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Abstract

The Reinforcement learning (RL) approach to Machine Learning is a tech-

nique to learn how to make decisions in order to achieve a desired goal.

The model does not include the presence of a supervisor. The agent must

learn by trial and error. This is done by taking actions and observing their

consequences in the form of a reward (or cost) signal. Such problems are

usually formalized as a Markov decision process (MDP). The mathematical

framework of MDPs relies on the Bellman equation and is very general,

but finding solutions can be inefficient because of the explosion of possible

future states.

The framework of linearly solvable Markov decision processes (LMDP) greatly

simplifies reinforcement learning. By attending specific conditions the Bell-

man equation can be made linear, and it becomes possible to obtain so-

lutions more efficiently. However, it is necessary to previously know the

passive dynamics of the system (i.e. the behavior of the system in the

absence of controls) which is crucial in the model, but unknown in general.

A method to calculate such passive dynamics distribution (by performing

continuous embedding of known traditional MDPs) exists, but requires the

previous knowledge of all transition distributions and all immediate costs.

Those are usually not known beforehand in temporal difference methods.

Such methods require the agent to explore the environment and learn by

trial-and-error.

Here we propose a method to estimate the passive dynamics and state costs

of a given system. As a consequence, such system can then be modeled as

an LMDP. The method can also be combined with a temporal difference

algorithm of the LMDP framework (called Z learning). This enables the

direct application of Z learning without the need for explicit knowledge of



passive dynamics nor state costs beforehand. The only required knowledge

about the passive dynamics distribution of the system is which states can

and which cannot be visited starting from each state. And the only remain-

ing limitation for the direct application to real problems (with symbolic

actions) is the assumption that the agent can impose any desired transi-

tion distribution it wants. Such assumption is an important premise of the

LMDPs framework.

During the application of the method, new constraints regarding the passive

dynamics and state costs are successively incorporated in the model from

observed information of immediate costs. The resulting algorithm properly

estimates the desirability and optimal cost-to-go functions, as well as the

passive dynamics and state costs, when solving the resulting constrained

optimization problem. The convergence speed of the new algorithm is not

significantly affected when compared to pure Z learning. This represents an

important step for direct application of the framework of LMDPs framework

in a real temporal difference approach.
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Reinforcement learning, Markov decision process, Linearly solvable Markov
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1

Introduction

1.1 Background

Reinforcement learning is a technique to learn from interactions with the environment,

without the presence of a supervisor (1), (2), (3). It is a very versatile and general

technique, which can be applied to many different problems. Some examples of ap-

plications include: trajectory optimization (4), (5); robotics and control (6), (7), (8);

mobile communication (9); image recognition (10), (11), e-commerce (12); and even

medical treatment (13).

The model does not include the presence of a supervisor. A feedback signal from

the environment is given in the form of a cost signal. In such applications the objec-

tive is to find optimal actions to take, so as to reach a given terminal condition while

accumulating the minimum cost possible. The decisions of actions to take cannot be

based only on the immediate costs, but must take into account all future possibilities.

The optimal cost-to-go function is defined as the expected value of the total cumulative

cost starting at a state and optimally choosing actions thereafter. Such function can

be used for the greedy computation of optimal actions, and it can be estimated or cal-

culated by using the Bellman equation. However, the solution of the Bellman equation

in traditional MDPs can be computationally inefficient, because the number of future

possibilities grows exponentially with time (1), (14).

Under specific conditions, the Bellman equation of MDPs is made linear, and so-

lutions can be obtained more efficiently than in traditional MDPs. MDPs within this

class are called linearly solvable Markov decision processes (LMDPs). This framework

1



1. INTRODUCTION

has many benefits, including faster convergence of temporal difference methods, and

easier computation of solutions in closed form (15). Another benefit is the possibility

of combining existing control policies (16), which has already been used for charac-

ter control for animation (17). This framework has been proposed after an insight of

the duality between action and perception (18), obtained during theoretical and ex-

perimental research on human movement control (19), (20). Other applications of the

framework of LMDPs include inverse optimal control (21), and estimating trajectories

of optimally-controlled stochastic systems (22).

In order to model a given system as an LMDP, it is necessary to know the passive

dynamics transition distribution of the system. This distribution corresponds to the

behavior of the system in the absence of controls. In many cases this transition dis-

tribution is assumed to be “random walk” (equal transition probability to all adjacent

states) (14), (23). However, the passive dynamics distribution of an arbitrary system

is not known in general.

