
NAIST-IS-DD1161007

Doctoral Dissertation

A Study on Effective and Efficient XML Element

Retrieval Considering Document Updates

Atsushi Keyaki

February 6, 2014

Department of Information Science

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Atsushi Keyaki

Thesis Committee:

Professor Hirokazu Kato (Supervisor)

Professor Yuji Matsumoto (Co-supervisor)

Professor Jun Miyazaki (Tokyo Institute of Technology)

Associate Professor Kenji Hatano (Doshisha University)

Assistant Professor Goshiro Yamamoto (Co-supervisor)



A Study on Effective and Efficient XML Element

Retrieval Considering Document Updates∗

Atsushi Keyaki

Abstract

Extensible Markup Language (XML) is a markup language for structured doc-

uments that has become the de facto format for data exchange. The data formats

of many applications, such as Wikipedia articles and office documents, are defined

as XML formats. A large number of XML documents are available on the Web,

and we expect this trend to continue in the future.

Search system users have to find out information they need by themselves, be-

cause most of existing search systems return a list of documents as search results.

It takes a large effort to find it out from long-length documents. In addition,

there is a possibility that users cannot find useful information nevertheless they

spent long time on the documents. This information seeking process is much

cost in information retrieval. On the other hand, users of XML element search

systems need not to find out information they need by themselves because XML

element search systems return a list of elements which satisfy users’ information

need. Therefore, the framework of an XML element search system can reduce

the cost in information retrieval, which is the reason why XML element retrieval

techniques are useful and worth working on.

There are two main streams for researches of XML element retrieval tech-

niques, i.e., 1) attaining effective search for satisfying accurate information re-

trieval, and 2) attaining efficient search for fast query processing. In order to

satisfy 1), we proposed a scoring method to identify informative XML elements

and a reconstruction method of search results to identify the most appropriate

∗Doctoral Dissertation, Department of Information Science, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1161007, February 6, 2014.

i



granularity of XML elements as search results. Our experimental evaluations

showed our proposed methods overwhelmed existing methods in search accuracy.

Then, we also try to handle document updates of an XML search system.

This is because document updates need to be managed when we come to think

of a practical use of search systems. If document updates are not handled in a

search system, users cannot obtain appropriate search results, which reduces the

usefulness of the search system. We propose to extend a function of incremental

updates of indices to general XML element search systems, with filters to reduce

the update cost by eliminating unimportant elements and terms. Moreover, we

apply a method for integrating path expression which estimates accurate global

weights in term calculation. We confirmed the proposed methods update indices

in short time without a drop in search accuracy.

As an output of these researches, we developed a practical XML element search

system which achieves accurate search and fast query processing with satisfying

immediate reflection of document updates. An expected application of XML el-

ement retrieval techniques is Web document especially HTML document which

is one of the the most common data format of Web documents. To fill the gap

between XML element retrieval and element retrieval for HTML documents, say

HTML element retrieval, we proposed methods for adapting (XML) element re-

trieval techniques to HTML documents. These are 1) a reconstruction method

for resolving disagreement between a logical document structure and a physical

document structure, and 2) a filter to eliminate outside of the main content (sub–

content). The findings from our experiments are that the reconstruction method

improved search performance while the filter removed elements composed of sub–

content properly.

Keywords:

Extensible Markup Language (XML), element retrieval, accurate retrieval, fast

sarch, document update, indexing, statistics

ii



文書の更新を考慮した高精度かつ高速な

XML 部分文書検索に関する研究∗

欅 惇志

内容梗概

W3C によって策定された Extensible Markup Language (XML) はデータ交換

の標準フォーマットとして広く利用されており，近年は様々なアプリケーション

のデータ，Wikipedia 記事や Office 文書など多くの用途に利用されている．その

ため，現在までに膨大な数の XML 文書が蓄積され，今後ますます多くの XML

文書が作成されると予想される．

従来の検索エンジンのうちのほとんどは，検索結果として文書のリストを提示

する．そのため，ユーザは各文書中から欲しい情報を自ら発見する必要があるが，

記述量の多い文書から求める情報を抽出する際には大きな労力を必要とし，また，

長時間を費やしても欲しい情報を含まない可能性もあり，これらの作業はユーザ

にとって大きな負担である． それに対して，XML 部分文書検索では，検索結果

として文書のうちユーザが必要とする情報が記述された箇所を特定して提示する

ことを目指す．従って，ユーザの検索時の労力を軽減することが可能な，非常に

有用な検索技術である．

既存の XML 部分文書検索に関する研究では，主に，1) ユーザが求める必要

十分の内容を検索結果として提示することを目指す高精度な検索と，2) ユーザに

対して高速に検索結果を提示することを目指す高速な検索が取り組まれてきた．

我々は高精度な検索を実現するために，情報量の多い部分を発見するためのスコ

アリング手法と，文書中の検索結果として最適な部分を特定するための検索結果

構築手法の提案を行った．評価実験の結果，提案手法は従来の手法と比較してよ

り高精度に検索が可能であるという結果が得られた．

また，我々は検索システムの実運用を想定した場合には必ず発生する文書の更

新への対応を目指した．なぜなら，これら文書の更新に対応しなかった場合には，

∗奈良先端科学技術大学院大学 情報科学研究科 専攻 博士論文, NAIST-IS-DD1161007, 2014年

2月 6日.

iii



検索システムはユーザに対して適切な検索結果を提示することはできず，その結

果，検索システムの利便性が低下するためである．我々は，一般的な構成の XML

部分文書検索システムに差分更新機能を搭載させるべく新たな索引構造を定義し，

更新対象のうち不要なデータを除外するためのフィルタを提案した．更に，索引

語の重み算出時において正確な大域的重み算出のためのパス式統合手法の提案を

行った．評価実験の結果，提案手法を適用することで，検索精度の低下を抑制し

つつ，極めて短時間で索引の更新を実現した．

これらの研究の成果物として，正確な検索と高速なクエリ処理，そして文書

の更新の即座の反映を満たした実用的な XML 部分文書検索システムを開発した．

XML部分文書検索技術の期待される応用対象としてWeb文書が存在する．XML

部分文書検索と，Web文書の中でも代表的なファイルフォーマットである HTML

文書に対する部分文書検索の間に存在する差異を解決するため，HTML 文書に対

して部分文書検索技術の適用を目的とした文書の整形手法，即ち，1) 文書の論理

構造と物理構造の不一致解消のための文書の再構造化手法，2) 本文以外のサブ ·
コンテンツ除外のためのフィルタの提案を行った．評価実験から，再構造化手法

によって計算句性能が向上し，フィルタによってサブ ·コンテンツの除外が確認
された．

キーワード

Extensible Markup Language (XML), 部分文書検索，高精度 XML 検索，高速

XML 検索，文書の更新，索引，統計量

iv



Acknowledgments

I warmly thank my supervisor, Professor Hirokazu Kato. His comments, based

on the view point of a different research area, are quite useful to train my skills to

abstract my idea. Nevertheless my major is different from his major, he welcomed

to his laboratory. Moreover, he always cared me warmly. I could stay IMD Lab

in a comfortable way thanks to his gentle manner. I also thank that I could learn

about computer vision and human interface to some extent. It is good opportunity

for me to turn my eyes to other directions of research.

I owe deepest thanks to Professor Jun Miyazaki at University of Tokyo Insti-

tute of Technology for his appropriate supervision. He gave me many valuable

advice and comments on both my research and attitude for being a good re-

searcher. He has always guided me in patience since my B.S. degree, even when

I have not had sufficient knowledge and skill to discuss with him. He kindly

repeated the discussion many times until I got understood. I will always keep

in mind that research need to be based on a practical problems as one of many

lessons given by him.

I appreciate Associate Professor Kenji Hatano at Doshisha University. The

experiences during my B.S. degree and M.S. degree at Doshisha University became

the basis of my current research. I also appreciate him for encouraging me in many

ways. In particularly, I really thank that he recommended me to go on to this

school. I’m sure that this three years made me improved. Then, I also thank that

he gave me many useful comments after my graduation from his laboratory.

v



Acknowledgments

I would like to thank my thesis co-supervisor Professor Yuji Matsumoto.

Thank you very much for reviewing my thesis and for the insightful comments

and suggestions that helped me to improve the overall quality of this thesis.

A special gratitude to Assistant Professor Goshiro Yamamoto. Discussions

with him on not only how to do a good research but also how to manage a

laboratory are full of fun. I am also grateful to Assistant Professor Takafumi

Taketomi for his valuable and sharp comments to my study.

I am also indebted to Assistant Professor Toshiyuki Shimizu at Kyoto Univer-

sity for his kindness and help with my research and other fellowship applications.

I also would like to show my gratitude to Associate Professor Toshiyuki Ama-

gasa at University of Tsukuba for his honest comments. These comments prompted

me to improve my presentation.

I also appreciate Professor Haruo Yokota at University of Tokyo Institute of

Technology. He always asked me many critical questions on conferences.

I’m very thankful with associate researcher Yuki Arase and Principal re-

searcher Jun’ichi Tsujii at Microsoft Research Asia for their supervision during my

stay at Microsoft Research Asia. These days were really exciting and enjoyable.

I also owe my special thanks to Associate Professor Tetsuya Sakai at Waseda

University for encouraging me to apply for study abroad. Without your sugges-

tion, I would not have gone through amazing experiences.

My thanks are also extended to all current and former members of IMD Lab. In

special, I cannot thank enough Jaakko Hyry, Marc Ericson Santos, Max Krichen-

bauer, and Luiz Gustavo Moreira Sampaio for proofreading some Chapters of my

thesis. Your suggestions and corrections were indeed a great help.

A kindly thanks to Yuichiro Fujimoto for sharing challenging time with me as

the only other Japanese Ph.D. course student. Our talks and your attitude for

research always made me feel better and encouraged.

I would like to thank the Lab’s secretary Ms. Makiko Ueno for her help with

official documents and other bureaucracies.

I am very grateful to the Japan Society for the Promotion of Science (JSPS)

for adopting me as JSPS Research Fellow (DC2). During my Ph.D. program, I

was able to have a comfortable student life thanks to the financial support.

This acknowledgment is extended to all members of my family, whose support

give me enough strength to overcome all obstacles. Especially, I would like to send

vi



my word to my parents. I respect my father Kazumori Keyaki from the bottom

of my heart for his unique way of thinking. I will try to follow my mother Hiroko

Keyaki’s example being kind with the others.

vii



Contents

Acknowledgments v

1 Introduction 1

1.1. Background and motivation . . . . . . . . . . . . . . . . . . . . . 1

1.2. Research Problems and Solutions . . . . . . . . . . . . . . . . . . 3

1.2.1 Accurate XML Element Retrieval . . . . . . . . . . . . . . 3

1.2.2 XML Element Retrieval System Considering Document Up-

dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Expansion into Web Documents . . . . . . . . . . . . . . . 5

1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8

2.1. Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Traditional Document Retrieval Techniques . . . . . . . . 10

2.1.2.1 Term-weighting-based Scoring Function . . . . . 10

2.1.2.2 Network-analysis-based Scoring Function . . . . . 13

2.2. XML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Prominent Structured Documents . . . . . . . . . . . . . . 13

2.2.2 Targeted XML Documents . . . . . . . . . . . . . . . . . . 15

viii



Contents

2.2.3 Search Methods for XML documents . . . . . . . . . . . . 16

2.2.4 XML Element Retrieval . . . . . . . . . . . . . . . . . . . 16

2.2.4.1 Comparison of Document Search and Element Search 17

2.2.4.2 XML Element . . . . . . . . . . . . . . . . . . . . 18

2.2.4.3 History of XML Element Retrieval . . . . . . . . 21

2.2.4.4 Ad Hoc Track of INEX . . . . . . . . . . . . . . . 22

2.2.4.5 INEX Test Collections for Ad Hoc Track . . . . . 22

2.2.4.6 Queries Used in INEX . . . . . . . . . . . . . . . 24

2.3. One Click Access Task (1CLICK) . . . . . . . . . . . . . . . . . . 25

2.4. Database Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Related Studies 29

3.1. XML Element Retrieval . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1 Accurate XML Search . . . . . . . . . . . . . . . . . . . . 29

3.1.2 Fast XML Search . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.3 Data Cleansing Techniques . . . . . . . . . . . . . . . . . . 35

3.1.4 Important Sentence Extraction . . . . . . . . . . . . . . . 35

3.2. XML Keyword Search . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3. Dynamic Updates of Data . . . . . . . . . . . . . . . . . . . . . . 37

3.4. HTML Documents Content Comprehension and Classification . . 38

4 Accurate XML Element Retrieval

Beyond Traditional Term-Weighting Schemes 40

4.1. A Scoring Method Considering Requirements for Result Snippets 41

4.2. Result Reconstruction Method . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Selecting an Effective Scoring Method . . . . . . . . . . . . 44

4.2.2 Generating a Set of Integrated XML Elements . . . . . . 45

4.2.2.1 Extraction Limit . . . . . . . . . . . . . . . . . . 46

4.2.2.2 Reconstruction of Elements . . . . . . . . . . . . 47

4.2.3 Generating a Refined Ranked List . . . . . . . . . . . . . . 48

4.3. A Scoring Method with Statistics of Related Elements . . . . . . . 49

4.3.1 Bottom-Up Scoring . . . . . . . . . . . . . . . . . . . . . . 49

4.3.2 Top-Down Scoring . . . . . . . . . . . . . . . . . . . . . . 51

4.4. Integrated Use of Scoring Functions . . . . . . . . . . . . . . . . . 51

4.4.1 Integration Procedure of Each Scoring Function . . . . . . 51

ix



Contents

4.4.2 Example of Generating SIXE and a Refined Ranked List . 53

4.5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.6. Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . 56

4.6.1 Preliminary Experiments . . . . . . . . . . . . . . . . . . . 56

4.6.1.1 Smoothing Method for Query Likelihood Model

for Element Retrieval Techniques . . . . . . . . . 56

4.6.1.2 Choosing Term-weighting Scheme for Initial Search 57

4.6.1.3 Tuning Parameter for EL of SIXE . . . . . . . . 59

4.6.1.4 Tuning Parameter for BU . . . . . . . . . . . . . 60

4.6.2 Evaluations for Each Scoring Function . . . . . . . . . . . 61

4.6.3 Evalutions for Integrated Methods . . . . . . . . . . . . . 62

4.6.4 Further Experiments with SIXE, BU, and TD . . . . . . . 63

4.6.5 Comparisons to Document Search . . . . . . . . . . . . . . 66

5 Fast Incremental Indexing with

Accurate and Fast XML Element Retrieval 68

5.1. Fast Incremental Updates of Indices . . . . . . . . . . . . . . . . . 70

5.1.1 Expansion of Existing Functions . . . . . . . . . . . . . . . 70

5.1.1.1 Structures of Indices . . . . . . . . . . . . . . . . 70

5.1.1.2 Top-k Searches . . . . . . . . . . . . . . . . . . . 71

5.1.2 Handling Document Updates . . . . . . . . . . . . . . . . 72

5.1.2.1 Document Insertion . . . . . . . . . . . . . . . . 72

5.1.2.2 Document Deletion . . . . . . . . . . . . . . . . . 74

5.1.2.3 Document Modification . . . . . . . . . . . . . . 74

5.1.3 Filters for Reducing Update Cost . . . . . . . . . . . . . . 75

5.1.3.1 Element Filter . . . . . . . . . . . . . . . . . . . 76

5.1.3.2 Term Filter . . . . . . . . . . . . . . . . . . . . . 78

5.2. Estimating Accurate Global Weights . . . . . . . . . . . . . . . . 79

5.2.1 Effects of Incremental Updates . . . . . . . . . . . . . . . 79

5.2.1.1 Experimental Procedure . . . . . . . . . . . . . . 80

5.2.1.2 Evaluation Results . . . . . . . . . . . . . . . . . 80

5.2.2 Integrating Path Expression for Accurate Global Weights . 81

5.2.2.1 Set-of-Tags Method (ST) . . . . . . . . . . . . . 82

5.2.2.2 Bag-of-Tags Method (BT) . . . . . . . . . . . . . 83

x



Contents

5.2.2.3 Order-of-Tags Method (OT) . . . . . . . . . . . . 84

5.3. Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . 85

5.3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . 85

5.3.2 Preliminary Experiments for the Element Filter and Term

Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.3 Evaluations of the Document Set with Static Statistics . . 87

5.3.3.1 Effects of the Proposed Methods . . . . . . . . . 87

5.3.3.2 Search Accuracy Combined with Reconstruction

Method . . . . . . . . . . . . . . . . . . . . . . . 89

5.3.4 Evaluations of the Document Set with Dynamic Statistics 91

5.4. Further Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Expansion of XML Element Retrieval into HTML Documents 96

6.1. Reconstruction of a Document Structure . . . . . . . . . . . . . . 99

6.2. Eliminating Elements of Outside of Main Body . . . . . . . . . . 101

6.3. Experimental Evaluations . . . . . . . . . . . . . . . . . . . . . . 102

6.3.1 Evaluations of the Reconstruction Method . . . . . . . . . 103

6.3.2 Evaluation of Sub–content Filter . . . . . . . . . . . . . . 104

6.3.3 Effect of XML Element Retrieval Techniques for HTML

Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.3.1 Experimental Design . . . . . . . . . . . . . . . . 105

6.3.3.2 Results of the Experiments . . . . . . . . . . . . 106

6.3.3.3 Positive and Negative Examples of the Reconstruc-

tion Method . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusions 110

7.1. Summary of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.1 For More Accurate XML Element Retrieval . . . . . . . . 112

7.2.2 Finding Good Trade-off Between Incremental Update and

Rebuilding from Scratch . . . . . . . . . . . . . . . . . . . 112

7.2.3 Developing a Practical Element Retrieval Web Search System112

Publication List 114

xi



Contents

Appendix 119

A. SMART Stop List . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

B. Examples of SQL format query . . . . . . . . . . . . . . . . . . . 121

B.1 SQL Format Query of Baseline Approach . . . . . . . . . . 121

B.2 SQL Format Query of QS . . . . . . . . . . . . . . . . . . 122

B.3 SQL Format Query of QK . . . . . . . . . . . . . . . . . . 124

B.4 SQL Format Query of QO . . . . . . . . . . . . . . . . . . 125

Bibliography 127

xii



List of Figures

1.1 Research goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Model of information retrieval . . . . . . . . . . . . . . . . . . . . 9

2.2 Structured documents . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Example of data-centric XML document . . . . . . . . . . . . . . 19

2.4 (Document-centric) XML document . . . . . . . . . . . . . . . . . 20

2.5 XML tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 XML element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Overview of our proposed method . . . . . . . . . . . . . . . . . . 43

4.2 Example of overwrite elements . . . . . . . . . . . . . . . . . . . . 48

4.3 Overview of Bottom-Up scoring . . . . . . . . . . . . . . . . . . . 48

4.4 Example of generating a refined ranked list for an XML document 53

4.5 Comparison of scoring methods . . . . . . . . . . . . . . . . . . . 58

4.6 Comparison of our reconstruction method versus the baseline . . . 65

4.7 Comparison of XML element search and document search . . . . . 67

5.1 Structure of the indices . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Architecture of the simple approach . . . . . . . . . . . . . . . . . 72

5.3 the version list and query processing . . . . . . . . . . . . . . . . 73

5.4 The element filter and the term filter . . . . . . . . . . . . . . . . 78

xiii



List of Figures

5.5 Examples of path expressions . . . . . . . . . . . . . . . . . . . . 82

5.6 An example of classification in ST . . . . . . . . . . . . . . . . . . 83

5.7 An example of classification in BT . . . . . . . . . . . . . . . . . 84

5.8 An example of classification in OT . . . . . . . . . . . . . . . . . 84

5.9 Effect on recall by the two filters . . . . . . . . . . . . . . . . . . 90

6.1 Typical structure of a Web document . . . . . . . . . . . . . . . . 98

6.2 Reconstruction HTML documents . . . . . . . . . . . . . . . . . . 100

6.3 Multiple paragraphs are aggregated into one element . . . . . . . 107

6.4 Simplified original HTML document . . . . . . . . . . . . . . . . . 108

6.5 Simplified reconstructed document . . . . . . . . . . . . . . . . . 108

6.6 Newly generated element including sub–content . . . . . . . . . . 109

xiv



List of Tables

2.1 Comparison between data-centric XML and document-centric XML 15

2.2 Examples of XPath syntax . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Effects of a smoothing method on search accuracy . . . . . . . . . 57

4.2 Standard deviation and effect of SIXE . . . . . . . . . . . . . . . 57

4.3 iP[.01] at each α for EL . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 iP[.01] at each β for EL . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 iP[.01] at each γ for BU (Equation 4.5) . . . . . . . . . . . . . . . 61

4.6 iP[.01] at each γ for BU (Equation 4.7) . . . . . . . . . . . . . . . 61

4.7 Comparison among the propoed scoring functions . . . . . . . . . 62

4.8 Comparison among integrated methods . . . . . . . . . . . . . . . 63

4.9 Effect of scoring methods INEX 2008 and INEX 2010 . . . . . . . 64

4.10 Comparison of four INEX participant search systems including our

proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1 The results of the simple approach . . . . . . . . . . . . . . . . . 80

5.2 Accuracies with changing τel . . . . . . . . . . . . . . . . . . . . . 86

5.3 Depth of Path expressions and the ratio of elements . . . . . . . . 86

5.4 Effects of the term filter with changing n . . . . . . . . . . . . . . 87

5.5 Effects of the proposed approaches . . . . . . . . . . . . . . . . . 88

5.6 Effects of a reconstruction method . . . . . . . . . . . . . . . . . . 91

xv



List of Tables

5.7 Comparison with other INEX participants . . . . . . . . . . . . . 91

5.8 Category and Query . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.9 Effects on emerging a new topic . . . . . . . . . . . . . . . . . . . 93

6.1 Inserted Heading Container tag . . . . . . . . . . . . . . . . . . . 103

6.2 Degree of deepening of document structures . . . . . . . . . . . . 103

6.3 Discriminant accuracy of the sub–content filter . . . . . . . . . . . 104

6.4 Agreement rate, exhaustiveness rate, and F–measure . . . . . . . 106

6.5 Average text size and standard variation at top-10 . . . . . . . . . 106

xvi



List of Abbreviations

DB DataBase

HTML HyperText Markup Language

IR Information Retrieval

NTCIR NII Testbeds and Community for Information access Research

NLP Natural Language Processing

RDB Relational DataBase

RDBMS Relational DataBase Management System

INEX Initiative for the Evaluation of XML Retrieval

W3C World Wide Web Consortium

XML Extensible Markup Language

xvii



CHAPTER 1

Introduction

1.1. Background and motivation

Nowadays, the cyber world has changed for Internet users. The users can not

only utilize information on the World Wide Web (WWW, Web) by W3C [1],

but also generate and publish information as a content generator. As a result,

a tremendous amount of data is stored on the Web, which is represented as the

information explosion era or the big data era. In this situation, it is almost

impossible to find out information they need from the Web without any tools.

Therefore, the users use search systems to find the information efficiently and

effectively.

The most popular and commonly used search system is a document search

system. It plays a necessary role in our daily life. However, it is not true that

document search system users are completely satisfied with state-of-the-art docu-

ment search systems. A survey on the trustworthiness of Web search systems [2]

reports that users think it is a waste of time for deciding documents to browse

from a list of documents retrieved as search results. During information seek-

ing process, many Web search users utilize the title and the result snippet1 of

1A result snippet is a short summary of each document. It is discussed in Section 2.2.4.1 in

1



Chapter 1. Introduction

each document. However, they also think that these kinds of information are not

enough for efficient browsing, and they want to utilize information other than title

and result snippets.

Moreover, not only text documents but also many kinds of data such as images,

music (audio) files, and movies appear on the Web these days. In addition, users’

information need is becoming more and more diverse. These cause appearances of

many kinds of search systems, i.e., an image search system, a music search system,

a movie search system, and so on. Each search system is useful as far as users’

information need is satisfied within a specific data format domain. These search

systems specified to a certain data format domain cannot be used efficiently when

the users’ information need is satisfied across two or more data format domains,

and the search system is expected to target multiple data formats at the same

time.

From the discussion above, a novel framework of information retrieval, beyond

document retrieval, is required. This is why an Extensible Markup Language [3]

(XML) search system attracts a lot of attentions recently. XML is a markup

language for structured documents that has become the de facto format for data

exchange. This means data defined by different data formats can be exchanged

with each other only if these data formats are based on XML. These data are

targeted at the same time with an XML search system. The data formats of many

applications, such as Wikipedia [4] articles and office documents, are defined as

XML-based data formats. A large number of XML documents are available on

the Web, and we expect this trend to continue in the future.

There are several search techniques for XML documents, but we mainly focus

on XML element retrieval [5] among these techniques. We would like to show the

advantage of an XML element search system. As we mentioned before, search

system users have to find out information they need by themselves, because most

of existing search systems return a list of documents as search results. It takes a

large effort to find it out among long documents. In addition, there is a possibility

that users cannot find useful information nevertheless they have already spent a

long time on the documents. This information seeking process is expensive in

information retrieval. On the other hand, users need not find out information

they need by themselves because XML element search systems return a list of

more detail.

2



1.2. Research Problems and Solutions

accurate search

practical XML 

element search 

system

fast reflection of 

document updates

fast query 

processing

practical Web 

search system

reconstruction of 

document’s 

structure

Figure 1.1. Research goal

elements2 which satisfy the users’ information need. We believe this is true because

it is reported that relevant descriptions and appropriate granular elements largely

agree with each other [6]. Therefore, the framework of an XML element search

system can reduce the cost in information retrieval, which is the reason why XML

element retrieval techniques are useful and worth working on.

1.2. Research Problems and Solutions

First of all, we show the research goal of this thesis in Figure 1.1. Hereafter, we

would like to explain the research goal with each components for the goal.

1.2.1 Accurate XML Element Retrieval

There are two main streams for researches of XML element retrieval techniques,

i.e., 1) effective search for satisfying accurate information retrieval, and 2) effi-

2An element is a partial document (sub-document) of an XML document. We explain element

in Section 2.2.4 more fully.

3



Chapter 1. Introduction

cient search for fast query processing. Accuracy is the most important aspect for

information retrieval systems, because fast search systems that return inaccurate

search results quickly are not useful for users. Accordingly, we firstly work on

attaining accurate search.

Concerning 1), existing techniques for effective XML retrieval are often derived

from methods for document retrieval. In the research field of document retrieval,

the traditional approach to find relevant documents out is as follows: first, cal-

culate a term weight of each term in a document with a term-weighting scheme;

next, compute a score for each document using these term weights. The approach

for XML element retrieval is the same except that a term-weighting scheme is

specialized to XML element retrieval. Although these approaches have been suc-

cessful, these are not enough to attain effective “XML element retrieval” because

a gap between the goal of XML element retrieval and that of document retrieval

exists. A document search system tries to retrieve a relevant document which

contains descriptions satisfying users’ information need. By contrast, an XML

element search system tries to retrieve a relevant element which satisfies users’

information need. This means the XML element search system needs to identify

important descriptions in the XML document. Accordingly, the requirement for

XML element retrieval is more difficult than that of document retrieval.

Moreover, existing studies don’t show a clear and effective strategy for return-

ing search results when several elements in an XML document are judged relevant.

The approach that these existing studies apply is just to return an element which

is regarded as the most relevant. It is not always true that such element is the

most appropriate search result for users.

In addition, existing approaches treat every element as independent search

target in term calculation. However, elements in the same document are somewhat

influential with each other.

Therefore, we proposed a scoring method to identify informative XML ele-

ments, a reconstruction method of search results to identify the best granular

XML elements as search results, and a scoring method to identify useful elements

with statistics of related elements.

On the other hand, there are many studies focused on 2). Their approaches

are mainly classified into two; a) removing useless data before stored into the

database, and b) applying an efficient query processing method. Since these

4



1.2. Research Problems and Solutions

scopes are not our main concern, we basically utilize existing studies regarding

2). However, note that these techniques are related to our study discussed in the

next section.

1.2.2 XML Element Retrieval System Considering Docu-

ment Updates

Document updates need to be managed when we come to think of a practical use

of search systems. As such, we also try to handle document updates of an XML

element search system. If document updates are not handled in a search system,

users cannot obtain appropriate search results, which reduces the usefulness of the

search system. Thus, the index of a search system need to be updated according

to document updates. When we update an index in the simple manner, that is,

rebuilding an index from scratch and treating all data as update targets, update

efficiency is very low.

In addition, global weights, i.e. the statistics computed with all documents in

the search system, may not be accurate when only a few number of documents is

indexed or when global weights change drastically.

To solve the problems related to handling document updates, we propose to

extend a function of incremental updates of indices to general XML element re-

trieval systems, with filters to reduce the update cost by eliminating unimportant

elements and terms. Moreover, we apply a method for integrating path expression

which estimates accurate global weights in term calculation.

1.2.3 Expansion into Web Documents

As a result of these studies mentioned above, we try to develop a practical XML

element search system which achieves accurate search and fast query process-

ing with satisfactory of fast reflection of document updates as Figure 1.1 denotes.

There is still a gap between a practical XML element search system and a practical

information retrieval system, because the main target of Web document search

systems is not XML documents but HyperText Markup Language [7] (HTML)

documents. XML documents and HTML are different from each other in some

features, although they both originate from Standard Generalized Markup Lan-

guage [8] (SGML) which is a format of structured document. While XML is

5



Chapter 1. Introduction

defined for managing the content, HTML is defined for displaying the documents

on a Web browser. Accordingly, HTML documents have following features:

1. the document structures of HTML documents are less well-formatted com-

pared with XML documents,

2. there is disagreement between the logical structure of the document contents

and physical document structure, and

3. HTML documents contain many of outside of main main–content (sub–

content) which are irrelevant for a query.

These features can be harmful for effectiveness of XML element retrieval.

