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Adaptive Markov chain Monte Carlo for

auxiliary variable method and its applications∗

Takamitsu Araki

Abstract

Markov chain Monte Carlo (MCMC) methods generate samples from a prob-

ability distribution, target distribution, by simulating Markov chains, and are

efficient for sampling from a high dimensional and complex distribution, which

is necessary for various fields such as statistical physics, statistics and machine

learning. However, standard MCMC methods cannot generate samples from a

multimodal distribution and a posterior distribution in Bayesian variable selec-

tion. To generate samples from such distributions, Parallel Tempering (PT) algo-

rithm and Gibbs variable selection (GVS) were proposed. These algorithms use

auxiliary distributions and the MCMC methods that use the auxiliary distribu-

tions are referred to as auxiliary variable methods (AVMs).

The PT algorithm uses the auxiliary distributions that are constructed by in-

ducing inverse temperatures to the target distribution and are the target distribu-

tion whose multimodality is tempered. The PT algorithm generates samples from

the auxiliary distributions and the target distribution in parallel, and exchanges

the values of the two samples with an acceptance probability. The exchange

process releases the samples for the target distribution from the local regions,

and hence the samples are correctly distributed according to the target distri-

bution. The performance of the PT algorithm strongly depends on the inverse

temperatures and the parameters of the proposal distributions. Conventionally

the parameters are tuned by trial-and-error in many pilot runs.

The GVS generates the samples from the discontinuous and multimodal pos-

terior distribution in Bayesian variable selection. The GVS uses pseudo-priors
∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1061201, September 24, 2013.
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to approximate the posterior distribution to a unimodal one. This increases its

sampling efficiency. The efficiency of the GVS strongly depends on parameters

of the proposal distribution and the pseudo-priors. The conventional GVS sets

the parameters by using the samples obtained by a pilot run for a full model, but

the parameters are improper.

Generally the performance of the AVMs also depends on the parameters of

the proposal distribution and the auxiliary distributions. Therefore a choice of

the proper parameters in the AVMs is a crucial problem.

In this dissertation, we propose an adaptive PT algorithm and an adaptive

GVS that adapt their parameters while they run. We confirm that these proposed

algorithms can obtain the proper parameters through numerical experiments.

Furthermore, we generalize the proposed algorithms to an adaptive MCMC

for AVMs that adapts the parameters of the AVMs on the fly. We prove conver-

gence theorems of the algorithm, and show that the adaptive MCMC for AVMs

converges under mild sufficient conditions. We also prove the convergence of

the adaptive PT algorithm and the adaptive GVS by applying the convergence

theorem of the adaptive MCMC for AVMs.

Keywords:

Markov chain Monte Carlo methods, Auxiliary variable methods, Parallel Tem-

pering, Gibbs variable selection, Adaptive Markov chain Monte Carlo methods,

Convergence theorem
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補助変数法に対する適応的マルコフ連鎖モンテカルロ

法とその応用∗

荒木 貴光

内容梗概

マルコフ連鎖モンテカルロ法（MCMC法）はマルコフ連鎖を用いた確率分布
からのサンプリング法であり，統計物理学，統計学，機械学習など様々な分野に
おいて必要とされる複雑で高次元な確率分布からのサンプリングに有効である．
しかし，多峰性のある確率分布やベイジアン変数選択における特殊な事後分布に
対しては標準的なMCMC法では適切にサンプリングできず，それらの分布から
適切にサンプリングするためのパラレルテンパリング，ギブス変数選択法など補
助分布を用いたMCMC法が提案された．このような補助分布を用いたMCMC

法のクラスを補助変数法という．
パラレルテンパリングは，多峰性のある確率分布に逆温度パラメータを導入し

て多峰性を徐々に緩和した分布列を構成し，最後の分布は標準的なMCMC法でも
十分にサンプリングできるほど滑らかな分布とする．それぞれの分布からサンプ
リングとサンプルの交換を行うことでサンプルが局所領域に留まるのを防ぎ，分
布全体からサンプリングする．パラレルテンパリングの性能は逆温度パラメータ，
目的分布と補助分布列に対するMetropolis法の提案分布の分散に強く依存し，従
来は多数の予備実験と試行錯誤によってそれらパラメータの調整が行われてきた．
ギブス変数選択法は，ベイジアン変数選択における連続変数と離散変数が混

在する不連続で多峰性をもつ事後分布から効率的にサンプリングする方法であり，
係数パラメータの周辺事後分布を近似した擬似事前分布を導入し事後分布を単峰
に近づけることでサンプリングを効率化する．ギブス変数選択法の性能も同様に
擬似事前分布のパラメータ，提案分布の分散共分散行列に強く依存する．従来は

∗奈良先端科学技術大学院大学 情報科学研究科 情報システム学専攻 博士論文, NAIST-IS-

DD1061201, 2013年 9月 24日.
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一度予備実験を行いそこで得られたサンプルを用いてパラメータを設定するとい
う方法がとられてきたが，それでは適切なパラメータを得ることができない．
一般的に補助変数法の性能も提案分布と補助分布に含まれるパラメータに強

く依存するため，適切なパラメータの設定は重要な問題である．
本論文では，これらパラメータ設定の問題に対して，パラレルテンパリング

とギブス変数選択法を拡張して，サンプリングしながらパラメータの値を適応的
に更新するアルゴリズムである適応的パラレルテンパリングと適応的ギブス変数
選択法をそれぞれ提案する．数値実験を行い，これら提案アルゴリズムが適切な
パラメータを得ることを確認する．
さらに，上述した提案アルゴリズムを一般化して補助変数法でサンプリング

しながらそのパラメータを適応的に更新する適応的な補助変数法を提案する．そ
のアルゴリズムの収束定理を証明し，緩い条件下で適応的な補助変数法が収束す
ることを示す．この定理を用いて適応的パラレルテンパリングと適応的ギブス変
数選択法の収束を示す．

キーワード

マルコフ連鎖モンテカルロ法, 補助変数法, パラレルテンパリング, ギブス変数選
択法, 適応的マルコフ連鎖モンテカルロ法, 収束定理
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Chapter 1

Introduction

Markov chain Monte Carlo (MCMC) methods are important algorithms in various

fields, e.g. statistics, physics and machine learning (Liu, 2001; Robert and Casella,

2004). The MCMC methods generate samples from a target distribution by using

a simple proposal distribution or its conditional distributions. For example, a

Metropolis algorithm, the simplest MCMC method, generates a sample candidate

from the proposal distribution, and accepts it with an acceptance probability.

However, there are complex target distributions from which standard MCMC

methods can not correctly generate the samples. To correctly generate the sam-

ples from the complex target distributions, auxiliary distributions are induced to

the target distributions and the samples are generated from the joint distributions

of the target distribution and the auxiliary distributions. The MCMC methods

that use the auxiliary distributions are referred to as auxiliary variable methods,

which include Parallel Tempering algorithm and Gibbs variable selection.

1. Motivation

The standard MCMC methods can not correctly produce samples from a mul-

timodal distribution, because the produced samples can be trapped in a local

mode for an extremely long period. To overcome this localization problem, Par-

allel Tempering (PT) algorithm was proposed (Geyer, 1991). The PT algorithm

induces auxiliary distributions that are constructed by adding inverse temper-

atures to the target distribution. Lowering the inverse temperatures flattens a
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landscape of the auxiliary distribution and thus eases an exploration of the sam-

ples in its sample space. The PT algorithm generates samples from the auxiliary

distributions and the target distribution, by a Metropolis algorithm in this study,

and exchanges a position of the two samples with an acceptance probability. The

sample generated from the auxiliary distribution with low inverse temperature

can be transmitted to the target distribution through the exchange operations.

This releases the sample for the target distribution from a local mode into another

one, and enables the sample to converge the target distribution.

The performance of the PT highly depends on the inverse temperatures and

the variances of the proposal distributions. Conventionally the parameters have

been determined by trial-and-error in many pilot runs.

In Bayesian variable selection, a posterior of a statistical model is a discontin-

uous and multimodal distribution with continuous and discrete variables, from

which the standard MCMC methods can not efficiently generate samples. To

efficiently generate the samples from the distribution, Gibbs variable selection

(Dellaportas et al. 2002; GVS) was proposed. The GVS induces pseudo-priors to

the statistical model in order to facilitate the sampling from the posterior. Due

to adding the pseudo-priors, the multimodal posterior approaches to a unimodal

one. The GVS generates samples by the Gibbs sampler and the Metropolis-

Hastings (MH) algorithm by turns, where we use the Metropolis algorithm as the

MH algorithm in this dissertation.

The efficiency of the GVS strongly depends on the parameters of the proposal

distribution and the pseudo-priors, and the conventional GVS determines the

parameters based on a pilot run for a full model, which contains all covariates.

The determined parameters are often improper because the posterior of the full

model is different from that of the model in Bayesian variable selection.

The MCMC methods that use auxiliary distributions like the above MCMC

methods are called auxiliary variable methods (AVMs) in this dissertation. The

AVMs include other various effective MCMCmethods such as cluster Monte Carlo

methods. The AVMs also depend on the parameters of the proposal distribution

and the auxiliary distributions. Therefore a choice of the proper parameters in

the AVMs is a crucial problem.