Z learning is a temporal difference method which can estimate the optimal cost-to-go

function, and it takes advantage of the LMDPs framework to achieve faster convergence

than traditional methods such as Q learning (1), (14), (23). There exist two ways to

apply Z learning: one is by following the passive dynamics as a policy, and the other

is by following another policy such as “greedy policy” (the policy which seems optimal

given the currently estimated knowledge about the system). In both cases, it is crucial

that all states keep being visited for the method to work. In the first case, the passive

dynamics needs to be followed but it does not need to be known. However, the passive

dynamics distribution might not be a policy which has characteristics of exploration,

such as “random walk”. In such cases it might be difficult to keep the estimates being

updated for all states. In the second case, the passive dynamics needs to be known

beforehand for the application of the method. Also, immediate costs in LMDPs are

made up of two addends, the state cost and the action cost. If the state costs cannot

be measured separately, those need to be known beforehand as well.

The framework of LMDPs has already been criticized for dealing with stochastic

optimal control by using discrete action-state spaces, and treating them as MDPs. This

would make the framework difficult to apply to high dimensional robotic systems (24).

It has also been criticized for imposing strong restrictions on the structure of the cost

function, and therefore also restricting the solution to special cases of optimal control
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1.2 Motivation

problems, and it is necessary to learn the value function in order to obtain solutions (24).

Performance limitations have also been discussed in (25).

However, the fact that the Bellman equation is made linear is a very interesting ben-

efit of LMDPs. Also, the optimal policy can be obtained directly once the desirability

function z is obtained (14). Such framework can be especially useful if the Z learning

algorithm becomes applicable with less restrictions and in a practical way.

The passive dynamics and state costs can be calculated by using a method for con-

tinuous embedding of traditional MDPs (14). Given a traditional MDP, such method

determines the passive dynamics and all state costs of an LMDP. This LMDP can then

be used to obtain an approximately optimal solution to the traditional MDP. However,

in order to use such application all immediate costs of the traditional MDP must be

known beforehand. These costs are not necessarily known in temporal difference ap-

proaches, where the agent needs to explore the environment in order to observe the

immediate costs.

1.2 Motivation

The motivation of the present work is to propose a method to directly apply a temporal

difference method (Z learning) in a system modeled as an LMDP, without the previous

knowledge of the passive dynamics transition distributions nor state costs. If such

method is successfully created, it becomes possible to apply the temporal difference

approach in the LMDP framework (Z learning) to a given system without the need for

previous knowledge of state costs, immediate costs nor passive dynamics, and without

the need to follow the passive dynamics while exploring the environment.

1.3 Outline of the thesis

In this thesis, we propose such method which estimates the passive dynamics and

state costs of the system during the execution of Z learning, while also estimating the

desirability function (and consequently the optimal cost-to-go function). By exploring

the environment, the learning agent observes immediate costs information, which is

included in the model as constraints, which are used to update estimates of the passive

dynamics distributions and state costs. As long as the correct values are unknown, these

3



1. INTRODUCTION

estimates are used in the estimation of the desirability function. As a consequence, there

is no need to know all immediate costs beforehand, nor the need to follow the passive

dynamics while exploring the environment. This represents an important breakthrough

for the application of the framework of LMDPs in a temporal difference approach. In

Chapter 2, we review the most important facts about the framework of LMDPs. In

Chapter 3 we propose a model of passive dynamics with a simple model of inertia

and collisions, for discrete state-space two-dimensional navigation problems. We show

experiments in which the Z learning algorithm converges to the correct solution using

such passive dynamics distribution in the model. In Chapter 4 we show the main idea

of our method to calculate the passive dynamics and state costs by creating and solving

systems of linear equations from measurements of immediate costs. In Chapter 5 we

show how to integrate such method with Z learning in order to estimate the passive

dynamics and state costs while also estimating the desirability and optimal cost-to-go.

In Chapter 6 we present concluding remarks.

4



2

The Framework of Linearly

Solvable Markov Decision

Processes

The framework of linearly solvable Markov decision processes greatly simplifies rein-

forcement learning. When specific conditions are met, the Bellman equation is made

linear and solutions can be obtained more efficiently. In this section we briefly present

the framework of traditional Markov decision process (MDPs), and the framework of

linearly solvable Markov decision processes (LMDPs), both formulated for discrete time

problems. We also explain how the framework of LMDPs differs from traditional MDPs.

2.1 Traditional Markov Decision Processes

Let us denote the state of the environment in a discrete time instant t as xt. This state

signal is said to have the “Markov property” if it retains all relevant information:

Pr (xt+1|xt) = Pr (xt+1|xt, xt−1...) (2.1)

In other words, this means that the history of past states has no influence in the

future and can be disregarded. A reinforcement learning task that satisfies the Markov

property is called a Markov decision process (MDP) (1).

