
NAIST-IS-DD1261202

Doctoral Dissertation

Statistical Induction of Tree-Generating

Grammars for Natural Language Parsing

Hiroyuki Shindo

September 18, 2013

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Hiroyuki Shindo

Thesis Committee:

Professor Yuji Matsumoto (Supervisor)

Professor Satoshi Nakamura (Co-supervisor)

Associate Professor Masashi Shimbo (Co-supervisor)

Assistant Professor Kevin Duh (Co-supervisor)

Statistical Induction of Tree-Generating

Grammars for Natural Language Parsing∗

Hiroyuki Shindo

Abstract

Syntactic analysis is a fundamental problem in natural language processing

(NLP). Human languages are often ambiguous, however, statistical approaches

assign a probability for each grammar rule, and thus they are capable of find-

ing the most probable analysis in a sound manner. Statistical parsers require

grammar rules and those probabilities for analyzing sentences, which are inferred

from a collection of human-annotated syntax trees. Therefore, it is central for

high-quality parsers that the modeling syntax trees with probabilistic grammars

and learning the grammatical model from a collection of syntax trees.

A simple way of modeling syntax trees is to break down the tree into arbitrary

size of smaller tree fragments and assign a probability to each fragment. This

model is called Tree Substitution Grammar (TSG) and it has been successfully

applied to many NLP tasks recently. However, the parsing performance based on

the conventional TSG model is substantially less accurate than that of highly-

optimized statistical parsers.

This thesis argues the major problems of TSG model, i.e., optional-obligatory

distinction and context-free assumption, and challenges to overcome the problems

by modeling richer and more powerful tree-generating grammars. We also propose

efficient learning algorithms of our probabilistic grammars and show the proposed

methods successfully achieve the state-of-the-art performance.

Concretely, we first present a tree insertion operator for TSG model to distin-

guish optional tree fragments from obligatory ones. We show the tree insertion

operator is helpful not only for optional-obligatory distinction but reducing the

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD1261202, September
18, 2013.

i

number of grammar rules and improving the parsing accuracy of the conventional

TSG model.

Second, we propose a symbol-refined tree substitution grammar, which is an

extension of the conventional TSG model where each symbol of tree fragments

can be automatically subcategorized to address the problem of the strong context-

free assumption of a TSG. Efficient learning algorithms of our grammar based

on Markov Chain Monte Carlo methods are also presented. Our best model

significantly outperforms the conventional TSG model and achieves state-of-the-

art result in a standard parsing task.

Finally, we focus on the inference problem of probabilistic grammars and pro-

pose an efficient learning algorithm called pseudo blocked subtree sample. The

proposed method improves the search efficiency by updating multiple variables

at a time with low computational cost. Experiments show our proposed method

improves the search efficiency of statistical grammar induction regardless of the

amount of data.

Keywords:

natural language processing, parsing, tree substitution grammars, Bayesian non-

parametrics, Pitman-Yor process

ii

iii

Acknowledgments

主指導教官の松本裕治教授には，終始暖かくご指導していただき，研究内容に
関する様々な助言をいただきました．深く感謝致します．
中村哲教授には，お忙しい中審査委員をお引き受けいただき，公聴会などで研
究に関する助言をいただきました．有難うございました．
新保仁准教授，Kevin Duh助教には，お忙しい中審査委員をお引き受けいただ
き，研究に関する様々な助言をいただいたきました．また，研究室では日頃から声
をかけていただき，非常に有意義な学生生活となりました．有難うございました．
その他，松本研究室の方々や秘書の北川祐子さんには，研究面や生活面で助け
ていただきました．有難うございました．
また，国立情報学研究所の宮尾祐介准教授，統計数理研究所の持橋大地准教授
には，共同研究という形で研究に関する様々な助言をいただきました．深く感謝
致します．今後ともよろしくお願いいたします．
早稲田大学の井上真郷教授には，私の学部・修士課程において研究指導をして
いただきました．有難うございました．
また，学位取得の機会を与えていただいたNTTコミュニケーション科学基礎
研究所の前田英作所長，上田修功前所長，山田武士部長，永田昌明グループリー
ダに深く感謝致します．
NTTコミュニケーション科学基礎研究所の藤野昭典さんには，入社当時から長
い間研究指導をしていただき，論文の書き方や研究者としての心構えなど，様々
なことを教えていただきました．有難うございました．
また，名前を挙げればきりがありませんが，日頃から研究面や生活面で様々な
アドバイスをくださる塚田元さん，平尾努さん，鈴木潤さん，須藤克仁さん，西
野正彬さん，安田宣仁さん，吉田康久さん，林克彦さん，西川仁さんに感謝致し
ます．
最後に，これまで私を支えてくれた両親と姉妹に感謝致します．

v

Contents

Acknowledgments iii

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.2.1 Optional-Obligatory Distinction 4

1.2.2 Context-Free Assumption 6

1.3 Thesis Outline . 7

2 Preliminaries 9

2.1 Context-Free Grammars . 9

2.1.1 Probabilistic Context-Free Grammars 10

2.2 Nonparametric Bayesian Models 11

2.2.1 Pitman-Yor Process . 12

2.2.1.1 Chinese Restaurant Process 13

2.2.2 Hierarchical Pitman-Yor Process 15

2.2.2.1 Chinese Restaurant Franchise 16

2.3 Markov Chain Monte Carlo Methods 19

2.3.1 Markov Chain . 20

2.3.2 Metropolis-Hastings Algorithm 21

2.3.3 Gibbs Sampling . 24

2.3.4 Slice Sampling . 25

3 Statistical Induction of Tree Insertion Grammars 29

3.1 Introduction . 29

3.2 Tree Insertion Grammars . 30

3.3 Probabilistic Tree Insertion Grammars 32

3.3.1 Substitution Model . 33

3.3.2 Insertion Model . 34

3.4 Inference . 36

3.4.1 Grammar Decomposition 36

3.4.2 Training and Parsing . 38

3.5 Experiment . 41

3.5.1 Small dataset . 42

3.5.2 Full dataset . 44

3.6 Related Work . 46

3.7 Summary . 46

4 Statistical Induction of Symbol-Refined Tree Substitution Gram-

mars 47

4.1 Introduction . 47

4.2 Background . 48

4.3 Symbol-Refined Tree Substitution Grammars 50

4.3.1 Probabilistic Model . 51

4.4 Inference . 54

4.4.1 Inference of Symbol Subcategories 55

4.4.2 Inference of Substitution Sites 56

4.4.3 Hyperparameter Estimation 56

4.5 Experiment . 57

4.5.1 Settings . 57

4.5.1.1 Data Preparation 57

4.5.1.2 Training and Parsing 57

4.5.2 Results and Discussion . 58

4.5.2.1 Comparison of SR-TSG with TSG 58

4.5.2.2 Comparison of SR-TSG with Other Models . . . 59

4.5.2.3 Extracted Grammars 61

4.6 Related Work . 63

4.7 Summary . 64

5 Pseudo Blocked Subtree Sampler for Statistical Grammar Induc-

tion 65

5.1 Introduction . 65

5.2 Background . 66

5.2.1 Symbol-Refined Context-Free Grammars 66

vi

5.2.2 Statistical SR-CFG Induction by Gibbs Sampling 68

5.3 Proposed Method . 70

5.3.1 Pseudo Blocked Subtree Sampling 70

5.3.2 Block Construction . 73

5.3.3 Proposed Algorithm . 73

5.4 Experiment . 74

5.4.1 Setting . 74

5.4.2 Results and Discussion . 75

5.4.2.1 Comparison of the Frequency of Pseudo Sampling 75

5.4.2.2 Comparison of Other Methods 75

5.5 Related Work . 80

5.6 Summary . 80

6 Conclusion 83

6.1 Summary . 83

6.2 Future Directions . 84

Bibliography 87

List of Publications 95

vii

ix

List of Figures

1.1 Illustration of modeling, learning and decoding of statistical parsing. 3

1.2 Example of breaking down syntax tree into grammar rules. 4

1.3 Example syntax trees and grammar rules. 5

2.1 Example parse tree of “I want a car”. 10

2.2 Illustration of Chinese restaurant process based on the Pitman-Yor

process. 13

2.3 Illustration of Chinese restaurant process for CFG rules. 15

2.4 Illustration of Chinese restaurant franchise based on the Pitman-

Yor process. 17

2.5 Illustration of Chinese restaurant franchise for tree fragments. . . 18

2.6 Example illustration of transition matrix for the Markov chain

{x1,x2}. 20

2.7 Illustration of slice sampling. 26

2.8 Illustration of the “doubling” procedure. 26

3.1 Examples of elementary trees. (a) Intial tree. (b) Auxiliary tree. . 31

3.2 Example of (a) substitution and (b) insertion (dotted line). 31

3.3 Derivation of Fig. 3.2btransformed by grammar decomposition. . 36

4.1 Example parse tree. 49

4.2 (a) Example TSG derivation. (b) Example SR-TSG derivation.

The refinement annotation is hyphenated with a nonterminal symbol. 49

4.3 Example three-level backoff. 51

4.4 Three-level hierarchy of SR-TSG. 52

4.5 Histogram of SR-TSG and TSG rule sizes on the small training set.

The size is defined as the number of CFG rules that the elementary

tree contains. 59

4.6 Examples of SR-TSG rules obtained from full treebank data. Non-

terminal symbols created by binarization are shown with an over-bar. 61

5.1 Example parse tree. 67

5.2 Example SR-CFG derivation. Dotted line denotes a process of

rewriting nonterminal symbol. 67

5.3 Alternative representation of Figure 5.2which assigns latent vari-

ables to each node. 69

5.4 Example parse trees and the block Bs = {{z2, z3} , {z11, z12}}. . . 71

5.5 Comparison of log-likelihood of our model among various values of

f . 76

5.6 Comparison of the pseudo blocked sampler with other methods.

The number of subcategories is 2. 77

5.7 Comparison of the pseudo blocked sampler with other methods.

The number of subcategories is 2. 78

x

xi

List of Tables

2.1 Context-free grammars of Figure 2.1. 9

2.2 Probabilistic context-free grammars of Figure 2.1. 11

3.1 The rules and probabilities of grammar decomposition for Figure

3.3. 37

3.2 Grammar decomposition for (a) Xsub and X ins(type). Xsub and

X ins(type)always produce a unary child labeled with the same sym-

bol. (b) X(e). childL (e) and childR (e) are the left and right child

of e, respectively. w is a terminal symbol. 39

3.3 Grammar decomposition for X(base). The rules and probabilities

for X
ins(type)
(base) and X

ins(type)
(e) are defined in the same manner. 40

3.4 Small dataset experiments. 42

3.5 Detailed comparison between CFG, TSG and TIG on small dataset. 43

3.6 Full treebank data experiments. 44

3.7 Examples of lexicalized auxiliary trees obtained from our model in

full treebank data experiments. Nonterminal symbols created by

binarization are shown with an over-bar. 45

4.1 Comparison of parsing accuracy with the small and full training

sets. *Our reimplementation of [10]. 58

4.2 Our parsing performance for the testing set compared with those

of other parsers. *Results for the development set (≤ 100). 60

1

Chapter 1

Introduction

1.1 Motivation

Syntactic analysis is a fundamental problem in natural language processing

(NLP). The resulting analysis can be used in various ways to achieve high-quality

NLP applications such as machine translation, automatic summarization and

information extraction. For example, consider the word ordering of English-

Japanese translation as follows:

English: I have a dream.

Japanese: I a dream have.

English follows S-V-O word order, that is, the subject comes first, the verb

second, and the object third. On the other hand, Japanese follows S-O-V word

order. Thus, when translating from one language to another, syntactic informa-

tion such as subject, verb, and object is required for correct word reordering of

the target language.

Each has his own grammar of natural language in his head, however, there

is a widespread consensus in the field of linguistics that the syntactic informa-

tion can be encoded by tree-structured forms such as phrase structure trees and

dependency structure trees. Many human-annotated resources of syntax trees,

such as Penn Treebank [30], have been developed so far, and a number of studies

have tackled to explore the principle that predicts grammatical correctness of a

sequence of words from those resources.

Over the past two decades, the mainstream research on natural language pars-

ing has focused primarily on statistical approaches with the remarkable progress of

machine learning techniques and the large-scale development of natural language

corpora. Statistical approaches can automatically learn grammar rules from ex-

amples with little human supervision, which has been proven to provide broader

coverage and less maintenance effort than manual rule-based approaches. Besides,

it provides a principled framework for structural disambiguation. For example,

comsider the following sentence:

I saw the woman with a telescope.

This sentence has at least two syntactic analyses: one where the prepositional

phrase: “with a telescope” modifies “the woman”, or the other where it modifies

“saw”. Such ambiguity is a major concern in natural language parsing. Statistical

approach assigns each interpretation a probability, thereby we can judge which

one is the most probable.

Essentially, statistical parsing involves the following three steps.

1. Modeling:

How to model a collection of syntax trees? In other words, how to formalize

the probability distribution over syntax trees: P (trees |Θ)?

2. Learning:

How to learn parameters Θ of the model from a collection of syntax trees?

3. Decoding:

How to parse an input sentence given the learned model?

Figure 1.1 shows an illustration of modeling, learning and decoding of statistical

parsing.

Modeling syntax trees is formalized as a probabilistic grammar. A probabilistic

grammar consists of a set of structural rules, i.e. tree fragments, that governs the

composition of sentence, clauses, phrases and words. Each rule is assigned with a

probability. Given a probabilistic grammar and a collection of syntax trees, the

learning process finds the optimal parameters that fit the training data based on

some criteria such as maximum-likelihood estimation. For decoding, statistical

parser searches over a space of all candidate syntactic analyses according to the

grammar rules. It then computes each candidate’s probability and determines

the most probable parse tree.

2

Figure 1.1: Illustration of modeling, learning and decoding of statistical parsing.

Modeling and learning are two sides of the same coin. Simple grammars that

have limited number of rules and parameters are easy to handle, and the learning

process is efficient since the search space over parameters is small. However, it is

not much helpful for structural disambiguation due to the simplified independence

assumption. On the other hand, complex but powerful grammars are able to

capture rich linguistic features such as long-distance dependencies, however, the

learning process becomes more difficult due to the larger search space. Therefore,

if we manage to reduce the search space in a sound manner, we might have a more

accurate parser with expressive grammars.

1.2 Contributions

This thesis aims to construct an accurate parser based on the statistical model-

ing of rich, powerful, and linguistically-motivated tree-generating grammars. We

focus primarily on methods for modeling and learning of probabilistic grammars

since the parsing performance is heavily dominated by them.

A simple way of modeling syntax trees is to break down the tree into smaller tree

3

Figure 1.2: Example of breaking down syntax tree into grammar rules.

fragments and assign a probability to each fragment, as shown in Figure 1.2. The

overall probability is simply defined as the product of each fragment’s probabil-

ity. Hopefully, these tree fragments capture linguistic features such as predicate-

argument structure. For example, the tree fragment anchored by the verb “want”

in Figure 1.2 represents the subject-verb-object pattern which takes “N” (noun)

on the left-hand side as a subject and “NP” (noun phrase) on the right-hand side

as an object.

This model is called Tree Substitution Grammar (TSG), which is a general-

ization of the well-known Context-Free Grammar (CFG). Recently, statistical

induction of probabilistic TSG from a collection of syntax trees has been an ac-

tive area, and it has been applied to many NLP tasks such as word segmentation,

parsing, and language modeling [23, 11]. However, it has been reported that the

parsing performance based on TSG is substantially less accurate than that of

highly-optimized statistical parsers [11, 38, 10].

In this thesis, we argue the problems of TSG model for syntactic parsing and

propose more expressive grammars to overcome the problems. Furthermore, we

show the proposed methods improve the parsing accuracy and achieve state-of-

the-art performance.

Here we bring up two major problems of the conventional TSG models.

1.2.1 Optional-Obligatory Distinction

The first problem is concerned with the distinction of optional and obligatory

elements of syntax trees. As described before, TSG model breaks down the syntax

4

(a) “I like candies”.

(b) “I like red candies”.

Figure 1.3: Example syntax trees and grammar rules.

5

tree into smaller continuous tree fragments, thus it lacks the clear representation

of optional or structurally dispensable elements (phrases, clauses, etc.).

Consider the following example:

I like candies.

I like red candies.

These two sentences are grammatically correct, thus the modifier “red” in the

second sentence is optional. Figure 1.3 shows example syntax trees and TSG rules

of the above two sentences. As shown in Figure 1.3, once the modifier is inserted

to the syntax tree, the tree fragments anchored by “candies” differ from each other

since the additional nonterminal symbols are required in each place at which an

optional modification might occur. That is, TSG model must distinguish all of

the optional patterns. Therefore, it is difficult to put a probability mass on the

obligatory elements (“candies” in the example).

Essentially, the problem is that the TSG model assumes the grammar rules

in the syntax tree must be continuous, which does not clearly model optional

elements such as modifier and punctuation. We have deeper discussions about

this problem in Chapter 3 and propose a probabilistic grammar that distinguishes

optional and obligatory elements.

1.2.2 Context-Free Assumption

The second problem is concerned with the context-free assumption of TSG

model. A probabilistic TSG model assumes the context-free assumption, that

is, each tree fragment is generated conditioned only on the root nonterminal

symbol. This assumption is poor and problematic when the annotated symbols

are coarse in the syntax trees. For example, Penn Treebank data annotates

all of noun phrase, such as “his approach” and “the markets”, as the symbol

“NP”. Therefore, when the grammar rules are naively extracted from the resource,

the subject and object noun phrases must share the same distribution, which is

obviously helpless for structural disambiguation of subject phrase from object.