For the standard MCMC methods, Gilks et al. (1998) and Haario et al. (2001)

2



proposed adaptive MCMC algorithms that tuned the parameters of the proposal

distribution by using generated samples during runs. Haario et al. (2001) also

proved the convergence theorem of the algorithms.

2. Contribution

We propose an adaptive PT algorithm that adapts the inverse temperatures and

the parameters of the proposal distributions, and an adaptive GVS that adapts

the parameters of the pseudo-priors and the proposal distribution. By numerical

experiments, we confirm that the proposed algorithms can obtain the appropriate

parameters.

We generalize the algorithms to an adaptive MCMC for AVMs that adapts the

parameter of the proposal distributions and auxiliary distributions while AVMs

run, and prove its convergence theorems. We reveal that the adaptive MCMC for

AVMs converges under mild sufficient conditions. We also prove the convergence

of the adaptive PT algorithm and the adaptive GVS by applying the convergence

theorem of the adaptive MCMC for AVMs.

The adaptive PT algorithm enables us to implement the efficient PT algorithm

without trial-and-error in many pilot runs. Thus, we can simulate a system that

has a complex free energy structure, e.g. a spin glass model and protein, and

implement Bayesian estimation of a nonlinear model without any preliminary

experiments. The adaptive GVS allows us to more efficiently perform Bayesian

variable selection.

3. Organization of Dissertation

The rest of this dissertation is organized as follows.

In Chapter 2, we denote the review of the MCMC methods and the adaptive

MCMC algorithms.

In Chapter 3, we propose the adaptive PT algorithm, and validate the per-

formance of the algorithm via the numerical experiments.

In Chapter 4, we propose the adaptive GVS, and evaluate the efficiency of the

algorithm by the numerical experiments.

3



Chapter 5 generalizes the algorithms proposed in Chapter 3 and Chapter 4 to

the adaptive MCMC for AVMs, and proves its convergence theorems.

Finally we give discussion and future works in Chapter 6.

4. Notation

In this dissertation, we denote a sample or a parameter, A, at nth iteration by

A(n). A probability distribution or a probability density function is denoted by

f , and a target distribution or a target density is denoted by π. “ ∼ ” denotes

sampling from a distribution.

4



Chapter 2

Markov chain Monte Carlo

Method

When producing independent identically distributed samples from a target dis-

tribution is infeasible, Markov chain Monte Carlo (MCMC) methods are used to

generate samples from the target distribution.

The MCMC methods simulate Markov chains whose distribution converges to

a target distribution. After enough iteration, the generated Markov chains are

considered to be distributed according to the target distribution and the samples

from the target distribution.

Sampling algorithms that use independent random variables need a perspec-

tive of the target distribution, and can not generate samples from high dimen-

sional and complex target distribution whose perspective is unknown.

The simulation of the Markov chains that converge to the target distribution

uses only a region around the current position of the Markov chain, and does not

use the perspective of the target distribution. Therefore the MCMC methods

can efficiently generate samples from the target distribution whose perspective is

unknown.

In what follows, we shortly review the two typical MCMC methods, Gibbs

sampler and Metropolis-Hastings algorithm, and adaptive MCMCmethods, which

were proposed to overcome the parameter setting problems of the standard MCMC

methods.

5



1. Gibbs sampler

Let π(x) be the target distribution, where x = (x1, . . . , xp), and xj denote a

set of variables. Gibbs sampler (Geman and Geman, 1984) iteratively generates

samples from the conditional distribution π(xj|x−j) for j = 1, ..., p, where x−j =

(x1, ..., xj−1, xj+1, ..., xp).

A pseudo-code of the Gibbs sampler is as follows.

Initialize x(0) = (x
(0)
1 , ...x

(0)
p ).

for n = 0, 1, ... do

for j = 1, ..., p do

x
(n+1)
j ∼ π(xj|x(n+1)

−j ), where x
(n+1)
−j = (x

(n+1)
1 , ..., x

(n+1)
j−1 , x

(n)
j+1, ..., x

(n)
p ).

end for

end for

For enough large number N , {x(n);n ≥ N} are considered as the samples from

the target distribution π(x).

The Gibbs sampler is efficient, only if it is easy to sample from the conditional

distribution of the target distribution. Therefore, if sampling from the conditional

distribution is difficult, the Metropolis-Hastings algorithm, described in the next

section, is used.

2. Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm (Hastings, 1970) generates a sample

candidate from a proposal distribution and then accepts the candidate as the

sample with the acceptance probability and rejects the candidate with the com-

plement of the probability. The sample candidate from the simple proposal dis-

tribution is considered to be adjusted to the target distribution by the acceptance

probability.

The pseudo-code of the MH algorithm is as follows.

Initialize x(0).

for n = 0, 1, ... do

(1) x′ ∼ qθ(x|x(n)), where qθ(|) denotes both of the proposal distribution and

its density, and θ denote proposal parameters.

6



(2) Calculate the acceptance probability α(x(n), x′) = min
{

π(x′)qθ(x
(n)|x′)

π(xn)qθ(x′|x(n))
, 1
}

(3) u ∼ U [0, 1] (where U [0, 1] is a uniform distribution of the interval (0,1)).

x(n+1) =

{
x′, if u ≤ α(x(n), x′)

x(n) if u > α(x(n), x′)

end for

For the enough large number N , {x(n);n ≥ N} are considered as the samples

from the target distribution π(x).

The most famous MH algorithm is a Metropolis algorithm, whose proposal

distribution is symmetric, i.e., qθ(y|x) = qθ(x|y). The Metropolis algorithm is

used in Chapters 3 and 4 in this dissertation.

The MH algorithm can be applied to any probability distribution in contrast

to the Gibbs sampler. However, the performance of the MH algorithm strongly

depends on the parameters of the proposal distribution, therefore a proper choice

of the parameter is a crucial factor for the performance of the algorithm.

The adaptive MCMC algorithm, described in the next section, tunes the pa-

rameters of the proposal distribution to the appropriate parameters while it runs.

3. Adaptive MCMC algorithm

The efficiency of the MH algorithm is determined by the parameters of the pro-

posal distribution. For example, we consider the sampling from π(x), x ∈ R using

the Metropolis algorithm with proposal variance σ2. If the proposal variance σ2

is too small compared to that of the target distribution, the generated Markov

chains always move slowly. On the other hand, if the proposal variance σ2 is too

large, the Markov chain stays a same position for a long period.

In many cases, the target distribution π(x) is high dimension and the proposal

distribution has a covariance matrix, that is, the MH algorithm has the many

parameters which affect its performance. The careful tuning of the parameters

needs a high computational and artificial cost.

Gilks et al. (1998) and Haario et al. (2001) proposed adaptive MCMC algo-

rithms that tuned the parameters of the proposal distribution by using generated

samples so far during runs. For example, the adaptive MCMC algorithm for the

Metropolis algorithm with a normal proposal distribution updates its proposal

7



covariance matrix Σ and mean parameters µ, which are needed to update the

matrix, after generating the sample x(n+1) in (n+ 1)-th step as follows.

µ(n+1) ← µ(n) + λn

(
x(n+1) − µ(n)

)
,

Σ(n+1) ← Σ(n) + λn

((
x(n+1) − µ(n)

) (
x(n+1) − µ(n)

)T − Σ(n)
)
,

where a learning coefficient λn is a decreasing function that converges to zero.

Due to the parameter updates using the past samples, the adaptive MCMC

algorithms are non-Markovian, but Haario et al. (2001) established the conver-

gence theorem of the algorithms. Andrieu and Moulines (2006) and Roberts

and Rosenthal (2007) generalized the convergence theorems, and relaxed their

sufficient conditions.

The above adaptive MCMC algorithms adapt only the parameters of the

proposal distribution. In this dissertation, we extend them to adaptive algorithms

that adapt not only the proposal parameters but also the parameters of the

auxiliary distributions while the AVMs run.

8



Chapter 3

Adaptive Parallel Tempering

algorithm

1. Introduction

MCMC methods can generate samples that follow a target distribution by using a

simple proposal distribution. However, in sampling from a complex distribution

such as multi-modal one, the standard MCMC methods produce samples that

theoretically converge to the target distribution but practically do not. The

produced samples can be trapped in a local mode for an extremely long period.

To cope with this localization problem, the parallel tempering (PT) a.k.a. ex-

change Monte Carlo method was proposed (Geyer 1991; Hukushima and Nemoto

1996). The PT algorithm introduces auxiliary distributions with a parameter

called the inverse temperature, generates multiple MCMC samples from target

and auxiliary distributions in parallel, and exchanges the positions of two sam-

ples. An auxiliary distribution is tempered when the temperature is high and one

with a low temperature is similar to the target distribution. This “tempering”

implementation and the exchange process help samples escape from a local mode.

However, the PT algorithm strongly depends on the inverse temperatures and

the parameters of the proposal distributions, and the turning of the parameters

needs many pilot runs and trial-and-error.

In this chapter, we propose an adaptive PT algorithm that tunes the temper-

atures and the proposal parameters, which include the number of the tempera-

9



tures, while it runs, and show the effectiveness of the algorithm via numerical

experiments.

