmodeled data components and high
computational costs [52]. The sensitivity is reduced by introducing prior dis-
tributions of parameters that are common to all current sources. These prior
distributions control the overall adaptability of each model parameter to the
data. The computational cost is reduced by employing variational Bayesian
inference (see Chapter 2), which yields an approximate posterior distribution
of variables of interest. This approximation enables the complexity of the
current source computation to grow linearly with the number of sources. By
solving these two problems, we have developed the first state-space model-
based source reconstruction method that can estimate spatially focal current
sources.

3.2. Methods

3.2.1 Dynamic source model

We model the temporal evolution of a current source by a first-order autore-
gressive (AR(1)) process, which differs at each cortical location. In particular,
we consider the following special class of linear dynamics:

Jt = diag(a)Jt−1 +ωt (3.1)

where the vector a is the AR(1) parameter and ωt is system noise. We assume
that each current source on each cortical location evolves independently of
the others; that is, Jn,t = an Jn,t−1 + ωn,t where Jn,t, an, and ωn,t are the n-th
elements of Jt, a, and ωt, respectively. Although the linear model (Eq. (3.1))
is too simple to model complex brain dynamics, it is a significant improve-
ment upon previous state-space methods, in which the temporal evolution
is assumed uniform over the entire brain [2, 10, 13, 73] or within a cortical
area [4, 30, 87]. The system noise ωt is assumed to follow a Gaussian dis-
tribution N

(
ωt| 0, (β diag(q))−1), whose variance also differs at each cortical

location. Here q is the parameter vector and the variance for the n-th cor-
tical site, denoted σn, is equal to (βqn)−1 (qn is the n-th element of q). The
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scaling parameter β is introduced to the system noise for technical conve-
nience [59, 71, 88] during application of the variational Bayesian inference.

From a Bayesian point of view, specifying the dynamic source model (Eq.
(3.1)) corresponds to setting the following prior distribution on the current
sources:

P(Jt| Jt−1, β, a, q) = N
(

Jt|diag(a)Jt−1, (β diag(q))−1
)

. (3.2)

3.2.2 Prior distributions on model parameters

To approach the source reconstruction problem from Bayesian perspectives,
we introduce prior distributions of the model parameters β, a, and q. For
these parameters, the following conjugate priors [6] are used to simplify the
derivation of their (approximate) posterior distributions. The prior distribu-
tion of the scaling parameter β is set as

P(β) ∝ β−1, (3.3)

which corresponds to a non-informative prior [6]. For prior distribution of
the AR(1) parameter a, we select a zero mean Gaussian distribution:

P(a) =
N

∏
n=1

N (an| 0, η−1
0 ) (3.4)

where an is the n-th element of a, and η0 is a hyperparameter that controls
the reliability of this prior (the higher the η0, the more reliable the prior). For
the parameter q, the prior distribution is assumed as

P(q) =
N

∏
n=1

G(qn| q0, γ0) (3.5)

where both q0 and γ0 are hyperparameters (the mean and shape parameter
of Gamma distribution, respectively). High γ0 means high reliability of this
prior. The hyperparameters η0, q0, and γ0 are shared by all current sources.
Their values are determined as described in Section 3.2.5. It should be noted
that these prior distributions are dynamic extensions of the ARD prior [58]
that gives non-dynamic focal estimation [71,88]. Indeed, when all entries of a
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are set to 0 (i.e., η0 → ∞), Eqs. (3.2) and (3.5) reduce to the hierarchical prior
distributions of ARD.

The non-informative priors for a and q, derived by setting both η0 and γ0

to 0, were used in the simulations of Sections 3.3.1, 3.3.2, and 3.3.3, whereas
the informative priors for these parameters (non-zero η0 and γ0) were used
in the more realistic simulations of Section 3.3.4 and the real data analysis of
Section 3.3.5. Choosing informative priors in the realistic data setting reduces
the effects of modeling errors on parameter estimation. Since the dimension
of a and q is large, these parameters are highly sensitive to modeling errors,
such as discrepancies between the assumed model and the data generation
process. Thus, to render our estimation robust to these errors, we reduce
the sensitivity by constraining the parameter space through the informative
priors.

3.2.3 Joint probability distribution

The likelihood function and all of the prior distributions comprise the joint
probability distribution:

P(B1:T, J1:T, β, a, q) =
T

∏
t=1

{P(Bt| Jt, β)} P(J1| J̄0, β, a, q)

×
T

∏
t=2

{P(Jt| Jt−1, β, a, q)} P(β)P(a)P(q) (3.6)

whose graphical representation is shown in Fig. 3.1. The initial current J̄0 is
set as a zero vector rather than a vector of random variables, as appropriate
for analysis of data whose starting point immediately follows a rest period.
This setting was used for all analyses in Section 3.3. A minor alteration to the
estimation algorithm would allow us to estimate J̄0 also.

3.2.4 Estimation algorithm

Estimates of the current sources J1:T and model parameters β, a, and q are
obtained by the variational Bayesian inference, calculating their approximate
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Figure 3.1: Graphical representation of the joint probability distribution. Each circle node
represents a random variable (gray: observed, white: unobserved) and each arrow indicates
a dependency between variables. J̄0 (black dot) is constant. c⃝ 2012 IEEE.

posterior distributions Q(J1), . . . , Q(JT), Q(β), Q(a), and Q(q). The estima-
tion process of the proposed method is summarized as follows:

1. Set the initial values required for updating Q(J1), and also set the hy-
perparameters.

2. J-step: For t = 1 : T, update Q(Jt).

3. β-step: Update Q(β), and compute the free energy.

4. a-step: Update Q(a).

5. q-step: Update Q(q).

6. If the change of the free energy relative to the value of the free energy
at the previous step is smaller than 10−9, then exit; otherwise, go to 2).

Each update rule is derived from Eq. (2.14) by substituting the corresponding
variable of interest for x. Detailed derivation of the update rules is presented
in Appendix A.1.
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3.2.5 Initial values and hyperparameters

Since the proposed method adopts an iterative estimation algorithm, it re-
quires initial values for the first update of Q(J1) in the J-step. In our algorithm
the mean and variance of Q(an) and the mean of Q(qn) must be initialized
(see Eqs. (A.2)–(A.4) in Appendix A.1). To avoid the need to initialize the
means of Q(J2:T), the mean and variance of Q(an) are initialized to 0 for all n.
The initial mean of Q(qn) is set as the estimated inverse variance parameter
of the hierarchical variational Bayesian method (VB) described in [88], which
is equivalent to the mean of Q(qn) when no temporal evolution is assumed
(i.e., when all an are fixed at 0).

In addition, three hyperparameters must be specified. The two hyperpa-
rameters η0 and γ0, both of which control reliability of the priors, are selected
from an appropriate range of values explored in a grid-search manner (see
Section 3.3.4). As noted above, η0 and γ0 are set to 0 during the estima-
tions of a and q with the non-informative priors (Sections 3.3.1, 3.3.2, and
3.3.3). The remaining hyperparameter q0 is determined such that the product
(βq0)

−1, corresponding to the prior for the system noise variance σn for any
n, becomes the average variance of all current sources over the cortex. When
specifying this variance, we use the currents estimated by the minimum norm
estimation (MN) [38] and we set β−1 as the variance of the observation noise
estimated by MN, with the optimal regularization parameter of MN derived
from variational Bayesian inference.

3.2.6 Required computation time

All analyses were performed in MATLAB 7.5.0. Approximately 15 minutes
were required for convergence of the iterative process using a standard multi-
core PC (2 cores, 2.66 GHz CPU, and 8 GB RAM) for real data analysis in
Section 3.3.5 (M = 400, N = 2000, T = 300, and η0 = γ0 = 102). In this case,
89 iterations were required to maximize the free energy. When the free en-
ergy calculation was bypassed, the computation time was reduced to around
3 minutes only. Note that the number of iterations required to converge de-
pends on the values of the hyperparameters. For smaller η0 and γ0, more
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iterations are needed. For the first simulation in Section 3.3.1, which assumes
non-informative priors, 926 were required for free energy convergence.

3.2.7 Previous methods for comparison

We present here two previously proposed methods against which our method
is compared in Sections 3.3.1 and 3.3.5. This comparison reveals the effects of
temporal constraints on the estimated currents, and also the effects of spatially
inhomogeneous and data-adaptive dynamics parameters.

To meet the first purpose, our model is compared with VB [71, 88]. The
model in VB can be viewed as a specialized form of our model with all entries
of a set to 0. Under this simplification, the prior distribution of the currents
is not dependent on past and future currents, thereby removing temporal
constraints.

For the second purpose, our model is compared with that of [10], which is
similar to a random walk model (denoted RW hereafter). Our model reduces
to the RW model when all entries of a are set to 1 (constant) and the vector
q is replaced by a scalar q. In this chapter, all entries of a are set to 0.9 (i.e.,
less than 1), to avoid gradual random-walk deviation of the amplitudes from
the baseline (slight changing the value of a does not substantially alter the
results).

3.2.8 Local spatial smoothing

For all methods, a local spatial smoothness constraint is imposed on the cur-
rent sources by applying a spatial smoothing filter. The relationship between
the smoothed currents Jt and the unsmoothed currents Zt is assumed to be

Jt = WZt (3.7)

where W represents a Gaussian smoothing filter with 8 mm full width at half
maximum as used in [71, 88]. By substituting Eq. (3.7) into Eq. (2.1), the
observation process is rewritten as

Bt = ĜZt + ϵt (3.8)
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where Ĝ = GW is a smoothed lead field matrix. To obtain the solutions J1:T,
we first solve the source reconstruction problem of Z1:T with the smoothed
lead field matrix Ĝ, then convert Z1:T to J1:T by computing (3.7).

3.3. Results

3.3.1 Simulation study 1: Method comparison

First, we conducted simulation experiments to compare the performance of
the three source reconstruction methods (the proposed method, VB, and RW).
Time courses and cortical positions of the simulated active current sources
are summarized in the leftmost column of Fig. 3.2. Three active sources
were assumed, following time courses of non-smooth with high amplitude,
smooth with high amplitude, and smooth with low amplitude (hereafter de-
noted Sources 1, 2, and 3, respectively). Chosen positions of the three sources
are indicated by the three arrows in Fig. 3.2. Each current source was blurred
with a local spatial smoothing filter (see Section 3.2.8). Although the time
course of Source 1 appears physiologically unrealistic, it usefully illustrates
how non-smooth temporal profiles affect our estimation results.

The simulated MEG, for which sampling frequency was assumed to be
1 kHz, was generated by multiplying the simulated currents with the lead
field matrix and then adding white Gaussian noise. The lead field matrix was
based on the anatomical structure of the cortex extracted from a T1 image of
magnetic resonance imaging (MRI). The covariance matrix of Gaussian noise
was determined from real MEG data recorded without a subject and its scale
was adjusted to a signal-to-noise ratio (SNR)2 −5 dB, similar to that of single-
trial measurements of stimulus-evoked responses. In concordance with the
real data analysis in Section 3.3.5, the structure of this covariance was esti-
mated from rest period measurements, which contained only Gaussian noise
in this simulation.

The proposed method and VB successfully reconstructed all sources as

2The SNR is defined as 10 log10
∑M

m=1 ∑T
t=1 B̂2

m,t
MTβ−1 , where B̂m,t is the noise-free sensor measure-

ments on the m-th sensor at time point t.
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Figure 3.2: Spatiotemporal profiles of the true and estimated currents in simulation study
1. The left-most column illustrates the grand truth. The other columns (left to right) show
the estimates from the proposed method, VB, and RW, respectively. Upper: time courses of
the currents at the three active positions (Sources 1, 2 and 3 plotted in red, blue and green,
respectively). Lower: spatial maps of the currents at peak time points 75 ms, 200 ms, and 262
ms. The estimated currents are mapped onto an inflated cortical surface, and the currents
exceeding one tenth of the maximum amplitude are shown. c⃝ 2012 IEEE.

spatially focal, whereas RW reconstructed them as spatially diffuse (see Fig.
3.2). The waveform of Source 1 was best estimated by VB. In contrast, it was
slightly over-smoothed by the proposed method. Both methods reconstructed
Source 2 similarly. For Source 3, the proposed method generated better am-
plitude estimates than VB. The amplitudes of all activities estimated by RW
were suppressed, being below one tenth of the assumed amplitudes.

To statistically evaluate the performance of the three methods, we repeated
the above simulation 100 times for different positions of the three sources. We
also considered two SNR cases, 5 dB and −5 dB. The cross correlation and the
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reconstruction gain were used as performance measures. The cross correlation
is defined as the correlation between the time courses of the estimated and
true currents. The reconstruction gain is the ratio of the estimated amplitude
of the currents to the true one. Both measures were computed at the cortical
locations of the true sources. The results are summarized as boxplots in Fig.
3.3. For Source 1, the cross correlation was highest in VB but the proposed
method yielded the higher reconstruction gain. For Source 2, the estimates
from the proposed method and VB were very similar. For Source 3, both
cross correlation and reconstruction gain were closest to 1 for the proposed
method (detailed investigation reveals that the lead-field norm [71] of the
true source position, rather than the distance between sources, influences the
estimation accuracy). The cross correlation of RW was comparable to those of
the proposed method and VB, but RW yielded low reconstruction gains in all
three cases.

To further understand the results of the proposed method, we investigated
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Figure 3.3: Boxplot representation of cross correlation (upper) and reconstruction gain (lower)
of the currents estimated by the proposed method, VB, and RW at SNRs ±5 dB. c⃝ 2012 IEEE.
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the relationship between the estimated currents and the estimated dynamics
parameters (AR(1) parameter and system noise variance). These estimates,
resulting from the simulation data shown in Fig. 3.2, are presented in Fig.
3.4. The currents were non-zero at positions where either the AR(1) parame-
ter or the system noise variance was estimated as non-zero. When the SNR
was high (5 dB), the AR(1) parameter was estimated as non-zero only at the
three positions of the grand truth. When the SNR was low (−5 dB), negative
AR(1) parameter and large system noise variance were estimated at several
positions of false positive currents. In both SNR cases, temporally smooth
currents (Sources 2 and 3) assessed the AR(1) parameter as close to 1 and
produced low system noise variance. For the non-smooth current (Source 1),
the AR(1) parameter was lower than for the previous two cases, while the
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Figure 3.4: Estimated currents and dynamics parameters from the proposed method. Upper:
current intensity (shown as standard deviation). Center: AR(1) parameter. Lower: system
noise variance. Positions of Sources 1, 2, and, 3 are indicated by red, blue, and, green un-
filled triangles, respectively. The amplitude of the grand truth currents is indicated by filled
triangles. In this figure, the currents Z1:T before applying the local spatial filter are presented
rather than the smoothed currents J1:T to clearly show the correspondence of position indices
between the currents and the parameters. c⃝ 2012 IEEE.
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system noise variance was much higher. Although the estimated AR(1) pa-
rameter appears unexpectedly high, this result is reasonable because the low
frequency component in Source 1 generates some auto-correlation.