This problem has been pointed out for a long time in the previous work on

statistical CFG parsing. Although learning a probabilistic CFG directly from

a parse tree data via maximum likelihood estimation results in poor parsing

performance, it has been shown that dividing coarse symbols into subcategories,

6

called symbol refinement approach, significantly improves parsing accuracy [22,

5, 12, 31, 35]. However, it is an open problem that how to introduce symbol

refinement approach into the TSG model. There are at least two problems to be

considered.

The first problem is concerned with modeling. Incorporating TSG model into

symbol refinement approach makes the grammar rules complex and leads to ag-

gravate data sparseness problem. Therefore, it becomes more difficult to estimate

reliable probabilities of grammar rules from a limited amount of resources.

The second problem is concerned with learning. Symbol refinement approach

makes the search space over parameters significantly larger. Therefore, efficient

learning algorithms must be required for TSG model with symbol refinement.

We have deeper discussions about this problems in Chapter 4 and propose a

method that handles data sparseness problem and efficient learning algorithms

for TSG model with symbol refinement.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

Chapter 2: Preliminaries This chapter reviews the definition of conventional

probabilistic grammars and the basics of nonparametric Bayesian models. Several

learning algorithms based on Markov Chain Monte Carlo methods are also pre-

sented. Nonparametric Bayesian models and Markov Chain Monte Carlo methods

are fundamental for the modeling and learning of TSG model.

Chapter 3: Statistical Induction of Tree Insertion Grammars In this

chapter, we propose a probabilistic model of tree insertion grammars and an effi-

cient learning algorithm to tackle the problem of optional-obligatory distinction.

We apply our method to syntactic parsing and evaluate its performance.

Chapter 4: Statistical Induction of Symbol-Refined Tree Substitution

Grammars In this chapter, we propose symbol-refined tree substitution gram-

mars, a novel approach of incorporating TSG model into symbol refinement ap-

proach. We also propose a probabilistic model of the grammar and efficient

7

learning algorithm. We apply our method to syntactic parsing and evaluate its

performance.

Chapter 5: Pseudo Blocked Subtree Sampler for Statistical Grammar

Induction In this chapter, we focus on an inference problem of probabilistic

grammars and propose an efficient learning algorithm based on Markov Chain

Monte Carlo method for statistical grammar induction.

Chapter 6: Conclusion This chapter summarizes the thesis and discuss the

future direction of the work.

8

9

Chapter 2

Preliminaries

This chapter provides the background knowledge to understand this thesis,

specifically, context-free grammars, nonparametric Bayesian models, and Markov

Chain Monte Carlo methods. Nonmarametric Bayesian models are required for

modeling tree-structured data. Markov Chain Monte Carlo methods are inference

algorithms used in the proposed methods.

2.1 Context-Free Grammars

Formally, a context-free grammar (CFG) is defined by a 4-tuple: G = (VN , VT , S, R)

where

• VN is a finite set of nonterminal symbols.

• VT is a finite set of terminal symbols.

• S ∈ VN is the distinguished start symbol.

S → NP VP

NP → I

VP → V NP

NP → DT N

DT → a

N → car

Table 2.1: Context-free grammars of Figure 2.1.

Figure 2.1: Example parse tree of “I want a car”.

• R is a finite set of productions (a.k.a. rules).

Figure 2.1 shows an example parse tree and Table 2.1 shows its derivation rules

based on context-free grammars. In a parse tree, every nodes is labeled with a

nonterminal or terminal symbol. For example, S (sentence) stands for sentence,

NP for noun phrase, and VP for verb phrase. The terminal symbols are usually

lexical words such as “I”, “have”, and so on.

A derivation is a process of forming a parse tree with production rules of the

grammar. It starts with the start symbol S and rewrites nonterminal symbols

with a production rule until all leaf nodes become terminals. The production

rules take the form of X → α where X ∈ VN and α ∈ (VN ∪ VT)
⋆ . The asterisk

represents the Kleene closure. It should be noted that given parse tree, the

derivation of context-free grammars is uniquely determined by decomposing the

parse tree as tree fragments of height = 1, while the derivation of other grammars

such as Tree Substitution Grammars is not uniquely determined by a syntax tree

since many derivations could produce the same parse tree.

2.1.1 Probabilistic Context-Free Grammars

A probabilistic context-free grammar (PCFG) assigns a probability to each

grammatical rule. Table 2.2 shows an example of probabilistic context-free gram-

mars. The probability of the rule X → α is conditioned on the root symbol X as

10

Rule Probability

S → NP VP 1.0

NP → I 0.1

VP → V NP 0.3

NP → DT N 0.5

DT → a 0.8

N → car 0.1

Table 2.2: Probabilistic context-free grammars of Figure 2.1.

follows:

Pr (X → α) = p (α |X) ,

where

p (α |X) ≥ 0,∑
X→α∈R

p (α |X) = 1.

The total probability of a derivation D is the product of the probabilities of its

tree fragments as follows:

p (D) =
∏

X→α∈D

p (α |X) . (2.1)

Given a training data, the maximum likelihood estimate of

pMLE (α |X) =
count (X → α)∑
α′ count (X → α′)

. (2.2)

2.2 Nonparametric Bayesian Models

This section provides an overview of nonparametric Bayesian models relevant

to statistical grammar induction.

A “Bayesian” model is basically a probability model which assigns a probability

distribution on its parameters. This distribution is called a prior distribution

11

and represents an uncertainness of the parameter. The parameter of a prior

distribution is called a hyperparameter.

Let D be an observed data and p (D |Θ) be a probability distribution over D

where Θ is a set of parameters of the distribution. A posterior distribution is

calculated by Bayes’ theorem as follows:

p (Θ |D) =
p (D |Θ) p (Θ)

p (D)
, (2.3)

where p (Θ) is a prior distribution.

A “nonparametric” model handles variable or possibly infinite number of pa-

rameters. This contrasts to a “parametric” model that handles fixed number of

parameters. The nonparametric model has an advantage of making the model

adaptable to the size of the observed data.

In statistical grammar induction, there are some reasons that nonparametric

Bayesian model is preferable for modeling syntax trees. Firstly, most statistical-

based grammatical models involve a probability distribution over tree-structured

data. The number of tree fragments in the observed data is often unknown or

possibly infinite, thus the nonparametric model is desirable. Secondly, Bayesian

modeling enables us to encode a prior knowledge about grammars such as the

number of grammatical rules should be as compact as possible even the data size

increases.

2.2.1 Pitman-Yor Process

Pitman-Yor process [37] is a sort of nonparametric Bayesian model that is

widely used in statistical grammar induction [11, 38, 41, 42, 48]. The Pitman-

Yor process is a distribution over distributions over a probability space X . We

describe such distribution G over X as follows:

G ∼ PYP (d, θ,H) , (2.4)

where d is a discount parameter with 0 ≤ d < 1, θ is a strength parameter with

θ > −d, and H is a base distribution over X with
∑

x H (x) = 1.

The draws from the Pitman-Yor process can be constructed by Stick-breaking

process [40, 20]. This construction shows that G is a weighted sum of an infinite

sequence of point masses. For k = 1, 2, . . ., let us define vk, πk and ϕk as follows:

12

Figure 2.2: Illustration of Chinese restaurant process based on the Pitman-Yor

process.

vk ∼ Beta (1− d, θ + kd) , (2.5)

πk = vk

k−1∏
l=1

(1− vl) , (2.6)

ϕk ∼ H. (2.7)

Then G can be constructed as follows:

G =
∞∑
k=1

πkδϕk
, (2.8)

where δϕk
denotes the delta-Dirac mass located at ϕ. The distribution over

π = (π1, π2, . . .)is called the stick-breaking distribution and denoted as follows:

π ∼ GEM(d, θ) .

Stick-breaking is a metaphor of recursively breaking a length-one stick at ratio

vk and calculating the actual length πk based on the remaining stick.

2.2.1.1 Chinese Restaurant Process

An alternative way of representing Pitman-Yor process is the Chinese restau-

rant process. Unlike with the stick-breaking process, the Chinese restaurant pro-

13

cess describes the probability distribution over a sequence of draws x1, x2, . . . from

G rather than G itself, which is achieved by integrating out G.

Consider the sequence of data x1, x2, . . . is generated according to G, and G

follows the Pitman-Yor process as follows:

G ∼ PYP (d, θ,H) (2.9)

x ∼ G (2.10)

Integrating out G, the resulting distribution is

p (xi = x |x1:i−1) =
cx − dtx
θ + c·

+
θ + dt·
θ + c·

H (x) (2.11)

Eq. 2.11 is interpreted as the “Chinese restaurant” metaphor. Figure 2.2 shows

an illustration of the Chinese restaurant process. Consider a Chinese restaurant

with unbounded number of tables. A customer xi (i = 1, 2, . . .) visits the restau-

rant, and sits at a table one by one. The Chinese restaurant process assigns a

probability distribution over the seating arrangement of the customers. The first

customer always sits at the first table, and each subsequent customer sits at an

already occupied table k with probability ck − d where ck is the number of cus-

tomers already sitting the table k, or a new table with probability θ + dt· where

t·is the total number of occupied tables so far. If xi sits at a new table, the table

is labeled with the value x (called dish) according to the base distribution H (x).

tx is the total number of tables labeled with x.

In summary, the probability of customer xi choosing table k is

p (a (xi) = k |a (x1:i−1)) =

{
ck − d 1 ≤ k ≤ t·

θ + dt· k = t· + 1
(2.12)

where a (x) is the table assignment of the customer x. When a customer sits

at a new table, a new x is drawn from the base distribution H, and the new table

is labeled with x. The Pitman-Yor process can produce rich get richer statistics:

a few types of x are generated many times while many are generated only a few

times, which is empirically shown to be well-suited for natural language [44, 23].

In statistical grammar induction, Chinese restaurant process can be used for

modeling a probability distribution over tree fragments. Let r be a CFG rule

14

Figure 2.3: Illustration of Chinese restaurant process for CFG rules.

such as A → BC. According to the eq. 2.11, the probability of generating r

conditioned on the root symbol is given as follows:

p (r |root (r)) = cr − dtr
θ + c·

+
θ + dt·
θ + c·

H (r |root (r)) (2.13)

where root (r) is a root symbol of r and H (r |A) is a base probability of r.

Figure 2.3 shows an illustration of Chinese restaurant process for CFG rules

rooted with “NP”. The probability of r depends on the cr: the number of times

r is previously generated, tr: table counts labeled with r, and H (r |root (r)):
the base probability of r. For example, when r is “NP→JJ NN” in Figure 2.3,

cr = 3, tr = 1 and c· = 6. When the model generates r, a customer is added to

either the table labeled with r or a new table. If the customer sits at the already

occupied table, the values of cr and c· are incremented. If the customer sits at a

new table, the table is labeled with r, cr is set to be 1, and the values of tr and

c· are incremented.

The base distribution H provides a backoff probability of r. One example of

the base distribution is to decompose r into unary CFG rules as follows:

H (r |A) = p (B |A)× p (C |A)

where we assume r is a binary branching CFG rule: A → BC. p (B |A) and

p (C |A) may be simply defined as maximum likelihood estimate of A → B and

A→ C, respectively.

2.2.2 Hierarchical Pitman-Yor Process

In natural language processing, probability smoothing is a critical technique

for reliable estimate of probabilities since the observed data is sparse, which is

known as a data sparseness problem. For example, in n-gram language models,

15

the probability distribution of the next word depends on the previous n−1 words.
For any n-grams that have not explicitly been seen before gets the probability

of 0.0, that is, those n-grams are estimated to be never happened in the future.

To solve this zero-frequency problem, it is necessary to assign some of the total

probability mass to unseen n-grams from the “back-off” models. Syntax modeling

also requires probability smoothing from back-off models. To model syntax trees,

probabilistic grammars consist of a distribution over tree fragments. It is often the

case that large tree fragments appear only a few times in the observed data, thus

the probability of tree fragment should be smoothed from the back-off distribution

over smaller tree fragments.

Hierarchical Pitman-Yor process [44], an extension of Pitman-Yor process, en-

codes such back-off smoothing of probability distributions in a principled way.

There are many variations to introduce dependencies among the Pitman-Yor

processes in a hierarchical way, however, a simple approach is to assume a dis-

tribution is derived from the Pitman-Yor process and its base distribution is also

derived from an another Pitman-Yor process as follows:

G0 ∼ PYP (d0, θ0, H) (2.14)

G1 ∼ PYP (d1, θ1, G0) (2.15)

x ∼ G1 (2.16)

As shown in eq. 2.11, the base distribution provides a smoothing probability

for x.

2.2.2.1 Chinese Restaurant Franchise

The Chinese restaurant metaphor of Pitman-Yor process can be also extended

to that of hierarchical Pitman-Yor process, called Chinese restaurant franchise.

Figure 2.4 shows an illustration of Chinese restaurant franchise.

Consider hierarchical Chinese restaurants each of which has unbounded number

of tables. A customer x enters the top-level Chinese restaurant and sits at some

table. If he sits at a new table, the copy of customer is sent to the parent

restaurant and he sits at some table at the parent restaurant. Otherwise, when he

sits at already occupied table, no customer is sent to the parent restaurant. This

process is recursively performed until the restaurant has no parent restaurants.

16

Figure 2.4: Illustration of Chinese restaurant franchise based on the Pitman-Yor

process.

In Chinese restaurant franchise, every table at restaurants is associated with

a customer in the parent restaurant. Thus, the number of tables at top-level

restaurant equals to the number of customers sitting at the table labeled with x

at the parent restaurant. That is,

tx =
∑
i

δx′
i=x (2.17)

where tx is the number of tables labeled with x at top-level restaurant, and x′
i

is a customer sent to the parent restaurant.

In statistical grammar induction, Chinese restaurant franchise can be used for

modeling finer-grained probability distribution over tree fragments than single-

layer Chinese restaurant process. Consider the distribution over tree fragments of

arbitrary size rather than CFG rules (tree fragments of depth= 1). To estimate

reliable probabilities of large tree fragments from limited amount of resources, we

need a backoff scheme from large tree fragments to small ones. Figure 2.5 shows

an illustration of Chinese restaurant franchise for large tree fragments rooted with

“NP”.

Let e be a tree fragment of arbitrary size. The probability of generating e is

given analogous to the Chinese restaurant process:

17

Figure 2.5: Illustration of Chinese restaurant franchise for tree fragments.

18

p (e |root (e)) = ce − dte
θ + c·

+
θ + dt·
θ + c·

G1 (e |root (e))

where G1 is the base distribution over e. One example of the base probability

is given by decomposition of e into CFG rules as follows:

G1 (e |root (e)) = p$ (|e|)×
∏

r∈CFG(e)

G0 (r |root (r))

where we assume p$ is a geometric distribution over the size of e, i.e., the

number of CFG rules that e contains. CFG (e) is a set of CFG rules that e

contains. The base probability G0 (r |root (r)) is then given by eq. 2.13 in a

hierarchical way.

2.3 Markov Chain Monte Carlo Methods

For probabilistic models of grammar induction, the exact inference is often

intractable. In this section, we overview approximate inference techniques called

Markov Chain Monte Carlo (MCMC) methods, which are particularly suitable for

many Bayesian models. Markov Chain Monte Carlo methods are algorithms for

sampling from a target probability distribution based on constructing a Markov

chain that has the target distribution as its equilibrium distribution.

The basic idea of sampling methods is to obtain an i.i.d. set of samples
{
x(i)
}N
i=1

from the target distribution p (x), where x is a random variable defined on a

multi-dimensional space. We can approximate the expectation of x by a finite

sum:

E [x] ≃ 1

N

N∑
i=1

δ
(
x = xi

)
,

where δ denotes the delta-Dirac mass located at x(i). The accuracy of the

estimator depends on the number of samples N , but does not depend on the

dimensionality of x. The variance of the estimator is given in a similar way:

V [x] ≃ 1

N
E
[
(x− E [x])2

]
.

The set of samples can also be used to obtain a maximum of the p (x) as follows:

19

Figure 2.6: Example illustration of transition matrix for the Markov chain

{x1,x2}.

x̂ = argmax
x

p (x)

≃ argmax
i=1,...,N

p
(
x(i)
)
.

2.3.1 Markov Chain

Before introducing Markov Chain Monte Carlo methods in detail, we overview

a concept of Markov chain. A stochastic process x(1),x(2), . . .x(i) is called a (first-

order) Markov chain if the following property holds.

p
(
x(i)

∣∣x(1), . . . ,x(i−1)
)

= p
(
x(i)

∣∣x(i−1)
)

≡ T
(
x(i−1),x(i)

)
,

where T
(
x(i−1),x(i)

)
is called a transition probability from x(i−1) to x(i).

A Markov chain is called homogeneous if T
(
x(i−1),x(i)

)
is invariant for all

i. That is, the transition probabilities are fixed as T
(
x(i−1),x(i)

)
= T (x,x′)

through the stochastic process. For example, consider a Markov chain with two

states {x1,x2} that has the following transition matrix

T =

[
0.8 0.2

0.6 0.4

]
.

20

The transition matrix above represents

p
(
x(i) = x1

∣∣∣x(i−1)
1 = x1

)
= 0.8,

p
(
x(i) = x2

∣∣x(i−1) = x1

)
= 0.2,

and so on, which is illustrated in Figure 2.6. In this example, after several

iterations of the Markov process, it converges to p (x) = (0.75, 0.25) irrespective

of the choice of initial point x(0). It should be noted that for any state of the

Markov chain, there must be a positive probability of visiting all other states. In

other words, there must not be an isolated state in Figure 2.6.

A sufficient, but not neccessary condition to ensure that the distribution p (x)

is invariant is to satisfy the following property called detailed balance:

p (x)T (x,x′) = p (x′)T (x′,x) .

A Markov chain that respects detailed balance is referred to as reversible. Sum-

ming both sides over x′, we obtain

p (x) =
∑
x′

T (x,x′) p (x) =
∑
x′

T (x′,x) p (x′) .