2. Parallel Tempering Algorithm

The PT algorithm is a typical algorithm that uses auxiliary distributions, πtl(dxl),

l = 2, ..., L, where 1 = t1 > t2 > · · · > tL > 0. The density of the lth auxiliary

distribution is parameterized by the inverse temperature tl as πtl(x) ∝ π(x)tl

or πtl(x) ∝ π(x)tlp(x)1−tl , where π(x) is the density of the target distribution

and p(x) is the density of a simple distribution for which a standard MCMC

method mixes fast. In other words, the inverse temperature tl tempers the multi-

modality of the target distribution π(dx) so that the auxiliary densities, πtl(xl),

gradually connect the target density π(x) to a simple density p(x) or the uniform

distribution.

The PT algorithm executes either of the parallel step and the exchange step at

time n, with probability αr and 1− αr, respectively. The parallel step generates

the L samples, x
(n+1)
l , l = 1, . . . , L, according to πtl(dxl) for each by using a

standard MCMC method. Note that we employed the Metropolis algorithm with

an independent proposal distribution that has the variances γl in this chapter.

The exchange step randomly chooses a sample x
(n)
l from the L− 1 samples, x

(n)
l ,

l = 1, . . . , L− 1, and exchange x
(n)
l for x

(n)
l+1 with probability

min

(
1,

πtl(x
(n)
l+1)πtl+1

(x
(n)
l )

πtl(x
(n)
l )πtl+1

(x
(n)
l+1)

)
. (3.1)

The performance of the PT algorithm strongly depends on the inverse tem-

peratures, more specifically, their intervals and their number. The interval of two

adjacent inverse temperatures determines both the similarity of the two distri-

butions and the acceptance probability of an exchange as seen in Eq. (3.1). The

acceptance ratio for the exchanges, which is referred to as the exchange ratio in

this dissertation, should not take an extreme value. For example, Liu (2001) said

a preferable value is a half at any interval. To avoid extreme values and lead to

homogeneous exchange ratios, Hukushima (1999) updated temperatures using a

recursive formula through preliminary runs and Goswami and Liu (2007) tuned

10



the intervals by iteratively estimating the expected exchange probability through

preliminary runs.

Jasra (2007) treated the intervals as a sequence and experimentally compared

three inverse-temperature sequences, equal space, logarithmic decay and power

decay. The results showed the last was the best. Nagata and Watanabe (2008)

proved that when the sequence of inverse temperatures is a geometric progression,

the exchange ratios are homogeneous in the low temperature limit. However,

the above methods only discussed the intervals and did not take into account

the proposal distributions, on which the mixing of samples and the estimation

of exchange ratio also depend. In our setting, the Metropolis algorithm has a

parameter to be determined, that is, the proposal variances γl. It is necessary

to re-set the proposal variance when the inverse temperatures are changed a lot,

because the appropriate proposal variances obviously depend on the shape of

auxiliary distributions.

The more auxiliary distributions the PT algorithm has, the faster the samples

mix because flatter auxiliary distributions are available but the more computa-

tional complexity is required. To solve the trade-off and determine an appropriate

number of distributions, Goswami and Liu (2007) proposed to select the maxi-

mum temperature using statistical tests. The tests should be done in an off-line

manner, that is, they need preliminary experiments in advance.

3. Adaptive PT Algorithm

We propose an adaptive PT algorithm that adapts the inverse temperatures, the

variances of proposal distribution, and the minimum inverse temperature while

the algorithm is running. The three adaptation algorithms are described below.

The exchange ratio should take a moderate value. To converge the exchange

ratio for xl−1 and xl to a specific value, α ∈ (0, 1), typically a half, the log inverse

temperature, ζl = log(tl), is updated as

ζ
(n+1)
l ← ζ

(n)
l − aln(ER

(n)
l−1,l − α), (3.2)

where ER
(n)
l−1,l is a variable that takes one if the exchange occurs between the

samples, x
(n)
l−1 and x

(n)
l , at time n, and zero otherwise. The learning coefficient, aln,

is a decreasing random variable with n that satisfies limn→∞ aln = 0 almost sure.

11



The proposal distribution of the Metropolis algorithm for a target and aux-

iliary distribution should have an appropriate variance, which is an average of

the variances of all modes of the corresponding target or auxiliary distribution.

To converge the proposal variances γl = (γl1, ..., γlp) ∈ Rp of the Metropolis al-

gorithm for the distribution πtl(dxl) on Rp to such average values, γl and the

auxiliary adaptation parameters µl = (µl1, ..., µlp) ∈ Rp, which are used only for

the adaptation of γl, are updated as

µ
(n+1)
lj ← µ

(n)
lj + bn(x

(n+1)
lj − µ

(n)
lj ),

γ
(n+1)
lj ← γ

(n)
lj + bn

(
(x

(n+1)
lj − µ

(n+1)
lj )2 − γ

(n)
lj

)
,

(3.3)

where x
(n+1)
lj is the jth element of x

(n+1)
l ∈ Rp. The learning coefficient, bn, is a

decreasing function of n that satisfies limn→∞ bn = 0. When x
(n)
l is updated to

x
(n+1)
l by exchanging to x

(n)
l−1 or x

(n)
l+1,

µ
(n+1)
l ← x

(n+1)
l . (3.4)

Because µl is tuned to the mean of each mode by Eq. (3.3) and (3.4), γl can

learn the variance of each mode by Eq. (3.3).

The auxiliary distribution with the minimum inverse temperature should be

so flat that Metropolis samples can frequently move from one mode to another

while the total number of auxiliary distributions should be as small as possible.

To determine an appropriate value for the minimum inverse temperature, the

auxiliary distributions πtl(dxl) with l > l∗ are removed where l∗ is the smallest

number that satisfies

p∏
j=1

γ
(n)
lj ≥

p∏
j=1

V (n)(xlj), (3.5)

where V (n)(xlj) is the sample variance of xlj at time n. This check is done at time

n = m, 2m, . . ., where m is a large number (e.g. 104). To improve the reliability,

when inequality (3.5) holds a few times d (e.g. 3) in succession, the auxiliary

distribution is determined to be enough flat.

Inequality (3.5) shows the relationship between the sample variance and the

proposal variance. Due to Eq. (3.3) and (3.4), the latter converges to the average

of variances of local regions and hence it is smaller than the sample variance if

12



Metropolis samples are localized in each mode. Otherwise, the auxiliary distri-

bution is flat enough.

A pseudo code of the adaptive PT algorithm is given in the following.

The adaptive PT algorithm converges. The proof will be given in chapter

5 as a special case of adaptive MCMC algorithms for general auxiliary variable

methods.

4. Experiments

To confirm the effectiveness of our algorithm, the following three numerical ex-

periments were carried out:

1. A mixture of four normal distributions.

2. The posterior of a mixture model of six normal distributions.

3. The predictive distribution for Galaxy Data.

In each of the experiments, the burn-in period was a half of the total number

of iterations and sample sets, which were used in an estimation and a scatter plot,

were chosen from every 50 samples in post burn-in. The proposal distribution of

the Metropolis algorithm was an independent normal distribution. Other param-

eters were α = 0.5, αr = 0.5, aln = 1/(1 + n/(20 + 10l)) log(exp(−ζ(n)l ) + 1),

bn = 1/(5 + 0.1n), m = 104 and d = 3. aln and bn were set so that they

could converge to zero slowly and aln could converge more slowly as l increased.

L = 25 and the intervals of inverse temperatures were equal, that is t(0) =

(1, 24/25, 23/25, . . . , 1/25), at the initial condition. Note that these values are

invariant for the each above distribution, i.e., a tuning of these values was not

necessary in these experiments.

4.1 A mixture of four normal distributions

To see and visualize the properties of our adaptive PT algorithm, we chose a

mixture of four normal distributions in two dimensional space as the target dis-
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Algorithm 1 Adaptive PT algorithm

Initialize x
(0)
l , ζ

(0)
l , γ

(0)
l , µ

(0)
l and cl = 0 ,l = 1, ..., L. (ζ

(0)
1 =0, constant).

for n = 0 to N − 1 do

u ∼ U [0, 1] (where U [0, 1] is the uniform distribution of the interval (0,1)).

if u ≤ αr then

for l = 1 to L do

(parallel sampling step)

Generate x
(n+1)
l via Metropolis algorithm for π

t
(n)
l
(dxl), which has the

proposal variances γ
(n)
l .

(proposal parameter learning step)

Update (γ
(n)
l , µ

(n)
l ) to (γ

(n+1)
l , µ

(n+1)
l ) by the Eq. (3.3).

end for

else

(exchange step)

Randomly choose a neighboring pair, x
(n)
l and x

(n)
l+1, and exchange them

with the probability Eq. (3.1).

(inverse temperature learning step)

Update ζ
(n)
l+1 to ζ

(n+1)
l+1 by Eq. (3.2).

if the exchange is accepted, then

µ
(n+1)
k ← x

(n+1)
k , for k = l, l + 1.

end if

end if

(minimum inverse temperature decision step)

if (n mod m) = 0 then

for l = 1 to L do

If Eq. (3.5) hold, then cl ← cl + 1.

end for

∆← {l|cl ≥ d, l = 1, . . . , L}.
if ∆ ̸= ∅, then L← min∆.

end if

end for
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tribution (Fig. 3.1(a)):

g(x) =
4∑

i=1

1

8π det(Σi)1/2
exp

(
−1

2
(x− µi)

TΣ−1
i (x− µi)

)
,

where the parameters of the normal distributions are

µ1 = (0, 44), µ2 = (44, 0),

µ3 = (0,−44), µ4 = (−44, 0),
Σ1 = diag(1, 72), Σ2 = diag(72, 1),

Σ3 = diag(1, 72), Σ4 = diag(72, 1).

