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Clinical Practice∗

Nor Aini Zakaria

Abstract

This study reports the quantitative classification of falling risk among elderly

using the wearable inertial sensors, which combines accelerometer and gyrosen-

sors devices, applied during standard physical assessment test; Timed Up and

Go(TUG) test. The total time duration to complete the whole experiment were

used as threshold to categorize the 38 subjects into two groups; as low fall risk

(LFR) and high fall risk (HFR). During the experiment, one sensor was attached

at the subject’s waist dorsally. The acceleration and angular velocity signals in

three directions were extracted using the sensors, during the test. The analysis

then divided the whole test into phases: sit-bend, bend-stand, walking, turn-

ing, stand-bend, and bend-sit. Comparisons between the two groups using time

parameters along with RMS value, amplitude and other parameters that was

analysed from the extracted signal revealed the activities in each phase.

Using obtained parameters, we demonstrate classification process using k-

nn for dual parameters classification, and multivariate analysis; PCA, LDA and

random forest analysis for classification using multiparameters. In general, our

study improves the classification using multi parameters in phases, providing

movement information to the therapist by harnessing the quantitative information

from the parameters. This is an improved method in evaluating fall risk, which

promises benefits in terms of improvement of elderly Quality of Life(QOL).
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Chapter 1

Introduction

The Prophet (pbuh) said: ”If a

young man honors an elderly on

account of his age, Allah appoints

someone to honor him in his old

age.”

At-Tirmidhi

This dissertation summarizes the author’s research experience and results

achieved in applying of wearable inertial sensors in clinical analysis. The ca-

pability of the wearable inertial sensors to extract and provides parameters of

subject’s dynamic movement were encouraged this research. This project also

attempt to classify the elderly subject into two groups in determining the fall

risk among elderly. This chapter describes the general background, the research

problem and explains what is to be expected from the rest of the dissertation.

A standard test for physical activity assessment, which had been widely used

by therapists all over the world, called TUG test was reported by [1]. This test

has been extensively used to asses balance and mobility in elderly [2–4]. The test

is considered simple because it uses total test time as a threshold in the evaluation

of fall risk in the elderly. [5] suggested using 13.5 seconds duration to complete

the whole test as the threshold to classify fallers and non-fallers. [6, 7] claimed

that the sensitivity of the current approach depends on subjective judgement and

the experience of the therapist. They suggested that using the wearable inertial
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sensors to classify the fall risk among the elderly will avoid the inconsistent results.

In recent studies, researchers used three wearable inertial sensors to determine the

phase transition, which were attached at the waist dorsally and also at both right

and left thighs [6–8]. An alternative approach was developed by [9] to identify

basic movements from the signals obtained from a single, waist-mounted triaxial

accelerometer. Their study suggested dividing the movement into activities: falls,

and walking transition between postural orientations and rest. The postural

orientations during rest were classified as sitting, standing, or lying. In this

study, a wearable inertial sensor attached at the waist dorsally was used for

determining phase transitions and extracting phase activity during the TUG test.

To circumvent the motions artifacts, the sensor must be securely attached to

the waist. Accordingly, the sensor was slotted in a belt that was attached to

the waist.The wearable inertial sensor is a combination of an accelerometer and

gyrosensors that extract 3-dimensional acceleration signals and also 3-dimensional

angular velocity signals. Use of three attached sensors would restrain the subject,

therefore a new system was designed to be more easily handled by therapists.

Tight fitting sensors need to be attached to the thighs in order to ensure they

will not move around during the test. As a result, therapists could require less

time to set up the sensors. In addition, it would be easier to handle 6 signals

using a sensor instead of 18 signals from 3 sensors. Furthermore, the complexity

of synchronization between sensors could be avoid.

Focusing only on time parameters and ignoring all activity involved in the

test without separating the performance of the subject into phases, limits the

evaluation possibilities. This study aims to show that quantitative analysis using

the wearable inertial sensor attached only at the waist dorsally could classify

falling risk among the elderly not only with a single parameter, but with multi-

parameters simultaneously.

1.1. Background and Motivation

Total Japan’s population as per calculated until October 2010 is estimated to be

about 128 millions comprises of 29 millions people are elderly; persons 65 years

and above. They represented 23% of the Japan’s population which estimated
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about one in every five Japanese are elderly.

Table 1.1: Rank is the order of 24 countries listed, from longest to the shortest life

expectancy. Source: WHO, ”The World Health Report 2011”

Country Male Rank Female Rank Both Rank

Brazil 70 11 77 10 73 11

Italy 79 3 84 3 82 2

Canada 79 3 83 4 81 3

Netherlands 78 4 83 4 81 3

USA 76 6 81 6 79 5

Norway 79 3 83 4 81 3

China 72 9 76 11 74 10

Portugal 76 6 82 5 79 5

India 63 18 66 21 65 19

Russian 62 19 74 13 68 16

Japan 80 2 86 1 83 1

Spain 78 4 85 2 82 2

Korea 77 5 83 4 80 4

Sweden 79 3 83 4 81 3

Malaysia 71 10 76 11 73 11

Switzerland 80 2 84 3 82 2

Singapore 79 3 84 3 82 2

UK 78 4 82 5 80 4

Pakistan 62 19 64 23 63 21

Australia 80 2 84 3 82 2

Finland 77 5 83 4 80 4

New Zealand 79 3 83 4 81 3

France 78 4 85 2 81 3

Germany 78 4 83 4 80 4

Wealth and Health Organization (WHO) reported by year 2009, Japan is in

the first ranking who has longest life expectancy as shown in Table 1.1. While,

Figure 1.1 shows the trends and future estimation of life expectancy from year

1955 until year 2055 in Japan. By year 2009, the average life expectancy in Japan
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for male is 80 years old and 86 years old for female which scores the second and

the first ranking respectively in Table 1. For both male and female, Japan again

scores the first ranking with average life expectancy in elderly is 83 years old.

Figure 1.1: Trends and future estimation of life and ex-
pectancy.(Figure adapted from http://www.mhlw.go.jp/)

Figure 1.2: Elderly ageing trends and future estima-
tion.(Figure adapted from http://www.mhlw.go.jp/)
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Figure 1.3: Percent distribution of accidental deaths due
to causes other than traffic accidents.(Figure adapted from

http://www.mhlw.go.jp/)

It is expected that the average life expectancy in male and female will in-

creasing above 20% between years 1955 and 2055. Figure 1.2 shows the Elderly

Ageing Trends and Future Estimation from year 1950 to year 2055. As a result

from life expectancy estimation graph, the ageing trend in elderly also increasing

year by year. It is estimated that there will be one in two Japanese are elderly

by year 2055. Hence the welfare healthcare are expected to expand significantly

in the future for continued improvement of elderly Quality of Life(QOL).

Figure 1.3 shows the percent distribution of accidental deaths due to causes

other than traffic accident by type of accident and by type of occurrences. As a

summary the main caused of accident at home are by suffocation and drowning.

While in public area the main caused are the suffocation and falling in street or

public area.

Every year, almost 30% of elderly falls worldwide and most of the case are

unwitnessed. Falls leads to deterioration in health and physical activities; physi-

ological distress, pain that was caused by the injuries, impairment or imbalance

gait, fear of repeated fall and deterioration in QOL. These problems sometimes

caused elderly becomes immobility, bedridden and sometime caused death. Re-

alizing the fall are major problems among elderly, prevention of falls and injuries

has been focused among researchers.

Subsequently, what are required in preventing the falls among elderly? The
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improvement of the fall risk screening among elderly are required to identify

whether they are have the risk to fall for further analysis. The collected informa-

tion then used in implementing the specific and targeted risk reduction strategies

for subjects at high risk of falls injury. The elderly then need to report for inves-

tigation and monitoring the progress and condition.

In detecting and classifying fall risk among elderly, various method of physical

assessment tools has being developed such as diaries, questionnaires and surveys;

which are inexpensive tools. However these method is relies on individual obser-

vation and interpretation. The subjective decision judges by individual will leads

to inconsistent result. Some standard assessment also had being developed such

as Timed Up and Go test(TUG test), Four Square Step Test (FSST), 10 meters

walking and others. These standard test verify patient’s motion and movement

with developed standard lay out. Therapist will using stopwatch to measure the

duration taken by patients to complete the test. Patient with fall risk or not will

judge using some time duration threshold. These method also leads to subjective

individual observation by therapist.

To overcome this problem, researchers developed a new objective method us-

ing force plate and also 3-Dimensional motion capture system such as VICON.

The force plate or force platform measures the ground reaction forces that is

generated by body whether standing still or moving across the plate. It quan-

tify balance, gait and others parameters of human body biomehcanics. The 3-

Dimensional motion capture system records the movement of objects or people

passing through the set-up multiple cameras. This system could provide and

accurate data, however capture system cost of the software, equipment and per-

sonnel required are very expensive. Furthermore, it require specific space for it to

operate in, depending on camera field of view or magnetic distortion or immobile.

To examine the fall risk, it is necessary to enable a quantitative evaluation

in a simple, compact, mobile and more sensitive for a clinical test. Therefore,

this study aim to show that a wearable inertial sensors can be used to objectively

quantify and provide a quantitative evaluation of falling risk using accelerometers

and gyrosensors applying to some standard physical test, TUG test and FSST.

In this dissertation, we present the application of wearable inertial sensors

in clinical practise. The combination of accelerometer and gyrosensors devices,
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applied during some standard physical in classifying the fall risk among elderly.

1.2. Research contribution

Falls among the elderly have become a major concern with almost 30% of those

aged 65 and above falling each year [4, 10–12], in most cases unwitnessed. Falls

lead to deterioration of health and physical activities. These problems cause

elderly people to become immobile and sometimes bedridden. Since falls are a

major problem among the elderly, prevention of falls and related injuries has

been a focus among researchers. Early studies utilized subjective methods to

study this issue, such as questionnaires and surveys leading to inconsistent results

as they depend on individual observation and interpretation. Various standard

test assessments for physical activities, such as TUG test, FSST, step test, and

walking test, also depend on intuitive judgement and experience of a therapist.

On the other hand, force plate and 3-Dimensional motion capture system, such

as VICON, are objective methods that were introduced to evaluate the fall risk

[13,14]. Nonetheless, objective methods are costly and their evaluation can only

be carried out in limited spaces. Apparently, there is a need to evaluate falling

risk quantitatively using a low cost, simple, compact, and more sensitive method

for a clinical test. Therefore, this study aims to show that a wearable inertial

sensors can be used to objectively quantify and provide a quantitative evaluation

of falling risk using accelerometers and gyroscopes applying to timed up and go

test (TUG), and harnessing the quantitative information well beyond simply the

time taken to perform the test.

Our research intend to focus on these scopes of studies:

1. Using wearable inertial sensor to extract acceleration signals and angular

velocity signals taken during the tests

2. Divide the whole test into phases: sit-stand, walk, turning etc. in order

to obtain parameters for each phases for low fall-risk(LFR) and high fall-

risk(HFR) using TUG test.

3. Choose the most important parameters from the obtained parameters that

influenced the most in predicting and classifying elderly into LFR and HFR,
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and harnessing the quantitative information for subject’s condition inter-

pretation.

1.3. Dissertation Layout

This dissertation is organized as follows:

� Chapter One gives the overview of elderly population and statistic world-

wide, mainly in Japan. This chapter also explain the introduction of the

fall risk and the background and motivation of the research. The research

contributions and the dissertation layout are also given in this chapter.

� Chapter Two covers the method used in the research. This section il-

lustrate how the experiment done, how many subjects were participated

and how analysis were applied in this research. Some related works and

background are also given to briefly explain the investigated field. It gives

the overview of the wearable inertial sensors, the standard physical assess-

ments; timed up and go test used in this research. Related works of other

authors were also presented in this chapter. The chapter provides the the

foundation of the algorithm and analysis of the classification technique that

are necessary for the research.

� Chapter Three presents the results of the project. In this section, all

gathered parameters extracted form acceleration signal, angular velocity

signal and angular signal in phases were listed in a table. This chapter also

covers the classification of the subjects into groups using the significant

parameter obtained from analysis.

� Chapter Four The overall project is rationalized and concluded in this

chapter. Some issues regarding the results obtained discussed and proposals

of future works are also suggested in this chapter.

� Chapter Five summarizes the work done in our research.
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Chapter 2

Method

2.1. Introduction

The prophet saw said: ”Give due

respect and regard to your

children and decorate them with

the best of manners”.

Abu Daud

The timed up and go test (TUG) is a clinical tool that is widely used to

assess functional balance and mobility, primarily in older adults. Traditionally,

the test is scored by manually recording the time taken to complete the whole

test, started when subject start to rise out of a standardized chair, walk three

meters, turn around, walk back, turn and sit back down in the chair. For research

purposes, the TUG test has been modified in a number of ways to enable the

tester to examine the component parts of the test individually for example [15],

or by adding cognitive [16] or additional physical challenges [17] to the test.

This study aimed in using the body-worn sensor technology to increase the scope

for harnessing quantitative information from the TUG, well beyond simply the

time taken to perform the test. Wireless inertial sensors worn by the participant

during the TUG can provide large volumes of angular velocity and acceleration

data, which can be used to compute a variety of gait and movement parameters,

depending on which body part the sensor is attached to. This chapter discusses
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the basic principle of the project background involving the wearable inertial sensor

used, the acceleration signal,angular velocity signal in normal elderly, how the

experiment and analysis were carried out in this study, and also includes why this

study is obligatory. The algorithm used in analysing the parameters extracted

and obtained were also outlined in this chapter.