3.3.2 Simulation study 2: Estimation for correlated sources

To examine performance of the proposed method for correlated sources, we
changed the source configuration from simulation study 1 to a situation in
which two nearby sources (10–15 mm apart) have an identical waveform (that
of Source 2 in simulation study 1). This simulation was repeated 100 times
for different positions of the paired sources.

The proposed method successfully reconstructed the correlated sources
for most of the simulations when the SNR was 5 dB. The reconstruction gain
averaged over the two true sources was almost 1 for 77 times. In these cases,
the false positive sources were not observed around the peak time point (one
tenth of the maximum amplitude was used as a threshold). Even at the low
SNR (−5 dB), the reconstruction gain was almost 1 for over half (56 times) of
the simulations, while the false positives were appeared in 15 out of 56 times.

3.3.3 Simulation study 3: Validation of parameter estimation

We conducted a further set of simulation experiments to check whether the
dynamics parameters can be estimated correctly by variational Bayesian infer-
ence. To assess the accuracy of the parameter estimation, we generated time
courses of the grand truth currents directly from our temporal model shown
in Eq. (3.1). Three active sources were assumed, with AR(1) parameter values
an of 1) 0.7, 2) 0.8, and 3) 0.9, and system noise variance σn of 70 (nA · m)2

for all cases. For the other non-active sources, AR(1) parameters and system
noise variances were both set to 0. Apart from the waveform of the simu-
lated currents and the SNRs, the simulation setting was that of the repeated
experiments of simulation study 1.

As shown in Fig. 3.5, the dynamics parameters were estimated correctly
even under the variational Bayesian approximation when the SNR was ±5 dB.
At a SNR of −15 dB, far below that of single-trial measurements, the AR(1)
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parameter was underestimated and the system noise variance was overesti-
mated several times. In addition, the estimated parameters were close to 0 in
some cases, as a result of mislocalization of the active sources. Nevertheless,
the median of the parameters remained close to the true values.

3.3.4 Simulation study 4: Effects of hyperparameters

Next, we conducted more realistic simulation experiments to assess the im-
portance of appropriate hyperparameter values. Two active current sources in
the left and right temporal lobes were assumed, mimicking auditory evoked
responses (see the blue and red arrows of the leftmost column in Fig. 3.6).
MEG measurements were generated as for simulation study 1, but replac-
ing white Gaussian observation noise with more realistic background noise.
The background noise was derived from 300 ms pre-stimulus periods of trial-
averaged data from the real auditory experiment described in Section 3.3.5
(SNR was around 7 dB). Since such real background brain activities are nei-
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Figure 3.6: Spatiotemporal profiles of the true and estimated currents in simulation study
4. The left-most column illustrates the grand truth. The other columns (left to right) show
the estimates from the proposed method for both η0 and γ0 equaling 102, 100, and 10−3,
respectively. Upper: time courses of the currents over the whole cortex. Lower: spatial maps
of the currents at peak time points 100 ms and 120 ms (white arrows indicate false positives).
The mapping threshold is that used in Fig. 3.2. c⃝ 2012 IEEE.

ther Gaussian nor white, these components could not be properly modeled in
our method. Therefore, the hyperparameters η0 and γ0 were carefully chosen
to minimize the effect of modeling errors on the simulation results.

Fig. 3.6 illustrates the estimates from the simulated measurements. With
the hyperparameters set to η0 = γ0 = 102, the two current activities were
correctly extracted and the others were suppressed. When η0 and γ0 were
reduced, i.e., the prior distributions of the parameters were closer to non-
informative ones, parameter estimation became more sensitive to disturbance.
In this case (both η0 and γ0 set to 100 or 10−3), the estimated current activ-
ities appeared not only at the positions of the grand truth but also at other
positions.

To determine the appropriate range of the hyperparameter values, we re-
peated the estimation by varying η0 and γ0 from 10−3 to 106 (10 degrees). Fig.
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3.7(a) shows an interpolated contour map of the sum of squared error (SSE)
between the true and estimated currents. Fig. 3.7(b) presents the results of
receiver operating characteristic (ROC) analysis [77]. In this map, the hyper-
parameter settings for which the area under the ROC curve (AUC3), averaged
over 90–130 ms, equals 1, are delineated by dark and light gray regions. The
dark gray region is regarded as the ”correct” source reconstruction case, in
which the current activities are obtained only at the two true positions, us-
ing one tenth of the maximum amplitude as a threshold. The best case of
the estimates in Fig. 3.6 is indicated by a small circle, and the other cases,
yielding false positives, are indicated by a small triangle and a small square.
The SSE and AUC maps also show that large hyperparameter values result
in incorrect source reconstruction. As shown in Fig. 3.7(b), correct estimates
were obtained for a relatively wide range of γ0 when η0 was 102 or 103. On
the other hand, setting γ0 to 102 enabled a large range of η0 to be successfully
used. Thus, appropriate ranges for the hyperparameters, at least in the tested
simulation setting, are η0 = 102–103 and γ0 ∼ 102.
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3A potential bias caused by discrepancy between the active and inactive sources is not
corrected in this chapter.
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3.3.5 Real data analysis: Auditory evoked response

Finally, we examined whether the above-specified hyperparameter values pro-
vide a physiologically plausible result in a real data analysis. We applied
the proposed method to the auditory evoked fields from one right-handed
healthy subject (a 27-year-old male). A signed informed consent approved
by the ATR Human Subject Review Committee was obtained prior to exper-
iment. Measurement data were acquired from a 400 channel MEG system
(MEGvision PQ1400RM, Yokogawa Electric Co.) with a sampling frequency
of 1 kHz. The cortical surface model was constructed from a segmented gray
matter image of T1-weighted MRI collected by a 3 T scanner (MAGNETOM
Trio, A Tim System 3T, Siemens).

An 800 Hz tone burst of duration 500 ms was presented to the left ear of
the subject via an eartip attach to 20 feet (6.096 m) of silicone tubing (ER-30,
Etymotic Research, Inc.). To keep the subject awake, we asked him to press a
button 2–3 s after each stimulus. The trial-averaged data in the time window
0 ms to 300 ms with respect to the stimulus onset were used to estimate the
currents (time delays of sounds in a silicone tube are not taken into account).
The noise covariance matrix was determined in advance from non-averaged
rest period data in a 100 ms pre-stimulus window.

The following preprocessing operations were applied: baseline correction,
high-pass filtering (cutoff 0.5 Hz), low-pass filtering (cutoff 200 Hz), trial seg-
mentation, and trial rejection. Artifactual trials, determined from the ampli-
tudes of MEG and electrooculogram (EOG) and from subject behavior (button
press), were rejected. As a result, 112 out of 128 trials were accepted for fur-
ther analysis.

Preprocessed trial-averaged MEG data, showing typical time courses and
scalp maps of the auditory evoked fields, are displayed in Fig. 3.8(a). Fig.
3.8(b) presents the estimated currents for η0 = γ0 = 102. Focal current ac-
tivities were estimated at the contra-lateral and ipsilateral primary auditory
cortices (cA1 and iA1, respectively), consistent with previous findings from
a cat electrophysiological study [48], a human intracranial study [32], and a
human MEG study [39]. The estimated time courses show that the latency
and amplitude of cA1 activities are shorter and larger respectively, than those
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from iA1. These results are also consistent with previous physiological find-
ings [29, 66]. When η0 was increased to 103, the number of active positions
slightly decreased while the current time courses at cA1 and iA1 did not ef-
fectively change.

Similar results were obtained from VB using the same hyperparameter
values, but some differences were observed: the amplitude and temporal
smoothness of the currents were lower than those of the proposed method,
and the active brain region was more limited. RW generated spatially diffuse
currents with the lowest amplitudes as shown in Section 3.3.1.
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3.4. Discussion

We have developed a state-space model-based source reconstruction method
that achieves current source reconstruction to high spatial resolution (i.e., re-
construction of focal current source patterns). To our knowledge, the method
is the first to reconstruct spatially focal current sources utilizing temporal
constraints from the state-space model. The key to our method is to assume
different temporal evolution for each current source and to estimate all pa-
rameters in the state equation from data. The joint estimation of both the
current sources and the model parameters is based on the Bayesian frame-
work. We overcome difficulties presented by the high dimensionality of the
problem by 1) introducing prior distributions for the parameters, which re-
duces the sensitivity of the parameter estimation to data, especially when
discrepancies exist between the model assumptions and the data generation
process, and 2) employing variational Bayesian inference, which reduces the
computational cost of the estimation algorithm.

The proposed method is a dynamic extension of the hierarchical varia-
tional Bayesian method (VB) [71, 88]. Its advantage over VB is high recon-
struction gain, especially for low-amplitude currents (see Fig. 3.3). This indi-
cates that, by introducing temporal constraints, considerable improvement is
achieved over a simple smoothing operation such as low-pass filtering. The
enhanced reconstruction gain of our method demonstrates that the amplitude
of current source underestimated by VB can be compensated by the effective
use of the current sources at adjacent time points, owing to the estimated tem-
poral dynamics. Indeed, VB, along with FOCUSS [34] and empirical Bayesian
methods [25, 53] is a special form of covariance component estimation meth-
ods [82]. Unlike the proposed method, none of these established methods
incorporate temporal constraints. Introducing state-space modeling into FO-
CUSS and empirical Bayesian methods might enhance their performance in
reconstructing weak sources, as for VB.

A key factor in reconstructing focal activities is estimating the temporal
dynamics of each source individually, and this is not apparent from the form
of our probabilistic model unlike the explicit constraint term of the l1 or l0
norm-regularization methods [55,81,85]. To understand how our method can
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reconstruct focal activities, we must consider the prior distribution for any
single current source, given by N (Jn,t| an Jn,t−1, σn), and the update rules of
an and qn (see Eqs. (A.11) and (A.14) in Appendix A.1, respectively). The
prior distribution ensures that when the AR(1) parameter an and the system
noise variance σn are close to 0, the currents are softly constrained to 0. For
such near-zero currents, the update rules dictate that an and σn (which is
proportional to q−1

n ) are close to 0 also (σn is not exactly zero when γ0 ̸= 0).
These two mechanisms provide positive feedback effects on promoting the
most of Jn,1:T, an, and σn estimated to be near 0, resulting in spatially focal
activities (see Fig. 3.4). We have confirmed that this property also holds under
initialization with non-focal estimates such as MN. In contrast to the proposed
method, homogeneous random walk (RW) dynamics imposes no zero-value
constraints on any of the current sources, since all sources fluctuate around
their past values in a spatially uniform manner.

There are another type of focal source reconstruction methods in the sub-
space approach, such as MUSIC [56] and FINES [20, 86]. As reported in
[20], these methods have difficulty in reconstructing perfectly correlated and
closely located sources; however, simulation study 2 shows that these sources
can be reconstructed by the proposed method. This is a possible advantage of
our method over MUSIC and FINES, in addition to a desirable property that
the number of active sources does not need to be estimated beforehand.

Variational Bayesian inference [1, 70] has enabled the computationally de-
manding inference of the high-dimensional state-space model with little detri-
ment to accuracy. A main drawback of our estimation algorithm appears to
be the decrease in parameter estimation accuracy due to the independence
assumption on the approximate posterior distribution of the current sources
Q(J1:T) = Q(J1) · · · Q(JT). This presents the major difference between our al-
gorithm and the variational Kalman smoother (VKS) algorithm [5, 11]. How-
ever, as shown in simulation study 3, parameter estimation of our method
was reasonably accurate for the modest SNR case (±5 dB) (see Fig. 3.5). In
fact, we also observed little difference in accuracy between our algorithm and
the VKS algorithm in a small-size simulation. The estimation accuracy of
the dynamics would come from the fact that temporal dependency between
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current Jt is propagated through the means of the posterior distributions at
neighboring time samples Jt−1 and Jt+1 in our algorithm (see Eqs. (A.2)–(A.4)
in Appendix A.1).

To reduce the sensitivity of the parameter estimation to unmodeled com-
ponents, in particular for real data analysis, appropriate values of the hy-
perparameters are required. An example of such unmodeled components
for our method is background brain activity, which cannot be modeled by
white Gaussian observation noise. With no informative prior distributions,
our source reconstruction could be affected by these factors. We searched the
appropriate ranges of the hyperparameters in simulation study 4, in which
the background activities of the real experiment were used, and confirmed
that those hyperparameter settings derived physiologically reasonable results
from real MEG data of the auditory evoked fields (see Fig. 3.8(b)). In fact,
by applying the same hyperparameters to somatosensory evoked fields, we
have also reconstructed plausible current sources that were consistent with
literature results (data not shown).

Recently, both spatially focal and temporally smooth current source recon-
struction has been achieved in [62] and [7], via group-wise l1 regularization
and temporal basis functions. Although such methods might yield similar
results to ours, the state-space modeling approach can model spatiotemporal
properties of the current sources, and is thus more flexible in constraining
inverse solutions.

The temporal dynamics assumed in this study might appear to be over-
simplified; however, our model substantially advances those of previous state-
space methods. The model could be further extended by using a matrix form
of the AR(1) parameter to account for source-space effective connectivity. This
extension would be much more demanding because the number of parame-
ters increases with square order of the state dimension. The large degrees of
freedom could be reduced by incorporating structural connections as prior
knowledge. This possibility is pursued in the next chapter.



Chapter 4

Reconstruction of Sources with
Identifying Long-Range
Interactions

4.1. Introduction

In this chapter1, we extend previous state-space methods to allow long-range
interactions to be directly estimated in the source space. To achieve this goal,
the full MAR model is implemented in the high-dimensional source space.
The structure of the MAR model is informed by whole-brain structural net-
works inferred from diffusion MRI (dMRI). More specifically, the MAR co-
efficients (entries of the MAR matrix) associated with pairs of structurally
connected sources according to dMRI, are estimated from the data, while the
others are fixed at zero. The time lags of the MAR model are determined
from the mean fiber lengths between pairs of source locations.

The use of structural long-range connectivity to constrain the source dy-
namics is supported by previous findings; the whole-brain structural connec-
tivity patterns determined by dMRI are closely related to the resting-state
functional connectivity networks imaged by fMRI [19, 45]. The relationship

1A part of the work in Chapter 4 has been submitted to NeuroImage on November 29,
2013 (current status on March 13, 2014: under revision). A preliminary study on this chapter
was presented in a conference proceeding [28].

49
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between structure and dynamics of the brain has been assumed in forward
modeling of neuronal dynamics [18, 31, 46] and in estimating the effective
connectivity from fMRI data [76,84]. The a priori knowledge of structural con-
nectivity also enables a feasible estimation by reducing the prohibitively large
number of model parameters (of order 1000 × 1000 in our scenario).