If the distribution p
(
x(i)
)
converges to the invariant distribution p (x) for i→

∞ irrespective of the choice of initial point x(0), the Markov chain is said to be

ergodic., and then the invariant distribution is called the equilibrium distribution.

Further discussion of ergodic Markov chains is described in [?].

The general strategy of Markov Chain Monte Carlo methods is to construct a

Markov chain that has the target distribution as its equilibrium distribution and

generate samples from the target distribution. Here we present several algorithms

of Markov Chain Monte Carlo methods that are used in this work.

2.3.2 Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [32, 18] is a widely used Markov chain

Monte Carlo method for obtaining samples from a target distribution. The ba-

sic idea of Metropolis-Hastings algorithm is to generate a candidate sample x⋆

21

given the current value x from a distribution q (x⋆ |x) and then accept it with

the probability A (x,x⋆), where

A (x,x⋆) = min

(
1,

p (x⋆) q (x |x⋆)

p (x) q (x⋆ |x)

)
. (2.18)

The distribution q (x⋆ |x) is referred to as a proposal distribution. The pseudo-

code of Metropolis-Hastings algorithm is shown in algorithm 1.

The distribution p (x) can be shown as an invariant distribution of the Markov

chain by showing the detailed balance as follows:

p (x) q (x⋆ |x)A (x,x⋆) = min (p (x) q (x⋆ |x) , p (x⋆) q (x |x⋆))

= min (p (x⋆) q (x |x⋆) , p (x) q (x⋆ |x))
= p (x⋆) q (x |x⋆)A (x⋆,x) .

Some properties of the Metropolis-Hastings algorithm should be noted. First,

the choice of proposal distribution has a great impact on the performance of

the Metropolis-Hastings algorithm. If the variance of proposal distribution is

small, the acceptance rate will be high, however, it results in high correlation

among samples. On the other hand, if it is large, the acceptance rate will be low.

Thus, careful design of proposal distribution is required for fast convergence of

the Markov chain. Second, the normalizing constant of the target distribution

is unnecessary since it is canceled out in both the numerator and denominator

of eq. 2.18. Therefore, the Metropolis-Hastings algorithm is useful for the model

whose normalizing constant is intractable.

Metropolis-Hastings algorithm has been used for statistical grammar induction.

For example, the work in [24, 10] uses a sentence-level blocked Markov Chain

Monte Carlo method for sampling parse trees given words in an unsupervised

way. They wish to sample a derivation from the posterior distribution over the

current parse tree t in a corpus given words w and other trees t− :

p (t |w, t−; Θ) ,

where Θ is a set of parameters. If the prior distribution of the model is based

on Dirichlet process or Pitman-Yor process, direct sampling is difficult due to

“rich get richer” property of the prior.

22

Algorithm 1: Metropolis-Hastings algorithm.

Input : number of iterations: N , target distribution: p (x), proposal

distribution: q (x |x⋆).

Output: samples from the target distribution: x(1),x(2), . . . ,x(N)

1 Initialize x(0).

2 for i = 1 to N do

3 Sample u ∼ U (0, 1).

4 Sample x⋆ ∼ q
(
x⋆
∣∣x(i−1)

)
.

5 if u < A
(
x(i−1),x⋆

)
then

6 x(i) = x⋆

7 else

8 x(i) = x(i−1)

9 end

10 end

Specifically, their method consists of the following three steps. For each sen-

tence,

1. Run the Inside-Outside algorithm for given words and grammatical rules.

The parameters are fixed during the algorithm.

2. Generate a sample of derivation by expanding each nonterminal in a top-

down fashion.

3. Accept or reject the sample by Metropolis-Hastings test.

The proposal distribution is simply set as follows:

q (t⋆ |t−) = p
(
t⋆
∣∣t−,ΘMAP

)
,

where ΘMAP is the maximum a posteriori (MAP) estimate of the parameters,

which is computed from t−. The proposal probability differs from the true prob-

ability only when multiple grammarical rules are used in the derivation t⋆.

23

2.3.3 Gibbs Sampling

Gibbs sampling [17] is a widely applicable Markov chain Monte Carlo algo-

rithm for sampling from a target distribution. Unlike with Metropolis-Hastings

algorithm, a user-defined proposal distribution is unnecessary for Gibbs sampling.

Let x = (x1, x2, . . . , xM) be a multi-dimensional vector and p (x) be a target

distribution we wish to sample. The Gibbs sampler picks one variable at a time

and generates a sample from the conditional probability: p (xm |x−m), where

x−m represents x excluding the mth component xm. The procedure of Gibbs

sampling always accepts the generated sample and update the value of xm. In-

deed, as described later, the Gibbs sampling can be viewed as a special case of

the Metropolis- Hastings algorithm of acceptance rate being equal to one. The

procedure is repeated through the variables either in some particular order or at

random. Figure 2 shows the pseudo-code of Gibbs sampling.

The Gibbs sampling can be viewed as a special case of Metropolis-Hastings al-

gorithm whose proposal distribution is given by q (x⋆ |x) = p (x⋆
m |x−m). Besides,

x⋆
−m = x−m holds since x−m remains fixed during the sampling of xm. Overall,

eq. 2.18 is computed as follows:

A (x,x⋆) = min

(
1,

p (x⋆) q (x |x⋆)

p (x) q (x⋆ |x)

)
= min

(
1,

p
(
x⋆
m

∣∣x⋆
−m

)
p
(
x⋆
−m

)
p
(
xm

∣∣x⋆
−m

)
p (xm |x−m) p (x−m) p (x⋆

m |x−m)

)
= min (1, 1)

= 1.

Thus the Metropolis-Hastings steps are always accepted in the Gibbs sampling.

Next, we show that the distribution p (x) is invariant through the iterations

of Gibbs sampling. Since p (x−m) remains invariant during the procedure, the

conditional distribution of one variable given all others is proportional to the

joint distribution:

p (xm |x−m) =
p (x)

p (x−m)
∝ p (x) .

Therefore, the distribution p (x) is invariant through the iterations of Gibbs

sampling.

24

Algorithm 2: Gibbs sampling.

Input : number of iterations: N , target distribution: p (x).

Output: samples from the target distribution: x(1),x(2), . . . ,x(N)

1 Initialize x(0).

2 for i = 1 to N do

3 Sample x
(i)
1 ∼ p

(
x1

∣∣∣x(i−1)
2 , x

(i−1)
3 , . . . , x

(i−1)
M

)
.

4 Sample x
(i)
2 ∼ p

(
x2

∣∣∣x(i)
1 , x

(i−1)
3 , . . . , x

(i−1)
M

)
.

5
...

6 Sample x
(i)
M ∼ p

(
xM

∣∣∣x(i)
1 , x

(i)
2 , . . . , x

(i)
M−1

)
.

7 end

A blocked Gibbs sampling improves search efficiency by grouping two or more

variables together and sampling from their joint distribution conditioned on all

other variables, rather than sampling one variable at a time. To calculate can-

didate probabilities of multiple variables efficiently, it is often combined with

dynamic programming techniques such as forward-backward algorithm for se-

quential data and inside-outside algorithm for tree-structured data.

2.3.4 Slice Sampling

Slice sampling [33] is a Markov chain Monte Carlo method that utilizes an

auxiliary variable. It has advantages over the Metropolis-Hastings algorithm in

that the proposal distribution is not required since the step size of the sampling

is automatically adapted to match the characteristics of the target distribution.

Besides, the normalized constant of target distribution is also unnecessary. Slice

sampling is widely used in grammar induction for the inference of hyperparame-

ters of grammatical models.

The key observation of slice sampling is that one can sample from a distribution

by sampling uniformly from the region under the graph of its distribution. A

Markov chain that converges to this uniform distribution can be constructed by

sampling a variable in the vertical direction and horizontal direction alternately.

Consider a simple single-variable case as an example. Let p (x) be one-dimensional

probability distribution and f (x) be the unnormalized distribution of p (x). Our

25

Figure 2.7: Illustration of slice sampling.

Figure 2.8: Illustration of the “doubling” procedure.

26

goal is to sample from a target distribution p (x). The basic idea of slice sampling

is as follows. First, sample an auxiliary variable u uniformly at random. Second,

sample x uniformly at random from p (x, u), a joint distribution over x and u,

which is defined as follows:

U = {(x, u) |0 < u < f (x)} . (2.19)

That is, the joint distribution over (x, u) is given by

p (x, u) =

 1
Zp

if 0 < u < f (x)

0 otherwise,
(2.20)

where Zp =
�
f (x) dx. The marginal distribution over x is then given by

p (x) =

�
p (x, u) du =

� f(x)

0

1

Zp

du =
f (x)

Zp

. (2.21)

Therefore, we can sample from the target distribution p (x) by alternating

sampling u in the vertical direction and sampling x in the horizontal direction

from the following region S:

S = {x |u < f (x)} . (2.22)

Figure 2.7 shows an illustration of slice sampling and the algorithm 3 shows

the pseudo-code of slice sampling.

In practice, it is often difficult to sample directly from the slice S. Instead,

we can sample from the alternative region: {x |xL ≤ x, x ≤ xR} as long as it is

ensured that the sampling from the range leaves the uniform distribution over S

invariant. We wish to set xL and xR so as to encompass as much of the slice S

as possible for large moves, while having as little as possible of this region lying

outside the slice.

The work in [33] proposes several procedures for finding the range (xL, xR).

One approach is called a “doubling” procedure, which is illustrated in Figure 2.8.

The doubling procedure first initialize the range that contains x, then expand

the interval twice the size of the previous one until both xL and xR are outside

of the range, or a predetermined limit is reached. The expanded side (left or

right) are chosen at random for each iteration. The correctness of this algorithm

is described in [33]. Slice sampling can be applied to multivariate distributions

27

Algorithm 3: Single-variable slice sampling.

Input : number of iterations: N , unnormalized target distribution: f (x).

Output: samples from the target distribution: x(1), x(2), . . . , x(N)

1 Initialize x(0).

2 for i = 1 to N do

3 Sample u ∼ Uniform
(
0, f

(
x(i−1)

))
.

4 Find the range (xL, xR) that contains x
(i−1) and much of the slice

S = {x |u < f (x)}.
5 Sample x(i) ∼ Uniform (xL, xR).

6 end

by repeatedly sampling each variable x = (x1, x2, . . . , xM) in turn, in the same

way of Gibbs sampling.

28

29

Chapter 3

Statistical Induction of Tree

Insertion Grammars

3.1 Introduction

Many statistical models for syntactic parsing are based on Context Free Gram-

mars (CFG). Although learning a probabilistic CFGs directly from a treebank

data via maximum likelihood estimation results in poor performance, it has been

shown that dividing coarse treebank symbols (e.g. NP and VP) into subcate-

gories such as parent annotation [22], head lexicalization [5, 12], and automatic

refinement [31, 35] significantly improve parsing accuracy. However, CFG is not

powerful enough to capture natural language features such as predicate-argument

structure and argument-adjunct distinction, thus more expressive grammars are

desirable for deep understanding of natural language.

Tree Insertion Grammar (TIG) [39] is an alternative grammar formalism that

is similar to well-known Tree Adjoining Grammar (TAG) [25]. Some variants

of TIG and TAG have been already applied to syntactic parsing [8], semantic

role labeling [29], and machine translation [4, 13]. TIG differs from CFG in that

TIG allows nonterminal symbols to be replaced or inserted by tree fragments of

arbitrary size, while CFG allows nonterminal symbols to be replaced by minimal

tree fragments. Since an insertion operator is helpful to distinguish arguments

from adjuncts, we can expect the TIG to capture natural language phenomena.

One of the problems of obtaining TIGs from parse trees is that standard tree-

bank data such as Penn Treebank [30] is not annotated with TIG derivations,

i.e., how tree fragments are combined to form parse trees. As different deriva-

tions might produce the same parse tree, it is necessary to extract TIGs from

parse trees in an unsupervised fashion. Previous work on TIG and TAG induc-

tion [47, 8, 7] has relied on heuristic rules and maximum likelihood estimators to

extract grammatical rules. For example, the work described in [8] extracts gram-

matical rules in a heuristic way by using the information of heads, arguments,

and adjuncts for each nonterminal node. As noted in [38], such language-specific

heuristics and maximum likelihood estimators lead to an overfit of the training

data.

Instead of using such ad hoc approaches, we present a statistical method that

automatically induces TIG derivations from parse trees. Statistical approach has

an advantage that it is independent of language and annotation style of dataset.

Our probabilistic TIG model is based on a nonparametric Bayesian prior to handle

an arbitrarily large number of subtrees and keep the grammar size as compact as

possible. We also develop an efficient inference technique based on the Markov

Chain Monte Carlo (MCMC) method for our TIG model.

Recent work on statistical grammar induction has extended CFG to Tree Sub-

stitution Grammars (TSG), a restricted variant of TIG without a tree insertion

operator [?]. We expect that the tree insertion operator of TIG will help us model

the data more accurately, and make the grammar more compact than TSG.

We applied the proposed method to the English Penn Treebank data and ob-

tained better parsing results than TSG for a small dataset and comparable results

for a large dataset, making the grammar rules much smaller than TSG as we ex-

pected. We also confirmed that our model automatically captured adjuncts as

an insertion operator and other elements as a substitution operator without any

linguistic knowledge.

3.2 Tree Insertion Grammars

Formally, TIG is defined by a 5-tuple G = (VN , VT , S, I, A) where VN is a finite

set of nonterminal symbols, VT is a finite set of terminal symbols, S ∈ VN is the

start symbol, I is a finite set of initial trees and A is a finite set of auxiliary trees.

The trees in the set I ∪ A are referred to as elementary trees.

Figure 3.1 shows examples of initial and auxiliary trees. Initial trees consist

of nonterminal and terminal nodes. The nonterminal leaf node in initial trees is

referred to as a frontier node. Auxiliary trees also consist of nonterminal and

30

(a) (b)

Figure 3.1: Examples of elementary trees. (a) Intial tree. (b) Auxiliary tree.

(a)

(b)

Figure 3.2: Example of (a) substitution and (b) insertion (dotted line).

31

terminal nodes, however, they contain a special nonterminal leaf node labeled

with the same symbol as the root node. This leaf node is referred to as a foot

node (marked with the subscript“ *”). We refer to nodes that are neither leaf

nor root nonterminal nodes in elementary trees as internal nodes.

A derivation starts with an initial tree whose root node is labeled with the

start symbol, combining elementary trees with two types of operations: substitu-

tion and insertion. Figure 3.2a shows an example of substitution. Substitution

replaces a frontier node with another initial tree whose root node is labeled with

the same symbol as the frontier node.

Figure 3.2b shows an example of insertion. Auxiliary trees can be inserted into

another tree at an internal node when the root node of the auxiliary tree and

the internal node are the same symbol. The children of the internal node are

combined with the foot node.

To avoid expensive computational cost, we constrain auxiliary trees to be simple

auxiliary trees, i.e., auxiliary trees whose root node must generate a foot node

as an immediate child. For example,“ (N (JJ pretty) N*)” in Figure 3.2b is a

simple auxiliary tree, while“ (S (NP) (VP (V think) S*))”is not. We place no

restriction on the initial trees.

Let us refer to some differences between TAG, the original TIG [39] and our

TIG variant. TIG is a strict subset of TAG since it does not allow wrapping

adjunction in TAG. TIG generates context-free languages and the parsing com-

plexity is O (n3) where n is a sentence length. Our TIG variant prohibits neither

wrapping adjunction in TAG nor simultaneous adjunction in the original TIG,

and allows only simple auxiliary trees. The expressive power and computational

complexity of our formalism is identical to the original TIG, however, simple

auxiliary trees do not increase the computational cost of the grammar induction

since the probability distribution over simple auxiliary trees can be defined as

having the same form as that of initial trees. This ensures that we can make use

of an efficient dynamic programming for training our model, which we describe

the detail later.

3.3 Probabilistic Tree Insertion Grammars

In this section, we propose a probabilistic model of TIG. Recall that our task

is the induction of TIG derivations from parse trees in treebank data. As we

32

mentioned in the introduction, this is nontrivial since different derivations might

produce the same parse tree. For example, Figure 3.2a and 3.2b produce the same

parse tree. For this reason, we employ a probabilistic model of elementary trees

given a parse tree, p (e |t), where e is a set of elementary trees (i.e., initial tree

and auxiliary tree) and t is a parse tree. p (e |t) can be computed using Bayes’

rule:

P (e |t) ∝ P (t |e)P (e)

where the value of P (t |e) is either 1 (if t is consistent with e) or 0 (otherwise).

Therefore, our task turns out to be to model the prior distribution P (e).

3.3.1 Substitution Model

We follow the Bayesian TSG models [11, 38] for probabilistic modeling of ini-

tial trees. Let GX be the probability distribution over initial trees whose root

nonterminal symbol is X. We employ a Pitman-Yor process (PYP) [37] as a prior

on GX :

e |X ∼ GX

GX |dX , θX ∼ PYP (dX , θX , P0 (· |X))

where P0 (· |X) is a base distribution over the infinite space of initial trees

rooted with X. dX and θX are hyperparameters to control the model’s behavior.

Integrating out all possible values of GX , the resulting distribution is

p (ei |e−i, X, dX , θX) = αei,X + βXP0 (ei |X) (3.1)

αei,X =
n−i
ei,X
− dX · tei,X

θX + n−i
·,X

βX =
θX + dX · t·,X
θX + n−i

·,X

where e−i = e1, . . . , ei−1 are previously generated initial trees, and n−i
ei,X

is the

number of times ei has been used in e−i. tei,X is the number of tables labeled

33

with ei, which we describe below. n−i
·,X =

∑
e n

−i
e,X and t·,X =

∑
e te,X are the total

counts of initial trees and tables, respectively.