Then, in adapting (XML) element retrieval techniques to HTML document, or

HTML element retrieval, we adopt a complement tool for HTML tags, reconstruct

a document structure of HTML documents to resolve disagreement between a

logical document structure and a physical document structure, and apply a filter

to eliminate sub–content (elements).

1.3. Contributions

The main contributions of this thesis are:

• Accurate XML element retrieval methods

We propose 1) a scoring method considering requirements for results

snippets, 2) a reconstruction method to identify the best granularity for

search results, and 3) a scoring method considering statistics of related el-

ements. Experimental evaluations showed that the proposed methods ex-

ceeded a traditional baseline approach in search accuracy. Particularly, the

result reconstruction method contributes most to a rise in search accuracy.

The most accurate setting of the proposed methods surpasses the state-of-

the-art approach of document retrieval.

• Methods for fast incremental updates

We propose 1) an index structure for fast term calculation, 2) two filters

for eliminating useless data, and 3) an estimation method of statistics. As

a result of experiments, we attained incremental updates of indices in a

6



1.4. Outline of the thesis

short time when document updates occurs. Moreover, we diminished the

drop in search accuracy. Furthermore, search accuracy of the proposed

method showed equal to grater than that of rebuilding from scratch approach

combined with the reconstruction method mentioned above.

• An expansion of XML element retrieval techniques into Web doc-

uments

We propose 1) a reconstruction method to conform documents’ logical

structure to physical documents’ structure, and 2) a filter to eliminate sub–

content. The experiments yield that the proposed filter removed elements

composed of sub–content, which improved search accuracy. Likewise, the re-

construction method improved search performance. Moreover, it also turned

out that search accuracy is higher and less laborious with the framework of

element retrieval than these of document retrieval.

1.4. Outline of the thesis

This thesis consists of seven chapters. Chapter 2 provides an overview of infor-

mation retrieval and XML followed by XML element retrieval. It also introduces

some notations and definitions used throughout the thesis.

Chapter 3 describes related studies which are composed of studies of XML

element retrieval, XML keyword search, dynamic updates of data, and content

comprehension of HTML documents.

Chapter 4 focuses on our proposed accurate XML element retrieval methods,

whereas Chapter 5 describes a fast incremental indexing method.

In Chapter 6, an expansion of XML element retrieval techniques into Web

documents is discussed.

Chapter 7 summarizes this thesis, with discussions about the contributionsand

possible future work.

7



CHAPTER 2

Preliminaries

XML element retrieval are strongly related to two techniques, namely information

retrieval and XML search. Thus, this Chapter explains an overview of information

retrieval techniques for text documents, followed by XML including XML element

retrieval techniques. We also talk about overview of databases systems.

2.1. Information Retrieval

2.1.1 Overview

As a consequence of the Internet’s spread and a performance improvement of

computers, a variety of data such as text document, music files, and movies appear

on the Web. Many approaches are proposed for each type of data to achieve

effective and efficient information retrieval. In this overview, we focus on text

document retrieval because other information retrieval techniques are based on it.

Figure 2.1 depicts the model of text document retrieval [9]. From a search

system user’s perspective, the user converts his/her information need to a format

which can be input into a computer. The converted information need is called a

query which is usually a set of keywords in a text document search system. A

computer neither interprets a query nor documents generated by humans. Conse-

8



2.1. Information Retrieval

Internal expression of 

the query

Query

User’s information need

Documents set

Internal expression of 

the document set

Search 

results

Comparison

Figure 2.1. Model of information retrieval

quently, both a query and documents set are converted into an internal expression

for enabling efficient comparison with each other. As a result of the comparison,

each document is assigned a relevancy score to the query. A document is highly

relevant if the document has a high relevancy score. The search system returns

relevant documents as search results in descending order of their relevancy.

During the process of converting words into an internal expression, such words

that are useless to identify relevant documents are eliminated. Prepositions, pro-

nouns, auxiliary verbs, conjunctions, and grammatical articles are applied, and

these are classified as function words. On the other hand, words such as nouns,

verbs, adjectives, and adverbs are classified as content words. Hereafter, we call

a content word as an index term, or simply term. Then, even in content words,

there are some uninformative words called stop words. These words are removed

too. SMART stop list [10] is well-used in search systems1.

Furthermore, many search systems apply stemming process with a query and

documents. In a search system, each term is treated just as a symbol. This

means that words belonging to different parts of speech or having different tenses

are judged completely to be different words even though they are originally de-

rived from the same word. For example, retrieve, retrieved, retrieval are different

in terms of surface expression. In many cases, information that these terms con-

1Words in the list are described in Appendix A

9



Chapter 2. Preliminaries

vey are not so different with each other. Therefore, some search systems apply

stemming process to omit differences in surface expression. Porter’s stemming

algorithm [11] is commonly used in information retrieval researches.

2.1.2 Traditional Document Retrieval Techniques

In this section, we describe some kinds of traditional document retrieval tech-

niques.

2.1.2.1 Term-weighting-based Scoring Function

At that time the Web appeared, only reliable and informative documents exist on

the Web. Under the circumstances, returning all documents containing a user-

issued query keyword is useful enough to extract information a user needs. In

other words, a document containing a query keyword is judged relevant, while

other document not containing any of query keywords is judged irrelevant. The

scoring function is called the boolean model [9].

Along with the growth of the Web, a wide variety of documents appeared. As a

result, a huge number of documents which are irrelevant to the information needs

of the user are generated. Thus, the boolean model scoring is already inadequate

for a search system. Accordingly, more high-performance scoring functions are

proposed for attaining effective information retrieval.

TF-IDF [12] is one of the most popular term weighting scheme for document

search with the vector space model. Both local weight and global weight are

considered in TF-IDF. Local weight is calculated by the term frequency (TF) of

each term in each document. This is based on the idea that an event occurring

frequently in a document is important. Then, global weight uses inverse document

frequency (IDF) of each term in all documents. This is based on the idea that an

event is also important if the event seldom occurs in an entire document set. The

term weight in TF-IDF is derived by the product of TF and IDF. Concretely, a

weight of term t in a document d, wtfidf (d, t), is calculated as follows:

wtfidf (d, t) = tfd,t · idft, idft = 1 + log
N

dft
(2.1)

Where tfd,t is the number of t in d, N is the total number of the documents in a

document set, and dft is the number of documents containing t.

10



2.1. Information Retrieval

A document score is calculated by term weights of query keywords. Let T be

a set of query keywords, a score of d, Stfidfd , is calculated as:

Stfidf (d) =
∑
ti∈T

wtfidf (d, ti) (2.2)

Although TF-IDF achieves effective search, it has a tendency to give a long

document a high score. To avoid this shortcoming, normalized TF-IDF [12] which

normalizes based on document length has been proposed. A weight of t in d,

wntfidf , is calculated with:

wntfidf (d, t) =
tfd,t
dld

· idft, idft = 1 + log
N

dft
(2.3)

where dld is the document length (the number of the terms in d).

In the same manner as that of TF-IDF, a score of d in normalized TF-IDF,

Stfidfd , is calculated as follows:

Sntfidf (d) =
∑
ti∈T

wntfidf (d, ti) (2.4)

TF-IDF and normalized TF-IDF are the heuristic approaches. Whereas, Okapi’s

BM25 [13] is based on the classical probabilistic model. Okapi’s BM25 leverages

on statistics, not only the ones used in TF-IDF and normalized TF-IDF, but also

average length of documents in a document set. A weight of t of d, wbm25(d, t), is

calculated with the following:

wbm25(d, t) =
(k1 + 1)tfd,t

k1((1− b) + b dld
avdl

) + tfd,t
· log N − dft + 0.5

dft + 0.5
(2.5)

where avdl is the average length of documents in a document set. Therefore, a

score of d, Sbm25(d), is calculated as:

Sbm25(d) =
∑
ti∈T

wbm25(d, ti) (2.6)

BM25F [14] is also proposed for field search as an expansion of Okapi’s BM25.

Information retrieval techniques for field search are used for structured document.

BM25F gives a weight to each field (tag) for considering the importance of a field.

For example, give a high weight to a title tag which assumes that a document

11



Chapter 2. Preliminaries

has high possibility to be relevant when a query keyword appears in the title

field. A score of d, Sbm25f (d), is calculated as follows:

Sbm25f (d) =
∑
ti∈T

fwf,ti · wbm25(d, fi, ti) (2.7)

where fi is the field that ti appears and fwf,ti is a weight of fi.

Statistical language model techniques have been developed in the fields of

speech recognition and machine translation. Recently, these techniques have been

introduced into the field of information retrieval. In particular, the query likeli-

hood model [15] (QLM) is well studied and achieves significant results, although it

is reported that an accurate model cannot be estimated when a document length is

small [16]. In the term-weighting scheme, the score of each document is the prod-

uct of the occupancy probabilities of the query keywords as shown in Eq. (2.12).

This means that non-zero values are computed only for the documents containing

all the query keywords. To resolve this problem, a term of query keywords is

assigned a non-zero value (generally very small value) when a query keyword does

not appear in a document. This process is called smoothing techniques, which is

often used in QLM. Smoothing values are computed with a background language

model calculated with an entire document set.

Based on a survey paper about QLM [16], there are two smoothing methods,

i.e., linear interpolation and Dirichlet smoothing. It is said that the Dirichlet

smoothing can compute a document’s relevancy score accurately even when doc-

ument length is short. In addition, there is a method that combines linear in-

terpolation and Dirichlet smoothing as a two-stage smoothing method. However,

the method cannot overwhelm the either smoothing method.

We show the way of calculating relevancy score with QLM. A probability that

t is generated from d (i.e., a term weight of t in d), P̂mle(t|Md) (wqlm(d, t)), is

calculated as follows:

wqlm(d, t) = P̂mle(t|Md) =
tft
dld

(2.8)

To apply the smoothing techniques, Eq. (2.8) is transformed. Eq. (2.9) repre-

sents the linear interpolation and Eq. (2.10) represents the Dirichlet smoothing.

wqlm(d, t) = ωP̂mle(t|Md) + (1− ω)P̂mle(t|Mb) (2.9)

wqlm(d, t) =
P̂mle(t|Md) + µP̂mle(t|Mb)

dld + µ
(2.10)

12



2.2. XML

P̂mle(t|Mb) =

∑
d∈C tfd,t∑
d∈C dld

(2.11)

where ω and µ are given parameters, Mb is a background model, and C is a

document set.

Then, the two-stage smoothing method is calculated as follows:

wqlm(d, t) = ω
P̂mle(t|Md) + µP̂mle(t|Mb)

dld + µ
+ (1− ω)P̂mle(t|Mb) (2.12)

At last, a score of d, sqlm(d, t), is calculated as follows:

sqlm(d) = P̂ (T |Md) =
∏
ti∈T

wqlm(d, ti) (2.13)

2.1.2.2 Network-analysis-based Scoring Function

Besides scoring methods based on term weighting, there also exists scoring meth-

ods based on network analysis to identify important documents. The Web can

be interpreted as a graph. In more concrete terms, document and hyperlink rep-

resent node and directed edge with arrow, respectively. There are two types of

hyperlinks, i.e., an incoming link and an outgoing link. PageRank [17] and HITS

[18] are known as famous scoring functions based on network analysis. Note that

some researches such as [19] and [20] leverages both a term weighting factor and

a network analysis factor.

2.2. XML

In this section, we explain about XML and it’s related techniques.

2.2.1 Prominent Structured Documents

Figure 2.2 depicts some of the prominent structured documents. XML is a markup

language and one of such structured documents. It is composed of commonly used

functions of Standard Generalized Markup Language [8] (SGML) which is also a

markup language. A structured document, including XML, has meta information

of a certain concept and semantics by adding a pair of start and end tags. A start

tag starts with a left angle bracket(<) and ends with right angle bracket (>).

13



Chapter 2. Preliminaries

XML

Structured document

Wiki

HTML

XHTML

SGML

Tex

Figure 2.2. Structured documents

Meta information is annotated between the angle brackets. An end tag is similar

to a start tag, except that an end tag has a slash (/) right after the left angle

bracket. We show a concrete example representing a person’ name as follows:

<person name>Atsushi KEYAKI</person name>.

HyperText Markup Language [7] (HTML) is another popular and widely used

markup language. HTML is defined to display decorated contents on a browser.

HTML tags are classified into two groups, that is, tags representing document

structure and tags representing emphasis [21]. To classify them, it is recommended

to use Cascading Style Sheets [22] for the later tags.

Both XML and HTML are subsets of SGML. Particularly, HTML defined by

XML is called as Extensible HyperText Markup Language [23] (XHTML). Basi-

cally, HTML need to be translated according to the definition of XML, although

there are some rules in translating HTML into XHTML.

Likewise, as other example of structured documents, Wiki is content manage-

ment system which is editable via a Web browser. Tex is also an example of

structured documents. It is mainly used for publishing.

14



2.2. XML

data-centric XML document-centric XML

shema simple complicated

structure regular irregular

text short (word) long (sentence)

content homogenous heterogenous

mixed content little much

sibling order insignificant significant

Table 2.1. Comparison between data-centric XML and document-centric XML

2.2.2 Targeted XML Documents

There are two types of XML documents: data-centric XML and document-centric

[24]. Although there is no explicit boundary between them, some trends exist. Ta-

ble 2.1 compares data-centric XML and document-centric XML, which is quoted

from [25]. The most critical factor among the trends is that data-centric XML

mainly contains single or compound words in its text nodes, while document-

centric XML tends to contain one or more sentences in its text nodes. That

causes a difference in searching strategy for each type of XML.

The other features of data-centric XML are that it simple schema, regular

structure, and homogenous content. In addition, its content is a little mixed and

sibling order is insignificant. One of the most typical examples of data-centric

XML is DBLP [26] which is a Web site of computer science bibliography. Figure

2.3 depicts an example of data-centric XML. The XML document represents pub-

lication data, and each text node is defined by a context, that is, a path expression.

A path expression is concatenated tags from the root to the node. Studies investi-

gating data-centric XML primarily focus on searching query keywords efficiently.

It is said that the users’ information need for data-centric XML are relatively sim-

ple. That is the reason why a sub-tree is relevant for a query only if the sub-tree

contains all query keywords in its descendant nodes. Thereby, search techniques

for data-centric XML documents are called XML keyword search.

In contrast, document-centric XML has complicated shema, irregular struc-

ture, and heterogenous content. Also, its content is more mixed and sibling order

is significant. Scientific articles and Wikipedia articles are document-centric XML

15



Chapter 2. Preliminaries

documents as shown in Figures 2.4-2.6. Existing studies toward document-centric

XML are performed for effective XML element retrieval, because users’ informa-

tion need for document-centric XML are more complex and a search system needs

to identify relevant descriptions from each document. Accordingly, search tech-

niques for document-centric XML are called XML information (element) retrieval.

Since we focus more on proposing information retrieval techniques for struc-

tured documents rather than proposing efficient keyword search algorithms, our

main targeted XML documents are document-centric XML documents.

2.2.3 Search Methods for XML documents

There are two ways for searching an XML document. One is specifying document

structure, while the other is specifying a keyword in an XML document.

Many of the requests for data-centric XML are to extract a sub-tree of an

XML document by a structural constraint. Thus, a document structure of an

XML document need to be managed in an efficient way. There are wide research

approaches such as structural joins [27, 28], indexing [29, 30, 31, 32, 33, 34, 35, 36],

and node labeling [37, 38] for this purpose.

On the other hand, querying with a keyword is very important with document-

centric XML as well as a structural constraint. In consequence, XML Path Lan-

guage [39] (XPath) and XQuery [40] defined by W3C handle XML full-text search.

XPath is a query language to extract a node from an XML document by specify-

ing element name, attribute name, and string value (text). We show some XPath

syntax in Table 2.2.

Whereas, XQuery, also a query language, is an expansion of XPath. It provides

higher expressiveness with a FLWOR format query. Proposing efficient processing

algorithms of XPath and XQuery is also active research area [41, 42, 43].

2.2.4 XML Element Retrieval

In this section, we describe the concepts of XML elements and queries in XML

element retrieval.

16



2.2. XML

XPath syntax semantics

nodename selecting all nodes with the name “nodename”

/ selecting from the root node

// selecting nodes in the document from the current node

that match the selection no matter where they are

//nodename selecting all nodename elements no matter where

they are in the document

. selecting the current node

.. selecting the parent of the current node

@ selecting attributes

∗ matching any element node

Table 2.2. Examples of XPath syntax

2.2.4.1 Comparison of Document Search and Element Search

Here, we explain the difference between XML element retrieval systems and well-

used document retrieval systems. When many of document retrieval systems

propose a list of relevant documents, the systems additionally provide users with

result snippets [15], which are summaries of each document, approximately 50

words in length. Result snippets are generated by a text extraction technique that

extracts the text that is nearby the query keywords. Search-system users utilize

the result snippets located around the result when deciding which documents

are worth browsing. Despite the fact that many search systems rely on result

snippets, not all result snippets help them decide which documents to browse.

This is because result snippets do not consider the context between the extracted

text; as a consequence, some result snippets do not make sense [2]. Moreover,

length of relevant descriptions differs from document to document. It suggests

that not always result snippets are composed of all relevant descriptions without

any irrelevant descriptions.

On the other hand, the main purpose of an XML element retrieval is to extract

the relevant descriptions (elements) from a query and propose them in descend-

ing order of their relevancy scores. XML element retrieval systems can propose a

list that contains the relevant descriptions from a query, while many document re-

17



Chapter 2. Preliminaries

trieval systems propose a list that contains relevant documents for a query. Hence,

users do not have to spend time seeking out the relevant parts that satisfy their

information need. This feature saves users’ time and energy during information

retrieval.

There are some other approaches to extract important descriptions in doc-

uments such as automatic summarization [44], information extraction [45], and

passage retrieval [46].

Automatic summarization techniques are cultivated in the research field of

natural language processing (NLP) to identify important descriptions in a docu-

ment. It is reported that summarization accuracy with news articles is very high

to the extent of achieving practical use level [47].

Information extraction techniques aim to extract specific structure (pattern)

characters with a certain rule created manually or automatically. NLP techniques

and data mining techniques are applied for accomplishing the end.

A passage retrieval technique is one of the information retrieval techniques

focused on extracting only relevant descriptions from a document like XML ele-

ment retrieval techniques. Information unit of a passage retrieval technique has

some variations, e.g., HTML tags similar to XML element retrieval techniques,

fixed width of window, and a bunch of descriptions describing the same topic.

XML element retrieval techniques are different from passage retrieval techniques

in some point, XML element retrieval techniques utilize a document structure in

term calculation. Moreover, considering the idea of granularity of a document

structure.

Compared with these approaches, one of the advantages of XML element re-

trieval is that search results are self-contained, which is one of the requirements for

result snippets [15], because it considers the context of the sentences by utilizing

document structures.

2.2.4.2 XML Element

We give specific examples in Figures 2.4–2.6 to define XML elements. Figure 2.4

illustrates XML documents. Each document is assigned a document identifier

(DID). Figure 2.5 depicts trees abstracted from Figure 2.4. An XML document

can be presented in a tree structure, which helps to understand the structure of

the document. Each element is assigned an element identifier (EID), which is

18



2.2. XML

person

publication

name

article

Atsushi

Keyaki

title

book

year

person

person

Fast Incre-

mental …

IJWIS 2013

article

title

book

year

A Propo-

sal of …

TOD 2011

…

…

root node

element node

text node

Figure 2.3. Example of data-centric XML document

assigned in document order. We can identify an element using its DID and EID.

A pair of start and end tags represents an XML element node within an XML

tree, and the nested structure of XML elements represents ancestor–descendant

relationships. Each element in Figure 2.6 is the text that comprises a set of text

nodes within the XML tree in Figure 2.5. In this concrete example, the article

node, which represents the entire document, has all of the text nodes as its de-

scendant text nodes, while the body node also has its descendant text nodes. This

demonstrates why there are overlapping XML elements in XML documents. In

short, each XML element has an inclusion relation, i.e., an ancestor-descendant

relationship. Moreover, an ancestor element of an element is called a larger ele-

ment, and a descendant element of an element is called a smaller element. We

describe the path expression (PE) of each element.

Authors add a structure to a document: e.g. chapters, sections, and para-

graphs. We utilize these structures to identify the best material for satisfying the

information need for users. Some structures are meaningless, so elements defined

by those structures are inappropriate as search results, and some existing studies

19



Chapter 2. Preliminaries

<article>

<p>Bill Gates is …</p>

<body>

<sec>Early life …</sec>

<sec>Windows …</sec>

<sec>Books …</sec>

</body>

</article>

<article>

<sec>Steve Jobs …</sec>

<body>

<h2>Business life …</h2>

<sec>Apple computer …</sec>

</body>

</article>

DID:1

DID:2

Figure 2.4. (Document-centric) XML document

p

Bill Gates is ...

body

article

sec

Early life ...

Windows ...

Books ...

sec

sec

sec

Steve Jobs ...

body

article

Business life ...

Apple computer...

h2

sec

EID:1

EID:2

EID:3

EID:4 EID:5 EID:6

EID:1

EID:2

EID:3

EID:4

EID:5

DID:1

DID:2

Figure 2.5. XML tree

[48], [49] include attempts to eliminate these. Suppose that a user seeks informa-

tion from Document 1 about “Early life . . . ”, “Windows . . . ”, and “Books · · · ”.
XML element retrieval systems try to present the user Element 3 of Document 1,

because that element contains all of the information that the user needs and no

20



2.2. XML

DID: 1, EID: 1

PE: /article

DID: 1, EID: 2

PE: /article/p

DID: 1, EID: 3

PE: /article/body

DID: 1, EID: 4

PE: /article/body/sec

Books …

Bill Gates is …

Early life …

Windows …

Books …

Early life …

Windows …

Books …

Bill Gates is …

Early life …

Windows …

DID: 1, EID: 5

PE: /article/body/sec

DID:1, EID: 6

PE: /article/body/sec

DID:2, EID: 1

PE: /article

DID:2, EID: 3

PE: /article/body

DID:2, EID: 2

PE: /article/sec

DID:2, EID: 4

PE: /article/body/h2

Steve Jobs …

Business life …

Apple computer…

Steve Jobs …

Business life …

Apple computer…

Business life …

Apple computer…

DID:2, EID: 5

PE: /article/body/sec

Figure 2.6. XML element

extra information.

2.2.4.3 History of XML Element Retrieval

Initiative for the Evaluation of XML Retrieval (INEX) project [50] launched in

2002, and is the largest ongoing project for XML element retrieval. Test collec-

tions provided by the INEX project are widely used for evaluating the effectiveness

of the XML element retrieval systems. The project also carries out a competi-

tion using XML documents generated by the scientific articles and the Wikipedia

articles2, or document-centric XML.

The INEX project requires search systems to return a list ranked by their rel-

evancy scores as search results. In addition, search systems extract 1,500 or fewer

XML elements for each query. In the past, some existing studies do not remove

overlapping elements and return a näıvely ranked list that is sorted in descending

order of the XML elements’ scores. We call such a list a simple ranked list. On

the other hand, most studies have reported damage to search accuracy because of

overlapping search results [51]: therefore, a ranked list without overlapping XML

2Wiki format articles are exchanged into XML format

21



Chapter 2. Preliminaries

elements is returned from recent XML element search systems. We call such a

ranked list without overlaps a non-overlapped ranked list.

2.2.4.4 Ad Hoc Track of INEX

Ad hoc track has three kinds of tasks. These are the Focused task, the Relevant

in Context task, and the Best in context task. Note that none of the tasks accepts

overlapping elements in search results.

At first, in the focused task, relevant elements are to be extracted as much as

a search system can. Unless search results do not contain overlapping elements,

multiple elements can be extracted from a single document.

Secondly, the Relevant in Context task also allow a search system to return

multiple elements without overlapping. A different point compared with the fo-

cused task is that elements need to be returned per a document in the Relevant

in Context task.

Finally, the third task is the Best in Context task. In this task, the best entry

point to start reading a document need to be specified. The evaluation measure

considers the distance between the specified best entry point and the ground truth

(manually judged) best entry point.

Since we believe that the most important aspect in satisfying users’ information

need is to show necessary and sufficient information as search results, we mainly

focus on the Focused task.

2.2.4.5 INEX Test Collections for Ad Hoc Track

We performed some experiments using two test collections: the INEX 2008 test

collection and the INEX 2010 test collection [52, 53].

The INEX test collections consist of three components: (1) the INEX docu-

ment collection, (2) the INEX topics, and (3) the INEX relevance assessments.

The INEX document collection is a Wikipedia XML corpus based on a snap-

shot of Wikipedia in English. The INEX 2008 test collection collected approxi-

mately 660,000 articles in early 2006, while the INEX 2010 test collection collected

2,660,000 articles in late 2008. Moreover, the INEX 2010 document set is com-

posed of longer articles and are annotated additional semantic markups.

The topics of INEX 2008 and INEX 2010 include 68 queries and 115 queries,

22



2.2. XML

respectively. We use all of the topics in the experiments, unless otherwise noted.

Each query is represented as narrowed-extended XPath I [54] (NEXI). These topics

(and assessment results) were created by INEX participants. In the topic creation

process, the participants described narrative, title, NEXI, and description based

on the same information need. The narrative explains not only what information

is being sought, but also the context and motivation of the information need,

i.e., why the information is being sought and what work-task it might help to

solve. This is because precise recording of the narrative is important for scientific

repeatability; there must exist, somewhere, a definitive description of relevant

and irrelevant to the user. The title is NEXI without any structural constraints.

The description remarks one or two sentence natural language definition of the

information need. We show an example of a topic as follows:'

&

$

%

<topic id="544" ct_no="6">

<title>meaning of life</title>

<castitle>

//article[about(., philosophy)]//section[about(., meaning of

life)]

</castitle>

<description>What is the meaning of life?</description>

<narrative>I got bored of my life and started wondering what the

meaning of life is. An element is relevant if it discusses the

meaning of life from different perspectives, as long as it is

serious. For example, Socrates discussing meaning of life is

relevant, but something like ‘‘42’’ from H2G2 or ‘‘the meaning

of life is cheese’’ from a comedy is irrelevant. An element must

be self contained. An element that is a list of links is

considered irrelevant because it is not self-contained in the

sense that I don’t know in which context the links are given.

</narrative>

</topic>

Generally speaking, search system users browse only the top results in the

23



Chapter 2. Preliminaries

search results [2]. This means that the most important challenge is to obtain high

accuracy within the top-ranked XML elements. For this reason, the INEX project

regards iP[.01], which means interpolated precision at recall level 1%, as the formal

measure of the evaluation of a search system. The INEX project also uses mean

average interpolated precision (MAiP). MAiP is an evaluation measurement that

calculates the average of the (mean) interpolated precision at each recall level.

The INEX assessment tool divides the recall levels into 101 levels.

Moreover, focused task in the ad hoc track, which tracks effective XML ele-

ment retrieval, aims to identify the most appropriate granular element of a search

result, because the track tries to reveal the capability of an XML element retrieval.

Nevertheless, document retrieval has been actively studied in recent years, com-

pared with element retrieval, in parts of the INEX project. This is because it is

difficult to identify the most appropriate XML element, and it is relatively easier

to attain more accurate search results by returning the entire document as an

XML element, even though it contains some irrelevant parts. In fact, many of the

top-ranked search systems in INEX official results are document search systems

[52] over the years. However, one of our goals is to return the most appropri-

ate XML element in one XML document in order to save users’ time and effort.

Therefore, we attempt to attain accurate XML element retrieval.

The INEX relevance assessments are evaluation tools for XML element re-

trieval. Using the INEX relevance assessments, an XML search system can be

evaluated on the basis of some evaluation measures by inputting a ranked list into

the evaluation tools. We use this in our experimental evaluation. Although the

official measure for the focused task in an ad hoc track is iP[.01], we also show

MAiP in order to reveal the overall effectiveness of our proposed method.

2.2.4.6 Queries Used in INEX

There are two ways of expressing information need into a query: through keywords

and through document structure. A query entirely composed of query keywords

is called a content-only (CO) query, whereas a query composed of pairs of query

keywords and a constraint on the document structure is called a content-and-

structure (CAS) query.

CO queries are used just as in traditional information retrieval for text doc-

uments. Users can submit CO queries even if they do not know the structures

24



2.3. One Click Access Task (1CLICK)

of the documents that are retrieved. In contrast, CAS queries utilize one of the

most significant features of structured documents: i.e. document structure. With

a CAS query, a user can obtain specific results with regard to granularity and

content.

We give a specific example of a CO query and a CAS query. These are ex-

pressed in the narrow extended XPath I (NEXI) [54] query language. A CO query

//*[about(., "Windows")]means that the candidate search results are elements

containing “Windows”. Elements 1, 3, and 5 of Document 1 can be search results

in Figure 2.6.

A CAS query: //article[about(.,"Steve")]//sec [about(., "Apple")]

is more complex. Let us focus on the first half of the query, //article[about(.,

"Steve")], which means that candidates for this part are elements that contain

“Steve” and whose path expressions end with an article tag. The second half

of the query, //sec[about(., "Apple")], means that candidate search results

are elements that contain “Apple” and whose path expressions end with a sec

tag. The search results are elements that satisfy the latter constraint and whose

ancestor elements satisfy the former constraint. The only element satisfying the

query constraints is Element 5 of Document 1 in Figure 2.6.

2.3. One Click Access Task (1CLICK)

One Click Access task [55, 56] (1CLICK) is one of the tasks of NII Testbeds and

Community for information access Research (NTCIR). The goal of 1CLICK task

is to return single textual output which satisfy users’ information need instead

of a ranked result list. Moreover, submitted systems are expected to present

important pieces of information first and to minimize the amount of text the user

has to read. Although there are English task and Japanese task, we mainly discuss

English task.