To further improve the reliability of source reconstruction, we apply an
fMRI prior on the spatial patterns of source activity. While the fMRI prior
is used as a spatial constraint frequently in non-dynamic (or not temporally
constrained) reconstruction methods [8, 12, 42, 63, 71], it has yet to be applied
in the above-mentioned dynamic (or state-space) methods. The fMRI prior in
the proposed method is implemented similarly to our previous non-dynamic
method [71,88]. In forming this prior, the variance of the system noise (an in-
put term driving the spatiotemporal dynamics of the MAR model) is weighted
by the fMRI t-values. If all MAR coefficients are fixed at zero, this prior be-
comes identical to the fMRI prior proposed in [71, 88].

The present study unifies the MAR model, prior knowledge on the model
parameters, and the measurement process of the current sources into a Bayesian
framework. To improve stability of the estimated source dynamics, this frame-
work also includes a sparse prior on the MAR coefficients. All hidden pa-
rameters in the unified probabilistic model (such as source amplitudes and
the MAR coefficients) are jointly estimated by a variational Bayesian algo-
rithm [1, 70] (see Chapter 2). The update rules are similar to those proposed
in Chapter 3, enabling inference of a high-dimensional dynamic model within
a reasonable computation time.

Our method estimates the effective connectivity in the source space with-
out requiring the selection of regions of interest (ROIs). To this end, the source
dynamics are formulated using the full MAR model, and the source ampli-
tudes and interactions are estimated simultaneously over the whole brain.
These extensions allow exploratory analysis of the integration of brain func-
tions, which complements the confirmatory approach of dynamic causal mod-
eling (DCM; [16,26]). In contrast to our method, DCM initially assigns a small
number of ROIs as network nodes, and then examines the validity of the net-
work solutions by post hoc comparison of the model evidence.
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The proposed method is quantitatively and qualitatively evaluated on sim-
ulation and experimental data, respectively. The results are compared with
those obtained from the non-dynamic equivalent. First, we examine the iden-
tification accuracy of the MAR model, using data generated from the adopted
dynamic source model. We then investigate the estimation performance un-
der more realistic conditions by mimicking stimulus-evoked responses by a
network of neural mass models [14, 15, 49]. Finally, we examine the phys-
iological plausibility of the estimates by application to a publicly available
experimental dataset on face perception [43].

This chapter is organized as follows. Section 4.2 explains the model for-
mulation and the adopted estimation algorithm. Model construction from the
data and schemes for evaluating the estimation performance are described in
Section 4.3. Sections 4.4 and 4.5 present the settings and results of the evalu-
ation studies. Section 4.6 highlights the significance of the present study, and
discusses the advantages and limitations of the proposed method.

4.2. Theory

4.2.1 Dynamic source model

The spatiotemporal dynamics of the current sources is directly formulated
in the source space by a full MAR model, in which the MAR coefficients
represent the source interactions across the whole brain. The MAR coefficients
to be estimated, and the time lags between pairs of sources, are based on
structural brain connectivity inferred from dMRI.

We begin by modeling the dynamics of a single source Jn,t, which linearly
interacts with its structurally connected sources as follows:

Jn,t = ∑
k∈Cn

(
an,k Jk, t−δn,k

)
+ ωn,t, (4.1)

where Cn is an index set of source locations that are structurally connected to
the n-th source (including self-connection), an,k and δn,k are the MAR coeffi-
cient and time lag, respectively, for interconnection between the n, k-th source
pair, and ωn,t is the system noise of the n-th source. The MAR coefficient an,k
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quantifies the effective connectivity from the k-th source to the n-th source.
The time lag is determined by the length of the structural connection ln,k, the
axonal conduction velocity v, and the local delay constant τ, as follows:

δn,k =
ln,k

v
+ τ. (4.2)

Ways of determining the structural connections and the delay parameters are
explained in Section 4.3.

The dynamic source model (Eq. (4.1)) of all current sources over the whole
brain can be written in a single equation:

Jt =
L

∑
l=1

(
Al Jt−∆l

)
+ωt, (4.3)

where ∆1:L contains all time lags in Eq. (4.1) for all n in ascending order.
Since a single MAR coefficient is assigned to a pair of structurally connected
sources with a specific time lag, only one of Al for l ∈ {1 : L} is non-zero in
each given matrix entry. For simplicity, the MAR matrix A is constructed by
allocating all the non-zero entries of A1:L to an N-dimensional zero matrix.
The matrix A can also be represented by

A =
L

∑
l=1

Al, (4.4)

where any original values of the MAR coefficients are not superimposed. The
system noise for all current sources is denoted by ωt and is assumed to follow
a Gaussian distribution N (ωt | 0, (β diag(q))−1). Here the parameter q in
the variance term is multiplied by β for technical convenience during the
application of the variational Bayesian algorithm [59,71,88]. The above model
of source dynamics and system noise is equivalent to imposing the following
prior distribution on the current sources:

P(Jt | Jt−∆1
, . . . , Jt−∆L

, β, A, q)

= N
(

Jt

∣∣∣ L

∑
l=1

(
AlJt−∆l

)
, (β diag(q))−1

)
. (4.5)
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The system noise ωt in Eq. (4.3) can be regarded as an input to the dynamic
source model. Thus, regions with higher system noise yield higher source
amplitude, although activity depends not only on the input term but also on
the source activity predicted by the dynamic model. Therefore, the variance
of the system noise can be used to specify the spatial prior from fMRI data.
In our method, the fMRI prior is constructed by assigning higher-magnitude
input terms (i.e., higher system noise variance) to regions of higher t-value.
This is achieved by basing the prior distribution of q on the magnitude of
fMRI t-values (as described in the next subsection).

4.2.2 Prior distributions on model parameters

The unknown parameters estimated from the data in the observation and
dynamic source models (Eqs. (2.4) and (4.5), respectively) are β, A, and q. For
these parameters, the following prior distributions are assumed. The prior
distribution of the scaling parameter β is a non-informative Jeffreys prior:

P(β) ∝ β−1. (4.6)

For the MAR matrix A, the following Gaussian prior distribution is imposed
on the MAR coefficients in an element-wise manner:

P(A |η1:N) =
N

∏
n=1

P(an |ηn) =
N

∏
n=1

N
(

an | 0, diag(ηn)
−1
)

=
N

∏
n=1

Kn

∏
k=1

N
(

an,k | 0, η−1
n,k

)
, (4.7)

where an is a column vector containing all non-zero entries of the n-th row of
A in ascending order, and Kn is the number of sources structurally connected
to the n-th source. In addition, we impose the Gamma prior distribution
on the inverse variance ηn,k in Eq. (4.7), and thereby apply the ARD sparse
prior [58] to the MAR coefficients:

P(η1:N) =
N

∏
n=1

P(ηn) =
N

∏
n=1

Kn

∏
k=1

P(ηn,k)

=
N

∏
n=1

Kn

∏
k=1

G(ηn,k | η0, g0), (4.8)
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where η0 is the mean and g0 is the shape parameter of the Gamma prior dis-
tribution (common to all entries of η1:N). The ARD sparse prior, comprising
Eqs. (4.7) and (4.8), effectively prunes the coefficients associated with very
small source amplitudes, ensuring that solutions are robust toward noise and
modeling errors. Finally, we set the prior distribution of the parameter q as

P(q) =
N

∏
n=1

P(qn) =
N

∏
n=1

G(qn | ν̄−1
n , γ0), (4.9)

where ν̄n is the prior mean of the system noise variance (scaled by β), and γ0

quantifies the reliability of this prior. To incorporate the fMRI prior into Eq.
(4.9), ν̄n is weighted by the fMRI t-value wn, normalized from zero to one:

ν̄n = ν0 + (m0 − 1) ν0 · w2
n. (4.10)

In Eq. (4.10), ν0 denotes the variance of the source amplitude averaged over
the whole brain during a pre-stimulus period, obtained by Bayesian mini-
mum norm estimation [88], and m0 (>1) specifies the relative difference of
variance intensity, ranked from the lowest (or statistically thresholded) to the
highest t-value region. In this weighting scheme, regions of higher t-value re-
ceive larger task-related input activity; up to m0 times larger than the changes
associated with averaged resting activity.

4.2.3 Joint probability distribution

The likelihood function and all prior distributions (Eqs. (2.4) and (4.5)–(4.9))
constitute the joint probability distribution:

P(B1:T, J1:T, β, A,η1:N, q)

=
T

∏
t=1

{
P(Bt | Jt, β) P(Jt | Jt−∆1

, . . . , Jt−∆L
, β, A, q)

}
× P(β) P(A |η1:N) P(η1:N) P(q), (4.11)

The following analyses (other than that of the simulated MAR time series)
assume that the analyzed data are trial-averaged evoked responses and that
the time samples −∆L ≤ t ≤ 0 (∆L ≈ 70 ms) constitute part of the rest
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period. Therefore, the current sources Jt (where t ≤ 0), are set to zero. By
slightly modifying the dynamic source model, Jt (t ≤ 0) could be set as model
parameters estimated from the data.

4.2.4 Estimation algorithm

All of the unknown variables in Eq. (4.11) are simultaneously estimated
by calculating their approximate posterior distributions using the variational
Bayesian algorithm. This estimation scheme enables an exploratory analysis
of the effective connectivity across the whole brain. The pseudocode of the
estimation algorithm is given below:

1. Initialize the values required for updating Q(A), and the hyperparame-
ters η0, g0, m0, and γ0 in Eqs. (4.8)–(4.10).

2. A-step: Update Q(A).

3. η-step: Update Q(η1:N).

4. q-step: Update Q(q).

5. J-step: Update Q(J1), . . . , Q(JT) in this order.

6. β-step: Update Q(β), and compute the free energy.

7. If the maximization of the free energy converges, then exit; otherwise,
return to the A-step.

Each update rule for computing the approximate posterior distribution is de-
rived from Eq. (2.14) by substituting a variable of interest for x (the specific
forms of the update equations are presented in Appendix B.1).

In practice, the algorithm was terminated after 100 iterations, when the
relative change in free energy was typically of order 10−5 or 10−6. The com-
putation time ranged from approximately 12 to 48 hours (running on a multi-
core PC: 8 cores, 3.60 GHz CPU, and 96 GB RAM), depending on the number
of structural connections in the individual brain.
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4.2.5 Initial values and hyperparameters

At the first update of the approximate posterior distribution Q(A) in the A-
step, initialization of the remaining approximate posterior distributions is nec-
essary. In particular, the means of all these distributions and the noise covari-
ance matrices of Q(J1), . . . , Q(JT) must be specified beforehand. The initial
mean for all the elements of Q(η1:N) is set to their prior mean η0. The rest
of the required initial values is determined from the non-dynamic solutions
obtained by the hierarchical variational Bayesian method [71, 88], where the
probabilistic model in [88] is identical to the model in the proposed dynamic
method if all entries of A are fixed to zero.

In addition, the hyperparameters η0, g0, m0, and γ0 that control the prior
distributions of η1:N and q must be pre-specified. The default values used in
the simulations are listed below.

• The hyperparameter η0, also used as the initial values for η1:N, sup-
presses instabilities in the estimated dynamics. If η0 is very small, the
MAR coefficients can amplify, which consequently lead to divergence of
the source amplitude. On the other hand, if η0 is extremely large, all
estimated MAR coefficients are close to zero. Thus, we set the default
η0 to a moderate value (such as 100).

• The hyperparameter m0 in the fMRI spatial prior regulates the maxi-
mum strength of the system noise variance relative to the baseline. We
set the default m0 to 100, a value recommended by [88] in the non-
dynamic counterpart to the proposed method.

• In Section 4.4, the hyperparameters g0 and γ0 were set by one of two
strategies. When the data were generated from the MAR model iden-
tical to the adopted dynamic source model, both g0 and γ0 were set to
zero, yielding non-informative priors. When discrepancies were found
between our model formulation and the data generation process, g0 and
γ0 were set to 100 to realize informative priors. Such priors enhance the
robustness of the estimates to modeling errors (see Chapter 3).

The optimal hyperparameter values in the event of modeling errors were
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searched by replacing the values specified above (all 100) in Section 4.4, and
these values were applied in Section 4.5.

4.3. Methods

This section briefly introduces the analyzed dataset, and presents the data
processing procedures from which the constituents of the model are derived,
namely, the structural connections, the time lags, and the lead field matrix.
We then explain how the estimation performance is evaluated in simulations.
Finally we describe the procedure to estimate the source amplitudes and in-
teractions, used in the non-dynamic counterpart to the proposed method.

4.3.1 Dataset

Simulation and real data analyses were conducted on a publicly available ex-
perimental dataset2 (the data acquisition and task conditions are detailed in
[43]). The dataset contains the structural images (T1- and diffusion-weighted
MRI) and functional data (MEG and fMRI data collected during face percep-
tion) required for our method. Within this dataset, the entire set of MRI,
dMRI, MEG, and fMRI data were archived for 11 out of 16 subjects (Sub01–
Sub06, Sub09, Sub12–15); these data were used in the real data analysis. The
incomplete data of the remaining six subjects were not used; dMRI data are
absent for Sub07, Sub08, Sub10, Sub11, and Sub16. Simulation data were gen-
erated from the brain data of a single subject (Sub12). In the following, the
ten original subject codes (in ascending order) are renamed Subject I-Subject
XI.

2The dataset can be downloaded from ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.

henson/wakemandg hensonrn/. We would like to thank Daniel Wakeman and Dr. Richard
Henson for providing the data.

ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
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4.3.2 Diffusion MRI analysis

Data processing

The structural connections and time lags for the dynamic source model were
inferred from fiber tracking with structural and diffusion MRI data (T1 weighted
and diffusion weighted images). All MRI data (including fMRI) were acquired
on a 3T Trio (Siemens, Erlangen, Germany). The spatial resolutions of the T1-
weighted and the diffusion weighted images were 1 mm and 2 mm isotropic,
respectively. During dMRI acquisition, the number of gradient directions was
64 and the b-value was 1000 s/mm2. To pre-process the dMRI data, subject
motion during the image acquisition was corrected by FSL3; the consequent
bias on the gradient directions was compensated afterwards by rotating the
b-vector. The fractional anisotropy image was then calculated from the cor-
rected images and was used for registering the diffusion-space to the T1-space
by the non-linear registration tool (FNIRT) in FSL.

The seed and target ROIs used for fiber tracking were obtained by par-
cellating the cortical surfaces extracted by FreeSurfer4. In the cortical par-
cellation, 2000 vertices were first specified by applying the Matlab function
reducepatch to the high resolution white/gray matter boundary surfaces pro-
vided by FreeSurfer. All of the highly-resolved surface vertices were then clus-
tered into 2000 parcels in a nearest-neighbor manner. The vertices in subcor-
tical regions were discarded, and the remaining parcels (numbering around
1840) constituted the final ROIs used for fiber tracking. These surface ROIs
were converted to volume ROIs, and then transformed to the diffusion-space.