2.2. Wearable Inertial Sensors

An important indicator of fall risk in the elderly is balance or stability control

posture while standing still or walking [20]. Motion is described by displacement,

velocity, and acceleration. Trunk tilt reflects the angle between axes. Trunk tilt,

which corresponds to the angle and the acceleration factor, was considered for

physical assessment of the elderly in this study. For this, a wearable inertial sensor

was used [21, 22]. According to [22], the wearable inertial sensor can be divided

into 4 parts: sensor, amplifier, transmitter, and data processing part. The sensor

part was installed with a combination of 3D (anteroposterior, mediolateral, and

vertical axes) accelerometers (MMA7260Q Freescale semiconductor inc. Texas

USA) and three 1D gyro sensors (ENC-03R, Murata , Kyoto, Japan & XV-

3500CB, Miyazaki Epson Corp,Nagano,Japan) for roll, yaw, and pitch axes. The

measured signal was then amplified using an amplifier. The accelerometer sensor

could measures 3 axes of acceleration with a sensitivity of ±2g for a sensitivity of

600mv/g, and ±4g for a sensitivity 400mv/g. As the gyrosensor could measure

only one axis, three gyrosensors were required with sensitivity of 0.67 mv/deg/s

to measure three axes. In the data processing part, amplified signals were then

converted from analogue to digital signals. The digitized information was then

transmitted from the data processing unit to a PC via the transmission section

using Bluetooth (ZEAL-S01). The wearable inertial sensor was attached to the

subject’s trunk (near the second lumbar vertebra) to capture the acceleration

and the angular velocity signals for every physical assessment during the test.

The signal from the sensor unit was recorded on a PC using a 100Hz sampling

frequency.The sensor was designed in small size and lightweight. The dimension

is 55 x 50 x 20[mm] while the weight is 60 gram.
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2.3. Experiment

The experiment was carried out on the basis of the TUG test, which was intro-

duced by Podsiadlo and Richardson (1991) [1]. The TUG test is a well-known

screening test used by therapists worldwide to screen the balance problems and

evaluate the falling risk depending on total time taken by subjects to complete

the whole test. The subjects wore the wearable inertial sensors at the waist dor-

sally and performed the test. In choosing the location to attached the sensor

to the subject, several papers have been refers. Sensor placement of wearable

devices refers to the locations where the sensors are placed, and how the sensors

are attached to those locations [23].

Gemperle et al. proposed the ergonomic guideline of wearability to describe

the interaction between the human body and wearable objects. The wearabil-

ity map was generalized to indicate the proper locations of a human body for

unobtrusive sensor placement. These locations include the collar area, rear of

upper arm, forearm, front and rear sides of ribcage, waist, thighs, shin, and top

of the foot, shown in Figure 2.1. These locations have common characteristics of

similar area for men and women, a relatively larger continuous surface, and low

movement and flexibility [24].
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Figure 2.1: The general areas we have found to be the most
unobtrusive for wearable objects are: (a) collar area, (b)
rear of the upper arm, (c) forearm, (d)rear, side, and front
ribcage, (e) waist and hips, (f) thigh, (g) shin, and (h) top
of the foot.(Figure adapted from Gemperle, F.; Kasabach, C.; Stivoric, J.;

Bauer, M.; Martin, R. Design for wearability. In Proceedings of the 2nd IEEE

Symposium on Wearable Computers, Pittsburg, PA, USA, 19?20 October

1998; pp. 116-122)

Che-Chang Yang and Yeh-Liang Hsu discussed from an ergonomic point of

view. They claimed that torso can better bear extra weight when carrying wear-

able devices. In addition, sensors or devices can be easily attached to or detached
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from a belt around waist level. Therefore, waist-placement causes less constraint

in body movement and discomfort can be minimized as well [25]. A range of

basic daily activities, including walking, postures and activity transitions can be

classified according to the accelerations measured from a waist-worn accelerome-

ter [26, 27].

Most studies adopted waist-placement for motion sensors because of the fact

that the waist is close to the center of mass(COM) of a whole human body,

and the torso occupies the most mass of a human body. This implies that the

accelerations measured by a single sensor at this location can better represent the

major human motion. Figure 2.2 illustrate the COM during standing in different

position.

Figure 2.2: Center of mass

D.A Winter and Jian et al. explained the importance of centre of mass(COM)

to the human balance and posture control during gait and quiet standing [28,29].

As for example, during the release phase in initiation gait; COP will move posteri-
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orly and towards the swing limb, thus accelerating the COM forward and towards

the stance limb. Posterior COP displacement forms a deactivation of the plantar

flexors and in some cases, an activation of the dorsiflexors. The lateral displace-

ment of the COP results from a momentary loading of the swing limb (right)

by the hip abductors. Unloading is achieved by a rapid activation of the stance

limb hip abductors and deactivation of the right hip abductors. After unloading

of the right limb the COP under the stance moves towards under the control of

the plantarflexors. During this single support time the COM now accelerated

forward and away from the stance limb. From illustrated trajectories during the

gait initiation, we understand that the during the swing limb and stance limb

also influencing the output of the sensor at the waist, which is located nearly the

COM. As a result, this study decided to use only one sensor located near the

COM in order to measure the parameters of falling risk. In this study, to avoid

the motion artifacts, the sensor was tightly attached to the waist. Accordingly,

the sensor was slotted in a belt that was attached to the waist as shown in Fig-

ure 2.7. For safety reasons, subjects did not complete the test alone;instead, a

therapist was present throughout the experiment. Figure 2.3 shows the view of

the TUG test, and was consulted by a therapist was as follows:

Figure 2.3: View of the TUG test set.
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1. Subject sits on an armless chair with a back (approximate seat height of 46

cm).

2. Subject gets up from the chair.

3. Subject starts to walk for 3 meters away to a marked post.

4. Subject turns after reaching the marked post.

5. Subject returns to the seat, again over a distance of 3 meters.

6. Subject turns to change facing direction before sitting.

2.4. Subject

38 (male:20, female:18) elderly people average aged 65.175 ±8.9 years old from

Fujimoto Hayasuzu Hospital, Japan, participated in the TUG test. 27 subjects

are LFR and 11 subjects are HFR. Ethical approval was obtained from Fujimoto

Hayasuzu Hospital and Chiba University Ethics Committee. Previous study by

Shumway-Cook et al. reported that the use of 13.5 seconds as a threshold achieved

87% sensitivity for multiple fallers and 87% specificity for non-fallers [5]. Accord-

ingly, subjects were categorized as at low fall risk (LFR) upon completing the

test within 13.5 seconds, while subjects who could not complete the test within

that time were classified as at high fall risk (HFR).
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Table 2.1: Subjects, sex and age.

Subject Sex Age(years) Subject Sex Age(years)

Subject 1 M 59 Subject 20 F 70

Subject 2 M 78 Subject 21 M 68

Subject 3 F 78 Subject 22 M 52

Subject 4 M 67 Subject 23 F 62

Subject 5 M 71 Subject 24 M 46

Subject 6 F 78 Subject 25 M 54

Subject 7 F 73 Subject 26 F 69

Subject 8 M 71 Subject 27 M 82

Subject 9 M 66 Subject 28 F 70

Subject 10 M 71 Subject 29 M 52

Subject 11 M 70 Subject 30 F 62

Subject 12 F 56 Subject 31 F 61

Subject 13 F 57 Subject 32 M 54

Subject 14 M 64 Subject 33 F 69

Subject 15 F 68 Subject 34 M 52

Subject 16 F 70 Subject 35 F 62

Subject 17 M 62 Subject 36 F 61

Subject 18 F 69 Subject 37 F 78

Subject 19 M 77 Subject 38 M 54

2.5. Signal Analysis

It is suggested that elderly people with longer TUG test duration have a greater

tendency to fall than those with a shorter time [5] as per current clinical practice.

However, this approach is claimed to be insufficiently sensitive for use in a clinical

context. Therefore, this study aims to show that a wearable inertial sensor could

be used to provide a quantitative measure of falling risk using acceleration and

angular velocity signals, applied to the TUG test. Since the TUG test consists of

a sequence of basic activities, it is vital to evaluate one’s ability in distinct phases

or activities to make the test more sensitive.

This study proposes a single wearable inertial sensor to detect the phases in
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the TUG test; we also attempt to use angular velocity and angle signals to detect

the phase transition. Recent studies have developed a method for detecting the

phases in the TUG test. Higashi et al. used three wearable inertial sensors,

which were attached to the trunk and thighs, to measure the angular velocity

signals during the TUG test in phases [6]. The sensor attachment and unit

positions by [6] displayed by Figure 2.4. In dividing the whole TUG test into

phases, researcher used the acceleration signal extracted from waist sensor in

roll direction, angular velocity signal in yaw and pitch direction, also from waist

signal, and the angular velocity signal in pitch direction from sensor that attached

to the thigh as displayed in Figure 2.5. The signal extracted from thigh was used

in order to know the start of walking phase. Researcher found that when the

angular velocity signal in pitch direction of the thigh exceeds the threshold; 10

deg/sec, it indicates the start of walking phase. From the Figure 2.5, it can be

seen that the walking phase started when the standing phase was completed.

Figure 2.4: Sensor unit positions by Higashi et al.(Figure
adapted Higashi, Y.; Yamakoshi, K.; Fujimoto, T.; Sekine, M.; Tamura, T.

Quantitative evaluation of movement using the timed up-and-go test. IEEE.

Eng. Med. Biol. Mag. 2008, 27, 38-46)
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Figure 2.5: Typical angular velocities and the points at
which the phase changed in a young subject during the
TUG-T: (section a) standing up, (section b) walking 1, (sec-
tion c) turn 1, (section d) walking 2, (section e) turn 2, and
(section f) sitting down.(Figure adapted Higashi, Y.; Yamakoshi, K.;

Fujimoto, T.; Sekine, M.; Tamura, T. Quantitative evaluation of movement

using the timed up-and-go test. IEEE. Eng. Med. Biol. Mag. 2008, 27,

38-46)

Janura et al. and Schenkman et al. al divide the sit-stand phase into 4 phases

[30, 31]. The first phase (trunk flexion) is initiated with the first recognizable

movement and ends just before rising. In the second phase (momentum transfer)
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the body continues the forward movement and maximal dorsal flexion in the ankle

joint is reached; this is the beginning of the third phase, the hip joint extension

which is completed with maximal extension in the hip joint. The fourth phase

(movement stabilization), in which the angular velocity equals zero, completes

the entire movement. In dividing the whole TUG test into phases, we use the

angular velocity and angle signals. The signal divided into 8 phases; sit-bend,

bend-stand walk 1, turn 1. walk 2, turn 2, stand-bend and bend-sit. Since the

Walking phase start with the ended of sit-stand phase or bend stand phase in

this study, we know that the walking phase will start when the angular velocity

of waist in pitch direction is = 0. As consequence, we use angle signal to detect

the 0 degree, which the walking phases started. Therefore, the sensor attached

at thigh is no longer required in dividing the phases replacing the 0 degree angle

signal for that purpose. Figure 2.8 shows an example of a typical signal of the

TUG test in normal healthy elderly subjects.

Figure 2.6: Signal directions: Antero posterior, medio lateral and vertical directions

for acceleration signal, and roll, pitch and yaw directions for angular velocity signal.
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Figure 2.7: Signal direction and sensor attachment.

Initially, the TUG test was divided into six basic activities: sit-stand, walk 1,

turn 1, walk 2, turn 2 and stand-sit. In this study, a more detailed approach to

the phases was suggested for evaluating the differences between HFR and LFR

in sit-stand phase and stand-sit phase. We divided the phases into sit-bend and

bend-stand, and also stand-bend and bend-sit, becoming 8 phases in total.
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Figure 2.8: Phase point determination; a)sit-bend, b)bend-stand c)walk 1, d)turn 1,

e)walk 2, f)turn 2, g)stand-bend and h)bend-sit.

1. Sit-bend

During the sitting phase, the angle signals in the pitch direction are con-

stant. The standing-up phase occurs as soon as the signal abruptly starts to

increase. While sitting, the angle in the pitch direction is almost constant,

as can be seen in Figure 2.8. From the beginning, the signals show a sudden

increase. At this point, the subject starts to bend forward to stand up until

a maximum angle is reached, where the subject is ready to rise up.
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2. Bend-stand

When the angle signal in the pitch direction reaches its maximum value,

the maximum angle of bend is shown by the subject before he or she starts

to stand up. The subject has completely stood up when the angle to an

almost constant value. The stand-sit phase is also divided into two phases:

stand-bend and bend-sit, for more detailed analysis.

3. Walk 1

Stable gait starts when the subject has completely stood up. When the

pitch direction of the angle signal again returns to a constant value, the

walk 1 phase has started, namely, when the sit-stand phase has ended. The

phase ends when the turn 1 phase starts.

4. Turn 1

The turn 1 phase starts when the angle signal in the yaw direction starts to

increase or decrease; this depends on the direction chosen by the subject,

and occurs in a dramatic manner from the previous constant condition. At

a certain point, the signal again becomes stable. Concurrently the turn 1

phase ends and the walk 2 phase starts.

5. Walk 2

This phase begins with the end of the turn 1 phase. The yaw angle signal

shows a constant value when the walk 2 phase starts and ends when the

turn 2 phase starts.

6. Turn 2

The same method is used to determine the phase of turn 2 as in turn 1

phase. The phase begins when the angle signal in the yaw direction again

starts to increase or decrease suddenly.

7. Stand-bend

The stand-bend phase starts after the turn 2 phase has been completed.

Using the angle signal in the pitch direction, the signal increases dramati-

cally, and when the subject is ready to sit, the maximum angle is achieved.

At this time, the stand-bend phase ends.
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8. Bend-sit

The subject starts to sit when the pitch direction of angle signal decreases

suddenly after its maximum level (maximum bend). The test ends when

the subject completely sits as shown by the pitch direction of angle signal

becoming stable again. The end point of this phase is the end point of the

experiment.

(a) Cross-correlation of angle signal in pitch direc-

tion between two subjects from LFR group.

