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Abstract

Markov chain Monte Carlo (MCMC) methods generate samples from a prob-
ability distribution, target distribution, by simulating Markov chains, and are
efficient for sampling from a high dimensional and complex distribution, which
is necessary for various fields such as statistical physics, statistics and machine
learning. However, standard MCMC methods cannot generate samples from a
multimodal distribution and a posterior distribution in Bayesian variable selec-
tion. To generate samples from such distributions, Parallel Tempering (PT) algo-
rithm and Gibbs variable selection (GVS) were proposed. These algorithms use
auxiliary distributions and the MCMC methods that use the auxiliary distribu-
tions are referred to as auxiliary variable methods (AVMs).

The PT algorithm uses the auxiliary distributions that are constructed by in-
ducing inverse temperatures to the target distribution and are the target distribu-
tion whose multimodality is tempered. The PT algorithm generates samples from
the auxiliary distributions and the target distribution in parallel, and exchanges
the values of the two samples with an acceptance probability. The exchange
process releases the samples for the target distribution from the local regions,
and hence the samples are correctly distributed according to the target distri-
bution. The performance of the PT algorithm strongly depends on the inverse
temperatures and the parameters of the proposal distributions. Conventionally
the parameters are tuned by trial-and-error in many pilot runs.

The GVS generates the samples from the discontinuous and multimodal pos-

terior distribution in Bayesian variable selection. The GVS uses pseudo-priors
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to approximate the posterior distribution to a unimodal one. This increases its
sampling efficiency. The efficiency of the GVS strongly depends on parameters
of the proposal distribution and the pseudo-priors. The conventional GVS sets
the parameters by using the samples obtained by a pilot run for a full model, but
the parameters are improper.

Generally the performance of the AVMs also depends on the parameters of
the proposal distribution and the auxiliary distributions. Therefore a choice of
the proper parameters in the AVMs is a crucial problem.

In this dissertation, we propose an adaptive PT algorithm and an adaptive
GVS that adapt their parameters while they run. We confirm that these proposed
algorithms can obtain the proper parameters through numerical experiments.

Furthermore, we generalize the proposed algorithms to an adaptive MCMC
for AVMs that adapts the parameters of the AVMs on the fly. We prove conver-
gence theorems of the algorithm, and show that the adaptive MCMC for AVMs
converges under mild sufficient conditions. We also prove the convergence of
the adaptive PT algorithm and the adaptive GVS by applying the convergence
theorem of the adaptive MCMC for AVMs.

Keywords:

Markov chain Monte Carlo methods, Auxiliary variable methods, Parallel Tem-
pering, Gibbs variable selection, Adaptive Markov chain Monte Carlo methods,

Convergence theorem
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Chapter 1
Introduction

Markov chain Monte Carlo (MCMC) methods are important algorithms in various
fields, e.g. statistics, physics and machine learning (Liu, 2001; Robert and Casella,
2004). The MCMC methods generate samples from a target distribution by using
a simple proposal distribution or its conditional distributions. For example, a
Metropolis algorithm, the simplest MCMC method, generates a sample candidate
from the proposal distribution, and accepts it with an acceptance probability.
However, there are complex target distributions from which standard MCMC
methods can not correctly generate the samples. To correctly generate the sam-
ples from the complex target distributions, auxiliary distributions are induced to
the target distributions and the samples are generated from the joint distributions
of the target distribution and the auxiliary distributions. The MCMC methods
that use the auxiliary distributions are referred to as auxiliary variable methods,

which include Parallel Tempering algorithm and Gibbs variable selection.

1. Motivation

The standard MCMC methods can not correctly produce samples from a mul-
timodal distribution, because the produced samples can be trapped in a local
mode for an extremely long period. To overcome this localization problem, Par-
allel Tempering (PT) algorithm was proposed (Geyer, 1991). The PT algorithm
induces auxiliary distributions that are constructed by adding inverse temper-

atures to the target distribution. Lowering the inverse temperatures flattens a



landscape of the auxiliary distribution and thus eases an exploration of the sam-
ples in its sample space. The PT algorithm generates samples from the auxiliary
distributions and the target distribution, by a Metropolis algorithm in this study,
and exchanges a position of the two samples with an acceptance probability. The
sample generated from the auxiliary distribution with low inverse temperature
can be transmitted to the target distribution through the exchange operations.
This releases the sample for the target distribution from a local mode into another
one, and enables the sample to converge the target distribution.

The performance of the PT highly depends on the inverse temperatures and
the variances of the proposal distributions. Conventionally the parameters have
been determined by trial-and-error in many pilot runs.

In Bayesian variable selection, a posterior of a statistical model is a discontin-
uous and multimodal distribution with continuous and discrete variables, from
which the standard MCMC methods can not efficiently generate samples. To
efficiently generate the samples from the distribution, Gibbs variable selection
(Dellaportas et al. 2002; GVS) was proposed. The GVS induces pseudo-priors to
the statistical model in order to facilitate the sampling from the posterior. Due
to adding the pseudo-priors, the multimodal posterior approaches to a unimodal
one. The GVS generates samples by the Gibbs sampler and the Metropolis-
Hastings (MH) algorithm by turns, where we use the Metropolis algorithm as the
MH algorithm in this dissertation.

The efficiency of the GVS strongly depends on the parameters of the proposal
distribution and the pseudo-priors, and the conventional GVS determines the
parameters based on a pilot run for a full model, which contains all covariates.
The determined parameters are often improper because the posterior of the full
model is different from that of the model in Bayesian variable selection.

The MCMC methods that use auxiliary distributions like the above MCMC
methods are called auxiliary variable methods (AVMs) in this dissertation. The
AVMs include other various effective MCMC methods such as cluster Monte Carlo
methods. The AVMs also depend on the parameters of the proposal distribution
and the auxiliary distributions. Therefore a choice of the proper parameters in
the AVMs is a crucial problem.

For the standard MCMC methods, Gilks et al. (1998) and Haario et al. (2001)



proposed adaptive MCMC algorithms that tuned the parameters of the proposal
distribution by using generated samples during runs. Haario et al. (2001) also

proved the convergence theorem of the algorithms.

2. Contribution

We propose an adaptive PT algorithm that adapts the inverse temperatures and
the parameters of the proposal distributions, and an adaptive GVS that adapts
the parameters of the pseudo-priors and the proposal distribution. By numerical
experiments, we confirm that the proposed algorithms can obtain the appropriate
parameters.

We generalize the algorithms to an adaptive MCMC for AVMs that adapts the
parameter of the proposal distributions and auxiliary distributions while AVMs
run, and prove its convergence theorems. We reveal that the adaptive MCMC for
AVMs converges under mild sufficient conditions. We also prove the convergence
of the adaptive PT algorithm and the adaptive GVS by applying the convergence
theorem of the adaptive MCMC for AVMs.

The adaptive PT algorithm enables us to implement the efficient PT algorithm
without trial-and-error in many pilot runs. Thus, we can simulate a system that
has a complex free energy structure, e.g. a spin glass model and protein, and
implement Bayesian estimation of a nonlinear model without any preliminary
experiments. The adaptive GVS allows us to more efficiently perform Bayesian

variable selection.

3. Organization of Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2, we denote the review of the MCMC methods and the adaptive
MCMC algorithms.

In Chapter 3, we propose the adaptive PT algorithm, and validate the per-
formance of the algorithm via the numerical experiments.

In Chapter 4, we propose the adaptive GVS, and evaluate the efficiency of the

algorithm by the numerical experiments.



Chapter 5 generalizes the algorithms proposed in Chapter 3 and Chapter 4 to
the adaptive MCMC for AVMs, and proves its convergence theorems.

Finally we give discussion and future works in Chapter 6.

4. Notation

In this dissertation, we denote a sample or a parameter, A, at nth iteration by
A™ A probability distribution or a probability density function is denoted by

«

f, and a target distribution or a target density is denoted by 7. “ ~ 7 denotes

sampling from a distribution.