Problems of choosing optimal actions are often formalized as a finite MDP with:

a set of possible states X, a set of possible actions U , state transition probabilities

5
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DECISION PROCESSES

p(x′|x, u) (from current state x to state x′ when action u is taken), and immediate cost

`(x, u) for being at state x and taking action u.

The goal of the agent is to choose actions in order to make state transitions

until a terminal or goal state is reached, with minimum incurred total cumulative

cost (1), (26), (14). The total cumulative cost is defined as the sum of all immediate

costs incurred from the start until reaching a terminal state. The agent knows what is

the current perceived state x and the available actions u ε U available at that state,

and once an action u is taken, the immediate incurred cost `(x, u) is observed, as well

as the newly occupied state x′.

The optimal actions cannot be obtained by greedy optimization of the immediate

costs. All future possibilities must also be taken into account. An important quantity

for achieving this is the optimal cost-to-go function of a state, denoted v(x). It is

defined as the statistical expectation of the total cost that the agent will accumulate

starting from that state, and following the optimal policy thereafter. Such function can

be used for greedy computation of optimal actions.

The task of calculating or estimating the optimal cost-to-go function v is not a

trivial one. What makes this task possible is the Bellman equation (1), (14):

v (x) = min
u

{
` (x, u) + Ex′∼p(·|x,u)

[
v
(
x′
)]}

(2.2)

where

Ex′∼p(·|x,u)
[
v
(
x′
)]
≡
∑
x′

p
(
x′|x, u

)
v
(
x′
)

(2.3)

is the statistical expectation of the optimal cost-to-go function at the future state x′.

The optimal cost-to-go function is the only solution to its Bellman equation.

If all possible immediate costs `(x, u) and transition probabilities p(x′|x, u) are

known for all possible current and future states x and x′ and actions u, the solution

to the Bellman equation can be obtained by Dynamic Programming (DP). However,

this can be time consuming due to the explosion of unknown variables. Indeed, the

number of future states grows exponentially with time. When all possible immediate

costs `(x, u) and transition probabilities p(x′|x, u) are not known, temporal difference

methods (such as TD learning or Q learning (1), (14), (23)) can be used to estimate the

value function by exploring the environment and successively updating estimates. Such

6



2.2 Linearly Solvable Markov Decision Processes

estimates are updated based on the observed immediate costs and previous estimates.

In a temporal difference approach, the immediate costs `(x, u) and state transition

distributions p(x′|x, u) are not known by the agent beforehand, and the agent needs to

learn by trial-and-error.

2.2 Linearly Solvable Markov Decision Processes

By attending specific conditions, the Bellman equation of an MDP becomes linear,

resulting in a linearly-solvable Markov decision process (LMDP). Its solution can be

obtained analytically as a solution to an eigenvector problem. The LMDPs framework

also has a temporal difference algorithm (called Z learning), which is more efficient than

traditional temporal difference methods (such as Q learning and SARSA). We review

these facts according to (14) (23).

2.2.1 Sufficient Conditions for Obtaining an LMDP

In the original MDP framework, the agent takes symbolic actions u ε U . The proba-

bilities of state transitions from the current state x ε X to a future state x′εX depend

on the action u taken at state x (denoted as p(x′|x, u)).

One condition to obtain an LMDP is that the agent needs to be able to specify

the transition probabilities directly. In other words, there are no symbolic actions u

nor the set of actions U in the model. Instead, the agent can directly specify the

probability of transition from the current state x ε X to any possible future state

x′ ε X. These probabilities will be represented by using the letter u. Controlled

transition distributions will simply be represented as u(x′|x).

Another condition is that the immediate cost incurred in a state transition must be

of the form:

` (x, u) = q (x) + KL (u (.|x) ‖pd (.|x)) (2.4)

where q(x) is called “state cost” (which depends only on the argument state, and

indicates how undesirable a given state is), and

KL (u (·|x) ‖pd (·|x)) ≡ Ex′∼u(·|x)

[
log

u (x′|x)

pd (x′|x)

]
(2.5)

7
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is the Kullback Leibler (KL) divergence between the controlled state transition dis-

tribution u(x′|x) and the “passive dynamics” pd(x
′|x) of the system. The latter is a

transition distribution that corresponds to the behavior of the system in the absence

of controls. The KL divergence measures how “different” these distributions are from

each another, and is called “action cost”. It represents the fact that the more different

the desired behavior is from the default behavior (or the more the controlled dynamics

are “pushing” the system away from its default behavior), the higher the cost will be.