Fibers were tracked using MRtrix5. The local model of fiber orientations
was the fiber orientation distribution (FOD), reconstructed at each voxel by
constrained spherical deconvolution [79] with six-dimensional spherical har-
monics for the response function. Based on the reconstructed FOD, fibers
were probabilistically tracked with a step length of 0.2 mm within a mask of
white matter volume. The fiber tracks were generated 105 times from each
ROI and unidirectionally stepped until they entered another ROI or until the

3http://www.fmrib.ox.ac.uk/fsl
4http://surfer.nmr.mgh.harvard.edu/
5http://www.nitrc.org/projects/mrtrix/

http://www.fmrib.ox.ac.uk/fsl
http://surfer.nmr.mgh.harvard.edu/
http://www.nitrc.org/projects/mrtrix/
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total fiber length reached 300 mm. The fibers were also terminated at voxels
of FOD amplitude less than 0.1. The minimum fiber length and radius of
curvature were set to 10 mm and 1 mm, respectively.

Structural connections

The structural connectivity was quantified by the fiber counts. The strength of
the connectivity was computed as the number of fibers within each ROI pair
ft divided by the total number of fibers generated from its seed ROI fs with
voxel size normalization; that is, ( ft/vt) / ( fs/vs), where vt and vs are the
number of voxels in the target and the seed ROI, respectively. Since structural
connectivity conveys no directional information, the connectivity strengths
were symmetrized by assigning the higher strength to both directions.

To determine the structurally connected ROI pairs, the structural connec-
tivity strengths were binarized. The binarized connections were used for spec-
ifying pairs of structurally connected sources (and hence for determining the
MAR coefficients to be estimated from the data), since we placed a single cur-
rent source at each ROI when computing the lead field matrix (as explained
later in this section). The binarization threshold was set as low as possible
(in our case, 10−4). While a lower threshold prolongs the computation time,
it reduces the risk of missing true structural connections. Indeed, a lower
threshold is important for estimating the source interactions in our method.
The false negative structural connections set the MAR coefficients to zero,
even when the corresponding pair of sources is effectively connected. On the
other hand, MAR coefficients with false positive structural connections are
not necessarily increased; the sparse prior on the MAR matrix can make these
coefficients go to zero. After the thresholding, between 5–9% of all ROI pairs
were labeled as structurally connected (the precise percentage depended on
the individual subject).

Time lags

The time lags in the MAR model were computed from the inter-ROI fiber
length, the conduction velocity, and the local delay constant (see Eq. (4.2)).
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• The fiber length was obtained by first summing the tracking steps of
each fiber track. The lengths of fibers included in each pair of ROIs
were then averaged. The mean fiber lengths were finally symmetrized
by weighted averaging of both directional fiber lengths by their (pre-
symmetrized) connectivity strengths.

• The conduction velocity was set to 6 m/s, as assumed for myelinated
axons in a previous simulation study [31].

• The local delay constant was defined as the time between an input sig-
nal and peak population-level neuronal activity evoked by this input. It
was set to 27 ms, estimated from the peak to peak time difference be-
tween the source activities reconstructed in the primary and secondary
visual areas (about 30 ms; [68]). Here we accounted for the time de-
lay introduced by propagation of the source activity along the structural
connection. This delay was estimated at about 3 ms, based on the dis-
tance between the primary and secondary visual areas and the above
velocity setting.

The time lags in the self-connections (the diagonal entries in the MAR matrix)
were set to the local delay constant. The impact of conduction velocity and lo-
cal delay constant on the estimation performance was investigated in Section
4.4.

4.3.3 Lead field matrix

To calculate the lead field for each MEG sensor location, current dipoles of
unit strength were successively placed at all cortical vertex positions specified
in the ROI generation, and the MEG forward solution was computed. The
sensor positions were matched to the positions of 102 magnetometers in a
VectorView system (Elekta Neuromag, Helsinki, Finland), and were linearly
registered to the T1-space using the fiducials and head points provided in
the real dataset. The dipole was oriented perpendicular to the white/gray
matter boundary surface. The forward solution was computed by a boundary
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element method (BEM) using a single-shell head model, based on the inner
skull surface obtained from FreeSurfer.

The lead field matrix was locally smoothed by a Gaussian smoothing fil-
ter with 8 mm full width at half maximum (FWHM), equivalent to assum-
ing a spatial smoothness prior on the current sources [88]. The smoothing
relationship is given by Jt = WZt, where Jt and Zt are the smoothed and
the unsmoothed current sources, respectively, and W is the spatial smooth-
ing matrix. Substituting this equation into Eq. (2.1), the actual observation
model is obtained as Bt = ĜZt + εt, where Ĝ = GW is a smoothed lead
field matrix. Using this smoothness prior, we estimated the MAR matrix A
for Z1:T rather than J1:T. To clearly demonstrate the correspondence between
the source dynamics and the MAR coefficients, all results presented in the
following sections are based on the unsmoothed sources Z1:T, unlike Chapter
3.

4.3.4 Performance evaluation

The estimation performance in simulations was quantified by two threshold-
free evaluation scores; the area under the ROC curve (AUC) and the normal-
ized root mean square (RMS) error.

The AUC measures the detection accuracy [35]. The AUC scores for the
current sources and the MAR matrix were calculated from the RMS of the
estimated source amplitudes and the estimated absolute MAR coefficients,
respectively. Prior to calculating the AUC, both quantities were normalized
by their maximum values over all sources and connections. By comparing
the normalized estimates to the ground truth, we computed the true positive
(TP), true negative (TN), false positive (FP) and false negative (FN) rates for
thresholds ranging from zero to one. We then calculated the sensitivity and
specificity for each threshold, defined as

sensitivity =
TP

TP + FN
and specificity =

TN
TN + FP

. (4.12)

A plot of sensitivity versus (1−specificity) yields the ROC curve. The AUC
was determined by the trapezoidal rule (the potential bias on AUC intro-
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duced by the discrepancy between the numbers of actives and inactives was
corrected as described in Appendix B.2).

The normalized root mean square error (nRMSE) quantifies the differences
between the estimates and the ground truth. The nRMSE scores of the current
sources (or the MAR matrix if the ground truth existed) were computed as the
RMS error between the simulated and estimated source amplitudes over all
sources and time instances (or MAR coefficients over all connections), divided
by the RMS of the simulated ones.

When reconstructing the simulated MAR time series, we evaluated the es-
timation accuracy by AUC, nRMSE, and two additional evaluation measures
that provide an intuitive understanding (see Simulation 1 in Section 4.4). One
additional measure is the reconstruction gain, defined as the ratio of the time-
averaged estimated source amplitude to the true source amplitude. The other
is the non-normalized RMSE of the MAR coefficients.

We also applied thresholds on the estimated sources and MAR coefficients
when mapping the results onto the cortical surfaces and when distinguish-
ing between active and inactive sources and connections. In particular, these
thresholds were used for qualitative evaluation of the estimation performance
when the method is applied to experimental data. Other than when calcu-
lating AUC, a source was considered active if its magnitude once exceeded
one-tenth of the maximum over all sources. A connection was regarded as
effectively connected if its absolute MAR coefficients exceeded 0.1. Although
these thresholds were determined in an ad-hoc manner, small differences in
the thresholds did not alter the relative characteristics of the estimates when
comparing the proposed dynamic method with its non-dynamic counterpart
(the non-dynamic method is described below).

4.3.5 Method comparison

To demonstrate advantages of dynamic modeling and simultaneous estima-
tion, the estimates obtained by our method were compared with those of its
non-dynamic equivalent, in which every pair of sources are assumed non-
interacting during source reconstruction. In the non-dynamic method, the
current sources were initially reconstructed with all MAR matrix entries set
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to zero. This is equivalent to reconstructing the current sources by the hier-
archical variational Bayesian method described in [88]. The MAR coefficients
were then separately estimated from the reconstructed current sources. These
coefficients were computed only for structurally connected pairs of sources;
the coefficients of unconnected pairs were set to zero. The MAR coefficients
were estimated from the algorithm used in the proposed dynamic method,
with modification of omitting the J- and β-steps.

In Appendix B.4, we compared with the non-dynamic method whose es-
timates were obtained from a conventional approach. Here the MAR coeffi-
cients were not computed from sources over the whole brain but only from
active sources. This procedure of estimating dynamic parameters only from
pre-specified regions is similar to the estimation steps of DCM [16, 26]. As in
comparison with the non-dynamic method in Sections 4.4 and 4.5, the MAR
coefficients were separately estimated from the reconstructed sources. These
coefficients were also computed for structurally connected pairs but only from
active sources, i.e., the coefficients of unconnected pairs and pairs including
any inactive sources were set to zero. These were estimated from the algo-
rithm used in the dynamic method, with the following modifications: the J-
and β-steps were omitted and a step for extracting the active sources was
added. By the method comparison in Appendix B.4, we investigated advan-
tages of the proposed dynamic method, including those coming from whole-
brain estimation of the effective connectivity.

GoF analysis

When comparing the estimates obtained from real data, we used a goodness
of fit (GoF) measure:

GoF = 100

{
1 − ∑M

m=1 ∑T
t=1(Bm,t − (GJ̄t)m,t)2

∑M
m=1 ∑T

t=1 B2
m,t

}
. (4.13)

to quantify the accuracy of reconstructed sources J̄1:T and estimated dynam-
ics. GoF increases when the error between observed and reconstructed mea-
surements decreases. Although a high GoF score does not always grantee
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high quality of source reconstruction in an underdetermined setting (M < N),
a high value of GoF is a necessary condition of a good inverse solution.

In addition to simply calculating GoF, from sensor measurements aver-
aged across all trials (see Fig. 4.1A), the GoF score was computed from the
data averaged across a half of all trials (see Fig. 4.1B). Here, for evaluating gen-
eralizability of the methods, model parameters (i.e., random variables other
than mean and covariance of current sources) were pre-estimated from the
data averaged over the other half of all trials. The parameters were fixed to
the pre-estimated values when reconstructing sources for the GoF calculation.

A

All trials

Compute GoF

B

Former/Latter half

Pre-estimate parameters

Latter/Former half

(with fixed parameters)
Compute GoF

C

Former/Latter half

Pre-estimate parameters

Missing

Latter/Former half

(with fixed parameters)
Compute GoF

(a) entire duration

(b) missing duration

from the

Figure 4.1: A schematic view of GoF calculation (detailed description for the three ways of
GoF calculation (A–C) are presented in text). When computing GoF for (B) and (C), all trials
were splitted into the former and latter half. A GoF score for each subject was obtained by
averaging a set of two GoF scores computed from the former and latter half.



4.4. Simulations 65

Furthermore, we assessed prediction accuracy of the dynamic model to
evaluate estimated source dynamics. The procedure of computing GoF was
almost the same when the generalizability was evaluated, but here the data
contained a missing duration (135–210 ms after the stimulus onset; see Fig.
4.1C). The model parameters were estimated from intact data, whereas the
GoF measure was calculated using sources reconstructed from data contain-
ing a missing duration. The sources at a missing duration were computed
by forward prediction of the estimated dynamic model (no system noise was
assumed in forward prediction). Along with computing GoF from the en-
tire duration of data, we also calculated the GoF score only from the missing
duration.

4.4. Simulations

4.4.1 Simulation 1: MAR time series

We first examined the estimation performance on a simulated MAR time se-
ries. The data were generated from the dynamic source model assumed in the
proposed method. The purpose of this simulation was to evaluate the identi-
fication accuracy of the MAR model with varying numbers of active sources
and effective connections.

Settings

The number of active sources was set to 5, 10, 20, or 30 out of 1841 cortical
sources. The time courses of the active sources were generated from the dy-
namic source model. The diagonal MAR matrix entries of active sources were
set to 0.4, while structurally-connected non-diagonal entries were assigned
random values uniformly distributed between −0.4 and 0.4. All other entries
of the MAR matrix were set to zero. The system noise variance of active and
inactive sources was set to 20 nAm2 and zero, respectively. Gaussian simu-
lated observation noise was assumed; the normalized noise covariance matrix
was computed from empty room data obtained from the real dataset. The
scaling parameter was adjusted to yield an SNR of 5 dB in the simulated sen-
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sor measurements, a typical value in trial-averaged measurements of simple
stimulus-evoked responses.

For each number of active sources specified above, we conducted 20 Monte
Carlo simulation trials. In each simulation, the active source positions were
sequentially and randomly selected from source positions that were struc-
turally connected to one of the selected source positions. The current sources
and the MAR matrix were estimated from the simulated measurements (du-
ration 400 ms and sampling frequency 1 kHz) with known noise covariance
structure and time lags. Throughout this simulation study, non-informative
priors were imposed on the model parameters (i.e., g0 = γ0 = 0) and no fMRI
information was provided.

Results

The estimation accuracies of the non-dynamic and dynamic methods were
first compared by computing the AUC and nRMSE of their estimated cur-
rent sources and MAR matrices (see Fig. 4.2). When calculating the AUC
scores, the simulated source positions and non-zero MAR coefficients were
assumed as the true sources and connections. Both methods yielded almost
identical AUCs. However, the nRMSE scores were improved in the dynamic
method. This demonstrates the advantage of explicitly accounting for the
source dynamics, and simultaneously reconstructing the current sources and
MAR coefficients.

To investigate the estimates of the dynamic method in detail, the recon-
struction gain of the current sources and the RMSE of the MAR matrix were
computed. The results are listed in Table 4.1. The reconstruction gains were
obtained by averaging the gains across the active source positions (upper
line) and the positions at which the true positive sources were successfully
estimated (lower line). The RMSE scores were calculated from a subset of
the MAR matrix, restricting the row and column indices to the locations of
the originally active sources (upper line) and the true positive sources (lower
line). This table reveals near-perfect source reconstruction and model identi-
fication for 5 active sources. As the number of active sources increased, the
estimation performance deteriorated. In addition, sources at less observable
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Figure 4.2: Evaluation of the estimation accuracy in Simulation 1. AUC and nRMSE of the
current sources (upper) and the MAR matrix (lower) are presented as boxplots. Each panel
displays the distributions of AUC or nRMSE estimated by the non-dynamic and dynamic
methods. The blue bar of each box indicates the median and the edges show the upper and
the lower quartiles. The length of the whisker is the default length set in the Matlab function
boxplot. Method comparison with a conventional approach of the non-dynamic method is
presented in Fig. B.1.

cortical positions (with small lead field norms) failed to be identified (data
not shown). Similarly, connections with small products of the corresponding
lead field norms tended to be missed. Moreover, the estimation accuracy de-
creased for smaller-magnitude current sources and MAR coefficients among
the simulation data. Despite these anomalies, Table 4.1 shows that even for
source numbers of 20 and 30, more than 75% (true positive rate) of the orig-
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Table 4.1:
Reconstruction gains of the current sources and RMSEs of the MAR matrix, estimated from
the originally active and true positive sources in Simulation 1.