In the 1CLICK-1 task [55], four types of queries (CELEBRITY, LOCAL,

DEFINITION, and QA) are selected by 1CLICK-1 organizers based on findings

from a mobile query log study [57]. Whereas, eight types of queries (ARTIST,

ACTOR, POLITICIAN, ATHLETE, FACILITY, GEO, DEFINITION, and QA)

are used in 1CLICK-2 [56] because more fine-grained query classification is ap-

propriate for representing users’ information need. 1CLICK task supposes both

25



Chapter 2. Preliminaries

desktop search environment and mobile search environment. For each query, at

most 1,000 characters can be extracted for desktop run and 280 characters for

mobile run.

There are three source types as follows:

• Mandatory

organizers provided Web search results and their page contents for each

query. Participants may use only this information to generate search results.

• Oracle

organizers provided a list of relevant pages for each query, which are a subset

of the pages provided for Mandatory runs. Participants can use the data

either wholly or partially to generate search results. If this data set is used

in any way at all, the run is considered an Oracle run.

• Open

participants may choose to search the live Web on their own to generate

search results. Any run that does not use the oracle data but uses at least

some privately-obtained Web search results is considered an Open run, even

if it also uses the pages provided for Mandatory runs.

Note that participants can use external knowledge sources such as WordNet [58] or

publicly available resources such as Wikipedia to summarize given page contents.

1CLICK-2 organizers provide 1) a set of documents, 2) a set of queries, and 3)

nuggets (ground truth) as a test collection. Nuggets are generated by 1CLICK-2

organizers.

A set of queries are extracted from the query logs issued to the popular Web

search system. Then, a set of documents are top-ranked 500 documents that the

search system returns as search results. Moreover, nuggets are relevant text for

a query. For example, part of nuggets for the query “michael jackson death” are

“murray tried revive”, “realized he needed to call help”, and “prescribed drugs to

Jackson”. Concerned with the evaluation measure, submitted search results are

evaluated with weighted recall, S–measure, T–measure, and S#–measure consid-

ering the match position.

Based on the discussion above, the goal is similar to that of XML element

retrieval in terms of that both try to return only relevant descriptions for a query

26



2.4. Database Systems

as search results. On the other hand, there are some differences between them,

namely, their targeted documents and their formats of search results. The tar-

geted documents of 1CLICK task are HTML documents, while those of XML

element retrieval are XML documents. In addition, search results of 1CLICK

task are nuggets, whereas, those of XML element retrieval are elements. Con-

sequently, 1CLICK task is largely information extraction task rather than auto-

matic summarization task like XML element retrieval is. Furthermore, Since one

of the guidelines for XML element retrieval is that a search result need to be

self-contained, the search results for XML element retrieval are generally become

larger than that of 1CLICK.

2.4. Database Systems

A number of kinds of database systems are used for research and business uses.

These database systems are classified into some groups, for example, relational

database [59] (RDB), XML database [60], Key-Value Store (KVS) database.

RDB has the largest share of users among database systems. RDB manages

data as a two dimensional table structure where a set of data is arranged sideways

and each set of data is arranged longways. A set of data, called a tuple, contains

some attributes. Moreover, attributes enabling to identify a tuple are defined

as primary keys. A query is represented in a SQL format. When a SQL query

refers to two or more tables, each table is joined with others to return a retrieved

relation. RDB has such an advantage that data can be easily imported from

other sources such as comma separated values (CSV). As a disadvantage, it is

relatively difficult to alter a table definition once it is defined. Prominent relational

database management systems (RDBMS) are Oracle Database [61], IBM DB2 [62],

Microsoft SQL Server [63]. Note that we can treat originally XML data easily and

efficiently with XRel [64].

XML database specializes in storing XML data. Nowadays many applications

employ XML as a data format. As a result, a huge number of XML data was gen-

erated. XML databases are developed and implemented for efficient management

of these XML data. XML database has high expressiveness, and its data structure

is flexible, which is a large merit of an XML database. Fast query processing of

XPath and XQuery is required because an XML database stores XML data. Open

27



Chapter 2. Preliminaries

source product BaseX [65] and Toshiba TX1 [66] are outstanding XML databases.

In addition, some RDBMS including ones previously mentioned have extension

for handling XML data.

KVS attracts much attention recently because of its high affinity with a dis-

tributed system. The data structure of KVS is just a pair of a key and a

value. There are some remarkable distributed KVS database systems, e.g., Google

Bigtable [67] and Amazon Dynamo [68]. The storage method of versatile database

software library BerkeleyDB [69] is also KVS. With satisfying high speed index-

ing of data and query processing, it can be used like RDBMS because a user

can define a comparison function for data having the same key and it supports

even multiple key option. Moreover, a function of secondary index reduces data

overlaps in indices, which cause cut down of disk size and I/O cost.

28



CHAPTER 3

Related Studies

In this chapter, we explain effective and efficient XML retrieval. We also discuss

studies focused on updates in search systems.

3.1. XML Element Retrieval

In this section, we explain related studies of XML element retrieval techniques.

The main target of the techniques is document-centric XML documents such

scientific articles and Wikipedia articles as shown in Figure 2.4.

3.1.1 Accurate XML Search

The most important goal of XML element retrieval is highly accurate searches.

The mainstream approach to extracting relevant elements is as follows: first,

calculate a term weight for each element by using a term-weighting scheme; next,

compute a score for each element using these term weights.

Term-weighting schemes for XML element retrieval are often derived from

studies on document retrieval. Both of these are composed of three types of

factors: local weights that are statistics derived from each document (element);

global weights that are statistics derived from all document in a document set;

29



Chapter 3. Related Studies

and constant values (coefficients and parameters). Local weights and constant

values are easy to calculate and refer to because local weights are computed for

a newly inserted element. However, it is difficult to calculate global weights on

demand because the entire document set must be scanned to compute these.

The most significant difference between document retrieval and XML element

retrieval is the method for computing global weights. Term-weighting schemes

in document retrieval assume that every document has the same attribute and

belongs to the same class. Thus, global weights are calculated using all documents.

However, in XML element retrieval, elements are assigned to classes. Global

weights are calculated for elements of the same class. There are different ways

to classify elements. One approach is to classify elements by path expression. In

Figure 2.6, since Elements 4, 5, and 6 of Document 1, and Element 4 of Document

2 all have the same path expression /article/body/sec, the global weights are

calculated using these elements.

Alternatively, elements with the same tag can be placed in the same class.

Because Elements 4, 5, and 6 of Document 1 and Elements 2 and 4 of Document

2 all have the sec tag, the global weights are calculated using these elements,

as depicted in Figure 2.6. We use classification based on path expression in our

system, because this is reportedly more accurate [70].

There are several kinds of term-weighting schemes for XML element retrieval;

e.g. TF-IPF [71, 72], BM25E [73], and the query likelihood model for XML

element retrieval [74] (QLMER). BM25E is regarded as a more effective term-

weighting scheme than TF-IPF. Actually, most of the top-ranked search systems

at INEX use BM25E [5]. However, no exhaustive comparison between BM25E

and QLMER has been explored. We therefore examine the potentials of these

term-weighting schemes in this thesis.

TF-IPF is a path expression-based scoring method that is extended by the

well-known TF-IDF [12, 72] approach for document search. A term weight of

TF-IDF is the product of a term frequency (TF) in a document as a local weight

and inverse document frequency (IDF) as a global weight, while that of TF-IPF

is the product of TF and inverse path frequency (IPF). Concretely, let T be the

set of query keywords, e be an XML element, p be a path expression of e. A term

weight of term t ∈ T in e of TF-IPF, wtfipf (e, t), and a score of e, Stfipf (e), is

30



3.1. XML Element Retrieval

calculated as:

wtfipf (p, e, t) =
tfe,t
ele

· ipfp,t, ipfp,t = 1 + log
Np

pfp,t
(3.1)

Stfipf (e) =
∑
ti∈T

wtfipf (p, e, ti) (3.2)

where tfe,t is the number of occurrences of t in e, ele is the length of e (the total

number of terms in e), Np is the number of elements of which path expressions

are p, and pfp,t is the number of elements containing t of which path expressions

are p.

As one of variations of TF-IPF, TF-IAF [75] consider not only statistics of

element but also statistics of query. In more detail, TF-IAF uses the inverse

abbreviated-path frequency (IAF) as a global weight instead of IPF. Let qs be

a structural constraint of a query. A term wight of term t ∈ T in e of TF-IAF,

wtfiaf (qs, t), and a score of e, Stfiaf (e), is calculated as follows:

wtfiaf (qs, t) = qtft · iafqs,t, iafqs,t = 1 + log
N ′

qs

apfqs,t
(3.3)

Stfiaf (e) =
∑
ti∈T

wtfipf (p, e, ti) · wtfiaf (qs, ti) (3.4)

where qtf(t) is the number of frequency t in T , N ′(qs) is the number of elements

of which satisfy qs, and apf(p, t) is the number of elements containing t of which

path expressions satisfy qs. Note that hereafter we call TF-IAF as query structure

scoring method (QS).

BM25E [73] is a probabilistic model. In term calculation of the classic term-

weighting scheme TF-IPF, statistics on the occurrence frequencies of terms are

utilized. Conversely, BM25E utilizes not only the statistics but also average ele-

ment length of elements the same path expression. The term weight of BM25E,

wbm25e(p, e, t), and a score of e, SBM25E(e), is calculated with the following:

wbm25e(p, e, t) =
(k1 + 1)tfe,t

k1((1− b) + b ele
avelp

) + tfe,t
· log Np − pfp,t + 0.5

pfp,t + 0.5
(3.5)

Sbm25e(e) =
∑
ti∈T

wbm25e(p, e, ti) (3.6)

where avelp is the average length of the elements with p and k1, b are given

parameters.

31



Chapter 3. Related Studies

There are some scoring functions based on the statistical language model

for XML element retrieval including QLMER. In the term-weighting scheme of

QLMER, the score of each element is the product of the occupancy probabilities

of the query keywords as shown in Eq. (3.11). Thus, the zero probability problem

also occurs in QLMER, and smoothing techniques are also adopted. Note that

smoothing values are computed not with a document (element) model but with a

background language model, which is applied for an entire document set.

There are two kinds of smoothing methods, i.e., linear interpolation and Dirich-

let smoothing. It is reported that the latter mentioned smoothing can compute an

element’s relevancy score accurately even when the document length is short [16].

Therefore, we assume the Dirichlet smoothing is more effective in the context of

XML element retrieval because many elements in it are relatively short. However,

most studies select linear interpolation [76] [77] [78] [79], except for [80] which

uses Dirichlet smoothing.

In addition, the background model for existing studies including [80] is com-

monly computed with all documents in a document set, although path expression-

based approach is revealed to be more accurate for XML element retrieval.

In short, there has been no adequate studies which investigates the best setting

for QLMER. Accordingly, we survey effectiveness of varying settings of smoothing

methods in Section 4.6.1.2.

We show the way of term calculation with QLMER.

A probability that t is generated from e (i.e., a term weight of t in e), P̂mle(t|Me)

(wqlmer(p, e, t)), is calculated as:

wqlmer(p, e, t) = P̂mle(t|Me) =
tfe,t
ele

(3.7)

To apply the smoothing techniques, Eq. (3.7) is transformed. Eq. (3.8)

represents the linear interpolation and Eq. (3.9) represents the Dirichlet smooth-

ing. Moreover, we denote two equations for computing background models in Eq.

(3.10) which is collection-based background model and Eq. (3.11) which is path

expression-based background model.

wqlmer(p, e, t) = ωP̂mle(t|Me) + (1− ω)P̂mle(t|Mb) (3.8)

wqlmer(p, e, t) =
P̂mle(t|Me) + µP̂mle(t|Mb)

ele + µ
(3.9)

32



3.1. XML Element Retrieval

P̂mle(t|Mb) =

∑
e∈C tfe,t∑
e∈C ele

(3.10)

P̂mle(t, p|Mb) =

∑
e∈p tfe,t∑
e∈p ele

(3.11)

where ω and µ are given parameters, Mb is a background model, and C is a

document set.

The following equation is two-stage smoothing method with the path expression-

based background model.

wqlmer(p, e, t) =
P̂mle(t|Me) + µ(ωP̂mle(t, p|Mb) + (1− ω)P̂mle(t, p|Mb))

ele + µ
(3.12)

Finally, a score of e, sqlmer(p, e, t), is calculated with:

Sqlmer(e) = P̂ (T |Me) =
∏
ti∈T

wqlmer(p, e, ti) (3.13)

As another approach, machine learning techniques, particularly learning to

rank algorithm [81], is also adapted to XML element retrieval [82, 83, 84]. The

largest benefit of the learning to rank approach is its highly accurate search per-

formance. In contrast, shortcomings are that some of the manual judgment data

are required before learning process starts because learning to a rank technique is

supervised approach, and appropriate features, which vary by each document set,

used in learning process need to be selected. Additionally, every machine learning

technique has the aspect of the learning process taking a relatively long time to

estimate parameters.

Since it is very common to use a weight computed by a term-weighting scheme

as a feature of machine learning process, improving effectiveness of a term-weighting

scheme is still a quite important research topic. Moreover, our proposed system

in this thesis requires fast term calculation because the proposed system handles

document updates in real time as we discuss in Chapter 5 deeply. Therefore,

scoring with a machine learning approach is not the most suitable choice for the

proposed system.

On the other hand, network-analysis-based scoring functions are also not

proper in this situation as well as machine learning approaches. Hyperlink infor-

mation is utilized when calculating document score with network-analysis-based

scoring functions. However, hyperlinks from other documents to a newly inserted

33



Chapter 3. Related Studies

document is not generated just after the document insertion. This means an ac-

curate score of the documents cannot be computed in real time, which is a fatal

problem for a search system considering document updates sensitively. Moreover,

an effective way for element-granule search with network-analysis-based approach

has not been proposed yet.

According to the discussion above, we adopt a term-weighting-based scoring

method for the proposed system. Note that integrating a term-weighting-based

approach with a machine learning approach or network-analysis-based approach

may bring more accurate search performance, and it remains as one direction of

future work.

3.1.2 Fast XML Search

Although the most important requirement of XML element retrieval is enabling

effective searches, fast query processing is also required by a system user.

To attain efficient XML element retrieval, various approaches have been taken,

such as:

• applying top-k algorithms to return search results quickly, and

• compressing and reducing data to suppress the index size to minimize the

amount of data scanned in query processing.

Many top-k searches have been proposed [85]. There are two conditions for ef-

ficient query processing: 1) term weights are calculated before query processing

begins, and 2) terms are sorted in descending order of weight. This means that

we only need to scan highly ranked terms in query processing. Note that some

query processing methods also utilize an index for a random scan, which is used

to refer to the weight of an arbitrary term in any element.

Some studies [86], [87] have used term-weighting schemes [73] for effective

searches. Theobald et al. proposed two types of indices and a top-k algorithm

for efficient searches [86]. One type is for scoring an element in query processing,

and the other type is for checking a structural constraint on a query. They also

proposed cost-based query processing, which identifies an effective moment to

check the structural constraints and determines which query keyword is reasonable

to process.

34



3.1. XML Element Retrieval

Trotman et al. proposed a low-cost method of data compression and selection

[87].

In these studies, the aim was to retrieve elements satisfying users’ information

need by retrieving elements from a fixed document set; i.e. document updates

were not considered.

Kikori [88] provides not only an efficient and effective search, but also a user

interface. Kikori is based on the XRel [64] which splits an XML document into

five tables, document, path, element, term (token), and attribute tables, to

store XML document into RDBMS. The interface of the Kikori displays search

results in many ways which correspond to each task of the Ad hoc track of INEX

denoted in Section 2.2.4.4.

3.1.3 Data Cleansing Techniques

Information of document structure is useful to reveal the best description for users’

information need. However, some structures are meaningless and elements defined

by these structures are inappropriate as search results. Thus, some existing studies

try to eliminate them [48], [49].

In fact, removing useless or low-scored elements is effective for accurate XML

retrieval. Although every granularity of XML elements should be treated as search

targets, effectiveness of the results decreases sharply if a search system returns un-

informative XML elements. Extremely small XML elements are often not suitable

for search results; Hatano et al. noted that when such meaningless XML elements

are removed, the search accuracy improves [89]. Furthermore, our previous study

suggests that large XML elements are also inappropriate for search results [90].

3.1.4 Important Sentence Extraction

We will explain a study of important sentence extraction. Since identifying rele-

vant descriptions from a document is similar to extracting an important sentence

from the document, knowledge from studies focused on important sentence ex-

traction is expected to be useful for achieving even our goal.

In the past, many studies have focused on important sentence extraction.

One application of the technique is a result snippet. Takami et al. generate

result snippets [91] with using natural language processing techniques to extract

35



Chapter 3. Related Studies

important sentences from a document. The direction of their and our studies

are the same because both try to utilize the knowledge of important sentence

extraction for attaining accurate information retrieval.

There are three requirements for results snippets [15], that are,

• Requirement 1

maximally informative about the query,

• Requirement 2

self-contained enough to be easy to read, and

• Requirement 3

short enough to fit within the normally strict constraints on the space avail-

able for summaries.

Accordingly, we propose a scoring method which assigns higher score to elements

satisfying these three requirements.

3.2. XML Keyword Search

In this section, we explain related studies of XML keyword search techniques.

The main target of the techniques is data-centric XML documents such DBLP as

shown in Figure 2.3.

Although we are primarily interested in search techniques for document-centric

XML documents, some studies for data-centric XML documents are related to our

research.

Data-centric XML documents generally describe only one term in their text

nodes. Therefore, studies investigating data-centric XML primarily focus on

searching query keywords. The existing research efforts to attain efficient XML

element searches usually utilize the lowest common ancestor (LCA) approach [92].

As a part of this approach, the LCA itself may originate as the top-level common

ancestor of arbitrary nodes in an XML tree; however, it is generally defined as the

deepest node containing all of the query keywords in its descendants. Research

involving LCA and XML elements [93, 94, 95, 96, 97, 98, 99] shows significant

results related to efficient XML keyword search; however, such techniques do not

36



3.3. Dynamic Updates of Data

perform well in the context of accurate XML searches. In other words, the re-

trieval accuracy of XML search systems decreases when we use LCAs as the most

appropriate XML elements for a given query [100].

To address this problem, research efforts have also tried to identify and extract

more relevant XML elements from the sub-tree whose root node is an LCA. XSeek

[100] is one such solution that produces a meaningful LCA (MLCA), which classi-

fies and analyzes XML tags by using XML schema and the positions of the query

keywords. In the case of XSeek, the nodes related to a query are selected and

extracted in the order of their relevance to a query. Another approach, eXtract

[101], is an expansion of MLCA and infers a user’s search purpose by analyzing

queries. In eXtract, queries are classified into two cases: (1) extracting an explicit

search target, and (2) extracting the neighbors of the search target.

From the results of the studies, identifying the most appropriate XML element

is very difficult, yet important, for XML element search. The purpose of the

approaches in these studies is similar to ours to return the best results. However,

our method returns not only the LCA, but also any node, because we do not

think that the LCA condition is enough for the most appropriate XML element.

Moreover, we do not need to utilize foreign information such as XML schema,

because we try to identify the appropriate element by using the relationships

between the elements.

Tanabe et al. [102] argued that a single XML document generally contains

both data-centric content and document-centric content. That is the motivation

why they focus on integrating XML keyword search techniques for data-centric

XML documents and information retrieval techniques for document-centric XML

documents to gain useful search results.

3.3. Dynamic Updates of Data

The handling of document updates is especially important in Web search systems

because documents are constantly inserted, deleted, and modified. When doc-

uments are updated, useful search systems should treat them as search targets

immediately. If systems present search results based on a past snapshot of the

Web, the content of the Web documents may since have changed. Search systems

should reflect the current state of the Web and handle dynamically changing Web

37



Chapter 3. Related Studies

documents.

Recently, some techniques for handling document updates have been proposed.

Chen et al. [103] tackled this challenge in the field of information extraction. They

reported that a long processing time is required to apply information extraction

techniques to document collections when document updates occur. As a result, a

delay occurs before information extracted from the updated documents is avail-

able. To shorten the delay, they proposed a method for recycling the intermediate

results of past snapshots. Neumann et al. [104] also effectively utilized the in-

formation of past snapshots, but with Resource Description Framework (RDF)

data.

Ren et al. [105] preserved not only the latest graph data but also past snap-

shots to trace the transition of the graph. Our study is different from theirs to

the extent that we present the information along with the latest state of the Web.

The aforementioned studies utilized the intermediate results of past snapshots.

Hence, we also utilize those or existing indices. We incrementally update existing

indices when new documents are inserted. In addition, Web search systems are

expected to maintain high performance with a low update cost. In the case of

text retrieval, high search accuracy should also be maintained.

There has been no adequate study focused on incremental updates in XML

element retrieval with effective and efficient query processing. Therefore, this is

the first study to tackle the problem. Although some researches have focused on

incremental updates of an inverted index [106], [107], [108], they proposed index

data structures of indices and physical storage methods. Our study differ from

their studies because we introduce a function for incremental updates of indices

for several purposes in XML element retrieval by proposing an efficient method

of data management.

3.4. HTML Documents Content Comprehension

and Classification

A study [21] reported that tags in structured documents are largely classified

into two groups; 1) tags surrounding self-contained content and 2) tags enabling

separate content. In this thesis, we define tags of 1) as structural tags. Concrete

38



3.4. HTML Documents Content Comprehension and Classification

examples of structural tags are HEAD, BODY, and P tags of HTML. These tags

are quite commonly used and can be meaningful clues for identifying useful and

appropriate granular elements.

In addition, some HTML tags defined in HTML5 [109] such as ARTICLE,

SECTION, NAV, and ASIDE tags are also structural tags. SECTION tag can be used

nested while each of the other tags represent specific context or semantic. This

means that a physical document structure agreeing to a logical structure of the

document can be generated with these tags. However, we propose a method which

works well even when we cannot utilize these newly defined tags, because these

tags has not widely used yet.

In contrast, tags of 2) are used for representing decoration, attribute, and

specific idea. To enumerate some examples, B, FONT, I tags are applicable. Most

of HTML tags are classified into 2), because HTML is defined for the sake of

being used for displaying with a browser. The fact that the number of tags of 1)

is small suggests that it is more difficult to identify the most appropriate granular

elements.

There are some kind of tags which perform a boundary between one topic and

another [110]. To show some tangible examples, these tags are Heading tags (H1–

H6 tags), HR tag, and BR tag. These tags are leveraged to split content according

to a topic.

A classification approach in separating HTML content based on actual appear-

ance also exists [111]. A merit of the approach is that parts which are originally

dissimilar in terms of document structure can be gathered into the same group if

these parts are similar enough in regards to the appearance on a browser.

On the other hands, a study [112] propose a method to extract main–content

from news articles based on un-supervised learning. The key idea of the study

is that the blocks of sub–content are the same or strongly similar to each other,

while the blocks of main–content are different from each other.

39



CHAPTER 4

Accurate XML Element Retrieval

Beyond Traditional Term-Weighting Schemes

This chapter describes our proposed methods for accurate XML element retrieval.

Many of existing studies mainly focus on the precise calculation of term weights.

The traditional approach is that term-weighting schemes for document retrieval

are extended to XML element retrieval. However, there is a gap between docu-

ment retrieval and XML element retrieval in that relevant descriptions need to

be identified in XML element retrieval. Therefore, we consider the importance

of not only term perspective but also element perspective while considering the

requirement for the important sentence extraction in Section 4.1.

Furthermore, these existing studies did not consider the approach for return-

ing search results, and only a few studies discuss an overlap between elements

in an XML document [51]. In these studies, some XML search systems simply

extract the element with the highest score. This means that the other elements

are unconditionally discarded from the search result candidates. These kinds of

systems do not always return a useful search result, because these elements not

being considered can cause element granularity to be extremely large or extremely

small. An extremely small element does not make sense in isolation, even though

search results contain relevant descriptions, while extremely large elements many

40



4.1. A Scoring Method Considering Requirements for Result Snippets

contain irrelevant descriptions, too. Therefore, we need to judge which XML el-

ements are most appropriate. For this purpose, we consider the text size of the

elements and their inclusion relations. More detail is discussed in Section 4.2.

Moreover, existing scoring functions for XML element retrieval calculate a rel-

evant score of each element independently. However, we believe that elements

belonging to the same document have some sort of relationship. Accordingly, we

hypothesize that a useful element is identified by using statistics of related ele-

ments. A scoring method leveraging statistics of ancestor and descendant elements

is explained in Section 4.3.

Section 4.4 describes our approach for integrating the proposed methods dis-

cussed in Sections 4.1 to 4.3. Furthermore, 4.5 describes the implementation of

the proposed system.

In Section 4.6, we conduct some experimental evaluations to measure the ef-

fectiveness of the proposed methods.

4.1. A Scoring Method Considering Requirements

for Result Snippets

Based on the three requirements for result snippets denoted in Section 3.1.4,

we define three challenges in order to adapt the requirements to XML element

retrieval. They are as follows:

• Challenge 1

even though an element contains many of query keywords, the element is

not appropriate when only a specific kind of query keywords is occurring,

• Challenge 2

an element contains many of irrelevant descriptions for a query, the element

is not appropriate, and

• Challenge 3

an extremely large element is not appropriate.

Concerned with the Challenge 1, we consider the number of distinct query

keywords. Because query keywords may have numerous meanings, it is often

41



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

difficult to identify a proper one. One solution is to consider the co-occurrence

of query keywords. If an XML element contains several distinct query keywords

in its text nodes, we can assume that the XML element is closely related to the

meaning of the given query keywords. Thus, we propose a query keyword scoring

method (QK) as follows:

SQK(e) =
dqke
Q

(4.1)

Where SQK(e) is a QK score of element e, dqke is the number of the distinct query

keywords in e, and Q is the total number of the query keywords of a query.

In terms of the Challenge 2, the ratio of relevant descriptions for a query to

irrelevant descriptions needs to be considered. Then, to handle the Challenge

3, the text size (element length) of each element needs to be considered. We

regard these challenges are solved with existing XML element retrieval techniques,

because some of them normalize with an element length, while others penalize

extremely large and small elements. Above all existing XML element retrieval

techniques, QS is the most appropriate one. The scoring method not only solve

these challenges, but also satisfy the Requirement 1 that maximally informative

about the query.

We finally combine QK and QS to consider the requirement more strictly.

In order to combine these two values, a mathematical function is usually used.

There are many mathematical functions which can combine multiple values [113];

however, we try to use the function of their product which is the simplest one in

the same spirit of traditional document retrieval systems. Therefore, a score of

query-oriented scoring method (QO) is calculated as follows:

SQO(e) = SQK(e) · SQS(e) (4.2)

4.2. Result Reconstruction Method

Search systems should return the smallest-possible XML elements for the given

query; however, recently, document search has been regarded as more effective

than XML element search (as demonstrated by INEX). We believe that XML

element search enables users to save time and energy in their information retrieval

tasks and could be very convenient. Therefore, we aim to propose a method to

find XML element search results whose length is appropriate.

42



4.2. Result Reconstruction Method

DID EID Score …

1 1 k .887 …

2 2 b .864 …

3 1 i .816 …

4 3 d .755 …

5 2 c .716 …

6 1 h .702 …

(1) Scoring each  element to

get simple ranked list

.

.

.

… 1 d .253       …

.

.

Part of SIXE

whose DID is 

1000

a

. . .

b

d

e f

g h

i k

z

c

. . .

j

DID EID Score …

1 1 h .702 …

2 3 d .755 …

3 2 b .716 …

4 2 g .668 …

(3) Proposing refined

ranked list

(2) Generating a Set of

Integrated XML 

Elements (SIXE)

.

.

… 1                d .253       …

.

DB

Query

Figure 4.1. Overview of our proposed method

In our approach, we show a refined ranked list, which is composed of the

relevant and informative XML elements. As shown in Figure 4.1, an overview of

our method is as follows:

(1) We first score each XML element by using a scoring method to obtain a

simple ranked list.

(2) We extract the XML elements from a simple ranked list and generate a set of

relevant XML elements by considering the limitations of the XML element

length and the reconstruction of the XML elements.

(3) To present a refined ranked list, we rank the XML elements extracted from

Step (2); we re-rank and remove the XML elements in the simple ranked

list and incorporate them into the refined ranked list.

43



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

Hereafter, we denote the set of relevant XML elements generated in Step (2) as

the Set of Integrated XML Elements (SIXE).

4.2.1 Selecting an Effective Scoring Method

Our method starts with a simple ranked list. Therefore, the search accuracy of

the proposed method depends on the quality of the given list. Selecting a suitable

scoring method for an XML element search is the key to acquiring a reliable simple

ranked list.

We assume the following two conditions as follows:

• a simple ranked list is highly accurate in terms of its MAiP, and

• a simple ranked list contains XML elements of varying lengths.

With regard to the first condition, a simple ranked list with high MAiP con-

tains many relevant elements, regardless of whether or not it is ranked in the

appropriate order. Therefore, we need to utilize a method with high MAiP.

With regard to the second condition, we want a simple ranked list that is

composed of elements of varying lengths, i.e., from small-length elements to large-

length elements, because the most appropriate parts in the XML document are

not specific granular elements. In other words, the appropriate granularity differs

from document to document. Besides, we cannot extract the appropriate granular

elements if a simple ranked list contains only specific granular elements. Thus, we

assume that a simple ranked list should contain XML elements of varying lengths.

To examine which list satisfies the condition, we utilize the notion that there

is a relationship between the granularity and the text size of an element. Note

that we consider the ratio of the text size of an element to the granularity of the

element. In this case, the standard deviation becomes large if a simple ranked list

contains XML elements of varying lengths. From the above discussion, we will

explore the standard deviation for the second condition.