As a consequence of the definition of the action cost, u(x′|x) = 0 is required whenever

pd(x
′|x) = 0 in order to keep the KL divergence well-defined. This constraint also adds

the benefit of avoiding impossible state transitions (such as a sudden “jump” from any

current state to a goal state).

2.2.2 The Linear Bellman Equation

When the previously mentioned conditions are met, it can be shown that the Bellman

equation (2.2) can be reduced to:

z(x) = exp (−q (x))G [z] (x) (2.6)

where

z (x) ≡ exp (−v (x)) (2.7)

is called the “desirability function” of a state, and

G [z] (x) ≡
∑
x′

pd
(
x′|x

)
z
(
x′
)

(2.8)

is a linear operator, which corresponds to the expected desirability of the future state

when following the passive dynamics. It is important to notice that this new equa-

tion (2.6) is linear in z. It can then be shown that the optimal controlled transition

distribution u∗ is then given by:

u∗ (x) =
pd (x′|x) z (x′)∑
x′ [pd (x′|x) z (x′)]

(2.9)

When the passive dynamics distribution pd(x
′|x) and state costs q(x) for all possible

states are known, then the optimal cost-to-go function for all states can be obtained

by solving the Bellman equation. In traditional MDPs this can be done with dynamic

8



2.2 Linearly Solvable Markov Decision Processes

programming. In the framework of LMDPs this problem becomes an eigenvetor prob-

lem, and therefore is simpler to solve. Equation (2.6) can be written in vector notation.

This is done by enumerating the states from 1 to n, representing z(x) and q(x) as

column vectors z and q, and representing p(x′|x) as a matrix P (where the row-index

corresponds to the current state x and the column-index corresponds to future state

x′). Then the linear Bellman equation (2.6) becomes:

z = Mz (2.10)

where

M = diag (exp (−q))P (2.11)

where “diag” transforms vectors into diagonal matrices. By solving this eigenvector

problem the desirability function z(x) can be obtained for all states, and consequently

the optimal cost-to-go function v (equation 2.7). This is an efficient method, but

its application depends on the previous knowledge of all state costs, as well as the

complete knowledge of the passive dynamics of the system. The LMDPs class has also

been extended to work with Rényi divergences, a more general class of divergences

of which the KL divergences are a special case (27). By changing the value of the

continuous parameter α the behavior of the system can also be tuned to be more risk

averse (α > 0) or risk seeking (α < 0). In the present work we will only use

KL divergences, which are the case of Rényi divergences in which α → 0.

2.2.3 Z Learning

When the state costs and passive dynamics are not all necessarily known, the agent

must explore the environment in order to observe unknown costs, and learn by trial-

and-error. The optimal cost-to-go is then estimated by a temporal difference method.

Z learning is a temporal difference method which takes advantage of the class of LMDPs

to achieve faster convergence than traditional reinforcement learning methods (such

as Q learning (1)). As in traditional temporal difference methods, initial estimates

are successively updated until convergence is achieved. By estimating the desirability

function z, the optimal cost-to-go v can be obtained (equation 2.7).

9
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If the agent is simply following the passive dynamics transition distribution during

the execution of the algorithm, the Z learning update formula is as follows:

znew (xt)←(1−ηt) zcur (xt)+ηtexp (−qt) zcur (xt+1) (2.12)

where znew(xt) is the new estimate of the desirability z at the current state xt, zcur(xt)

is the current estimate of z(xt), zcur(xt+1) is the current estimate of the desirability z

at the future state xt+1, qt is the state cost of the current state xt, and ηt is a learning

rate which decreases over time.

For the application of this kind of Z learning the passive dynamics transition prob-

abilities do not need to be known, but the agent needs to follow the passive dynamics

during the process. The KL divergence will always be null, and all observed costs will

correspond to the state costs q. Therefore, there is no need to know these costs before-

hand. For such a method to work, all states must keep being visited, and desirability

z(x) estimates must keep being updated for all x. If the passive dynamics distribution

is “random walk” (i.e. equal transition probabilities to all adjacent states) or another

distribution with characteristic of exploration, then the application of such a method

should not be a problem. However, this method might be difficult to apply in practice

if the passive dynamics distribution does not explore the environment.

It is possible to apply Z learning following a controlled transition distribution û

(i.e. different than passive dynamics), but then importance sampling is required: the

last term in equation (2.12) needs to be multiplied by pd(xt+1|xt)/û(xt+1|xt). In the

case of “greedy Z learning”, û is the policy which appears optimal given the current

estimates of the desirability function ẑ (according to equation (3.2)). It is important to

notice that, in order to apply this method, it is necessary to know the passive dynamics

distribution beforehand. Also, the measured immediate costs ` in the process will no

longer correspond to the state costs q (because the action costs will no longer be null),

so the state costs q(x) must be known for all states x beforehand, or those must be

measured or estimated separately.