Number of active sources 5 10 20 30

Reconstruction gain

of the active sources 0.95 0.88 0.73 0.66

of the true positive sources 0.95 0.91 0.85 0.84

RMSE of the MAR matrix

between the active sources 0.05 0.09 0.15 0.18

between the true positive sources 0.05 0.07 0.10 0.12

True positive rate 1.00 0.97 0.85 0.78

The displayed values were computed from a subset of the estimates obtained by the dynamic
method. Each entry displays the mean of 20 simulations.

inally active sources were reconstructed with 1) reconstruction gains greater
than 0.80 and 2) RMSE of the MAR matrix less than 0.15.

4.4.2 Simulaiton 2: Stimulus-evoked responses

Next, to examine the estimation accuracy in a more realistic simulation set-
ting, we applied the methods to synthesized stimulus-evoked responses. The
event-related dynamics inherent in the simulation data was generated from a
functional network of the neural mass models with external inputs.

Settings

A schematic of the simulation setting is shown in Fig. 4.3. The time courses of
stimulus-evoked responses, with sampling frequency 1 kHz, were generated
from a network of non-linear neural mass models (the constituents of this
network model are detailed in Appendix B.3). When computing the exact time
courses of the active sources, the waveforms generated from the network were
multiplied by a constant to ensure that the resulting sensor measurements and
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Figure 4.3: Data generation settings in Simulation 2. (A) sparse setting (B) dense setting. The
time courses of the active sources in CAL, IOG, and FG are plotted in black, dark gray, and
light gray, respectively. The red regions on the cortical surfaces are the fMRI positive regions
assumed in this simulation study.

the real measurements in the dataset were of comparable order of magnitude.
We adopted a simplified network model of a face perception task comprising
six regions of interest; the bilateral lower visual cortices around the calcarine
sulcus (CAL) and the higher visual cortices located in the core regions of face
perception [40], the inferior occipital gyrus (IOG) and the fusiform gyrus (FG).
The remaining core region, the superior temporal sulcus (STS), was excluded
from the network model because direct structural connections between STS
and IOG/FG were not found in previous dMRI studies [36, 69].

We examined the estimation performance under two simulation scenarios
(see Figs. 4.3A and 4.3B) with different numbers of active sources in each
ROI; one (the sparse setting) and five (the dense setting). Each active source
in the CAL of both hemispheres received an input signal. The CAL activity
was sequentially transmitted to the active sources in IOG and FG in a one-
to-one manner via the bidirectional effective connectivity between CAL–IOG
and IOG–FG (the input signal and connection parameters are also detailed
in Appendix B.3). Note that all forward and backward effective connections
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were consistent with their structural connections. For simplicity, the lateral
effective connectivity within each ROI was ignored in this simulation.

An identical fMRI prior was assumed in both sparse and dense settings.
To obtain this spatial prior, we first binarized the t-value map of the real fMRI
data in the dataset, and then masked the binarized areas by extracting regions
close to CAL, IOG, and FG (the t-value map was computed as described in
Section 4.5). The fMRI positive regions, spread across 69 cortical source posi-
tions, include all active sources placed in both simulation settings. Since the
t-values were binarized, the fMRI positive and negative regions were assigned
wn = 1 and wn = 0, respectively, in Eq. (4.10). The advantages of applying
the fMRI prior were assessed by comparing the results with those obtained
without the fMRI prior (assigning wn = 1 to the whole cortex).

The observation noise was real background MEG data in the dataset, com-
prising trial-averaged sensor measurements taken during a 400 ms rest period.
During the trial averaging, potential event-related components in the resting
data were suppressed by randomly forward-shifting the time course of each
trial, then translating the fragmented data projected from the time window
to the end of the shifted time series. The magnitudes of the resulting trial-
averaged measurements were comparable to those of the actual resting data.
The first 100 ms duration of the averaged background MEG data were used to
fit the normalized noise covariance matrix; the remaining 300 ms were added
to the noise-free simulated measurements.

Various modeling errors typically encountered in real data applications,
such as non-linear source dynamics and non-Gaussian observation noise,
were introduced to this simulation study. To prevent the entry of possible
estimation errors caused by such model discrepancies, we applied informa-
tive priors (including the fMRI prior) on the model parameters; that is, we set
g0 and γ0 to non-zero values. Optimal values of g0 and γ0, as well as η0 and
m0, were searched by varying the values of the hyperparameter sets (η0, g0)

in P(η1:N) and (m0, γ0) in P(q) from their default settings (100, 100).

Besides varying the hyperparameters, we also examined the impact of
changing the delay parameters in the MAR model, namely, the conduction
velocity v and the local delay constant τ, from their default values (v = 6 m/s
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and τ = 27 ms).

Results

The AUC and nRMSE scores with and without the fMRI prior are displayed
in Table 4.2. Clearly, applying the fMRI prior improved the estimation perfor-
mance. In both simulation scenarios, the best score was consistently achieved
by the dynamic method with the fMRI prior. In the dense simulation setting,
however, the dynamic method with the fMRI prior still yielded an nRMSE
score around unity, reflecting the difficulty of reconstructing a large num-
ber of closely-spaced active sources. Nevertheless, the mean activity across
sources within an ROI was reasonably reconstructed in this scenario. The
nRMSE score computed from the time courses averaged over the five active
sources within each ROI (denoted by ROI-nRMSE in Table 4.2) was improved
to 0.39. The waveforms of current sources were also appropriately estimated;

Table 4.2:
AUC and nRMSE of the current sources and AUC of the MAR matrix with (and without)
applying the fMRI prior in Simulation 2.

Non-dynamic Dynamic

Sparse Dense Sparse Dense

Current sources

AUC 1.00 (0.77) 0.99 (0.51) 1.00 (0.99) 1.00 (0.94)

nRMSE 0.18 (0.66) 0.97 (1.19) 0.15 (0.64) 0.86 (1.13)

ROI-nRMSE 0.45 (0.80) 0.39 (0.77)

MAR matrix

AUC 1.00 (0.69) 0.89 (0.41) 1.00 (0.87) 0.91 (0.76)

The scores with no fMRI prior applied are listed in parentheses. The best scores in each
simulation scenario across the methods, applied with and without the prior, are indicated
in bold font. ROI-nRMSE displays the nRMSE of the ROI-averaged time courses. Method
comparison with a conventional approach of the non-dynamic method is presented in Table
B.1.
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correlation coefficient between the true and estimated activities (not shown in
the table) was computed as 0.65, using the entire time series of all sources.

The current sources and the MAR coefficients estimated from the methods
with the fMRI prior are shown in Fig. 4.4. In the sparse setting, both the
non-dynamic and the dynamic methods successfully reconstructed the active
sources and identified their effective connectivity (see Fig. 4.4A), although
the non-dynamic method detected a single false positive source. On the other
hand, the dense cortical activity and effective connectivity was imperfectly es-
timated by both methods (see Fig. 4.4B). False positive sources were estimated
within the regions covered by the fMRI prior; and false positive connections
emerged due to the limitations of the linear autoregressive modeling. In fact,
such errors in the estimated connections occurred even when the MAR co-
efficients were fitted to the true current sources (data not shown). Despite
these shortcomings, the dynamic method showed higher sensitivity of cur-
rent source reconstruction and identification of effective connectivity than its
non-dynamic counterpart (see Fig. 4.4B). In the dynamic method, 23 out of 30
active sources were reconstructed and at least one single effective connection
was discovered, i.e., the absolute MAR coefficient was larger than 0.1, at each
functional ROI pair. In contrast, the non-dynamic method missed half of the
active sources (15 out of 30), and detected no effective connection for several
functional ROI pairs.

The evaluation scores obtained under various hyperparameter settings are
presented in Fig. 4.5A. The hyperparameters η0 and g0 exerted little effect
on the AUC and nRMSE of the current sources. However, increasing η0 and
g0 in the dense setting enlarged the AUC of the MAR matrix. Nevertheless,
we recommend a moderate value of η0 (say 100) because η0 = 1000 tended
to suppress the number of estimated effective connections (data not shown).
When η0 was increased from 100 to 1000, the sensitivity of the effective con-
nectivity decreased about from 0.3 to 0.1. In determining g0, we observed
that the perfect source reconstruction in the sparse setting (no false positives
or negatives) was achieved only for g0 = 100 or 1000 (and η0 = 100). Thus,
our recommended hyperparameter setting in Eq. (4.8) is (η0, g0) = (100, 100)
or (100, 1000). The right hand side of Fig. 4.5A shows that high values of the
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Figure 4.4: Results obtained from the non-dynamic and dynamic methods with the fMRI
prior in Simulation 2. (A) sparse setting and (B) dense setting. (a) Estimated effective connec-
tivity among the positive sources indicated by yellow dots. Green lines, and lines graduated
from yellow to red, denote bi- and uni-directional effective connectivity, respectively. Note
that line color is not related to the magnitude of the MAR coefficients. (b) Estimated time
courses of the current sources whose cortical positions matched the originally active sources.
The source time courses (gray scale) are explained in the caption of Fig. 4.3. (c) Estimated
MAR coefficients at source pairs of true effective connectivity. The horizontal axis indicates
the locations of the inter-ROI connections (1–4: connections in the left hemisphere; 5–8: con-
nections in the right hemisphere). Method comparison with a conventional approach of the
non-dynamic method is presented in Fig. B.2.
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Figure 4.5: Dependence of the hyperparameters and the delay parameters on the estimation
accuracy in Simulation 2. (A) Variation in AUC and nRMSE scores as the hyperparameters η0,
g0, m0, and γ0 are varied from 10 to 1000. Scores with the default setting (all hyperparameters
set to 100) are shown in the center of each panel. The gray scale is common to each evaluation
measure. (B) The AUC and nRMSE scores obtained by varying the conduction velocity (v =

3, 6, 12 m/s) and local delay constant (τ = 17, 27, 37 ms). The ranges of the vertical axes
correspond to the gray scales in (A).

hyperparameters m0 and γ0 yielded higher estimation accuracy in the dense
setting and the reverse was true in the sparse setting. Since the central value
of 100 achieved relatively high scores in both settings, our recommended hy-
perparameter setting in Eqs. (4.9) and (4.10) is (m0, γ0) = (100, 100).
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Fig. 4.5B shows the effect of changing the conduction velocity v and the
local delay constant τ on the evaluation measures. Although the AUC of the
MAR matrix was noticeably altered in the dense setting, the AUC and nRMSE
scores were relatively insensitive to perturbations of v and τ. This indicates
that misspecification of the delay parameters does not severely degrade the
estimation accuracy.

4.5. Application to real data

Finally, the estimated source distributions and interactions were evaluated
on experimental data. To this end, the methods were tested on a publicly
available multimodal dataset [43]. The task data were acquired while pictures
of human faces were presented to subjects. The physiological plausibility
of the estimated current sources and effective connectivity were qualitatively
evaluated from previous literature reports.

4.5.1 Settings

In evaluating the estimation performance, we focused on the temporal prop-
agation of the stimulus-evoked responses. For this purpose, the MEG mea-
surements were trial averaged and the t-values for the fMRI prior were com-
puted with a task versus baseline contrast. Here, we used magnetometer
measurements recorded in the dataset; the reconstructed sources from these
measurements are presented as MEG results in [43]. All hyperparamters for
the informative priors were set to 100. As demonstrated in Simulation 2,
these hyperparamter settings optimized the reconstruction accuracy in both
the sparse and dense settings.

The continuous MEG data in the dataset had been pre-processed by tem-
poral signal-space separation [78] to remove external noise. These data were
further pre-processed by baseline correction, high-pass filtering (cutoff 0.25 Hz),
low-pass filtering (cutoff 40 Hz), down sampling (from 1.1 kHz to 1 kHz), trial
segmentation (0–300 ms after the stimulus onset), trial rejection, and trial av-
eraging (concatenating the entire cohort of face stimulus conditions; see Fig.
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4.6A). When segmenting the data, the last 100 ms prior to stimulus onset were
also extracted to estimate the noise covariance matrix from the trial-averaged
data. The trial rejection step eliminated trials with amplitude of MEG exceed-
ing 3000 fT and that of EOG exceeding 100 µV. 548 trials (averaged across
subjects) remained after the trial rejection step.

The fMRI data (3 mm isotropic) were pre-processed by running a batch
Matlab script accompanying the dataset. This script executed a standard data
pre-processing pipeline of SPM86. The fMRI prior was computed from a t-
value map (p < 0.001, uncorrected) in which the face stimulus conditions are
contrasted against the baseline (the group-level t-value map is illustrated in
Fig. 4.6B). Note that the t-value maps used to construct the fMRI prior were
not group-averaged, but were separately computed from each subject.
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Figure 4.6: Real MEG and fMRI data acquired during a face perception task. (A) Evoked
responses to visual face stimuli (averaged across trials and subjects). The top-left plot shows
the time courses of sensor measurements, and the bottom-left plot shows the square root of
the measured power (averaged over sensors). The right figures display 2D topography maps
at the two times of peak activity, indicated by the gray lines (a) and (b) in the left plots. (B)
Group-averaged fMRI t-value maps with a contrast of face stimulus conditions against the
baseline.

6http://www.fil.ion.ucl.ac.uk/spm/
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4.5.2 Results

Fig. 4.7 presents the GoF scores, obtained from the three ways of calcula-
tion described in Fig. 4.1. For all the ways of computing GoF, larger mean
scores were obtained from the dynamic method. Fig. 4.7A shows that the dy-
namic method significantly improved the normal GoF measure. However, the
score differences between the non-dynamic and dynamic methods were small
for the other cases of GoF calculation (see Figs. 4.7B and 4.7C). Significance
advantages of the dynamic method in generalizability and model prediction
accuracy were not found. Despite that, the mean GoF score over 30 in Fig.
4.7C(b) illustrates that the forward model prediction helped recovering the
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Figure 4.7: Results of GoF analysis on real experimental data. Boxplots of GoF over
eleven subjects, mean scores of GoF, and p-value of one sided paired t-test (GoFDynamic >

GoFNon−dynamic) are presented. (A) GoF computed from data averaged across all trials. (B)
GoF computed from data averaged across a half of all trials with fixed parameters pre-
estimated from the other half. (C) GoF computed as (B) with data containing a missing
duration; (a) GoF of the entire duration; (b) GoF of the missing duration. Method compari-
son with a conventional approach of the non-dynamic method is presented in Fig. B.3.
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unobserved data. This suggests that the estimated dynamic model reflected
true spatiotemporal dynamics of cortical activity during face processing in
some extent.