While we try to generate a simple ranked list that contains XML elements

of varying lengths, Kamps et al. noted that large-sized XML elements tend to

be more effective [52] compared with middle-sized or small-sized ones; however,

problems can occur while extracting such large-sized elements. Consider an XML

document in which several relevant elements exist. Using the tree structure shown

44



4.2. Result Reconstruction Method

in Figure 4.1, we consider the sub-trees with the root nodes d and h to be the

relevant elements. When we extract a sub-tree that contains all of the relevant

elements, it might also include numerous irrelevant elements. For example, if we

choose a sub-tree with root node a, it contains numerous irrelevant elements, in-

cluding c and g. If the scoring method used gives a higher score to large-sized

XML elements, result a may rank higher than d and h. To solve this problem, we

should extract multiple relevant XML elements from the XML document. In par-

ticular, we need to extract differently sized XML elements in order to determine

the appropriate granularity of XML elements. Given this approach, we focus on

MAiP and the length of the retrieved XML elements. We performed a prelim-

inary experiment, as described in Section 4.6.1.2, to verify whether or not our

assumption is true.

4.2.2 Generating a Set of Integrated XML Elements

To generate an SIXE which are composed of appropriate granular elements as

search results, we extract the relevant XML elements from the simple ranked list

generated in Step (1) of our method. As discussed in Section 4.2.1, large XML

elements might contain irrelevant descriptions and decrease search accuracy.

One baseline approach for generating a non-overlapped ranked list of XML

elements is to repeatedly extract the XML elements from a simple ranked list in

descending order of their rank, unless an overlap occurs. The overlapped XML

elements are simply discarded and ignored.

This operation continues as long as either a candidate of the XML elements

remains in the search results or the number of extracted XML elements reaches a

predefined upper limit1.

On the other hand, we aim to reconfigure XML elements in a simple ranked list

to produce results that are better than those of the established baseline. As noted

in Section 3.1.1, we should consider how to identify and extract XML elements of

appropriate lengths in order to attain a more accurate XML element search. We

should also consider how to handle overlapping results, which we ignored in the

baseline approach.

From the above discussion, we derive the following requirements:

1In our experimentation, we extracted 1,500 or fewer XML elements for each query.

45



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

• Requirement 1

Because traditional search results include several large XML elements, we

should impose an extraction limit on the element size.

• Requirement 2

The extracted XML elements are appropriately abbreviated and reconstructed

to resolve the overlap problem.

4.2.2.1 Extraction Limit

To satisfy Requirement 1, we need to limit the size of the extracted XML elements

to an extraction limit (EL). Large-sized elements tend to contain more kinds of

contents, which means that such elements may have parts that are irrelevant to

users’ information need. Thus, we suppose that the text size of the relevant parts

in an XML document is lesser than a certain value. We limit the text size of the

extracted XML elements for each XML document.

In our previous study, it turns out that it is difficult to identify the most

appropriate granular elements only with document structure information because

document structures of the same length elements are quite different with each

other [114]. For this reason, we leverage not granular but text size of elements in

finding the most appropriate granular elements. Eventually, we extract multiple

relevant XML elements from an XML document, as long as their sizes are properly

restricted.

To set the limit, we consider two approaches: (1) the value of the limit is

dependent on the text size of each document, and (2) the value of the limit is

independent of the text size of each document. In approach (1), the document-

size-dependent condition, we assume that the relevant parts can be represented as

a certain ratio of each XML document size. Accordingly, we limit the extracted

text size for each XML document by defining EL of an XML document D as

follows:

ELD = α · |D| (4.3)

where |D| is the size of the XML document D, and α (0 ≤ α ≤ 1) is the ratio of

the size of the relevant element.

In approach (2), the document-size-independent condition, there may be XML

documents of varying lengths, i.e., there are both large-sized documents and small-

46



4.2. Result Reconstruction Method

sized documents. In this situation, EL derived from approach (1) could be too

small a threshold for informative search results if there are extremely small-sized

XML documents. Hence, we set EL as a constant value in approach (2) . We

define EL as follows:

ELD = β (4.4)

where β is the parameter of the text size, which is the maximum number of

relevant parts in an XML document.

Given this definition, we extract the XML elements from a simple ranked list

when the text size of the XML elements in the SIXE is less than EL. This process

repeats until the size exceeds EL.

In a report of users’ behavior about Web browsing [115], the average time

of browsing a Web page is less than a minute. In addition, the average text

reading speed in English is approximately 1,000 to 1,200 characters per minute

[56]. Thus, we hypothesis that users’ tolerance for reading each result, that is,

the best parameter for EL, is at most 1,200.

In this thesis, we explore the best parameter for EL in Section 4.6.1.3. How-

ever, the best parameter may not be able to be explored in practical situation.

Thus, we set 1,200 as default value for EL in case the parameter cannot be tuned

preliminary. Note that the parameter can be tuned with R–precision measured

by manual judgment, even though there is no ground truth.

4.2.2.2 Reconstruction of Elements

To satisfy Requirement 2, we need to arrange the extracted XML elements such

that the SIXE contains useful search results. To generate a non-overlapped ranked

list for the baseline approach, we simply eliminate the overlapping XML elements.

This may prevent us from extracting the relevant XML elements. For example, in

Figure 4.2, we assume that the XML element rooted at node c is the most relevant

one in the tree; however, we cannot extract c if we have already extracted d.

To address this problem, we search for larger XML elements and overwrite

them. As a result, these relevant elements are all contained in the SIXE, while the

existing approaches extract the elements with the higher score. As these overwrite

operations are applied, the XML element lengths in the SIXE increase; therefore,

the overwrite operation is executed only when Requirement 1 is satisfied.

47



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

1

2 4

3

a

b c

d

Figure 4.2. Example of overwrite elements

NodeID Score

1 d high

2 b middle

3 c middle

4 e low

5 a low

Re-score 

c with d

NodeID Score

1 d high

2 c

upper

middle

3 b middle

4 e low

5 a low

Figure 4.3. Overview of Bottom-Up scoring

Again, consider Figure 4.2. Suppose that c has been extracted. If a is ex-

tracted, a overwrites c, because it is larger than c. Furthermore, we discard d,

because it is smaller than c.

4.2.3 Generating a Refined Ranked List

After generating an SIXE, we compute a score to each XML element in the SIXE

and finally generate a refined ranked list. The simplest way to score these XML

elements is to use the initial score, which is used in Step (1) of our method,

although it is possible to use other scoring functions.

48



4.3. A Scoring Method with Statistics of Related Elements

4.3. A Scoring Method with Statistics of Related

Elements

In this section, we try to find out more informative elements for achieving high

accuracy especially at lower recall level (top-rank search results).

As a result of SIXE proposed in the previous section, we obtain a set of ele-

ments which are composed of elements of appropriate granularity as search results.

We then try to rank them in an effective way.

The simplest way to generate a refined ranked list is just to use the initial

score, as adopted in Section 4.2.2.2. However, such an approach that treats each

element as independent search target is not different from existing approaches. We

reconstruct search results while considering overlapping relations among elements,

since we belive it leads to better search performance. Thus, we hypothesize that

leveraging statistics of related elements is useful to identity more informative

elements.

In the following subsections, we propose two scoring methods for generating

a refined ranked list: (1) bottom-up scoring, which utilizes the statistics of the

descendant XML elements in order to score an ancestor XML element, and (2)

top-down scoring, which utilizes the statistics of an ancestor XML element in order

to score the descendant XML elements.

4.3.1 Bottom-Up Scoring

The overwrite operation introduced in Section 4.2.2.2 is executed when over-

laps exist in the SIXE. In the overwrite operation, an ancestor XML element is

extracted in place of its descendants. The ancestor should be ranked lower in

a simple ranked list as compared to its descendants, implying that the refined

ranked list also treats the ancestor XML element as a lower rank if the initial

scores are used. In other words, a descendant element that was originally pro-

posed earlier can be proposed later as a part of the ancestor element. We show

a concrete example in Figures 4.2 and 4.3. When we generate a non-overlapped

ranked list with the proposed approach, we first extract d and b. Next, we extract

c and remove d from the list because of overwriting. As a consequence, the text

nodes in c are proposed as a search result after the text nodes in b are proposed.

49



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

Regarding the text node in d, it should be proposed before the text node in b is

proposed. However, the proposed order of these text nodes is reversed as a result

of overwriting. We think that this may damage the search accuracy. Therefore,

we define a scoring method in which an element has elements with a higher score

among its descendants as a bottom-up scoring method (BU).

When we calculate the BU score of an XML element, we should consider the

statistics of its descendant elements. Conversely, it is not appropriate that XML

elements with low scores are ranked high. Therefore, we must integrate these

initial scores properly. To re-score a descendant element with the statistics of

its ancestor element, we consider two approaches: (1) integrating the scores of

the ancestor element and the descendant element by a constant fraction, and (2)

integrating the score by a ratio of the lengths of the ancestor XML element and

its descendants. Furthermore, we also consider an approach which is a mixture of

the former approaches, that is, (3) integrating the scores by a constant ratio after

they are re-scored with a ratio of the length of the two elements.

Here, we discuss how to calculate BU by (1), a constant ratio. Let fa be an

ancestor XML element and fd be the descendant element with the highest score.

We define the bottom-up (BU) scoring function as:

sBU(fa) = γ · s(fd) + (1− γ) · s(fa) (4.5)

where γ(0 ≤ γ ≤ 1) is the ratio of the effects on an ancestor element.

Next, we denote the approach for (2). Portions of the text nodes in an ancestor

XML element are composed of descendant XML elements; the scores of the text

nodes in these descendants affect those in the ancestors. Therefore, the BU score

should be calculated using the initial score, as well as the ratio of the lengths of

the ancestor XML element and that of its descendants:

sBU(fa) =
1

2

|fd|
|fa|

· s(fd) +
1

2

|fa| − |fd|
|fa|

· s(fa) (4.6)

where |fd| is the length of fd, fa is the length of fa, sBU(fa) is the bottom-up

score of fa, s(fa) is the initial score of fa, and s(fd) is the initial score of fd. Note

that both initial scores are divided by two to adjust the weight.

Finally, we present an equation to calculate the BU score with approach (3),

which is a mixture of approaches (1) and (2):

sBU(fa) = γ
|fd|
|fa|

· s(fd) + (1− γ)
|fa| − |fd|

|fa|
· s(fa) (4.7)

50



4.4. Integrated Use of Scoring Functions

Note that Equation 4.6 is equal to Equation 4.7 when γ = 0.5. We did some

experiments to explore the best approach and its parameter of γ in Section 4.6.1.4.

4.3.2 Top-Down Scoring

As we discussed, the number of the distinct query keywords identify informative

elements. On the other hand, the larger XML elements contain more query key-

words, indicating that larger XML elements tend to be ranked higher. In other

words, we might overlook smaller XML elements, even if they are informative. To

cope with this problem, we propose a scoring method that is independent of the

XML element size.

If an XML element contain numerous distinct query keywords, the element

is identified as informative one. We suppose that a descendant element of the

informative element is also informative because the descendant element takes over

features of ancestor elements. Therefore, we consider top-down scoring method

(TD) by calculating the ratio of the number of distinct query keywords contained

in an XML element to that of its top-level ancestor, i.e., the entire document.

Let f be a scored XML element and Df be an XML document associated with

f . We define the top-down (TD) scoring function as

sTD(f) = s(f) · count(Df ) (4.8)

where s(f) is the initial score of f , and count(Df ) is the number of distinct query

keywords in Df .

The two methods BU and TD can be integrated. We call this mixture-scoring

method BU-TD. We calculate the BU score first and then re-score with TD,

because the BU method occurs with overwriting.

4.4. Integrated Use of Scoring Functions

In this section, we explain integrated use of scoring functions proposed in Sections

4.1, 4.2, and 4.2.3.

4.4.1 Integration Procedure of Each Scoring Function

We proposed four approaches of scoring functions:

51



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

1. QO (QS·QK)

2. SIXE

3. BU

4. TD

Note that since QO is the product of QS and QK, there are five distinct scoring

functions in total.

Some combinations of two or more scoring functions can be integrated because

some of the scoring functions are independent from each other. In addition, the

integration result changes with the applied order of scoring functions even though

the combination of the scoring functions is the same. If all permutations are

possible, there are many variations of integrated use. However, in reality possible

integrated methods are restricted because of limitations regarding the combination

constraint and applied order constraint.

To enumerate constraints, for example, BU need to be used with SIXE at the

same time because BU is the scoring function executed during overlap operation

of SIXE. As another example, since QS is applied in term calculation, there are

only two options about QS, namely, applying or not. In other words, there is

no option about the applied order. Meanwhile, since TD is based on QS, it is

not natural that both scoring functions are applied in a variation of integrated

methods. Based on these constraints, there are 19 kinds of integrated methods as

follows.

• Two scoring functions

QS-QK (QO), QS-SIXE, QS-TD, QK-SIXE, SIXE-QK, SIXE-BU, SIXE-

TD, TD-SIXE

• Three scoring functions

QS-QK-SIXE (QO-SIXE),QS-SIXE-BU,QS-TD-SIXE,QK-SIXE-BU, SIXE-

BU-QK, SIXE-BU-TD, TD-SIXE-BU

• Four scoring functions

QS-QK-SIXE-BU (QO-SIXE-BU),QS-SIXE-BU-QK,QS-SIXE-BU-TD,QS-

TD-SIXE-BU

52



4.4. Integrated Use of Scoring Functions

NodeID Score Text size

New

Score

k .887 40 .887

i .816 10 .816

h .702 70 .808

j .322 20 .322

d .256 25 .256

b .207 40 .207

a .194 300 .194

c .155 15 .155

={33} = 40

={31, 33} = 50

={31, 32, 33} = 70

2

4

3

d

e f

2

4

3

b

d

e f

1

c

={2, 3, 4, 31, 32, 33} = 95

k

33

31

32

h

i k

33

31

32

h

i k

33

31

32

h

i k

33

31

32

h

i k

33

j

j

j

j

(1)

(2)

(3)

(4)

(5) Part of SIXE 

(DocID 1000)

a

5

g

. . .

100

z

. . .

NodeID

New

Score

h .808

d .256

(6) Part of

refined ranked list

simple ranked list

1000τ

1000τ

1000τ

1000τ

={2, 3, 4, 31, 32, 33} = 95

1000τ

Figure 4.4. Example of generating a refined ranked list for an XML document

In Section 4.6, we investigated search accuracies of every single function and

all variations of integrated methods.

4.4.2 Example of Generating SIXE and a Refined Ranked

List

In summary, we illustrate an example of generating a part of an SIXE in which the

document ID is 1,000 and its corresponding refined ranked list uses BU scoring.

Figure 4.4 provides a graphical view of this example. Note that we use Equation

4.6 to calculate the BU score.

Suppose that α = 1
3
, and |D1000| = 300. Then, EL1000 = α · |D1000| = 100.

Next, we introduce τ1000, which is the total length of the extracted XML elements

from document ID 1,000.

53



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

We first obtain a simple ranked list that is calculated in Step (1). The obtained

XML elements are shown in the left table of Figure 4.4. For the sake of simplicity,

we assume that the list contains only the XML elements whose document ID is

1,000.

We extract the XML element with the highest score, which is node k, from the

simple ranked list. Because the text length of k is 40 (< EL1000), k is extracted.

This extraction process continues, because τ1000, which contains text node 33, is

less than EL1000. Therefore, i is selected next, because i has the second-highest

score in the simple ranked list. Thus, i is extracted, because τ1000, which contains

text nodes 31 and 33, equals 50 (< EL1000). Node h is the next candidate to be

extracted. Because i and k are the descendants of h, they are overwritten by h.

In particular, i and k are removed from the SIXE and h is added. At this point,

τ1000 becomes 70, which is still less than EL1000.

Next, bottom-up scoring is applied. Function (2) is used to score node h(sBU(h) =
40
70

· 0.887 + 70−30
70

· 0.702 = 0.808).

Following Figure 4.4 further, d is also extracted. Nodes b and c fail to be

extracted, because τ1000 exceeds EL1000. In the end, the SIXE is formed by nodes

d and h.

Finally, the refined ranked list is constructed by adding the scores calculated

via bottom-up scoring into the SIXE. In the same manner, we generate the com-

plete SIXE for all of the XML documents and construct the final refined ranked

list in the descending order of their scores.

4.5. Implementation

The proposed method is implemented with RDB. We used XRel [64] to transform

the XML document into a RDB format. Although XRel splits the XML document

into five tables, the proposed system only utilizes element and term tables for

query processing. The schema of the tables is as follows.#

"

 

!
CREATE TABLE element (

did number,

eid number,

54



4.5. Implementation

'

&

$

%

st_pos number,

ed_pos number,

path VARCHAR2(512),

pathexp VARCHAR2(512),

numTerm number,

PRIMARY KEY (did, eid)

);

CREATE TABLE term (

did number,

eid number,

term VARCHAR2(256),

weight float(23),

PRIMARY KEY(did, eid, term)

);

The element table contains information about elements. Attributes of the

element table are documentID (did), elementID (eid), start position of the el-

ement in the document (st pos), end position of the element in the document

(ed pos), full-path (path), path expression (pathexp), the number of terms in

the element (numTerm). Primary Keys are did and eid. Offset information, or

st pos and ed pos, is leveraged to for overlapping relationships between elements.

Then, full-path information is used when search results are shown, while a path

expression is utilized to check whether an element satisfies a structural constraint.

On the other hand, the term table stores information related to a term. At-

tributes of the term table are documentID (did), elementID (eid), term (term),

and term weight (weight). Primary keys are did, eid, and term. A term weight

is calculated with an arbitrary term-weighting scheme.

Since the INEX topics used in experimental evaluations are written in NEXI,

these NEXI queries need to be translated into SQL format. We semi-manually

rewrite NEXI queries into SQL queries. Concrete examples of queries for baseline,

QS, QK, QO can be found in Appendix B.

55



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

4.6. Experimental Evaluations

We conducted some experimental evaluations for confirming the effectiveness of

the proposed methods with INEX test collections.

Note that the PC we used for the experiments runs Oracle Enterprise Linux

5.5. It has four Intel Xeon X7560 CPUs (2.3GHz), 512GB of memory, and a

4.5TB disk array. The database used in query processing is constructed with

Oracle Database 11g Release 2.

We go through following pre-processes as follows:

1. removing attributes, comments, and special characters of XML documents,

2. removing the stop words by SMART stop list (listed in Appendix A), and

3. applying stemming step by Porter [11].

4.6.1 Preliminary Experiments

Before evaluating the search accuracy of an SIXE, we choose the term-weighting

scheme for the initial search in Section 4.2.1, and also set the parameters α and

β for EL in Section 4.2.2.1. In the next sections, we perform preliminary experi-

ments to find the best term-weighting scheme for the initial search and the best

parameters with the INEX 2008 test collection. We use the same term-weighting

scheme and parameters with the experiments of the INEX 2010 test collection.

4.6.1.1 Smoothing Method for Query Likelihood Model for Element

Retrieval Techniques

In choosing the best term-weighting scheme in next section, the best smoothing

method for QLMER.

We therefore conducted some preliminary experiments with some conditions to

choose the best parameters for each smoothing method. Concretely, we used five

smoothing methods, i.e., the linear interpolation (collection-based smoothing and

path expression-based one), the Dirichlet smoothing (collection-based smoothing

and path expression-based one), and two-stage smoothing.

Table 4.1 shows the best tuned search accuracies of the smoothing methods.

It shows that the linear interpolation with the path expression-based smoothing

56



4.6. Experimental Evaluations

iP[.01] MAiP

linear interpolation (collection, ω = 0.5) .5194 .1087

linear interpolation (path expression, ω = 0.5) .5211 .1130

Dirichlet smoothing (collection, µ = 1100) .5612 .1370

Dirichlet smoothing (path expression, µ = 1100) .6038 .1487

two-stage (path expression, ω = 1.0, µ = 1100) .6130 .1487

Table 4.1. Effects of a smoothing method on search accuracy

normalized TF-IPF BM25E QLMER

MAiP .1399 .1679 .1487

Standard deviation 1.30× 10−3 1.41× 10−3 1.53× 10−3

Table 4.2. Standard deviation and effect of SIXE

is more effective than the collection-based one. Similarly, the Dirichlet smoothing

with the path expression-based smoothing is more effective than the collection-

based one. Therefore, path expression-based smoothing is more effective in search

accuracy. Then, two-stage smoothing cannot overwhelm the either smoothing

method as well as document retrieval [16].

4.6.1.2 Choosing Term-weighting Scheme for Initial Search

In Section 4.2.1, we assumed that a simple ranked list that is suitable for SIXE has

two conditions: (1) a simple ranked list is highly accurate in terms of its MAiP,

and (2) a simple ranked list contains many sizes of XML elements. Accordingly, we

performed two preliminary experiments to reveal the most suitable scoring method

and to evaluate whether our assumption is true or not. In the former experiment,

we compared the search accuracy of the following three scoring methods: the

normalized TF-IPF [72], BM25E [73], and QLMER [74]. Because BM25E requires

a weight to be assigned to each tag, we simply set the weight of all tags to

1. The parameters for BM25E are tuned with the INEX 2008 test collection

(k1 = 2.5, b = 0.85) and used for both test collections. Likewise, smoothing

method and its parameters for QLMER is set based on the experiments conducted

in the previous section.

57



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

r

e

c

i

s

i

o

n

recall

BM25E

BM25E (SIXF)

normalized TF-IPF

normalized TF-IPF (SIXF)

QLMER

QLMER (SIXF)

iP[.01] ret. size (bytes)

BM25E .613
1.30×10

8

BM25E (SIXF) .663
1.47×10

8

n-TF-IPF .610
1.58×10

8

n-TF-IPF (SIXF) .616
1.90×10

8

QLMER .597
2.16×10

8

QLMER (SIXF) .620
2.73×10

8

Figure 4.5. Comparison of scoring methods

Table 4.2 shows that both MAiP and the standard deviation of BM25E are

higher than those of the normalized TF-IPF. Thereby, BM25E should be a more

suitable scoring method for our method SIXE than the normalized TF-IPF, if our

assumption is valid. Meanwhile, although the MAiP of BM25E is higher than

QLMER, the standard deviation of BM25E is lower than QLMER, which makes

it difficult to predict which scoring method is more suitable for the proposed

reconstruction method.

To confirm it, we apply SIXE to normalized TF-IPF, BM25E, and QLMER.

The result of the experiment is illustrated in Figure 4.5. The figure shows that the

iP[.01] of BM25E (SIXE ) is higher than that of the normalized TF-IPF (SIXE )

and QLMER (SIXE). Also, the rate of increase between the original method and

SIXE is highest with BM25E.

58



4.6. Experimental Evaluations

α 0.1 0.2 0.3 0.4 0.5

iP[.01] .447 .548 .626 .605 .595

MAiP .0291 .0505 .0768 .0950 .108

α 0.6 0.7 0.8 0.9 1.0

iP[.01] .603 .601 .609 .600 .662

MAiP .123 .132 .138 .140 .237

Table 4.3. iP[.01] at each α for EL

According to the results of experiments, our assumption is correct, and the

scoring method attaining highly MAiP and returning variously sized XML ele-

ments is suitable for our goal. This suggested that such a scoring method can

return a more appropriate granularity of XML elements when an overwrite oper-

ation runs. We conclude that we use BM25E as a scoring method for the initial

search in the following experiments.

4.6.1.3 Tuning Parameter for EL of SIXE

We performed other preliminary experiments to determine the parameter EL,

as described in Section 4.2.2.1, before evaluating our method SIXE. First, we

performed experiments to evaluate the effectiveness of EL on the document-size-

dependent condition, which assumes that the ratio of the relevant parts in an

XML document is lower than a certain value. Because EL depends on α, we

evaluate it with iP[.01] and MAiP by changing α from 0.1 to 1 by steps of 0.1

in the experiment. Table 4.3 shows iP[.01] and MAiP at α. In this regard, α

is the ratio of the relevant parts in an XML document. The experiment shows

that the best value of α is 1.0, because iP[.01] and MAiP are the best. This fact

indicates that a size limitation on the document-size-dependent condition is not

appropriate. Moreover, the result also shows that some XML documents should

be returned as a whole document.

We subsequently performed a preliminary experiment to explore the search

accuracy of EL on the document-size-independent condition, which assumes that

the relevant text in an XML element is lower than a constant value. Table 4.4

shows iP[.01] and MAiP at β. In this regard, β is the text size of the relevant

59



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

β 100 200 300 400 500 600 700

iP[.01] .482 .536 .595 .629 .649 .648 .649

β 800 900 1000 2000 3000 4000 5000

iP[.01] .655 .656 .663 .659 .659 .660 .661

Table 4.4. iP[.01] at each β for EL

parts in an XML document. It shows that iP[.01] is the highest when β = 1, 000.

This result agrees with the estimation that the best parameter for EL is less than

1,200.

From this result, we use EL on the document-size-independent condition with

β = 1, 000.

4.6.1.4 Tuning Parameter for BU

In this section, we investigate the best tuned parameter for BU described in

Section 4.3.1. Since BU is applied during overwrite operations of SIXE, BU is

used with SIXE.

There are two options for BU as follows: (1) integrating the scores of the an-

cestor element and the descendant elements by a constant fraction, (2) integrating

the scores by a ratio of the lengths of the ancestor XML element and that of its

descendant elements, and (3) combining approaches (1) and (2).

We evaluated the search accuracy by changing γ, which is the ratio of the effect

of an ancestor element from 0.0 to 1.0 by 0.1 steps, using Equation 4.5 (Table 4.5)

and Equation 4.7 (Table 4.6). We do not have to examine the search accuracy of

Equation 4.6 individually, because the result of Equation 4.6 is equal to that of

Equation 4.7 when γ = 0.5.

The results of the two tables show that each iP[.01] of approach (3) is higher

than that of approach (2); besides, the iP[.01] of approach (3) with γ = 0.6 is

higher than that of γ = 0.5. On the basis of these results, the most effective

approach for BU is calculated by approach (3), which integrates the scores by a

constant ratio after re-scoring with a ratio of the length of the two elements with

γ = 0.6. Therefore, we use Equation 4.7 with γ = 0.6 in the latter experiments.

60



4.6. Experimental Evaluations

γ 0.0 0.1 0.2 0.3 0.4 0.5

iP[.01] .398 .409 .427 .452 .479 .498

MAiP .102 .105 .106 .109 .115 .120

γ 0.6 0.7 0.8 0.9 1.0

iP[.01] .520 .551 .575 .576 .578

MAiP .126 .130 .134 .135 .137

Table 4.5. iP[.01] at each γ for BU (Equation 4.5)

γ 0.0 0.1 0.2 0.3 0.4 0.5

iP[.01] .461 .485 .512 .550 .605 .665

MAiP .108 .115 .126 .142 .165 .189

γ 0.6 0.7 0.8 0.9 1.0

iP[.01] .669 .667 .626 .665 .665

MAiP .190 .190 .190 .189 .189

Table 4.6. iP[.01] at each γ for BU (Equation 4.7)

4.6.2 Evaluations for Each Scoring Function

We evaluated search accuracy and retrieved byte size of each of the proposed

scoring functions, namely QO(QS and QK ), SIXE, and TD. Note that we do not

evaluate BU here because BU cannot be used singularly. We set BM25E as a

baseline method.

Table 4.7 depicts that SIXE and TD improved search accuracies compared to

baseline, while QO decreased the search accuracy.

In terms of search accuracy of a single scoring function, SIXE showed the most

effective scoring function. From this result we can see that integrating elements

to extract a larger element for more relevant descriptions is effective in advancing

search accuracy.

Although QO decreased search accuracy, both of the scoring functions in QO,

or QS and QK, improved search accuracy. This result indicates that QS and

QK has negative influences on each other. Therefore, we need to be careful in

combining these scoring functions in order not to extract useful search results.

61



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

baseline QO QS QK SIXE TD

iP[.01] .6131 .6069 .6236 .6146 .6628 .6239

MAiP .1679 .1721 .1720 .1767 .1946 .1535

retrieved 1.26× 108 1.73× 108 1.47× 108 1.68× 108 1.47× 108 1.33× 108

Table 4.7. Comparison among the propoed scoring functions

Futheremore, TD can be used as a single scoring function, although TD was

originally proposed to be used with SIXE. It turned out that TD improved search

accuracy. From the fact that TD is even more accurate than QK, our notion that

descendant elements take over features of ancestor elements seems to be true.

4.6.3 Evalutions for Integrated Methods

We continuously survey the effectiveness of integrated methods each of which is

composed of possible permutations of the proposed scoring functions. The results

of the evaluations are shown in Table 4.8.

All the integrated methods except QS-TD improved search accuracies com-

pared with the baseline approach. Especially, every integrated method which

applies SIXE improved search accuracy, which suggests that SIXE contributes to

a rise in search accuracy.

BU which cannot be evaluated in the experiments conducted in the previous

section improved search accuracies in many integrated methods applied BU. Addi-

tionally, it seems that TD is suitable to be applied after SIXE, because SIXE-BU-

TD and QS-SIXE-BU-TD are more accurate than SIXE-BU and QS-SIXE-BU,

respectively. Conversely, TD before SIXE may decreases search accuracy because

QS-SIXE is better than QS-TD-SIXE regarding search accuracy.

In all variations of the integrated methods, SIXE-BU-TD is the most accurate.

This result agrees with tendencies discussed above.

From the observations obtained through experiments, SIXE highly contributes

to search accuracies, and BU and TD also lead to a more accurate search.

Accordingly, we conduct exhaustive experiments on them with both INEX

2008 test collection and INEX 2010 test collection.