The base probability of an initial tree, P0 (e |X), is given as follows.

P0 (e |X) =
∏

r∈CFG(e)

PMLE (r)×
∏

A∈LEAF(e)

sA

×
∏

B∈INTER(e)

(1− sB) , (3.2)

where CFG (e) is a set of decomposed CFG productions of e, PMLE (r) is a max-

imum likelihood estimate (MLE) of r. LEAF (e) and INTER (e) are sets of leaf

and internal symbols of e, respectively. sX is a stopping probability defined for

each X.

The process for generating an initial tree from the base distribution is as follows:

1. Generate a CFG rule r given X with probability PMLE (X → r).

2. For each expanded nonterminal Y in r, decide whether to generate child

nodes with probability (1− sY), or stop with probability sY . Go back to 1

if Y generates child nodes.

Here PMLE (X → r) is a MLE of r given X, which is obtained from parse trees in

the training data. sX is a stopping probability defined for each nonterminal X.

Eq. 3.1 is known as the “Chinese restaurant” metaphor. Consider a Chinese

restaurant with unbounded number of tables. Customers (initial trees in our case)

visit the restaurant, and sit at a table one by one. The first customer always sits

at the first table, and each subsequent customer sits at an already occupied table

with probability αei,X , or a new table with probability βX . When a customer sits

at a new table, an initial tree is drawn from P0, and the new table is labeled with

the initial tree. The PYP produces rich get richer statistics: a few initial trees

are used many times for derivation while many are used only a few times, which

is empirically shown to be well-suited for natural language [44, 23].

3.3.2 Insertion Model

We model a probability distribution over simple auxiliary trees as having the

same form as eq. 3.1, that is,

34

p (e′i |e′−i, X, d′X , θ
′
X) = α′

ei,X
+ β′

XP
′
0 (e

′
i, |X) (3.3)

where e′i is an auxiliary tree, d′X and θ′X are hyperparameters of the insertion

model, and the definition of
(
α′
ei,X

, β′
X

)
is the same as that of (αei,X , βX) in

eq. 3.1.

We need to modify the base distribution over simple auxiliary trees, P ′
0 (e |X),

as follows, so that all probabilities of the simple auxiliary trees sum to one.

P ′
0 (e

′ |X) = P ′
MLE (TOP (e′))×

∏
r∈INTER CFG(e′)

PMLE (r)

×
∏

A∈LEAF(e′)

sA ×
∏

B∈INTER(e′)

(1− sB) (3.4)

where TOP (e′) is the CFG production that starts with the root node of e′. For

example, TOP (N (JJ pretty) (N*)) returns“N→ JJ N*”. INTER CFG (e′) is

a set of CFG productions of e′ excluding TOP (e′). P ′
MLE (r

′) is a modified MLE

for simple auxiliary trees, which is given by{
count(r′)

count(X→X∗Y)+count(X→Y X∗)
if r′ includes a foot node

0 otherwise

where count (r′) is the number of times r′ occurs in parse trees. It is ensured

that P ′
0 (e

′ |X) generates a foot node as an immediate child.

In short, we define the probability distribution over both initial trees and sim-

ple auxiliary trees with a PYP prior. The base distribution over initial trees

is defined as P0 (e |X), and the base distribution over simple auxiliary trees is

defined as P ′
0 (e

′ |X). An initial tree ei replaces a frontier node with probability

p (ei |e−i, X, dX , θX). On the other hand, a simple auxiliary tree e′i inserts an in-

ternal node with probability aX × p′
(
e′i
∣∣e′−i, X, d′X , θ

′
X

)
, where aX is an insertion

probability defined for each X. The stopping probabilities are common to both

initial and auxiliary trees.

35

Figure 3.3: Derivation of Fig. 3.2b transformed by grammar decomposition.

3.4 Inference

3.4.1 Grammar Decomposition

To sample derivations from eqs. 3.1 and 3.3, we develop a grammar decompo-

sition technique, which is an extension of work [10] on the Bayesian TSG model.

The motivation behind our grammar decomposition is that it is difficult to con-

sider all possible elementary trees explicitly since our base distribution assigns

non-zero probability to an infinite number of unseen elementary trees. Alterna-

tively, we transform TIG into the equivalent CFG to sample derivations efficiently.

The key idea of grammar decomposition is:

1. Differentiate the first term of eqs. 3.1 and 3.3 from the second term. The

first term corresponds to the sample from already generated trees, and the

second term corresponds to the sample from the base distribution.

2. Embed all of derivational information in nonterminal symbols of a parse

tree. We define six types of nonterminal symbols as follows.

Nonterminal symbols for initial trees

36

rule probability

NPsub → NP(NP (DT the) (N girl)) αe=(NP (DT the) (N girl)),NP

NP(NP (DT the) (N girl))→ DT(DT the)N
ins (N girl)

(
1− a(X=DT)

)
× a(X=N)

DT(DT the) → the 1

Nins (N girl) → N
ins (N girl)
(N (JJ pretty) N*) α′

e=(N (JJ pretty) N*),N

N
ins (N girl)
(N (JJ pretty) N*) → JJ(JJ pretty)N(N girl)

(
1− a(X=JJ)

)
× 1

JJ(JJ pretty) → pretty 1

N(N girl) → girl 1

Table 3.1: The rules and probabilities of grammar decomposition for Figure 3.3.

• X(base) is a root or internal symbol of initial trees sampled from the base

distribution P0.

• X(e) is a root or internal symbol of initial trees sampled from already gen-

erated trees e (the first term of eq. 3.1). X(e) must generate child nodes

according to e. For example, let X be NP and e be “NP (DT) (N girl)”

(Figure 3.1a). Then, NP(NP (DT) (N girl)) generates two children: DTsub and

N(N girl). N(N girl) generates the terminal node“ girl”.

• Xsub is a frontier node at which substitution occurs. The superscript“sub”
indicates substitution. Xsub chooses the sample of initial trees from either

base distribution (second term of eq. 3.1) or already generated trees (first

term of eq. 3.1). Therefore, we set Xsub to generate X(base) (with probability

βX) or X(e) (with probability αe,X) as a child.

Nonterminal symbols for auxiliary trees

• X ins(type) is a node at which insertion occurs at internal node X(type), where

type is either“ base” or“ e”. The superscript“ ins” indicates inser-

tion. Similar to Xsub, X ins(type) chooses the sample of auxiliary trees from

either the base distribution or already generated trees, i.e., X ins(type) gen-

erates X
ins(type)
base (with probability β′

X) or X
ins(type)
(e) (with probability α′

e,X),

where X
ins(type)
base is a root symbol of auxiliary trees sampled from the base

37

distribution, and X
ins(type)
(e) is a root symbol of auxiliary trees sampled from

already generated auxiliary trees e. X
ins(type)
base and X

ins(type)
(e) must generate

X(type) as the foot node symbol.

Figure 3.3 shows an example derivation employing the grammar decomposition.

As shown in Figure 3.3, all of the derivational information is embedded in refined

nonterminal symbols. It should be noted that determining each nonterminal

symbol X in a parse tree as any of the above six types specifies a unique TIG

derivation. Thus, instead of dealing with an insertion operator explicitly, we

embed all of derivational information in nonterminal symbols and deal with the

refined parse tree as standard CFG.

The rules and probabilities of grammar decomposition for Figure 3.3 are shown

in Table 3.1. The generative process of our TIG model begins with the frontier

start symbol Ssub, and generates child nodes acording to the grammar decom-

position rules. Ssub generates either S(base) (with probability βS) or S(e) (with

probability αe,S). Then, S(base) generates one of three nodes as a child: a frontier

node, an internal node, or a root node of some auxiliary tree because of adjunc-

tion. That is, S(base) is expanded to any of three symbols: Xsub (with probabil-

ity PMLE (S→ X) × sX), X(base) (with probability PMLE (S→ X) × (1− sX) ×
(1− aX)), or X

ins(base) (with probability PMLE (S→ X)× (1− sX)× aX).

On the other hand, S(e) generates either the child of e (when insertion does

not occur) or a root symbol of some auxiliary tree (when insertion occurs). That

is, S(e) is expanded to X(child(e)) (with probability (1− aX)), or X
ins(child(e)) (with

probability aX), where child (e) is the direct child of e. The sampling stops when

all leaf nodes become terminals. We tabularize the rules and probabilities of our

grammar decomposition in Tables 3.2 and 3.3..

3.4.2 Training and Parsing

We use a sentence-level Metropolis-Hastings (MH) algorithm [10] to train our

model. The MH algorithm is one of the Markov chain Monte Carlo (MCMC)

methods for obtaining random samples from a probability distribution. In our

case, we wish to obtain derivation samples from p (e |t,d,θ, s, a).
The MH algorithm consists of the following three steps. For each sentence,

38

rule probability

Xsub → X(base) βX

Xsub → X(e) αe,X

Xadj(type) → X
adj(type)
(base) β′

X

Xadj(type) → X
adj(type)
(e) α′

e,X

(a)

rule probability

X(e) → w 1 (if w = child (e))

X(e) → Y(child(e)) (1− aY)

X(e) → Y adj(child(e)) aY

X(e) → Y(childL(e)) Z(childR(e)) (1− aY) × (1− aZ)

X(e) → Y(childL(e)) Zadj(childR(e)) (1− aY) × aZ

X(e) → Y adj(childL(e)) Z(childR(e)) aY × (1− aZ)

X(e) → Y adj(childL(e)) Zadj(childR(e)) aY × aZ

(b)

Table 3.2: Grammar decomposition for (a) Xsub and X ins(type). Xsub and

X ins(type)always produce a unary child labeled with the same symbol. (b) X(e).

childL (e) and childR (e) are the left and right child of e, respectively. w is a

terminal symbol.

39

ru
le

p
rob

ab
ility

X
(b

a
se) →

w
P
M
L
E
(X
→

w
)

X
(b

a
se) →

Y
su

b
P
M
L
E
(X
→

Y
)×

s
Y

X
(b

a
se) →

Y
(b

a
se)

P
M
L
E
(X
→

Y
)×

(1
−
s
Y
)
(1
−

a
Y
)

X
(b

a
se) →

Y
a
d
j(ty

p
e)

P
M
L
E
(X
→

Y
)×

(1
−

s
Y
)
a
Y

X
(b

a
se) →

Y
su

b
Z

su
b

P
M
L
E
(X
→

Y
Z
)×

s
Y

×
s
Z

X
(b

a
se) →

Y
su

b
Z

(b
a
se)

P
M
L
E
(X
→

Y
Z
)×

s
Y

×
(1
−

s
Z
)
(1
−
a
Z
)

X
(b

a
se) →

Y
su

b
Z

a
d
j(ty

p
e)

P
M
L
E
(X
→

Y
Z
)×

s
Y

×
(1
−
s
Z
)
a
Z

X
(b

a
se) →

Y
(b

a
se)

Z
su

b
P
M
L
E
(X
→

Y
Z
)×

(1
−
s
Y
)
(1
−

a
Y
)
×

s
Z

X
(b

a
se) →

Y
(b

a
se)

Z
(b

a
se)

P
M
L
E
(X
→

Y
Z
)×

(1
−
s
Y
)
(1
−

a
Y
)
×

(1
−

s
Z
)
(1
−
a
Z
)

X
(b

a
se) →

Y
(b

a
se)

Z
a
d
j(ty

p
e)

P
M
L
E
(X
→

Y
Z
)×

(1
−
s
Y
)
(1
−

a
Y
)
×

(1
−
s
Z
)
a
Z

X
(b

a
se) →

Y
a
d
j(ty

p
e)

Z
su

b
P
M
L
E
(X
→

Y
Z
)×

(1
−

s
Y
)
a
Y

×
s
Z

X
(b

a
se) →

Y
a
d
j(ty

p
e)

Z
(b

a
se)

P
M
L
E
(X
→

Y
Z
)×

(1
−

s
Y
)
a
Y

×
(1
−

s
Z
)
(1
−
a
Z
)

X
(b

a
se) →

Y
a
d
j(ty

p
e)

Z
a
d
j(ty

p
e)

P
M
L
E
(X
→

Y
Z
)×

(1
−

s
Y
)
a
Y

×
(1
−
s
Z
)
a
Z

T
ab

le
3.3:

G
ram

m
ar

d
ecom

p
osition

for
X

(b
a
se) .

T
h
e
ru
les

an
d
p
rob

ab
ilities

for
X

in
s(ty

p
e)

(b
a
se)

an
d
X

in
s(ty

p
e)

(e)
are

d
efi
n
ed

in
th
e
sam

e
m
an

n
er.

40

1. Calculate the inside probability [27] in a bottom-up manner using the gram-

mar decomposition.

2. Sample a derivation tree in a top-down manner

3. Accept or reject the derivation sample by using the MH test

The MH algorithm is described in detail in [10]. In a training step, the inside

algorithm considers only the derivations that match the parsed tree.

In a parsing step, we apply the inside algorithm in a similar manner to that

in training to obtain derivation samples. The only difference between training

and parsing is that the inside algorithm considers any possible derivations in a

parsing step since parse trees are unobservable. After sampling derivations, we

use the MAX-RULE-SUM algorithm [35] to obtain the final parsing results.

We deal with four kinds of hyperparameters, (d,θ, s, a), as random variables

and update their values for every MH iteration. We place a prior on hyperpa-

rameters as follows.

• dX and d′X ∼ Beta (1, 1)

• θX and θ′X ∼ Gamma (0.1, 10.0)

• sX ∼ Beta (1, 1)

• aX ∼ Beta (b1, b2)

We adopt various values of (b1, b2) in the experiments to investigate the effect

of insertion. The hyperparameters of d and θ are updated with the auxiliary

variable technique [43].

3.5 Experiment

We ran experiments on the Wall Street Journal (WSJ) portion of the English

Penn Treebank and the British National Corpus (BNC) Treebank1. The WSJ

dataset consists of 24 sections and contains approximately 40k sentences. Section

22 is usually assigned as a development set for parameter tuning, but we do not

1http://nclt.computing.dcu.ie/˜jfoster/resources/

41

corpus method F1

CFG 54.08

BNC TSG 67.73

TIG (proposed) 69.06

CFG 64.99

TSG 77.19

WSJ TIG (proposed) 78.54

[35] 77.933

[10] 78.40

Table 3.4: Small dataset experiments.

use a development set since our model automatically updates the hyperparameters

for every iterations.

The treebank data is binarized with“CENTER-HEAD”method [31] to make

grammars with only unary and binary productions. We replace lexical words with

count ≤ 1 in the training set with one of 3 unknown words using lexical features.

We trained our model using a training set, and then sampled 10k derivations

for each sentence in a test set. Parsing results were obtained with the MAX-

RULE-SUM algorithm using the 10k derivation samples. We show the bracketing

F1 score of predicted parse trees evaluated by EVALB2, averaged over three

independent runs.

3.5.1 Small dataset

In small dataset experiments, we used BNC (1k sentences, 90% for training and

10% for testing) and WSJ (section 2 for training and section 22 for testing). This

was a small-scale experiment, but large enough to be relevant for low-resource

languages. We trained the model with an MH sampler for 1k iterations. Table 3.4

shows the parsing results for the test set. We compared our model with stan-

dard CFG and Bayesian TSG models implemented by us. The TSG results are

obtained by setting aX = 0 in our TIG model for all X, following the previous

work.

2http://nlp.cs.nyu.edu/evalb/
3Results from [10].

42

method (b1, b2) # iterations # rules (# aux. trees) F1

CFG - - 5957 (-) 64.99

TSG - 1k 9268 (0) 77.19

(1,1) 7988 (2) 78.54

TIG (proposed) (100,1) 1k 7462 (16) 75.44

(100,100) 8057 (15) 77.98

TSG - 5k 9433 (0) 77.34

(1,1) 8158 (2) 76.78

TIG (proposed) (100,1) 5k 7438 (17) 75.02

(100,100) 8143 (15) 76.03

Table 3.5: Detailed comparison between CFG, TSG and TIG on small dataset.

As shown in Table 3.4, our TIG model successfully outperformed CFG and

TSG. Obviously, simple CFG is not powerful for modeling syntax trees. TSG

strongly outperformed CFG, however, the TIG model obtained the best F1 score,

and reduced the grammar size by approximately 14% compared with TSG. There-

fore, adding an insertion operator is helpful for modeling syntax trees accurately.

This suggests that adding an insertion operator is helpful for modeling syntax

trees accurately. The TSG model described in [10] is similar to ours. They re-

ported an F1 score of 78.40 (the score of our TSG model was 77.19). We speculate

that the performance gap is due to data preprocessing such as the treatment of

rare words.

Table 3.5 shows the results of a detailed comparison between CFG, TSG and

TIG. In Table 3.4, we can see that only a small number of auxiliary trees have a

great impact on reducing the grammar size. Surprisingly, there are many fewer

auxiliary trees than initial trees. We believe this to be due to the model becoming

stuck during the training and our restricted assumption of simple auxiliary trees.

The prior value (b1, b2) controls insertion probability indirectly. Compared

with the results of (b1, b2) = (1, 1) with (100, 1), a higher b1 value encouraged the

insertion operator and further reduced the grammar size, but the performance

worsened. However, our model with a proper prior value achieved comparable

results to those of the state-of-the-art parsers [35] for a small dataset.

We tried training the model with an MH sampler for 1k and 5k iterations.

As shown in Table 3.5, we found that training the model for longer iterations

43

rules (# aux. trees) F1

CFG 35374 (-) 71.0

TSG 80026 (0) 85.0

TIG (proposed) 65099 (25) 84.8

[38] - 82.64

[10] - 85.3

Table 3.6: Full treebank data experiments.

increased the likelihood, but the performance deteriorated. This suggests that

our model overfit the training data for long iterations.