Chapter 2

Markov chain Monte Carlo
Method

When producing independent identically distributed samples from a target dis-
tribution is infeasible, Markov chain Monte Carlo (MCMC) methods are used to
generate samples from the target distribution.

The MCMC methods simulate Markov chains whose distribution converges to
a target distribution. After enough iteration, the generated Markov chains are
considered to be distributed according to the target distribution and the samples
from the target distribution.

Sampling algorithms that use independent random variables need a perspec-
tive of the target distribution, and can not generate samples from high dimen-
sional and complex target distribution whose perspective is unknown.

The simulation of the Markov chains that converge to the target distribution
uses only a region around the current position of the Markov chain, and does not
use the perspective of the target distribution. Therefore the MCMC methods
can efficiently generate samples from the target distribution whose perspective is
unknown.

In what follows, we shortly review the two typical MCMC methods, Gibbs
sampler and Metropolis-Hastings algorithm, and adaptive MCMC methods, which
were proposed to overcome the parameter setting problems of the standard MCMC
methods.



1. Gibbs sampler

Let 7(z) be the target distribution, where z = (xy,...,,), and z; denote a
set of variables. Gibbs sampler (Geman and Geman, 1984) iteratively generates
samples from the conditional distribution 7 (z;|z_;) for j =1,...,p, where x_; =
(T1y ooy Ty Tty ooy Tp).
A pseudo-code of the Gibbs sampler is as follows.
Initialize z(© = (2\%, .z{").
forn=0,1,... do

for j=1,...,pdo

n+1 n+1 n+1 n+1 n+1 n n
xg LR ﬂ(xj]x(_;r )), where x(_;r ) = (xg ) ...,xg_t ),x§-+)1, oz )).
end for
end for

For enough large number N, {#(™;n > N} are considered as the samples from
the target distribution m(x).

The Gibbs sampler is efficient, only if it is easy to sample from the conditional
distribution of the target distribution. Therefore, if sampling from the conditional
distribution is difficult, the Metropolis-Hastings algorithm, described in the next

section, is used.

2. Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Hastings, 1970) generates a sample
candidate from a proposal distribution and then accepts the candidate as the
sample with the acceptance probability and rejects the candidate with the com-
plement of the probability. The sample candidate from the simple proposal dis-
tribution is considered to be adjusted to the target distribution by the acceptance
probability.
The pseudo-code of the MH algorithm is as follows.
Initialize z(©.
for n=0,1,... do
(1) 2’ ~ go(z]|2™), where go(|) denotes both of the proposal distribution and

its density, and 6 denote proposal parameters.



(2) Calculate the acceptance probability a(x(™ 2) = min {%m, 1}

(3) u ~ UJ0,1] (where U[0, 1] is a uniform distribution of the interval (0,1)).

(nt1) o, if u < a(z™,2)

€T —_=
™ if u > a2z, 2)

end for

For the enough large number N, {z(™;n > N} are considered as the samples
from the target distribution 7(x).

The most famous MH algorithm is a Metropolis algorithm, whose proposal
distribution is symmetric, i.e., ga(y|z) = qo(z|y). The Metropolis algorithm is
used in Chapters 3 and 4 in this dissertation.

The MH algorithm can be applied to any probability distribution in contrast
to the Gibbs sampler. However, the performance of the MH algorithm strongly
depends on the parameters of the proposal distribution, therefore a proper choice
of the parameter is a crucial factor for the performance of the algorithm.

The adaptive MCMC algorithm, described in the next section, tunes the pa-

rameters of the proposal distribution to the appropriate parameters while it runs.

3. Adaptive MCMC algorithm

The efficiency of the MH algorithm is determined by the parameters of the pro-
posal distribution. For example, we consider the sampling from 7 (z), x € R using
the Metropolis algorithm with proposal variance 2. If the proposal variance o?
is too small compared to that of the target distribution, the generated Markov
chains always move slowly. On the other hand, if the proposal variance o2 is too
large, the Markov chain stays a same position for a long period.

In many cases, the target distribution 7(x) is high dimension and the proposal
distribution has a covariance matrix, that is, the MH algorithm has the many
parameters which affect its performance. The careful tuning of the parameters
needs a high computational and artificial cost.

Gilks et al. (1998) and Haario et al. (2001) proposed adaptive MCMC algo-
rithms that tuned the parameters of the proposal distribution by using generated
samples so far during runs. For example, the adaptive MCMC algorithm for the

Metropolis algorithm with a normal proposal distribution updates its proposal



covariance matrix > and mean parameters g, which are needed to update the

matrix, after generating the sample (™) in (n 4 1)-th step as follows.

D ) (20D — )
Snrn < S+ A, ((xmﬂ) — ™) (2D — u(n))T _ g(n)) ,

where a learning coefficient ), is a decreasing function that converges to zero.

Due to the parameter updates using the past samples, the adaptive MCMC
algorithms are non-Markovian, but Haario et al. (2001) established the conver-
gence theorem of the algorithms. Andrieu and Moulines (2006) and Roberts
and Rosenthal (2007) generalized the convergence theorems, and relaxed their
sufficient conditions.

The above adaptive MCMC algorithms adapt only the parameters of the
proposal distribution. In this dissertation, we extend them to adaptive algorithms
that adapt not only the proposal parameters but also the parameters of the

auxiliary distributions while the AVMs run.



Chapter 3

Adaptive Parallel Tempering

algorithm

1. Introduction

MCMC methods can generate samples that follow a target distribution by using a
simple proposal distribution. However, in sampling from a complex distribution
such as multi-modal one, the standard MCMC methods produce samples that
theoretically converge to the target distribution but practically do not. The
produced samples can be trapped in a local mode for an extremely long period.

To cope with this localization problem, the parallel tempering (PT) a.k.a. ex-
change Monte Carlo method was proposed (Geyer 1991; Hukushima and Nemoto
1996). The PT algorithm introduces auxiliary distributions with a parameter
called the inverse temperature, generates multiple MCMC samples from target
and auxiliary distributions in parallel, and exchanges the positions of two sam-
ples. An auxiliary distribution is tempered when the temperature is high and one
with a low temperature is similar to the target distribution. This “tempering”
implementation and the exchange process help samples escape from a local mode.

However, the PT algorithm strongly depends on the inverse temperatures and
the parameters of the proposal distributions, and the turning of the parameters
needs many pilot runs and trial-and-error.

In this chapter, we propose an adaptive P'T algorithm that tunes the temper-

atures and the proposal parameters, which include the number of the tempera-



tures, while it runs, and show the effectiveness of the algorithm via numerical

experiments.

2. Parallel Tempering Algorithm

The PT algorithm is a typical algorithm that uses auxiliary distributions, m, (dx;),
l=2,...,L, where 1 =t; >ty > --- >ty > 0. The density of the [th auxiliary
distribution is parameterized by the inverse temperature t; as m,(x) o 7(x)"
or m,(z) o< w(x)lip(x)'~", where 7(x) is the density of the target distribution
and p(x) is the density of a simple distribution for which a standard MCMC
method mixes fast. In other words, the inverse temperature t; tempers the multi-
modality of the target distribution m(dx) so that the auxiliary densities, m, (),
gradually connect the target density m(z) to a simple density p(x) or the uniform
distribution.

The PT algorithm executes either of the parallel step and the exchange step at
time n, with probability «, and 1 — «,., respectively. The parallel step generates
the L samples, a:l("ﬂ), I =1,..
standard MCMC method. Note that we employed the Metropolis algorithm with
an independent proposal distribution that has the variances ~; in this chapter.