(b) Cross-correlation of angle signal in yaw direc-

tion between two subjects from LFR group.

Figure 2.9: Cross-correlation between two angle signal from subjects in LFR group.

The pattern trends of the signals between subjects are very similar. The

signal’s pattern measured using the wearable inertial sensor depends on the sub-

ject’s movements and motions. To study the similarity between signals, each

performance time was normalized, and cross correction was calculated. In order

to compare the pattern similarities between the signals, the initial time delays in

both signals were removed and the time delays were adjusted so that the signals

were aligned in a same time range. Cross correlations were carried out in mea-

suring the pattern signals similarity between subjects. As shown in figure 2.9,

the correlation value in pitch direction between two signals is 0.8, and the corre-

lation value between two signals in yaw direction is 0.95. These showed that the

waveforms between subjects are similar in shape. However, the magnitude values
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measured were varied depending on the subject’s motion and ability. The differ-

ences in the signals provide information between the subjects. The information

is useful for determining the parameters to classify the subject is fallen into HFR

or LFR.

2.5.1 TUG Derived Parameters

Various techniques have been benefited by the advent of high-performance com-

puting in achieving practical solution to their problems. There is no exception

to this in health care area. To help therapist in diagnosis and treatments, soft-

ware tools have been developed to enhance the computational capabilities. This

section provides the statistical method in classifying and predicting the fall risk

among elderly used in this project.

In determining the fall risk among the elderly, some parameters have been

identified to distinguish between HFR and LFR. The parameters were derived

from the waist trunk accelerometer and angular velocity in each direction: an-

tero posterior, medio lateral, and vertical axes, and roll, pitch, and yaw sensor

axes. For additional parameters, the parameters were also derived from angle

signals that were transformed from angular velocity signals. The time duration

to complete the whole test and the timing characteristics for various phases were

calculated in this study from acceleration signals, angular velocity signals and

angular signals.

1. Total TUG test time

2. Sit-bend time

3. Bend-stand time

4. Sit-stand time

5. Walk time

6. Turn time

7. Stand-bend time
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8. Bend-sit time

9. Stand-sit time

The total TUG test time is simply the time taken from angular velocity sig-

nal or angular signal. It is the time taken from the test start to its end. The

angular signal was calculated from the angular velocity signal using the integra-

tion process. Apart from that, due to the gravitational effect with respect to the

changes in the sensor position and orientation, the DC component acceleration

signal part also counted in the calculation. The angular signal in each direction

was calculated using below equations (2.1), (2.2) and (2.3):

Angle(roll) = Angle(AC)gyro−roll + Angle(DC)ACC−Mediolateral (2.1)

Angle(pitch) = Angle(AC)gyro−pitch − Angle(DC)ACC−Anteroposterior (2.2)

Angle(yaw) = Angle(AC)gyro−yaw (2.3)

The Angular velocity signal was applied with high pass filter with cut off fre-

quency 0.2Hz to extract AC component. Meanwhile, the acceleration signal was

applied with cut off frequency 0.2Hz of low pass filter producing the DC com-

ponent of the acceleration signal. Consequently, arctangent of the acceleration

signal DC component was calculated to produce the DC component of angular

signal, Angle (DC). Concurrently, the AC component of the angular velocity, An-

gle (AC) was calculated by integrating the AC component of the angular velocity,

divided by the 100Hz of sampling frequency. Angular signals in each direction

were calculated using different direction of the angular velocity and the accelera-

tion signals as per listed in the above equation. The angular signal in roll direction

was calculated when DC component of acceleration in the mediolateral direction

added to the AC component of the angular velocity in roll direction. Meanwhile,

in the case of calculating the angular velocity signal in pitch direction, the DC

component of the acceleration signal in anteroposterior direction was subtracted

by the integrated AC component of angular velocity signal in pitch direction. On
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the contrary, there is no gravitational effect in yaw direction. Therefore, in cal-

culating the angular signal, there is no acceleration part is counted. The angular

signal shows the start time when the subject bends their body before standing

up and ends when the subject is completely sitting down.

To further evaluate, the RMS value was calculated. RMS value provides

information on the average magnitude of accelerations and angular velocity in

each direction during the test. In the acceleration signal during the walking

phase shows balance during gait [36]. The RMS values were determined as shown

in equation (2.4) with N are the number of Xi while Xi is the amplitude of

acceleration and angular velocity signal.

Xrms =

√√√√ 1

N

N−1∑
i=0

(X2
i ) (2.4)

Higher performance in gait involves a higher speed [37]. The speed parameter

could also discriminate between the two groups. The equation below was used to

calculate the speed in TUG gait, since the experimental involved used 3 meters

of walking. Each transition phase were then analysed based on calculation using

Matlab to obtain the parameters.

Speed =
3meters[m]

Walk time [s]
(2.5)

Figure 2.10: Step and stride relationship

When one heel strike; when the heel of the foot contacts the floor, to the next

heel strike of the same foot is one complete gait cycle, also known as stride. Each
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stride is made up from two steps, each step covering the period one heel strike to

heel strike of the contralateral limb. The number of step and the number of stride

is measured from the acceleration signal as shown in Figure 2.10. The mean step

time and the mean stride time were also calculated in this research referring to

the acceleration signal, using below equations:

Meanstep =
Walk time [s]

# gait step
(2.6)

Meanstride =
Walk time [s]

# gait stride
(2.7)

Meanwhile,the rate at which strides are taken is referred to as the stride fre-

quency or cadence. Cadence is the number of full cycles taken within a minute.

Cadence correlated positively with gait and could be used to measure the perfor-

mance [38].

Cadence =
# steps

Walk time [min]
(2.8)

The total parameters were measured from the accelerometer, angular velocity

signals and angle signals were summarized in Table 2.2.

Table 2.2: Parameters in phases.
Parameters Sit-

bend

Bend-

stand

Sit-

stand

Walk

1

Turn

1

Walk

2

Turn

2

Stand-

bend

Bend-

sit

Stand-

sit

Total Sum

Time 1 1 1 1 1 1 1 1 1 1 1 11

RMS

Acceleration

AP 1 1 1 1 1 1 6

ML 1 1 1 1 1 1 6

V 1 1 1 1 1 1 6

Angular Velocity

Roll 1 1 1 1 1 1 6

Pitch 1 1 1 1 1 1 6

Yaw 1 1 1 1 1 1 6

Amplitude
Angular Velocity

Pitch 1 1 1 3

Yaw 1 1 2

Angle Pitch 1 1 2

Number of steps 1 1 1 1 1 5

Number of strides 1 1 1 1 1 5

Mean step time 1 1 1 1 4

Mean stride time 1 1 1 1 4

Cadence 1 1 1 1 4

Speed 1 1 2

Total 78
Note:AP=Anteroposterior, ML=Mediolateral,

V=Vertical.
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2.5.2 T-Test

In reporting the hypothesis with the conclusion, author used the p-value. A p-

value is the probability of observation data that a less compatible with the null

hypothesis by chance than data that are observed if the null hypothesis were

true. Figure 2.11 illustrates the distribution curve for a test statistic under a null

hypothesis with two possible alternative hypothesis.

Figure 2.11: Probability p-value

The p-value is the area under the null hypothesis distribution curve starting

at the observed test statistic value extending in the direction of the alternative

hypothesis. If the alternative is one sided, the p-value is the area under the curve

in one tail of the distribution. If the alternative is two-sided, the p-value is the

area under the curve in both tails of the distribution.The p-value can be used

to decide wether or not to reject a given null hypothesis after viewing the data.

If the p-value is small, we could conclude that the observed data are unlikely

28



to have generated by a mechanism that conforms with the null hypothesis; and

thus we reject the null hypothesis in favour of the alternative hypothesis. If the

p-value is large, we do not have enough evidence against the null hypothesis; we

fail to reject the null hypothesis. The p-value is compared against the significant

level α as we used α =0.05. A p-value is small is p< α, while it is considered

large if p≥ α.

t-test are among of the most frequently used testing procedure in biological

sciences. t-test are designed for three distinct application;(1)for comparing the

mean of one single population to a fixed constant(one-sample t-test), (2) for

comparing the means of two independent populations to each other(Two-sample

t-test), and finally(3) for comparing two dependent measurement(paired t-test).

A two-tailed student t-test was used in this study to test whether the differences

between the LFR and HFR were statistically significant.

2.5.3 K Nearest Neighbor

For classification purposes, K nearest neighbors (KNN), also known as the lazy

learning algorithm, that is a very intuitive method that classifies unlabelled ex-

amples on the basis of their similarities to an example in a training set. It is a

simple algorithm that works using minimum distance from the query instance to

the training samples to determine the KNN [39]. After the k nearest neighbors

are obtained, the simple majority of these K nearest neighbors are taken to pre-

dict the query instance. This was carried out to predict whether the subject is

belongs to HFR or LFR group in this study. The data for KNN algorithm consist

of several multivariate attributes: namely xi is the test subject, used to classify

Y data subject. In this study, 2 of 11 subjects from HFR and 7 of 27 subjects

from LFR were used as test subjects. The Euclidean distance function was used

with k=5 (using the 5 nearest neighbors) as the class number of this algorithm.

The distance between the query instance and all the training samples was then

calculated. Euclidean distance (dE) was measured using equation (4):

dE(x, y) =

√√√√k−1∑
i=0

(xi − yi)
2 (2.9)
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In order to classify the fall risk among elderly, previous study classified the

were using 1-dimensional of time parameter. In this study, 78 parameters were

obtained from extracted acceleration signal, angular velocity signal and trans-

formed angular signal. From extracted 78 parameters, 44 parameters were iden-

tified significant differences between the two groups. The multivariate analysis

could facilitated the classification between LFR and HFR using all 44 significant

parameters.

2.5.4 Principle Component Analysis

k-NN analysis method are computationally simple but lack of ability to classify

the subject using multiple parameters. To further improve the classification us-

ing multivariate data analysis technique have been used in this study. Principle

Component Analysis (PCA) designed to extract and display a systematic varia-

tion in data matrix. Due to difficulty in visualizing a multi-dimensional space,

PCA hs being used to reduce the dimensionality of multi-attributes to two or

three dimensions. PCA summarizes the variation in a correlated multi-attributes

to a set of uncorrelated components; which is a particular linear combination of

the original variables. The extracted uncorrelated components are called princi-

pal component(PC) and are estimated from the eigenvectors of the covariance or

correlation matrix of the original variables. The objective of PCA is to achieve

parsimony and reduce dimensionality by extracting the smallest number com-

ponents that account for most of the variation in the original multivariate data

and to summarize the data with little loss of information. Statistically PCA find

lines, planes and hyperplanes in the K-dimensional space that approximate the

data as well as possible in the least square sense. As shown in Figure 2.12, the

line or a plane that is the least square approximation of a set of data points make

the variance of the coordinates on the line or plane as large as possible.

In order to transform the data to a form suitable for analysis, the data need

to be scaled or normalized. The mean-centering normalization had being used in

this study. After the mean-centering and scaling to unit variance, the data set

is ready for the first principal component(PC1) computation. This component is

the line in the K-dimensional space that best approximates the data in the least

square sense. This line goes through the average point; such that the average
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point is the origin after the normalization process. Each observation may now

be projected onto this line in order to get a coordinate value along the PC line.

This new coordinate value is known as a score.

Figure 2.12: The first principal component,PC1 and the score value.

Usually only one principal component is insufficient enough to model a sys-

tematic variation of a data set. Thus, a second principal component, PC2 is

considered. The second PC is also represented by a line in the K-dimensional

variable space; which is orthogonal to the first PC as shown in Figure 2.13.
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Figure 2.13: The second principal component,PC2 being orthogonal to PC1.

Two principal component will define a plane when they derived together, with

k-dimensional variable space as illustrate in Figure 2.14. By projecting all the

observations onto this low-dimensional sub-space and plotting the results, it is

possible to visualize the structure of the data set. The coordinates values of the

observation on this plane is called scores, and hence the plotting such a projected

configuration is known as a score plot.
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Figure 2.14: Two PCs form a plane.

In a PCA model with a plane in K-space, we concern which variables are ac-

counted for the pattern among the observation. Variables that influences the pat-

tern and the correlation between the variables are required to be determine.Such

knowledge is given by the principal component loadings. PC loadings are corre-

lation coefficient between the PC scores and the original variables. It measure

the importance of each variable in accounting for the variability in the PC. It is

possible to interpret the first few PCs in terms of ’overall’ effect or a ’contrast’
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between groups of variables based on the structures of PC loadings. high corre-

lation between PC1 and a variable indicates that the variable is associated with

the direction of the maximum amount of variation in the dataset. More than one

variable might have a high correlation with PC1. A strong correlation between

a variable and PC2 indicates that the variable is responsible for the next largest

variation in the data perpendicular to PC1, and so on. If a variable does not

correlate to any PC, or correlates only with the last PC, or one before the last

PC, this usually suggests that the variable has little or no contribution to the

variation in the dataset. Therefore, PCA may often indicate which variables in

a dataset are important and which ones may be of little consequence. Some of

these low-performance variables might therefore be removed from consideration

in order to simplify the overall analyses. In this study, applying the PCA to the

44 significant parameters for 38 observation would be compressed or reduce to

fewer principal components that can be displayed graphically with minimal loss

of information. The previous study using only a parameter at once in classify-

ing the elderly with fall risk would be improve using several parameters that are

believe to be important to the test.