62



4.6. Experimental Evaluations

iP[.01] MAiP byte rate of increase

SIXE-BU-TD .6686 .1934 1.43× 108 1.086

SIXE-BU .6653 .1888 1.43× 108 1.081

QS-SIXE-BU-TD .6585 .1918 1.43× 108 1.070

QS-SIXE-BU .6555 .1886 1.43× 108 1.065

QS-SIXE .6540 .1901 1.43× 108 1.062

TD-SIXE-BU .6442 .1860 1.74× 108 1.047

SIXE-TD .6435 .1869 1.43× 108 1.045

TD-SIXE .6430 .1874 1.74× 108 1.045

SIXE-BU-QK .6370 .1813 1.43× 108 1.035

SIXE-QK .6363 .1826 1.43× 108 1.034

QK-SIXE-BU .6362 .1807 1.79× 108 1.034

QK-SIXE .6354 .1824 1.79× 108 1.032

QS-SIXE-BU-QK .6300 .1815 1.43× 108 1.023

QS-QK-SIXE-BU .6297 .1813 1.83× 108 1.023

QS-QK-SIXE .6294 .1831 1.83× 108 1.022

QS-TD-SIXE-BU .6258 .1723 2.04× 108 1.017

QS-TD-SIXE .6254 .1742 2.04× 108 1.016

baseline .6156 .1679 1.26× 108 1.000

QS-TD .6109 .1435 1.59× 108 0.992

Table 4.8. Comparison among integrated methods

4.6.4 Further Experiments with SIXE, BU, and TD

As summarized in Table 4.9, all of SIXE-BU, SIXE-TD, and SIXE-BU-TD im-

proved the search accuracies compared with both baseline and SIXE in the INEX

2008 test collection. Note that SIXE-TD increased significantly the size of the

retrieved XML elements. This is an unpleasant result, because we believe that

the XML element search should produce search results that are small rather than

large, because larger should be uncomfortable for users. Conversely, SIXE-BU

and SIXE-BU-TD did not increase the size of the retrieved XML elements as

much. Furthermore, SIXE-BU-TD can search most accurately among these scor-

ing methods.

63



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

INEX 2008 baseline SIXE　 SIXE-BU SIXE-TD SIXE-BU-TD

iP[.01] .613 .660 .668 .662 .669

MAiP .171 .240 .191 .242 .196

retrieved size (bytes) 1.30× 108 1.43× 108 1.43× 108 2.28× 108 1.43× 108

INEX 2010 baseline SIXE　 SIXE-BU SIXE-TD SIXE-BU-TD

iP[.01] .382 .422 .437 .384 .410

MAiP .144 .0930 .0952 .138 .117

retrieved size (bytes) 3.75× 108 1.76× 108 1.76× 108 3.68× 108 1.57× 108

Table 4.9. Effect of scoring methods INEX 2008 and INEX 2010

Therefore, SIXE-BU-TD is the most suitable method for our proposal. Finally,

the iP[.01] of the proposed method is improved by 9% compared to that of the

baseline.

Likewise, we examined search accuracies of the baseline approach and the pro-

posed methods in INEX 2010 test collection. These accuracies decreased compared

with these of INEX 2008 in the same manner as other participants (see Table 5.7).

This is because INEX 2010 test collection contains four times larger articles and

additional semantic markups compared with INEX 2008 test collection. These

features make accurate search more difficult.

Then, all variations of the proposed methods improved search accuracies com-

pared with the baseline approach. In both test collections, SIXE quite contributes

to improving search accuracy as Figure 4.6 shows. On the other hand, only SIXE-

BU could improve the search accuracy compared with SIXE in the INEX 2010

test collection. There are two possibilities why the search accuracy of SIXE-TD

decreased. First, it is not always true that an element in an XML document that

contains many kinds of query keywords is effective. Second, we could not gener-

ate good SIXE, and it may contain some irrelevant elements. From the fact that

both the iP[.01] and the MAiP of the baseline in the INEX 2010 test collection

are lower than that in the INEX 2008 test collection, the simple ranked list may

contain some irrelevant elements. Therefore, we should remove such irrelevant

elements from the simple ranked list to tackle the lower accuracy compared with

the INEX 2008 test collection.

64



4.6. Experimental Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

r

e

c

i

s

i

o

n

recall

SIXE (2008)

baseline (2008)

SIXE (2010)

baseline (2010)

iP[.01]

retrieved

size (bytes)

SIXE (2008) .663
1.47×10

8

baseline (2008) .613
1.30×10

8

SIXE (2010) .422
1.76×10

8

baseline (2010) .382
3.75×10

8

Figure 4.6. Comparison of our reconstruction method versus the baseline

Furthermore, we compared our approach with other approaches in which INEX

plays a part. Table 5.7 compares our proposed method (SIXE-BU-TD with the

INEX 2008 and SIXE-BU with the INEX 2010) with three other competitive

XML search systems [52]. Only four systems (including ours) were evaluated in

the INEX 2008 test collection. In the experiments, our proposed method provides

the highest precision when the recall level is less than or equal to iP[.01]. Because

the official measure for the focused task is iP[.01], our system has the highest level

of accuracy.

We also compared our method with the other top-three teams in the INEX

2010 test collection in [53]. The result shows that our method has a higher score

65



Chapter 4. Accurate XML Element Retrieval
Beyond Traditional Term-Weighting Schemes

INEX 2008 iP[.00] iP[.01] iP[.05] iP[.10] MAiP

Doshisha Univ. .7092 .6691 .5606 .5046 .2417

Renmin Univ. of China .5969 .5969 .5815 .5439 .2486

Queensland Univ. of Technology .6232 .6220 .5521 .4617 .2134

Univ. of Amsterdam .6514 .6379 .5901 .5280 .2261

INEX 2010 char prec iP[.01] iP[.05] iP[.10] MAiP

Doshisha Univ. .3884 .1822 .0382 .0000 .0088

Univ. Pierre et Marie Curie .4125 .1012 .0385 .0000 .0076

Univ. of Helsinki .3435 .1186 .0273 .0000 .0069

Lia Univ. of Avignon .3434 .1500 .0000 .0000 .0077

Table 4.10. Comparison of four INEX participant search systems including our

proposed system

in iP[.01]2.

4.6.5 Comparisons to Document Search

We finally compared our method (SIXE-BU-TD with the INEX 2008 and SIXE-

BU with the INEX 2010) with a traditional document search, because a document

search is often reported as being more effective than an XML element search [52].

In a document search, a set of the entire XML documents is returned as a search

result generated by BM25E. In this experiment, we used all queries that return

the entire XML documents in both of the INEX test collections.

As shown in Figure 4.7, the results of our experiments showed that all of the

interpolated precisions at each recall level of the method SIXE-BU-TD (2008) are

higher than those of the document search (2008). This indicates that an XML

element search is more effective than a document search. On the other hand,

SIXE-BU (2010) also overwhelmed the document search (2010) in recall levels

including iP[.01]. Therefore, we conclude that an XML element search can be

2INEX official runs requires search systems to extract 1,000 characters per a query in INEX

2010. To compare with the other systems, we show the search accuracy of the proposed method

that extracts 1,000 characters per a query. This is the reason why the result is very different

from Table 4.9.

66



4.6. Experimental Evaluations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

r

e

c

i

s

i

o

n

recall

BU-TD(2008)

document search(2008)

BU(2010)

document search(2010)

iP[.01]

retrieved

size (bytes)

SIXE-BU-TD (2008)

.696
1.30×10

8

doc. search (2008)

.646
1.65×10

8

SIXE-BU (2010)

.437
1.76×10

8

doc. search (2010)

.283
4.52×10

8

Figure 4.7. Comparison of XML element search and document search

useful.

Furthermore, we note that the retrieved text size of our proposed method is

substantially smaller than that of a document search. As such, we present more

focused content to users, which saves them time and energy.

67



CHAPTER 5

Fast Incremental Indexing with

Accurate and Fast XML Element Retrieval

In Chapter 4, we proposed accurate XML element retrieval approaches through

evaluations with two test collections. Combined with efficient query processing

algorithm [86] and data compression and selection method [87], the proposed

method attains both accurate search and fast query processing. To achieve the

goal mentioned in Figure 1.1, we need to make more effort. Hereinafter, we focus

on fast reflection of document updates for accomplishing a practical XML element

search system.

Web documents are frequently updated; i.e. inserted, deleted, or modified. In

particular, Wikipedia articles are updated 4000 to 8000 times per hour1. Infor-

mation retrieval systems are expected to present search results based on the latest

content on the Web, especially as new topics are added to documents. Without

handling updates, a search system cannot find newly inserted documents, and it

ranks documents based on obsolete information, which reduces the effectiveness.

Thus, we add a function for handling document updates to the existing techniques

for XML element retrieval.

When document insertions and modifications occur, scores of these inserted

1http://www.wikichecker.com/editrate/

68



and modified documents need to be calculated immediately. In this situation,

term-weighting-based scoring is appropriate because it takes long time to calculate

accurate scores with network-analysis-based scoring as we mentioned in Section

3.1.1.

Accordingly, there are two goals for this study as follows:

1. reflecting document updates to a search system as soon as possible, and

2. computing scores (term weights) accurately.

To achieve the first goal, two requirements are needed as follows:

• building an index which can be updated incrementally according to docu-

ment updates, and

• highly efficient indexing.

The mainstream approach for updating an index is to construct a new index

periodically from scratch while discarding the existing one. It may take a long time

to retrieve updated documents if constructing a new index is costly. Incremental

updates are required to shorten this delay.

Our proposed system has a function of incremental updates of the index. We

believe that this is the first study focused on fast incremental updates of indices

in effective and efficient XML element retrieval systems. Although Google [116]

supports fast incremental updates with effective and efficient query processing, its

approach differs from ours. Google analyzes the link information of Web pages to

find important pages, whereas our study utilizes text information. We can apply

our approach to other structured documents apart from the Web, even if these do

not have link information.

The proposed system can insert, delete, and modify the index by expanding

existing an index structure. The update efficiency of the index is low because a

number of update targets is treated as update targets in XML element retrieval

compared with document retrieval. Thus, we propose two kinds of filters for

reducing update cost by eliminating unnecessary update targets.

Concerned with the second goal, term weights cannot be calculated accurately

in some situations such as:

• when a search system does not store sufficient amount of documents, and

69



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

• when new topic emerge drastically.

This is because some kinds of statistics used in calculating a term weight are global

weights that are aggregate statistics derived from all documents in a document

set. Thus, global weights are difficult to calculate in the some situations men-

tioned above. We need a method to approximate accurate global weights with an

insufficient number of documents.

In the latter part of this Chapter, we evaluated the effectiveness and efficiency

of our approaches through experiments with two cases: the static statistics case in

which topics rarely change, and the dynamic case in which new topics are added

frequently.

5.1. Fast Incremental Updates of Indices

General XML element retrieval systems [86], [87] have functions for index con-

struction and query processing. They rebuild an index from scratch when docu-

ment updates occur. This means it tales long time to build a new index when the

amount of accumulated documents is large. In contrast, our proposed system has

capabilities for document insertion, deletion, and modification to reflect document

updates immediately. Moreover, we propose two filters which reduce update cost

for attaining fast incremental updates.

5.1.1 Expansion of Existing Functions

The proposed system use an arbitrary term weighting scheme. Based on the

experiments in Chapter 4, we use BM25E [73], although we also refer to QLMER

[74] to show even statistical language models are handled with our framework.

5.1.1.1 Structures of Indices

We show the structures of the proposed indices in Figure 5.1. In many existing

studies, the term weights stored in the indices are calculated beforehand, and

structural constraints can be checked with these. The proposed indices inherit

these capabilities but also contain global weights to calculate a term weight im-

mediately, which is essential for fast incremental updates.

70



5.1. Fast Incremental Updates of Indices

� �
- Term (DID, EID, term, term weight, Path ID, element length)

- Tag-term (DID, EID, tag, term, term weight, Path ID, element length)

- RS (DID, EID, term, term wight)

- Path (Path ID, path expression)

- GW-Path-term (Path ID, term, frequency [, values of back-ground language

model for QLMER])

- GW-Path (Path ID, frequency, total length)

- Term-filter (tag, term, threshold value)� �
Figure 5.1. Structure of the indices

As in the related studies [86], [87], the structures of the indices are defined

in an RDB format. Primary keys are underlined. The Term, the Tag-term, the

RS, and the Path indices are used for efficient and effective query processing as in

other studies.

In the GW-Path-term and the GW-Path indices, the global weights are indexed

for enabling fast term calculation. In Eq. (3.5), (2.10), and (2.11), pfp,t, Np,

avelp, and P̂mle(t|Mb) are global weights.

We discuss the Term-filter index below in Section 5.1.3.2.

5.1.1.2 Top-k Searches

The proposed system has a function for top-k searches [85] to enhance its usability

in fast query processing. To return search results, only the top k tuples are

retrieved for each term (a pair of tag and term for CAS queries). The term weights

in the tuples are summed for each element to calculate scores. Furthermore, a

weight in an arbitrary term in any element can be gained with a random scan

when we need to calculate exact scores for search results. We can attain not only

efficient query processing but also effective query processing with the random

scan.

A CO query retrieves the Term index whereas a CAS query retrieves the

Tag-term sequentially to extract candidate search results in query processing.

71



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

Term

Tag-term

RS

(2) calculating 

term weights

GW-Path-term

GW-Path

d

1

d

1

, e

1

, t

1

, 1.0, …

d

1

, e

1

, t

2

, 0.3, …

d

1

, e

2

, t

1

, 0.8, …

(1) extracting 

elements

e

1

(3) updating 

indices

t

1 

:1.0

t

2 

: 0.3

t

1 

: 0.8

e

2

Figure 5.2. Architecture of the simple approach

Accurate scores are calculated for elements by a random scan with the RS index.

Note that tuples in the Term index are grouped by term in descending order of

term weight, whereas tuples in the Tag-term index are grouped by pair of tag and

term. When a CAS query contains two or more structural constraints, the path

expressions of elements must be checked to determine whether these satisfy the

query constraints.

5.1.2 Handling Document Updates

5.1.2.1 Document Insertion

When a document is inserted, the updating process is conducted as follows:

(1) extracting elements from the inserted document,

(2) calculating term weights for the elements, and

(3) updating indices.

Figure 5.2 describes each process in detail.

72



5.1. Fast Incremental Updates of Indices

DID VID

100

∅

101 2

105 3

108 1

DID EID … VID

103 10

…

0

100 20 0

101 15 2

101 5 1

102 25 0

Version list index

・

・

・

・

・

・

deleted

modified

DID EID … VID

103 10

…

0

101 15 2

102 25 0

search results

・

・

・

Figure 5.3. the version list and query processing

First, the document is parsed and elements are extracted. As a result, elements

e1 and e2 are extracted.

Second, the term weights of t1 and t2 in e1, and t1 in e2 need to be calcu-

lated. As we explained in Section 3.1.1, term weighting schemes for XML element

retrieval are composed of three types of factors: local weights that are statistics

derived from each document (element); global weights that are statistics derived

from all document in a document set; and constant values (coefficients and param-

eters). Local weights and constant values are easy to calculate and refer to because

local weights are computed for a newly inserted element. On the other hand, it

is difficult to calculate global weights on demand because the entire document

set must be scanned to compute these. Therefore, term weights are calculated

immediately with the GW-Path-term and the GW-Path indices.

We only need to store all kinds of global weights in the indices when using

another term-weighting scheme requiring other statistics.

Finally, the Tag-term, the Term, and the RS indices are updated incrementally

after the term weights are calculated.

Note that an entire set of documents can be updated at once to reduce the

I/O cost.

73



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

5.1.2.2 Document Deletion

When a document is deleted, there is a high cost to find and delete all tuples

related to the document because the tuples are spread across the indices. We

therefore take another approach to reduce the cost of the deletion. We manage

the DIDs of deleted documents instead of deleting tuples in the indices. Then, we

simply ignore the tuples of the DIDs in query processing. With this approach, we

can reflect the deletion immediately.

We prepare a version list to manage the deleted documents. The list contains

pairs. Each pair contains the DID of the deleted document and the version iden-

tifier (VID) with its value marked as ∅. We overwrite the VID as ∅ when the DID

of the deleted document is contained. Specifically, Document 100 in Figure 5.3

has been deleted because the VID of Document 100 is ∅.
The tuples of documents deleted in the indices are eliminated when the load

average is low. After eliminating the tuples, the DIDs of the documents deleted

in the version list are also eliminated.

5.1.2.3 Document Modification

The modification process is achieved through the deletion and insertion processes.

In more detail, we delete all tuples related to the modified document and insert

the latest version of the document to handle the modification. We also utilize

the version list to manage the version of the document, because there is a high

cost to delete the tuples of a modified document immediately. To enable fast

modification, we only target the tuples of the latest version in query processing.

Note that the granularity of modification is document granularity, because

some problems arise with element granularity. One of the problems is the size of

the version list. The overhead in query processing become greater when we manage

not documents but elements. Another problem is the difficulty in mapping old

structure to new structure when the document structure changes. These are the

reasons that we adopt the document as the granule of modification.

The modification process is conducted as follows: first, when a modification

occurs, the version list is scanned to determine whether the DID of the modified

document is contained. If the DID exists in the version list, 1 is added to the VID;

otherwise, the DID of the modified document and its VID value of 1 are inserted.

74



5.1. Fast Incremental Updates of Indices

For example, Document 101 in Figure 5.3 has gone through modification twice

because its VID is 2.

Second, the Term, the Tag-term, and the RS indices are updated in the same

manner as for document insertion. As shown in Figure 5.1, each tuple contains

a VID whose value is the same as that written in the version list. Note that the

VID of the first document inserted is 0.

Finally, each tuple is checked to determine whether the tuple is valid in query

processing based on the VID. The tuple is the latest when the VID of the tuple

is the same as that of the modified document in the version list. Moreover, the

tuple is also the latest when the DID of the modified document is not contained

in the version list. In contrast, the tuple is invalid when the VID of the tuple is

smaller than that of the modified document in the version list. We give a specific

example of the validation check in Figure 5.3. The DID of the first tuple in the

index is 103, and the version list does not contain that DID. Thus, the first line

is valid. The document of the second tuple has been deleted, because the DID

of this tuple is contained in the version list and its VID is ∅. The third tuple is

the latest, because the VID of this tuple is the same as the VID corresponding in

the version list to the Document 101. Similarly, the fourth tuple is not the latest,

because the VID of this tuple is less than that of the VID corresponding to the

Document 101.

Old versions of tuples in the indices are removed when the load average is low.

In this regard, the VID of the latest version of a tuple is rewritten as 0, and the

DID of the deleted document is removed from the version list.

5.1.3 Filters for Reducing Update Cost

We propose two kinds of filters for selecting important elements and terms to

index.

It is obvious that we can reduce update cost with these filters. However, search

accuracy will be reduced if we remove elements and terms relevant to any query.

This would violate the first requirement. To avoid a decrease in search accuracy,

we should decide carefully which elements and terms can be removed.

75



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

5.1.3.1 Element Filter

We propose an element filter to remove unnecessary elements. Past studies [49, 90]

led to the fact that middle granule elements are moderate and the most appro-

priate as search results, because extremely large granule elements (e.g. whole

documents) tend to contain irrelevant descriptions and extremely small granule

elements cannot satisfy the information need by themselves. Hereinafter, we at-

tempt to remove extremely small elements, since identifying these is easier. Note

that a user can search a term in an extremely small granular element to be re-

moved, because ancestor elements of the removed element also contain the same

text.

It is essential to define what extremely small elements are. Many of the

Web documents include table-of-contents or reference information, which basi-

cally consists not of sentences but of keywords. These descriptions cannot satisfy

an information need directly, although they can serve as navigational informa-

tion. Since one requirement for text summarization is that “information should

be self-contained” [15], we remove any element that cannot be understood by

itself.

In addition, path expressions that rarely appear in the document set cannot

be calculated accurately, as discussed above in Section 5.2.2. It is reasonable to

remove these possibly harmful elements for search accuracy.

Based on the discussion above, we define three conditions of removed elements

as follows:

(1) elements containing few terms (threshold τel),

(2) elements with deep path expressions (threshold τdepth), and

(3) elements with rare path expressions (threshold τZipf ).

Note that we need to seek appropriate thresholds to remove only irrelevant ele-

ments for retaining search accuracy.

Regarding the first condition, the terms in the information other than the body

text including table-of-contents and reference information, contain few terms also

in the elements. Actually, study [49] reports that search accuracy improves when

short elements are removed.

76



5.1. Fast Incremental Updates of Indices

It is reported that the average sentence length in plain English is 15 to 20

words [117]. Then we hypothesize that eliminating an element shorter than 15

words does not prevent a user to extract useful information because we suppose

that the minimum granularity for conveying useful information is a sentence. We

validate whether the hypothesis is true or not in Section 5.3.2. On the other hand,

we set 15 as default value for the threshold value τel in case the best parameter

for τel cannot be explored with automatically or manually.

In the second condition, elements with deep path expressions are eliminated.

Tables or lists in HTML have a tendency to be nested deeply. The value itself of

each cell is not important, because it is meaningless without further information.

We therefore regard these elements as irrelevant.

The threshold value τdepth is decided by upper limit depth of elements which

are assigned high score with the proposed method. In consequence, recall are not

affected by the filter because the filter does not remove elements possibly to be

search results. Concretely, we measure the depth of highly ranked elements, and

count the number of elements by element depth. Then, τdepth is set as the value

that are larger than or equal to the depth of most of these highly ranked elements.

We conduct a experiment for investigating the value in Section 5.3.2.

Many elements are removed when there are many documents deeper than

the threshold value. Otherwise, few elements are removed when the number of

the elements whose depth is less than the threshold value is small. In short,

effectiveness of the filter changes with statistics of elements depth in a document

set. Note that the threshold value can be computed without any manual judgment.

Since the threshold value differs from one document set to another, we do not

apply the element filter with element depth condition unless τdepth is set2.

Regarding the third condition, we use Zipf’s law [118] to obtain the threshold

of median frequency f , which is computed as follows:

f =

√
8F1 + 1− 1

2
(5.1)

where F1 is number of the path expressions appearing only once in the document

set. Preliminary experiment for the threshold value τZipf is also examined in

2As discussed in Section 5.3.2, τdepth has a possibility to be set along with document updates

even though τdepth is not set when an XML element retrieval system starts working.

77



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

t

1 

:1.0

t

2 

: 0.3

t

3 

: 0.8

threshold value

: 0.5

- Term

- Tag-term

term 

calculat

ion

e

1

e

2

e

4 

e

3 

- GW-Path-term

- GW-Path

rarely 

appearing 

path

deep

path

small 

terms

e

l

e

m

e

n

t

 

f

i

l

t

e

r

t

e

r

m

 

f

i

l

t

e

r

- RS

Figure 5.4. The element filter and the term filter

Section 5.3.2. In the same manner as τdepth, the element filter with path frequency

condition is not applied unless τZipf is set.

Figure 5.4 illustrates the behavior of the element filter. Suppose that four

elements, e1, e2, e3, and e4, are extracted from inserted documents. Elements e1,

e2, and e4 are eliminated by the element filter because e1 is too short, the path

expression of e2 is too deep, and the path expression of e4 rarely appears. As a

result, only e3 is chosen as a target.

5.1.3.2 Term Filter

Although there are many candidate search results, only a few elements are pre-

sented as search results. Therefore, we suppose that search accuracy is not signif-

icantly affected even though indices do not contain terms with low weights.

Based on this idea, we remove the unimportant terms with the term filter.

The thresholds τtw are defined as the term weights of the nth largest term for

each pair of tag and term contained in the indices. These values are stored in the

78



5.2. Estimating Accurate Global Weights

Term-filter index so that they can be looked up quickly.

Note that we apply the term filter only to the Term and Tag-term indices

to enable accurate calculation of the score for elements with the RS index. In

addition, we do not apply the filter when the number of tuples of the pair of tag

and term is less than n.

The strategy for choosing n is as follows:

• The value for n need to be set large not to decrease search accuracy. At

least, m is set larger than the number of search results for a query, i.e., 1500

in this thesis. This is because Top-k search cannot be processed properly

when n is smaller than 1500, which cause a drop in search accuracy.

• When n is too large, the cost for applying the term filter exceeds the effect

of the term filter.

Accordingly, n is set small value to maximize the effect of the term filter as long as

the filter affects search accuracy. In Section 5.3.2, we investigate the appropriate

value for n. Note that the term filter does not work before n is set. In addition,

the value of n can be tuned with R–precision measured by manual judgment, even

though there is no ground truth.

Figure 5.4 shows an example of how the term filter works. Suppose that τtw

is 0.5 and there are three terms to insert into the Tag-term, the Term, and the

RS indices. We use the single value of τtw for simplicity although τtw differs for

each pair of tag and term. Terms t1 (1.0 > τtw) and t3 (0.8 > τtw) are successfully

indexed with the Term, the Tag-term, and the RS indices because they are greater

than τtw. In contrast, term t2 (0.3 < τtw) is only indexed with the RS index

because it is less than τtw.

5.2. Estimating Accurate Global Weights

5.2.1 Effects of Incremental Updates

We examine the effectiveness and efficiency of incremental updates of indices.

Note that we used the INEX 2008 test collection in the experiments.

The PC that we used for the experiments runs Oracle Enterprise Linux 5.5. It

has four Intel Xeon X7560 CPUs (2.3GHz), 512GB of memory, and a 4.5TB disk

79



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

ratio of the initial iP[.01] MAiP update time total index agreement

documents (%) (ms/doc) construction time (h) ratio (%)

from-scratch .664 .213 7.7 7.7 1.0

90 .652 .202 2.4 9.5 .18

70 .648 .196 3.7 8.9 .15

50 .644 .202 4.9 8.4 .13

30 .618 .194 6.0 8.0 .12

10 .589 .168 6.9 7.5 .093

Table 5.1. The results of the simple approach

array. The indices were implemented using BerkeleyDB in GNU C++.

5.2.1.1 Experimental Procedure

We define an index before incremental updates take place as an initial index.

We distinguish between documents used to construct initial indices (initial doc-

uments) and documents used to update indices (update documents). Here, we

assume that the statistics of the documents are static, i.e., the statistics of the

initial documents and the update documents are the same. For this purpose, we

randomly sampled documents in order to distinguish between them. In Section

5.3.4, we consider a more complex case in which the statistics of the documents

change dynamically.

All documents are processed through the stop-word and stemming steps before

the construction of the initial indices begins. The procedure is as follows: first,

the initial documents are parsed to calculate term weights and the initial indices

are constructed; then, the update documents are obtained for updating indices

incrementally. All data in the GW-Path-term and the GW-Path indices are scanned

in the main memory during updates. Then, the update documents are parsed and

the Term, the Tag-term, and the RS indices are updated incrementally.

5.2.1.2 Evaluation Results

We investigated search accuracies, update efficiency per document, and total time

of index construction by changing the percentage of initial documents within the

80



5.2. Estimating Accurate Global Weights

document set, as indicated in Table 5.1. For example, when the ratio is 30%,

the initial indices are constructed using 30% of the documents in the set, and the

indices are updated using the remaining 70% of the documents. When the ratio

of initial documents is 100%, updates of the indices do not take place (no-update).

Table 5.1 shows that incremental updates reduce search accuracy, which demon-

strates that global weights cannot be computed accurately using only a subset of

the documents. To make the incremental update practical, we need to solve the

problem of inaccurate global weights.

We additionally conducted an experiment to survey how global weights change

during index update process. The most right column in Table 5.1 shows the agree-

ment ratio of global weights in initial index compared with ones for from-scratch.

Even when the ratio of the initial documents is 90%, the agreement ratio is only

0.18. From this observation, it is important to follow a change of global weights.

Updating not only the Term, the Tag-term, and the RS indices, but also the

GW-Path-term and the GW-Path indices is reasonable. Global weights are expected

to be gotten more accurate gradually with updates of the GW-Path-term and the

GW-Path indices. However, not always a sufficient number of documents are in-

dexed in computing accurate global weights. Moreover, global weights need to

be updated drastically when statistics of documents change dynamically. There-

fore, a method that calculate accurate global weights with a limited number of

documents.

The average time for incremental updates is 53.4 ms per document when the

ratio of initial documents is 50%, whereas the time required to construct indices

from scratch (no-update) is 42.1 ms per document. This suggests that the update

efficiency decreases as the ratio of initial documents increase. As a result, indexing

may take a long time when we update a number of documents.

5.2.2 Integrating Path Expression for Accurate Global Weights

We attempt to calculate global weights accurately using a limited number of

documents. Since these are calculated within elements having the same path

expression, we cannot obtain appropriate statistics for a path expression appearing

rarely in the document set. We therefore consider a more effective approach.

Specifically, we integrate path expressions having a similar property to expand

81



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

1: /article/sec

2: /article/sec/sec

3: /article/sec/emp/sec

4: /article/emp/sec

5: /article/emp/sec/sec

Figure 5.5. Examples of path expressions

the elements in the same class. To accomplish this, we integrate path expressions

of the similar attribute.

To integrate path expressions, we regard a path expression as an array of

tags and identify the path expressions that are similar to each other in terms

of the appearance order and appearance frequencies of tags. As a result of the

integration, we eliminate classes that do not contain enough elements to calculate

accurate global weights.

In addition, the cost to adopt these methods is small, because these approaches

simply calculate a frequencies and check the order of tags in a path expression.

We can ignore the harmful effects on update efficiency. We now explain three

integration methods:

1) set-of-tags method (ST),

2) bag-of-tags method (BT), and

3) order-of-tags method (OT).

5.2.2.1 Set-of-Tags Method (ST)

Tags in structured documents are separated into two groups. One represents

structural classifications such as article and sec tags. The other indicates se-

mantics, ideas, attributes, and specific contents such as person, emp, and table

tags. These two groups of tags are supposedly independent in their appearance.

This suggests that a combination of tags can generate two or more path expres-

sions. It is not always appropriate that these path expressions are placed into

82



5.2. Estimating Accurate Global Weights

1: /article/sec

2: /article/sec/sec

3: /article/sec/emp/sec

4: /article/emp/sec

5: /article/emp/sec/sec

article

sec

article

sec

emp

Figure 5.6. An example of classification in ST

different classes. This is why we focus on relaxing the appearance order and

frequencies of tags in path expressions to integrate similar path expressions.

The set-of-tags (ST) method relaxes both the appearance order and frequencies

of tags in path expressions. Accordingly, we consider only the names of the tags.

We classify path expressions composed of the same tag names as members of the

same class.

Classification of the path expressions in Figure 5.5 is shown in Figure 5.6. The

first two path expressions are in the same class because they are both composed of

article and sec tags, while the other three path expressions are in the same class

because they are all composed of article, sec, and emp tags. The global weights

of the elements with the first two path expressions are calculated together, and

the global weights of the elements with the other path expressions are calculated

together.