The exchange step randomly chooses a sample xl(n) from the L — 1 samples, a:l(n),

l=1,...,L—1, and exchange xl(") for a:l(j’_)l with probability

(n) (n)
min | 1 T, ($l+1)7rtz+1($l ) . (3'1)
’ (n) (n) )

T (xl )ﬂ-tz+1 (‘rl-i-l

., L, according to 7, (dz;) for each by using a

The performance of the PT algorithm strongly depends on the inverse tem-
peratures, more specifically, their intervals and their number. The interval of two
adjacent inverse temperatures determines both the similarity of the two distri-
butions and the acceptance probability of an exchange as seen in Eq. (3.1). The
acceptance ratio for the exchanges, which is referred to as the exchange ratio in
this dissertation, should not take an extreme value. For example, Liu (2001) said
a preferable value is a half at any interval. To avoid extreme values and lead to
homogeneous exchange ratios, Hukushima (1999) updated temperatures using a

recursive formula through preliminary runs and Goswami and Liu (2007) tuned

10



the intervals by iteratively estimating the expected exchange probability through
preliminary runs.

Jasra (2007) treated the intervals as a sequence and experimentally compared
three inverse-temperature sequences, equal space, logarithmic decay and power
decay. The results showed the last was the best. Nagata and Watanabe (2008)
proved that when the sequence of inverse temperatures is a geometric progression,
the exchange ratios are homogeneous in the low temperature limit. However,
the above methods only discussed the intervals and did not take into account
the proposal distributions, on which the mixing of samples and the estimation
of exchange ratio also depend. In our setting, the Metropolis algorithm has a
parameter to be determined, that is, the proposal variances ~;. It is necessary
to re-set the proposal variance when the inverse temperatures are changed a lot,
because the appropriate proposal variances obviously depend on the shape of
auxiliary distributions.

The more auxiliary distributions the PT algorithm has, the faster the samples
mix because flatter auxiliary distributions are available but the more computa-
tional complexity is required. To solve the trade-off and determine an appropriate
number of distributions, Goswami and Liu (2007) proposed to select the maxi-
mum temperature using statistical tests. The tests should be done in an off-line

manner, that is, they need preliminary experiments in advance.

3. Adaptive PT Algorithm

We propose an adaptive PT algorithm that adapts the inverse temperatures, the
variances of proposal distribution, and the minimum inverse temperature while
the algorithm is running. The three adaptation algorithms are described below.

The exchange ratio should take a moderate value. To converge the exchange
ratio for x;_; and x; to a specific value, a € (0, 1), typically a half, the log inverse

temperature, ; = log(t;), is updated as
gz(nﬂ) — Cz(n) - GL(ERz(z,l —a), (3.2)

where ERl(f)Ll is a variable that takes one if the exchange occurs between the
samples, 951@1 and xl("), at time n, and zero otherwise. The learning coefficient, a!,

is a decreasing random variable with n that satisfies lim,, aﬁl = 0 almost sure.

11



The proposal distribution of the Metropolis algorithm for a target and aux-
iliary distribution should have an appropriate variance, which is an average of
the variances of all modes of the corresponding target or auxiliary distribution.
To converge the proposal variances v, = (1, ...,7p) € RP of the Metropolis al-
gorithm for the distribution m,(dx;) on RP to such average values, 7, and the
auxiliary adaptation parameters p; = (i, ..., tup) € RP, which are used only for

the adaptation of v;, are updated as

n+1 (n+1 n
u Y e i+ by (Y — ), 53
n+1 n+1 n+1 n :
,}/l(_y—i_ : <_’ylj +b <(xl]+ ) _ILLl(j )) _/Yl(] )> ’
(n+1) . . (n+1) P . . .
where z;; is the jth element of z; € RP. The learning coefficient, b,,, is a

decreasing function of n that satisfies lim, ,,, b, = 0. When xl(") is updated to

xl("+1) by exchanging to xl(f)l or xl(i)l,

,ul("ﬂ) «— $l(n+1)' (3.4)

Because y; is tuned to the mean of each mode by Eq. (3.3) and (3.4), v, can
learn the variance of each mode by Eq. (3.3).

The auxiliary distribution with the minimum inverse temperature should be
so flat that Metropolis samples can frequently move from one mode to another
while the total number of auxiliary distributions should be as small as possible.
To determine an appropriate value for the minimum inverse temperature, the
auxiliary distributions 7, (dx;) with [ > [* are removed where [* is the smallest

number that satisfies

Hm] H (), (3.5)

where V" (z;;) is the sample variance of z;; at time n. This check is done at time
n =m,2m,..., where m is a large number (e.g. 10*). To improve the reliability,
when inequality (3.5) holds a few times d (e.g. 3) in succession, the auxiliary
distribution is determined to be enough flat.

Inequality (3.5) shows the relationship between the sample variance and the
proposal variance. Due to Eq. (3.3) and (3.4), the latter converges to the average

of variances of local regions and hence it is smaller than the sample variance if

12



Metropolis samples are localized in each mode. Otherwise, the auxiliary distri-
bution is flat enough.

A pseudo code of the adaptive PT algorithm is given in the following.

The adaptive PT algorithm converges. The proof will be given in chapter
5 as a special case of adaptive MCMC algorithms for general auxiliary variable

methods.

4. Experiments

To confirm the effectiveness of our algorithm, the following three numerical ex-

periments were carried out:
1. A mixture of four normal distributions.
2. The posterior of a mixture model of six normal distributions.
3. The predictive distribution for Galaxy Data.

In each of the experiments, the burn-in period was a half of the total number
of iterations and sample sets, which were used in an estimation and a scatter plot,
were chosen from every 50 samples in post burn-in. The proposal distribution of
the Metropolis algorithm was an independent normal distribution. Other param-
eters were @ = 0.5, o, = 0.5, al, = 1/(1 + n/(20 + 10[))10g(exp(—§l(n)) + 1),
b, = 1/(5+ 0.1n), m = 10" and d = 3. d), and b, were set so that they
could converge to zero slowly and a!, could converge more slowly as [ increased.
L = 25 and the intervals of inverse temperatures were equal, that is ¢t =
(1,24/25,23/25,...,1/25), at the initial condition. Note that these values are
invariant for the each above distribution, i.e., a tuning of these values was not

necessary in these experiments.

4.1 A mixture of four normal distributions

To see and visualize the properties of our adaptive PT algorithm, we chose a

mixture of four normal distributions in two dimensional space as the target dis-

13



Algorithm 1 Adaptive PT algorithm
Initialize xl(o), Cl(o), 71(0), ,ul(o) and g =0,0=1,..,L. ( 1(0):0, constant).
forn=0to N —1do
u ~ U|0, 1] (where UJ0, 1] is the uniform distribution of the interval (0,1)).
if u < o, then
for [=1to L do
(parallel sampling step)
Generate a:l(nH) via Metropolis algorithm for 7rtl(n>(dxl), which has the

1 : (n)
proposal variances 7y; °.

(proposal parameter learning step)
Update (7", ™) to (/"™ 1" ™") by the Eq. (3.3).
end for
else
(exchange step)
Randomly choose a neighboring pair, xl(") and xl(i)l, and exchange them
with the probability Eq. (3.1).
(inverse temperature learning step)
Update ¢\ to ¢"7 by Eq. (3.2).
if the exchange is accepted, then
pY Y for e = 114 1
end if
end if
(minimum inverse temperature decision step)
if (n mod m) =0 then
for I =1to L do
If Eq. (3.5) hold, then ¢; < ¢; + 1.
end for
A« A{llg>d,l=1,...,L}.
if A #(, then L < min A.
end if
end for

14



tribution (Fig. 3.1(a)):

4

1 1 Ty—1
= — —(r — )" X — i) |,
005) = 3 gy o (5 - S )
where the parameters of the normal distributions are
H1 = (0744>7 H2 = (447 0)7
M3 = (07 _44)7 Ha = <_447 0)7
Y= dlag(L 72)7 Yo = diag(727 1)7
Y3 = diag(1, 7%), ¥y = diag(7%,1).