2.3 Final Considerations of This Chapter

The framework of LMDPs has many advantages to traditional MDPs because the Bell-

man equation becomes linear. However, its direct application in realistic problems faces

10
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some limitations. This is especially true for temporal difference applications. The as-

sumption that the agent can impose any desired transition distribution is very strong,

as well as the assumption that the passive dynamics transition distributions are known.

If all immediate costs and transition distributions of a traditional MDP are known,

it can be modelled as an LMDP. A method for continuous embedding of traditional

MDPs exists, and the approximation has been found to be very accurate in prac-

tice (14). However, in temporal difference methods the immediate costs and transition

distribution are not all previously known in general.

The proposal of methods to deal with the assumption that the agent can impose

any desired transition distribution remains to be developed. The main contribution of

this thesis is the proposal of a method to estimate the passive dynamics and state costs

during the execution of Z learning (the temporal difference method of the framework

of LMDPs). As a consequence Z learning can be applied by following a controlled

policy without the need for knowing all immediate costs nor passive dynamics transition

probabilities beforehand.

In the next chapter we propose a simple model of passive dynamics distributions

which is different than random walk, and supports inertia and collisions. Such passive

dynamics distributions are modelled in a two-dimensional grid world. We also show

results of experiments in which Z learning converges to the correct solutions using this

passive dynamics model instead of random walk.
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2. THE FRAMEWORK OF LINEARLY SOLVABLE MARKOV
DECISION PROCESSES
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3

Modeling Inertia and Collisions

in the Passive Dynamics

Distribution

Previous work has shown results of temporal difference learning experiments, using

passive dynamics distributions which corresponded to “random walk” (23) (14). This

distribution corresponds to equal probability of transition to all possible future states.

However, in the LMDPs model there are no theoretical limitations to the passive dy-

namics distributions. Therefore, in this section we present a different passive dynamics

model, which includes a simple model of inertia and collisions. Such model is more re-

alistic than “random walk”, and it also has less characteristic of exploration. We then

perform experiments with the proposed environment, and observe that the temporal

difference learning algorithm of the LMDPs framework (Z learning) still converges when

using the proposed passive dynamics model. The main concept and related computa-

tional experiments can be found in (5).

Let us consider a two-dimensional grid world navigation problem, such as the one

in figure 3.1. The goal is to find the goal position while avoiding the obstacles along

the way.

13



3. MODELING INERTIA AND COLLISIONS IN THE PASSIVE
DYNAMICS DISTRIBUTION

Figure 3.1: A 10× 10 two-dimensional grid world.

Figure 3.2: A simple inertia model (hp = 0.9).

3.1 The Passive Dynamics Model

3.1.1 Modeling States as Position Pairs

Initially, a few difficulties have emerged when modeling the state signal in the grid

world. If we the state is modeled simply as the position of the learning agent, then

in order to model inertia, it would at least be necessary to know the current and the

previous states of the agent. This would violate the “Markov property” . Also, in order

to model collisions with obstacles and walls, the agent would originally need to be able

to take symbolic actions of movement in the direction of the wall or obstacle, but there

are no symbolic actions in the framework of LMDPs.

In order to overcome the previously mentioned difficulties, the state signal was

modeled to include information of position pairs: the current and the previous position

of the agent.

A simple model of inertia was created by assigning a “highest probability” value

(denoted hp) to the state which is in the same trajectory as the last transition (i.e.

14



3.2 Experiments with the Environment

Figure 3.3: A simple model for collisions, with a reflexive wall and with an absorptive

wall (hp = 0.9).

the transition from the previous position to the current position). The remaining

(1− hp) probability is equally shared by the remaining adjacent positions. This model

is illustrated in figure 3.2.

When the position of the agent is adjacent to a wall or obstacle, and the trajectory

of the last transition goes in the direction of the wall or obstacle, then the position that

receives the highest probability value “hp” is the most likely position after a collision

with this wall or obstacle, and the remaining (1− hp) probability is equally shared by

the remaining adjacent states. Two types of collisions were modeled: reflexive collisions

(which reflect the component which is normal to the wall or obstacle), and absorptive

collisions (which absorb the component which is normal to the wall). This model is

illustrated in figure 3.3.

3.2 Experiments with the Environment

Experiments were performed to observe the convergence of Z learning in the grid world

environment illustrated in figure 3.1, when the passive dynamics of the system differs

from random walk, but instead corresponds to our model (which includes inertia and

collisions).