5.2.2.2 Bag-of-Tags Method (BT)

The bag-of-tags (BT) method relaxes only the appearance order of tags in path

expressions. We do not consider the order of tags from the perspective of the

bag-of-words concept.

Classification of the path expressions in Figure 5.5 is shown in Figure 5.7.

We first enumerate the names and frequencies of tags in each path expression to

integrate the path expressions classified as members of the same class. As a result,

we integrate the third and fifth path expressions because both have one article,

83



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

article: 1, sec: 1

article: 1, sec: 2

article: 1, sec: 2, emp: 1

article: 1, sec: 1, emp: 1

1: /article/sec

2: /article/sec/sec

3: /article/sec/emp/sec

4: /article/emp/sec

5: /article/emp/sec/sec

Figure 5.7. An example of classification in BT

1: /article/sec

2: /article/sec/sec

4: /article/emp/sec

5: /article/emp/sec/sec

/article+/sec+

/article+/emp+/sec+

3: /article/sec/emp/sec/article+/sec+/emp+/sec+

Figure 5.8. An example of classification in OT

two sec, and one emp tags.

5.2.2.3 Order-of-Tags Method (OT)

The order-of-tags (OT) method relaxes only the appearance frequencies of se-

quential tags in a path expression. In some path expressions, a tag appears

consecutively two or more times; for example, col tags in table of HTML. In

this case, even if the frequencies of a tag appearing consecutively are different, we

suppose that the features of a path expression are not much different because the

semantics of each tag are fixed. Therefore, if consecutive tags are the same, such

tags can be aggregated.

Classification of the path expressions in Figure 5.5 is shown in Figure 5.8. Note

84



5.3. Experimental Evaluations

that sec tags appear consecutively in the second and fifth path expressions. The

first and second path expressions are integrated, because these have have one or

more article tags followed by one or more sec tags. The fourth and fifth path

expressions are also integrated, these have one or more article tags followed by

one or more emp tags, and one or more sec tags.

5.3. Experimental Evaluations

5.3.1 Experimental Design

With the simple incremental update system as the baseline, we investigate whether

the applying two filters and integrating path expressions are effective for searching

accurately and efficient for updating the indices or not.

The experimental environment is the same as that used in Section 5.2. The pro-

posed methods are evaluated using two document sets; one with static statistics,

which means that its topics rarely change; and the other with dynamic statistics,

which means that new topics are regularly added.

Our proposed approaches admit some variations. There are four ways of cal-

culating global weights: the default method, which is classification based on path

expression; the set-of-tags method (ST); the bag-of-tags method (BT), and the

order-of-tags method (OT). There are three parameters in the element filter: the

element length threshold τel, the path depth threshold τdepth, and Zipf’s threshold

τZipf . By examining the effectiveness of each approach, we can choose the best

setting.

In our experimental procedure, we first ran some preliminary experiments

to tune the parameters of the element filter and term filter. Next, with these

tuned parameters, we measured the average update time per document, the index

size, and the search accuracy for each variation of the proposed methods. We

used the document set with static statistics and chose 50% as the ratio of initial

documents. Finally, we confirmed the effectiveness of the proposed methods by

using the document set with dynamic statistics.

85



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

τel 10 15 20 25 30 35

iP[.01] .633 .664 .640 .639 .640 .617

Table 5.2. Accuracies with changing τel

τdepth 3 4 5 6 7

highly ranked elements .69 .89 .97 .99 1.00

all elements .19 .44 .69 .88 .96

highly ranked elements (50%) .76 .93 .98 1.00 1.00

highly ranked elements (30%) .76 .93 .98 1.00 1.00

highly ranked elements (10%) .76 .93 .98 .99 1.00

Table 5.3. Depth of Path expressions and the ratio of elements

5.3.2 Preliminary Experiments for the Element Filter and

Term Filter

The element filter eliminates the elements that have extremely short elements,

extremely deep path expressions, and rarely appearing path expressions. In this

section, we describe some experiments that we conducted to decide the thresholds.

According to the results listed in Table 5.2, we set τel to 15; namely, in terms

of search accuracy, the best value for the element-length threshold is 15. This

result agrees to our hypothesis.

Table 5.3 shows the proportion of elements whose depth of path expressions

is less than or equal to τdepth. We measured the proportion for highly ranked

elements, concretely top 1,500 elements, obtained in our previous study described

in Chapter 4, and for all elements in the test collection. We set τdepth to 6, because

most of highly ranked elements are less than or equal to 6. This means that we

ignores any element whose depth is six or more. Since the depth of 12% of all

elements is more than or equal to 6, these elements can be removed.

We additionally conducted a experiment for exploring τdepth dynamically. We

measured three more variations of the same statistics. These are calculated with

50%, 30%, and 10% of all documents. As we can see from the result, relatively

precise results can be gained even in the early stage of document accumulation.

86



5.3. Experimental Evaluations

n no filter 1500 5000 10000 30000

iP[.01] .639 .629 .631 .641 .635

update time (ms/doc) 53.4 21.5 36.9 48.8 69.4

Table 5.4. Effects of the term filter with changing n

We also investigated the threshold of Zipf’s law. We computed median fre-

quency of the path expressions by using Eq. 5.1. We set τZipf to 166, which

ignores any element whose path expression appears 166 or fewer times in the

initial index.

In analogy with the element filter, the term filter eliminates terms whose

weights are below the threshold. We conducted an experiment to decide the

threshold for the term filter by measuring iP[.01] and update time with changing

n, as shown in Table 5.4. Since search accuracy did not decreased and update

time was faster than that of no filter, we set n to 10000 or τtw, which ignores the

terms whose weights are less than the 10,000th largest weight of each pair of tag

and term.

5.3.3 Evaluations of the Document Set with Static Statis-

tics

We measured the average update time per document, the size of indices, and

the search accuracy with each variation of the proposed methods, as indicated

in Table 5.5. Note that in the case of no-update, or constructing a new index

from scratch, the average update time replaces the construction time of the initial

indices. Note that elements whose length is less than τel are removed from all

results, even those of no-update3.

5.3.3.1 Effects of the Proposed Methods

Compared with the iP[.01] of the baseline system, those of ST, BT, and OT are

improved. In particular, ST is the most effective method for calculating accurate

global weights and is 2.57% more accurate than the baseline. In addition, the

3This is the reason why accuracy of no-update is different from baseline in Chapter 4.

87



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

update time disk

run ID (ms/doc) size(GB) iP[.01] MAiP

no-update (42.1) 111 .664 .213

baseline 53.4 111 .639 .200

rnd flt (10%) 49.8 107 .635 .168

rnd flt (20%) 45.1 100 .603 .154

rnd flt (30%) 41.2 95 .612 .148

rnd flt (40%) 37.2 92 .612 .141

rnd flt (50%) 33.8 88 .594 .137

rnd flt (60%) 30.0 77 .569 .137

ST 53.3 111 .655 .199

BT 53.2 111 .652 .206

OT 53.2 111 .653 .207

τel 45.5 97 .646 .202

τdepth 49.1 106 .651 .204

τZipf 51.1 109 .649 .198

elem filter 40.1 94 .651 .204

term filter 48.8 104 .641 .196

two filters 39.3 89 .652 .201

ST filters 40.1 88 .662 .204

Table 5.5. Effects of the proposed approaches

update efficiencies of these methods are almost equal.

All components of the element filter (i.e. τel, τdepth, and τZipf ) save update

cost without reducing search accuracy. The combination of τel, τdepth, and τZipf

is the most effective of all possible combinations and yields 23.6% faster updates

than the baseline approach. We used this setting for the element filter in the

subsequent experiments.

こ Hereinafter, we also investigated performance of a random filter (rnd flt)

which removes updated elements randomly for proving effectiveness of the ele-

ment filter. The random filter varies a cut-off rate (a percentage of removed

element) from 10% to 60% at interval of 10%. As the cut-off rate increases, up-

88



5.3. Experimental Evaluations

date efficiency improves and disk size of the indices reduces, while search accuracy

decreases. When comparing the element filter with the random filter at the same

efficiency level in regard to update time, concretely cut-off rates are 30% and 40%,

the element filter achieves more accurate search performance. From this result,

usefulness of the element filter is obvious.

The term filter also reduces the update cost by 6.70% without sacrificing search

accuracy compared with the baseline approach. Next, we evaluated the combina-

tion of the two filters. This approach performs better than either of single filters

in terms of both update efficiency and search accuracy. The update efficiency is

improved by 26.3%.

We confirm whether the proposed two filters affect recall or not because some

elements are removed through the two filters. Figure 5.9 is a precision-recall curve

of the baseline and two filters. As we can see from the figure, these three methods

draw almost the same curves. Consequently, search accuracy is little affected by

the two filters.

The former experiments showed that the search accuracy improved with the

path expression integrating method and the update efficiency improved with two

filters. Then, we combined ST and the two filters as ST filters. The search accu-

racy improved by 3.73% compared with the baseline, while the update efficiency

improved by 24.9%.

In terms of query efficiency, each method takes 1.5 seconds to 2.0 seconds per

query. This should be acceptable for users. Finally, we can attain fast incremental

updates of indices with an effective and efficient search.

5.3.3.2 Search Accuracy Combined with Reconstruction Method

The best setting of the proposed method, ST filters, is less effective than no-

update, although search accuracy is improved with the proposed methods. Thereby,

we adapted the reconstruction method proposed in Chapter 4 into the incremental

update system to improve search accuracy more.

We investigated search accuracies of no-update, baseline, SIXE with ST filters,

BU with ST filters, TD with ST filters, and BU-TD with ST filters. Note that

we set EL as 1000, which is the same value used in Chapter 4.

Table 5.6 showed SIXE (ST filters) and BU (ST filters) overwhelmed in terms

of search accuracies of iP[.01], while TD (ST filters) and BU-TD (ST filters)

89



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

r

e

c

i

s

i

o

n

recall

simple

elem filter

term filter

Figure 5.9. Effect on recall by the two filters

decreased their search accuracies.

At last, we compared the proposed method BU (ST filters) which has the

highest accuracy with other INEX participants. As a result, none of them is

superior to the proposed method at the value of iP[.01]. The advantages of the

proposed method are that not only it searches accurately but also it reflect doc-

ument updates in a short time.

Regarding query efficiency, reconstruction process take approximately 0.5 sec-

onds. The total query processing time ends up 2.0 seconds to 2.5 seconds, which

still keeps a practical use level.

The conclusion is that the combinations of the reconstruction method, path

expression integration, and the two filters achieve accurate search accuracy and

90



5.3. Experimental Evaluations

iP[.01] MAiP

no-update .670 .214

ST filters .662 .204

SIXE (ST filters) .671 .227

BU (ST filters) .674 .217

TD (ST filters) .653 .215

BU-TD (ST filters) .653 .215

Table 5.6. Effects of a reconstruction method

Team iP[.00] iP[.01] iP[.05] iP[.10] MAiP

BU (ST filters) .6898 .6736 .5647 .4789 .2167

Renmin Univ. of China .5969 .5969 .5815 .5439 .2486

Queensland Univ. of Tech. .6232 .6220 .5521 .4617 .2134

Univ. of Amsterdam .6514 .6379 .5901 .5280 .2261

Table 5.7. Comparison with other INEX participants

fast query processing with immediate updates of indices.

5.3.4 Evaluations of the Document Set with Dynamic Statis-

tics

In the previous evaluations, we assumed that the term distribution and term

statistics are static. However, new topics can emerge suddenly on the Web and

may change the term distribution drastically. Here we artificially assemble a doc-

ument set with dynamic statistics to investigate the effectiveness of the proposed

methods.

In this set, the initial documents do not include a certain topic but the updated

documents do include the topic. We outline the steps to evaluate as follows: (1)

identify documents on a certain topic, (2) construct the initial index using the

other documents, and (3) update the indices incrementally using the documents

related to the topic.

We utilized the categories in Wikipedia to judge whether a document belongs

91



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

Category name CQ CW

Technology and applied sciences 18 54

Culture and the arts 20 51

Natural and physical sciences 9 24

Society and social sciences 4 13

History and events 4 11

Philosophy and thinking 3 8

General reference 3 7

Health and fitness 2 7

People and self 3 6

Geography and places 2 5

Mathematics and logic 0 0

Religion and belief systems 0 0

Table 5.8. Category and Query

to a certain topic. Wikipedia has many categories of various sizes: twelve major

categories are listed in Table 5.8. We separated 68 queries into the twelve cat-

egories. Each query contains from one to five query keywords, and we obtained

a keyword set for each category. Since the categories “Technology and applied

sciences” (technology for short) and “Culture and the arts” (culture for short)

include relatively large numbers of queries (category queries, or CQs) and query

keywords (category keywords, or CW), we used these categories in the evalua-

tion. We assigned a document to a certain category if the document contains the

category keywords. Note that these category keywords are stemmed.

• Category words of technology

aircraft, applied, automobil, aviat, bay, bletchlei, break, car, code, colossu,

compani, comput, databas, detect, engin, expert, file, filter, format, graphic,

imag, inform, instal, intrus, invent, java, languag, linux, manag, mechan,

metadata, mine, motor, museum, network, nikola, open, oper, park, patent,

program, raid, record, retriev, rotari, secur, social, sourc, storag, system,

tata, tesla, virtual, wireless

• Category words of culture

92



5.4. Further Discussion

# of indexed technology (iP[.01]) # of indexed culture (iP[.01])

doc. (×104 doc.) baseline ST filters doc. (×104 doc.) baseline ST filters

37 (25% updated) .524 .532 31 (25% updated) .456 .517

47 (50% updated) .525 .548 43 (50% updated) .506 .560

56 (75% updated) .546 .563 54 (75% updated) .501 .585

66 (100% updated) .578 .592 66 (100% updated) .496 .587

Table 5.9. Effects on emerging a new topic

acquisit, africa, al, basketbal, berber, bilingu, childbirth, children, clas-

sic, countri, cultur, danc, dish, europ, european, fiction, film, food, franc,

game, guitar, hors, instrument, japanes, keyboard, languag, mahler, mu-

seum, nba, north, person, picasso, player, portugues, produc, region, rule,

scienc, scrabbl, song, spanish, style, symphoni, tap, tast, terracotta, tradit,

typic, vegetarian, vodka, wine

We used the category queries only to examine the effectiveness of the proposed

methods, because we focus on the effects of term distributions with dynamically

changing statistics. In this situation, we assumed that users expect an effective

search to be available as soon as new topics are added to the collection.

The numbers of documents in the initial indices of technology and culture

are 280,000 and 200,000, respectively. We evaluated the effects of the changing

statistics at four points during the updates. After the updates, the number of

indexed documents reached 660,000 for both categories.

Table 5.9 lists the iP[.01] of each category for the baseline and ST filters. For

both categories, the proposed methods attained better search accuracies than the

baseline. In particular, ST filters increased the search accuracies rapidly even

when the number of update documents was small.

5.4. Further Discussion

From the results of the experiments, it turned out that the proposed system up-

date in minute time without decreasing search accuracy even though statistics of

terms drastically change. However, it has some limitations; 1) weights of terms

93



Chapter 5. Fast Incremental Indexing with
Accurate and Fast XML Element Retrieval

are not exactly accurate and 2) the size of indices become enlarged along with

document insertion, deletion, and modification. These matters imply that re-

building indices from scratch periodically is also required as well as incremental

updates of indices. Therefore, come to think of practical use scenario, two series

of indices are constructed where one series of indices is incrementally updated

during rebuilding the other series of indices from scratch.

Henceforth, we discuss the scalability of the proposed method. In building a

scale-out XML element search system, we suppose the situation as follows:

• Data of great magnitude are dispersed in multiple nodes. According to

assignment rule, a part of data is stored into a certain node. As an example

of the assignment rule, the assigned node of a term is decided by the initial

letter of the term.

• There exists a data storage such as BerkeleyDB on the disk of each node.

Search index can be used only within a node, although the search index

cannot be used beyond the node. We suppose that the structure of the

storage is the same as the proposed index structure. In addition, data is

sorted by descending order of term weight with using the search index.

• Since the amount of main memory of each node is limited, the main memory

can be used only for cache of the data storage. Note that it is possible to

allocate some area of the main memory for version management of data.

Furthermore, the main memory also contains global weights related to a

certain term which is mapped to the node, as well as threshold values for

the term filter.

• Since the performance of computational capacity of each node is limited, a

finite number of requests are processed per second with each node.

In this situation, every single node of the distributional system need to satisfy

two requirements as described below:

• Requirement 1

Update process need to be handled rapidly. The update process include

term calculation and updates of data storage, and

94



5.4. Further Discussion

• Requirement 2

There is a possibility that data in multiple nodes is utilized in query process-

ing. Even that situation, query processing with short response need to be

achieved by efficiently collecting data widespread throughout the multiple

node.

With regard to the Requirement 1, when a document is inserted, elements are

obtained from the document. Only elements which get through the element filter

are treated as update targets. Each term in the elements with related information,

i.e., local weights, is delivered to a certain node corresponding to the term. In the

node, a weight of the term is calculated with the global weights contained in the

main memory. For efficient storage updates, unimportant terms are eliminated

with the term filter. In consequence, fast term calculation is achieved with the

proposed index structure, while efficient updates of storage is accomplished with

the proposed filters, namely, the element filter and the term filter.

Concerning the Requirement 2, a node request other nodes to read/write data

when the node refer to data in other nodes. Under this circumstances, common

tasks such as generating search results from collected data and deciding a node for

a term to be stored when document updates take place are executed on a lightly

load node. Accordingly, load balancing is distributable.

In reading data from storage, sequential scan is mainly adopted because it is

expected that the performance of random scan is quite inefficient in this scenario.

Thus, search index in each node play an important role. Consequently, efficient

Top-k search is attained for a single term. In other words, a set of terms sorted

by their weights can be gained by term. Then, calculating element scores with

the term weights and proposing search results are executed on a lightly load node

as we mentioned above.

One more challenge remains to be unsolved. It is how to efficiently manage

conflict when multiple requests try to access the same node. One solution is that

a data is forbidden to be accessed by two or more processes at the same time. To

carry out this solution, the status of version information of a data in the main

memory changes to in use while the data is read/written.

As a result, the proposed methods can be applied for satisfying these require-

ments with minor change. The conclusion is that the proposed methods have

scale-out capability.

95



CHAPTER 6

Expansion of XML Element Retrieval into HTML Documents

In the past, XML element retrieval techniques were investigated with scientific

articles and Wikipedia articles in the INEX project. Consequently, an accurate

XML element retrieval system is coming true. As a next step, since XML is

not the only data format which is applicable with (XML) element retrieval, it is

expected that these techniques are adapted into Web document which is also one

of structured documents as same as XML document. A scope of XML element

retrieval is spread drastically if an effectiveness for HTML documents is proved,

because Web document is a very common data format.

In expanding XML element retrieval techniques into HTML document which

is a representative data format of Web documents, characteristics of XML and

HTML are quite different because of their intended purposes. We enumerate

characteristics of HTML document as follows:

1. many HTML documents are not invalid in tag consistency,

2. logical structure in terms of content and physical document structure do not

agree with each other, and

3. there are many parts which do not satisfy users’ information need.

96



Concerning (1), consistency of start and end tags need to be assured (ev-

ery start tag corresponds to its end tag) when expanding XML element retrieval

techniques into structured documents for treating elements properly. Generally

speaking, most of XML documents are well-formatted in terms of tag consis-

tency because they are mainly used for data management. In fact, many of XML

parsers only accept XML documents of which tag consistencies are well-formatted.

In conversely, the majority of HTML documents are not perfectly well-formatted

in their tag consistency. This is caused by the fact that ordinary Web browsers in-

terpret and display a HTML document even though tag consistency of the HTML

document. To resolve the problem, a tag balancer tool is utilized often. One

of the most well used tag balancer tools CyberNeko HTML Parser [119] which

automatically complements the incomplete tags.

In regard to (2), many of hand written documents (even some of automatically

generated documents) have logical document structure of content. For example,

a document is composed of some chapters. Likewise, each chapter has some

sections, and each section also has some sub-sections. This chapter composition

information is definitely useful to understand document content. XML element

retrieval techniques exploit these information to identify an element which satisfies

user’s information need, because a document structure of an XML document is

fundamentally based on a logical document structure of content. In other words,

a document structure need to be defined according to logical document structure

of content.

In contrast, most of HTML tags perform text decoration, e.g., changes of font

size, color, and style. In consequence, a document structure of HTML document

does not reflected logical structure of content, which prevent expansion of XML

element retrieval techniques into HTML documents.

Related to (3), a HTML document is often composed of multiple parts (el-

ements). Concretely, a typical structure of Weblog articles is shown in Figure

6.1. It contains not only main–content but also further information such as page

title, a list of past entries, a list of link information, a category information of

entries, and a set of tag cloud. Hereinafter, we call these further information as

sub–content.

Generally, these sub–content are just hyperlinks to other documents. Thus,

users’ information need is not satisfied only with these elements, although these are

97



Chapter 6. Expansion of XML Element Retrieval into HTML Documents

Title

E

n

t

r

i

e

s

Main

content

L

i

n

k

C

a

t

e

g

o

r

y

Sub content

T

a

g

 

c

l

o

u

d

Figure 6.1. Typical structure of a Web document

useful for exploratory information retrieval. Nevertheless these elements should

not be ranked high in search results, these elements where an unitary term often

occurs frequently tend to be assigned high relevancy score with a term-weighting-

based scoring function. Therefore, we need to identify such an element composed

of sub-content to be removed from search results. Note that we mainly focus

on sub–content which harms search performance although there are some other

sub–content such as a profile information of the author, a calendar, and a search

box.

To resolve the problem raised by the characteristics of HTML documents,

we format HTML documents; 1) reconstructing document structure according to

logical structure of content, and 2) removing unimportant elements.

Concerned with 1), a study [110] reports that some HTML tags represents a

boundary between one topic to another. Based on knowledge from the study, we

reconstruct HTML documents for achieving high agreement between a physical

document structure and a logical structure of content.

As a solution for 2), we leverage occurrence information of A tags to eliminate

content outside of main body, which is based on an hypothesis that elements

described for the purpose of transferring to other documents have more A tags.

98



6.1. Reconstruction of a Document Structure

6.1. Reconstruction of a Document Structure

In this section, we will discuss the reconstruction method to resolve the disagree-

ment between a logical structure and a physical structure of the document.

A logical structure of a document is composed of table of contents like chapters,

sections, and paragraphs. In contrast, only the granularity of paragraph can be

defined with P in HTML documents. This causes a disagreement between the

logical structure and physical structure.

On the other hands, it is reported that Heading tags (H1-H6) perform a bound-

ary between one topic to another [110]. We suppose that a level of Heading tag

(the number in a Heading tag) somewhat expresses a logical structure of con-

tent, because a level of Heading tag is set along with a degree of importance of

content1. In short, we hypothesize that a more important Heading tag intends a

larger granular topic while a less important Heading tag intends a smaller granular

topic.

Information between a pair of start and end Heading tags (we call this as a

Heading tag, for short) is just title of a heading. It is general that content just

after a Heading tag is about the title of the heading. We therefore reconstruct a

HTML document according to a level of a Heading tag, because we expect that

we can extract a logical structure of content with Heading tag information. Note

that we insert a Container Heading tag for the goal.

• Start tag

When a Heading tag (Hx) appears, a start Container Heading tag (CHx) is

inserted just before the Heading tag.

• End tag

When a level of a newly appeared Heading tag (Hx) is the same or smaller

than that of previously appeared Heading tags, an end Container Heading

tag (CHy) is inserted just before a start Container Heading tag (CHx). Note

that the level of BODY is smaller than any Heading tag.

We show a concrete example of reconstruction process with Figure 6.2. The

original HTML document of left figure is reconstructed into the HTML of right

1The more important content is, the smaller the number is.

99



Chapter 6. Expansion of XML Element Retrieval into HTML Documents

<HTML>

<HEAD>

<TITLE>aaa</TITLE>

<body>

<H2>bbb</H2>

<P>ccc</P>

<P>ddd</P>

<H3>eee</H3>

<P>fff</P>

<H3>ggg</H3>

<P>hhh</P>

<H1>iii</H1>

<P>jjj</P>

</body>

</HTML>

<HTML>

<HEAD>

<TITLE>aaa</TITLE>

<body>

<CH2>

<H2>bbb</H2>

<P>ccc</P>

<P>ddd</P>

<CH3>

<H3>eee</H3>

<P>fff</P>

</CH3>

<CH3>

<H3>ggg</H3>

<P>hhh</P>

</CH3>

</CH2>

<CH1>

<H1>iii</H1>

<P>jjj</P>

</CH1>

</body>

</HTML>

original HTML document reconstructed HTML document

Figure 6.2. Reconstruction HTML documents

figure. There are four Heading tags in the HTML document, i.g., H2, H3, H3, and

H1 tags. First of all, a H2 tag appears. In this time, a start CH2 tag is inserted just

before the H2 tag. Next, a start CH3 tag is inserted just before the H3 tag, because

the level of the H3 tag is larger than that of the previously appeared H2 tag. Then,

a H3 tag appears again. Since the levels of the newly appeared H3 tag and the

previously appeared H3 tag are same, an end CH3 tag is inserted followed by a

start CH3 tag is inserted. A H1 tag comes last. The level of the H1 is smaller than

the previously appeared H2 and H3 tags. Accordingly, end CH3 and end CH2 tags

are inserted followed by a start CH1 tag. The reconstruction process is completed

when an end CH1 tag is inserted just before an end BODY tag.

100



6.2. Eliminating Elements of Outside of Main Body

Some other tags such as UL, OL, DL, TABLE, FORM, and DIV have possibilities

that they are also regarded as structural tags. Managing these tags is one of our

future work.

Likewise, BR and HR separate contents, which may be a clue of reconstruction.

This is also a part of our future work.

6.2. Eliminating Elements of Outside of Main Body

Elements composed of sub–content, or a list of past entries, a list of link informa-

tion, a category information of entries, and a set of tag cloud, do not satisfy users’

information need. We try to propose a filter which removed these uninformative

elements.

Removing elements with small element length is enough for filtering out unim-

portant elements with the scientific articles and the Wikipedia articles [49]. On

the other hand, elements we are trying to remove here are not always small in

their element length. We need to identify with another approach.

Come to think of trends of elements composed of a list of entries or a list of

link information, these are hyperlinks for transferring to other pages. Since these

elements are expected to contain many A tags, we remove elements which contain

many A tags as sub–content. We enumerate candidate statistics for measuring a

quantity of A tag.

• A probability of occurrence of A tag:

A frequency of A tag normalized by element length.

• A ratio of nodes rooted with A:

A ratio of the number of elements rooted with A tag to the total number

of the elements in an XML tree.

• A ratio of text size in A tag:

A ratio of text size in A tag to the total text size of the element.

With regard to the first statistics, it is not always true that every element with

high probability is sub–content. For example, such main–content that includes

many figures linking to original figures may be misjudged as sub–content. Thereby,

this measurement is not the most appropriate one.

101



Chapter 6. Expansion of XML Element Retrieval into HTML Documents

Concerned with the second statistics, elements contain many A tags are judged

as sub–content. However, not every element is marked up with other tags besides A

tag. Since it is natural that main–content contain hyperlinks, the second statistics

also may cause misjudgment.

Let us move to the third statistics. It considers only A tags which are used for

hyperlinks. Additionally, the statistics is independent of other tags besides A tag.

Therefore, it is expected that the statistics judge sub–content properly. This is

the reason why we adopt the third statistics in our proposed filter.

A sub–content score of element e, SA(e), is calculated as follows:

SA(e) =
CA

Ce

(6.1)

where CA is the total number of characters in all descendant elements rooted with

a A tag of e, Ce is the total number of characters in e. Note that elements of which

score exceed τ(0 ≤ τ ≤ 1) are removed as unimportant elements.

6.3. Experimental Evaluations

In this section, we report the effect of the proposed reconstruction method and

set the threshold value for the proposed sub–content filter, followed by evaluating

search performance of the proposed methods.

Since we would like to confirm the effectiveness of XML element retrieval

techniques for Web documents, we used Web (HTML) documents and Web queries

for the experiments, i.e., 1CLICK-2 test collection [56].

We go through following pre-processes. Note that former three processes are

the same as the ones for XML documents.

1. removing attributes, comments, and special characters of HTML documents,

2. removing the stop words by SMART stop list (listed in Appendix A)

3. applying stemming step by Porter [11].

4. validating corresponding relations in tags with CyberNeko HTML Parser

[119].

102



6.3. Experimental Evaluations

Tag name the number of tags (%)

HC1 33217 (.092)

HC2 113300 (.31)

HC3 116787 (.32)

HC4 60276 (.17)

HC5 26819 (.074)

HC6 10880 (.030)

Table 6.1. Inserted Heading Container tag

degree of deepening the number of documents (%)

0 (not deepened) 3639 (.14)

1 5194 (.19)

2 8300 (.31)

3 6912 (.26)

4 2509 (.093)

5 346 (.013)

6 28 (.0010)

Table 6.2. Degree of deepening of document structures

In the same manner as the former chapter, the PC that we used for the ex-

periments runs Oracle Enterprise Linux 5.5. It has four Intel Xeon X7560 CPUs

(2.3GHz), 512GB of memory, and a 4.5TB disk array. The indices were imple-

mented using BerkeleyDB in GNU C++.

6.3.1 Evaluations of the Reconstruction Method

We investigated how document structures changed along with the reconstruction

method. Table 6.1 shows the numbers and percentages of inserted Heading Con-

tainer tags. These number correspond to the frequencies of Heading tags. As we

can see from the table, H2 and H3 tags appeared frequently. Note that the average

number of inserted Heading Container tag per document is 13.4.