3.5.2 Full dataset

We applied the model to the standard WSJ Penn Treebank setting (section

2-21 for training and section 23 for testing). The parsing results are shown in

Table 3.6. We initialized the model with the final sample of the small data

experiments, and trained the model with an MH sampler for 3.5k iterations. We

set (b1, b2) = (100, 100).

For full treebank dataset, the TIG model obtained nearly identical results to

the TSG model, making the grammar size approximately 19% smaller than TSG.

Compared with conventional Bayesian TSG models [38, 10], our model outper-

formed [38] and obtained comparable results to [10]. As noted in [10], there is a

mixing problem with the MH sampler, i.e., the more the data size increases, the

more difficult it becomes for our sampler to escape the mode since elementary

tree count increases. We believe that more sophisticated inference techniques are

needed if we are to obtain better results.

Table 3.7 shows examples of lexicalized auxiliary trees obtained by the TIG

model for full treebank data. We can see that punctuation (“–”, “,”, “;”, and

“:”) and adverbs (ADVP and RB) tend to be inserted in other trees. Punctuation

and adverbs appear in various positions in English sentences. Our results suggest

that rather than treat those words as substitutions, it is more reasonable to

consider these words as an “insertion”, which is intuitively understandable.

4Results on length ≤ 40.

44

(N̄P (N̄P) (: –))

(NP (NP) (ADVP (RB aloft)))

(N̄P (N̄P) (ADVP (RB respectively)))

(P̄P (P̄P) (, ,))

(¯FRAG (, ,) (¯FRAG))

(V̄P (V̄P) (RB then))

(V̄P (V̄P) (RB not))

(Q̄P (Q̄P) (IN of))

(¯SBAR (¯SBAR) (RB not))

(S̄ (S̄) (RB so))

(S̄ (S̄) (: ;))

(ADVP (ADVP) (PP (-NONE- *EMPTY*)))

Table 3.7: Examples of lexicalized auxiliary trees obtained from our model in

full treebank data experiments. Nonterminal symbols created by binarization are

shown with an over-bar.

45

3.6 Related Work

Our work is based on recent TSG studies [11, 38]. There are other variants

of TSG models to be noted. All-Fragments grammar [2] is a variant of TSG,

which maps TSG to an implicit representation of grammar rules rather than

using all possible tree fragments explicitly. They combined a symbol refinement

approach with TSG and obtained nearly state-of-the-art parsing results. Adaptor

grammars [21] is a basic framework for Bayesian TSG, but different from ours.

Adoptor grammars permit only terminal symbols at a leaf node, but our model

permits nonterminal leaf nodes.

3.7 Summary

We developed a model that automatically induces TIG from a treebank, in-

stead of using heuristic extraction rules. We achieved this by incorporating an

probabilistic insertion operator into the conventional TSG model. We also devel-

oped grammar decomposition rules to transform TIG derivation into equivalent

CFG for efficient training. For a small dataset, our model outperformed CFG

and TSG. For a large dataset, our model achieved comparable parsing results to

the TSG model, making the number of grammars much smaller than TSG.

46

47

Chapter 4

Statistical Induction of

Symbol-Refined Tree

Substitution Grammars

4.1 Introduction

Syntactic parsing has played a central role in natural language processing. The

resulting syntactic analysis can be used for various applications such as machine

translation [16, 13], sentence compression [11, 49], and question answering [46].

Probabilistic context-free grammar (PCFG) underlies many statistical parsers,

however, it is well known that the PCFG rules extracted from treebank data via

maximum likelihood estimation do not perform well due to unrealistic context-

free assumptions [26].

In recent years, there has been an increasing interest in tree substitution gram-

mar (TSG) as an alternative to CFG for modeling syntax trees [38, 45, 10]. TSG

is a natural extension of CFG in which nonterminal symbols can be rewritten

(substituted) with arbitrarily large tree fragments. These tree fragments have

great advantages over tiny CFG rules since they can capture non-local contexts

explicitly such as predicate-argument structures, idioms and grammatical agree-

ments [10]. Previous work on TSG parsing [10, 38, 2] has consistently shown that

a probabilistic TSG (PTSG) parser is significantly more accurate than a PCFG

parser, but is still inferior to state-of-the-art parsers (e.g., the Berkeley parser [35]

and the Charniak parser [6]). One major drawback of TSG is that the context-

free assumptions still remain at substitution sites, that is, TSG tree fragments are

generated that are conditionally independent of all others given root nonterminal

symbols. Furthermore, when a sentence is unparsable with large tree fragments,

the PTSG parser usually uses naive CFG rules derived from its backoff model,

which diminishes the benefits obtained from large tree fragments.

On the other hand, current state-of-the-art parsers use symbol refinement tech-

niques [22, 12, 31]. Symbol refinement is a successful approach for weakening

context-free assumptions by dividing coarse treebank symbols (e.g. NP and VP)

into subcategories, rather than extracting large tree fragments. As shown in sev-

eral studies on TSG parsing [51, 2], large tree fragments and symbol refinement

work complementarily for syntactic parsing. For example, the work presented

in [2] have reported that deterministic symbol refinement with heuristics helps

improve the accuracy of a TSG parser.

In this paper, we propose Symbol-Refined Tree Substitution Grammars (SR-

TSGs) for syntactic parsing. SR-TSG is an extension of the conventional TSG

model where each nonterminal symbol can be refined (subcategorized) to fit the

training data. Our work differs from previous studies in that we focus on a unified

model where TSG rules and symbol refinement are learned from training data in

a fully automatic and consistent fashion. We also propose a novel probabilistic

SR-TSG model with the hierarchical Pitman-Yor Process [37], namely a sort of

nonparametric Bayesian model, to encode backoff smoothing from a fine-grained

SR-TSG to simpler CFG rules, and develop an efficient training method based

on blocked MCMC sampling.

Our SR-TSG parser achieves an F1 score of 92.4% in the WSJ English Penn

Treebank parsing task, which is a 7.7 point improvement over a conventional

Bayesian TSG parser, and superior to state-of-the-art discriminative reranking

parsers.

4.2 Background

A TSG consists of a 4-tuple, G = (T,N, S,R), where T is a set of terminal

symbols, N is a set of nonterminal symbols, S ∈ N is the distinguished start

nonterminal symbol and R is a set of productions (a.k.a. rules). The productions

take the form of elementary trees i.e., tree fragments of height ≥ 1. The root and

internal nodes of the elementary trees are labeled with nonterminal symbols, and

leaf nodes are labeled with either terminal or nonterminal symbols. Nonterminal

48

Figure 4.1: Example parse tree.

(a) (b)

Figure 4.2: (a) Example TSG derivation. (b) Example SR-TSG derivation. The

refinement annotation is hyphenated with a nonterminal symbol.

49

leaves are referred to as frontier nonterminals, and form the substitution sites to

be combined with other elementary trees.

A derivation is a process of forming a parse tree. It starts with a root symbol

and rewrites (substitutes) nonterminal symbols with elementary trees until there

are no remaining frontier nonterminals. Figure 4.1 shows an example parse tree

and Figure 4.2a shows its example TSG derivation. Since different derivations

may produce the same parse tree, recent work on TSG induction [38, 10] employs

a probabilistic model of a TSG and predicts derivations from observed parse trees

in an unsupervised way.

A Probabilistic Tree Substitution Grammar (PTSG) assigns a probability to

each rule in the grammar. The probability of a derivation is defined as the product

of the probabilities of its component elementary trees as follows.

p (e) =
∏

x→e∈e

p (e |x)

where e = (e1, e2, . . .) is a sequence of elementary trees used for the derivation,

x = root (e) is the root symbol of e, and p (e |x) is the probability of generating e

given its root symbol x. As in a PCFG, e is generated conditionally independent

of all others given x.

The posterior distribution over elementary trees given a parse tree t can be

computed by using the Bayes’ rule:

p (e |t) ∝ p (t |e) p (e)

where p (t |e) is either equal to 1 (when t and e are consistent) or 0 (otherwise).

Therefore, the task of TSG induction from parse trees turns out to consist of

modeling the prior distribution p (e). Recent work on TSG induction defines

p (e) as a nonparametric Bayesian model such as the Dirichlet Process [14] or the

Pitman-Yor Process to encourage sparse and compact grammars.

4.3 Symbol-Refined Tree Substitution Grammars

In this section, we propose Symbol-Refined Tree Substitution Grammars (SR-

TSGs). Our SR-TSG model is an extension of the conventional TSG model

where every symbol of the elementary trees can be refined to fit the training

data. Figure 4.2b shows an example of SR-TSG derivation. As with previous

50

(a) SR-TSG (b) SR-CFG

(c) RU-CFG

Figure 4.3: Example three-level backoff.

work on TSG induction, our task is the induction of SR-TSG derivations from

a corpus of parse trees in an unsupervised fashion. That is, we wish to infer

the symbol subcategories of every node and substitution site (i.e., nodes where

substitution occurs) from parse trees. Extracted rules and their probabilities can

be used to parse new raw sentences.

4.3.1 Probabilistic Model

We define a probabilistic model of an SR-TSG based on the Pitman-Yor Process

(PYP) [37], namely a sort of nonparametric Bayesian model. The PYP produces

power-law distributions, which have been shown to be well-suited for such uses

as language modeling [44], and TSG induction [10]. One major issue as regards

modeling an SR-TSG is that the space of the grammar rules will be very sparse

since SR-TSG allows for arbitrarily large tree fragments and also an arbitrarily

large set of symbol subcategories. To address the sparseness problem, we employ

51

Figure 4.4: Three-level hierarchy of SR-TSG.

52

a hierarchical PYP to encode a backoff scheme from the SR-TSG rules to simpler

CFG rules, inspired by recent work on dependency parsing [3].

Our model consists of a three-level hierarchy. Figure 4.3 shows an example of

the SR-TSG rule and its backoff tree fragments. Figure 4.3 shows the relation

between our three-level hierarchy.

The topmost level of our model is a distribution over the SR-TSG rules as

follows.

e |xk ∼ Gxk

Gxk
∼ PYP

(
dxk

, θxk
, P sr-tsg (· |xk)

)
where xk is a refined root symbol of an elementary tree e, while x is a raw

nonterminal symbol in the corpus and k = 0, 1, . . . is an index of the symbol sub-

category. Suppose x is NP and its symbol subcategory is 0, then xk is NP0. The

PYP has three parameters: (dxk
, θxk

, P sr-tsg). P sr-tsg (· |xk) is a base distribution

over infinite space of symbol-refined elementary trees rooted with xk, which pro-

vides the backoff probability of e. The remaining parameters dxk
and θxk

control

the strength of the base distribution.

The backoff probability P sr-tsg (e |xk) is given by the product of symbol-refined

CFG (SR-CFG) rules that e contains as follows.

P sr-tsg (e |xk) =
∏

f∈F (e)

scf ×
∏

i∈I(e)

(1− sci)

× H (cfg-rules (e |xk))

α |xk ∼ Hxk

Hxk
∼ PYP

(
dx, θx, P

sr-cfg (· |xk)
)
,

where F (e) is a set of frontier nonterminal nodes and I (e) is a set of internal

nodes in e. cf and ci are nonterminal symbols of nodes f and i, respectively.

sc is the probability of stopping the expansion of a node labeled with c. SR-

CFG rules are CFG rules where every symbol is refined, as shown in Table 4.3.

The function cfg-rules (e |xk) returns the SR-CFG rules that e contains, which

take the form of xk → α. Each SR-CFG rule α rooted with xk is drawn from

the backoff distribution Hxk
, and Hxk

is produced by the PYP with parameters:

53

(
dx, θx, P

sr-cfg
)
. This distribution over the SR-CFG rules forms the second level

hierarchy of our model.

The backoff probability of the SR-CFG rule, P sr-cfg (α |xk), is given by the

root-unrefined CFG (RU-CFG) rule as follows,

P sr-cfg (α |xk) = I (root-unrefine (α |xk))

α |x ∼ Ix

Ix ∼ PYP
(
d′x, θ

′
x, P

ru-cfg (· |x)
)
,

where the function root-unrefine (α |xk) returns the RU-CFG rule of α, which

takes the form of x→ α. The RU-CFG rule is a CFG rule where the root symbol

is unrefined and all leaf nonterminal symbols are refined, as shown in Table 4.3.

Each RU-CFG rule α rooted with x is drawn from the backoff distribution Ix,

and Ix is produced by a PYP. This distribution over the RU-CFG rules forms the

third level hierarchy of our model. Finally, we set the backoff probability of the

RU-CFG rule, P ru-cfg (α |x), so that it is uniform as follows.

P ru-cfg (α |x) = 1

|x→ ·|
.

where |x→ ·| is the number of RU-CFG rules rooted with x. Overall, our

hierarchical model encodes backoff smoothing consistently from the SR-TSG rules

to the SR-CFG rules, and from the SR-CFG rules to the RU-CFG rules. As shown

in [3, 9], the parsing accuracy of the TSG model is strongly affected by its backoff

model. The effects of our hierarchical backoff model on parsing performance are

evaluated in the experiment section.

4.4 Inference

We use Markov Chain Monte Carlo (MCMC) sampling to infer the SR-TSG

derivations from parse trees. MCMC sampling is a widely used approach for

obtaining random samples from a probability distribution. In our case, we

wish to obtain derivation samples of an SR-TSG from the posterior distribution,

p (e |t,d,θ, s).
The inference of the SR-TSG derivations corresponds to inferring two kinds

of latent variables: latent symbol subcategories and latent substitution sites.

54

We first infer latent symbol subcategories for every symbol in the parse trees,

and then infer latent substitution sites stepwise. During the inference of symbol

subcategories, every internal node is fixed as a substitution site. After that, we

unfix that assumption and infer latent substitution sites given symbol-refined

parse trees. This stepwise learning is simple and efficient in practice, but we

believe that the joint learning of both latent variables is possible, and we will deal

with this in future work. Here we describe each inference algorithm in detail.

4.4.1 Inference of Symbol Subcategories

For the inference of latent symbol subcategories, we adopt split and merge

training [35] as follows. In each split-merge step, each symbol is split into at most

two subcategories. For example, every NP symbol in the training data is split

into either NP0 or NP1 to maximize the posterior probability. After convergence,

we measure the loss of each split symbol in terms of the likelihood incurred when

removing it, then the smallest 50% of the newly split symbols as regards that loss

are merged to avoid overfitting. The split-merge algorithm terminates when the

total number of steps reaches the user-specified value.

In each splitting step, we use two types of blocked MCMC algorithm: the

sentence-level blocked Metropolis-Hastings (MH) sampler and the tree-level blocked

Gibbs sampler, while [35] use a different MLE-based model and the EM algorithm.

Our sampler iterates sentence-level sampling and tree-level sampling alternately.

The sentence-level MH sampler is a recently proposed algorithm for grammar

induction [21, 10]. In this work, we apply it to the training of symbol splitting.

The MH sampler consists of the following three steps:

For each sentence,

1. Calculate the inside probability [27] in a bottom-up manner.

2. Sample a derivation tree in a top-down manner.

3. Accept or reject the derivation sample by using the MH test. See [10]

for details. This sampler simultaneously updates blocks of latent variables

associated with a sentence, thus it can find MAP solutions efficiently.

The tree-level blocked Gibbs sampler focuses on the type of SR-TSG rules and si-

multaneously updates all root and child nodes that are annotated with the same

55

SR-TSG rule. For example, the sampler collects all nodes that are annotated

with S0 → NP1VP2, then updates those nodes to another subcategory such as

S0 → NP2VP0 according to the posterior distribution. This sampler is similar

to table label resampling [23], but differs in that our sampler can update multi-

ple table labels simultaneously when multiple tables are labeled with the same

elementary tree. The tree-level sampler also simultaneously updates blocks of

latent variables associated with the type of SR-TSG rules, thus it can find MAP

solutions efficiently.

4.4.2 Inference of Substitution Sites

After the inference of symbol subcategories, we use Gibbs sampling to infer

the substitution sites of parse trees as described in [11, 38]. We assign a binary

variable to each internal node in the training data, which indicates whether that

node is a substitution site or not. For each iteration, the Gibbs sampler works by

sampling the value of each binary variable in random order. See [10] for details.

During the inference, our sampler ignores the symbol subcategories of inter-

nal nodes of elementary trees since they do not affect the derivation of the

SR-TSG. For example, the elementary trees“ (S0 (NP0 NNP0) VP0)”and“
(S0 (NP1 NNP0) VP0)”are regarded as being the same when we calculate the

generation probabilities according to our model. This heuristics is helpful for

finding large tree fragments and learning compact grammars.

4.4.3 Hyperparameter Estimation

We treat hyperparameters {d,θ} as random variables and update their values

for every MCMC iteration. We place a prior on the hyperparameters as follows.

• d ∼ Beta (1.0, 1.0)

• θ ∼ Gamma (1.0, 1.0)

The values of d and θ are optimized with the auxiliary variable technique [43].

56

4.5 Experiment

4.5.1 Settings

4.5.1.1 Data Preparation

We ran experiments on the Wall Street Journal (WSJ) portion of the English

Penn Treebank data set [30], using a standard data split (sections 2–21 for train-

ing, 22 for development and 23 for testing). We also used section 2 as a small

training set for evaluating the performance of our model under low-resource con-

ditions. Henceforth, we distinguish the small training set (section 2) from the full

training set (sections 2-21). The treebank data is right-binarized [31] to construct

grammars with only unary and binary productions. We replace lexical words with

count ≤ 5 in the training data with one of 50 unknown words using lexical fea-

tures, following [35]. We also split off all the function tags and eliminated empty

nodes from the data set, following [22].