Note that these normal distributions have quite different variances, 1 and 72,

where the proposal variance learning is difficult.

@ (b)
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Figure 3.1. A mixture of four normal distributions. a) The target distribution.

b) Samples by the adaptive PT algorithm.

The adaptive PT algorithm ran for 3 x 10° iterations, where the auxiliary
0) _

distributions are m, () o g(x)" and the initial proposal variances are 7;;
3 x 102
As a result, our algorithm mixed well and obtained samples from all possible

modes (Fig. 3.1(b)). In fact, the number of inverse temperatures was reduced to
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five after 3 x 10 iterations but the auxiliary distribution m; (dz) is flat enough
(Fig. 3.2), where t5 is the inverse temperature t5 tuned by the adaptive PT
algorithm.

The larger the variances of the auxiliary distribution become, the larger the
proposal variances should become. In fact, the sums of the adapted proposal
variances were (Y11 + Y12, .-+, Y51 + Y5.2) = (32.26,41.86,245.8,1124, 8704).
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Figure 3.2. Samples by Metropolis algorithm with the proposal variance 45 from

the auxiliary distribution m;, (dr). They cover all the modes in Fig. 3.1.

The estimated exchange ratios converged to (0.501,0.507,0.499,0.498), all
of which are almost « = 0.5. Then, the adapted inverse temperatures were
(ta,...,15) = (0.328,0.108,0.0307,0.00937).

té") and ’yén) converge quickly from even the extreme starting points (Fig. 3.3),

and the others also converge as fast as them.
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4.2 The posterior of a mixture model of six normal distri-
butions
In the mixture model, we estimated the average of component specific means,

m, by the posterior mean of p, as is seen in Jasra et al. (2007). The mixture

model had normal distributions, that is,

M
2 W ]- 2
LW, 0%) = exp| ——= (VY — tm , 3.6
oo =3 e (g (0= ) 36
where wy; = 1 — an‘f:—ll w,,. The priors are a normal-inverse Gamma-Dirichlet

prior as follows.

Mm NN(£’ HQ)? m: 1""7M’
o2, ~1G(ay,By), m=1,..., M,
Wy ~ Do), m=1,....M —1,

where D(p) is the symmetric Dirichlet distribution with parameter p. In the fol-
lowing, the hyper-parameters were ay = 12, 3, = 10 and ¢ = 1. The parameters
¢ and x? were determined by the median and four times the variance of the given
data, respectively.
The data of size 150, ¥1.150, were independently and identically distributed
according to a mixture model of the form (3.6) with parameters, M = 6, w; =
c=ws = 1/6, (p1,...,p16) = (=8,-3,1,4,8,13), 07 = 02 = 1.5% and 07 =
.-+ =02 = 0.5%. In this case, the posterior 7(u, w, 0?|y1.150) was a 17 dimensional
distribution and had 6! = 720 symmetric modes due to the invariance against
permutation of the labels of the parameters.

The auxiliary distributions were set to

150

t
7, (11, w, 0°[y1150) <H f(yi|/i,wa<72)> p(p,w,0%),
i=1
where p(u,w, 0?) was the prior.

Our algorithm was compared to the conventional PT algorithm with the fixed
parameters. For each of the parameters, (, v and L, the parameter values of the
conventional algorithm were shifted from the values tuned by the adaptive PT

algorithm, él, 4, and L, as follows.
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(a) G G-, forl=1,...,L, ¢ =0.5,06,...,2,3
L(—[A/, Y (—’A}/l.

(b) A2, forl=1,...,L, ¢, =0.1,03,...,2,3,

(¢) L+ L+, pr, = —b,—4,...,4,5,
Y= G G
(If ¢, > 0, ¢; and ~; were adapted for [ = L+ 1,..., L + ¢y, for fairness of

the comparison.)

We ran the adaptive PT algorithm and the conventional PT algorithms for
10% iterations. The initial sample values were wl(gzl =1/6, O'igg) ~ IG(ay, By),
Nz(,(;)@ ~ Ulmin(y1.150), max(yi.150)] for each run. The initial parameter values
of fyS), o ,’yg)j) were the sorted L random numbers from U[0.0001,800]. The
variables of posterior were divided into four blocks, the numbers of which were
(5,4,4,4). Each Metropolis algorithm updated for the every block.

We evaluated the sample mean of the posterior of p,,, m = 1,...,6, as the
estimator of (3% _ fi,,)/6 in 50 runs independently. The accuracy of the estima-
tion was evaluated by the root mean square error (RMSE), which takes the root
average of the errors of the six estimators to evaluate the total error of them,

that is,

6 1/2
RMSE(i) = (é;(um(i) — 2.5)2> :
where fi,,(7) is the sample mean of posterior of p, in the ith trial, and 2.5 is the
true value.

As a result, our algorithm can establish appropriate parameters and achieve
very low RMSEs (Fig. 3.4). Fig. 3.4(a) and (b) show that the RMSEs of our
algorithm were less than those of the conventional PT algorithms with shifted
parameters. On the other hand, when the number of temperatures increases, the
RMSEs don’t increase (Fig. 3.4(c)) but the computational costs of the algorithms
increase. In fact, the shifted inverse temperatures could not control the exchange
ratios well (Fig. 3.5).
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4.3 The predictive distribution for Galaxy Data

We calculated the predictive distribution of the normal mixture model for galaxy
data. The galaxy data consist of velocities of 82 galaxies, and were first presented
by Postman, Huchra and Geller (1986). We assumed the velocities y, ..., y, were
independently generated from the mixture model Eq. (3.6) with M = 4. We
sampled from the posterior that consist of the above model and priors, and the

data. By using these samples, we estimated the predictive density

9(Gly1n) = E[f (G|, w, 0%)|y10]

///f (Gl1, w, 0*)7(p, w, 0% |y1in ) dpudwd(c®). (3.7)

The prior parameters were set to £ = 20, % =102, a, = 11, 8, =10, o= 1.

We ran the adaptive PT algorithm and the conventional PT algorithm for
10° iterations. The proposal variances of the conventional PT algorithm were
0.0124;, for [ = 1,ldots, L, where 4; were the proposal variances obtained by the
adaptive PT algorithm, and the others were set as the parameters obtained by
the adaptive PT algorithm. The initial values of the samples and the parameters
were set by the way section 4.2.

We calculated the 20 predictive densities for each of the algorithms (Fig. 3.6
and 3.7). The predictive density for the adaptive PT algorithm didn’t vary and
were stable (Fig. 3.6), but on the other hand the predictive density for the
conventional PT algorithm with the improper proposal variances varied and were
unstable (Fig. 3.7).

Through these experiments, we found that the appropriate convergence order
of the learning coefficients is 1/n. When the convergence order of the learning
coefficients is 1/n?, the learned parameters vary much because the learning coeffi-
cients converge extremely fast. The learning coefficients whose convergence order
is 1/n'/2 converge too slowly, so that the convergences of the learning parameters

are also extremely slow.

4.4 Comparison of the computational costs

Our algorithm and the conventional PT algorithm with the settings in section 4.1

and 4.2 were run for 10? iterations ten times independently, and the computational
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times are showed in the table 3.1. This result indicates the difference of their

computational costs is negligible.

Section 4.1 Section 4.2
Our algorithm 1.428 (0.0717) 9.729 (0.2641)
Parallel Tempering 1.383 (0.0596) 9.487 (0.2540)

Table 3.1. Averages and standard deviations of the ten computational times

(second) of the algorithms. The standard deviations are enclosed by parentheses.