2.5.5 Linear Discriminant Analysis

There are many possible techniques for classification of data. Principal Compo-

nent Analysis (PCA and Linear Discriminant Analysis (LDA) are two commonly

used techniques for data classification and dimensionality reduction. Linear Dis-

criminant Analysis easily handles the case where the within-class frequencies are

unequal and their performances has been examined on randomly generated test

data. This method maximizes the ratio of between-class variance to the within-

class variance in any particular data set thereby guaranteeing maximal separabil-

ity. We decided to implement an algorithm for LDA in hopes of providing better

classification compared to Principal Components Analysis. The prime difference

between LDA and PCA is that PCA does more of feature classification and LDA

does data classification. In PCA, the shape and location of the original data sets

changes when transformed to a different space whereas LDA does not change the

location but only tries to provide more class separability and draw a decision

region between the given classes. This method also helps to better understand
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the distribution of the feature data.

Discriminant Function Analysis (DA) undertakes the same task as multiple

linear regression by predicting an outcome. However, multiple linear regression is

limited to cases where the dependent variable on the Y axis is an interval variable

so that the combination of predictors will, through the regression equation, pro-

duce estimated mean population numerical Y values for given values of weighted

combinations of X values. DA is used when the dependent is categorical with

the predictor IVfs at interval level such as age, income, attitudes, perceptions,

and years of education, although dummy variables can be used as predictors as

in multiple regression. Logistic regression IVfs can be of any level of measure-

ment. It is also used when there are more than two DV categories, unlike logistic

regression, which is limited to a dichotomous dependent variable.

Discriminant analysis linear equation DA involves the determination of a lin-

ear equation like regression that will predict which group the case belongs to.

The form of the equation or function is:

D = v1X1 + v2X2 + ...viX i + a (2.10)

Where D = discriminate function v = the discriminant coefficient or weight

for that variable X = respondent’s score for that variable a = a constant i = the

number of predictor variables

After using an existing set of data to calculate the discriminant function and

classify cases, any new cases can then be classified. The number of discriminant

functions is one less the number of groups. There is only one function for the

basic two group discriminant analysis.

There are several purposes of DA:

1. To investigate differences between groups on the basis of the attributes of

the cases, indicating which attributes contribute most to group separation.

The descriptive technique successively identifies the linear combination of

attributes known as canonical discriminant functions (equations) which con-

tribute maximally to group separation.

2. Predictive DA addresses the question of how to assign new cases to groups.

The DA function uses a person’s scores on the predictor variables to predict
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the category to which the individual belongs.

3. To determine the most parsimonious way to distinguish between groups.

4. To classify cases into groups.

5. To test theory whether cases are classified as predicted.

The aim of the statistical analysis in DA is to combine (weight) the variable

scores in some way so that a single new composite variable, the discriminant

score, is produced.

Figure 2.15: Discriminant Distribution.

The top two distributions in Figure 2.15 overlap too much and do not discrim-

inate too well compared to the bottom set. Misclassification will be minimal in

the lower pair, whereas many will be misclassified in the top pair. Standardizing

the variables ensures that scale differences between the variables are eliminated.

When all variables are standardized, absolute weights can be used to rank vari-

ables in terms of their discriminating power, the largest weight being associated

with the most powerful discriminating variable. Variables with large weights

are those which contribute mostly to differentiating the groups. As with most

other multivariate methods, it is possible to present a pictorial explanation of the
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technique. The following example uses a very simple data set, two groups and

two variables. If scatter graphs are plotted for scores against the two variables,

distributions like those in Figure 2.16 are obtained.

Figure 2.16: Scattergraph displaying distributions by axis.

The new axis represents a new variable which is a linear combination of x

and y, it is a discriminant function as shown in Figure 2.17. Obviously, with

more than two groups or variables this graphical method becomes impossible.

Clearly, the two groups can be separated by these two variables, but there is a

large amount of overlap on each single axis (although the y variable is the ’better’

discriminator). It is possible to construct a new axis which passes through the two

group centroids (’means’), such that the groups do not overlap on the new axis.

In a two-group situation predicted membership is calculated by first producing

a score for D for each case using the discriminate function. Then cases with D

values smaller than the cut-off value are classified as belonging to one group while

those with values larger are classified into the other group. D scores is called new

variables. The group centroid is the mean value of the discriminant score for a

given category of the dependent variable. There are as many centroids as there

are groups or categories. The cut-off is the mean of the two centroids. If the

discriminant score of the function is less than or equal to the cut-off the case is
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classed as 0, whereas if it is above, it is classed as 1.

Figure 2.17: New axis creating greater discrimination.

2.5.6 Random Forest

Decision tree or sometimes called as classification trees are one of the most widely

used machine learning methods for modelling the relationship between one of

more attributes and a discrete endpoint [40]. A decision tree classifies subjects

by sorting them through a tree from node to node where each node is an attribute

with a decision rule that guides that subject through different branches of tree to

a leaf that provides its classification. the primary advantage of this approach is

that it is simple and the resulting tree can be interpreted as IF-THEN rules that

are easy to understand. Random Forest(RF) build on the decision tree idea and

have been used to detect and the gene-environment interaction in genetic studies.

A RF is a collection of individual decision tree classifiers, where each tree in the

forest has been trained using a bootstrap sample of from the data, and each

attribute in the tree is chosen from among a random subset of attributes [41].

In this study, individual tree are constructed by selecting n samples from 38

subjects with 78 attributes or parameters. Following are the steps in tree growth

in random forest:
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1. Training set(n) were chose by selecting from n sample subjects, with re-

placement(ntree=200) from the data.

2. At each node in the tree, m attributes from the entire set of 78 parameters

in the data were randomly selected with the magnitude of m is constant

throughout the forest building. About one-third of the attribute used as

the training.

3. At each node, the best split chosen from among the m attributes and until

the tree is fully grown(no pruning).

4. Repetition of this algorithm yields a forest of trees, each of which have

been trained on bootstrap samples of instances. Thus for 2000 ntree, cer-

tain instances will have been left out during training. Prediction error was

estimated from these out-of-bag(OOB) instances. The OOB instances are

also used to estimate the importance of particular attributes via permuta-

tion testing. Finally, the average effect is calculated across all trees to yield

the variable importance value. If randomly permuting values of a particu-

lar attribute does not affect the predictive ability of trees on OOB samples,

that attributes is assigned a low importance score.
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Chapter 3

Results

Rasulullah saw said: ”None of you

should long for death, for if he is a

good man, he may increase his

good deeds, and if he is an

evil-doer, he may stop the evil

deeds and repent.”

Bukhari

3.1. Introduction

Falls are a major problem to elderly health and independence. There are many

factors contribute to the fall risk among elderly. Subjective method such as

diaries, questionnaires and survey are inexpensive tools leads to inconsistent result

considering they depends on the individual observation and interpretation.

Assuming that physical factors are significant contributors to the fall risk

problem, several standard physical test has been developed by researcher in or-

der to determine the fall risk among elderly. Standard test of physical activity

assessment such as timed up and go test (TUG test), four square step test(FSST),

10 meter walking and others also require subjective judgement that measures the

time taken to complete the assessment by stopwatch. To improve, a new method

using 3-D motion capture system(VICON) has been developed. The system pro-
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vide an accurate results. However, the system is very costly and have limited

space to operate and immobile.

By using an objective techniques, wearable inertial sensor, enable quantitative

evaluation device in a simple, compact ,mobile and could prevent the inaccurate

result due to subjective individual observation. Furthermore, the quantitative

provided by the signals extracted from the sensor reveal the movement activities

of the subject well beyond simply the time taken from the TUG test.

3.2. Quantitative Analysis

Table 3.1: Mean and standard deviation of each derived

parameter for HFR and LFR.

Bil Parameter Low fall risk High Fall risk

* p<0.05 Mean ± std Mean ± std

P1 sit-bend time[s] 0.7 ± 0.21 0.68 ± 0.27

P2 bend-stand time[s] (p=0.08) 0.74 ± 0.28 1.03 ±0.50

P3 sit-stand time[s] 1.44 ± 0.36 1.72 ±0.74

P4 walk 1 time[s] * 2.21 ± 0.67 4.07 ± 1.07

P5 turn 1 time[s] * 1.61 ± 0.48 2.50 ±0.69

P6 walk 2(return) time[s] * 2.41 ± 0.67 3.87 ±0.66

P7 turn 2 time[s] * 1.18 ±0.37 1.77 ±0.40

P8 stand-bend time[s] * 1.09 ±0.35 1.66 ±0.46

P9 bend-sit time[s] * 0.87 ± 0.24 1.28 ±0.30

P10 stand-sit time[s] * 1.95 ± 0.50 2.94 ±0.73

P11 TUG total measured time[s] * 10.09 ± 1.86 15.77 ±1.41

P12 Amplitude angular velocity pitch, sit-bend[deg/s] 122.88 ± 52.84 119.98 ± 43.70

P13 Amplitude angular velocity pitch,bend-stand[deg/s] 89.45 ± 43.62 77.54 ± 33.69

P14 Amplitude angular velocity pitch, stand-sit[deg/s] 144.97 ± 70.44 104.07 ± 56.74

P15 Amplitude angular velocity Yaw, Turn 1[deg/s] * 165.88 ± 38.31 107.09 ± 27.11

P16 Amplitude angular velocity Yaw, Turn 2[deg/s] * 200.14 ± 48.04 123.38 ± 35.46

P17 Amplitude angle roll, sit-stand[deg] 28.35 ± 11.64 30.58 ± 14.02

Continued on next page
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Table 3.1 – continued from previous page

Bil Parameter Low fall risk High Fall risk

* p<0.05 Mean ± std Mean ± std

P18 Amplitude angle pitch, stand-sit[deg] 33.83 ± 11.06 36.64 ± 11.67

P19 RMS acceleration AP sit-bend 0.32 ± 0.11 0.38 ± 0.12

P20 RMS acceleration AP bend-stand 0.29 ± 0.11 0.31 ± 0.14

P21 RMS acceleration AP stand-bend 0.34 ± 0.11 0.35 ± 0.09

P22 RMS acceleration AP bend-sit 0.39 ± 0.12 0.44 ± 0.14

P23 RMS acceleration ML sit-bend 0.07 ± 0.03 0.06 ± 0.03

P24 RMS acceleration ML bend-stand 0.11 ± 0.03 0.10 ± 0.04

P25 RMS acceleration ML stand-bend 0.19 ± 0.07 0.16 ± 0.05

P26 RMS acceleration ML bend-sit 0.09 ± 0.05 0.09 ± 0.04

P27 RMS acceleration V sit-bend 0.14 ± 0.07 0.15 ± 0.07

P28 RMS acceleration V bend-stand * 0.21 ± 0.10 0.16 ± 0.05

P29 RMS acceleration V stand-bend * 0.19 ± 0.06 0.13 ± 0.04

P30 RMS acceleration V bend-sit 0.21 ± 0.12 0.16 ± 0.08

P31 RMS angular velocity roll sit-bend 9.41 ± 5.39 7.12 ± 4.09

P32 RMS angular velocity roll bend-stand 13.87 ± 4.39 11.52 ± 4.38

P33 RMS angular velocity roll stand-bend * 26.59 ± 11.92 17.14 ± 5.42

P34 RMS angular velocity roll bend-sit * 12.22 ± 6.77 8.66 ± 2.76

P35 RMS angular velocity pitch sit-bend 68.49 ± 33.19 76.28 ± 45.16

P36 RMS angular velocity pitch bend-stand 53.86 ± 21.11 44.88 ± 16.82

P37 RMS angular velocity pitch stand-bend * 46.97 ± 17.49 29.66 ± 11.33

P38 RMS angular velocity pitch bend-sit * 75.70 ± 38.28 48.29 ± 17.57

P39 RMS angular velocity yaw sit-bend 12.68 ± 8.76 10.94 ± 7.14

P40 RMS angular velocity yaw bend-stand 21.90 ± 9.86 22.58 ± 8.32

P41 RMS angular velocity yaw stand-bend * 97.08 ± 37.78 55.28 ± 17.37

P42 RMS angular velocity yaw bend-sit 23.75 ± 10.49 20.45 ± 6.83

P43 RMS acceleration AP walk 1 * 0.22 ± 0.08 0.13 ± 0.049

P44 RMS acceleration AP walk 2(return) * 0.20 ± 0.056 0.14 ± 0.055

P45 RMS acceleration ML walk 1 * 0.22 ± 0.080 0.14 ± 0.055

P46 RMS acceleration ML walk 2(return) * 0.20 ± 0.057 0.14 ± 0.044

Continued on next page
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Table 3.1 – continued from previous page

Bil Parameter Low fall risk High Fall risk

* p<0.05 Mean ± std Mean ± std

P47 RMS acceleration V walk 1 * 0.28 ± 0.091 0.15 ± 0.055

P48 RMS acceleration V walk 2(return) * 0.26 ± 0.08 0.15 ± 0.038

P49 RMS angular velocity Roll walk 1 * 20.59 ± 7.3 11.99 ± 5.261

P50 RMS angular velocity Roll walk 2(return) * 20.11 ± 5.037 12.35 ± 4.659

P51 RMS angular velocity Pitch walk 1 * 47.54 ± 21.501 19.24 ± 8.901

P52 RMS angular velocity Pitch walk 2(return) * 41.40 ± 15.755 20.10 ± 7.176

P53 RMS angular velocity Yaw walk 1 * 34.47 ± 9.343 24.96 ± 11.521

P54 RMS angular velocity Yaw walk 2(return) * 35.22 ± 11.793 25.89 ± 8.283

P55 Number of walk 1 steps * 6 ± 1.37 7 ± 1.10

P56 Number of walk 2 steps * 5 ± 1.58 7 ± 1.29

P57 Number of turn 1 steps (p=0.09) 3 ± 0.92 4 ± 1.62

P58 Number of turn 2 steps * 2 ± 0.72 3 ± 1.05

P59 Number of Total steps * 16 ± 2.74 21 ± 2.05

P60 Number of walk 1 strides * 3 ± 0.68 4 ± 0.55

P61 Number of walk 2 strides * 3 ± 0.79 4 ± 0.64

P62 Number of turn 1 strides (p=0.09) 1 ± 0.46 2 ± 0.81

P63 Number of turn 2 strides* 1 ± 0.29 1 ± 0.53

P64 Number of total strides * 8 ± 1.37 11 ± 1.02

P65 Mean step time walk 1[s] * 0.42 ± 0.15 0.56 ± 0.13

P66 Mean step time turn 1[s] 0.66 ± 0.42 0.91 ± 0.88

P67 Mean step time walk 2[s] (p=0.057) 0.47 ± 0.14 0.56 ± 0.12

P68 Mean step time turn 2[s] 0.78 ± 0.39 0.73 ± 0.35

P69 Mean stride time walk 1[s] * 0.83 ± 0.31 1.12 ± 0.27

P70 Mean stride time turn 1[s] 1.32 ± 0.84 1.82 ± 1.76

P71 Mean stride time walk 2[s] (p=0.057) 0.93 ± 0.28 1.11 ± 0.24

P72 Mean stride time turn 2[s] 1.56 ± 0.79 1.47 ± 0.70

P73 cadence walk 1[step/min] * 144.55 ± 33.83 112.42 ± 25.81

P74 cadence walk 2[step/min] * 129.7 ± 30.82 112.96 ± 25.37

P75 cadence turn 1[step/min] * 154.83 ± 49.13 99.4 ± 52.60

Continued on next page
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Table 3.1 – continued from previous page

Bil Parameter Low fall risk High Fall risk

* p<0.05 Mean ± std Mean ± std

P76 cadence turn 2[step/min] 78.44 ± 36.49 95.02 ± 32.48

P77 Speed walk 1 [m/s] * 1.27 ± 0.28 0.79 ± 0.22

P78 Speed walk 2 [m/s] * 1.26 ± 0.30 0.80 ± 0.14

Figure 3.1: A comparison between HFR and LFR groups in total duration parameter

and in each phase.