4.5.1.2 Training and Parsing

For the inference of symbol subcategories, we trained our model with the

MCMC sampler by using 6 split-merge steps for the full training set and 3 split-

merge steps for the small training set. Therefore, each symbol can be subdivided

into a maximum of 26 = 64 and 23 = 8 subcategories, respectively. In each

split-merge step, we initialized the sampler by randomly splitting every symbol

in two subcategories and ran the MCMC sampler for 1000 iterations. After that,

to infer the substitution sites, we initialized the model with the final sample from

a run on the small training set, and used the Gibbs sampler for 2000 iterations.

We estimated the optimal values of the stopping probabilities s by using the

development set.

We obtained the parsing results with the MAX-RULE-PRODUCT algorithm [35]

by using the SR-TSG rules extracted from our model. We evaluated the accuracy

of our parser by bracketing F1 score of predicted parse trees. We used EVALB1 to

compute the F1 score. In all our experiments, we conducted ten independent runs

to train our model, and selected the one that performed best on the development

set in terms of parsing accuracy.

1http://nlp.cs.nyu.edu/evalb/

57

Model F1 (small) F1 (full)

CFG 61.9 63.6

*TSG 77.1 85.0

SR-TSG (P sr-tsg) 73.0 86.4

SR-TSG (P sr-tsg, P sr-cfg) 79.4 89.7

SR-TSG (P sr-tsg, P sr-cfg, P ru-cfg) 81.7 91.1

Table 4.1: Comparison of parsing accuracy with the small and full training sets.

*Our reimplementation of [10].

4.5.2 Results and Discussion

4.5.2.1 Comparison of SR-TSG with TSG

We compared the SR-TSG model with the CFG and TSG models as regards

parsing accuracy. We also tested our model with three backoff hierarchy settings

to evaluate the effects of backoff smoothing on parsing accuracy. Table 4.1 shows

the F1 scores of the CFG, TSG and SR-TSG parsers for small and full training

sets. In Table 4.1, SR-TSG (P sr-tsg) denotes that we used only the topmost level

of the hierarchy. Similary, SR-TSG (P sr-tsg, P sr-cfg) denotes that we used only the

P sr-tsg and P sr-cfg backoff models.

Our best model, SR-TSG (P sr-tsg, P sr-cfg, P ru-cfg), outperformed both the CFG

and TSG models on both the small and large training sets. This result suggests

that the conventional TSG model trained from the vanilla treebank is insufficient

to resolve structural ambiguities caused by coarse symbol annotations in a train-

ing corpus. As we expected, symbol refinement can be helpful with the TSG

model for further fitting the training set and improving the parsing accuracy.

The performance of the SR-TSG parser was strongly affected by its backoff

models. For example, the simplest model, P sr-tsg, performed poorly compared

with our best model. This result suggests that the SR-TSG rules extracted from

the training set are very sparse and cannot cover the space of unknown syntax

patterns in the testing set. Therefore, sophisticated backoff modeling is essential

for the SR-TSG parser. Our hierarchical PYP modeling technique is a successful

way to achieve backoff smoothing from sparse SR-TSG rules to simpler CFG

rules, and offers the advantage of automatically estimating the optimal backoff

58

Figure 4.5: Histogram of SR-TSG and TSG rule sizes on the small training set.

The size is defined as the number of CFG rules that the elementary tree contains.

probabilities from the training set.

We compared the rule sizes and frequencies of SR-TSG with those of TSG. The

rule sizes of SR-TSG and TSG are defined as the number of CFG rules that the

elementary tree contains. Figure 4.5 shows a histogram of the SR-TSG and TSG

rule sizes (by unrefined token) on the small training set. For example, SR-TSG

rules: S1 → NP0VP1 and S0 → NP1VP2 were considered to be the same token.

As shown in Figure 4.5, there are almost the same number of SR-TSG rules and

TSG rules with size = 1. However, there are more SR-TSG rules than TSG rules

with size ≥ 2. This shows that an SR-TSG can use various large tree fragments

depending on the context, which is specified by the symbol subcategories.

4.5.2.2 Comparison of SR-TSG with Other Models

We compared the accuracy of the SR-TSG parser with that of conventional

high-performance parsers. Table 4.2 shows the F1 scores of an SR-TSG and

conventional parsers with the full training set. In Table 4.2, SR-TSG (single) is

a standard SR-TSG parser, and SR-TSG (multiple) is a combination of sixteen

independently trained SR-TSG models, following the work of [34].

Our SR-TSG (single) parser achieved an F1 score of 91.1%, which is a 6.4 point

59

Model F1 (≤ 40) F1 (all)

TSG (no symbol refinement)

Post and Gildea (2009) 82.6 -

Cohn et al. (2010) 85.4 84.7

TSG with Symbol Refinement

Zuidema (2007) - *83.8

Bansal et al. (2010) 88.7 88.1

SR-TSG (single) 91.6 91.1

SR-TSG (multiple) 92.9 92.4

CFG with Symbol Refinement

Collins (1999) 88.6 88.2

Petrov and Klein (2007) 90.6 90.1

Petrov (2010) - 91.8

Discriminative

Carreras et al. (2008) - 91.1

Charniak and Johnson (2005) 92.0 91.4

Huang (2008) 92.3 91.7

Table 4.2: Our parsing performance for the testing set compared with those of

other parsers. *Results for the development set (≤ 100).

improvement over the conventional Bayesian TSG parser reported by [10]. Our

model can be viewed as an extension of Cohn’s work by the incorporation of

symbol refinement. Therefore, this result confirms that a TSG and symbol re-

finement work complementarily in improving parsing accuracy. Compared with a

symbol-refined CFG model such as the Berkeley parser [35], the SR-TSG model

can use large tree fragments, which strengthens the probability of frequent syn-

tax patterns in the training set. Indeed, the few very large rules of our model

memorized full parse trees of sentences, which were repeated in the training set.

The SR-TSG (single) is a pure generative model of syntax trees but it achieved

results comparable to those of discriminative parsers. It should be noted that

60

(a) (b) (c)

Figure 4.6: Examples of SR-TSG rules obtained from full treebank data. Non-

terminal symbols created by binarization are shown with an over-bar.

discriminative reranking parsers such as [6] and [19] are constructed on a gen-

erative parser. The reranking parser takes the k-best lists of candidate trees

or a packed forest produced by a baseline parser (usually a generative model),

and then reranks the candidates using arbitrary features. Hence, we can expect

that combining our SR-TSG model with a discriminative reranking parser would

provide better performance than SR-TSG alone.

Recently, [34] has reported that combining multiple grammars trained indepen-

dently gives significantly improved performance over a single grammar alone. We

applied his method (referred to as a TREE-LEVEL inference) to the SR-TSG

model as follows. We first trained sixteen SR-TSG models independently and

produced a 100-best list of the derivations for each model. Then, we erased the

subcategory information of parse trees and selected the best tree that achieved the

highest likelihood under the product of sixteen models. The combination model,

SR-TSG (multiple), achieved an F1 score of 92.4%, which is a state-of-the-art re-

sult for the WSJ parsing task. Compared with discriminative reranking parsers,

combining multiple grammars by using the product model provides the advan-

tage that it does not require any additional training. Several studies [15, 50] have

proposed different approaches that involve combining k-best lists of candidate

trees. We will deal with those methods in future work.

4.5.2.3 Extracted Grammars

Figure 4.6 shows examples of SR-TSG rules obtained from full treebank data.

The symbol subcategories of internal nodes are marginalized. Figure 4.6a shows

61

an example lexicalized tree fragment rooted with a verb phrase (VP). In our

model, the nonterminal symbol “NP-14” generates lexical words such as “fi-

nancing”, “changes”, “impeachment”, “good will”, “plan” and “representation”,

which are frequently appeared with “makes”. Similarly, Figure 4.6b shows an ex-

ample lexicalized tree fragment rooted with an adjective phrase (ADJP). In our

model, the nonterminal symbol “JJ-4” generates lexical words such as “steady”,

“dogged”, “timely”, “limited” and “high”, which are frequently appeared with

“too”. From the above, it turns our that our SR-TSG model successfully clusters

similar words by symbol splitting. Figure 4.6c shows an example unlexicalized

tree fragment rooted with “S” (sentence). In our model, the nonterminal sym-

bol “VB-4” generates lexical words such as “comment”, “vote”, “invest”, “work”

and “play”. These large tree fragments with rich context information are un-

able to be obtained by previous SR-CFG and TSG models. The SR-TSG model

incorporates the strength of symbol refinement with that of large tree fragments.

Let us note the relation between SR-CFG, TSG and SR-TSG. TSG is weakly

equivalent to CFG and generates the same set of strings. For example, the TSG

rule“S→ (NP NNP) VP”with probability p can be converted to the equivalent

CFG rules as follows:“ S → NPNNP VP ”with probability p and“ NPNNP →
NNP”with probability 1. From this viewpoint, TSG utilizes surrounding symbols

(NNP of NPNNP in the above example) as latent variables with which to capture

context information. The search space of learning a TSG given a parse tree is

O (2n) where n is the number of internal nodes of the parse tree. On the other

hand, an SR-CFG utilizes an arbitrary index such as 0, 1, . . . as latent variables

and the search space is larger than that of a TSG when the symbol refinement

model allows for more than two subcategories for each symbol. Our experimental

results confirm that jointly modeling both latent variables using our SR-TSG

assists accurate parsing.

Our experiments primarily focus on evaluating parsing accuracy, however, we

remark on the decoding time of our SR-TSG parser for the future work. Since the

number of SR-TSG rules learned from the training set is much larger than that

of SR-CFG and TSG rules, the parsing time for test set increases substantially.

Indeed, our SR-TSG parser took more than 2800 minutes to parse 2416 sentences

in test set, run on Xeon 5600 3.33GHz. Previous work on CFG with symbol-

refinement has introduced coarse-to-fine approach to prune unneccesary gram-

mar rules and acceralate the parsing speed [36]. The basic idea of coarse-to-fine

62

pruning is as follows. First, parse the sentence with coarse (no symbol-refined)

grammar rules. The spans of input sentence that have low posterior probabilities

are pruned away. Then reparse the sentence with finer grammar rules consider-

ing only unpruned spans. This procedure is iterated from the coarsest grammar

rules to the finest ones. Surprisingly, Petrov et al. [36] showed that their SR-

CFG parser achieved more than 100 times parsing speed up by the coarse-to-fine

pruning with no loss in test set accuracy, which made their parser practical. We

believe that our SR-TSG parser could be benefit from the coarse-to-fine pruning

for parsing speed up and leave it to the future work.

Another direction is a lexicalization of tree substitution grammars. Lexicalized

TSG is defined as TSG where each tree fragment has at least one lexical word

as a leaf node. Since every tree fragments in the grammars has an anchor word,

we can easily detect unneccesary tree fragments for parsing the input sentence.

Besides, supertagging is a widely used technique for acceralating parsing speed of

lexicalized grammars. It assigns candidate lexicalized tree fragments to the input

words as a sequence tagging. Tree fragments that have low poeterior probabilities

are discarded, which leads to substantially faster parsing times. We could model

lexicalized SR-TSG and apply supertagging technique for decoding.

4.6 Related Work

Several studies have combined TSG induction and symbol refinement. An

adaptor grammar [24] is a sort of nonparametric Bayesian TSG model with sym-

bol refinement, and is thus closely related to our SR-TSG model. However, an

adaptor grammar differs from ours in that all its rules are complete: all leaf nodes

must be terminal symbols, while our model permits nonterminal symbols as leaf

nodes. Furthermore, adaptor grammars have largely been applied to the task

of unsupervised structural induction from raw texts such as morphology analy-

sis, word segmentation [23], and dependency grammar induction [9], rather than

constituent syntax parsing.

An all-fragments grammar [2] is another variant of TSG that aims to utilize

all possible subtrees as rules. It maps a TSG to an implicit representation to

make the grammar tractable and practical for large-scale parsing. The manual

symbol refinement described in [26] was applied to an all-fragments grammar and

this improved accuracy in the English WSJ parsing task. As mentioned in the

63

introduction, our model focuses on the automatic learning of a TSG and symbol

refinement without heuristics.

4.7 Summary

We have presented an SR-TSG, which is an extension of the conventional TSG

model where each symbol of tree fragments can be automatically subcategorized

to address the problem of the conditional independence assumptions of a TSG.

We proposed a novel backoff modeling of an SR-TSG based on the hierarchical

Pitman-Yor Process and sentence-level and tree-level blocked MCMC sampling

for training our model. Our best model significantly outperformed the conven-

tional TSG and achieved state-of-the-art result in a WSJ parsing task. Future

work will involve examining the SR-TSG model for different languages and for

unsupervised grammar induction.

64

65

Chapter 5

Pseudo Blocked Subtree Sampler

for Statistical Grammar

Induction

5.1 Introduction

Gibbs sampling [17] is a widely used technique for grammatical inference from

treebank data. It is one of the Markov Chain Monte Carlo methods, that is, it

generates samples from the given probability distribution based on constructing a

Markov Chain that has the target distribution as its equilibrium distribution. In

statistical grammar induction, the sampler generates a set of grammatical rules

from the posterior distribution given parse trees to find the optimal set that has

the highest posterior probability [11, 41, 42].

Gibbs sampler is characterized by sampling one variable at a time from the

conditional distribution of each variable. Therefore, it has a great advantage

when sampling from joint distribution is computationally expensive. However, it

has been shown that Gibbs sampler for grammar induction tends to get stuck in

local optima due to strong dependency among variables of tree structure [10].

A blocked sampling is a well-known technique to improve sampling efficiency by

grouping two or more variables together and sampling from their joint distribution

conditioned on all other variables, rather than sampling one variable at a time.

However, previous work on blocked MCMC sampling for grammar induction is

restricted to be applicable to only particular models, e.g., every variables are

assumed to be binary.

To tackle this problem, we propose a pseudo blocked subtree sampler for statis-

tical grammar induction. Our aim is to provide a blocked sampler which is widely

applicable to many grammatical models similar to Gibbs sampler and also able

to simultaneously update variables as many as possible. Our proposed method

differs from standard blocked samplers in that we construct a blocked sampler

and a standard MCMC sampler independently, and then run both samplers alter-

nately. Besides, the proposed method automatically determines the appropriate

size of blocks and updates all variables in the block simultaneously, instead of

giving the blocks manually as in previous work. Therefore, our method is inde-

pendent from particular grammatical models and able to handle variables each

of which has multiple value. It should be noted that our method is referred to

as a pseudo blocked subtree sampler since it does not construct an exact Markov

chain that has the target distribution as its equilibrium distribution, thus it is an

approximate sampler from the posterior distribution.

We applied the proposed method to the induction of symbol-refined context-

free grammars on the English Penn Treebank data. Our method obtained better

results than standard Gibbs sampling and blocked Gibbs sampling regardless of

the amount of data.

This chapter is organized as follows. In Section 5.2, we give an overview of

symbol-refined context-free grammars and Gibbs sampling used in our method.

In Section 5.3, we describe the theory and algorithm of our pseudo blocked subtree

sampling. In Section 5.4, we show experimental results of our method. In Section

5.5we present related work, and Section 5.6 concludes the chapter.

5.2 Background

5.2.1 Symbol-Refined Context-Free Grammars

Symbol-Refined Context-Free Grammar (SR-CFG) [31, 35] is an extension of

standard CFG where each symbol (e.g. NP and VP) is automatically divided into

subcategories such as NP-0 and NP-1 to fit training data, rather than extracting

large tree fragments. Our proposed method is applicable to many probabilistic

grammars, however, we use SR-CFG as an example since it underlies current

state-of-the-art parsers [34, 42]. Figure 5.1 shows an example parse tree and

Figure 5.2 shows an example derivation of SR-CFG.

66

Figure 5.1: Example parse tree.

Figure 5.2: Example SR-CFG derivation. Dotted line denotes a process of rewrit-

ing nonterminal symbol.

A SR-CFG rule e takes the form of Ax → ByCz, where A, B and C are

nonterminal symbols, and x, y and z are symbol subcategories, respectively.

We design a probabilistic model of SR-CFG based on Pitman-Yor process [37]

as follows.

e |Ax ∼ GAx

GAx ∼ PYP (dAx , θAx , P0 (· |Ax))

where Ax is a root nonterminal symbol of a SR-CFG rule e and x = 0, 1, . . . is an

index of the symbol subcategory. The Pitman-Yor process has three parameters:

(dAx , θAx , P0). P0 (· |Ax) is a base distribution over a space of SR-CFG rules rooted

with Ax, which provides the backoff probability of e. The remaining parameters

dxk
and θxk

control the strength of the base distribution.

We set the base distribution as follows.

P0 (e |Ax) = PMLE (A→ BC)× 1

|y|
× 1

|z|
where A → BC is an unrefined CFG rule of e and PMLE (e) is a maximum-

likelihood estimate of e, which is obtained from the training corpus. |y| and |z|
are the number of subcategories of y and z, respectively.

67

In case of a SR-CFG rule that has a single child node, i.e., e : Ax → By, the

base distribution is similarly defined as follows.

P0 (e |Ax) = PMLE (A→ B)× 1

|y|
We also define the base distribution for a lexical rule e : Ax → w as follows.

P0 (e |Ax) = PMLE (A→ w)

where w is a lexical word.

Integrating out all possible values of GX , the resulting distribution is computed

as follows.

P (ei |e1:i−1, Ax, dAx , θAx) = αei,Ax + βAxP0 (ei |Ax)

αei,Ax =
nei,Ax − dAx · tei,Ax

θAx + Σene,Ax

βAx =
θAx + dAx · Σete,Ax

θAx + Σene,Ax

where e1:i−1 = e1, . . . , ei−1 are previously generated SR-CFG rules, and nei,X

is the number of times ei has been used in e1:i−1. tei,X is the number of tables

labeled with ei in the Chinese Restaurant. n·,X =
∑

e ne,X and t·,X =
∑

e te,X are

the total counts of rules and tables, respectively.