Fig. 4.8 displays the reconstructed cortical sources and their estimated
effective connectivity. The spatially clustered active sources estimated from
the dynamic method were more consistent among subjects than the activity
estimated from the non-dynamic method. The active sources were mainly
estimated in the occipitotemporal cortex containing the face-selective regions
IOG and FG [40]. In contrast, no sources were estimated in another face-

I II V

VII

I II V

VII

Subject number

VI

VI

X

X

III

III

IV

IV

VIII

VIII

IX

IX

XI

XI

Non-dynamic

Dynamic

Figure 4.8: Reconstructed current sources (shown by yellow dots) and their effective con-
nectivity during a face perception task undertaken by eleven subjects. Color legend of the
effective connectivity is described in the caption of Fig. 4.4. Method comparison with a
conventional approach of the non-dynamic method is presented in Fig. B.4.
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selective region STS; source activity in this region is not easily reconstructed
from MEG data because of its insensitivity to radial source components [44].
The effective connectivity was estimated across the occipitotemporal cortex
linking the lower and higher visual cortices. The reconstructed connections
structurally and functionally overlapped with the ventral visual pathways [33]
responsible for processing visual objects and faces [41].

Fig. 4.9 presents representative examples of the event-related dynamics of
the stimulus-evoked responses. Examples differently and similarly estimated
by the two methods are shown in Figs. 4.9A and 4.9B, respectively. In the
dynamic method, source activity was reconstructed in IOG and FG for both
subjects. The effective connectivity between IOG–FG was dominant for the
direction from IOG to FG, as inferred from larger absolute MAR coefficients
in this direction. The MAR coefficients, estimated by the dynamic method
on these extracted connections from IOG to FG, were closely related to the
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Figure 4.9: Representative examples of the event-related dynamics of stimulus-evoked re-
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sources are indicated by small circles on the cortical surfaces. The numbers beside the arrows
connecting the two circles denote the corresponding estimated MAR coefficients. The time
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Method comparison with a conventional approach of the non-dynamic method is presented
in Fig. B.5.
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temporally lagged correlation between the source time courses of IOG and
FG.

4.6. Discussion

In this chapter, we present a new state-space method of MEG source recon-
struction that simultaneously estimates the source amplitudes and interac-
tions across the whole brain. Directed interactions between sources are rep-
resented by the full MAR model in the source space. The unknown network
structure of this MAR model is informed by prior knowledge of the existence
and lengths of structural connections, inferred from dMRI data. To improve
the reliability and robustness of the estimates, we incorporate the following
priors into the model; a spatial prior derived from fMRI activity patterns, and
an ARD sparse prior on the MAR coefficients. Source reconstruction using the
MAR model with the above prior assumptions is formulated by a state-space
representation within a Bayesian framework. The current source activity and
model parameters are jointly estimated by a variational Bayesian algorithm.
The estimation performance of the proposed dynamic method was quantita-
tively and qualitatively evaluated on simulation and experimental data, re-
spectively, comparing with its non-dynamic counterpart.

As demonstrated in Simulation 1, the source amplitudes and the MAR co-
efficients were reasonably estimated by the proposed method, even when the
number of active sources was as high as 20 or 30. For over 75% of these origi-
nally active sources, the reconstruction gains exceeded 0.80 and the RMSEs of
the MAR coefficients were below 0.15. However, the estimates yielded a non-
negligible number of missing sources and connections with higher number
of active sources. Close inspection of the estimates revealed that these mis-
specifications occurred more frequently when the source locations were less
observable from the MEG sensors. In general, a less observable source (i.e., a
source with a smaller lead field norm) is difficult to correctly estimate, espe-
cially when other active sources with larger lead field norms produce a sim-
ilar spatial pattern of the sensor data. Since such source placements increase
with increasing number of active sources in the Monte Carlo simulations, this
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phenomenon would explain the decay in the source reconstruction accuracy,
reported also in [64] using standard methods, with higher number of active
sources. This phenomenon might also explain the declining performance of
the connectivity estimation. Overall, however, our results suggest that the
source amplitudes and the model parameters were adequately estimated by
our proposed method.

In Simulation 2, we examined the estimation accuracy of the methods us-
ing the synthesized evoked responses. This simulation demonstrated that:
1) our method can correctly estimate the active sources and their effective
connectivity in spatially sparse source configurations, and 2) although all of
the active sources are not reconstructed in spatially dense source settings,
our method identifies at least one single source interaction for every pair of
ROIs with true effective connectivity. Moreover, while the nRMSE score of
the sources was rather high in the dense setting (0.86), a reasonable score
(0.39) was obtained by computing the nRMSE from the region-wise source
time courses. These results indicate that, even when the sources are densely
distributed over the cortex, ROI-wise activity and effective connectivity can be
appropriately estimated. We emphasize that these estimation performances
were obtained under realistic simulation settings, which introduce significant
discrepancies between our model formulation and the data generation pro-
cess. In particular, the assumed dynamic model was based on linear autore-
gressive modeling, whereas the data were generated from a network of non-
linear neural mass models. The limitation of our source dynamics modeling
manifests as false positive effective connectivity in the dense setting. This in-
dicates a deficiency in the assumed model, since it also appeared when the
MAR model was fitted to the true source time courses. It should be mentioned
that the above discussion of Simulation 2 was based on estimates informed
by the fMRI prior. Our analysis with and without the fMRI prior confirmed
that the prior certainly improves the estimation accuracy in both sparse and
dense source configurations.

Applying our method to real data collected during a face perception task,
we obtained physiologically plausible estimates that were appropriately con-
sistent among subjects. The estimated source positions were mainly located
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along the occipitotemporal cortex, which contains the ventral part of the face-
selective regions IOG and FG [40]. The estimated effective connectivity largely
overlapped with the ventral visual pathways mediating transmission between
the lower and higher visual areas during object recognition [33]. The averaged
GoF score, larger than 30, computed from the missing duration data indicates
that the dynamic model captured spatiotemporal dynamics of cortical activity
during face perception in some extent. Since the face-selective regions have
been extensively studied in the literature [40, 41, 50], a face perception task
is useful for properly evaluating the source distributions estimated from the
methods. In contrast, how these face-selective regions dynamically interact is
not known in detail, although several studies have investigated structural con-
nectivity [36, 69], functional connectivity [17], and effective connectivity [21]
among these areas. Therefore, although our estimated effective connectivity
roughly corresponds to the ventral visual pathways, rigorous evaluation of
the existence and directions of the source interactions is beyond the scope of
this thesis. For improved future evaluation, the consistency of the estimates
in the present study could be examined using other neuroimaging modali-
ties with higher spatial resolution than MEG, such as the electrocorticogram
(ECoG).

Major differences between the dynamic and non-dynamic methods exist
in whether sources are reconstructed with or without temporal constraints,
and the source amplitudes and interactions are estimated simultaneously or
not. These differences resulted in better scores of nRMSE and normal GoF in
the dynamic method. It should be noted that the higher normal GoF score,
presented in Fig. 4.7, does not necessarily mean higher performance of the
dynamic method in source reconstruction, since the number of parameters in
the dynamic method is quite larger than that of the non-dynamic method. The
dynamic method did not significantly improve the AUC scores in simulations
and the GoF measures in examining generalizability and model prediction
accuracy. Indeed, improvements on these scores became obvious when the
MAR matrix of the non-dynamic method was computed only from pairs of
active sources (see Appendix B.4). This indicates that methodological ad-
vancements of our method allowing estimation of effective connectivity over
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the whole brain also have a crucial role in obtaining good results, which over-
comes limitations of conventional two-stage approaches.

Prior knowledge on the existence of structural connections in the dynamic
method may reciprocally compensate for the estimated magnitudes of the
source amplitudes and interactions. This is because the estimation steps of
the current sources and their associated MAR coefficients are mutually depen-
dent under the variational Bayesian algorithm. In contrast, the non-dynamic
method does not update the reconstructed current sources after estimating
the MAR coefficients. Therefore, the estimated connectivity is more sensitive
to source reconstruction errors, because if two reconstructed sources are once
incorrectly assigned to pairs of structurally non-connected locations, the non-
dynamic method no longer estimates their effective connectivity in successive
iterations. The modeling and algorithmic differences between the two meth-
ods are highlighted by the higher physiological plausibility and inter-subject
consistency in the dynamic method, when both methods were applied to the
face perception dataset.

Using the proposed method, we can estimate the effective connectivity
without requiring the selection of a limited number of ROIs as network nodes.
This was achieved by extending the source-dimensional autoregressive mod-
els adopted in previous dynamic methods of MEG/EEG source reconstruc-
tion [30, 51, 87], in contrast to the approach of [61] where they assumed a
full MAR model in a low-dimensional latent space. The non-diagonal MAR
coefficients newly introduced in the proposed method are derived from the
existence and lengths of structural connections. These coefficients allow long-
range source interactions to be estimated within whole-brain structural net-
works. Our method adopts an exploratory approach to estimating the ef-
fective connectivity. This approach complements the confirmatory approach
of DCM [16, 26], in which the effective connectivity between brain regions is
inferred using a procedure of Bayesian model comparison.

When incorporating the structural connectivity information of dMRI into
the MAR model, we require a threshold value of fiber counts to binarize the
structural connectivity. We must also determine the conduction velocity and
the local delay constant that specify the time lags between two sources. We
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selected a small threshold value of fiber counts (10−4) to minimize false neg-
ative effective connectivity. Our model assumes that effective connectivity
exists only between structurally connected pairs of sources. Therefore, a
higher threshold would increase false negative effective connectivity by in-
creasing the number of false negative structural connections. By choosing a
small threshold, we reduced the possibility of false negative structural con-
nections, while increasing the number of MAR coefficients to be estimated.
Although more MAR coefficients should increase the false positive effective
connectivity, this effect is partially negated by the sparse prior applied to the
MAR coefficients. The conduction velocity and local delay constant were set
to 6 m/s and 27 ms, respectively. In Simulation 2, we investigated the impact
of these parameters on the estimation accuracy, and found that the estimation
performance was relatively insensitive to changes in both parameters. This
indicates that appropriate estimates could be obtained if the time lags in the
MAR model were only rough approximations.

The hyperparameters m0 and γ0, controlling the magnitude and the relia-
bility of the fMRI prior, respectively, must be carefully determined. Such care
is required because non-negligible differences might exist between the spatial
patterns of the electrocortical activity and those observed in fMRI. Increas-
ing the dependence on the fMRI prior may not improve the results. Indeed,
imposing a large weighting on the spatially dense fMRI prior (by setting γ0

high) reduced the estimation accuracy in the sparse source setting of Simu-
lation 2, where a moderate value of γ0 provided higher estimation accuracy.
Therefore, in applying the methods to experimental data, these hyperparam-
eters were selected to yield reasonable evaluation scores in both the sparse
and the dense simulation settings.

Representing the source dynamics by linear autoregressive modeling would
introduce errors to the estimated (actually non-linear) source interactions.
When the interactions were governed by realistic non-linear network dynam-
ics, the limitation of our dynamic model emerged as false positive estimates
of the effective connectivity. This observation confirms the necessity of a non-
linear extension of the linear MAR source model to embrace a wide range of
dynamic phenomena. In future work, we will develop a means of incorpo-
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rating non-linear neurobiological dynamics into the source model, while pre-
serving the tractability of estimation in the high-dimensional source space.





Chapter 5

Contributions and Future
Directions

In this thesis, previous state-space methods for MEG/EEG source reconstruc-
tion are extended to reconstruct focal current sources (Chapter 3) and to iden-
tify long-range directed source interactions over the whole brain (Chapter 4).
By parameterizing the MAR coefficients of the dynamic source model in spa-
tially fine resolution, method extensions in both chapters were achieved.

5.1. Contributions

Reconstruction of focal sources was achieved by extending previous dynamic
models of state-space methods. The temporal evolution of source activity,
used to be common across or within brain regions, has been properly pa-
rameterized in a spatially inhomogeneous manner in Chapter 3. Through
this extension, spatially focal sources are obtained for the first time under the
state-space framework1. Acquiring the ability of reconstructing focal sources
is an important improvement for state-space methods, since the focal sources
are consistent with the property that cortical activities specialized to specific
brain functions are restricted to small brain regions [22].

1Reconstructing focal sources was succeeded also in a state-space method [51] at around
the same time when the work in Chapter 3 [27] was published.
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Incorporating long-range directed source interactions into the dynamic
model of current source allows estimating whole-brain functional networks.
The new state-space method in Chapter 4 first provides a mean of elucidating
mechanisms in dynamic integration of functional segregated current sources,
by discovering functional brain networks in the source space. Identifying
long-range directed interactions between whole-brain sources is a fundamen-
tal goal of method developments in neuroimaging fields. Successes in this
line of researches allow conducting an exploratory approach of effective con-
nectivity estimation. This approach complements a confirmatory approach of
DCM; the most widely used method for elucidating brain effective connectiv-
ity [16,26]. In DCM, only a limited number of ROIs can be selected as network
nodes for discovering functional brain networks. Inclusion of whole brain ar-
eas as network nodes in DCM is intractable due to combinatorial explosion of
the ROI selections [54]. The state-space method extended in Chapter 4 allows
conducting the effective connectivity analysis over the whole brain, which
cannot be dealt with DCM.

5.2. Future directions

For both chapters, the dynamic model of neuronal current sources is extended
into new source reconstruction methods. By developing new modeling and
parameterization of the source dynamics, each chapter-specific purpose of
method extension was realized. The principle idea on the model extensions is
to model more realistic source dynamics. Assuming the spatially inhomoge-
neous temporal evolution of sources in Chapter 3 and the long-range directed
source interactions on whole-brain structural networks in Chapter 4 are the
examples of introducing realistic source dynamics.

Other representative examples, not incorporated into the dynamic model
in this thesis, are non-linearity and non-stationarity of the source dynam-
ics. These components are important building blocks to represent real neu-
robiological dynamic behaviors. Although estimating non-linear and non-
stationary dynamics in a high-dimensional source space is a challenging di-
rection of future research, inclusion of these properties into the dynamic
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source model would allow estimating the source amplitudes and interactions
more closely reflecting real characteristics of neuronal current source dynam-
ics. Development on state-space methods combining with the non-linearity
and non-stationarity is a possible direction of future research.





Appendix A

Appendix of Chapter 3

A.1. Algorithm details

We present here the detailed derivation of the update rules for the currents
(J-step) and for the parameters (β-step, a-step, and q-step).