Since the original formulation of Z learning (23), (14) does not require that the

passive dynamics distribution be equal to “random walk”, it is expected that the ap-

proximation errors of the optimal cost-to-go function estimates v̂ consistently decrease

as the simulation steps increase.
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3. MODELING INERTIA AND COLLISIONS IN THE PASSIVE
DYNAMICS DISTRIBUTION

In the experiments, at each time step the agent can only move to an adjacent

position to the current position. The agent is not allowed to move to an obstacle

position. Every state xng which has a current position different to the goal position pg

was modeled to have state cost q(xng) = 1. Every state xg which has current position

equal to the goal position was modeled to have state cost q(xg) = 0. In all experiments

hp = 0.9.

Every experiment consisted of episodes. When an episode starts, the agents occupies

a random initial position pi, which is different from the goal position. The initial state

corresponds to the state which has the current and previous positions equal to pi. When

the agent reaches the goal position, the current state xg has current position equal to

xg, but previous position different from xg. The agent then automatically stops at

the goal position, so at the next time step the current state will be a state in which

both the current and previous position correspond to pg, denoted xG. A new episode

automatically begins at the next time step. Each experiment lasted for a predefined

number of time steps.

The problem of obtaining the optimal cost-to-go function v of the above described

environment was first solved both analytically, using the linear Bellman equation (equa-

tion 2.6), before applying Z learning. Therefore, the correct values of v are previously

known before the execution of Z learning, and the quality of the current estimates of v

obtained by Z learning can be measured by comparing those estimates with the correct

values. The error of the v estimates is calculated at each step using the formula:

Error of v̂ =

∑N
i=1 |v̂ (xi)− v∗ (xi)|∑N

i=1 v
∗ (xi)

(3.1)

where xi represents the ith state; N is the total number of states; v̂(x) is the current

approximation of the optimal cost-to-go function (obtained by taking −log(ẑ(x)) where

ẑ is the current estimate of the desirability function) and v∗(x) is the optimal cost-to-go

function obtained analytically.

Two different passive dynamics distributions were used in the experiments. One

corresponded to a reflexive environment, and the other corresponded to an absorp-

tive environment. These environments differ with respect to their passive dynamics

distributions regarding collisions (as shown previously).

During the experiments, two types of Z learning were used. In one, the agent

explores the environment by following the passive dynamics. In the other, the agent
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3.2 Experiments with the Environment

Figure 3.4: Z learning approximation errors: estimated optimal cost-to-go v. The passive

dynamics corresponds to reflexive walls and obstacles (vertical axis in log scale).

Figure 3.5: Z learning approximation errors: estimated optimal cost-to-go v. The passive

dynamics corresponds to absorptive walls and obstacles (vertical axis in log scale).

explores the environment by following the greedy policy (14). Such policy is defined as

the policy which appears optimal given the current estimates of the desirability function

ẑ, and can be calculated as:

û∗
(
x′|x

)
=

pd (x′|x) ẑ (x′)∑
x′ [pd (x′|x) ẑ (x′)]

(3.2)

where û∗ (x′|x) represents the probability to go to state x′ from state x according to

the greedy policy. As seen in (23), (14), it is expected that Z learning following the

greedy policy converges faster than when following the passive dynamics.

In all simulations the learning rate ηt decays obeying ηt = c/(c + t) where t is the

current simulation step and c is a constant value (for “greedy Z learning” c = 10, 000

was used, and for “passive Z learning” c = 30, 000 was used).

The results of the experiments can be seen in figures 3.4 and 3.5. As expected,

the errors of the estimates of the optimal cost to go function v̂ consistently reduce as

the simulation proceeds. In previous related work (23) (14) the convergence is slower

when following the passive dynamics then when following the greedy policy. In our

experiments the same fact could be observed.
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3. MODELING INERTIA AND COLLISIONS IN THE PASSIVE
DYNAMICS DISTRIBUTION

It can be observed that the framework of LMDPs and Z learning are consistent

for working with different passive dynamics distributions, which can be different than

“random walk”.

3.3 Final Considerations of This Chapter

In this chapter we have proposed a passive dynamics distribution which includes a

simple model of inertia and collisions. Such model is more realistic than “random

walk”, but has less characteristic of exploration.

We have presented experiments which have shown that the Z learning method can

be used with such passive dynamics distribution, and converges to the correct values.