The SR-CFG model is assumed to be context-free. Therefore, the probability

of generating a parse tree is simply the product of the rule probabilities as follows.

P (e) =

|e|∏
j=1

P (ej)

where e is a set of SR-CFG rules used in the derivation.

5.2.2 Statistical SR-CFG Induction by Gibbs Sampling

Recall that our task is an induction of grammatical rules from treebank data.

The posterior distribution over SR-CFG rules e given a parse tree t is computed

by using the Bayes’ rule:

68

Figure 5.3: Alternative representation of Figure 5.2 which assigns latent variables

to each node.

p (e |t) ∝ p (t |e) p (e)

where p (t |e) is either equal to 1 (when t and e are consistent) or 0 (otherwise).

Rather than dealing with e directly, we introduce a latent variable for each node

in a parse tree to represent a SR-CFG derivation. Figure 5.3 shows the alternative

representation of Figure 5.2 which assigns a latent variable to each node in a parse

tree. In Figure 5.3, each latent variable represents symbol subcategory. It should

be noted that other probabilistic grammars such as Tree Substitution Grammars

(TSG) and Tree Insertion Grammars (TIG) can be represented as the above latent

variable representation [11, 41, 48].

The optimal set of grammatical rules and parameters: ẑ, Θ̂ are obtained by

maximizing the posterior probability given parse trees {t} as follows.

ẑ, Θ̂ = argmax
z,Θ

P (z |{t} ; Θ)P (Θ)

where Θ is a set of parameters of the SR-CFG model. The derivation of SR-

CFG is uniquely determined from ẑ.

Gibbs sampling is widely used for the inference of latent variables and parame-

ters. As described above, Gibbs sampler performs one variable at a time from the

conditional distribution of each variable. The basic procedure is listed as follows:

1. Set initial variables z0 and initial parameters Θ0.

69

2. Iterate over the following processes by reaching the user-defined repeat

count:

(a) Pick z ∈ z at random.

(b) Sample the value of z according to P (z |z \ z,Θ) and update the value

of z.

(c) Sample the value of θ ∈ Θ according to P (θ |z,Θ \ θ) and update the

value of θ.

Since a SR-CFG rule is composed of several variables, it might take several steps

to replace a SR-CFG rule e with an another rule e′. Thus, if there exists a low-

likelihood pass from e to e′, it is difficult to reach e from e′ within a finite number

of iterations. A blocked Gibbs sampler improves the search efficiency by sampling

many variables at a time, however, it also gets stuck in a local optimum as the

training corpus becomes large.

5.3 Proposed Method

In this section, we propose a pseudo blocked subtree sampling for statistical

grammar induction. Our aim is to provide a blocked sampler which is widely ap-

plicable to many probabilistic grammars and also able to simultaneously samples

variables as many as possible. For this reason, we construct a pseudo blocked

sampler and a standard MCMC sampler independently, then run both samplers

alternately. Besides, the proposed method automatically determines the appro-

priate size of blocks and updates all variables in the block simultaneously, instead

of giving the blocks manually as in previous work. Therefore, our method is in-

dependent from particular probabilistic grammars and able to handle variables

each of which has multiple value.

5.3.1 Pseudo Blocked Subtree Sampling

Our proposed method constructs a block of common subtrees across parse trees

in a training corpus. It then samples from their joint distribution conditioned on

all other variables.

70

(a)

(b)

Figure 5.4: Example parse trees and the block Bs = {{z2, z3} , {z11, z12}}.

71

Let z = {z} be a set of latent variables and tree (z) be the subtree that z

indicates. For example, suppose z = {z1 = 0, z2 = 0, z3 = 1} in Figure 5.3, then

tree (z) = (NP-0 (DT-0 NP-1)). We define a block Bs as follows.

Bs ≡ {internal (z) |tree (z) = s ∧ ∩z = ∅} , (5.1)

where internal (z) is a set of all variables in tree (z) except the root and leaf

nonterminal nodes. The block Bs is constructed based on the value of z for

each sampling iteration. Figure 5.4 shows two example parse trees and the

block of variables in the example parse trees. In Figure 5.4, the block Bs =

{{z2, z3} , {z11, z12}} corresponds to the common subtrees: s = (A-0 (B-0 (C-1 (D-2 E-0)))).

A-0, D-2, E-0 are root or leaf nonterminal nodes in the subtree s. We exclude

those nodes from the block since changing their values affects the subtree of sur-

rounding nodes, e.g. (G-1 (A-0 K-0)). B-0 is a leaf node of s, however, its child

node has a terminal symbol (lexical word). Thus, it is included in the block since

changing the value of B-0 does not affect the surrounding subtrees.

After constructing blocks, our method samples all variables in the block ac-

cording to the joint probability conditioned on all other variables as follows.

P
(
{z}z∈Bs

∣∣z−,Θ) , (5.2)

where {z}z∈Bs
denotes a set of variables in Bs, and z− denotes all variables in

the model except the variables in {z}z∈Bs
.

Let c be the number of possible values z takes. The calculation cost of eq. 5.2

is O
(
c|z|×|Bs|

)
, which becomes computationally infeasible in practice as the size

of blocks, |Bs|, increases.
We tackle this problem by restrict corresponding variables to be the same values

before and after sampling (pseudo blocked sampling). Taking Figure 5.4 as an

example, suppose every z is a binary variable, our pseudo sampler considers only

the following four possibilities:

(z2, z3, z11, z12) = (0, 0, 0, 0) , (0, 1, 0, 1) , (1, 0, 1, 0) , (1, 1, 1, 1)

rather than total sixteen possibilities:

(z2, z3, z11, z12) = (0, 0, 0, 0) , (0, 0, 0, 1) , . . . (1, 1, 1, 0) , (1, 1, 1, 1) .

72

Thanks to this restriction, the calculation cost of our pseudo sampling reduces

to O
(
c|z|
)
, which is independent from the block size |Bs|. However, the sampler

does not construct an exact Markov chain that has the posterior distribution as

its equilibrium distribution. Therefore, in this work, we run a standard MCMC

sampler such as Gibbs sampler and our pseudo blocked subtree sampler alter-

nately. The method of constructing blocks and the algorithm of pseudo blocked

subtree sampling are presented in the following sections.

5.3.2 Block Construction

Our method needs to search common subtrees with latent variables in each

sampling iteration to construct the blocks B = {Bs}. To archive this, we take

a pattern mining approach to enumerate common subtrees in a training corpus.

The main procedure is listed as follows.

1. Initialize the candidate subtree as a minimal tree, that is, a tree that has

only single node.

2. Expand the candidate subtree by appending a node as a child. Calculate

the frequency of every candidate subtree.

3. If the frequency becomes one or the number of nodes reaches the user-

defined maximum, the algorithm terminates. Else go back to 2.

This algorithm is essentially the same as the frequent tree pattern mining al-

gorithm such as FREQT [1]. After the method finds a set of common subtree

patterns, it randomly picks a subtree s, then construct the block Bs until every

variable in the corpus belongs to any blocks.

5.3.3 Proposed Algorithm

As described above, our proposed method runs a standard MCMC sampler and

the pseudo blocked subtree sampler alternately. The procedure of our method is

shown in algorithm 4. The input of algorithm 4 is the number of iterations: I,

parse trees: {t}, and the frequency of our pseudo blocked subtree sampling: f .

We will discuss the frequency f later.

73

The algorithm starts with the standard Gibbs sampling (line 4). Other MCMC

samplers can be used instead of Gibbs sampler. Then, it runs the pseudo blocked

subtree sampling when the current iteration i satisfies the user-defined condition

regarding the frequency f . For example, suppose f = 10, the sampler runs the

pseudo blocked sampling once every ten times of Gibbs sampling. We introduce

the frequency f to enable us to adjust the trade-off between calculation cost and

search efficiency. The effect of the frequency f is evaluated in our experiment.

The pseudo blocked subtree sampler firstly finds common subtree patterns by

pattern mining approach (line 9). Then, it constructs blocks B. The variable Z

is a storage of already assigned variable z.

The procedure is that it randomly picks a subtree s, then construct Bs sequen-

tially (line 15). Then, every variables in the block are removed from Z (line 17).

Z becomes empty set when every variable z belongs to any blocks, and the block

construction is completed.

The pseudo blocked subtree sampler secondly updates the value of variables.

Specifically, pick a block Bs randomly from B, then calculate the probabilities

of candidate values according to eq. 5.2 and generate samples (line 21). Finally,

after the sampling procedures, recover SR-CFG rules ê from the estimated values

ẑ (line 26).

5.4 Experiment

5.4.1 Setting

We conducted experiments on the Wall Street Journal (WSJ) portion of the

English Penn Treebank data set [30]. We prepared two types of data set: Penn-A

(sections 2 for training, 1989 sentences) and Penn-B (section 2-11 for training,

18581 sentences) to evaluate the effect of the data size. The treebank data is right-

binarized [31] to construct grammars with only unary and binary productions. We

replace lexical words with count ≤ 1 in the training data with the special word:

“UNKNOWN”. We also split off all the function tags and eliminated empty nodes

from the data set, following [22].

We used the SR-CFG model based on Pitman-Yor process described in the

section 5.2. We initialized the latent variables randomly and ran our algorithm

74

for 5000 iterations. In all our experiments, we conducted five independent runs

to train our model and evaluated the likelihood of our model.

5.4.2 Results and Discussion

5.4.2.1 Comparison of the Frequency of Pseudo Sampling

We evaluated the effect of our pseudo sampling frequency f on the search

efficiency. In this experiment, the number of subcategories is set to be 2, and

every latent variable is initialized to be 0 or 1 randomly. Figure 5.5 shows the

comparison of log-likelihood of our model with various values of f on Penn-A

and Penn-B data set. Since the number of sampling iterations depends on the

frequency, the vertical axis indicates running time (minutes) rather than the

number of sampling iterations.

As shown in Figure 5.5, search efficiency, that is, running time of arriving

high-likelihood, differs among the frequencies. In particular, running the pseudo

blocked sampling for every 10 or 100 Gibbs iterations was better than every

1 Gibbs iteration. This is because the calculation cost of our pseudo blocked

sampling is much higher than that of Gibbs sampling. Compared the results on

Penn-A data set with that on Penn-B data set, the setting of f = 10 performs

the best on both data set. However, the result of f = 100 is better than that of

f = 1 on Penn-A data set, which contrasts with the result on Penn-B data set.

We speculate that the performance gap is because the pseudo blocked sampling

becomes relatively effective for finding high-likelihood values as the data size

increases.

5.4.2.2 Comparison of Other Methods

We compared our pseudo blocked sampler with conventional Gibbs sampler

and blocked Gibbs sampler. The blocked Gibbs sampler we used is a method

of jointly sampling variables of parent and child nodes in a parse tree that

forms a SR-CFG rule, instead of sampling one variable at a time. For exam-

ple, in Figure 5.3, the blocked Gibbs sampler constructs three blocks: B1 =

{z1, z2, z3} , B2 = {z4} , B3 = {z5} and samples the values of blocked variables

from the joint probability. Figure 5.6 shows the comparison of our method with

conventional methods. In this experiment, the number of subcategories is set to

75

(a) Result of Penn-A data set.

(b) Result of Penn-B data set.

Figure 5.5: Comparison of log-likelihood of our model among various values of f .

76

(a) Result of Penn-A data set.

(b) Result of Penn-B data set.

Figure 5.6: Comparison of the pseudo blocked sampler with other methods. The

number of subcategories is 2.

77

(a)

(b)

Figure 5.7: Comparison of the pseudo blocked sampler with other methods. The

number of subcategories is 2.

78

be 2, and every latent variable is initialized to be 0 or 1 randomly. Following the

previous experiment, the frequency f of our sampler is set to be 10.

As shown in Figure 5.6, our proposed method performs the best on both Penn-

A and Penn-B data set. For Penn-A data set, the blocked Gibbs sampling took

longer time to achieve high-likelihood than standard Gibbs sampling despite that

the blocked Gibbs sampling updated several variables at a time. This result

indicates that iterating low-cost sampler many times may be more efficient than

calculating joint probability for blocked sampler on small data set. However, in

Figure 5.6a, the difference between the log-likelihood of standard Gibbs sampling

and that of blocked Gibbs sampling gradually decreases and then becomes almost

equivalent at approximately 60 minutes of running time. This suggests that the

standard Gibbs sampler gets stuck when it passes about 30 minutes, while the

blocked Gibbs sampler is not likely to get stuck because of updating several

variables in a parse tree at a time. On the other hand, our pseudo sampler jointly

updates many variables across parse trees, thus performs better than standard

and blocked Gibbs samplers.

For Penn-B data set, standard Gibbs sampling and blocked Gibbs sampling

performs almost the same. Compared with Penn-A data set, the blocked sampling

gets an advantage over standard Gibbs sampling since standard Gibbs sampling

becomes likely to get stuck into a local optimum as the data size increases. Our

pseudo blocked sampling is confirmed to perform extremely well even the data

size increases.

We next set the number of subcategories to be 3 and compared our method

with conventional methods. Figure 5.7 shows the comparison of our method with

conventional methods. Following the previous experiments, every latent variable

is initialized to be 0 , 1 and 2 randomly. As shown in Figure 5.7, our method

performs the best on both Penn-A and Penn-B data set. Compared with the

setting of 2 subcategories, the blocked Gibbs sampling underperforms standard

Gibbs sampling. The reason is that the cost of computing the joint probability

increases exponentially as the number of subcategories increases. In contrast, our

method reduces the calculation cost by performing the blocked sampling with an

appropriate frequency, thus perform efficiently even the number of subcategories

increases.

79

5.5 Related Work

Type-based sampling [28] is an approach for improving search efficiency of

Gibbs sampler by sampling the same type of variables at a time. If variables

and those surrounding variables (parent and child nodes) have the same values,

they are called as the same type. It has been shown that type-based sampling

performs more efficient than Gibbs sampling, however, it is assumed that the

probability model is based on Dirichlet process prior and every variables in the

model is binary. Therefore, the type-based sampling is unable to be applied to

our Pitman-Yor based SR-CFG model.

Table label resampling [23] is a blocked subtree sampling for an inference of

adaptor grammars [21]. It is similar to our method in that table label resampling

and standard MCMC sampling is constructed independently and runs both sam-

plers alternately. However, adaptor grammar is restricted that all leaf nodes of

the rules in adaptor grammars must be terminal symbols. Furthermore, adaptor

grammars have largely been applied to the task of unsupervised structural in-

duction from raw texts. Therefore, table label resampling is a blocked sampling

method for sequential data rather than tree-structured data.

5.6 Summary

We proposed a pseudo blocked subtree sampling to improve search efficiency

of statistical grammar induction. Our method differs from standard blocked

samplers in that we construct a blocked sampler and a standard MCMC sampler

independently, then run both samplers alternately. Besides, the proposed method

automatically determines the appropriate size of blocks and updates all variables

in the block simultaneously, instead of giving the blocks manually as in previous

work. Therefore, our method is independent from particular grammatical models

and able to handle variables each of which has multiple value. Our method

generates samples from an approximate posterior distribution over grammatical

rules, however, the experimental results show that our method obtained better

results than standard Gibbs sampling and blocked Gibbs sampling regardless of

the amount of data.

80

Algorithm 4: Pseudo blocked subtree sampling

Input : number of iterations: I, parse trees: {t}, frequency of pseudo

blocked subtree sampling: f

Output: estimated elementary trees: ê, estimated parameters: Θ̂

1 for i = 1, . . . , I do

2 Initialize z,Θ

// Gibbs sampling

3 foreach z in random order do

4 Generate z′ according to P (z |z \ z,Θ)

5 z ← z′

6 end

7 Update parameters Θ

8 if i mod f = 0 then

// Construct block

9 Find subtree patterns S by subtree expansion method

10 Z ← z

11 B← Ø

12 while Z ̸= Ø do

13 Pick subtree s ∈ S at random

14 Construct Bs

15 B← B ∪Bs

16 foreach z in Bs do

17 Z ← Z \ z
18 end

19 end

// Pseudo Blocked subtree sampling

20 foreach Bs ∈ B in random order do

21 Generate {z}′ according to P
(
{z}z∈Bs

|z−,Θ
)

22 {z} ← {z}′

23 end

24 end

25 end

26 Recover ê from ẑ

81

83

Chapter 6

Conclusion

This chapter summarizes the thesis and gives further directions we intend to

explore.

6.1 Summary

This thesis aimed to construct an accurate parser based on the statistical mod-

eling of rich, powerful, and linguistically-motivated tree-generating grammars.

We argued two major problems of conventional TSG models for syntactic parsing

and proposed more expressive grammars to overcome the problems.

In Chapter 3, we tackled the problem of optional-obligatory distinction by

proposing to incorporate an insertion operator into the conventional TSG model,

i.e., Tree Insertion Grammar (TIG). We developed a probabilistic model that

automatically induces TIG from a treebank, instead of using heuristic extraction

rules. We also developed grammar decomposition rules to transform TIG deriva-

tion into equivalent CFG for efficient training. For a small dataset, our TIG

model outperformed CFG and TSG. For a large dataset, our model achieved

comparable parsing results to the TSG model, making the number of grammars

much smaller than TSG.

In Chapter 4, we presented an SR-TSG, which is an extension of the conven-

tional TSG model where each symbol of tree fragments can be automatically

subcategorized to address the problem of the conditional independence assump-

tions of a TSG. We proposed a novel backoff modeling of an SR-TSG based on the

hierarchical Pitman-Yor Process and sentence-level and tree-level blocked MCMC

sampling for training our model. Our best model significantly outperformed the

conventional TSG and achieved state-of-the-art result in a WSJ parsing task.