5. Conclusion

We proposed the adaptive PT algorithm that tunes its parameters while it runs,
and showed that the algorithm can adapt its parameters on the fly so that samples
mix rapidly by experiments with a mixture model. We also presented that the
performance of the PT algorithm depends on its parameters and the adaptive PT

algorithm finds good parameters through experiments for Bayesian estimation.
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Chapter 4

Adaptive (zibbs variable selection

1. Introduction

Bayesian variable selection plays an important role in multivariate statistical
analysis, and various sampling algorithms for Bayesian variable selection based
on Markov chain Monte Carlo (MCMC; Robert and Casella (2004)) have been
proposed. The most famous algorithms are Stochastic Search Variable Selection
(SSVS; George and McCullogh (1993)), Kuo and Mallick’s method (Kuo and
Mallick (1998)) and Gibbs variable selection (GVS; Dellaportas et al. (2002)).
The SSVS and the Kuo and Mallick’s method are efficient only for the models
whose conditional posterior densities can be obtained directly. On the other hand,
the GVS is efficient not only for the above models but for the models whose
conditional densities cannot be calculated by closed form, such as generalized
linear models and nonlinear models, e.g., Markov mixture models, and so on.
Reversible jump MCMC (RIMCMC; Green (1995)), which is a general algorithm
for Bayesian model selection, is also available in such the case, but less efficient
than the GVS (Dellaportas et al., 2002).

The GVS induces pseudo-priors that approximate the marginal posterior dis-
tributions of coefficient parameters and support the sampling of the GVS. The
parameters of the pseudo-priors are determined by a pilot run for full model (Del-
laportas et al. (2002)). However, the obtained parameters shift the pseudo-priors
from the marginal posteriors of coefficients due to a correlation of the posterior

distribution of coefficient parameters. The shifted pseudo-priors give the slow
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mixing of the GVS.

The GVS adopts random walk type Metropolis (RWM) algorithm as a sam-
pling method of the coefficient parameters for the models whose conditional pos-
terior distribution of coefficients cannot be obtained by a closed form. The co-
variance matrix of the proposal distribution is set by using samples from the pilot
run for the full model Paroli and Spezia (2007). However, since the samples from
the full model have not enough information to estimate the appropriate scale of
the proposal distribution, above proposal covariances are often improper.

In this chapter, we propose an adaptive GVS that adapts the proposal covari-
ances and pseudo-prior by learning the mean and the covariances of the coefficient
posterior and the scale parameter on the fly. We show that our algorithm can ob-
tain proper parameters during its run and is more efficient than the conventional
GVS through their applications to the Bayesian variable selection of a logistic

regression model.

2. Gibbs Variable Selection

Typically p-variate statistical models may have the coefficient parameter vector,
6 = (64,....6,), associated with covariates x;, j = 1,...,p, and an indicator vari-
able vector, v = (71, ...,7,) that presents which of the covariates are included in
the model, that is, gamma; takes one if the covariate z; is included, and zero
otherwise. For example, a regression model, one of the most simple multivariate
models, is written as y = >%_,
The Bayesian variable selection of the statistical models needs to estimate pos-

x;0; + €, where y is a response and e is a noise.

teriors of the coefficient parameters, 6;, and the indicator variables, v;, and the
GVS generates samples from the posterior distributions.

The GVS sets 0; = v;3;, where 3; is referred to as the effect size, and generates
samples from the posterior of v; and 3, to obtain the samples from the posterior
of v; and 6;. If v; takes one, 3, is equal to the coefficient 6;, and otherwise j3;
is distributed according to a pseudo-prior fy,(3;), where A\; € A is a parameter
vector. The pseudo-priors are not included in the posterior of # and ~, but

facilitate to produce the sample sequence from the posterior of v and 3. The
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prior of 3; given v; is

I (Bilvi) =2 f(By) + (1 =) fr,(B5), (4.1)

where f(5;) is a coefficient prior.

The GVS conducts Gibbs sampling steps for v and 3,, and a Metropolis-
Hastings step for 3\, by turns, where 3, denotes the components of 3 included in
the model, whose corresponding indicators, v;, take one, and S\, consists of the

others. The Gibbs sampling step produces samples from the conditional posterior

distributions
A5, 8, D) o< F(DIB,A) [ [ e (Beli) F(w), 5 =1,...p,
k=1
BByl 8. D) =TT 5,08, (4.2)

Bi€B\~

where v_; denotes the components of v except ; and D denotes the observation

data. The Metropolis-Hastings step executes the Metropolis-Hastings update for

F(Byl7. By D) o f(DIB, ) T £(8:)- (4.3)

B; EBy

Practically if this conditional distribution (4.3) can be obtained analytically, this
step directly samples from the distribution, that is, conducts a Gibbs sampling,
otherwise a random-walk Metropolis (RWM) sampling is applied. In this disser-
tation, we employ the RWM sampling because it can be applied to more various
models.

The pseudo-priors should well approximate the marginal coefficient posteri-
ors, f(Bj]v; = 1, D), and the proposal distribution should provide an appropriate
average Metropolis-acceptance probability, typically 0.234 in multidimensional
settings (Roberts et al., 1997), for the sake of rapid mixing of the GVS. A pilot
run in the GVS samples from the posterior of the coefficients of the full model,
f(Bly =--- =1, =1,D), and estimates the means and the covariances of the
coefficient posterior, u and >, by the sample means, ji, and the sample covari-
ances, i], respectively. The GVS employs the estimated parameters as those of
the pseudo-priors and the proposal distribution (Dellaportas et al. (2002), Paroli
and Spezia (2007)). However, the features of the pseudo-priors with the means

28



ft; and variances ﬁ)jj are different from those of the marginal coefficient posteri-
ors, f(B;lv; =1, D), because they are different from the features of the marginal
coeflicient posterior of the full model, f(5;|y1 =--- =, =1, D), from which the
pilot run generates the samples, due to the correlation of the posterior of coeffi-

cients. Typically the proposal distribution has the covariances ¢, where ¢ is a

i
scale parameter set as (23.4)?/p if the model is high dimensional (Roberts et al.
(1997)), and one otherwise. Because the proper scale of the proposal distribu-
tion, which leads to the appropriate average Metropolis-acceptance probability,
practically depends on the features of the coefficient posterior such as a dimen-
sion and a shape, the proposal distribution often provides the improper average

Metropolis-acceptance probability.

3. Adaptive Gibbs Variable Selection

We propose the adaptive GVS algorithm that adapts the pseudo-prior parameters
and the proposal covariances by learning covariances and means of the coefficient
posterior and the scale parameter while the GVS is running.

The correlation coefficients of the proposal distribution, the variances and
the means of the pseudo-prior should correspond with those of the coefficient
posterior, and the scale of the proposal distribution should lead to the appropriate
Metropolis acceptance rate such as 0.234. The adaptive GVS algorithm learns
the covariances and the means of the coefficient posterior, 4 and ¥, and the
scale parameter of the proposal distribution, ¢, which provides the appropriate
acceptance rate, by using generated samples (™ and ™, and introduces the

™. and ¢™ to the pseudo-priors and the proposal

()
J
the covariances of the proposal distribution are c(")EE;L) at the (n-+1)th iteration.

learned parameters pu(™, X

distribution. That is, the pseudo-priors have mean p; ' and variances Zg?) and

The learning algorithms of p, 3 and ¢ are described as follows.
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The covariance parameters, ¥;;, and the mean parameters, p;, is updated as

n+1 n n+1 n n+1 n
Y A () (B = ),

Z(n+1) « EZ(;L)+ (n+1) _(n+1) (a(n) gn))

ij 7 Y ula; ", a;
n+1 n n+1 n n
o (8 = Y = ™) - 2).
n+1 n n+1
a§.+)ea§)+7§+),
j=1,..,p, i=1,..p, (4.4)

©
j
such that «; = 1. The learning coefficients h(n) and u(n, m) are decreasing func-

where a;’ =1, and aén) increases with updating jth parameters, p; and ¥;; for ¢
tions that satisfy lim, o A(n) = 0 and limy, oo m—eo u(n, m) = 0, respectively.
Note that the parameters are updated by only sample 3; for the coefficient pos-
terior, f(5;|D,v; = 1).