In the next chapters we will discuss the main idea of our method to calculate passive

dynamics probabilities and states costs from measured costs. After that we will show

how this method can be integrated with Z learning.
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4

Calculating the passive dynamics

distribution and state costs from

measured costs

In this chapter we propose a method to calculate the passive dynamics of a given system

from measurements of action costs. Later, the method is extended in order to calculate

both the passive dynamics and state costs of a given system from measured immediate

costs.

In our proposed approach, every possible transition starting from each state to each

possible future state is considered as an unknown variable.

Linear equations are created and gathered from measurements of the action cost

or the immediate cost, using the action cost equation or the immediate cost equation.

Such systems are then solved and the correct values of the passive dynamics transition

probabilities are calculated. The main concept and related computational experiments

can be found in (28), (29), (30).

4.1 Calculating the Passive Dynamics from Measured Ac-

tion Costs

Let us consider a discrete state space with cardinality |X| = N (i.e. there are N possible

states), such as the one represented in figure 4.1. Consider a given arbitrary transition

distribution u1 which is followed, and its transition probabilities u1(xj |xi) are all known
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4. CALCULATING THE PASSIVE DYNAMICS DISTRIBUTION AND
STATE COSTS FROM MEASURED COSTS

Figure 4.1: A state space with N possible states (and consequently N2 possible transi-

tions.)

for every possible i and j. No restrictions are assumed except that for all cases in which

pd(xj |xi) = 0 (i, j ε N|1 ≤ i ≤ N, 1 ≤ j ≤ N) then u1(xj |xi) = 0 as well. Let

us denote La(u1, xi) the action cost incurred when following the controlled transition

distribution u1 from an arbitrary state xi. Such cost is given by the rightmost addend

of equation (2.4), which is the KL divergence from the controlled dynamics distribution

u1(·|xi) to the passive dynamics distribution pd(·|xi), both starting from state xi. It

can be written as:

La (u1, xi) = KL (u1 (·|xi) ‖pd (·|xi))

= u1 (x1|xi) log

(
u1 (x1|xi)
pd (x1|xi)

)
+ · · · (4.1)

+ u1 (xN |xi) log

(
u1 (xN |xi)
pd (xN |xi)

)
Let us assume that the action cost La(u1, xi) can be measured, and such measured value

is denoted as A1i. If we apply the logarithm quotient identity log(a)
log(b) = log(a) − log(b)

to equation (4.1), we have a linear equation in the variables log (pd(xj |xi)):

A1i = u1 (x1|xi) logu1 (x1|xi)− u1 (x1|xi) logpd (x1|xi)

+ · · ·+ u1 (xN |xi) logu1 (xN |xi)− u1 (xN |xi) logpd (xN |xi) (4.2)

Rearranging the terms:

N∑
j=1

u1(xj |xi)logpd(xj |xi)=

N∑
j=1

u1(xj |xi)logu1(xj |xi)−A1i (4.3)

it is possible to produce up to N equations by using the controlled distribution u1,

starting from each of the N possible existing states xi and measuring the action cost

La(u1, xi) incurred when making a transition.
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4.1 Calculating the Passive Dynamics from Measured Action Costs

Repeating the procedure forN different arbitrary controlled distributions uk (k εN|1 ≤
k ≤ N), it is possible to produce N2 different equations and the system of linear equa-

tions can finally be solved.

So far the above formulation is general enough to be applied to any reinforcement

learning system with discrete time and discrete state space, but the number of necessary

equations seems to be considerably large. However, when considering real physical

systems it is not common to have the possibility to make transitions to any state

xj ε X from any state xj ε X. Real physical systems have additional constraints

that can greatly reduce the number of necessary equations. For example, consider a

two-dimensional grid world (such as the one treated in chapter 3, figure 3.1) in which

only transitions to adjacent states are possible. In such an environment the passive

dynamics transition probability from a given state xi ε X to any non-adjacent state

xj ε X would necessarily be pd(xj |xi) = 0. As a consequence, starting for each state

the number of unknowns (and consequently the number of equations to be gathered)

is only the number of adjacent states Nadj, and therefore is greatly reduced. In a two-

dimensional grid world the maximum possible number of adjacent states to any given

state is Nadj = 9 (also counting transitions from the state to itself). The resulting

algorithm is illustrated in algorithm 1.