Note that these normal distributions have quite different variances, 1 and 72,

where the proposal variance learning is difficult.

(a)

x_1

x_
2
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(b)

x_1

x_
2

Figure 3.1. A mixture of four normal distributions. a) The target distribution.

b) Samples by the adaptive PT algorithm.

The adaptive PT algorithm ran for 3 × 105 iterations, where the auxiliary

distributions are πtl(x) ∝ g(x)tl and the initial proposal variances are γ
(0)
lj =

3× 102.

As a result, our algorithm mixed well and obtained samples from all possible

modes (Fig. 3.1(b)). In fact, the number of inverse temperatures was reduced to
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five after 3 × 104 iterations but the auxiliary distribution πt̂5
(dx) is flat enough

(Fig. 3.2), where t̂5 is the inverse temperature t5 tuned by the adaptive PT

algorithm.

The larger the variances of the auxiliary distribution become, the larger the

proposal variances should become. In fact, the sums of the adapted proposal

variances were (γ̂1,1 + γ̂1,2, . . . , γ̂5,1 + γ̂5,2) = (32.26, 41.86, 245.8, 1124, 8704).
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Figure 3.2. Samples by Metropolis algorithm with the proposal variance γ̂5 from

the auxiliary distribution πt̂5
(dx). They cover all the modes in Fig. 3.1.

The estimated exchange ratios converged to (0.501, 0.507, 0.499, 0.498), all

of which are almost α = 0.5. Then, the adapted inverse temperatures were

(t̂2, . . . , t̂5) = (0.328, 0.108, 0.0307, 0.00937).

t
(n)
2 and γ

(n)
2 converge quickly from even the extreme starting points (Fig. 3.3),

and the others also converge as fast as them.
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Figure 3.3. trace plot (a):proposal variance γ
(n)
2,1 , (b):inverse temperature t

(n)
2 .
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4.2 The posterior of a mixture model of six normal distri-

butions

In the mixture model, we estimated the average of component specific means,

µm, by the posterior mean of µm as is seen in Jasra et al. (2007). The mixture

model had normal distributions, that is,

f(y|µ,w, σ2) =
M∑

m=1

wm√
2πσm

exp

(
− 1

2σ2
m

(y − µm)
2

)
, (3.6)

where wM = 1 −
∑M−1

m=1 wm. The priors are a normal-inverse Gamma-Dirichlet

prior as follows.

µm ∼ N(ξ, κ2), m = 1, . . . ,M,

σ2
m ∼ IG(αg, βg), m = 1, . . . ,M,

wm ∼ D(ϱ), m = 1, . . . ,M − 1,

where D(ϱ) is the symmetric Dirichlet distribution with parameter ϱ. In the fol-

lowing, the hyper-parameters were αg = 12, βg = 10 and ϱ = 1. The parameters

ξ and κ2 were determined by the median and four times the variance of the given

data, respectively.

The data of size 150, y1:150, were independently and identically distributed

according to a mixture model of the form (3.6) with parameters, M = 6, w1 =

· · · = w6 = 1/6, (µ1, . . . , µ6) = (−8,−3, 1, 4, 8, 13), σ2
1 = σ2

6 = 1.52 and σ2
2 =

· · · = σ2
5 = 0.52. In this case, the posterior π(µ,w, σ2|y1:150) was a 17 dimensional

distribution and had 6! = 720 symmetric modes due to the invariance against

permutation of the labels of the parameters.

The auxiliary distributions were set to

πtl(µ,w, σ
2|y1:150) ∝

(
150∏
i=1

f(yi|µ,w, σ2)

)tl

p(µ,w, σ2),

where p(µ,w, σ2) was the prior.

Our algorithm was compared to the conventional PT algorithm with the fixed

parameters. For each of the parameters, ζ, γ and L, the parameter values of the

conventional algorithm were shifted from the values tuned by the adaptive PT

algorithm, ζ̂l, γ̂l and L̂, as follows.
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(a) ζl ← ζ̂l · φζ , for l = 1, . . . , L, φζ = 0.5, 0.6, . . . , 2, 3,

L← L̂, γl ← γ̂l.

(b) γl ← γ̂l · φ2
γ, for l = 1, . . . , L, φγ = 0.1, 0.3, . . . , 2, 3,

(c) L← L̂+ φL, φL = −5,−4, . . . , 4, 5,
γl ← γ̂l, ζl ← ζ̂l.

(If φL > 0, ζl and γl were adapted for l = L̂ + 1, ..., L̂ + φL, for fairness of

the comparison.)

We ran the adaptive PT algorithm and the conventional PT algorithms for

106 iterations. The initial sample values were w
(0)
l,m = 1/6, σ

2(0)
l,m ∼ IG(αg, βg),

µ
(0)
l,m ∼ U [min(y1:150),max(y1:150)] for each run. The initial parameter values

of γ
(0)
1j , . . . , γ

(0)
Lj were the sorted L random numbers from U [0.0001, 800]. The

variables of posterior were divided into four blocks, the numbers of which were

(5,4,4,4). Each Metropolis algorithm updated for the every block.

We evaluated the sample mean of the posterior of µm, m = 1, . . . , 6, as the

estimator of (
∑6

m=1 µm)/6 in 50 runs independently. The accuracy of the estima-

tion was evaluated by the root mean square error (RMSE), which takes the root

average of the errors of the six estimators to evaluate the total error of them,

that is,

RMSE(i) =

(
1

6

6∑
m=1

(µ̄m(i)− 2.5)2

)1/2

,

where µ̄m(i) is the sample mean of posterior of µm in the ith trial, and 2.5 is the

true value.

As a result, our algorithm can establish appropriate parameters and achieve

very low RMSEs (Fig. 3.4). Fig. 3.4(a) and (b) show that the RMSEs of our

algorithm were less than those of the conventional PT algorithms with shifted

parameters. On the other hand, when the number of temperatures increases, the

RMSEs don’t increase (Fig. 3.4(c)) but the computational costs of the algorithms

increase. In fact, the shifted inverse temperatures could not control the exchange

ratios well (Fig. 3.5).
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Figure 3.4. RMSEs in 50 runs. Each plot displays the average and the stan-

dard deviation of RMSEs for each algorithm by the mark and the error bar,

respectively. The adaptive PT algorithm : (◦). Those of the conventional PT

algorithms are plotted for each of shifted parameters. The inverse temperatures :

× in (a), The proposal variances : ⋄ in (b), The number of inverse temperatures

: △ in (c).
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4.3 The predictive distribution for Galaxy Data

We calculated the predictive distribution of the normal mixture model for galaxy

data. The galaxy data consist of velocities of 82 galaxies, and were first presented

by Postman, Huchra and Geller (1986). We assumed the velocities y1, ..., yn were

independently generated from the mixture model Eq. (3.6) with M = 4. We

sampled from the posterior that consist of the above model and priors, and the

data. By using these samples, we estimated the predictive density

g(ỹ|y1:n) = E[f(ỹ|µ,w, σ2)|y1:n]

=

∫ ∫ ∫
f(ỹ|µ,w, σ2)π(µ,w, σ2|y1:n)dµdwd(σ2). (3.7)

The prior parameters were set to ξ = 20, κ2 = 102, αg = 11, βg = 10, ϱ = 1.

We ran the adaptive PT algorithm and the conventional PT algorithm for

105 iterations. The proposal variances of the conventional PT algorithm were

0.012γ̂l, for l = 1, ldots, L, where γ̂l were the proposal variances obtained by the

adaptive PT algorithm, and the others were set as the parameters obtained by

the adaptive PT algorithm. The initial values of the samples and the parameters

were set by the way section 4.2.

We calculated the 20 predictive densities for each of the algorithms (Fig. 3.6

and 3.7). The predictive density for the adaptive PT algorithm didn’t vary and

were stable (Fig. 3.6), but on the other hand the predictive density for the

conventional PT algorithm with the improper proposal variances varied and were

unstable (Fig. 3.7).

Through these experiments, we found that the appropriate convergence order

of the learning coefficients is 1/n. When the convergence order of the learning

coefficients is 1/n2, the learned parameters vary much because the learning coeffi-

cients converge extremely fast. The learning coefficients whose convergence order

is 1/n1/2 converge too slowly, so that the convergences of the learning parameters

are also extremely slow.

4.4 Comparison of the computational costs

Our algorithm and the conventional PT algorithm with the settings in section 4.1

and 4.2 were run for 103 iterations ten times independently, and the computational
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Figure 3.6. The histogram of the galaxy dataset and the 20 predictive densities

by the adaptive PT algorithm.
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Figure 3.7. The histogram of the galaxy dataset and the 20 predictive densities

by the conventional PT algorithm.
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times are showed in the table 3.1. This result indicates the difference of their

computational costs is negligible.

Section 4.1 Section 4.2

Our algorithm 1.428 (0.0717) 9.729 (0.2641)

Parallel Tempering 1.383 (0.0596) 9.487 (0.2540)

Table 3.1. Averages and standard deviations of the ten computational times

(second) of the algorithms. The standard deviations are enclosed by parentheses.