To converge the mean acceptance rate to a specific value, a € (0, 1), mainly
0.234, the scale parameter, ¢, is updated as

A W s (ERMY — @), (4.5)

where ER™ is a variable that takes one if a proposal value in the Metropolis sam-
pling of 5, +1) is accepted at time n, and zero otherwise. The learning coefficient,
Sn, is a decreasing function of n that satisfies lim,, ,, s, = 0.

A pseudo code of the adaptive GVS algorithm is given in the Algorithm 1.

The total computational costs of the conventional GVS and the adaptive GVS
are almost same, because the pilot run of the GVS often takes longer times than
the learning steps of our algorithm.

The adaptive GVS converges. The proof is proved in chapter 5 by applying
the convergence theorem of the adaptive MCMC algorithms for general auxiliary
variable methods.
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Algorithm 2 Adaptive GVS algorithm
Initialize 8, 4 ¥O) ;0 and O,
forn=0to N —1do

(Gibbs sampling step)

for ) =1topdo
%~ L (b 8™, D), where X = (", 557) and A7) =

J J V) J
n+1 n+1 n n
(DA ey
end for

(n+1)
6\7(n+1) Hﬁjeﬁ\v(”“) f)\gn) (ﬂ])
(Metropolis sampling step)

Generate B(wﬂ) via the RWM algorithm for f(3, () |y D) 5\:4;1+1),D)

which has the proposal covariance matrix ¢ )Z(W)L +1), where X, denotes the

covariance matrix that consists of the covariances X;; where v; = 1 and
v =1L
(Parameter learning step)
Update (™, X)) to (u+1), £0+D) by the Eq. (4.4).
Update ¢™ to ¢V by Eq. (4.5).
end for
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4. Experiments

We estimated the marginal probability of inclusion for each of p covariates, x;,

and the predictive distribution, for the logistic regression model,

1
1+ exp (—?/(Z?:l %ﬂﬂj))
where y € {—1, 1} is a response variable. The priors are
F(B5) = N(us,, 03,),
Fg) =P (L= 1),
f)x(ﬁj) = N(/l’]70-j2)7 A= (/1’]'70-]2')7

fylz,B,7) = (4.6)

where N (p,0?) is a normal density with a mean p and a variance o2, and 0 <
7; < 1. The hyper-parameters were 5, = 0, a%j =9 and 7; = 0.5.

The learning coefficients of our algorithm were h(n) = 1/(n + 50), u(n,m) =
1/4/(n+50)(m +50) and s, = 1/(n + 500). The initial parameter values ()
and X were set to a mode of the full model posterior density of 5, and the minus

inverse Hessian of the log full model posterior density at the mode, respectively.
Other parameters were o = 0.234 and ¢®) = (2.38)2/p. The initial sample values
B0 and v were set to the mode of the posterior of the full model and the vector
whose all elements are one, respectively.

In the GVS, the proposal scale was (2.38)%/p, and the pilot run was executed
for 10* iterations. The initial sample values ) and () were set to the sample
mean of § in the pilot run and the vector whose all elements are one, respectively.

We used synthetic data and real data, cardiac Arrhythmia data.

4.1 Synthetic Data

We generated data from the true logistic model f(y|z,6*). The true model has
100 covariates and the coefficients, 07 = {—0.5; for j =1,...,5,71,...,75, =0.1;
for j =31,...,35, 1; for j = 51,...,55, 0.1; for j = 96,...,100, 0; otherwise}.
That is, the true model includes the 25 covariates. The covariates were generated
from the normal distribution whose means are all 0 and variances are all 1 and

covariances between z; and z; for 7,5 = 1, ..., 30, are 0.8 and covariances between
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xj and x; for 4,5 = 71,...,100, are 0.7. We independently generated 300 data
from the model.

We ran the adaptive GVS and the conventional GVS for 2° iterations and gen-
erated samples from the posterior based on the synthetic data and the model. We
calculated the estimated marginal probabilities of inclusions Aj" =1 = 'yj
every 10-th iteration. We also calculated the error of the estimated probablh—
ties Zloo |P(n P;|, where P} takes one if x; is included in the model, and 0

otherwise. We calculated the errors in 10 runs and the mean and the standard
deviation of them every 10 iterations (Fig. 4.1). The mean of the errors in the
adaptive GVS converged to the lowest value faster than that in the conventional
GVS, and the standard deviation in the adaptive GVS was much smaller than
that in the conventional GVS.

4.2 Cardiac Arrhythmia Data

We considered the cardiac arrhythmia data {y1..,, 1.0, } (Guvenir et al., 1997),
which contains 257 covariates and 452 instances, i.e., ng = 452. The 245 instances
are normal, y = 0, and the others have disease, y = 1. We excluded covariates
which contain missing values.

A

We calculated the estimated marginal probabilities of inclusions Pj and the

estimated predictive distribution

m

R 1 n n
f(ylzndlxlsnd) = E Zf(ylsnd’-xlznda 6( )7 7( ))7

n=1

where m denote the number of the iterations in post burn-in, and f(y1.n, |10y, 5,7) =

St f(yilwi, B,7). For a comparison, we used the estimated inefficiency factor
(IF)

1+ Qiij; <1 - %) pi), (4.7)

where p(7) is an estimated autocorrelation of the sample sequence after burn-
in, and M is a truncation point after which the estimated autocorrelation p is
negligible, and chosen based on when p decays to zero. The estimated IF is
proportional to a variance estimator of the sample mean, which are P™ and

J
f(Y1:n,]%1:0,) in this experiment.
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Figure 4.1. Trace plots of the means (solid line) and the standard deviations
(dotted line) of the errors in 10 runs. Bold and blue lines: the adaptive GVS.

Thin and red lines: the conventional GVS.
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The sampling algorithms were run for 3 x 10° iterations, and the burn-in
periods were 10°. The sample set was chosen from every 10th sample.

The parameters ,ugn) and qu) converge quickly (Fig. 4.2). The others also
converge as fast as them. The estimated IF's for ]5;") of our algorithm were lower
than those of the conventional GVS (Fig. 4.3). The predictive distribution esti-
mated by our algorithm converged faster than that estimated by the conventional
GVS (Fig. 4.4), and the estimated IFs for the estimated predictive distribution,

f(Y1:ny|%1m,), of our algorithm and that of the conventional GVS are 154.7 and
321.5, respectively.
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Figure 4.2. trace plot (a):posterior mean u{", (b):posterior variance X\?

The estimated mean Metropolis acceptance rate of our algorithm was 0.2328,
which is close to the target value, 0.234. This leads to well mixing of our algo-
rithm. The learned covariance and mean parameters were more close to those of
the marginal posterior distributions of the coefficients than those obtained by a
pilot run (Fig. 4.5). Thus the pseudo-priors of our algorithm were closed to the
marginal posterior distributions of the coefficients, which improved the mixing of

our algorithm.
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Figure 4.5. Means and standard deviations of the coefficient posterior. Each plot
displays a mean and a standard deviation by the mark and the radius of the error
bar, respectively. The means and the standard deviations learned by the adaptive
GVS : (o). The sample means and standard deviations by the conventional GVS
: (A) and the pilot run for the full model : (x). These 10 covariates have the

estimated probability of inclusion which are the closest to 0.5.
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From the results of these numerical experiments, the appropriate convergence
order of the learning coefficients seems to be 1/n as well as that of the adaptive
PT algorithm.

5. Conclusion

In this chapter, we proposed an adaptive algorithm that adapts parameters of
a proposal distribution and pseudo-priors during generating samples. We also
showed the proposed algorithm mixes faster than the conventional GVS through
the two experiments of the Bayesian variable selection of the logistic regression

model.
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Chapter 5

Generalization to auxiliary

variable methods

1. Introduction

The PT algorithm and the GVS use auxiliary distributions, the tempered distri-
butions and the pseudo-priors. The auxiliary distributions are also used in other
several algorithms, e.g., the cluster Monte Carlo methods that efficiently produce
samples by block-wise updates based on auxiliary distributions (Swendsen and
Wang 1987; Higdon 1998). These algorithms are referred to as auxiliary variable
methods (AVMSs) in this dissertation.