Next, we examined the degree of deepening of document structure with Head-

103



Chapter 6. Expansion of XML Element Retrieval into HTML Documents

sub–content score accuracy

0.1-0.3 50%

0.3-0.5 60%

0.5-0.7 80%

0.7-0.9 100%

0.9- 100%

Table 6.3. Discriminant accuracy of the sub–content filter

ing Container tags. To show some tangible examples, the degree of deepening of

a document is 2 when the document includes H2 and H3 tags, while that is 6 when

Heading tags appear in order from H1 to H6. We report degrees of deepening of

document structures and their numbers and ratios in Table 6.2. Heading tag is

appeared in more than 80% documents, and the average number of the degree of

the deepening is 2.23.

It turned out that new granular elements apart from paragraph are defined

by focusing Heading tags. However, this also means an increase of search targets.

Compared with the original documents, 25% of more elements are generated. We

need to consider the way to control the explosion of newly generated elements

when we target Web scale. It remains one of our future work.

6.3.2 Evaluation of Sub–content Filter

We explored whether the sub–content filter can remove sub–content such as a list

of past entries, a list of link information, a category information of entries, and a

set of tag cloud, or not.

We randomly extracted 10 elements with each range of the sub–content score

as Table 6.5 shows. We manually judged if each element is main–content or

sub–content. In consequence, every element of which sub–content score is higher

than 0.7 is judged sub–content. We therefore set 0.7 as threshold value τ for the

sub–content score. Note that 9% of elements are removed as sub–content.

104



6.3. Experimental Evaluations

6.3.3 Effect of XML Element Retrieval Techniques for HTML

Documents

6.3.3.1 Experimental Design

We used the 15 queries of DEFINITION type which aim to extract relevant in-

formation exhaustively. This is because we suppose that the type is relatively

compatible with element retrieval compared with a query which has obvious in-

formation to be extracted.

In generating search results, we firstly calculate a relevancy score of each el-

ement with BM25E [73]. Note that we adopt the tag-based approach for global

weight calculation, because the number of documents is not enough for calculat-

ing accurate global weights with the path expression-based approach. In addition,

we eliminate elements shorter than 15 in their length, and apply the integration

method proposed in Chapter 4 when an overlap occurs.

Next, we explain the evaluation method. We manually extract relevant de-

scriptions from documents that search results belong to. During the process, we

did not assign the importance of descriptions but evaluate whether the descrip-

tions are relevant or not2.

Evaluation measures are agreement rate (AR), exhaustiveness rate (ER), F–

measure of AR and ER (FM), average text size, and standard variation. Let e be

a retrieved element as search result and De be a document that e belongs to. The

value of agreement rate, exhaustiveness rate, and harmonic average are calculated

as follows:

AR =
sizee,r
sizee

(6.2)

ER =
sizee,r
sizeDe,r

(6.3)

FM =
2·AR·ER

AR + ER
(6.4)

where sizee,r is text size of relevant descriptions in e, sizee is text size of e, sizeDe,r

is text size of relevant descriptions in De. Note that these values are average of

15 queries.

2The process is maximally conformed to that of INEX based on the experiments that the

author have participated the INEX project for several years.

105



Chapter 6. Expansion of XML Element Retrieval into HTML Documents

@1 @5 @10

AR ER FM AR ER FM AR ER FM

ELEM .503 .233 .176 .498 .305 .298 .512 .351 .344

REC .517 .282 .230 .545 .372 .424 .586 .360 .418

DOC .382 .800 .458 .372 .733 .413 .394 .727 .504

Table 6.4. Agreement rate, exhaustiveness rate, and F–measure

average text size standard variation

ELEM 2288.754 2576.560

REC 1717.870 1292.166

DOC 6411.987 1486.383

Table 6.5. Average text size and standard variation at top-10

6.3.3.2 Results of the Experiments

We evaluated search performances at three revels, namely, top-1, top-5, and top-

10 as Table 6.5. Comparison methods are element search approach (ELEM)

which generates search results in the way described above, reconstruction ap-

proach (REC) which applies the reconstruction method with ELEM, and doc-

ument search (DOC). Note that both ELEM and REC adopt the sub–content

filter.

The results tell that the agreement rates of both ELEM and REC are higher

than that of DOC at all revels. On the other hand, the exhaustiveness rate of

DOC is higher than those of ELEM and REC. Meanwhile, largely F–measure of

DOC is the highest except that F–measure of REC at top-5 is higher than that

of DOC. In consequent, the element retrieval approach is good at agreement rate.

Moreover, both agreement rate and exhaustiveness rate improved at all levels

with the reconstruction method. As a result of multiple comparison, there is

statistical difference between REC-ELEM at significance level 5%, while there are

statistical differences between both REC-DOC and ELEM-DOC at significance

level 1%.

In terms of average text size and standard variation at top-10 as we show in

Table 6.5, the average text size of DOC is much larger than those of ELEM and

106



6.3. Experimental Evaluations

P

P

P

P

P

P

CH2

CH3

H3

H2

Figure 6.3. Multiple paragraphs are aggregated into one element

REC. The reason why the average text size and the standard variation of ELEM is

higher than those of REC is that entire documents are returned as search results

with ELEM when appropriate granular elements cannot be returned. Since the

less the amount of retrieved search results become, the less laborious, REC is

more helpful for users.

6.3.3.3 Positive and Negative Examples of the Reconstruction Method

As a result of experiments described in the previous section, the reconstruction

method largely improved search accuracy. Figure 6.3 depicts the example of

positive effect of the reconstruction method. Newly defined elements, i.e., CH2

and CH3 are composed of multiple paragraphs, which enables the proposed system

to return middle granular elements.

In more detail, as shown in Figure 6.4 which depicts the simplified source code

of the document, the document has flat structure. To extract descriptions satis-

107



Chapter 6. Expansion of XML Element Retrieval into HTML Documents

'

&

$

%

<H2>Family and legal affairs</H2>

<P>Further information: Jackson family and The Jackson 5<P>

<P>Jackson is survived ... Michael’s three children on June 29.<P>

<H3>Family reaction</H3>

<P>The Jackson family released ... following the death:</P>

<P>Our beloved son, ... almost impossible at times.</P>

<P>La Toya indicated that ... comment on the complaint.</P>

<P>After Murray pleaded ... anything life-threatening.</P>

<P>On September 15, 2010, ... saying that AEG not seen it.</P>

<P>On November 7, 2011, ... her emotions throughout the day.</P>

Figure 6.4. Simplified original HTML document'

&

$

%

<CH2>

<H2>Family and legal affairs</H2>

<P>Further information: Jackson family and The Jackson 5<P>

<P>Jackson is survived ... Michael’s three children on June 29.<P>

<CH3>

<H3>Family reaction</H3>

<P>The Jackson family released ... following the death:</P>

<P>Our beloved son, ... almost impossible at times.</P>

<P>La Toya indicated that ... comment on the complaint.</P>

<P>After Murray pleaded ... anything life-threatening.</P>

<P>On September 15, 2010, ... saying that AEG not seen it.</P>

<P>On November 7, 2011, ... her emotions throughout the day.</P>

</CH3>

</CH2>

Figure 6.5. Simplified reconstructed document

108



6.3. Experimental Evaluations

CH2

P

H2

P

H2 CH2

P

H2

CH2

P

P

Figure 6.6. Newly generated element including sub–content

fying users’ information need, it is the often the case that each sentence denoted

as P tag is not useful. On the other hand, Figure 6.5 shows the the simplified

source code of the reconstructed document. Consequently, newly defined granu-

lar elements, namely CH2 and CH3, larger than paragraph and smaller than entire

document can be returned as a search result.

On the other hands, the reconstruction method causes harmful effect in some

cases. Concretely, the newly generated element generated by the Heading tag

appearing last in a document may include sub–content and footer information.

This decreases search performance. To avoid this, we need to regulate these

unimportant parts as a part of our future work.

Moreover, we observed one more problem that we cannot not remove some

sub–content with the sub–content filter from reconstructed documents. It seems

that the appropriate threshold value for the sub–content filter changes by gran-

ularity of element. Precisely, even elements composed of sub-content may have

lowly sub–content score for larger granular elements. There are some candidate

approaches for resolving the problem, namely, smoothing with element length,

utilizing rendered visual information, and machine learning for discriminating

sub–content.

109



CHAPTER 7

Conclusions

7.1. Summary of this thesis

In this thesis, we worked on developing a practical XML element search system

as well as a practical Web search system. There are three requirements for the

practical XML element search system, namely, accurate search, fast query process-

ing, and fast reflection of document updates. In addition, one more requirement is

needed for the practical Web search system, that is, an expansion of XML element

retrieval techniques into Web documents.

As main contributions towards this requirements, we proposed a method for

accurate XML element retrieval and fast and incremental update method. We

also proposed a method to be easily applied XML element retrieval techniques.

With regard to the accurate XML element retrieval, existing studies mainly

focus on proposing accurate term-weighting scheme extended by document re-

trieval term-weighting schemes. This means that these existing studies calculate

element score independently and do not consider overlapping relationships in an

XML document. Moreover, there is no adequate study which discusses the way of

returning non-overlapped ranked list from a simple ranked list. Accordingly, we

proposed a scoring method to identify informative XML elements, a reconstruc-

110



7.1. Summary of this thesis

tion method to identify the best granularity of XML elements as search results,

and a scoring method to find informative elements with considering statistics of

ancestor or descendant element. Our experimental evaluations showed that our

proposed methods exceeded existing methods in search accuracy. Particularly,

the reconstruction method improved search accuracy most.

Concerned with the fast and incremental update method, there are two goals

for that. One is achieving fast incremental updates of index and the other is to

calculate term weights accurately. Regarding the first goal, existing studies need

to rebuild index from scratch because existing studies do not consider document

updates. It takes long time when the number of documents accumulated in a

search system is large. Moreover, update target cost is expensive when all data is

treated as update targets. Therefore, we proposed a index structure for enabling

incremental updates. We also proposed the element filter and the term filter which

eliminate unnecessary elements and terms, respectively. With the index structure

and these filters, we attained fast incremental updates.

Concerning second goal, accurate term weight cannot be computed when the

number of documents is insufficient or statistics of a document set change dras-

tically. This is caused by inaccurate global weights. We therefore proposed an

estimation method for accurate statistics even when the statistics of a documents

set changes drastically.

As a result of this research, we developed an XML element search system which

achieves accurate search and fast query processing while satisfying fast updates of

documents. In other words, we successfully developed a practical XML element

retrieval system.

Furthermore, we worked on accomplishing a practical Web search system.

For the purpose, we adapted XML element retrieval techniques to HTML doc-

uments to develop an HTML element search system. There are some features

of HTML documents compared with XML documents, i.e., the document struc-

tures of HTML documents are not well-formatted, there is disagreement between

the logical structure of the document contents and physical document structure,

and HTML documents contain many of uninformative contents. These features

may prevent adapting XML element retrieval techniques to HTML documents.

Since the first feature is resolved with the existing tool, we proposed a method

to reconstruct HTML documents hinted by some tags which represent boundary

111



Chapter 7. Conclusions

of contents for diminishing the disagreement. Similarly, we proposed the filter

for eliminating unimportant elements based on the ratio of the hyperlinks of an

element. As a result of experimental evaluations, the filter properly removes

unimportant elements, while the reconstruction method improved search perfor-

mance with decreasing text size of search results. Moreover, it is revealed that

the framework of element retrieval can return more focused and accurate search

results compared with those of document retrieval. On the other hands, the re-

construction method may generate elements including uninformative descriptions,

which cause a drop in search performance.

7.2. Future Work

7.2.1 For More Accurate XML Element Retrieval

For more accurate search performance in an XML element retrieval system, in-

tegrating a term weighting scheme with a machine learning technique and/or a

network-analysis-base scoring function appears feasible. To achieve this, an adap-

tation method from network-analysis-base scoring functions for XML element re-

trieval needs to be proposed.

7.2.2 Finding Good Trade-off Between Incremental Update

and Rebuilding from Scratch

Regarding an XML element retrieval system with incremental updates, we need

to investigate a good time to switch between incremental updates and rebuilding

from scratch. With knowledge from the presented research, a more practical XML

element retrieval system is expected to be developed.

7.2.3 Developing a Practical Element Retrieval Web Search

System

To expand (XML) element retrieval techniques into HTML documents, there are

still some challenges to be resolved. These are to investigate the effect of the

reconstruction method more fully, to consider other tags besides Heading tags for

112



7.2. Future Work

identifying a logical structure of the documents, to propose a refined sub–content

filter which remove even large granular sub–content.

Furthermore, in expanding element retrieval techniques into the Web in a real

sense, not only element retrieval techniques are applicable to HTML documents,

but also an enormous number of documents, literally Web scale, need to be man-

aged in an efficient way. A solution for to this is adapting the proposed method

to a large scale distributed environment for scaling out. Furthermore, in an XML

element retrieval system, there are many processes, in each of which sub-processes

are executed independently. Accordingly, it seems that it is effective to execute

these processes with Graphics Processing Units (GPU) which have higher perfor-

mance in parallel processing compared with CPU for scaling up.

113



Publication List

Journal Papers

1. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Takafumi

Taketomi, and Hirokazu Kato: “A Proposal of Accurate XML Element Re-

trieval Considering Document Updates”, IPSJ Transactions on Databases

(TOD), Vol. 6, No.4, pp.1–16, September 2013.

2. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Takafumi

Taketomi, and Hirokazu Kato: “Fast Incremental Indexing with Effective

and Efficient Searching in XML Element Retrieval”, International Journal

of Web Information Systems (IJWIS), Vol.9, Iss.2, June 2013.

3. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “Result Reconstruction

Approach for More Effective XML Element Search”, International Journal

of Web Information Systems (IJWIS), Vol.7, Iss.4, pp.360–380, December

2011.

4. Atsushi Keyaki, Kenji Hatano, Jun Miyazaki: “A Proposal of a Reconstruc-

tion Method to Return Well-informative Search Results”, IPSJ Transactions

on Databases (TOD), Vol.4, No.1, pp.1–13, March 2011．

5. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “A Query-oriented XML

Fragment Search Approach on A Relational Database System”, Journal of

114



Digital Information Management, Digital Information Research Foundation,

Vol. 8, No. 3, pp.175–180, June 2010.

International Conferences andWorkshops (reviewed)

1. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Takafumi

Taketomi, and Hirokazu Kato: “A Path expression-Based Smoothing of

Query Likelihood Model for XML Element Retrieval”, Proceedings of the

1st ACIS International Symposium on Applied Computing and Information

Technology (IIAI-AAI ACIT 2013), pp.296–300, Matsue, Japan, December

2012.

2. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Takafumi

Taketomi, and Hirokazu Kato: “Fast and Incremental Indexing in Effective

and Efficient XML Element Retrieval Systems”, Proceedings of the 14th

International Conference on Information Integration and Web-based Ap-

plications & Services (iiWAS2012), pp.157–166, Bali, Indonesia, December

2012.

3. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “Relaxed Global Term

Weights for XML Element Search”, Comparative Evaluation of Focused

Retrieval, Volume 6932 of LNCS, Springer, pp.71–81, 2011.

4. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “Result Reconstruction

Approach for More Effective XML Fragment Search”, Proceedings of the

12th International Conference on Information Integration and Web-based

Applications & Services (iiWAS2010), pp.115–123, Paris, France, November

2010.

5. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “A Scoring Method of

XML Fragments Considering Query-Oriented Statistics”, Proceedings of the

2nd International Conference on the Applications of Digital Information and

Web Technologies (ICADIWT 2009), pp.65–76, London, United Kingdom,

August 2009.

115



Publication List

International Conferences andWorkshops (not re-

viewed)

1. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Taka-

fumi Taketomi, and Hirokazu Kato: “XML Element Retrieval@1CLICK-2”,

Proceedings of the 10th NTCIR Conference, Chiyoda, Japan, June 2013.

2. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “A Result Reconstruction

Method for Effective XML Fragment Search at INEX 2010”, INEX 2010

Workshop Pre-Proceedings, pp.65–76, Vught, Netherlands, December 2010

3. Atsushi Keyaki, Jun Miyazaki, and Kenji Hatano: “A Method of Generating

Answer XML Fragment from Ranked Results”, INEX 2009 Workshop Pre-

proceedings, pp.65–76, Brisbane, Australia, December 2009.

Domestic Conferences and Workshops (reviewed)

1. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Taka-

fumi Taketomi, and Hirokazu Kato: “Fast Updates on Indices for Accurate

XML Element Retrieval Systems”, Proceedings of WebDB Forum 2012,

A1-1, Tokyo, November 2012. received student encouragement award (in

Japanese)

Domestic Conferences and Workshops (not re-

viewed)

1. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, and Hi-

rokazu Kato: “An Adaptation of XML Element Retrieval Techniques to

Web Documents”, The 6th Forum on Data Engineering and Information

Management (DEIM 2014), A1-4, Awaji, March 2014. (in Japanese) (to

appear)

2. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Takafumi

Taketomi, and Hirokazu Kato: “Update-Aware Accurate XML Element Re-

trieval”, The 5th International Workshop with Mentors on Databases, Web

116



and Information Management for Young Researchers (iDB Workshop 2013),

Sapporo, July 2011. [closed]

3. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, and Hi-

rokazu Kato: “An Improvement of XML Element Retrieval Considering

Document Updates”, The 5th Forum on Data Engineering and Information

Management (DEIM 2013), A1-2, Koriyama, March 2013. received best

paper award (PhD session) and student presentation award (in Japanese)

4. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, and Hi-

rokazu Kato: “An Evaluation and a Refinement of Filters Based on Statistics

of XML Elements for Reducing Update Cost of Indices”, The 4th Forum on

Data Engineering and Information Management (DEIM 2012), D3-2, Maiko,

March 2012. (in Japanese)

5. Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, and Hi-

rokazu Kato: “An Approach of Dynamic Maintenance of Indices for XML

Element Retrieval”, IPSJ SIG Technical Report, 2011-DBS-153,No.32, pp.

1-8，November 2011.

6. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “Relaxed Global Term

Weights for XML Element Search”, The 3rd International Workshop with

Mentors on Databases, Web and Information Management for Young Re-

searchers (iDB Workshop 2011), Kyoto, August 2011. [closed]

7. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “A Method of Relaxation

Global Weight for XML Element Search”, The 3rd Forum on Data Engi-

neering and Information Management (DEIM 2011), E6-6, Izu, February

2011. (in Japanese)

8. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “A Proposal of Scoring

Method for Reconstructed XML Fragments”, WI2-2010-40, pp.35-40, Sado,

September 2010．(in Japanese)

9. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “A Construction Method

with Using XML Information Retrieval Technique”, The 72nd National Con-

vention of Information Processing Society of Japan’, 6ZC-7, pp.121-122,

6ZC-7, Tokyo, March 2010．(in Japanese)

117



Publication List

10. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “A Method of Present-

ing Search Results Based on the Reconstructing Ranked Results”, The 2nd

Forum on Data Engineering and Information Management (DEIM 2010),

C7-2, Awaji, March 2010．(in Japanese)

11. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “Advantages of XML

Fragment Retrieval Method Considering Query-Oriented Statistics”, IPSJ

SIG Technical Report, Vol.2009-DBS-148/2009-FI-95, No.1, pp.1-8, Kobe,

July 2009. received student encouragement award (in Japanese)

12. Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki: “Algorithm for Extract-

ing Important Parts from Structured Documents”, The 1st Forum on Data

Engineering and Information Management (DEIM 2009), B5-4, Kakegawa,

March 2009.(in Japanese)

13. Atsushi Keyaki, and Kenji Hatano: “A Proposal for Extracting Significant

Parts of Structured Documents Using Positions of Query Keywords”, Pro-

ceedings of Information Processing Society of Japan Kansai Branch Confer-

ence 2008, pp.125-128, Kyoto, October 2008.(in Japanese)

Award

1. DEIM 2013, Best paper award (PhD session), 2013

2. DEIM 2013, Student presentation award, 2013

3. WebDB Forum 2012, Student encouragement award, 2012

4. NAIST Excellent Student Scholarship Program (NAIST Top Scholarship

Program), 2011

5. IPSJ (Information Processing Society of Japan) DBS, Student encourage-

ment award, 2009

118



Appendix

A. SMART Stop List

'

&

$

%

a, a’s, able, about, above, according, accordingly, across,

actually, after, afterwards, again, against, ain’t, all, allow,

allows, almost, alone, along, already, also, although, always, am,

among, amongst, an, and, another, any, anybody, anyhow, anyone,

anything, anyway, anyways, anywhere, apart, appear, appreciate,

appropriate, are, aren’t, around, as, aside, ask, asking,

associated, at, available, away, awfully, b, be, became, because,

become, becomes, becoming, been, before, beforehand, behind, being,

believe, below, beside, besides, best, better, between, beyond,

both, brief, but, by, c, c’mon, c’s, came, can, can’t, cannot,

cant, cause, causes, certain, certainly, changes, clearly, co, com,

come, comes, concerning, consequently, consider, considering,

contain, containing, contains, corresponding, could, couldn’t,

course, currently, d, definitely, described, despite, did, didn’t,

different, do, does, doesn’t, doing, don’t, done, down, downwards,

during, e, each, edu, eg, eight, either, else, elsewhere, enough,

entirely, especially, et, etc, even, ever, every, everybody,

119



Appendix

'

&

$

%

everyone, everything, everywhere, ex, exactly, example, except, f,

far, few, fifth, first, five, followed, following, follows, for,

former, formerly, forth, four, from, further, furthermore, g, get,

gets, getting, given, gives, go, goes, going, gone, got, gotten,

greetings, h, had, hadn’t, happens, hardly, has, hasn’t, have,

haven’t, having, he, he’s, hello, help, hence, her, here, here’s,

hereafter, hereby, herein, hereupon, hers, herself, hi, him,

himself, his, hither, hopefully, how, howbeit, however, i, i’d,

i’ll, i’m, i’ve, ie, if, ignored, immediate, in, inasmuch, inc,

indeed, indicate, indicated, indicates, inner, insofar, instead,

into, inward, is, isn’t, it, it’d, it’ll, it’s, its, itself, j,

just, k, keep, keeps, kept, know, knows, known, l, last, lately,

later, latter, latterly, least, less, lest, let, let’s, like, liked,

likely, little, look, looking, looks, ltd, m, mainly, many, may,

maybe, me, mean, meanwhile, merely, might, more, moreover, most,

mostly, much, must, my, myself, n, name, namely, nd, near, nearly,

necessary, need, needs, neither, never, nevertheless, new, next,

nine, no, nobody, non, none, noone, nor, normally, not, nothing,

novel, now, nowhere, o, obviously, of, off, often, oh, ok, okay,

old, on, once, one, ones, only, onto, or, other, others, otherwise,

ought, our, ours, ourselves, out, outside, over, overall, own, p,

particular, particularly, per, perhaps, placed, please, plus,

possible, presumably, probably, provides, q, que, quite, qv, r,

rather, rd, re, really, reasonably, regarding, regardless, regards,

relatively, respectively, right, s, said, same, saw, say, saying,

says, second, secondly, see, seeing, seem, seemed, seeming, seems,

seen, self, selves, sensible, sent, serious, seriously, seven,

several, shall, she, should, shouldn’t, since, six, so, some,

somebody, somehow, someone, something, sometime, sometimes,

somewhat, somewhere, soon, sorry, specified, specify, specifying,

still, sub, such, sup, sure, t, t’s, take, taken, tell, tends, th,

than, thank, thanks, thanx, that, that’s, thats, the, their, theirs,

them, themselves, then, thence, there, there’s, thereafter, thereby,

120



B. Examples of SQL format query

'

&

$

%

therefore, therein, theres, thereupon, these, they, they’d, they’ll,

they’re, they’ve, think, third, this, thorough, thoroughly, those,

though, three, through, throughout, thru, thus, to, together, too,

took, toward, towards, tried, tries, truly, try, trying, twice, two,

u, un, under, unfortunately, unless, unlikely, until, unto, up,

upon, us, use, used, useful, uses, using, usually, uucp, v, value,

various, very, via, viz, vs, w, want, wants, was, wasn’t, way, we,

we’d, we’ll, we’re, we’ve, welcome, well, went, were, weren’t, what,

what’s, whatever, when, whence, whenever, where, where’s,

whereafter, whereas, whereby, wherein, whereupon, wherever, whether,

which, while, whither, who, who’s, whoever, whole, whom, whose, why,

will, willing, wish, with, within, without, won’t, wonder, would,

would, wouldn’t, x, y, yes, yet, you, you’d, you’ll, you’re, you’ve,

your, yours, yourself, yourselves, z, zero

B. Examples of SQL format query

We semi-manually transformed NEXI query: //article[about(., philosophy)]

//section[about(., meaning of life)]

B.1 SQL Format Query of Baseline Approach

'

&

$

%

SELECT r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path, r1.numTerm,

SUM(r0.s1 + r1.s2) AS score

FROM (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, SUM(t.weight) AS s1

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article’

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’philosophi’)

121



Appendix

'

&

$

%

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos) r0, (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, e.path,

e.numTerm, SUM(t.weight) AS s2

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article#%/section’

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’mean’, ’life’)

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos, e.path, e.numTerm

) r1

WHERE r0.did = r1.did

AND r0.st <= r1.st

AND r1.ed <= r0.ed

GROUP BY r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path, r1.numTerm

ORDER BY score DESC;

B.2 SQL Format Query of QS

'

&

$

%

SELECT r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path, r1.numTerm,

SUM(r0.s1 * (1 + LN(c00.count/c01.count)) +

r1.s2 * (1 + LN(c10.count/c11.count))) AS score

FROM (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, SUM(t.weight) AS s1

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article’

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’philosophi’)

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos) r0, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

122



B. Examples of SQL format query

'

&

$

%

SELECT e.did, e.eid

FROM element e

WHERE e.pathexp LIKE ’#%/article’

GROUP BY e.did, e.eid)

) c00, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

SELECT e.did, e.eid

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article’

AND e.did = t.did

AND e.eid = t.eid

AND t.term IN (’philosophi’)

GROUP BY e.did, e.eid)

) c01, (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, e.path, e.numTerm,

SUM(t.weight) AS s2

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article#%/section’

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’mean’, ’life’)

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos, e.path, e.numTerm

) r1, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

SELECT e.did, e.eid

FROM element e

WHERE e.pathexp LIKE ’#%/article#%/section’

GROUP BY e.did, e.eid)

) c10, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

123



Appendix

'

&

$

%

SELECT e.did, e.eid

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article#%/section’

AND e.did = t.did

AND e.eid = t.eid

AND t.term IN (’mean’, ’life’)

GROUP BY e.did, e.eid)

) c11

WHERE r0.did = r1.did

AND r0.st_pos <= r1.st_pos

AND r1.ed_pos <= r0.ed_pos

GROUP BY r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path, r1.numTerm

ORDER BY score DESC;

B.3 SQL Format Query of QK

'

&

$

%

SELECT r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path, r1.numTerm,

SUM(r0.s1 + r1.s2) * (r0.inc + r1.inc) as score

FROM (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, SUM(t.weight) AS s1,

COUNT(t.term) AS inc

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article’

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’philosophi’)

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos) r0, (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, e.path,

e.numTerm, SUM(t.weight) AS s2, COUNT(t.term) AS inc

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article#%/section’

124



B. Examples of SQL format query

'

&

$

%

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’mean’, ’life’)

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos, e.path, e.numTerm

) r1

WHERE r0.did = r1.did

AND r0.st_pos <= r1.st_pos

AND r1.ed_pos <= r0.ed_pos

GROUP BY r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path,

r1.numTerm, r0.inc + r1.inc

ORDER BY score DESC;

B.4 SQL Format Query of QO

'

&

$

%

SELECT r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path, r1.numTerm,

SUM(r0.s1 * (1 + LN(c00.count/c01.count)) + r1.s2 *

(1 + LN(c10.count/c11.count))) * (r0.inc + r1.inc) AS score

FROM (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, SUM(t.weight) AS s1,

COUNT(t.term) AS inc

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article’

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’philosophi’)

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos

) r0, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

SELECT e.did, e.eid

FROM element e

125



Appendix

'

&

$

%

WHERE e.pathexp LIKE ’#%/article’

GROUP BY e.did, e.eid)

) c00, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

SELECT e.did, e.eid

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article’

AND e.did = t.did

AND e.eid = t.eid

AND t.term IN (’philosophi’)

GROUP BY e.did, e.eid)

) c01, (

SELECT e.did, e.eid, e.st_pos, e.ed_pos, e.path, e.numTerm,

SUM(t.weight) AS s2, COUNT(t.term) AS inc

FROM element e, term t

WHERE e.pathexp LIKE ’#%/article#%/section’

AND e.eid = t.eid

AND e.did = t.did

AND t.term IN (’mean’, ’life’)

GROUP BY e.did, e.eid, e.st_pos, e.ed_pos, e.path, e.numTerm

) r1, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

SELECT e.did, e.eid

FROM element e

WHERE e.pathexp LIKE ’#%/article#%/section’

GROUP BY e.did, e.eid)

) c10, (

SELECT CAST(COUNT(*) AS numeric) AS count

FROM (

SELECT e.did, e.eid

FROM element e, term t

126



B. Examples of SQL format query

'

&

$

%

WHERE e.pathexp LIKE ’#%/article#%/section’

AND e.did = t.did

AND e.eid = t.eid

AND t.term IN (’mean’, ’life’)

GROUP BY e.did, e.eid)

) c11

WHERE r0.did = r1.did

AND r0.st_pos <= r1.st_pos

AND r1.ed_pos <= r0.ed_pos

GROUP BY r1.did, r1.eid, r1.st_pos, r1.ed_pos, r1.path,

r1.numTerm, r0.inc + r1.inc

ORDER BY score DESC;

127



Bibliography

[1] World Wide Web Consortium. http://www.w3.org/. Accessed in Novem-

ber, 2013.

[2] Satoshi Nakamura. Trustworthiness Analysis of Web Search. Journal

of Japanese Society for Artificial Intelligence, 23(6):767–774, 2008. (in

Japanese).