5. Conclusion

We proposed the adaptive PT algorithm that tunes its parameters while it runs,

and showed that the algorithm can adapt its parameters on the fly so that samples

mix rapidly by experiments with a mixture model. We also presented that the

performance of the PT algorithm depends on its parameters and the adaptive PT

algorithm finds good parameters through experiments for Bayesian estimation.
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Chapter 4

Adaptive Gibbs variable selection

1. Introduction

Bayesian variable selection plays an important role in multivariate statistical

analysis, and various sampling algorithms for Bayesian variable selection based

on Markov chain Monte Carlo (MCMC; Robert and Casella (2004)) have been

proposed. The most famous algorithms are Stochastic Search Variable Selection

(SSVS; George and McCullogh (1993)), Kuo and Mallick’s method (Kuo and

Mallick (1998)) and Gibbs variable selection (GVS; Dellaportas et al. (2002)).

The SSVS and the Kuo and Mallick’s method are efficient only for the models

whose conditional posterior densities can be obtained directly. On the other hand,

the GVS is efficient not only for the above models but for the models whose

conditional densities cannot be calculated by closed form, such as generalized

linear models and nonlinear models, e.g., Markov mixture models, and so on.

Reversible jump MCMC (RJMCMC; Green (1995)), which is a general algorithm

for Bayesian model selection, is also available in such the case, but less efficient

than the GVS (Dellaportas et al., 2002).

The GVS induces pseudo-priors that approximate the marginal posterior dis-

tributions of coefficient parameters and support the sampling of the GVS. The

parameters of the pseudo-priors are determined by a pilot run for full model (Del-

laportas et al. (2002)). However, the obtained parameters shift the pseudo-priors

from the marginal posteriors of coefficients due to a correlation of the posterior

distribution of coefficient parameters. The shifted pseudo-priors give the slow
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mixing of the GVS.

The GVS adopts random walk type Metropolis (RWM) algorithm as a sam-

pling method of the coefficient parameters for the models whose conditional pos-

terior distribution of coefficients cannot be obtained by a closed form. The co-

variance matrix of the proposal distribution is set by using samples from the pilot

run for the full model Paroli and Spezia (2007). However, since the samples from

the full model have not enough information to estimate the appropriate scale of

the proposal distribution, above proposal covariances are often improper.

In this chapter, we propose an adaptive GVS that adapts the proposal covari-

ances and pseudo-prior by learning the mean and the covariances of the coefficient

posterior and the scale parameter on the fly. We show that our algorithm can ob-

tain proper parameters during its run and is more efficient than the conventional

GVS through their applications to the Bayesian variable selection of a logistic

regression model.

2. Gibbs Variable Selection

Typically p-variate statistical models may have the coefficient parameter vector,

θ = (θ1, ..., θp), associated with covariates xj, j = 1, ..., p, and an indicator vari-

able vector, γ = (γ1, ..., γp) that presents which of the covariates are included in

the model, that is, gammaj takes one if the covariate xj is included, and zero

otherwise. For example, a regression model, one of the most simple multivariate

models, is written as y =
∑p

j=1 xjθj + ϵ, where y is a response and ϵ is a noise.

The Bayesian variable selection of the statistical models needs to estimate pos-

teriors of the coefficient parameters, θj, and the indicator variables, γj, and the

GVS generates samples from the posterior distributions.

The GVS sets θj = γjβj, where βj is referred to as the effect size, and generates

samples from the posterior of γj and βj to obtain the samples from the posterior

of γj and θj. If γj takes one, βj is equal to the coefficient θj, and otherwise βj

is distributed according to a pseudo-prior fλj
(βj), where λj ∈ Λ is a parameter

vector. The pseudo-priors are not included in the posterior of θ and γ, but

facilitate to produce the sample sequence from the posterior of γ and β. The
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prior of βj given γj is

fλj
(βj|γj) = γjf(βj) + (1− γj)fλj

(βj), (4.1)

where f(βj) is a coefficient prior.

The GVS conducts Gibbs sampling steps for γ and βγ, and a Metropolis-

Hastings step for β\γ by turns, where βγ denotes the components of β included in

the model, whose corresponding indicators, γj, take one, and β\γ consists of the

others. The Gibbs sampling step produces samples from the conditional posterior

distributions

fλ(γj|γ−j, β,D) ∝ f(D|β, γ)
p∏

k=1

fλk
(βk|γk)f(γk), j = 1, ..., p,

fλ(β\γ|γ, βγ, D) =
∏

βj∈β\γ

fλj
(βj), (4.2)

where γ−j denotes the components of γ except γj and D denotes the observation

data. The Metropolis-Hastings step executes the Metropolis-Hastings update for

f(βγ|γ, β\γ, D) ∝ f(D|β, γ)
∏

βj∈βγ

f(βj). (4.3)

Practically if this conditional distribution (4.3) can be obtained analytically, this

step directly samples from the distribution, that is, conducts a Gibbs sampling,

otherwise a random-walk Metropolis (RWM) sampling is applied. In this disser-

tation, we employ the RWM sampling because it can be applied to more various

models.

The pseudo-priors should well approximate the marginal coefficient posteri-

ors, f(βj|γj = 1, D), and the proposal distribution should provide an appropriate

average Metropolis-acceptance probability, typically 0.234 in multidimensional

settings (Roberts et al., 1997), for the sake of rapid mixing of the GVS. A pilot

run in the GVS samples from the posterior of the coefficients of the full model,

f(β|γ1 = · · · = γp = 1, D), and estimates the means and the covariances of the

coefficient posterior, µ and Σ, by the sample means, µ̂, and the sample covari-

ances, Σ̂, respectively. The GVS employs the estimated parameters as those of

the pseudo-priors and the proposal distribution (Dellaportas et al. (2002), Paroli

and Spezia (2007)). However, the features of the pseudo-priors with the means
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µ̂j and variances Σ̂jj are different from those of the marginal coefficient posteri-

ors, f(βj|γj = 1, D), because they are different from the features of the marginal

coefficient posterior of the full model, f(βj|γ1 = · · · = γp = 1, D), from which the

pilot run generates the samples, due to the correlation of the posterior of coeffi-

cients. Typically the proposal distribution has the covariances cΣ̂ij, where c is a

scale parameter set as (23.4)2/p if the model is high dimensional (Roberts et al.

(1997)), and one otherwise. Because the proper scale of the proposal distribu-

tion, which leads to the appropriate average Metropolis-acceptance probability,

practically depends on the features of the coefficient posterior such as a dimen-

sion and a shape, the proposal distribution often provides the improper average

Metropolis-acceptance probability.

3. Adaptive Gibbs Variable Selection

We propose the adaptive GVS algorithm that adapts the pseudo-prior parameters

and the proposal covariances by learning covariances and means of the coefficient

posterior and the scale parameter while the GVS is running.

The correlation coefficients of the proposal distribution, the variances and

the means of the pseudo-prior should correspond with those of the coefficient

posterior, and the scale of the proposal distribution should lead to the appropriate

Metropolis acceptance rate such as 0.234. The adaptive GVS algorithm learns

the covariances and the means of the coefficient posterior, µ and Σ, and the

scale parameter of the proposal distribution, c, which provides the appropriate

acceptance rate, by using generated samples β(n) and γ(n), and introduces the

learned parameters µ(n), Σ(n), and c(n) to the pseudo-priors and the proposal

distribution. That is, the pseudo-priors have mean µ
(n)
j and variances Σ

(n)
jj and

the covariances of the proposal distribution are c(n)Σ
(n)
ij at the (n+1)th iteration.

The learning algorithms of µ, Σ and c are described as follows.
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The covariance parameters, Σij, and the mean parameters, µj, is updated as

µ
(n+1)
j ← µ

(n)
j + γ

(n+1)
j h(a

(n)
j )(β

(n+1)
j − µ

(n)
j ),

Σ
(n+1)
ij ← Σ

(n)
ij + γ

(n+1)
j γ

(n+1)
i u(a

(n)
i , a

(n)
j )

×
(
(β

(n+1)
j − µ

(n)
j )(β

(n+1)
i − µ

(n)
i )− Σ

(n)
ij

)
,

a
(n+1)
j ← a

(n)
j + γ

(n+1)
j ,

j = 1, ..., p, i = 1, ..., p, (4.4)

where a
(0)
j = 1, and a

(n)
j increases with updating jth parameters, µj and Σij for i

such that γi = 1. The learning coefficients h(n) and u(n,m) are decreasing func-

tions that satisfy limn→∞ h(n) = 0 and limn→∞,m→∞ u(n,m) = 0, respectively.

Note that the parameters are updated by only sample βj for the coefficient pos-

terior, f(βj|D, γj = 1).

To converge the mean acceptance rate to a specific value, α ∈ (0, 1), mainly

0.234, the scale parameter, c, is updated as

c(n+1) ← c(n) + sn(ER(n+1) − α), (4.5)

where ER(n) is a variable that takes one if a proposal value in the Metropolis sam-

pling of βγ(n+1) is accepted at time n, and zero otherwise. The learning coefficient,

sn, is a decreasing function of n that satisfies limn→∞ sn = 0.

A pseudo code of the adaptive GVS algorithm is given in the Algorithm 1.

The total computational costs of the conventional GVS and the adaptive GVS

are almost same, because the pilot run of the GVS often takes longer times than

the learning steps of our algorithm.