The result shown in Figure 3.1 indicate that the subjects in the HFR group

took longer to complete the whole test For each phase, there were significant

differences in all activity phases, except for the sit-stand phase, which comprised

of sit-bend and bend-stand phases.
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(a) A comparison between HFR and LFR in

terms of time parameters for sit-bend, bend-

stand, and sit-stand phases.
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(b) Correlation between duration of sit-stand

phase and duration of bend-stand phase.

Figure 3.2: Dividing the Sit-stand phase into more details phases.

It can be seen in Figure 3.2 that, lower p-value (p=0.08) was noted in bend-

stand phase and greater (p=0.85) in sit-bend phase compared to sit-stand (p=0.25).

This suggests that the sit-bend phase contributed to the high p-value in sit-stand

phase. Consequently, bend-stand phase was chosen to represent the activity dif-

ference between HFR and LFR in sit-stand phase. In order to validate this
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approach, correlations of the durations taken for the bend-stand phase and the

sit-stand phase were determined for both HFR and LFR groups. High correla-

tion results between the two phases were determined for all subjects, as shown

in Figure 3.2(b), with r=0.91.Although the p-values were very low in the bend-

stand phase, the result could not be used in differentiating the two groups, when

considering that α <0.05 was used in this study.
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(a) Bend-stand phase
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(b) Walk 1 phase

5 10 15 20
0

1

2

3

4

Total time[s]

T
ur

n 
1 

ph
as

e 
ti

m
e[

s]

r=0.62

(c) Turn 1 phase
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(d) Walk 2 phase
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(e) Turn 2 phase
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(f) Stand-bend phase

Figure 3.3: Correlation between time duration in each phase with total time.

To investigate the relationship between the activity in each phase and TUG

test duration, the correlation between time taken in each phase and total time

taken to complete the whole test was plotted. Strong correlations were identified,

as shown in Figure 3.3(b) and Figure 3.3(d), for walking phases. Strong correla-

tion also found in turning, stand-bend, and stand-sit phases. Despite this, low r

values were found as shown in Figure 3.3(a) for bend-stand. It may be reasonable

to suppose that the low correlations in the sit-stand and the bend-stand phases

were caused by the static movement during these phases, rather than the dynamic

activities of walking and turning. Since the time parameter could not identify

any significant differences in this phase, RMS parameter was considered.
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Figure 3.4: Comparison between HFR and LFR in RMS parameter for bend-stand and

stand-bend phases in vertical direction of acceleration signal.

Figure 3.5: Comparison between HFR and LFR in RMS parameter for stand-bend and

bend-sit phases in roll direction of angular velocity signal.

A significant difference was found in the RMS value of the acceleration signal
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in a vertical direction, with p<0.05 in bend-stand phase and in stand-bend phase,

as shown in Figure 3.4. Data suggested that LFR subjects move with higher

acceleration. Significant differences were displayed in the acceleration signal in

the roll direction for stand-bend and bend-sit phases, with subjects in the HFR

group having higher RMS values.

Figure 3.6: A Comparison between HFR and LFR in RMS parameter for walk 1 and

walk 2 phases using acceleration in all directions.
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Figure 3.7: A Comparison between HFR and LFR in amplitude parameter using an-

gular velocity signal in yaw direction for turn 1 and turn 2 phases

In other phases, besides the time parameter, other parameters were also used

and showed significant differences. For the walking phase, acceleration signal and

angular velocity signal in all directions showed significant differences with p<0.01,

as shown in Figure 3.6. Significant differences were found in the yaw direction

of angular velocity signal, referring to the amplitude parameter, with p<0.01.

Using the cadence parameter, significant differences were observed only in walk

1, walk 2, and turn 1 phases, with p<0.01. During the turn 2 phase, only 1 to 3

steps were required to complete the phase, leading to the insignificant difference

between the two groups. Comparing the speed parameters, the HFR group had

lower walking speed with p<0.01 for both walk 1 and walk 2 phases. For each

parameter, numerical results were derived and are summarised in Table 3.1.

3.3. Classification Analysis

In previous section, 78 parameters were obtained from extracted acceleration

signal, angular velocity signal and transformed angular signal. There are 44

parameters were identified significant differences between the two groups. Clas-
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sification using more parameters could provides more sensitive data. In order to

classify the subject into HFR and LFR using all the significant parameters, we

tried to use from the simplest classification algorithm; K-nn, to the multivariate

analysis methods; principal component analysis (PCA) and linear discriminant

analysis(LDA), and also random forest analysis.

3.3.1 K Nearest Neighbor

From the various parameters, classification between the two groups was obtained.

Current practice involves using the total test duration to predict subjects to be

classified into HFR or LFR groups. Here, classification using two parameters

based on k-NN was carried out.
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Figure 3.8: Classification between HFR and LFR groups using k-NN classifier for stand-

bend phase.
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Figure 3.9: Classification between HFR and LFR groups using k-NN classifier for walk-

ing phase.
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Figure 3.10: Classification between HFR and LFR groups using k-NN classifier for

turning phase.

Figure 3.8,Figure 3.9,Figure 3.10 shows the classification of subjects in both

groups using the significant parameters found in stand-bend, walking, and turning
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phases respectively. Stars show the training points while circles show the test

subjects. For the walking phase, the subject displaying a longer time duration,

with a lower acceleration RMS value, is at greater risk of falling. For turning

phases, the longer the duration and the lower the angular velocity amplitude are,

the greater risk of falling. For stand-bend phase, as observed from Figure 3.8,

the subjects could not be clearly classified into two groups. According to the

Figure 3.9 and Figure 3.10, by using the k-NN algorithm, the test subjects could

be accurately classified into groups following the training data in walking and

turning phases.

This study demonstrated how a single wearable inertial sensor could be used

to classify the subjects in terms of fall risk by using standard physical assessment;

TUG test. We classify the subjects using dual parameters, instead of using only

the time parameter. By using the angle signal for phase determination, subject

movement could be accurately characterized during the sit-stand and stand-sit

phases. Most notably, this enables distinguishing of the phase transition from

the sit-stand phase to the walking phase. This may reduce the need for subjects

to use many sensors. As a result, a therapist could handle the experiment more

easily with simple sensor attachment.

78 parameters were gathered from 3 signal types in 3 directions. 44 param-

eters were reported to have been significantly different. Figure 3.1 summarises

that subjects in the HFR group took longer to complete each phase as well as

to complete the whole test. This result showed the same trend as observed in

previous research Podrichard et. al,shumway et. al,Higashi et. al and Barry

et.al also agrees well with current clinical practice. For the sit-stand phase, there

was no significant difference found using the time parameter for demarcating fall

risk groups. The separation into two detailed phases: sit-bend and bend-stand,

provided better results. Figure 3.2 indicates that, from the comparison between

HFR and LFR in terms of time parameters, there was very high p-value (p=0.85)

in sit-bend phase compared with that in bend-stand phase (p=0.08). This sug-

gests that high p-value (p=0.25) in sit-stand phase may have been contributed

by sit-bend phase. As a result, it is appropriate if the bend-stand phase is used to

present the sit-stand phase. This is evident in Figure 3.2. Unfortunately, lower

p=0.08 in the bend-stand phase still does not satisfy α < 0.05; however, it is
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shown that the component in the sit-stand phase has a tendency to differentiate

the two groups. A correlation between time taken to complete each phase and the

total time taken to complete the TUG test was also observed. A low correlation

was found in the bend-stand phase, while other phases had high correlation, with

the walking phase achieving the highest value of r. This findings might indicate

that time taken depended on the individual and could not be used as a parameter

for evaluating the fall risk. Moreover, classifying the subjects using only the time

parameter will not reveal the movement activities in each phase. To investigate

this issue further, comparisons between the two groups were carried out using

other parameters. As summarised in Table 1, there were significant differences in

bend-stand and stand-bend phases using the RMS value of acceleration signal in

the vertical direction. As well as for walking phases, significant differences were

found in walking in all directions using the RMS value in the acceleration signal.

As shown in Figure 3.6, the RMS value in LFR was higher than in HFR subjects

in all phases. We consider that the rigid movement by HFR elderly might have

resulted in a lower RMS value. This might explain that the LFR subjects var-

ied more during bend-stand and stand-bend movements than the HFR subjects.

During the turning phases, subjects in the LFR group had a higher amplitude of

angular velocity, as presented in Figure 3.7 . The higher amplitude may signify

that the subjects in the LFR group moved more actively than the subjects in the

HFR group. This observation is evident when the LFR group produced a larger

change in the angular displacement over time. Significant differences in relevant

parameters were found in all phases of the respective activities. Our technique

circumvents the limitations of the previous approach presented by Higashi et. al

leads to an improved result.

Using dual parameters applied with the k-NN algorithm, the HFR and LFR

could be classified into two different groups within the test subjects, which were

accurately categorized into their respective groups in the walking and turning

phases. Nevertheless, in bend-stand, the two groups were not classified appro-

priately. In contrary to the dynamic motion in walking and turning phases, the

static movement in the sit-stand and stand-sit phases might have contributed to

these results. In the case of walking phases, RMS values of acceleration signal

in the vertical direction along with the time parameter can reasonably describe
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the subject activities. Significant differences between the HFR and LFR in terms

of amplitude of angular velocity signal in the yaw direction plotted against the

time parameter could be used to classify the subject activities. The classification

using 2 parameters limiting the use of parameters in classifying the elderly. As

we collected 78 parameters with 44 are shown to have significant different, it is

interesting if it is possible to see the effects of all parameters to the subjects at

one time. In addition, within of these parameters, there are it is better if we can

choose the parameters that most greatly influence the data. For this pupose, we

applied a statistical technique handling with multiple variable.

3.3.2 Principle Component Analysis

Choosing the parameter to be used in classifying the fall risk among elderly is

one of the issue in this study. In visualising the differences between both groups,

using only one parameter and two parameters from gathered parameters do not

contribute the whole story of the data. We decided to apply the multivariate

analysis to the data in hopes of providing better classification compared to k-NN.

In all parameters, there are redundancy between data occurred. In order

to simplify the data, yet still get the overall picture of the data, we use the

principal component analysis to reduces the redundant features. The PCA also a

techniques that could indicate which attributes contribute the most to the group

differentiation.

From PCA,the importance of components gathered are as below in 38 of

principal components.

Principal component PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 92.1254 58.8186 41.12302 32.0611 28.42016 26.48515 19.4766

Proportion of Variance 0.4946 0.2016 0.09854 0.0599 0.04707 0.04088 0.0221

Cumulative Proportion 0.4946 0.6962 0.79470 0.8546 0.90166 0.94254 0.9646

Principal component PC8 PC9 PC10 PC11 PC12 PC13 PC14

Standard deviation 17.17276 10.28761 9.19015 7.6357 5.0753 4.23123 3.16847

Proportion of Variance 0.01718 0.00617 0.00492 0.0034 0.0015 0.00104 0.00058

Cumulative Proportion 0.98183 0.98799 0.99291 0.9963 0.9978 0.99886 0.99944
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Principal component PC15 PC16 PC17 PC18 PC19 PC20 PC21

Standard deviation 2.29182 1.34403 1.10845 0.73451 0.66706 0.33640 0.2864

Proportion of Variance 0.00031 0.00011 0.00007 0.00003 0.00003 0.00001 0.0000

Cumulative Proportion 0.99975 0.99985 0.99992 0.99996 0.99998 0.99999 1.0000

Principal component PC22 PC23 PC24 PC25 PC26 PC27 PC28

Standard deviation 0.1948 0.1672 0.1499 0.1145 0.1086 0.06951 0.06138

Proportion of Variance 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000

Cumulative Proportion 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Principal component PC29 PC30 PC31 PC32 PC33 PC34 PC35

Standard deviation 0.04216 0.03735 0.02493 0.02152 0.01748 0.01205 0.009445

Proportion of Variance 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Cumulative Proportion 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Principal component PC36 PC37 PC38

Standard deviation 0.005595 0.003914 8.472e-15

Proportion of Variance 0.000000 0.000000 0.000e+00

Cumulative Proportion 1.000000 1.000000 1.000e+00

Figure 3.11: A scree plot of variances explain by the princi-

pal components.
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The first component contribute 49.46% of the variance to the whole data.