In Chapter 5, we proposed a pseudo blocked subtree sampling to improve search

efficiency of statistical grammar induction. Our method differs from standard

blocked samplers in that we construct a blocked sampler and a standard MCMC

sampler independently, then run both samplers alternately. Besides, the proposed

method automatically determines the appropriate size of blocks and updates all

variables in the block simultaneously, instead of giving the blocks manually as

in previous work. Therefore, our method is independent from particular gram-

matical models and able to handle variables each of which has multiple value.

Our method generates samples from an approximate posterior distribution over

grammatical rules, however, the experimental results show that our method ob-

tained better results than standard Gibbs sampling and blocked Gibbs sampling

regardless of the amount of data.

6.2 Future Directions

There are several open problems we intend to explore.

First, this thesis focused primarily on modeling and learning of probabilistic

grammars. Decoding is an another part to be considered for making the parser

practical. Rich but complex grammars contain a large number of grammar rules

and thus the parsing (decoding) time becomes seriously slow. Therefore, efficient

decoding algorithms of the grammars are also important for practical use. The

pruning algorithms such as coarse-to-fine decoding [36] is one possibility to be

explored for fast decoding when the grammar rules are large.

Second, our grammars require a large amount of human-annotated resources

of syntax trees. However, a large amount of human-annotated resources are

not readily available to many languages since human-annotation is costly and

time-consuming. Therefore, we will explore semi-supervised and unsupervised

approaches for statistical grammar induction. Both approaches utilize unanno-

tated data for an inference of probabilistic grammars. One issue is that the

search space over parameters is large since there is no correct tree structure in

the training data. Efficient learning algorithms such as parallelization might be

required.

Third, we will apply our parser to the NLP systems such as machine translation

84

and summarization to validate the efficiency of our statistical parsers. Besides,

we will explore to apply our grammars and parsing algorithms to other fields such

as Bioinformatics and Music Information Retrieval.

85

87

Bibliography

[1] Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki Arimura, and Setsuo

Arikawa. Optimized substructure discovery for semi-structured data. In Pro-

ceedings of 6th European Conference on Principles and Practice of Knowledge

Discovery in Databases (PKDD), pages 1–14, 2002.

[2] Mohit Bansal and Dan Klein. Simple, accurate parsing with an all-fragments

grammar. In Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics (ACL), pages 1098–1107, Uppsala, Sweden, July

2010. Association for Computational Linguistics.

[3] Phil Blunsom and Trevor Cohn. Unsupervised induction of tree substitution

grammars for dependency parsing. Proceedings of the 2010 Conference on

Empirical Methods in Natural Language Processing (EMNLP), pages 1204–

1213, 2010.

[4] Xavier Carreras and Michael Collins. Non-projective parsing for statistical

machine translation. In Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 200–209, Singa-

pore, August 2009. Association for Computational Linguistics.

[5] Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of

the First Conference of the North American Chapter of the Association for

Computational Linguistics (NAACL), pages 132–139, Seattle, Washington,

April 29 - May 04 2000. Morgan Kaufmann Publishers, San Francisco, CA,

USA.

[6] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and max-

ent discriminative reranking. Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics (ACL), 1:173–180, 2005.

[7] J. Chen, S. Bangalore, and K. Vijay-Shanker. Automated extraction of

tree-adjoining grammars from treebanks. Natural Language Engineering,

12(03):251–299, 2006.

[8] David Chiang. Statistical Parsing with an Automatically Extracted Tree Ad-

joining Grammar, chapter 16, pages 299–316. CSLI Publications, 2003.

[9] Shay B Cohen, David M Blei, and Noah A Smith. Variational inference for

adaptor grammars. In Proceedings of Human Language Technologies: The

2010 Annual Conference of the North American Chapter of the Association

for Computational Linguistics (HLT-NAACL), pages 564–572, 2010.

[10] Trevor Cohn and Phil Blunsom. Blocked inference in Bayesian tree substi-

tution grammars. In Proceedings of the ACL 2010 Conference Short Papers,

pages 225–230, Uppsala, Sweden, July 2010. Association for Computational

Linguistics.

[11] Trevor Cohn, Sharon Goldwater, and Phil Blunsom. Inducing compact but

accurate tree-substitution grammars. In Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North American Chap-

ter of the Association for Computational Linguistics (HLT-NAACL), pages

548–556, Boulder, Colorado, June 2009. Association for Computational Lin-

guistics.

[12] Michael Collins. Head-driven statistical models for natural language parsing.

Computational Linguistics, 29(4):589–637, 2003.

[13] Steve DeNeefe and Kevin Knight. Synchronous tree adjoining machine trans-

lation. In Proceedings of the 2009 Conference on Empirical Methods in Natu-

ral Language Processing (EMNLP), pages 727–736, Singapore, August 2009.

Association for Computational Linguistics.

[14] Thomas S Ferguson. A Bayesian analysis of some nonparametric problems.

Annals of Statistics, 1:209–230, 1973.

[15] Victoria Fossum and Kevin Knight. Combining constituent parsers. Proceed-

ings of Human Language Technologies: The 2009 Annual Conference of the

North American Chapter of the Association for Computational Linguistics,

Companion Volume: Short Papers (HLT-NAACL), pages 253–256, 2009.

88

[16] Michel Galley, Mark Hopkins, Kevin Knight, and Daniel Marcu. What’s

in a translation rule. In Proceedings of the North American Chapter of the

Association for Computational Linguistics (HLT-NAACL), volume 4, pages

273–280. Boston, 2004.

[17] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distribu-

tions, and the Bayesian restoration of images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-6:721–741, 1984.

[18] W.K. Hastings. Monte carlo sampling methods using markov chains and

their applications. Biometrika, 57:97–109, 1970.

[19] Liang Huang. Forest reranking : Discriminative parsing with non-local fea-

tures. pages 586–594, Columbus, Ohio, June 2008. Association for Compu-

tational Linguistics.

[20] Hemant Ishwaran and Lancelot F James. Gibbs sampling methods for

stick-breaking priors. Journal of the American Statistical Association,

96(453):161–173, 2001.

[21] M. Johnson, T.L. Griffiths, and S. Goldwater. Adaptor grammars: A frame-

work for specifying compositional nonparametric bayesian models. Advances

in Neural Information Processing Systems (NIPS), 19:641, 2007.

[22] Mark Johnson. PCFG models of linguistic tree representations. Computa-

tional Linguistics, 24(4):613–632, 1998.

[23] Mark Johnson and Sharon Goldwater. Improving nonparameteric Bayesian

inference: Experiments on unsupervised word segmentation with adaptor

grammars. In Proceedings of Human Language Technologies: The 2009 An-

nual Conference of the North American Chapter of the Association for Com-

putational Linguistics (HLT-NAACL), pages 317–325, Boulder, Colorado,

June 2009. Association for Computational Linguistics.

[24] Mark Johnson, Thomas Griffiths, and Sharon Goldwater. Bayesian inference

for PCFGs via Markov chain Monte Carlo. In Proceedings of Human Lan-

guage Technologies 2007: The Conference of the North American Chapter of

89

the Association for Computational Linguistics; Proceedings of the Main Con-

ference (HLT-NAACL), pages 139–146, Rochester, New York, April 2007.

Association for Computational Linguistics.

[25] A.K. Joshi. Tree adjoining grammars: How much context-sensitivity is re-

quired to provide reasonable structural descriptions. Natural Language Pars-

ing: Psychological, Computational, and Theoretical Perspectives, pages 206–

250, 1985.

[26] Dan Klein and Christopher D Manning. Accurate unlexicalized parsing.

Proceedings of the 41st Annual Meeting on Association for Computational

Linguistics (ACL), 1:423–430, 2003.

[27] K. Lari and S.J. Young. Applications of stochastic context-free grammars

using the inside-outside algorithm. Computer Speech & Language, 5(3):237–

257, 1991.

[28] Percy Liang, Michael I. Jordan, and Dan Klein. Type-based MCMC.

In Human Language Technologies: The 2010 Annual Conference of the

North American Chapter of the Association for Computational Linguistics

(NAACL), pages 573–581, Los Angeles, California, June 2010. Association

for Computational Linguistics.

[29] Yudong Liu and Anoop Sarkar. Experimental evaluation of LTAG-based

features for semantic role labeling. In Proceedings of the 2007 Joint Con-

ference on Empirical Methods in Natural Language Processing and Com-

putational Natural Language Learning (EMNLP-CoNLL), pages 590–599,

Prague, Czech Republic, June 2007. Association for Computational Linguis-

tics.

[30] Mitchell P Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-

ing a large annotated corpus of english: The Penn Treebank. Computational

Linguistics, 19:313–330, 1993.

[31] T. Matsuzaki, Y. Miyao, and J. Tsujii. Probabilistic CFG with latent an-

notations. In Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics (ACL), pages 75–82. Association for Computa-

tional Linguistics, 2005.

90

[32] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and

E. Teller. Equations of state calculations by fast computing machines. Jour-

nal of Chemical Physics, 21:1087–1091, 1953.

[33] Radford M Neal. Slice sampling. Annals of statistics, pages 705–741, 2003.

[34] Slav Petrov. Products of random latent variable grammars. Proceedings of

Human Language Technologies: The 2010 Annual Conference of the North

American Chapter of the Association for Computational Linguistics (HLT-

NAACL), pages 19–27, 2010.

[35] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accu-

rate, compact, and interpretable tree annotation. In Proceedings of the 21st

International Conference on Computational Linguistics and the 44th An-

nual Meeting of the Association for Computational Linguistics (ICCL-ACL),

pages 433–440, Sydney, Australia, July 2006. Association for Computational

Linguistics.

[36] Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In

Human Language Technologies 2007: The Conference of the North American

Chapter of the Association for Computational Linguistics (NAACL), pages

404–411. Association for Computational Linguistics, April 2007.

[37] J. Pitman and M. Yor. The two-parameter Poisson-Dirichlet distribution

derived from a stable subordinator. The Annals of Probability, 25(2):855–

900, 1997.

[38] Matt Post and Daniel Gildea. Bayesian learning of a tree substitution gram-

mar. In Proceedings of the ACL-IJCNLP 2009 Conference Short Papers,

pages 45–48, Suntec, Singapore, August 2009. Association for Computational

Linguistics.

[39] Y. Schabes and R.C. Waters. Tree insertion grammar: a cubic-time, parsable

formalism that lexicalizes context-free grammar without changing the trees

produced. Fuzzy Sets and Systems, 76(3):309–317, 1995.

[40] Jayaram Sethuraman. A constructive definition of dirichlet priors. Statistica

Sinica, 4:639–650, 1994.

91

[41] Hiroyuki Shindo, Akinori Fujino, and Masaaki Nagata. Insertion opera-

tor for bayesian tree substitution grammars. In Proceedings of the 49th

Annual Meeting of the Association for Computational Linguistics: Human

Language Technologies (ACL-HLT), pages 206–211, Portland, Oregon, USA,

June 2011. Association for Computational Linguistics.

[42] Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino, and Masaaki Nagata.

Bayesian symbol-refined tree substitution grammars for syntactic parsing.

In Proceedings of the 50th Annual Meeting of the Association for Computa-

tional Linguistics, pages 440–448, Jeju Island, Korea, July 2012. Association

for Computational Linguistics.

[43] Y. W. Teh. A Bayesian interpretation of interpolated Kneser-Ney. Technical

Report TRA2/06, School of Computing, National University of Singapore,

2006.

[44] Y. W. Teh. A hierarchical Bayesian language model based on Pitman-Yor

processes. In Proceedings of the 21st International Conference on Computa-

tional Linguistics and 44th Annual Meeting of the Association for Compu-

tational Linguistics (ICCL-ACL), pages 985–992, 2006.

[45] J Tenenbaum, TJ O’Donnell, and ND Goodman. Fragment grammars: Ex-

ploring computation and reuse in language. MIT Computer Science and

Artificial Intelligence Laboratory Technical Report Series, 2009.

[46] Mengqiu Wang, Noah A Smith, and Teruko Mitamura. What is the jeopardy

model ? a quasi-synchronous grammar for QA. Proceedings of the 2007

Joint Conference on Empirical Methods in Natural Language Processing and

Computational Natural Language Learning (EMNLP-CoNLL), pages 22–32,

2007.

[47] Fei Xia. Extracting tree adjoining grammars from bracketed corpora. In

Proceedings of the 5th Natural Language Processing Pacific Rim Symposium

(NLPRS), pages 398–403, 1999.

[48] Elif Yamangil and Stuart Shieber. Estimating compact yet rich tree insertion

grammars. In Proceedings of the 50th Annual Meeting of the Association for

Computational Linguistics (ACL), pages 110–114, Jeju Island, Korea, July

2012. Association for Computational Linguistics.

92

[49] Elif Yamangil and Stuart M Shieber. Bayesian synchronous tree-substitution

grammar induction and its application to sentence compression. In Pro-

ceedings of the 48th Annual Meeting of the Association for Computational

Linguistics (ACL), pages 937–947, 2010.

[50] Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou Li. K-best combina-

tion of syntactic parsers. Proceedings of the 2009 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1552–1560, 2009.

[51] Willem Zuidema. Parsimonious data-oriented parsing. In Proceedings of the

2007 Joint Conference on Empirical Methods in Natural Language Process-

ing and Computational Natural Language Learning (EMNLP-CoNLL), pages

551–560, 2007.

93

95

List of Publications

Journal Papers

1. Hiroyuki Shindo, Yuji Matsumoto and Masaaki Nagata. “Blocked Subtree

Sampler for Statistical Grammar Induction”. IPSJ Transactions on Math-

ematical Modeling and Its Applications (TOM), to appear. (in Japanese)

2. Hiroyuki Shindo, Akinori Fujino and Masaaki Nagata. “A Probabilistic

Model of Tree Insertion Grammars Based on Pitman-Yor Processes”. IPSJ

Transactions on Mathematical Modeling and Its Applications (TOM), Vol.

5, No. 3, pp. 95-106, 2012. (in Japanese)

Conference Papers

1. Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino and Masaaki Nagata. “Sta-

tistical Parsing with Symbol-Refined Tree Substitution Grammars”. In

Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), pp. 3082-3086, August 2013.

2. Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino and Masaaki Nagata. “Bayesian

Symbol-Refined Tree Substitution Grammars for Syntactic Parsing”. In

Proceedings of the Association for Computational Linguistics (ACL), pp.

440-448, July 2012. (Best Paper Award)

3. Hiroyuki Shindo, Akinori Fujino and Masaaki Nagata. “Insertion Operator

for Bayesian Tree Substitution Grammars”. In Proceedings of the Associ-

ation for Computational Linguistics (ACL), pp. 206-211, June 2011.

Awards

1. Computer Science Research Award for Young Scientists, Information Pro-

cessing Society of Japan, “A Probabilistic Model of Tree Insertion Gram-

mars Based on Pitman-Yor Processes”.

2. Best Paper Award, the 50th Annual Meeting of the Association for Com-

putational Linguistics, “Bayesian Symbol-Refined Tree Substitution Gram-

mars for Syntactic Parsing”.

3. Best Paper Award, the 18th Annual Meeting of the Association for Natural

Language Processing (domestic conference), “Symbol-Refined Tree Substi-

tution Grammars based on Pitman-Yor Processes and its Application to

Syntactic Parsing”.

Other Publications

1. Hiroyuki Shindo, Yuji Matsumoto and Masaaki Nagata. “Blocked Subtree

Sampler for Statistical Grammar Induction”. IPSJ SIG Technical Report,

MPS-93, No. 6, pp. 1-6, 2013. (in Japanese)

2. Hiroyuki Shindo, Tsutomu Hirao, Jun Suzuki, Akinori Fujino and Masaaki

Nagata. “TripleEye: Mining Closed Itemsets with Minimum Length Thresh-

olds based on Ordered Inclusion Tree”. IPSJ Transactions on Databases

(TOD), Vol. 5, No. 3, pp. 15-25, September 2012.

3. Hiroyuki Shindo, Akinori Fujino and Masaaki Nagata. “A Probabilistic

Model of Tree Insertion Grammars Based on Pitman-Yor Processes”. IPSJ

SIG Technical Report, MPS-88, No. 12, pp. 1-6, 2012. (in Japanese)

4. Hiroyuki Shindo, Yusuke Miyao, Akinori Fujino and Masaaki Nagata. “Symbol-

Refined Tree Substitution Grammars based on Pitman-Yor Processes and

its Application to Syntactic Parsing”. In Proceedings of the 18th Annual

Meeting of the Association for Natural Language Processing (NLP), 2012.

(in Japanese)

96

5. Hiroyuki Shindo, Akinori Fujino and Masaaki Nagata. “Word Alignment

with Synonym Information”. IPSJ Transactions on Mathematical Modeling

and Its Applications (TOM), Vol. 4, No. 2, pp. 13-22, 2011. (in Japanese)

6. Sanae Fujita, Kevin Duh, Akinori Fujino, Hirotoshi Taira and Hiroyuki

Shindo. “Effectiveness of Automatic Expansion of Training Data for Japanese

Word Sense Disambiguation”. Journal of natural language processing Vol.

18, No. 3, pp. 273-291, 2011. (in Japanese)

7. Hiroyuki Shindo, Akinori Fujino and Masaaki Nagata. “Bayesian Induction

of Tree Adjoining Grammars”. In Proceedings of the 17th Annual Meet-

ing of the Association for Natural Language Processing (NLP), 2011. (in

Japanese)

8. Hiroyuki Shindo, Akinori Fujino and Masaaki Nagata. “Word Alignment

with Synonym Regularization”. In Proceedings of the Association for Com-

putational Linguistics (ACL), pp. 137-141, July 2010.

9. Hiroyuki Shindo, Akinori Fujino and Masaaki Nagata. “Word Alignment

with Synonym Information”. IPSJ SIG Technical Report, MPS-80, No. 9,

pp. 1-6, 2010. (in Japanese)

97