Although the performance of the standard MCMC methods such as Metropolis-
Hastings algorithm (Hastings 1970) depend on only the proposal distribution,
the performance of an AVM depends on both the proposal distribution and the
auxiliary distributions. Hence the parameters of the proposal and auxiliary dis-
tributions have to be chosen so that the Markov chain of the AVM mixes as fast
as possible. They have been tuned by rough methods or trial-and-error in pilot
runs so far because their relationship to the mixing speed has not been clear.

For the standard MCMC methods, Gilks et al. (1998) and Haario et al. (2001)
proposed adaptive MCMC algorithms that tuned the parameters of a proposal
distribution by using past samples during runs. Haario et al. (2001) also proved
the convergence theorem of their algorithms, which was developed later (Andrieu
and Moulines 2006; Roberts and Rosenthal 2007).
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The AVMs have the parameters not only in the proposal distribution, but also
in the auxiliary distributions. Thus the above adaptive MCMC algorithms can
not be applied to the AVMs.

In this chapter, we propose an adaptive MCMC for AVMs by extending the
above adaptive algorithms to general AVMs, where the algorithm adapts the
parameters of the proposal and the auxiliary distributions of AVMs on the fly. We
prove the convergence theorems of our algorithm in a similar way to Roberts and
Rosenthal (2007). We also prove the convergence of the adaptive PT algorithm
and the adaptive GVS by using the theorem of the general adaptive MCMC for
AV Ms.

2. Adaptive MCMC for AVMs

The idea of the adaptive PT algorithm and the adaptive GVS is applicable to
general AVMs. AVMs are mathematically formulated as below.

Let m(dx) be a distribution on a state space X with o-algebra Fy and 7, (dy|z)
be a conditional distribution on a state space ) with o-algebra F, given Fy, where
A € A is a parameter vector. Then, the marginal distribution on X of the joint
distribution 7, (dz, dy) = 7\ (dy|z)w(dz) is 7w(dx) irrespective of my(dy|z).

In case of MCMC methods with auxiliary variables, m(dz) corresponds to
the target distribution and my(dy|x) to the auxiliary distributions. We term an
MCMC method that draw samples (2/,y) from 7, (dz, dy) to obtain 2’ an aux-
iliary variable method. In the PT algorithm, for example, the auxiliary distri-
butions are 7y (dy|x) = HZLZQ my, (dxy), A = (t2,...,tr) and the auxiliary variables
are y = (g, ..., Tr).

In order to introduce adaptation, we need to consider time-varying param-
eters. Let {Py((z,y), (dz,dy))}sco be a family of Markov transition kernels on
X x Y with stationary distribution 7y (dz, dy), that is,

(m2Py) (dz, dy) = //, / Adx' dy Py (2, ), (dx, dy))

= ma(dx, dy),

where 6 contains A\. Then, the adaptive MCMC for AVMs updates the parameters
0 during generating chains (z(™,y™) by P, as the following pseudo code.
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Algorithm 3 Adaptive MCMC for AVMs
Initialize (2, y©)) 0,
forn=0to N —1do
[1] (20, y ) ~ Py (), y™), (da, dy))
[2] Update 0™ to 61 by using the result of step 1 such as (z™+1 ym+)),
end for

In the adaptive PT algorithms, for example, the time-varying parameter vec-

toris @ = (y1,...,7L;te, ..., tL).

3. Convergence Theorem

Atchade (2011) and Fort et al. (2011) proved convergence theorems of adaptive
MCMC algorithms that adapt the parameters of the target distribution. The
conditions for convergence in their theorems are, however, technical and strict.
For example, the stationary distribution must converge. These conditions will
considerably restrict the available parameter learning algorithms.

In this section, we show some convergence theorems that our algorithm in the
previous section converges under weaker conditions. Here, convergence means

that an algorithm is ergodic, that is,
nh_)rgo |A® ((x,y,0), dx) — 7(dx)|| = 0, V(z,y) € X x Y,0 € O,
where [|pu(dz) — v(dz)| = supscr, [1(A) — v(A)| and
A™((z,y,0),Bx) = P [x(") € By|z'® =2,y = 4,00 = 6], Bx € Fx.

Theorem 1 The adaptive MCMC for AVM is ergodic if the following conditions
hold:

(a) Simultaneous uniform ergodicity

Ve >0, dN € N s.t.
I1PY ((2,y),dz) — w(dr)|| < e, V(z,y) € X xV,0c0. (5.1)
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(b) Diminishing adaptation

lim, oo sup || Pywrv ((x,y), (dz, dy)) — Py ((2,y), (dz, dy)) ||
(z,y)eX XY

= 0 in probability. (5.2)
Proof 1 See A.

The above conditions do not require that the auxiliary parameter A and the
stationary distribution 7,m) converge. The condition (a) can be replaced with
more concrete condition that checks only properties of the Markov transition

kernel as follows.

(a’) (Simultaneously strongly aperiodically geometrical ergodicity) There exists
C € Frxy, V:AXY = [l,oo),0>0,7<1,and b < oo, such that
sup~V < oo and the following conditions hold for all § € ©.

(i) (Strongly aperiodic minorisation condition) There exist a prob-

ability measure vy (dz, dy) on C such that
Py((z,y), (dx',dy")) > dve(da',dy"), for all z,y € C.
(ii) (Geometric drift condition)
(PpV) (z,y) < 7V (2, y)+blicy(x,y), forallz,y € X x Y,
where (PyV)(z,y) = [| Py ((x,y), (da’, dy)) V(2,3 )da’dy’, and 1¢(x)

is an indicator function.

Theorem 2 The adaptive MCMC' for AVM is ergodic if the condition (b) in
Theorem 1, the condition (a’) and E[V (2, y©)] < oo hold.

Proof 2 Straightforward from Proposition 3 and the proofs of Theorem 3 in
Roberts and Rosenthal (2007), and Theorem 1.

Theorem 3 (Weak law of large numbers) Suppose the adaptive MCMC for
AVM satisfies the conditions (a) and (b) and let g : X — R be a bounded mea-

surable function. Then,
I :
— Zg(x(l)) — /g(x)w(dm) in probability
n
i=1
as n — oo, for any initial values (x,y) € X x Y and 6 € ©.
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Proof 3 Straightforward from the coupling argument (Roberts and Rosenthal
2007).

The convergence of the adaptive PT algorithm is proved by applying Theorem

2 as below.

Theorem 4 The adaptive PT algorithm is ergodic if the following conditions
hold:

(s1) The support S of the target distribution w(dz) is compact and the density

m(x) is continuous and positive on S.

(s2) The family of proposal densities {q, }~erv is continuous and positive on S? x
[P, where I' = [¢, C.

Proof 4 See B.

It will be possible to remove the assumptions that S is compact by extending
Theorem 6 of Bai et al. (2011).

To prove the convergence of the adaptive GVS, we formulate the GVS as
AVMs. We consider that the target distribution in the GVS is the joint posterior

distribution of indicator variables v; and coefficients 8; = (v;5;),
p
f(6.71D) o< fF(DIO) [T (v (1= 7)dy(6)) S (7)), (5.3)
j=1

where 0,3 (y) is an indicator function, and f(6;) is a coefficient prior in Eq. (4.1).
Note that this target distribution has no parameters. We also consider that j;
are auxiliary variables.