The PC1 is insufficient to model the systematic variation of the data set. Thus

the second component is considered. The PC2 contribute 20.16%. A barplot

of each component’s variance in Figure 3.11 shows how the first two components

influence the data. The PC1 and PC2 have most adequate for classification which

discover about 70% of the variance in the data. In general, it assumes that two

components explain a sufficient amount of the variance to provide a meaningful

visual representation of the subjects and parameters.

Table 3.2: Rank by the most important parameters using new variable of Principal

Component 1 and Principal Component 2.

Rank
PC1 PC2

Rank
PC1 PC2

Score Parameter Score Parameter Score Parameter Score Parameter

1 0.55172 P16 0.81900 P75 19 0.00065 P48 -0.00095 P60

2 0.48550 P75 0.01089 P59 20 0.00061 P28 -0.00190 P55

3 0.40812 P15 0.00884 P33 21 0.00061 P45 -0.00200 P77

4 0.32078 P41 0.00545 P64 22 0.00055 P46 -0.00216 P78

5 0.24929 P73 0.00506 P50 23 0.00054 P43 -0.00262 P61

6 0.17465 P74 0.00158 P69 24 0.00044 P44 -0.00524 P56

7 0.15226 P51 0.00129 P63 25 0.00043 P29 -0.01061 P53

8 0.14891 P38 0.00105 P49 26 -0.00047 P67 -0.01633 P51

9 0.12156 P37 0.00071 P65 27 -0.00074 P65 -0.01667 P54

10 0.10842 P52 0.00057 P67 28 -0.00143 P69 -0.03265 P52

11 0.08617 P54 0.00010 P45 29 -0.00248 P63 -0.09801 P37

12 0.07850 P53 -0.00001 P43 30 -0.00311 P61 -0.15244 P41

13 0.07142 P33 -0.00003 P46 31 -0.00400 P60 -0.17521 P15

14 0.06272 P49 -0.00009 P28 32 -0.00622 P56 -0.18188 P16

15 0.05117 P50 -0.00012 P44 33 -0.00799 P55 -0.22961 P38

16 0.00419 P77 -0.00015 P29 34 -0.00985 P64 -0.26356 P73

17 0.00309 P78 -0.00018 P47 35 -0.01971 P59 -0.32925 P74

18 0.00086 P47 -0.00031 P48

The rank listed in this Table 3.2 which shows the most and the least impor-

tant parameters ranked from 1 to 35 for both principle components. From 44

significant parameters, 35 parameters were selected with 9 time parameters were

removed from the data. From the very beginning of this research, we divide all

subjects into HFR and LFR using the total time parameters. To avoid the high
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influence by the time parameters, we remove all time parameters to see whether

other parameter could accurately classify the elderly correctly into their respec-

tive groups. As we can see that the most important parameter in PC1 is the

P16(amplitude of angular velocity signal during turn 2 phase in yaw direction).

Meanwhile, the most important parameter in PC2 is the P75(cadence parameter

in turn 1 phase) shown in Table 3.2.

Figure 3.12: The most important parameter in PC1

57



Figure 3.13: The most important parameter in PC2

Figure 3.12 and Figure 3.13 are the rank of the most important parameters

PC1 and PC2 respectivelyin barplot. Referring to the ranking illustrated by the

PC1, the most important parameters were listed as P16, P75,, P15, P41, P73,

P74, P51, P38, P37, P52, P54, P53, P33, P49 and P50 in positive score, while

the P59, P64, P55, P56, and P60 are the most important parameters in negative

value score. On the other hand, the parameters were rank in using the PC2 as

the P75 presented the most important parameter with very high positive value,

meanwhile P74, P73, P38, P16, P15, P41, P37, P52, P54, P51 and P53 were

listed as the most important parameters in negative value score.
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Figure 3.14: PCA score plot of the two first principal com-

ponent.

The PC1 and PC2 were derived and defined a plane. By projecting all the

observation onto this two lower dimensional sub-space and plotting the results, it

is possible to visualize the pattern of 38 subjects using 35 parameters. Figure 3.14

shows the distribution of 38 subjects in the PC1 and PC2 plane. The co-ordinate

values of this planes called scores, and plotting of such projected is known as score

plot. The graph distributions forming into two group, describes a convincing

illustration that encourage for a good classification result. As for the PC1, the
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negative value influence the classification for subject in HFR group, while the

positive value influence the classification into LFR group. In the meantime, the

PC2 do not give any effect in classifying HFR and LFR. As seen in the figure,

the HFR and LFR can be almost 100% accurately classified into their respective

groups. As illustrated in the figure, the classification was contributed by the

PC1, while the PC2 did not play a role in classifying the subjects into groups.

Therefore, the parameters listed in the PC1 were chosen to be used in classifying

the subjects.

Discriminant Analysis-PCA

In order to perform the group discrimination in multiple analysis, the linear dis-

criminant analysis was applied to the data. As discussed previously, based on how

the parameters influence the data, parameters were ranked using PCA. From 35

parameters, the unimportant parameters or noisy from the data that shows small

contribution to the PC1 were removed and 20 important parameters were chosen

for the classification purpose in LDA. It should, however, be noted that LDA

works when the measurements made on independent variables for each observa-

tion are continuous quantities. It is unacceptable if using dependent variable in

the data that may effect the output of the final result. As a result, eighteen

parameters were identified as the most importance parameters chosen from prin-

ciple component 1 with two parameters; P59 (total number of step) and P64

(total number of stride) were required to be removed.

Table 3.3: Number of Observations and Percent Classified into Fall Risk using LDA

with Parameters selected from PC1.
Groups HFR LFR Total

HFR
Number of observation 7 4 11

Percent classified into fall risk 63.64 36.36 100

LFR
Number of observation 5 22 27

Percent classified into fall risk 18.52 81.48 100

Error rate 0.3636 0.1852 0.2744

60



Table 3.4: Number of Observations and Percent Classified into Fall Risk using LDA

with Parameters selected from PC1.
Groups HFR LFR Total

HFR
Number of observation 9 2 11

Percent classified into fall risk 81.81 18.18 100

LFR
Number of observation 7 20 27

Percent classified into fall risk 25.93 74.07 100

Error rate 0.1818 0.2593 0.2205

Eighteen parameters in the PC1 were selected and LDA were performed. The

classification result and its error rate were summarized in Table 3.3. Four of

nine subjects from HFR were misclassified into LFR group, meanwhile five of 22

subjects from LFR were misclassified. Three parameters from negative side of

the graph were identified to have very small value contribute least importance

parameters. In order to reduce the error rate in classifying subject into HFR

and LFR using LDA, those three parameters were removed and LDA applied to

the data with only using 15 parameters. As a results, two of eleven HFR were

misclassified into LFR group, seven of 22 subjects from LHR were misclassified

into HFR group. The average recognition rate were increase from 72% to 77%,

when we reduce those parameters from the analysis. However, the misclassified

subjects in LFR were increase. Even so, the false positive result in the upper

analysis in Table 3.3 are higher compared to result in Table 3.4. A false negative

is a test result that indicates a subject does not have fall risk, but the person

actually does have risk. This situation endangering the HFR elderly. It is better

to have the false positive result in the lower table than the false negative result

in Table 3.3 for fall risk prediction. As a result, 15 parameters from were selected

to be the most influence parameters listed in Table 3.5.
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Table 3.5: The most important parameters selected using PC1 in PCA.

Parameters Signals Directions Phases

P16 Amplitude Angular Velocity Yaw Turn 2

P75 Cadence Turn 1

P15 Amplitude Angular Velocity Yaw Turn 1

P41 RMS Angular Velocity Yaw Stand bend

P73 Cadence Walk 1

P74 Cadence Walk 2

P51 RMS Angular Velocity Pitch Walk 1

P38 RMS Angular Velocity Pitch Bend sit

P37 RMS Angular Velocity Pitch Stand bend

P52 RMS Angular Velocity Pitch Walk 2

P54 RMS Angular Velocity Yaw Walk 2

P53 RMS Angular Velocity Yaw Walk 1

P33 RMS Angular Velocity Roll Stand bend

P49 RMS Angular Velocity Roll Walk 1

P50 RMS Angular Velocity Roll Walk 2

The most important parameter is the P16 which is the amplitude of angular

velocity signal in yaw direction during turn 2 phase. And it is followed by the P75

which is the cadence parameter during turn 1 phase. The third most important

parameter also from turning phase; which is the amplitude of angular velocity

signal in yaw direction during turn 1 phase.
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Figure 3.15: A classification between HFR and LFR groups

in using chosen parameters by PCA.

In order to discriminate elderly between LFR and HFR, LDA were performed.

Classification result were plotted in scatter plot and illustrated in Figure 3.15.

It clearly can be seen that the two groups were separated correctly by a single

new composite variable LD1, variable which combines using the 15 parameters

selected in PCA.
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Figure 3.16: Discriminant distribution between HFR and LFR using parameters chosen

from PCA.

Using the 15 parameters, the LD1 can clearly separate the two group, with

the discriminant distribution displayed in the Figure 3.16 (b) shows normal dis-

tribution of ’discriminant scores. The degree of overlap between the discriminant

score distributions can be used as a measure of the success of the technique and

some overlap between HFR and LFR group can be observed in the figure.
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3.3.3 Random Forest
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Figure 3.17: Random Forest Analysis: The Importance

score bar plot of all parameter excluding the time parame-

ters(ntree=200).

The bar plot in Figure 3.17 illustrate the behaviour of parameter importance in

classifying the fall risk among elderly using all data except the eleven parameters

of time. The variable important figure were obtained for data n=38 and p=67,

parameter ntree are set to 200, while mtry are set as 1/3 of the 67 parameters as

training, and OOB as test data with 1000 trials. The global picture is the follow-

ing: it can be seen that 9 parameters were shown to have higher importance of

score which is higher than 2, 20 moderately important parameters with impor-

tance score 2 and less to zero, and the others of small importance. For the less

important parameter it shown that the box-plots are larger. and the mean red

line is not positioned in the center of the box. The higher the important score,

the important parameter is. From the boxplot, it illustrated that 31 parameters

have score more than 0. We selected the 31 parameters as the most important

parameters in random forest analysis. In order to use the selected parameter to

classify the elderly into HFR and LFR, we applied the data with DA.
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Figure 3.18: Discriminant distribution between HFR and LFR using parameters chosen

from random forest analysis.

Table 3.6: Number of Observations and Percent Classified into Fall Risk using Random

Forest.
Groups HFR LFR Total

HFR
Number of observation 9 2 11

Percent classified into fall risk 81.82 18.18 100

LFR
Number of observation 0 27 27

Percent classified into fall risk 0 100 100

Error rate 0.1818 0 0.091

We classified the subject into both group using 31 selected parameter. How-

ever, due to DA limitation which the parameters need to be independent variable,

we removed 8 parameters from chosen 31 parameters. Using the 23 selected pa-
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rameters by random forest analysis, the LD1 can clearly separate the two group,

with the discriminant distribution displayed in the Figure 3.18 reduced the over-

lap between HFR and LFR group compared to the classification using selected

parameters from PCA in Figure 3.16 . Table 3.6 shows the classification error

rate. It is indicated that there are only 2 LHR subject were misclassified to LFR

group and no LFR subject were misclassified. Although there are no false positive

result, There are 2 false negative occurred using the random forest, same result

as in PCA with the average recognition is 90.91%.
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Table 3.7: The most important parameters selected using random forest.

Parameters Signals Directions Phases

P78 Speed Walk 2

P77 Speed Walk 1

P16 Amplitude Angular Velocity Yaw Turn 2

P15 Amplitude Angular Velocity Yaw Turn 1

P51 RMS Angular Velocity Pitch Walk 1

P52 RMS Angular Velocity Pitch Walk 2

P43 RMS Acceleration Antero posterior Walk 1

P50 RMS Angular Velocity Roll Walk 2

P49 RMS Angular Velocity Pitch Walk 1

P48 RMS Acceleration Vertical Walk 2

P53 RMS Angular Velocity Yaw Walk 1

P47 RMS Acceleration Vertical Walk 1

P44 RMS Acceleration Antero posterior Walk 1

P46 RMS Acceleration Medio lateral Walk 2

P65 Mean step time Walk 1

P69 Mean stride time Walk 1

P73 Cadence Walk 1

P41 RMS Angular Velocity Yaw Stand-bend

P14 Amplitude Angular Velocity Pitch Stand-sit

P37 RMS Angular Velocity Pitch Stand-bend

P29 RMS Acceleration Vertical Stand-bend

P45 RMS Acceleration Medio lateral Walk 1

P33 RMS Angular Velocity Roll Stand-bend

As a result in random forest, 23 most important parameters were selected as

per listed in Table 3.7. The most important parameter is the P78 which is the

speed parameter during walk 2 phase. And it is followed by the P77 which is

the speed parameter during walk 1 phase. The third and forth most important

parameter also from turning phase; which is the amplitude of angular velocity

signal in yaw direction during turn 2 phase(P16) and amplitude of angular velocity

signal in yaw direction during turn 1 phase(P15) as also listed in the Table 3.5.
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Chapter 4

Discussion

Rasulullah saw said: ”Whoever

acts to be heard and seen, God

will cause his falsity to be heard

and seen”.