The adaptive GVS converges. The proof is proved in chapter 5 by applying

the convergence theorem of the adaptive MCMC algorithms for general auxiliary

variable methods.
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Algorithm 2 Adaptive GVS algorithm

Initialize β(0), γ(0), Σ(0), µ(0) and c(0).

for n = 0 to N − 1 do

(Gibbs sampling step)

for j = 1 to p do

γ
(n+1)
j ∼ f

λ
(n)
j
(γj|γ(n)

−j , β
(n), D), where λ

(n)
j = (µ

(n)
j ,Σ

(n)
j,j ) and γ

(n)
−j =

(γ
(n+1)
1 , . . . , γ

(n+1)
j−1 , γ

(n)
j+1, . . . , γ

(n)
p ).

end for

β
(n+1)

\γ(n+1) ∼
∏

βj∈β\γ(n+1)
f
λ
(n)
j
(βj).

(Metropolis sampling step)

Generate β
(n+1)

γ(n+1) via the RWM algorithm for f(βγ(n+1) |γ(n+1), β
(n+1)

\γ(n+1) , D),

which has the proposal covariance matrix c(n)Σ
(n)

γ(n+1) , where Σγ denotes the

covariance matrix that consists of the covariances Σij where γi = 1 and

γj = 1.

(Parameter learning step)

Update (µ(n), Σ(n)) to (µ(n+1), Σ(n+1)) by the Eq. (4.4).

Update c(n) to c(n+1) by Eq. (4.5).

end for
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4. Experiments

We estimated the marginal probability of inclusion for each of p covariates, xj,

and the predictive distribution, for the logistic regression model,

f(y|x, β, γ) = 1

1 + exp
(
−y(

∑p
j=1 xjβjγj)

) , (4.6)

where y ∈ {−1, 1} is a response variable. The priors are

f(βj) = N(µβj
, σ2

βj
),

f(γj) = τ
γj
j (1− τj)

1−γj ,

fλ(βj) = N(µj, σ
2
j ), λ = (µj, σ

2
j ),

where N(µ, σ2) is a normal density with a mean µ and a variance σ2, and 0 <

τj < 1. The hyper-parameters were µβj
= 0, σ2

βj
= 9 and τj = 0.5.

The learning coefficients of our algorithm were h(n) = 1/(n+ 50), u(n,m) =

1/
√

(n+ 50)(m+ 50) and sn = 1/(n + 500). The initial parameter values µ(0)

and Σ(0) were set to a mode of the full model posterior density of β, and the minus

inverse Hessian of the log full model posterior density at the mode, respectively.

Other parameters were α = 0.234 and c(0) = (2.38)2/p. The initial sample values

β(0) and γ(0) were set to the mode of the posterior of the full model and the vector

whose all elements are one, respectively.

In the GVS, the proposal scale was (2.38)2/p, and the pilot run was executed

for 104 iterations. The initial sample values β(0) and γ(0) were set to the sample

mean of β in the pilot run and the vector whose all elements are one, respectively.

We used synthetic data and real data, cardiac Arrhythmia data.

4.1 Synthetic Data

We generated data from the true logistic model f(y|x, θ∗). The true model has

100 covariates and the coefficients, θ∗j = {−0.5; for j = 1, . . . , 5, 71, . . . , 75, −0.1;
for j = 31, . . . , 35, 1; for j = 51, . . . , 55, 0.1; for j = 96, . . . , 100, 0; otherwise}.
That is, the true model includes the 25 covariates. The covariates were generated

from the normal distribution whose means are all 0 and variances are all 1 and

covariances between xj and xi for i, j = 1, . . . , 30, are 0.8 and covariances between
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xj and xi for i, j = 71, . . . , 100, are 0.7. We independently generated 300 data

from the model.

We ran the adaptive GVS and the conventional GVS for 25 iterations and gen-

erated samples from the posterior based on the synthetic data and the model. We

calculated the estimated marginal probabilities of inclusions P̂
(n)
j = 1

n

∑n
i=1 γ

(i)
j

every 10-th iteration. We also calculated the error of the estimated probabili-

ties
∑100

j=1 |P̂
(n)
j − P ∗

j |, where P ∗
j takes one if xj is included in the model, and 0

otherwise. We calculated the errors in 10 runs and the mean and the standard

deviation of them every 10 iterations (Fig. 4.1). The mean of the errors in the

adaptive GVS converged to the lowest value faster than that in the conventional

GVS, and the standard deviation in the adaptive GVS was much smaller than

that in the conventional GVS.

4.2 Cardiac Arrhythmia Data

We considered the cardiac arrhythmia data {y1:nd
, x1:nd

} (Guvenir et al., 1997),

which contains 257 covariates and 452 instances, i.e., nd = 452. The 245 instances

are normal, y = 0, and the others have disease, y = 1. We excluded covariates

which contain missing values.

We calculated the estimated marginal probabilities of inclusions P̂
(n)
j and the

estimated predictive distribution

f̂(y1:nd
|x1:nd

) =
1

m

m∑
n=1

f(y1:nd
|x1:nd

, β(n), γ(n)),

wherem denote the number of the iterations in post burn-in, and f(y1:nd
|x1:nd

, β, γ) =∑nd

i=1 f(yi|xi, β, γ). For a comparison, we used the estimated inefficiency factor

(IF)

1 + 2
M∑
i=1

(
1− i

m

)
ρ̂(i), (4.7)

where ρ̂(i) is an estimated autocorrelation of the sample sequence after burn-

in, and M is a truncation point after which the estimated autocorrelation ρ̂ is

negligible, and chosen based on when ρ̂ decays to zero. The estimated IF is

proportional to a variance estimator of the sample mean, which are P̂
(m)
j and

f̂(y1:nd
|x1:nd

) in this experiment.
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Figure 4.1. Trace plots of the means (solid line) and the standard deviations

(dotted line) of the errors in 10 runs. Bold and blue lines: the adaptive GVS.

Thin and red lines: the conventional GVS.

34



The sampling algorithms were run for 3 × 105 iterations, and the burn-in

periods were 105. The sample set was chosen from every 10th sample.

The parameters µ
(n)
1 and Σ

(n)
11 converge quickly (Fig. 4.2). The others also

converge as fast as them. The estimated IFs for P̂
(n)
j of our algorithm were lower

than those of the conventional GVS (Fig. 4.3). The predictive distribution esti-

mated by our algorithm converged faster than that estimated by the conventional

GVS (Fig. 4.4), and the estimated IFs for the estimated predictive distribution,

f̂(y1:nd
|x1:nd

), of our algorithm and that of the conventional GVS are 154.7 and

321.5, respectively.
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Figure 4.2. trace plot (a):posterior mean µ
(n)
1 , (b):posterior variance Σ

(n)
11

The estimated mean Metropolis acceptance rate of our algorithm was 0.2328,

which is close to the target value, 0.234. This leads to well mixing of our algo-

rithm. The learned covariance and mean parameters were more close to those of

the marginal posterior distributions of the coefficients than those obtained by a

pilot run (Fig. 4.5). Thus the pseudo-priors of our algorithm were closed to the

marginal posterior distributions of the coefficients, which improved the mixing of

our algorithm.
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Figure 4.3. Box plots of the estimated IFs for P̂
(n)
j except those of the covariates

whose estimated probability of inclusion was 1.
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Figure 4.4. Trace plots of the estimated predictive distributions by the adaptive

GVS (solid line) and the conventional GVS (dashed line).
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Figure 4.5. Means and standard deviations of the coefficient posterior. Each plot

displays a mean and a standard deviation by the mark and the radius of the error

bar, respectively. The means and the standard deviations learned by the adaptive

GVS : (◦). The sample means and standard deviations by the conventional GVS

: (△) and the pilot run for the full model : (×). These 10 covariates have the

estimated probability of inclusion which are the closest to 0.5.
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From the results of these numerical experiments, the appropriate convergence

order of the learning coefficients seems to be 1/n as well as that of the adaptive

PT algorithm.

5. Conclusion

In this chapter, we proposed an adaptive algorithm that adapts parameters of

a proposal distribution and pseudo-priors during generating samples. We also

showed the proposed algorithm mixes faster than the conventional GVS through

the two experiments of the Bayesian variable selection of the logistic regression

model.
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Chapter 5

Generalization to auxiliary

variable methods

1. Introduction

The PT algorithm and the GVS use auxiliary distributions, the tempered distri-

butions and the pseudo-priors. The auxiliary distributions are also used in other

several algorithms, e.g., the cluster Monte Carlo methods that efficiently produce

samples by block-wise updates based on auxiliary distributions (Swendsen and

Wang 1987; Higdon 1998). These algorithms are referred to as auxiliary variable

methods (AVMs) in this dissertation.

Although the performance of the standard MCMCmethods such as Metropolis-

Hastings algorithm (Hastings 1970) depend on only the proposal distribution,

the performance of an AVM depends on both the proposal distribution and the

auxiliary distributions. Hence the parameters of the proposal and auxiliary dis-

tributions have to be chosen so that the Markov chain of the AVM mixes as fast

as possible. They have been tuned by rough methods or trial-and-error in pilot

runs so far because their relationship to the mixing speed has not been clear.