[3] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and Francois

Yergeau. Extensible Markup Language (XML) 1.0 (Fifth Edition). http:

//www.w3.org/TR/REC-xml/, 2008. Accessed in November, 2013.

[4] Wikipedia –The Free Encyclopedia–. http://en.wikipedia.org/wiki/

Main_Page. Accessed in November, 2013.

[5] Jaap Kamps, Shlomo Geva, Andrew Trotman, Alan Woodley, and Marijn

Koolen. Overview of the INEX 2008 Ad Hoc Track. In Advances in Focused

Retrieval, volume 5631 of Lecture Notes on Computer Science, pages 1–28.

Springer Berlin, 2008.

[6] Jaap Kamps and Marijn Koolen. On the Relation between Relevant Pas-

sages and XML Document Structure. In in Proc. of the 30th ACM SIGIR,

2007.

128

http://www.w3.org/
http://www.w3.org/TR/REC-xml/
http://www.w3.org/TR/REC-xml/
http://en.wikipedia.org/wiki/Main_Page
http://en.wikipedia.org/wiki/Main_Page


Bibliography

[7] Dave Raggett, Arnaud Le Hors, and Ian Jacobs. HTML 4.01 Specification.

http://www.w3.org/TR/html401/, 1999. Accessed in November, 2013.

[8] Charles F. Goldfarb, Edward Mosher, and Raymond Lorie. SGML. http:

//www.w3.org/MarkUp/SGML/, 1979. Accessed in November, 2013.

[9] Kenji Kita, Kazuhiko Tsuda, and Masami Shisibori. Algorithm of Informa-

tion Retrieval. Kyoritsu Shuppan, 2002. (in Japanese).

[10] G. Salton. The SMART Retrieval System–Experiments in Automatic Doc-

ument Processing. Prentice-Hall, 1971.

[11] M.F.Porter. An Algorithm for Suffix Stripping. Readings in Information

Retrieval, pages 313–316, 1997.

[12] Gerard Salton and Christopher Buckley. Term-Weighting Approaches in

Automatic Text Retrieval. Journal of Information Processing and Manage-

ment, 24(5):513–523, 1988.

[13] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-

Beaulieu, and Mike Gatford. Okapi at TREC-3. The Third Text Retrieval

Conference (TREC-3), pages 109–126, 1995.

[14] Stephen Robertson, Hugo Zaragoza, and Michael Taylor. Simple BM25

Extension to Multiple Weighted Fields. In Proceedings of the 13 ACM In-

ternational Conference on Information and Knowledge Management, pages

42–49, 2004.

[15] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. In-

troduction to Information Retrieval. Cambridge University Press, 2008.

[16] Koji Eguchi. Trends and Issues in Probabilistic Language Models for Infor-

mation Retrieval. IEICE Transactions on Information and Systems, J93-

D(3):157–169, 2010.

[17] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab, 1999.

129

http://www.w3.org/TR/html401/
http://www.w3.org/MarkUp/SGML/
http://www.w3.org/MarkUp/SGML/


Bibliography

[18] Jon M. Kleinberg. Improvement in TF-IDF Scheme for Web Pages based

on the Contents of Their Hyperlinked Neighboring Pages. ACM Computing

Surveys (CSUR), 31(5):56–68, 1999.

[19] Kazunari Sugiyama, Kenji Hatano, Masatoshi Yoshikawa, and Shunsuke

Uemura. Improvement in TF-IDF Scheme for Web Pages based on the

Contents of Their Hyperlinked Neighboring Pages. Systems and Computers

in Japan, 36(14):56–68, 2005.

[20] Hao ming Wang, Martin Rajman, Ye Guo, and Bo qin Feng. NewPR-

Combining TFIDF with Pagerank. In Proc. of the 16th International Con-

ference, Athens, Greece, volume 4132 of LNCS, 2006.

[21] Takashi Tokuda and Keishi Tajima. Classification of XML Tags according

to Their Roles in Document Structure. DBSJ Journal, 8(1):1–6, 2009. (in

Japanese).

[22] Elika J. Etemad. Cascading Style Sheets (CSS) Snapshot 2010. http:

//www.w3.org/TR/CSS/, 2011. Accessed in November, 2013.

[23] XHTML 1.0 The Extensible HyperText Markup Language (Second Edition).

http://www.w3.org/TR/xhtml1/, 2002. Accessed in November, 2013.

[24] Henk Blanken, Torsten Grabs, Hans-Jörg Schek, Ralf Schenkel, and Ger-

hard Weikum. Intelligent Search on XML Data: Applications, Languages,

Models, Implementations, and Benchmarks, volume 2818 of Lecture Notes

on Computer Science. Springer-Verlag, 2003.

[25] Toshiyuki Shimizu. A Study on Document-Centric XML Search. PhD thesis,

Kyoto University, 2008.

[26] Michael Ley, Marc Herbstritt, Marcel R. Ackermann, Oliver Hoffmann,

Michael Wagner, Stefanie von Keutz, and Katharina Hostert. The DBLP

Computer Science Bibliography. http://www.informatik.uni-trier.de/

~ley/db/index.html. Accessed in November, 2013.

[27] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins:

optimal XML pattern matching. In Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 310–321, 2002.

130

http://www.w3.org/TR/CSS/
http://www.w3.org/TR/CSS/
http://www.w3.org/TR/xhtml1/
http://www.informatik.uni-trier.de/~ley/db/index.html
http://www.informatik.uni-trier.de/~ley/db/index.html


Bibliography

[28] Haifeng Jiang, Hongjun Lu, Wei Wang, and Beng Chin Ooi. XR-Tree:

Indexing XML Data for Efficient Structural Joins. In Proceedings of the

19th International Conference on Data Engineering (ICDE 2003), pages

253–263, 2003.

[29] Roy Goldman and Jennifer Widom. Dataguides: Enabling query formu-

lation and optimization in semistrucutred databases. In Proc. of the 23rd

International Conference on Very Large Data Bases, pages 436–445, 1997.

[30] Quanzhong Li and Bongki Moon. Indexing and Querying XML Data for

Regular Path Expressions. In Proc. of the 27th International Conference on

Very Large Data Bases, pages 361–370, 2001.

[31] Brian Cooper, Neal Sample, Michael J. Franklin, Gisli R. Hjaltason, and

Moshe Shadmon. A fast index for semistructured data. In Proc. of the 27th

International Conference on Very Large Data Bases, pages 341–350, 2001.

[32] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shun-

suke Uemura. XRel: A Path-based Approach to Storage and Retrieval of

XML Documents using Relational Databases. ACM Transactions on Inter-

net Technology, 1(1):110–141, 2001.

[33] Raghav Kaushik, Philip Bohannon, Jeffrey F. Naughton, and Henry F.

Korth. Covering Indexes for Branching Path Queries. In Proceedings of

the 2002 ACM SIGMOD international conference on Management of data,

pages 133–144, 2002.

[34] Wei Fan Haixun Wang, Sanghyun Park and Philip S. Yu. ViST: A Dynamic

Index Method for Querying XML Data by Tree Structures. In Proceedings of

the 2003 ACM SIGMOD international conference on Management of data,

pages 110–121, 2003.

[35] Praveen Rao and Bongki Moon. PRIX: Indexing and Querying XML using

Prufer Sequences. In Proceedings of the 20th International Conference on

Data Engineering (ICDE 2004), pages 288–300, 2004.

131



Bibliography

[36] Haixun Wang and Xiaofeng Meng. On the Sequencing of Tree Structures

for XML Indexing. In Proceedings of the 21th International Conference on

Data Engineering (ICDE 2005), pages 372–383, 2005.

[37] Xiaodong Wu, Mong Li Lee, and Wynne Hsu. A Prime Number Label-

ing Scheme for Dynamic Ordered XML Trees. In Proceedings of the 20th

International Conference on Data Engineering (ICDE 2004), pages 66–78,

2004.

[38] Patrick O’Neil, Elizabeth O’Neil, Shankar Pal, Istvan Cseri, Gideon

Schaller, and Nigel Westbury. ORDPATHs: Insert-friendly XML Node La-

bels. In Proceedings of the 2004 ACM SIGMOD international conference

on Management of data, pages 903–908, 2004.

[39] Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández,

Michael Kay, Jonathan Robie, and Jérôme Siméon. XML Path Language

(XPath) 2.0 (Second Edition). http://www.w3.org/TR/xpath20/, 2011.

Accessed in November, 2013.

[40] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,

Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query Lan-

guage (Second Edition), year = 2011, note = Accessed in November, 2013,.

http://www.w3.org/TR/xquery/.

[41] Sihem Amer-Yahia, Chavdar Botev, and Jayavel Shanmugasundaram. TeX-

Query: A full-text Search Extension to XQuery. In Proceedings of the 13th

international conference on World Wide Web, pages 583–594, 2004.

[42] Raghav Kaushik, Rajasekar Krishnamurthy, Jeffrey F. Naughton, and

Raghu Ramakrishnan. On the integration of structure indexes and inverted

lists. In Proceedings of the 2004 ACM SIGMOD international conference

on Management of data, pages 779–790, 2004.

[43] Toshiyuki Shimizu and Masatoshi Yoshikawa. Full-Text and Structural In-

dexing of XML Documents on B+ Tree. IEICE Transactions on Information

and Systems, E89-D(1):237—247, 2006.

132

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/


Bibliography

[44] Inderjeet Mani. Automatic Summarization. John Benjamins Publishing,

2001.

[45] Peggy M. Andersen, Philip J. Hayes, Alison K. Huettner, Linda M.

Schmandt, Irene B. Nirenburg, and Steven P. Weinstein. Automatic Ex-

traction of Facts from Press Releases to Generate News Stories. In Proc. of

the 3rd Conference on Applied Natural Language Processing, pages 170–177,

1992.

[46] Marcin Kaszkiel and Justin Zobel. Passage retrieval revisited. In Proc. of

the 20th ACM SIGIR, pages 178–185, 1997.

[47] Manabu Okumura and Hidetsugu Nanba. Automatic Text Summarization.

OHM Publishing, 2005. (in Japanese).

[48] Fang Huang, Stuart Watt, David Harper, and Malcolm Clark. Compact

Representations in XML Retrieval. In Formal Proc. of INEX 2006 Work-

shop, volume 5631 of LNCS, 2007.

[49] Kenji Hatano, Hiroko Kinutani, Toshiyuki Amagasa, Yasuhiro Mori,

Masatoshi Yoshikawa, and Shunsuke Uemura. Analyzing the Properties

of XML Fragments Decomposed from the INEX Document Collection . In

Advances in XML Information Retrieval, volume 3493 of Lecture Notes on

Computer Science, pages 168–182. Springer Berlin, 2005.

[50] Initiative for the evaluation of xml retrieval. http://inex.mmci.

uni-saarland.de/, 2013. Accessed in November, 2013.

[51] Gabriella Kazai, Mounia Lalmas, and Arjen P. de Vries. The Overlap Prob-

lem in Content-Oriented XML Retrieval Evaluation. In Proceedings of the

27th Annual International ACM SIGIR Conference on Research and Deve-

lopment in Information Retrieval, pages 72–79, 2004.

[52] Jaap Kamps, Shlomo Geva, Andrew Trotman, Alan Woodley, and Marijn

Koolen. Overview of the INEX 2008 Ad Hoc Track. In INEX 2008 Workshop

Pre-proceedings, pages 1–28, 2008.

133

http://inex.mmci.uni-saarland.de/
http://inex.mmci.uni-saarland.de/


Bibliography

[53] Paavo Arvola, Shlomo Geva, Jaap Kamps, Ralf Schenkel, Andrew Trotman,

and Johanna Vainio. Overview of the INEX 2010 Ad Hoc Track. In INEX

2010 Workshop Pre-proceedings, pages 11–40, 2010.

[54] Andrew Trotman and Börkur Sigurbjörnsson. Narrowed Extended XPath I

(NEXI). In Advances in XML Information Retrieval, pages 16–40, 2005.

[55] Tetsuya Sakai, Makoto P. Kato, and Young-In Song. Overview of NTCIR-9

1CLICK. In Proc. of the 9th NTCIR Conference, 2011.

[56] Makoto P. Kato, Matthew Ekstrand-Abueg, Virgil Pavlu, Tetsuya Sakai,

Takehiro Yamamoto, and Mayu Iwata. Overview of the NTCIR-10 1CLICK-

2 Task. In Proc. of the 10th NTCIR Conference, 2013.

[57] Jane Li, Scott Huffman, and Akihito Tokuda. Good abandonment in mobile

and PC internet search. In Proc. of the 32th ACM SIGIR, 2009.

[58] the National Science Foundation. WordNet –A lexical database for English–.

http://wordnet.princeton.edu/, 2013 (last update). Accessed in Novem-

ber, 2013.

[59] Yoshifumi Masunaga. Introduction to Relational databases. Science-sha,

1991. (in Japanese).

[60] Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web: From

Relations to Semistructured Data and XML. Morgan Kaufmann, 1999.

[61] Oracle. Oracle Database. http://www.oracle.com/jp/products/

database/overview/index.html. Accessed in November, 2013.

[62] IBM. DB2. http://www-01.ibm.com/software/data/db2/. Accessed in

November, 2013.

[63] Microsoft. SQL Server. http://www.microsoft.com/en-us/sqlserver/

default.aspx. Accessed in November, 2013.

[64] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shun-

suke Uemura. XRel: A Path-based Approach to Storage and Retrieval of

XML Documents using Relational Databases. ACM Transactions on Inter-

net Technology, 1(1):110–141, 2001.

134

http://wordnet.princeton.edu/
http://www.oracle.com/jp/products/database/overview/index.html
http://www.oracle.com/jp/products/database/overview/index.html
http://www-01.ibm.com/software/data/db2/
http://www.microsoft.com/en-us/sqlserver/default.aspx
http://www.microsoft.com/en-us/sqlserver/default.aspx


Bibliography

[65] Open source product. XBase. http://basex.org/. Accessed in November,

2013.

[66] Toshiba. TX1. http://www.toshiba-sol.co.jp/pro/xml/. Accessed in

November, 2013.

[67] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.

Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.

Gruber. Bigtable: A Distributed Storage System for Structured Data. In

Proc. of the 7th Symposium on Operating System Design and Implementa-

tion, 2006.

[68] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-

lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,

Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s Highly Available

Key-value Store. In Proc. of the 21st ACM SIGOPS symposium on Operat-

ing systems principles, 2007.

[69] Oracle. BerkeleyDB. http://www.oracle.com/us/products/database/

berkeley-db/overview/index.html. Accessed in November, 2013.

[70] Benjamin Piwowarski and Patrick Gallinari. A Bayesian Framework for

XML Information Retrieval: Searching and Learning with the INEX Col-

lection. Journal of Information Retrieval, 8(4):655–681, 2005.

[71] Torsten Grabs and Hans-Jörg Schek. PowerDB-XML: A Platform for Data-

Centric and Document-Centric XML Processing. In Proceedings of the First

International XML Database Symposium, volume 2824 of Lecture Notes on

Computer Science, pages 100–117. Springer Berlin, 2003.

[72] Fang Liu, Clement Yu, Weiyi Meng, and Abdur Chowdhury. Effective Key-

word search in Relational Databases. In Proceedings of the 2006 ACM SIG-

MOD international Conference on Management of Data, pages 563–574.

ACM, 2006.

[73] Wei Liu, Stephen Robertson, and Andrew Macfarlane. Field-Weighted XML

Retrieval Based on BM25. In Advances in XML Information Retrieval and

135

http://basex.org/
http://www.toshiba-sol.co.jp/pro/xml/
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html


Bibliography

Evaluation, volume 3977 of Lecture Notes on Computer Science, pages 161–

171. Springer Berlin, 2006.

[74] Atsushi Keyaki, Jun Miyazaki, Kenji Hatano, Goshiro Yamamoto, Take-

fumi Taketomi, and Hirokazu Kato. A Path expression-Based Smoothing of

Query Likelihood Model for XML Element Retrieval. In Proceedings of the

1st ACIS International Symposium on Applied Computing and Information

Technology (IIAI-AAI ACIT 2013), pages 296–300, 2013.

[75] Kenji Hatano, Sihem Amer-yahia, and Divesh Srivastava. Document-

Scoring for XML Information Retrieval using Structural Condition of XML

Queries. In IEICE technical report, pages 13–18, 2007. DE2007-117.

[76] Paul Ogilvie and Jamie Callan. Hierarchical Language Models for XML

Component Retrieval. In Formal Proc. of INEX 2004 Workshop, volume

3493 of LNCS, 2005.

[77] Paul Ogilvie and Jamie Callan. Parameter Estimation for a Simple Hierar-

chical Generative Model for XML Retrieval. In Advances in XML Informa-

tion Retrieval and Evaluation, volume 3977 of Lecture Notes on Computer

Science, pages 211–224. Springer Berlin, 2006.

[78] Jinyoung Kim, Xiaobing Xue, and W. Bruce Croft. A Probabilistic Retrieval

Model for Semistructured Data. In Proc. of the 31th ECIR, pages 228–239,

2009.

[79] Jaap Kamps, Maarten de Rijke, and Börkur Sigurbjörnsson. Length Nor-

malization in XML Retrieval. In Proc. of the 27th ACM SIGIR, pages 80–87,

2004.

[80] Jovan Pehcevski, James A. Thom, and S.M.M. Tahaghoghi. RMIT univer-

sity at INEX 2005: Ad hoc track. In Formal Proc. of INEX 2005 Workshop,

volume 3977 of LNCS, 2006.

[81] Tie-Yan Liu. Learning to Rank for Information Retrieval,. Foundations and

Trends in Information Retrieval, 3(3):225–331, 2009.

136



Bibliography

[82] Nicolas Usunier, David Buffoni, and Patrick Gallinari. Ranking with Or-

dered Weighted Pairwise Classification. In Proceedings of the 26th Annual

International Conference on Machine Learning, pages 1057–1064, 2009.

[83] David Buffoni, Nicolas Usunier, and Patrick Gallinari. LIP6 at INEX’09:

OWPC for ad hoc track. In INEX 2009 Workshop Formal Proceedings,

volume 6203 of Lecture Notes on Computer Science, pages 59–69, 2011.

[84] David Buffoni, Nicolas Usunier, and Patrick Gallinari. LIP6 at INEX ’10:

OWPC for Ad Hoc Track. In INEX 2010 Workshop Formal Proceedings,

volume 6932 of Lecture Notes on Computer Science, pages 61–71, 2011.

[85] Ihab F. Ilyas, George Beskales, and Mohamed A. Soliman. A Survey of

Top-k Query Processing Techniques in Relational Database Systems. ACM

Computing Surveys (CSUR), 40:1–58, 2008.

[86] Martin Theobald, Holger Bast, Debapriyo Majumdar, Ralf Schenkel, and

Gerhard Weikum. TopX: Efficient and Versatile Top-k Query Processing for

Semistructured Data. The VLDB Journal, 17(1):81–115, 2008.

[87] Andrew Trotman, Xiang-Fei Jia, and Shlomo Geva. Fast and Effective

Focused Retrieval. In INEX’09 Proceedings of the Focused retrieval and

evaluation, pages 229–241, 2009.

[88] Toshiyuki Shimizu, Norimasa Terada, and Masatoshi Yoshikawa. De-

velopment of an XML Information Retrieval System Using Relational

Databases . IPSJ Transactions on Databases, 48(11):224–234, 2007. (in

Japanese).

[89] Kenji Hatano, Hiroko Kinutani, Masahiro Watanabe, Yasuhiro Mori,

Masatoshi Yoshikawa, and Shunsuke Uemura. Keyword-based XML Por-

tion Retrieval: Experimental Evaluation based on INEX 2003 Relevance

Assessments. In Proceedings of the Second Workshop of the Initiative for

the Evaluation of XML Retrieval, pages 81–88, 2004.

[90] Atsushi Keyaki, Jun Miyazaki, and Kenji Hatano. A Method of Generating

Answer XML Fragment from Ranked Results. In INEX 2009 Workshop

Pre-Proceedings, pages 563–574, 2009.

137



Bibliography

[91] Shinya Takami and Katsumi Tanaka. Web-snippet Generation Suitable for

Search Purpose in Web Search Results. IPSJ Transactions on Databases,

49(4):1648–1656, 2008. (in Japanese).

[92] Albrecht Schmidt, Martin Kersten, and MenzoWindhouwer. Querying XML

Documents Made Easy: Nearest Concept Queries. In Proceedings of the 17th

International Conference on Data Engineering, page 321. IEEE, 2001.

[93] Sihem Amer-Yahia and Mounia Lalmas. XML Search: Languages, INEX

and Scoring. SIGMOD Record, 35(4):16–23, 2006.

[94] Norbert Fuhr and Kai Großjohann. XIRQL: A Query Language for Infor-

mation Retrieval in XML Documents. In Proceedings of the 24th Annual

International ACM SIGIR Conference on Research and Development in In-

formation Retrieval, pages 172–180, 2001.

[95] Yunyao Li, Cong Yu, and H. V. Jagadish. Schema-Free XQuery. In Proceed-

ings of the Thirtieth International Conference on Very Large Data Bases,

pages 72–83, 2004.

[96] Vagelis Hristidis and Nick Koudas. Keyword proximity search in xml trees.

IEEE Transaction on knowledge and data engineering, 18(4):525–539, April

2006.

[97] Yu Xu and Yunnis Papakonstaninou. Efficient Keyword Search for Small-

est LCAs in XML Databases. In Proceedings of the 2005 ACM SIGMOD

International Conference on Management of Data, pages 527–538. ACM,

2005.

[98] Guoliang Li, Jianhua Feng, Jianyong Wang, and Lizhu Zhou. Effective

Keyword Search for Valuable LCAs over Xml Documents. In Proceedings

of the 16th ACM Conference on Information and Knowledge Management,

pages 31–40, 2007.

[99] Vagelis Hristidis and Nick Koudas. Keyword Proximity Search in XML

Trees. IEEE Transactions on Knowledge and Data Engineering (TKDE),

18(4):525–539, 2006.

138



Bibliography

[100] Ziyang Liu and Yi Chen. Identifying Meaningful Return Information for

XML Keyword Search. In Proceedings of the 2007 ACM SIGMOD Interna-

tional Conference on Management of Data, pages 329–340. ACM, 2007.

[101] Yu Huang, Ziyang Liu, and Yi Chen. Query Biased Snippet Generation

in XML Search. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, pages 315–326. ACM, 2008.

[102] Tsubasa Tanabe, Toshiyuki Shimizu, and Masatoshi Yoshikawa. Effective

Keyword-Based XML Retrieval Using the Data-Centric and Document-

Centric Features. In Proceedings of the 8th Asia Information Retrieval So-

cieties Conference (AIRS 2012), pages 427–436, 2012.

[103] Fei Chen, Xixuan Feng, Christopher Ré, and Min Wang. Optimizing Statis-

tical Information Extraction Programs Over Evolving Text. In Proceedings

of the 28th International Conference on Data Engineering (ICDE 2012),

2012.

[104] Thomas Neumann and Gerhard Weikum. xRDF3X: Fast Querying, High

Update Rates, and Consistency for RDF Databases. In Proceedings of

the 36th International Conference on Very Large Data Bases (VLDB2010),

pages 256–263, 2010.

[105] Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On

Querying Historical Evolving Graph Sequences. In Proceedings of the 37th

International Conference on Very Large Data Bases (VLDB2011), pages

726–737, 2011.

[106] Anthony Tomasic, Héctor Garćıa-Molina, and Kurt Shoens. Incremental

Updates of Inverted Lists for Text Document Retrieval. In Proceedings of

the 1994 ACM SIGMOD international conference on Management of data,

pages 289–300, 1994.

[107] Nicholas Lester, Justin Zobel, and Hugh E. Williams. In-Place versus Re-

Build versus Re-Merge: Index Maintenance Strategies for Text Retrieval

Systems. In Proceedings of the 27th Australasian conference on Computer

science, pages 15–23, 2004.

139



Bibliography

[108] Giorgos Margaritis and Stergios V. Anastasiadis. Low-cost Management

of Inverted Files for Online Full-Text Search. In Proceedings of the 18th

ACM conference on Information and knowledge management, pages 455–

464, 2009.

[109] Robin Berjon, Steve Faulkner, Travis Leithead, Erika Doyle Navara, Edward

O’Connor, Silvia Pfeiffer, and Ian Hickson. HTML5. http://www.w3.org/

TR/html5/, 2014. Accessed in November, 2013.

[110] Seung-Jin Lim and Yiu-Kai Ng. Converting the Syntactic Structures of

Hierarchical Data to Their Semantic Structures. Information Organization

and Databases, 579:343–355, 2000.

[111] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. Extracting Content

Structure for Web Pages based on Visual Representation. In Proc. of the

5th ACM APWeb, pages 406–417, 2003.

[112] Mitsuo Yoshida and Makio Yamamoto. Primary Content Extraction from

News Pages without Training Data. DBSJ Journal, 8(1):29–34, 2009. (in

Japanese).

[113] Mark Montague and Javed A. Aslam. Condorcet Fusion for Improved Re-

trieval. In Proceedings of the 11th International Conference on Information

and Knowledge Management (CIKM), pages 538–548, 2002.

[114] Atsushi Keyaki, Kenji Hatano, and Jun Miyazaki. Algorithm for Extracting

Important Parts from Structured Documents. In Proc. of the 1st Forum on

Data Engineering and Information Management, 2009. (in Japanese).

[115] Jakob Nielsen. How Long Do Users Stay on Web Pages? http://

www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/,

2011. Accessed in November, 2013.

[116] Google. http://www.google.com. Accessed in November, 2013.

[117] Martin Cutts. Oxford Guide to Plain English. Oxford University Press,

2010.

140

http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
http://www.nngroup.com/articles/how-long-do-users-stay-on-web-pages/
http://www.google.com


Bibliography

[118] M. E. Maron. Automatic Indexing: An Experimental Inquiry. Journal of

the ACM, 8:404–417, 1961.

[119] Marc Guillemot Andy Clark. Cyberneko html parser (1.9.19). http://

nekohtml.sourceforge.net/index.html, 2013. Accessed in November,

2013.

141

http://nekohtml.sourceforge.net/index.html
http://nekohtml.sourceforge.net/index.html

	Acknowledgments
	Introduction
	Background and motivation
	Research Problems and Solutions
	Accurate XML Element Retrieval
	XML Element Retrieval System Considering Document Updates
	Expansion into Web Documents

	Contributions
	Outline of the thesis

	Preliminaries
	Information Retrieval
	Overview
	Traditional Document Retrieval Techniques
	Term-weighting-based Scoring Function
	Network-analysis-based Scoring Function


	XML
	Prominent Structured Documents
	Targeted XML Documents
	Search Methods for XML documents
	XML Element Retrieval
	Comparison of Document Search and Element Search
	XML Element
	History of XML Element Retrieval
	Ad Hoc Track of INEX
	INEX Test Collections for Ad Hoc Track
	Queries Used in INEX


	One Click Access Task (1CLICK)
	Database Systems

	Related Studies
	XML Element Retrieval
	Accurate XML Search
	Fast XML Search
	Data Cleansing Techniques
	Important Sentence Extraction

	XML Keyword Search
	Dynamic Updates of Data
	HTML Documents Content Comprehension and Classification

	Accurate XML Element Retrieval Beyond Traditional Term-Weighting Schemes
	A Scoring Method Considering Requirements for Result Snippets
	Result Reconstruction Method
	Selecting an Effective Scoring Method
	Generating a Set of Integrated XML Elements 
	Extraction Limit
	Reconstruction of Elements

	Generating a Refined Ranked List

	A Scoring Method with Statistics of Related Elements
	Bottom-Up Scoring
	Top-Down Scoring

	Integrated Use of Scoring Functions
	Integration Procedure of Each Scoring Function
	Example of Generating SIXE and a Refined Ranked List

	Implementation
	Experimental Evaluations
	Preliminary Experiments
	Smoothing Method for Query Likelihood Model for Element Retrieval Techniques
	Choosing Term-weighting Scheme for Initial Search
	Tuning Parameter for EL of SIXE
	Tuning Parameter for BU

	Evaluations for Each Scoring Function
	Evalutions for Integrated Methods
	Further Experiments with SIXE, BU, and TD
	Comparisons to Document Search


	Fast Incremental Indexing with Accurate and Fast XML Element Retrieval
	Fast Incremental Updates of Indices
	Expansion of Existing Functions
	Structures of Indices
	Top-k Searches

	Handling Document Updates
	Document Insertion
	Document Deletion
	Document Modification

	Filters for Reducing Update Cost
	Element Filter
	Term Filter


	Estimating Accurate Global Weights
	Effects of Incremental Updates
	Experimental Procedure
	Evaluation Results

	Integrating Path Expression for Accurate Global Weights
	Set-of-Tags Method (ST)
	Bag-of-Tags Method (BT)
	Order-of-Tags Method (OT)


	Experimental Evaluations
	Experimental Design
	Preliminary Experiments for the Element Filter and Term Filter
	Evaluations of the Document Set with Static Statistics
	Effects of the Proposed Methods
	Search Accuracy Combined with Reconstruction Method

	Evaluations of the Document Set with Dynamic Statistics

	Further Discussion

	Expansion of XML Element Retrieval into HTML Documents
	Reconstruction of a Document Structure
	Eliminating Elements of Outside of Main Body
	Experimental Evaluations
	Evaluations of the Reconstruction Method
	Evaluation of Sub–content Filter
	Effect of XML Element Retrieval Techniques for HTML Documents
	Experimental Design
	Results of the Experiments
	Positive and Negative Examples of the Reconstruction Method



	Conclusions
	Summary of this thesis
	Future Work
	For More Accurate XML Element Retrieval
	Finding Good Trade-off Between Incremental Update and Rebuilding from Scratch
	Developing a Practical Element Retrieval Web Search System


	Publication List
	Appendix
	SMART Stop List
	Examples of SQL format query
	SQL Format Query of Baseline Approach
	SQL Format Query of QS
	SQL Format Query of QK
	SQL Format Query of QO


	Bibliography