Bukhari, Muslim

4.1. Quantitative Analysis

This study demonstrated how a single wireless inertial sensor could be used to

classify the subjects in terms of fall risk by using standard physical assessment

TUG test. We classify the subjects using dual parameters and multi-parameters,

to objectively quantify and provide a quantitative evaluation of falling risk, and

harnessing the quantitative information well beyond simply the time taken to

perform the test. Our finding in this study summarizes that the traditional TUG

measured with a stopwatch was not a sensitive tool to detect gait and posture

abnormalities in elderly. Instead of using many sensors, this study use a single

sensor in attached at waist dorsally in determining the phase transition. This

may reduce the need for subjects to use many sensors. As a result, a therapist

could handle the experiment more easily with simple sensor attachment. By using

the angle signal for phase determination, subject movement could be accurately

characterised in phases. Most notably, this enables distinguishing of the phase
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transition from the sit-stand phase to the walking phase. By assessing a wide

variety of spatial and temporal components in each phases, we uncovered mobility

deficits that were not evident with stopwatch in phases.

78 parameters were gathered from three signal types in three directions. 44

parameters were reported to have been significantly different. Figure 3.1 sum-

marises that subjects in the HFR group took longer to complete each phase as

well as to complete the whole test. This result showed the same trend as observed

in previous research [1, 5–7], and also agrees well with current clinical practice.

For the sit-stand phase, there was no significant difference found using the time

parameter for demarcating fall risk groups. The separation into two detailed

phases: sit-bend and bend-stand, provided better results. Figure 3.2 indicates

that, from the comparison between HFR and LFR in terms of time parameters,

there was very high p-value ( p = 0.85) in sit-bend phase compared with that

in bend-stand phase ( p = 0.08). This suggests that high p-value (p=0.25) in

sit-stand phase may have been contributed by sit-bend phase. As a result, it is

appropriate if the bend-stand phase is used to present the sit-stand phase. This

is evident in Figure 3.2. Unfortunately, lower p = 0.08 in the bend-stand phase

still does not satisfy α <0.05; however, it is shown that the component in the

sit-stand phase has a tendency to differentiate the two groups. A correlation

between time taken to complete each phase and the total time taken to complete

the TUG test was also observed. A low correlation was found in the bend-stand

phase, while other phases had high correlation,with the walking phase achieving

the highest value of r. This findings might indicate that time taken depended

on the individual and could not be used as a parameter for evaluating the fall

risk. Moreover, classifying the subjects using only the time parameter will not

reveal the movement activities in each phase. To investigate this issue further,

comparisons between the two groups were carried out using other parameters.

As summarised in Table 3.1, there were significant differences in bend-stand and

stand-bend phases using the RMS value of acceleration signal in the vertical direc-

tion. As well as for walking phases, significant differences were found in walking

in all directions using the RMS value in the acceleration signal. As shown in

Figure 3.6, the RMS value in LFR was higher than in HFR subjects in all phases.

We consider that the rigid movement by HFR elderly might have resulted in a
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lower RMS value. This might explain that the LFR subjects varied more during

bend-stand and stand-bend movements than the HFR subjects. During the turn-

ing phases, subjects in the LFR group had a higher amplitude of angular velocity,

as presented in Figure 3.7. The higher amplitude may signify that the subjects in

the LFR group moved more actively than the subjects in the HFR group. This

observation is evident when the LFR group produced a larger change in the an-

gular displacement over time. Significant differences in relevant parameters were

found in all phases of the respective activities. Our technique circumvents the

limitations of the previous approach presented by Higashi et al. that leads to an

improved result.

4.2. Classification Analysis

Previous researchers had address the problem of fall risk among elderly. Few

researchers analysed the fall risk quantitatively using the sensors. However the

classification using only one parameter at one time limit the evaluations. In this

study we used four types of classification in detecting to which groups is elderly

belonged to HFR or LFR. We first attempt to use dual parameters applied with

the k-NN algorithm. Instead of evaluating fall risk using time parameter only,

therapist could use the information given by the other parameters, especially

involving spatial parameters. The HFR and LFR could be classified into two

different groups within the test subjects, which were accurately categorised into

their respective groups in the walking and turning phases. In the case of walk-

ing phases, RMS values of acceleration signal in the vertical direction along with

the time parameter can reasonably describe the subject activities. Significant

differences between the HFR and LFR in terms of amplitude of angular velocity

signal in the yaw direction plotted against the time parameter could be used to

classify the subject activities. Nevertheless, in bend-stand, the two groups were

not classified appropriately. In contrary to the dynamic motion in walking and

turning phases, the static movement in the sit-stand and stand-sit phases might

have contributed to these results. An alternative approach is necessary with the

intention of enhancing the classification technique. Using k-NN analysis, we could

evaluate elderly whether they have falling risk or not using only two parameters.
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Fall risk classification using 2 parameter limit the classification only using pa-

rameters. As we collected 78 parameters with 44 are shown to have significant

different, it is interesting if it is possible to see the effects of all parameters to

the subjects at one time. Therefore we applied a statistical technique handling

with multiple variable. Applying PCA to the significant data improves the clas-

sification method. Instead of using only selected two parameters at one time,

multiple parameter were used. using 35 parameters, PC1 could clearly separate

the elderly into HFR and LFR. The distributions of subjects into two groups as

shown in Figure ?? encourage for a good classification results using PC1. Among

all 35 significant parameters, 15 most important parameter were selected from

PC1. According to the result from Table 3.5, the most three important param-

eters from in classifying the elderly was in turning phases; p16, P75 and P15.

Evidence from this, it could be conclude that evaluation using turning activity

give better results in determining the fall risk among elderly. By using PCA,

we can determine a subject’s belonging to a group or LFR or HFR very well.

However, the prime difference between LDA and PCA is that PCA does more

of feature classification and LDA does data classification. Therefore, we decided

to used LDA in classifying the subjects into their respective groups. The result

was displayed in Chapter three. For comparison, we also use the random forest

that provides more accuracy in classifying the HFR and LFR. This evident by

the lower error rate shown in RF comparing to using PCA and LDA. In addition,

we do not have to choose the best data first before applying to the random forest

to ensure a good results as we need to choose in PCA and LDA. As a result using

RF, 23 most important parameters were selected as per listed in Table 3.7. The

different method applied in RF; using a method that construct a collection of

decision trees with controlled variation tree, given almost the same selection of

important parameters. Although the most important parameters was P78 and

P77 were chose in RF analysis, the third and forth parameters chosen are P16

and P15 as per selected using the PCA analysis. It is apparent that both anal-

ysis exhibit that the P16 and P15 are listed in the most important parameter

list. Combining this results, it may be able to conclude that the most influence

spatial parameter to differentiate the HFR and LFR were found in phases using

PCA and RF are:
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1. Sit-stand(stand bend) = no significant parameter

2. Walking = RMS of Angular Velocity in pitch direction (P51 and P52)

3. Turning = Amplitude of Angular Velocity in yaw direction (P15 and P16)

4. Stand-sit (stand-bend) = RMS of Angular Velocity in Yaw direction

5. For the sit-stand phase, the significant different were found using the RMS

of acceleration parameter in vertical direction, using the t-test analysis.

4.3. Clinical interpretation

From our approach, we can make further discussion for specific subject by using

the parameters gathered in each phase. The subjects could not only be classified

as HFR and LFR; moreover, therapists could detect which activity might lead the

subject to fall. By using time parameter, four subjects were chosen as examples,

as shown in Table 4.1.

Table 4.1: High fall risk subject in terms of different weaknesses using time parameters.
Sub Sit-

bend[s]

Bend-

stand

[s]

Sit-

stand

[s]

Walk

1[s]

Turn

1[s]

Walk

2[s]

Turn

2[s]

Stand-

bend[s]

Bend-

stand[s]

Stand-

sit[s]

Total[s]

A 0.93 0.86 1.79 3.95 3.46 3.36 1.97 1.58 1.33 2.91 16.27

B 0.36 0.44 0.8 5.51 1.93 3.91 1.07 1.43 1.22 2.65 15.2

C 0.91 1.62 2.53 2.33 2.03 3.85 1.56 2.02 1.35 3.37 14.52

D 0.4 0.67 1.07 5.63 2.3 4.95 1.63 1.47 1.15 2.62 17.25

All four subjects had been classified as HFR subjects. As shown in Table 4.1,

the total duration for test completion for all subject was over 13.5 seconds. Using

only the total duration, a therapist could understand that these subjects should

be classified as at HFR. However, using analysis by phases, performance in each

activity is revealed. For instance, the results obtained for subject A, showed good

performance in sit-stand and stand-sit, but not in turning phases. Meanwhile,

subject B took longer to complete the walking phase, but had good performance

in other phases. Different results were recorded for subject C: the longer time
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taken in the stand-sit phase indicates a bad performance in that phase. The longer

time required in the walking phases by subject D indicated bad performance in

walking, but good performance in other phases. A therapist could use these data

to train or improve a subject’s performance. A therapist might train to subject

A to improve performance in the turning phase, subject B to improve walking,

subject C to improve sit-stand and stand-sit, while walking training would be

essential for subject D.

Table 4.2: High fall risk subject in terms of different weaknesses using spatial parame-

ters.
Sub Stand-bend walk 1 Walk 2 Turn 1 Turn 2

(RMS-AV

yaw)

(RMS-AV

pitch)

(RMS-AV

pitch)

(AMP-AV

yaw)

(AMP-AV

yaw)

A 71.34 13.85 14.32 95.39 108

B 79.35 22.44 19.1 90.93 188.9

C 75.13 19.5 17.23 104.1 183.9

D 62.16 18.49 16.47 115.3 121.8

Average 55.3 19.38 19.73 107.09 123.38

Using other than time parameter may be more informative if we could provide

spatial parameter to therapist in evaluating the fall risk among elderly. As per

discussed in previous section, parameter RMS value of angular velocity in yaw

direction are the most influence parameter in evaluating the elderly in stand-

bend phase; which represent the stand-sit phase. The RMS of angular velocity

in pitch direction are the most important parameters in evaluating the walking

activity, whether the subject prone to fall or not. Meanwhile, for turning phase,

the most influence parameter are the RMS value of angular velocity in yaw di-

rection. Using these parameter, performance in each activity were observed as

detailed in Table 4.4. For comparison, we use the same subjects, A,B,C and D as

in Table 4.1. It can be observed that subject A have bad performance in turning

phases due to lower RMS value of angular velocity in yaw direction. Considering

to the difficulty during turning activity, subjects rotates more slowly and produce

lower amplitude of angular velocity signal in yaw direction. If the same subject

necessitate their body turn faster with bigger angle per second, the subject will

have risk to fall since the turning ability of that subject to turn are lower in
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terms of this parameter. Similar result was observed in subject B in using spa-

tial parameter in Table 4.1 and Table 4.3 showing that the subject B have bad

performance in walking phase with higher RMS value in pitch direction. During

standing subjects keep their body’s center of mass(COM) safely within the base

of support. However, when subject wish to walk for one step or more, the crite-

rion of balance are remarkably changed. Now the subject required to move their

body outside the base support and yet prevent the falling. In order to stabilize

their body, subjects try to lowering their COM, and their body moved laterally

during the walking phase. As a results, the subject will have higher RMS value

of angular velocity signal in pitch direction. Meanwhile, subject C and subject D

do not show any problems in phases activities, although the subject was grouped

as the HFR using the total time evaluation.

Table 4.3: Low fall risk subject in terms of different weaknesses using time parameters.
Sub Sit-

bend[s]

Bend-

stand

[s]

Sit-

stand

[s]

Walk

1[s]

Turn

1[s]

Walk

2[s]

Turn

2[s]

Stand-

bend[s]

Bend-

stand[s]

Stand-

sit[s]

Total[s]

E 0.82 0.33 1.15 2.47 1.23 2.64 0.79 1.19 1.04 2.23 9.57

F 0.48 0.6 1.08 2.58 0.82 2.72 0.86 1.04 1.02 2.06 9.32

G 1.28 0.59 1.87 3.09 1.82 3.07 1.34 1.25 1.41 2.66 13.21

H 0.63 0.47 1.1 2.46 1.6 2.85 0.93 0.76 0.81 1.57 10

As can be seen in Table 4.3, four subjects from LFR group were selected.

All four subjects had been classified as LFR subjects. The total duration for

test completion for all subject was less than 13.5 seconds. Using only the total

duration, a therapist could understand that these subjects should be classified

as at LFR. In general, we can see that all subjects, E,F,G and H do not have

any problems in any phases referring to the time parameters in phases. However,

using the spatial parameters in evaluating the fall risk, we can see that the subject

G have lower RMS value in angular velocity in yaw direction during stand-bend

phase. Although subject G was predicted do not have risk of falling using the

time parameters, this subject was determined having a problem during stand-sit

activities and this subject also might have problem during sit-stand activities, and

prone to fall. The false negative result exhibit from the time parameters endanger

the subject G during this activity. Furthermore, using the spatial parameter,
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therapist might use this information to improve the subject G for stand-sit or

stand-sit phase.

Table 4.4: Low fall risk subject in terms of different weaknesses using spatial parame-

ters.
Sub Stand-bend walk 1 Walk2 Turn 1 Turn 2

(RMS-AV

yaw)

(RMS-AV

pitch)

(RMS-AV

pitch)

(AMP-AV

yaw)

(AMP-AV

yaw)

E 95.61 40.71 39.03 185.8 164.7

F 130.94 16.44 17.21 154.1 221.3

G 69.32 25.08 29.22 150.1 197.5

H 112.08 41.91 35.09 169.9 211.6

Average 97.08 46.19 40.44 165.88 200.14

In general, using the temporal and spatial parameters could classify the fall

risk among elderly. In addition, using spatial parameter, therapist could use the

information revealed by the sensor and pinpoint the problem suffer by elderly.

Therapist also may use the information in improving the therapy and focusing

the potential problem.

4.4. Subject - parameter mapping

Apart from being able to choose the most important parameters, the most impor-

tant use of PCA is indeed to represent a multivariate data as a low-dimensional

plane, such that an overview of the data could be obtained. The overview may

reveal groups of observations, trends, and outliers. This overview also uncovers

the relationships between the observations an variables, and among the variables

themselves.
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Figure 4.1: PCA score plot of the two first principal compo-

nent.
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Figure 4.2: PCA loading plot of the two first principal com-

ponent.