For the standard MCMC methods, Gilks et al. (1998) and Haario et al. (2001)

proposed adaptive MCMC algorithms that tuned the parameters of a proposal

distribution by using past samples during runs. Haario et al. (2001) also proved

the convergence theorem of their algorithms, which was developed later (Andrieu

and Moulines 2006; Roberts and Rosenthal 2007).
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The AVMs have the parameters not only in the proposal distribution, but also

in the auxiliary distributions. Thus the above adaptive MCMC algorithms can

not be applied to the AVMs.

In this chapter, we propose an adaptive MCMC for AVMs by extending the

above adaptive algorithms to general AVMs, where the algorithm adapts the

parameters of the proposal and the auxiliary distributions of AVMs on the fly. We

prove the convergence theorems of our algorithm in a similar way to Roberts and

Rosenthal (2007). We also prove the convergence of the adaptive PT algorithm

and the adaptive GVS by using the theorem of the general adaptive MCMC for

AVMs.

2. Adaptive MCMC for AVMs

The idea of the adaptive PT algorithm and the adaptive GVS is applicable to

general AVMs. AVMs are mathematically formulated as below.

Let π(dx) be a distribution on a state space X with σ-algebra FX and πλ(dy|x)
be a conditional distribution on a state space Y with σ-algebra FY given FX , where

λ ∈ Λ is a parameter vector. Then, the marginal distribution on X of the joint

distribution πλ(dx, dy) = πλ(dy|x)π(dx) is π(dx) irrespective of πλ(dy|x).
In case of MCMC methods with auxiliary variables, π(dx) corresponds to

the target distribution and πλ(dy|x) to the auxiliary distributions. We term an

MCMC method that draw samples (x′, y′) from πλ(dx, dy) to obtain x′ an aux-

iliary variable method. In the PT algorithm, for example, the auxiliary distri-

butions are πλ(dy|x) =
∏L

l=2 πtl(dxl), λ = (t2, . . . , tL) and the auxiliary variables

are y = (x2, ..., xL).

In order to introduce adaptation, we need to consider time-varying param-

eters. Let {Pθ((x, y), (dx, dy))}θ∈Θ be a family of Markov transition kernels on

X × Y with stationary distribution πλ(dx, dy), that is,

(πλPθ) (dx, dy) =

∫∫
x′,y′

πλ(dx
′, dy′)Pθ ((x

′, y′), (dx, dy))

= πλ(dx, dy),

where θ contains λ. Then, the adaptive MCMC for AVMs updates the parameters

θ during generating chains (x(n), y(n)) by Pθ as the following pseudo code.
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Algorithm 3 Adaptive MCMC for AVMs

Initialize (x(0), y(0)), θ(0).

for n = 0 to N − 1 do

[1] (x(n+1), y(n+1)) ∼ Pθ(n)((x(n), y(n)), (dx, dy))

[2] Update θ(n) to θ(n+1) by using the result of step 1 such as (x(n+1), y(n+1)).

end for

In the adaptive PT algorithms, for example, the time-varying parameter vec-

tor is θ = (γ1, . . . , γL; t2, . . . , tL).

3. Convergence Theorem

Atchade (2011) and Fort et al. (2011) proved convergence theorems of adaptive

MCMC algorithms that adapt the parameters of the target distribution. The

conditions for convergence in their theorems are, however, technical and strict.

For example, the stationary distribution must converge. These conditions will

considerably restrict the available parameter learning algorithms.

In this section, we show some convergence theorems that our algorithm in the

previous section converges under weaker conditions. Here, convergence means

that an algorithm is ergodic, that is,

lim
n→∞

∥A(n)((x, y, θ), dx)− π(dx)∥ = 0, ∀(x, y) ∈ X × Y , θ ∈ Θ,

where ∥µ(dx)− ν(dx)∥ = supA∈FX
|µ(A)− ν(A)| and

A(n)((x, y, θ), BX ) = P
[
x(n) ∈ BX |x(0) = x, y(0) = y, θ(0) = θ

]
, BX ∈ FX .

Theorem 1 The adaptive MCMC for AVM is ergodic if the following conditions

hold:

(a) Simultaneous uniform ergodicity

∀ε > 0, ∃N ∈ N s.t.

||PN
θ ((x, y), dx)− π(dx)|| ≤ ε, ∀(x, y) ∈ X × Y , θ ∈ Θ. (5.1)
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(b) Diminishing adaptation

limn→∞ sup
(x,y)∈X×Y

∥Pθ(n+1) ((x, y), (dx, dy))− Pθ(n) ((x, y), (dx, dy)) ∥

= 0 in probability. (5.2)

Proof 1 See A.

The above conditions do not require that the auxiliary parameter λ(n) and the

stationary distribution πλ(n) converge. The condition (a) can be replaced with

more concrete condition that checks only properties of the Markov transition

kernel as follows.

(a’) (Simultaneously strongly aperiodically geometrical ergodicity) There exists

C ∈ FX×Y , V : X × Y → [1,∞) , δ > 0, τ < 1, and b < ∞, such that

supCV <∞ and the following conditions hold for all θ ∈ Θ.

(i) (Strongly aperiodic minorisation condition) There exist a prob-

ability measure νθ (dx, dy) on C such that

Pθ((x, y), (dx
′, dy′)) ≥ δνθ(dx

′, dy′), for all x, y ∈ C.

(ii) (Geometric drift condition)

(PθV ) (x, y) ≤ τV (x, y)+b1{C}(x, y), for all x, y ∈ X × Y ,

where (PθV )(x, y) ≡
∫∫

Pθ ((x, y), (dx
′, dy′))V (x′, y′)dx′dy′, and 1{·}(x)

is an indicator function.

Theorem 2 The adaptive MCMC for AVM is ergodic if the condition (b) in

Theorem 1, the condition (a’) and E[V (x(0), y(0))] <∞ hold.

Proof 2 Straightforward from Proposition 3 and the proofs of Theorem 3 in

Roberts and Rosenthal (2007), and Theorem 1.

Theorem 3 (Weak law of large numbers) Suppose the adaptive MCMC for

AVM satisfies the conditions (a) and (b) and let g : X → R be a bounded mea-

surable function. Then,

1

n

n∑
i=1

g(x(i))→
∫

g(x)π(dx) in probability

as n→∞, for any initial values (x, y) ∈ X × Y and θ ∈ Θ.
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Proof 3 Straightforward from the coupling argument (Roberts and Rosenthal

2007).

The convergence of the adaptive PT algorithm is proved by applying Theorem

2 as below.

Theorem 4 The adaptive PT algorithm is ergodic if the following conditions

hold:

(s1) The support S of the target distribution π(dx) is compact and the density

π(x) is continuous and positive on S.

(s2) The family of proposal densities {qγ}γ∈Γp is continuous and positive on S2×
Γp, where Γ = [c, C].

Proof 4 See B.

It will be possible to remove the assumptions that S is compact by extending

Theorem 6 of Bai et al. (2011).

To prove the convergence of the adaptive GVS, we formulate the GVS as

AVMs. We consider that the target distribution in the GVS is the joint posterior

distribution of indicator variables γj and coefficients θj = (γjβj),

f(θ, γ|D) ∝ f(D|θ)
p∏

j=1

(
γjf(θ) + (1− γj)δ{0}(θ)

)
f(γj), (5.3)

where δ{x}(y) is an indicator function, and f(θj) is a coefficient prior in Eq. (4.1).

Note that this target distribution has no parameters. We also consider that βj

are auxiliary variables.

Thus we prove that the samples of γj and θj generated by the adaptive GVS

converge to the posterior of them. The convergence theorem is proved as follows.

Theorem 5 The adaptive GVS is ergodic if the following conditions hold:

(a) Either the support of the f(D|β, γ) or the supports of priors, f(βj) and

fλj
(βj), are compact set S and the f(D|β, γ), f(βj) and fλj

(βj) are contin-

uous and positive on S.
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(b) The family of proposal densities {qΣ,µ,c}Σ,µ∈Ω is continuous and positive on

S2×Ω. Ω = Z×K×C, where Z is a compact set of Rp2 and K is a bounded

set on Rp and C is a bounded set on R+.

Proof 5 Similar arguments to the proof of Theorem 4.

It will also be possible to remove the compact support assumptions by extending

Theorem 6 of Bai et al. (2011).

4. Conclusion

This chapter proposed the adaptive MCMC for AVMs that learns parameters

of proposal distributions and auxiliary distributions simultaneously while AVMs

run, and proved convergence theorems that give weak sufficient conditions for

convergence.

We also proved the convergence of the adaptive PT algorithm and the adaptive

GVS by applying the convergence theorem of the adaptive MCMC for AVMs.
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Chapter 6

Conclusion

This dissertation proposed the adaptive MCMC algorithms for the PT algorithm

and the GVS, and generalized them to the adaptive MCMC algorithms for AVMs.

We also proved the convergence theorems of the proposed algorithms.

Firstly, we extended the PT algorithm to the adaptive algorithm that adapts

its parameters while it runs, and showed that the extended algorithm can obtain

the proper parameters via numerical experiments for Bayesian estimation.

Secondly, we extended the GVS to the adaptive algorithm that adapts its

parameters on the fly, and confirmed that the extended algorithm is more efficient

than the GVS with the parameters obtained by the conventional method through

the numerical experiments for Bayesian Variable Selection.