In the J-step, the approximate posterior distributions of the currents Q(Jt)

for t = 1 : T are updated. The distribution Q(Jt) is obtained by substituting Jt

into Eq. (2.14):

log Q(Jt) = ⟨log P(B1:T, X)⟩Q(X\Jt)
+ const. (A.1)

By calculating the integral in the right-hand side of Eq. (A.1), we obtain the
linear and quadratic terms with respect to Jt. Therefore, Q(Jt) is a Gaussian
distribution:

Q(Jt) = N (Jt| J̄t, β̄−1V̄t) (A.2)

where β̄ represents the mean of Q(β). The (scaled) covariance matrix V̄t and
the mean J̄t are derived asV̄t =

(
GTS−1G + V̂−1

t

)−1

J̄t = V̄t

(
GTS−1Bt + V̂−1

t Ĵt

) (A.3)

where we have introduced auxiliary parameters V̂t and Ĵt. These are defined
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as

V̂t =

{((
I + ⟨diag(a)diag(a)⟩

)
diag(q̄)

)−1 , for t ̸= T(
diag(q̄)

)−1, for t = T

Ĵt =


(
I + ⟨diag(a)diag(a)⟩

)−1

×diag(ā)(J̄t−1 + J̄t+1), for t ̸= T
diag(ā)J̄t−1, for t = T

(A.4)

with ā, q̄, J̄t−1, and J̄t+1 being the means of their approximate posteriors,
which are updated at the previous iteration, and I being the identity matrix.
Eq. (A.3) can be rewritten in a computationally efficient form using the Wood-
bury’s matrix inversion lemma [6]:

{
V̄t =

(
I − KG

)
V̂t

J̄t = Ĵt + K
(
Bt − GĴt

) (A.5)

where K = V̂tGT(GV̂tGT+ S)−1 plays a role similar to the Kalman gain. By
adopting this form, the matrix inversions of large size (in our application
2000 × 2000) in Eq. (A.3) are avoided. It should be noted that since V̂t is diag-
onal owing to the independence approximation on Q(J1:T), the computational
complexity required for obtaining V̄t and J̄t increases linearly with number of
current sources.

In the β-step, the approximate posterior distribution of the scaling param-
eter Q(β) is updated. The distribution Q(β) is obtained by substituting β into
Eq. (2.14):

log Q(β) = ⟨log P(B1:T, X)⟩Q(X\β) + const. (A.6)

By calculating the integral in the right-hand side of Eq. (A.6), we obtain the
linear and logarithmic terms with respect to β. Therefore, Q(β) is a gamma
distribution:

Q(β) = G(β| β̄, γβ) (A.7)



A.1. Algorithm details 93

where the shape parameter γβ and the mean β̄ are derived as

γβ = 1
2 MT

β̄ = γβ

{
1
2 ∑T

t=1 tr
(

S−1(BtBT
t − GJ̄tB

T
t − BtJ̄

T
t GT + GJ̄tJ̄

T
t GT)

)
+1

2 ∑T
t=1 tr

(
diag(q̄)(J̄tJ̄

T
t − 2 diag(ā)J̄t−1J̄T

t

+ ⟨diag(a)diag(a)⟩ J̄t−1J̄T
t−1)

)}−1
.

(A.8)

In the a-step, the approximate posterior distribution of the AR(1) parame-
ter Q(a) is updated. The distribution Q(a) is obtained by substituting a into
Eq. (2.14):

log Q(a) = ⟨log P(B1:T, X)⟩Q(X\a) + const. (A.9)

By calculating the integral in the right-hand side of Eq. (A.9), we obtain the
sum of the linear and quadratic terms with respect to an. Therefore, Q(a) is a
product of Gaussian distributions:

Q(a) =
N

∏
n=1

N (an| ān, η−1
n ) (A.10)

where the variance η−1
n and the mean ān are derived asη−1

n =

{
η0 + ∑T

t=1 β̄
(

diag(q̄)
⟨

Jt−1JT
t−1

⟩)
n,n

}−1

ān = η−1
n ∑T

t=1 β̄
(
diag(q̄)J̄t−1J̄T

t
)

n,n.
(A.11)

In the q-step, the approximate posterior distribution of the vector parame-
terizing the system noise Q(q) is updated. The distribution Q(q) is obtained
by substituting q into Eq. (2.14):

log Q(q) = ⟨log P(B1:T, X)⟩Q(X\q) + const. (A.12)

By calculating the integral in the right-hand side of Eq. (A.12), we obtain the
sum of the linear and logarithmic terms with respect to qn. Therefore, Q(q)
is a product of gamma distributions:

Q(q) =
N

∏
n=1

G(qn| q̄n, γn) (A.13)
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where the shape parameter γn and the mean q̄n are derived as


γn = γ0 +

1
2 T

q̄n = γn

{
γ0 q−1

0 + 1
2 ∑T

t=1 β̄
(⟨

JtJ
T
t

⟩
− 2diag(ā)J̄t−1J̄T

t

+ ⟨diag(a)diag(a)⟩
⟨

Jt−1JT
t−1

⟩)
n,n

}−1
.

(A.14)

Remaining expectations in the update equations are evaluated as follows
(η is a vector whose entries are ηn in Eq. (A.11)):

⟨diag(a)diag(a)⟩ = diag(ā)diag(ā) + (diag(η))−1 (A.15)
T

∑
t=1

⟨
Jt−1JT

t−1

⟩
= J̄0J̄T

0 +
T

∑
t=2

(
J̄t−1J̄T

t−1 + β̄−1V̄t

)
(A.16)

T

∑
t=1

⟨
JtJ

T
t

⟩
=

T

∑
t=1

(
J̄tJ̄

T
t + β̄−1V̄t

)
. (A.17)

Free energy

The free energy F (Eq. (2.13)) in Chapter 3 is computed by being decomposed
into L, Hβ, Ha, and Hq:

F =

⟨
log

P(B1:T, J1:T, β, a, q)
Q(J1:T, β, a, q)

⟩

=

⟨
T

∑
t=1

(
log

P(Bt | Jt, β)P(Jt | Jt−1, β, a, q)
Q(Jt)

)⟩

+

⟨
log

P(β)

Q(β)

⟩
+

⟨
log

P(a)
Q(a)

⟩
+

⟨
log

P(q)
Q(q)

⟩
= L + Hβ + Ha + Hq. (A.18)
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Each term composing the free energy is expanded as follows:

L =
T

∑
t=1

{⟨
log N

(
Bt |GJt, β−1S

)⟩
+
⟨

log N
(

Jt|diag(a)Jt−1, (βdiag(q))−1
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−
⟨

log N (Jt | J̄t, β̄−1V̄t)
⟩}

=
T

∑
t=1
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−M

2
log 2π +

M
2
⟨log β⟩ − 1

2
log |S|

− β̄

2
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T
t − BtJ̄

T
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⟨
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t

⟩
GT))

− N
2

log 2π +
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Jt JT
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⟩
− 2diag(ā)J̄t−1J̄T

t

+ ⟨diag(a)diag(a)⟩
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Jt−1JT
t−1

⟩))
+

N
2
(1 + log 2π)− N
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log β̄ +

1
2

log |V̄t|
}

, (A.19)

Hβ = ⟨log β−1⟩ − ⟨log G(β | β̄, γβ)⟩
= log Γ(γβ)− γβ ψ(γβ) + γβ, (A.20)

Ha =
N

∑
n=1

{⟨
log N (an| 0, η−1

0 )
⟩
−
⟨

log N (an| ān, η−1
n )
⟩}

= −N
2

log 2π +
N
2

log η0 −
η0

2
tr
(
⟨diag(a)diag(a)⟩

)
+

N
2
(1 + log 2π)− 1

2

N

∑
n=1

(
log ηn

)
, (A.21)

Hq =
N

∑
n=1

{⟨
log G(qn | q0, γ0)

⟩
−
⟨

log G(qn | q̄n, γn)
⟩}

=
N

∑
n=1

{
γ0

(
log (q̄nq−1

0 )− q̄nq−1
0 + 1

)
+ H(γn, γ0)

}
, (A.22)
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where the term H in Hq is defined as

H(x, y) =
(

log Γ(x)− xψ(x) + x
)
−
(

log Γ(y)− yψ(y) + y
)

+ y
(

ψ(x)− log x
)

, (A.23)

and expectation of the logarithmic terms in Eq. (A.19) are evaluated as

⟨log β⟩ = log β̄ + ψ(γβ)− log γβ, (A.24)

⟨log qn⟩ = log q̄n + ψ(γn)− log γn. (A.25)



Appendix B

Appendix of Chapter 4

B.1. Algorithm details

In this appendix, the update rules for the current sources and the model
parameters are derived in detail. The update equations are presented in order
of the updating steps in the estimation algorithm (A-step, η-step, q-step, J-
step, and β-step). For notational simplicity, Jt and J̄t for t ≤ 0 are included
in the update equations, although they are set to zero in the model, and the
subscripts in expectation terms are omitted.

The A-step updates the approximate posterior distribution of the MAR
matrix Q(A). Substituting A for x in Eq. (2.14) and calculating its expectation
term, we obtain a sum of linear and quadratic terms of an, where aT

n denotes
the non-zero entries of the n-th row of A. Therefore, Q(A) is a product of
Gaussian distributions:

Q(A) =
N

∏
n=1

N (an | ān, Ūn). (B.1)

The covariance Ūn and the mean ān are derived as

Ūn =

{
diag(η̄n)

+ β̄ q̄n ∑T
t=1

(
∑L

l=1 En,∆l .∗
⟨

Jt−∆l
JT

t−∆l

⟩ )
Cn,Cn

}−1

ān = Ūn β̄ q̄n ∑T
t=1

((
∑L

l=1 en,∆l .∗ J̄t−∆l

)
Cn

J̄n,t

)
,

(B.2)
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where η̄n, β̄, q̄n, J̄t−∆l
, and J̄n,t are the means of the approximate posterior

distributions, which are updated in the previous iteration, and Cn is a set of
indices corresponding to the cortical locations structurally connected to the n-
th source position. A dot product .∗ denotes an element-wise multiplication
of a pair of vectors or matrices. The N-dimensional column vector en,∆l is
an indicator of binary values. If the locations corresponding to the index
entries of en,∆l are structurally connected to the n-th source position with
time lag ∆l, the relevant indices in en,∆l are set to one. Another indicator,
the N-dimensional matrix En,∆l is computed as en,∆l eT

n,∆l
. Here, the terms

subscripted Cn, Cn and Cn in Eq. (B.2) can be considered as the covariance and
mean, respectively, of a vector of current sources that directly affects Jn,t.

The η-step updates the approximate posterior distribution of the inverse
variances of the MAR coefficients Q(η1:N). Substituting η1:N for x in Eq. (2.14)
and calculating its expectation term, we obtain a sum of linear and logarithmic
terms of ηn,k. Therefore, Q(η1:N) is a product of gamma distributions:

Q(η1:N) =
N

∏
n=1

Kn

∏
k=1

G(ηn,k | η̄n,k, gn,k) (B.3)

whose shape parameter gn,k and mean η̄n,k are given by

 gn,k = g0 +
1
2

η̄n,k = gn,k

{
g0 η−1

0 + 1
2

(⟨
an aT

n
⟩)

k,k

}−1
.

(B.4)

The q-step updates the approximate posterior distribution of the inverse
variance of the scaled system noise Q(q). Substituting q for x in Eq. (2.14)
and calculating its expectation term, we obtain a sum of linear and logarithmic
terms of qn. Therefore, Q(q) is a product of gamma distributions:

Q(q) =
N

∏
n=1

G(qn | q̄n, γn) (B.5)
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whose shape parameter γn and mean q̄n are given by

γn = γ0 +
1
2 T

q̄n = γn

{
γ0 ν̄n +

1
2 β̄ ∑T

t=1

(⟨
Jt JT

t

⟩
−
(

∑L
l=1

(
Āl J̄t−∆l

))
J̄T

t − J̄t

(
∑L

l=1

(
Āl J̄t−∆l

))T

+

⟨(
∑L

l=1

(
Al Jt−∆l

)) (
∑L

l=1

(
Al Jt−∆l

))T
⟩)

n,n

}−1

.

(B.6)

Āl and J̄t−∆l
are the means of the approximate posterior distributions, where

Āl is obtained from ān for n ∈ {1 : N} (see Eq. (4.3) for the definition of Al).
The J-step updates the approximate posterior distributions of the current

sources Q(Jt) for t ∈ {1 : T}. Substituting Jt for x in Eq. (2.14) and calculating
its expectation term, we obtain linear and quadratic terms of Jt. Therefore,
Q(Jt) is a Gaussian distribution:

Q(Jt) = N (Jt | J̄t, β̄−1V̄t) (B.7)

where β̄ is the mean of Q(β). The (scaled) covariance matrix V̄t and the mean
J̄t are derived as  V̄t =

(
GTS−1G + V̂−1

t

)−1

J̄t = V̄t

(
GTS−1Bt + V̂−1

t Ĵt

) (B.8)

where we have introduced auxiliary parameters V̂t and Ĵt. These are defined
as

V̂t =


(

diag(q̄) + ∑L′
l′=1

⟨
AT

l′ diag(q̄)Al′
⟩)−1

, for 1 ≤ t ≤ T − ∆1

(diag(q̄))−1 , for T − ∆1 < t ≤ T

Ĵt =



V̂t

(
diag(q̄)∑L

l=1

(
Āl J̄t−∆l

)
+ ∑L′

l′=1

(
ĀT

l′ diag(q̄) J̄t+∆l′

)
−∑L′

l′=1

⟨
AT

l′ diag(q̄)
(

∑L
l=1(l ̸=l′) Al J̄t−∆l+∆l′

)⟩)
,

for 1 ≤ t ≤ T − ∆1

∑L
l=1

(
Āl J̄t−∆l

)
, for T − ∆1 < t ≤ T.

(B.9)
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The variables denoted with an upper bar are obtained from the means of the
approximate posterior distributions. L is the total number of time lags. L′

equals a number of integers within the range of t + ∆L′ ≤ T < t + ∆L′+1 for
T − ∆L < t ≤ T, and L′ = L for 1 < t ≤ T − ∆L. V̄t and J̄t in Eq. (B.8) is
calculated from the following computationally efficient form:{

V̄t =
(
I − KG

)
V̂t

J̄t = Ĵt + K
(
Bt − GĴt

) (B.10)

where K = V̂tGT(GV̂tGT+S)−1 is a gain matrix for the sensor measurements
and I is the identity matrix.

The β-step updates the approximate posterior distribution of the scaling
parameter Q(β). Substituting β for x in Eq. (2.14) and calculating its expecta-
tion term, we obtain linear and logarithmic terms of β. Therefore, Q(β) is a
gamma distribution:

Q(β) = G(β | β̄, γβ) (B.11)

whose shape parameter γβ and mean β̄ are given by

γβ = 1
2 MT

β̄ = γβ

{
1
2 ∑T

t=1 tr
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(
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)) (
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(
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))T
⟩))}−1

.