The pattern seen among the subjects distributions were influenced by which

parameters could be identified by the principal component scores and loadings.

Figure 4.1 provides a map how the 38 subjects relate to each other. All subjects

is characterized by two values, one along the PC1 and another along the PC2.

Subjects close to each other have similar properties, whereas those far from each

other are dissimilar. The subjects from HFR close to each other in the left

side of the graph, while the subject from LFR gathered in the right side of the

graph. The scores of the PC are accompanied by the corresponding loadings.

A scatter plot of the loadings of the first component versus the loading of the

second component is shown in Figure 4.2. This plot indicates the relationship

between all variables at the same time. Variables contributing similar information

are grouped together, that is, they are correlated. P28(RMS of acceleration

signal in vertical direction during the stand-bend phase) and P38(RMS of angular

velocity signal in pitch direction during the bend-sit phase) are example of two
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parameters which are positively correlated. When the numerical value of one

variable increases or decreases, the numerical value of other variable has tendency

to vary in the same way. When the parameters are inversely correlated they are

positioned on opposite side of the plot origin, in diagonally opposed quadrant.

For instance, parameter P63 (Number of strides during turn 2 phase) and the

parameter P61 (Number of strides during walk 2 phase) are inversely correlated,

meaning when the RMS increases, the number of strides will decreases, and vice

versa. In addition, the distance of the variable location to the origin in the

distributions also deliver information. The stronger impact that parameter has on

the model if it is plotted further away from the plot origin. Using this information,

therapist might could see the pattern of the subject in term of their disease. As

for example, if the subject in quarter 1 in Figure 4.1 are subjects from some

related disease, the properties shown in the variable map in Figure 4.2 is the

parameters or properties that influence the group of those elderly. Using this

result, therapist could predict the effect of the disease that elderly might suffers

to their gait and fall risk factors.

4.5. Falls Mechanism and Parameter’s Relation-

ship

Falling mechanism described by [43] is that the subject will experience free fall

during falls. Figure 4.3 shows the typical example of the acceleration and angular

velocity signal mimicking the falls. When fall occurs, the acceleration signal is

assumed similar when free fall; zero. From parameters selected using random

forest analysis in this study; P45 (RMS value of the acceleration signal in medio

lateral during walk 1 phase). Referring to Table 3.1, elderly is classify as HFR

if the RMS value is lower than 0.14 m/s2 equivalent to 0.4 m/s2. Consistent re-

sult also obtained by parameter P43; RMS value of acceleration signal in antero

posterior direction during walk 1 phase, reported that the elderly will predict as

HFR if the RMS value is lower than 0.13 m/s2 or equivalent to 0.38 m/s2. In

cited paper, considering human posture, the position of the sensor, and the SNR

of a low acceleration value, [43] suggested that a prevention acceleration value

would be below ±3 m/s2. However, lower value were found in this study during
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walking activity. The sensor location differences between this study and previous

researcher might give different result in fall mechanism. Furthermore, the accel-

eration during fall occurred and acceleration during normal walking should not

be the same. In addition, after a preliminary study of angular velocity, [43] added

the stipulation that an angular velocity of less than 0.52 rad/s did not indicate a

fall. They suggest that a fall occurred when the angular velocity exceeded 0.52

rad/s or equivalent to 29.8 deg/s in pitch direction. Referring to the selected

parameters from PCA and random forest analysis, parameter P51; RMS value of

angular velocity in pitch direction during walking 1 reported if the RMS value

is less than 19.24 deg/s, the elderly will grouped as HFR. This value is equal to

54.41 deg/s peak to peak. The angular velocity value during fall occurred are

less than the angular velocity value during walking phase in this. The threshold

value used in this study still in the safe zone range in order to prevent the fall

risk among elderly before the real falls occurred.
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Figure 4.3: Typical example of (a) acceleration and
(b)angular velocity waveform while mimicking a forward fall.
(Figure adapted from [43])
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Figure 4.4: Correlation between parameters
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The correlation analysis between parameters can be performed on log nor-

malised spot expression levels using dendogram as shown in Figure 4.4. Dendo-

gram showing clusters of spots according to how strongly correlated the spots

are. Spots can then be clustered according to how closely correlated the param-

eters are. Spots with a high correlation value show similar expression profiles

while spots which a high negative correlation value show opposing expression

profiles.The parameter spots are arranged along the bottom of the dendrogram

and referred to as leaf nodes. Comparing Figure 3.12 and above figure, it can

be found that the parameters which have positive value in the figure Figure 3.12

are grouped in one branch of tree in above figure; red-boxes. The parameters in

same branch have high correlation. This parameters are influence the LFR group.

Meanwhile, the parameters that have negative value in in Figure 3.12 is grouped

in one branch of tree in above figure highlighted using black boxes. It showed

that the parameter in this group have strong correlation and relation between

parameters. This inspection indicates that the parameters in branch give more

influence to the HFR group.

4.6. Parameter Interpretation

From PCA and random forest analysis, several parameters were selected as the

most important and most influenced parameter in differentiating the HFR and

LFR among elderly. There were 15 parameters were selected using PCA, while 23

parameters were selected using random forest analysis. Among these parameters,

13 parameters were selected by both technique of analysis. The parameters are

listed in Table 4.5
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Table 4.5: Parameters selected using both PCA and random forest.

Parameters Signals Directions Phases

P15 Amplitude Angular Velocity Yaw Turn 1

P16 Amplitude Angular Velocity Yaw Turn 2

P33 RMS Angular Velocity Roll Stand-bend

P37 RMS Angular Velocity Pitch Stand-bend

P41 RMS Angular Velocity Yaw Stand-bend

P73 Cadence Walk 1

P77 Speed Walk 1

P78 Speed Walk 2

P49 RMS Angular Velocity Pitch Walk 1

P50 RMS Angular Velocity Roll Walk 2

P51 RMS Angular Velocity Pitch Walk 1

P52 RMS Angular Velocity Pitch Walk 2

P53 RMS Angular Velocity Yaw Walk 1

Speed parameters P77 and P78 were selected as two of the important param-

eter in differentiating the HFR and LFR among elderly. Refering to Table 3.1, as

expected HFR subjects have slower speed during walking. The speed correlated

with the time linearly as per discussed by previous researcher [1]. Another pa-

rameter that was also selected as important parameter in differentiating the HFR

and LFR in walking phase is cadence. [8] also found that cadence is a significant

parameters in measuring the mobility. The variable cadence have correlation with

the speed, therefore the HFR subject have smaller cadence agreed to the smaller

value of gait speed. The small value in parameter speed and cadence maybe due

to the movement difficulties during gait by HFR elderly and maybe due to the

fear of falling which is a monumental obstacle for some and can limit the activities

and mobility. This was discussed by [44] that the fearful group had a significantly

lower gait speed than did the fearless group.
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(a) Roll direction (b) Pitch direction (c) Yaw direction

Figure 4.5: Walking phase movement in roll, pitch and yaw directions

Apart from speed and cadence parameter, RMS value of angular velocity

signal in all direction also listed as the influenced parameters in differentiating

the HFR and LFR subjects. During the release phase in gait to move forward, the

center of pressure will move posteriorly towards the swing limb. For HFR subject,

the weight shift slowly accelerate the center of mass towards the stance limb. As

a result, the RMS angular velocity in roll direction reffered to the Table 3.1 are

small. The hip flexion occured when the subject swing their legs slowly exhibit

small RMS value of angular velocity in the pitch direction. During the gait, the

trunk subject also rotate slowly to the left and right during the single support in

order to move the swing limb forward. The body will move slowly to the left and

right resulting a small RMS value of angular velocity signal in yaw direction.
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(a) Roll direction (b) Pitch direction (c) Yaw direction

Figure 4.6: Stand-bend phase movement in roll, pitch and yaw directions

Parameters from stand-bend phases were also selected by both analysis as an

interesting activity that significant in differentiating the elderly of their falling

risk. The parameters of angular velocity in all directions were selected. The

asymmetrical motion occurred during the stand bend phase, therefore, all 3 di-

rections; roll pitch and yaw were selected. During the stand-bend activity, subject

in HFR slowly tilt to the left and right detected by the roll direction of angular

velocity signal. Slowly tilt forward and backward; shown by the angular velocity

signal in pitch direction. And slowly rotate as proved by the angular velocity

signal in yaw direction. However, the slow motion in all direction exhibit small

RMS value of the angular velocity signal.
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Figure 4.7: Yaw direction during turning phase.

Paramaters P15 and P16; which is the amplitude of the angular velocity

signal in yaw direction during turning have the highest ranking in the importance

of the parameter selected by both PCA and random forest analysis. During

the turning phase, HFR subjects have significantly smaller amplitude of angular

velocity compared to the LFR subjects. During the turning activity, the body

rotate to the left or right to change the direction as shown in Figure 4.7. During

the rotation, movement in roll and pitch direction are very small compared to the

yaw direction and do not play an important roll in this action. The same result

also were found by the [8]. They found that among the subcomponent in iTUG,

gait, turn and turn-to-sit were the most reliable.

4.7. New Proposed Method

From Table 3.5 and Table 3.7, we may summarize that the most important pa-

rameters influenced the data is the P16, P75, P15, P77 and P78. The results

seem to indicate that the most important parameter found in this research are in

turning phase and walking phase. Turning difficulties are common in elderly. The

impact from the result, it is thought that a new method simplifying the original

method may be ample to be considered in evaluating the fall risk among elderly.

The new method proposed as below:
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Figure 4.8: New proposed method

Figure 4.8 shows the view of the new proposed method. This method con-

sidering the turn phase, instead of the whole phases in the TUG test to screen

balance problems and evaluate falling risk. Three steps are required for a steady

walking before turning. [45] discussed the average step length by women and men

refering to their age. For a steady walking, 3 steps is required. Table 4.6 listed

the step length of elderly aged 60 years old and above, and also 70 years old and

above for men and women. Referring to the table, the average step length is

about 0.65m. If three steps are required, it appears that 1.95 meters required for
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steady walking. In addition, HFR elderly have smaller step length compared to

normal elderly. Therefore, 2 meters of walking phase is enough. By implementing

this new propose method, we can handle the experiment using only the tuning

phase begins with 2 meters walking in simplifying the experiment in smaller area

and in shorter time.

Table 4.6: Step length for men and women aged 60 and 70 and above.

Age Step length[m]

Men
Aged above 60 0.65 ± 0.04

Aged above 70 0.61 ±0.05

Women
Aged above 60 0.55 ± 0.04

Aged above 70 0.54 ±0.04

The subjects wore the wearable inertial sensors at the waist dorsally and

performed the test. The test was consulted by a therapist was as follows:

1. Subject starts to walk for 2 meters from the starting line and reaching the

mark post.

2. Subject turns after reaching the marked post.

3. Subject returns to mark line, again over a distance of 1 meters.

4. Subject turns to change facing original direction.

The main phase of this new method is to test the subject ability during turning

phase off from the walking phase.
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Chapter 5

Conclusion

Prophet SAW said:”Allah has

revealed to me that you must be

humble, so that no one oppresses

another and boasts over another.”

Dawud, Abu

In this study, the use of single wearable inertial sensor for evaluating fall risk in

the elderly in different activity phases was proposed. This project also attempt to

classify the elderly subject into two groups using multiple parameter at one time

in determining the fall risk among elderly in each phase. From the acceleration

signal; anteroposterior, mediolateral and vertical directions, and from the angular

velocity signal of the roll, pitch and yaw direction, 78 parameters were gathered

with 44 have significant different in all phases. Fall risk evaluation using the time

duration parameter could not interpret the activity in each phase; hence, using

relevant parameters related to appropriate signals and directions could reveal a

subjectfs activities in each phase.

Previous study indicates the classification of falling risk using time parameter

[1]. Researcher then improved the study by providing some quantitative data

and classify the falling using a parameter at one time [6–8]. Analysis by phase

could detect not only the fall risk among the elderly, but could also provide

extra knowledge for a therapist to understand a subject’s performance in different

phases. In the first application, we present a method of classification using the k-
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NN algorithm to determine the fall risk among elderly. The classification between

two groups were done and results of some parameters could classify the group

well, however some could not due to parameter selection is insufficient. At one

time, we only could classify the the elderly using two selected parameters. The

limitation to only two parameters at one time, and the parameters selection

difficulty encourage us to use the multivariate analysis.

In the second application, by using PCA and RF, we obtained reduced number

of parameters to optimize prediction algorithm implemented on the sensor. We

applied the significant 44 parameters with PCA, and ranked the most important

and the least important parameters. As a result, some unimportant parameters

were removed; which least influenced the classification. The classification perfor-

mance can still be improved using the random forest analysis. This analysis is

based on decision tree could classify the HFR and LFR with higher recognition

rate. However, the due to false negative and positive negative result in both

analysis, the PCA and RF analysis resulting almost the same performance. In

regard to this result, we could classify the elderly to HFR and LFR with lower

error rate using LDA.

Despite of reducing the unimportant parameters and selecting the most influ-

enced parameter, PCA could visualize and mapping all parameters with the all

subjects at one time. This improve the way how therapist could read and reveal

the subjectfs movement activity during therapy session.

Using the wireless inertial sensor, further prediction and classification of fall

risk among elderly are enable from obtained parameters, and the extracted infor-

mation could interpret subjectfs condition well beyond simply the time taken to

perform the test. In general, our study improve the classification using multi pa-

rameters in phases, providing movement information to the therapist by harness-

ing the quantitative information from the parameters. We believe that the use of

multi parameters in distinct phases could enhance the classification method, and

thus harnessing the quantitative information provided the therapist with more

valuable information in improving the rehabilitation area.
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