Thus we prove that the samples of v; and 60; generated by the adaptive GVS

converge to the posterior of them. The convergence theorem is proved as follows.
Theorem 5 The adaptive GVS is ergodic if the following conditions hold:

(a) Either the support of the f(D|B,v) or the supports of priors, f(B;) and
Ix;(B), are compact set S and the f(D|3,7v), f(B;) and fx,(3;) are contin-

uous and positive on S.
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(b) The family of proposal densities {qs, uc}s pcq i continuous and positive on
S2x Q. Q= ZxKxC, where Z is a compact set 0pr2 and K is a bounded

set on R? and C is a bounded set on R,.
Proof 5 Similar arguments to the proof of Theorem /.

It will also be possible to remove the compact support assumptions by extending
Theorem 6 of Bai et al. (2011).

4. Conclusion

This chapter proposed the adaptive MCMC for AVMs that learns parameters
of proposal distributions and auxiliary distributions simultaneously while AVMs
run, and proved convergence theorems that give weak sufficient conditions for
convergence.

We also proved the convergence of the adaptive PT algorithm and the adaptive
GVS by applying the convergence theorem of the adaptive MCMC for AVMs.
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Chapter 6
Conclusion

This dissertation proposed the adaptive MCMC algorithms for the PT algorithm
and the GVS, and generalized them to the adaptive MCMC algorithms for AVMs.
We also proved the convergence theorems of the proposed algorithms.

Firstly, we extended the PT algorithm to the adaptive algorithm that adapts
its parameters while it runs, and showed that the extended algorithm can obtain
the proper parameters via numerical experiments for Bayesian estimation.

Secondly, we extended the GVS to the adaptive algorithm that adapts its
parameters on the fly, and confirmed that the extended algorithm is more efficient
than the GVS with the parameters obtained by the conventional method through
the numerical experiments for Bayesian Variable Selection.

Finally, we generalized the proposed algorithms to the adaptive MCMC for
general AVMs that adapts the parameters of the AVMs on the fly, and proved
its convergence theorems that have mild sufficient conditions for the convergence.
We also proved the convergence of the adaptive PT algorithm and the adaptive
GVS by applying the convergence theorem of the adaptive MCMC for AVMs.

1. Discussion

The learning coefficients @, b, in the adaptive PT algorithm and A(-), u(-,")
in the adaptive GVS control convergence speeds of the corresponding updating
parameters. As the convergence speeds of the learning coefficients get faster, the

convergence speeds of the updating parameters also get faster but the variances of
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the converged parameters increase. Thus the learning coefficients should converge
with moderate speed. However, since our adaptive algorithms are robust for
the convergence speeds of the learning coefficients, we don’t need to tune the
learning coefficients in detail. Practically, the adaptive PT algorithm with the
same learning coefficients performed well in the three numerical experiments.
Also the adaptive GVS was more efficient than the GVS in the two numerical
experiments in spite of using the same learning coefficients.

Users of the PT algorithm have needed to carefully tune the inverse tempera-
tures, proposal variances and the number of inverse temperatures through many
preliminary runs so far. The adaptive PT algorithm enables us to obtain the
appropriate parameters automatically while the algorithm runs. Therefore the
computational and artificial cost of the parameter choice of the PT algorithm is
removed and the users are released from the tuning work.

Conventionally the parameters of the GVS are determined by using the sam-
ples from the posterior of the full model, and the proper parameters are mostly
not obtained. The adaptive GVS can update its parameters to more appropriate
values than those from the conventional method on the fly, and thus allows to
generate samples more efficiently than the GVS with the parameters obtained by
the conventional method.

The adaptive MCMC for AVMs and its convergence theorems provide guides
of the extensions of other AVMs such as cluster Monte Carlo methods to the adap-
tive algorithms. The convergence theorems give knowledge that how parameter-
update algorithms are able to be induced to the AVMs. The convergence theorems
also show that various algorithms that update the parameters are available to the
adaptive MCMC for AVMs.

2. Future works

Although we discussed the PT algorithm in a real space so far, we consider the
idea of adaptation is applicable to that in a discrete space.

The GVS will be efficient for the Bayesian variable selection of more complex
model such as a structural equation model and a non-Gaussian graphical model,

so that we will apply the adaptive GVS to these models.
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We will apply our adaptive framework of AVMs to other AVMs such as a
partial decoupling method, which is one of the cluster Monte Carlo methods, and

SO OIl.
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Appendix

A. Proof of Theorem 1

Let € > 0, and choose N € N as in condition (a). From condition (b) and the
coupling argument in the proof of Theorem 1 of Roberts and Rosenthal (2007),
the following result holds.

There exists n* € N large enough so that for K > n* + N, there exists a
second chain {2/ ¢/™MYK . such that (a/(K=N) ¢/ (K=N)) = (g(K=N) ) (K=N)),
(2D /D)~ Py ('™, /™) dax, dy) for n = K — N,..., K — 1, and
P2 o /) < 2e.

Then it follows that

|P(z'5) € dz) — P(2’") € dz)|| < 2e, (6.1)

where P(z) € dx) denotes the distribution of (5), because of ||P(y € dz) —
P(z e dx)|| < P(y # 2).
On the other hand, from the condition (a), for all Ay € Fly, we have

€ > ’E[PQIYK—N)((QZ(K_N)>y(K_N))>AX> - W(AX)H
=[P € Ax) — m(Ax)|.

That is,
||P(2'®) € dx) — 7(dx)|| < e. (6.2)
From inequality (6.1) and (6.2), we have
|1P(z € dx) — 7(dz)|| < 3e. (6.3)

Since K > n* 4+ N is arbitrary, the algorithm is ergodic.

B. Proof of Theorem 4

We prove the sufficient conditions of convergence in Theorem 2 are satisfied.

Firstly, we prove the condition (a’) holds.

o4



Let Borel o-algebra on R? be B(RP). For ¢ € St ~v € TPl t € TL and
B = By x By x---x By, B; € B(S), the transition kernel of the PT algorithm is

L
K’yt T, B = Qg H Y5t xla Bl (1 - ar) Zglkl,lfl(wa B>7 (64)

1=2
where 0 < ¢ < 1, ZZLZQ g =1, Py (x,dx;) and ky;_q (2, dz’) are the Metropolis
transition kernel for 7, (dz;) and the transition kernel of the exchange process of
x; and x;_q, respectively.

By condition (s1), we have d = sup,cg 7 m:(7) < 0o. By the compactness of
S and condition (s2), we have also 0 = inf, yeg er» ¢y (z,2') > 0.

Forx € Sandt € T, denote R, ; = {y € S\% < 1}. Forx; € S, B, € B(95),
t; €T and v € I', we have

P’Ylvtl (xlv Bl)

_ /B ¢y, (21, %) min <1 :f”;) da!
R

T, xl
Z/ q’n(:Elvxl / 4, xl’xl)dxl
Blﬂle t BiNRS,

1t

>5[ mapds + g | s
Blﬁthtl BmR;lytl
)
= Eﬂ_tl(Bl)'

From Eq. (6.4), this inequality leads to

Ky(x,B) > arH it (X1, Br)

=1
L

J
>a, || =7, (B
Z Q@ ll_Jl: dﬂ-tz( l)
5L
Oérd_LTrt(B)v (65)
where 7m,(B) = [}, m,(B;) is a probability measure on S*. Since the inequality

(6.5) holds for all B € B(S*), the condition (a’)(i) follows.
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Let 0 <7 <1,V(z)=1ifx € S* and V(x) = 1/7 otherwise, and b = 1 — 7.
Then we have

(Ky V) () < 7V (2) + blgny(x), Vo € RV (6.6)

This inequality implies that the condition (a’)(ii) is satisfied. Also we have
E[V(z©®, 4] < 1/7 < 0.

From Eq.s (3.2) and (3.3), it follows that ¢ — £ — 0 almost sure and
%(n—l—l) — ’yl(") — 0 as n — oo. The minimum inverse temperature decision process
changes the value of ¢ only finite times. Thus, the condition (b) in Theorem 1
holds.

The proof is complete.
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