(B.12)

The expectation terms in the update equations are evaluated as follows.
These terms, which are used in the A-step, η-step, and q-step, are derived as⟨

Jt−∆l
JT

t−∆l

⟩
= J̄t−∆l

J̄T
t−∆l

+ V̄t−∆l , (B.13)⟨
an aT

n

⟩
= ān āT

n + Ūn, (B.14)⟨
Jt JT

t

⟩
= J̄t J̄T

t + V̄t. (B.15)
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After some rearrangement, the final term of the q-step in Eq. (B.6) is evaluated
with the above expectation terms as:⟨( L

∑
l=1

(
Al Jt−∆l

))( L

∑
l=1

(
Al Jt−∆l

))T⟩
n,n

= tr

(⟨
an aT

n

⟩( L

∑
l=1

En,∆l .∗
⟨

Jt−∆l
JT

t−∆l

⟩)
Cn,Cn

)
. (B.16)

The trace of the final term of the β-step in Eq. (B.12) is derived from Eq. (B.16)
by replacing the expectation of the quadratic term of the current sources with
its mean. The remaining expectation terms reside in Eq. (B.9) for the J-step.
These are obtained by computing the following expectation term for all pairs
of l′ and l: ⟨

AT
l′ diag(q̄)Al

⟩
=

N

∑
n=1

q̄n

⟨
ãl′n ãT

l n

⟩
, (B.17)

where ãT
l n denotes the n-th row of Al. The expectation in the right-hand side

of Eq. (B.17) is obtained by first expanding Eq. (B.14) into an N-dimensional
matrix (based on the original source index of an). Then, the matrix entries not
corresponding to row and column source indices that structurally connect the
n-th source index with time lags ∆l′ and ∆l, respectively, are padded with
zeros.

Free energy

The free energy F in Chapter 4 can be decomposed as

F =

⟨
log

P(B1:T, J1:T, β, A,η1:N, q)
Q(J1:T, β, A,η1:N, q)

⟩
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⟨
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⟨
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+

⟨
log
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⟩
+

⟨
log

P(q)
Q(q)

⟩
= L + Hβ + HA + Hη + Hq. (B.18)
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Each constituent of the free energy is obtained by computing
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, (B.19)

Hβ = ⟨log β−1⟩ − ⟨log G(β | β̄, γβ)⟩
= log Γ(γβ)− γβ ψ(γβ) + γβ, (B.20)
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⟩}

=
N

∑
n=1

{
−Kn

2
log 2π +

1
2

Kn

∑
k=1

⟨log ηn,k⟩ −
1
2

tr
(

diag(η̄n)
⟨

an aT
n

⟩)
+

Kn

2
(1 + log 2π) +

1
2

log |Ūn|
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Hη =
N

∑
n=1

Kn

∑
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{⟨
log G(ηn,k | η0, g0)

⟩
−
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, (B.22)

Hq =
N

∑
n=1

{⟨
log G(qn | ν̄−1

n , γ0)
⟩
−
⟨

log G(qn | q̄n, γn)
⟩}

=
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∑
n=1

{
γ0

(
log (q̄nν̄n)− q̄nν̄n + 1

)
+ H(γn, γ0)

}
. (B.23)

The term H in Hη and Hq is defined by Eq. (A.23) and the logarithmic expec-
tions in L and HA are evaluated as follows:

⟨log β⟩ = log β̄ + ψ(γβ)− log γβ, (B.24)

⟨log qn⟩ = log q̄n + ψ(γn)− log γn, (B.25)

⟨log ηn,k⟩ = log η̄n,k + ψ(gn,k)− log gn,k. (B.26)

B.2. Bias correction of AUC

To interpret AUC as an unbiased detection accuracy score, one should provide
the same number of active and inactive sources (or connections) in the ROC
analysis [35]. In our simulations, the number of actives was actually far less
than the number of inactives, as usually assumed in distributed source meth-
ods. Thus, to compute the AUC, we randomly and sequentially extracted the
inactives until the number of actives and inactives matched. We computed
two types of AUC by extracting the inactives from a close neighborhood of
actives (AUCclose) and from the far local maxima of false positives (AUCfar).
The final score of AUC was defined as the mean of AUCclose and AUCfar, both
computed from the average scores of 50 different drawings from a set of in-
actives. AUCclose and AUCfar for sources were computed similarly to [35]. By
an equivalent procedure, AUCclose and AUCfar for connections were obtained
(with some modifications, as described below).
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AUCclose was used to assess the reconstruction accuracy of the spatial
extent of sources or connections. The spatial neighborhood in computing
AUCclose was specified by a 5 cm-radius sphere centered on the actives. The
area of this sphere is comparable to the spatial neighborhood adopted in [35].
When calculating this score for connections, the spatial neighborhood of a
connection was defined as connections of which seed and target sources are
included in the spatial neighborhoods of the seed and target sources of the
centered connection, respectively.

AUCfar was computed to detect false positives far from the actives. To
compute this score for sources, a coarse cortical parcel was initially selected
at random. Within this parcel subtracted by the area occupied by the spatial
neighborhood of the actives, the false positive source with maximum magni-
tude was then extracted. The coarse cortical parcel was obtained by a nearest-
neighbor manner parcellation of the whole cortex into 86 parcels, the number
of parcels specified in [35]. When calculating this score for connections, we
extracted the false positive connection with maximum absolute MAR coeffi-
cient from a randomly selected pair of parcels, whose connections were not
included in the spatial neighborhood of the actives. When selecting parcels
or pairs of parcels, we excluded in advance those candidates lacking a source
or structural connection beyond the spatial neighborhood.

B.3. Network of neural mass models

This appendix details the functional network of neural mass models used for
generating the stimulus-evoked responses in Simulation 2. The equations of
this network model were integrated by a standard Runge-Kutta method with
an integration time step of 0.1 ms (the generated waveforms were afterwards
downsampled to 1 kHz). The parameter settings used in each component of
the network model, namely, the neural mass model, the extrinsic coupling,
and the input signal, are provided below.

The neural mass model was based on a model of two subpopulations [14].
The convolution kernels for the excitatory and the inhibitory synapses, rep-
resented as (Het/τe) exp (−t/τe) and (Hit/τi) exp (−t/τi) for t ≥ 0, respec-
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tively, were assumed in both subpopulations. The parameters τe and τi for
the two subpopulations were set to the values adopted by [14]. The parame-
ter specifying the relative proportion of the subpopulation with larger τe and
τi was set to 0.7. Under this parameter setting, the activity peaks occurred
at 100 ms and 170 ms following the input, mimicking the stimulus-evoked
responses during face perception. For each subpopulation, the parameters He

and Hi were derived by dividing the values of Heτe and Hiτi in [15] by the
above-specified values of τe and τi, respectively. The parameters governing the
intrinsic couplings and the sigmoid functions of the neural mass model were
set according to [15], while the relative strength among the intrinsic couplings
was specified by the setting popularly used in the literature [14, 16, 49, 75].

The extrinsic coupling parameters in the network model were set to re-
produce typical waveforms of stimulus-evoked responses. Following [15],
who extensively investigated the relationships between extrinsic coupling pa-
rameters and response waveforms, we set these parameters to 50 and 10 for
forward and backward connections, respectively. The time lags in the extrin-
sic couplings were determined solely from the fiber transmission delay. The
local delay constant τ in Eq. (4.2) was omitted because it had been embodied
in the convolution kernels of the neural mass model.

The input signal to the network model was generated by a gamma density
function and a set of discrete cosine functions, as described in [16]. The shape
and scale parameters of the gamma density function were set to 64 and 1024,
respectively, yielding activity peaks at 100 ms and 170 ms. The parameters in
the discrete cosine functions were set to those adopted in [16].

B.4. The non-dynamic method in a conventional ap-
proach

In this appendix1, we compare the results of Chapter 4 with the non-dynamic
method whose estimates of the MAR matrix were computed after the ex-

1The manuscript submitted to NeuroImage on November 29th, 2013, presents a part of
the results in this appendix, instead of those in Chapter 4.
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traction of active sources (i.e., a conventional approach of the non-dynamic
method; see Section 4.3.5). Advantages of the dynamic method were investi-
gated including those owing to the whole-brain parameter estimation, which
has not been adopted by standard methods of effective connectivity estima-
tion (e.g., DCM [16, 26]).

Fig. B.1 shows AUC and nRMSE of the MAR matrix in Simulation 1. In
addition to nRMSE, clear differences of AUC were found between the non-
dynamic and dynamic methods. The AUC score was also largely improved by
the dynamic method in the dense setting of Simulation 2 (see Table B.1). The
estimated effective connectivity among active sources presented in Fig. B.2

nRMSEAUC

MAR
matrix

5 10 20 30

0

0.5

1

# of active sources
5 10 20 30

0

0.5

1

# of active sources

Non-dynamicLeft:

DynamicRight:

Figure B.1: Evaluation of the estimation accuracy in Simulation 1, comparing with a con-
ventional approach of the non-dynamic method. See the caption for the lower part of Fig.
4.2.

Table B.1:
AUC of the MAR matrix with (and without) applying the fMRI prior in Simulation 2, com-
paring with a conventional approach of the non-dynamic method (see the caption for the
lower part of Table 4.2).

Non-dynamic Dynamic

Sparse Dense Sparse Dense

MAR matrix

AUC 1.00 (0.75) 0.55 (0.50) 1.00 (0.87) 0.91 (0.76)
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Figure B.2: Results obtained from the non-dynamic and dynamic methods with the fMRI
prior in Simulation 2, comparing with a conventional approach of the non-dynamic method.
See the caption for (a) and (c) of Figs. 4.4A, and 4.4B.

was similar to that of Fig. 4.4, while the MAR coefficients of the non-dynamic
method were more likely to be regarded as zero in Fig. B.2, because of the
extraction of active sources when computing the MAR matrix.

Fig. B.3 presents that advantages in the prediction accuracy of the dynamic
method became noticeable when comparing with a conventional approach of
the non-dynamic method. Similar to the results of Simulation 2, the esti-
mated effective connectivity among active sources (see Fig. B.4) was almost
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Figure B.3: Results of GoF analysis on real experimental data that contain a missing duration,
comparing with a conventional approach of the non-dynamic method. See the caption for
Fig. 4.7C.

the same as that presented in Fig. 4.8. For Subject I, the MAR coefficients
of the non-dynamic method between IOG–FG were regarded as zero because
IOG sources were absent (see Fig. B.5A). For Subject VIII, there were no es-
sential differences in these coefficients of the non-dynamic method between
Figs. 4.9B and B.5B.

Overall, differences in evaluation scores between the non-dynamic and
dynamic methods were enlarged by adopting the conventional approach of
the non-dynamic method; where the MAR matrix was computed only from
pairs of active sources. This characteristic suggests that the procedure of esti-
mating effective connectivity over the whole brain itself is also an important
component for obtaining accurate solutions, as well as dynamic modeling and
simultaneous estimation.
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Figure B.4: Reconstructed current sources and their effective connectivity, comparing with a
conventional approach of the non-dynamic method. See the caption for Fig. 4.8.
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Figure B.5: Representative examples of the event-related dynamics of stimulus-evoked re-
sponses, comparing with a conventional approach of the non-dynamic method. See the cap-
tion for the upper part of Fig. 4.9.
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Issac, J.-M. Lina, and H. Benali, “Symmetrical event-related EEG/fMRI
information fusion in a variational Bayesian framework.” NeuroImage,
vol. 36, no. 1, pp. 69–87, 2007.

[13] J. Daunizeau, J. Mattout, D. Clonda, B. Goulard, H. Benali, and J. M. Lina,
“Bayesian spatio-temporal approach for EEG source reconstruction: con-
ciliating ECD and distributed models,” IEEE Trans. Biomed. Eng., vol. 53,
no. 3, pp. 503–516, 2006.

[14] O. David and K. Friston, “A neural mass model for MEG/EEG: coupling
and neuronal dynamics.” NeuroImage, vol. 20, no. 3, pp. 1743–1755, 2003.

[15] O. David, L. Harrison, and K. Friston, “Modelling event-related re-
sponses in the brain.” NeuroImage, vol. 25, no. 3, pp. 756–770, 2005.

[16] O. David, S. Kiebel, L. Harrison, J. Mattout, J. Kilner, and K. Friston,
“Dynamic causal modeling of evoked responses in EEG and MEG.” Neu-
roImage, vol. 30, no. 4, pp. 1255–1272, 2006.

[17] J. Davies-Thompson and T. J. Andrews, “Intra- and interhemispheric con-
nectivity between face-selective regions in the human brain.” J. Neuro-
physiol., vol. 108, no. 11, pp. 3087–3095, 2012.



Bibliography 113

[18] G. Deco, V. Jirsa, A. R. McIntosh, O. Sporns, and R. Kötter, “Key role of
coupling, delay, and noise in resting brain fluctuations,” Proc. Natl. Acad.
Sci. U.S.A., vol. 106, no. 29, pp. 10 302–10 307, 2009.

[19] G. Deco, V. K. Jirsa, and A. R. McIntosh, “Emerging concepts for the
dynamical organization of resting-state activity in the brain.” Nat. Rev.
Neurosci., vol. 12, no. 1, pp. 43–56, 2011.

[20] L. Ding and B. He, “Spatio-temporal EEG source localization using a
three-dimensional subspace FINE approach in a realistic geometry in-
homogeneous head model.” IEEE Trans. Biomed. Eng., vol. 53, no. 9, pp.
1732–1739, 2006.

[21] S. L. Fairhall and A. Ishai, “Effective connectivity within the distributed
cortical network for face perception.” Cereb. Cortex, vol. 17, no. 10, pp.
2400–2406, 2007.

[22] R. S. J. Frackowiak, K. J. Friston, C. D. Frith, R. J. Dolan, C. J. Price,
S. Zeki, J. T. Ashburner, and W. D. Penny, Human Brain Function, 2nd ed.
New York: Academic Press, 2004.

[23] K. Friston, “Beyond phrenology: what can neuroimaging tell us about
distributed circuitry?” Annu. Rev. Neurosci., vol. 25, pp. 221–250, 2002.

[24] K. J. Friston, “Functional and effective connectivity in neuroimaging: A
synthesis,” Hum. Brain Mapp., vol. 2, no. 1-2, pp. 56–78, 1994.

[25] K. J. Friston, L. M. Harrison, J. Daunizeau, S. J. Kiebel, C. Phillips, N. J.
Trujillo-Barreto, R. Henson, G. Flandin, and J. Mattout, “Multiple sparse
priors for the M/EEG inverse problem.” NeuroImage, vol. 39, no. 3, pp.
1104–1120, 2008.

[26] K. J. Friston, L. M. Harrison, and W. D. Penny, “Dynamic causal mod-
elling,” NeuroImage, vol. 19, no. 4, pp. 1273–1302, 2003.

[27] M. Fukushima, O. Yamashita, A. Kanemura, S. Ishii, M. Kawato, and
M. Sato, “A state-space modeling approach for localization of focal cur-



114 Bibliography

rent sources from MEG.” IEEE Trans. Biomed. Eng., vol. 59, no. 6, pp.
1561–1571, 2012.

[28] M. Fukushima, O. Yamashita, T. R. Knösche, and M. Sato, “MEG source
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