Finally, we generalized the proposed algorithms to the adaptive MCMC for

general AVMs that adapts the parameters of the AVMs on the fly, and proved

its convergence theorems that have mild sufficient conditions for the convergence.

We also proved the convergence of the adaptive PT algorithm and the adaptive

GVS by applying the convergence theorem of the adaptive MCMC for AVMs.

1. Discussion

The learning coefficients aln, bn in the adaptive PT algorithm and h(·), u(·, ·)
in the adaptive GVS control convergence speeds of the corresponding updating

parameters. As the convergence speeds of the learning coefficients get faster, the

convergence speeds of the updating parameters also get faster but the variances of
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the converged parameters increase. Thus the learning coefficients should converge

with moderate speed. However, since our adaptive algorithms are robust for

the convergence speeds of the learning coefficients, we don’t need to tune the

learning coefficients in detail. Practically, the adaptive PT algorithm with the

same learning coefficients performed well in the three numerical experiments.

Also the adaptive GVS was more efficient than the GVS in the two numerical

experiments in spite of using the same learning coefficients.

Users of the PT algorithm have needed to carefully tune the inverse tempera-

tures, proposal variances and the number of inverse temperatures through many

preliminary runs so far. The adaptive PT algorithm enables us to obtain the

appropriate parameters automatically while the algorithm runs. Therefore the

computational and artificial cost of the parameter choice of the PT algorithm is

removed and the users are released from the tuning work.

Conventionally the parameters of the GVS are determined by using the sam-

ples from the posterior of the full model, and the proper parameters are mostly

not obtained. The adaptive GVS can update its parameters to more appropriate

values than those from the conventional method on the fly, and thus allows to

generate samples more efficiently than the GVS with the parameters obtained by

the conventional method.

The adaptive MCMC for AVMs and its convergence theorems provide guides

of the extensions of other AVMs such as cluster Monte Carlo methods to the adap-

tive algorithms. The convergence theorems give knowledge that how parameter-

update algorithms are able to be induced to the AVMs. The convergence theorems

also show that various algorithms that update the parameters are available to the

adaptive MCMC for AVMs.

2. Future works

Although we discussed the PT algorithm in a real space so far, we consider the

idea of adaptation is applicable to that in a discrete space.

The GVS will be efficient for the Bayesian variable selection of more complex

model such as a structural equation model and a non-Gaussian graphical model,

so that we will apply the adaptive GVS to these models.
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We will apply our adaptive framework of AVMs to other AVMs such as a

partial decoupling method, which is one of the cluster Monte Carlo methods, and

so on.
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りがとうございました．また，大規模システム管理研究室の学生室の一角を数理
情報学研究室に提供して頂きました．そこで一年間作業させて頂きましたが，非
常に快適な環境でストレスなく集中して研究することができました．大変感謝し
ております．
松本裕二先生には大変お忙しいなか私の副指導教官を引き受けて頂き誠にあ

りがとうございました．公聴会，最終審査でのご指摘ありがとうございました．
また，公募申請における照会可能者に指定させて頂くことを快諾して頂きました．
大変感謝しております．
渡辺一帆先生には研究に限らず学生生活も含めた様々な面で相談に乗って頂い

て助けて頂きました．まず研究においては，機械学習についての議論，セミナー，
学会の発表練習，予稿集や論文など様々な原稿の添削など様々な指導ありがとう
ございました．また，学生生活における様々な問題について相談に乗って頂き，
何度も精神的に救われました．本当にありがとうございました．
竹之内高志先生には主にセミナー発表時において鋭い意見を沢山いただいた

おかげで，多様な視点から自分の研究を省みることができました．誠にありがと
うございました．
柴田智広先生，作村祐一先生，久保孝富先生にはセミナーや論文紹介などに

おいてアドバイスを頂きました．誠にありがとうございました．
大規模システム管理研究室事務補佐員の橋本洋子さんには私が他研究室の学

生であるにも関わらず，設備や騒音問題など作業環境の改善に取り組んで頂きま
した．誠にありがとうございました．数理情報学研究室秘書の谷本史さん，足立
敏美さんには出張申請などの書類手続きをはじめ様々な面で学生生活をサポート
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していただき，誠にありがとうございました．数理情報学研究室の学生の皆様に
はしばしば食事に付き合って頂きありがとうございました．大変楽しい時を過ご
すことができました．また，研究設備や学生生活などについて相談に乗っていた
だきありがとうございました．
最後に博士後期課程での研究生活を応援してくれた家族に心から感謝申し上

げます．
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Appendix

A. Proof of Theorem 1

Let ϵ > 0, and choose N ∈ N as in condition (a). From condition (b) and the

coupling argument in the proof of Theorem 1 of Roberts and Rosenthal (2007),

the following result holds.

There exists n∗ ∈ N large enough so that for K > n∗ + N , there exists a

second chain {x′(n), y′(n)}Kn=K−N , such that (x′(K−N), y′(K−N)) = (x(K−N), y(K−N)),

(x′(n+1), y′(n+1)) ∼ Pθ(K−N)((x′(n), y′(n)), dx, dy) for n = K − N, ...,K − 1, and

P (x(K) ̸= x′(K)) ≤ 2ϵ.

Then it follows that

||P (x(K) ∈ dx)− P (x′(K) ∈ dx)|| ≤ 2ϵ, (6.1)

where P (x(K) ∈ dx) denotes the distribution of x(K), because of ||P (y ∈ dx) −
P (z ∈ dx)|| ≤ P (y ̸= z).

On the other hand, from the condition (a), for all AX ∈ FX , we have

ϵ ≥
∣∣E[PN

θ(K−N)((x
(K−N), y(K−N)), AX )− π(AX )]

∣∣
=
∣∣P (x′(K) ∈ AX )− π(AX )

∣∣ .
That is,

||P (x′(K) ∈ dx)− π(dx)|| ≤ ϵ. (6.2)

From inequality (6.1) and (6.2), we have

||P (x(K) ∈ dx)− π(dx)|| ≤ 3ϵ. (6.3)

Since K ≥ n∗ +N is arbitrary, the algorithm is ergodic.

B. Proof of Theorem 4

We prove the sufficient conditions of convergence in Theorem 2 are satisfied.

Firstly, we prove the condition (a’) holds.
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Let Borel σ-algebra on Rp be B(Rp). For x ∈ SL, γ ∈ ΓpL, t ∈ T L and

B = B1×B2× · · ·×BL, Bl ∈ B(S), the transition kernel of the PT algorithm is

Kγ,t(x,B) = αr

L∏
l=1

Pγl,tl(xl, Bl) + (1− αr)
L∑
l=2

ςlkl,l−1(x,B), (6.4)

where 0 ≤ ςl ≤ 1,
∑L

l=2 ςl = 1, Pγl,tl(xl, dxl) and kl,l−1(x, dx
′) are the Metropolis

transition kernel for πtl(dxl) and the transition kernel of the exchange process of

xl and xl−1, respectively.

By condition (s1), we have d ≡ supx∈S,t∈T πt(x) <∞. By the compactness of

S and condition (s2), we have also δ ≡ infx,x′∈S,γ∈Γp qγ(x, x
′) > 0.

For x ∈ S and t ∈ T , denote Rx,t =
{
y ∈ S|πt(y)

πt(x)
≤ 1
}
. For xl ∈ S, Bl ∈ B(S),

tl ∈ T and γl ∈ Γ, we have

Pγl,tl(xl, Bl)

=

∫
Bl

qγl(xl, x
′
l)min

(
1,

πtl(x
′
l)

πtl(xl)

)
dx′

l

+ 1{Bl}(xl)

∫
S

qγl(xl, x̃l)

{
1−min

(
1,

πtl(x̃l)

πtl(xl)

)}
dx̃l

≥
∫
Bl∩Rxl,tl

qγl(xl, x
′
l)
πtl(x

′
l)

πtl(xl)
dx′

l +

∫
Bl∩Rc

xl,tl

qγl(xl, x
′
l)dx

′
l

≥ δ

d

∫
Bl∩Rxl,tl

πtl(x
′
l)dx

′
l +

δ

d

∫
Bl∩Rc

xl,tl

πtl(x
′
l)dx

′
l

=
δ

d
πtl(Bl).

From Eq. (6.4), this inequality leads to

Kγ,t(x,B) ≥ αr

L∏
l=1

Pγl,tl(xl, Bl)

≥ αr

L∏
l=1

δ

d
πtl(Bl)

= αr
δL

dL
πt(B), (6.5)

where πt(B) =
∏L

l=1 πtl(Bl) is a probability measure on SL. Since the inequality

(6.5) holds for all B ∈ B(SL), the condition (a’)(i) follows.
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Let 0 < τ < 1, V (x) = 1 if x ∈ SL, and V (x) = 1/τ otherwise, and b = 1− τ .

Then we have

(Kγ,tV )(x) ≤ τV (x) + b1{SL}(x), ∀x ∈ RpL. (6.6)

This inequality implies that the condition (a’)(ii) is satisfied. Also we have

E[V (x(0), y(0))] ≤ 1/τ <∞.

From Eq.s (3.2) and (3.3), it follows that t
(n+1)
l − t

(n)
l → 0 almost sure and

γ
(n+1)
l − γ

(n)
l → 0 as n→∞. The minimum inverse temperature decision process

changes the value of ςl only finite times. Thus, the condition (b) in Theorem 1

holds.

The proof is complete.
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