Algorithm 1 Calculating the passive dynamics distributions for all states

1: for each state xi ε X do

2: Nadj ← number of adjacent states to xi

3: for n← 1 until n = Nadj do

4: produce an arbitrary transition distribution un(·|xi)
(must satisfy un 6= um, ∀m < n)

5: follow un from state xi

6: Ani ← measured action cost

7: gather one equation for the system of linear equations to determine pd(·|xi)

Ani = un (x1|xi) logun (x1|xi)− un (x1|xi) logpd (x1|xi)

+ · · ·+ un (xNadj|xi) logun (xNadj|xi)− un (xNadj|xi) logpd (xNadj|xi)

8: end for

9: solve the obtained system of linear equations and obtain pd(·|xi)
10: end for

21



4. CALCULATING THE PASSIVE DYNAMICS DISTRIBUTION AND
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4.2 Calculating the Passive Dynamics and State Costs

from Measured Total Costs

The method proposed so far can only calculate the passive dynamics when the action

costs can be observed. However, in real applications it might not be possible to observe

state costs and action costs separately. It might be a more realistic approach to consider

measured immediate costs ` for the calculation of the passive dynamics distribution.

To extend our method to work with immediate costs `, we subtract the state cost q on

both sides of equation 4.2, which becomes a new unknown in the system. By using the

fact that `(xi) = q(xi) +KL (u1(·|xi)|pd(·|xi)) (equation 2.4), we have:

N∑
j=1

u1 (xj |xi) logpd (xj |xi)− q (xi) =
N∑
j=1

u1 (xj |xi) logu1 (xj |xi)− T1i (4.4)

Where T1i denotes the measured immediate cost `(xi, u1) incurred when following the

controlled transition distribution u1 from state xi. For a given state xi we have Nadj+1

variables to determine in order to calculate the passive dynamics distribution pd(·|xi)
and the state cost q(xi).

Unfortunately, in all experiments we performed with this method, the obtained

system did not turn out to be a system with one single solution (i.e. the obtained

system had infinite solutions). This fact happened even when we obtained a number

of equations equal to the number of variables Nadj + 1 (by following Nadj + 1 different

arbitrary transition distributions from state xi).

However, this problem can be solved by adding the constraint that the sum of

passive dynamics transition probabilities needs to be equal to one. We propose two

ways to do this: one is an iterative method using a modified gradient descent algorithm,

and another is a non-iterative method using a clever variable substitution. For both

methods only Nadj different equations are necessary.

The iterative method consists in using the gradient descent algorithm to solve the

system of linear equations. At each step of the algorithm, we normalize the current

estimated passive dynamics probabilities to sum up to 1. This algorithm is illustrated

in algorithm 2, where the system is written in vector notation (in the form Ax = b).

The matrix A corresponds to the matrix of coefficients of the unknowns, and the column

vectors x and b are the vector of unknowns and a vector of constants, respectively. The
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4.3 Computational Experiments to Validate the Proposed Methods

Algorithm 2 Gradient Descent (with Probability Normalization)

1: get an initial solution using the Moore-Penrose pseudoinverse of A

x← A+ · b
2: Normalize the probabilities to sum up to 1

For all j: pd (xj |xi)← pd(xj |xi)∑Nadj
j=1 pd(xj |xi)

3: repeat

4: Take a step of the gradient descent algorithm

x← x + 1
γA

T (b−A.x) where γ > 1

5: Normalize the probabilities to sum up to 1

For all j: pd (xj |xi)← pd(xj |xi)∑Nadj
j=1 pd(xj |xi)

6: until convergence

other method is mathematically similar to a method used for continuous embedding

of traditional MDPs with symbolic actions (14). The system can be solved by using a

clever variable substitution. Let us consider the system written in vector notation

as with the previous method (i.e. Ax = b). However, the variable q(xi) is now

separated from the vector of variables x. This vector will now only contain variables

corresponding to logarithms of passive dynamics transition probabilities. The system

then becomes q1−Ax = b, where 1 is a column vector of ones, and q is the unknown

state cost q(xi). By observing that A is a stochastic matrix (A1 = 1), the system

can be rewritten as A (q1− x) = b. The method to solve such system while forcing

the sum of passive dynamics transition probabilities to sum up to one is described

in algorithm 3. The advantage of this method is that it is not iterative, and can be

used to calculate the correct solution to the obtained linear system directly. The total

algorithm for calculating the passive dynamics distributions and state costs for all states

from measured immediate costs can be seen in algorithm 4.

4.3 Computational Experiments to Validate the Proposed

Methods

Experiments were performed to validate the proposed methods for calculating the pas-

sive dynamics distribution pd from measured action costs (section 4.1), by following

the algorithm 1, and for calculating the passive dynamics pd and state costs q from
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Algorithm 3 Variable Substitution Algorithm

1: change of variables: (q1− x) = c

2: solve Ac = b for c

3: now we need to determine the value of q

q ← −log
(∑

xi
exp (−cxi)

)
(where xxi and cxi correspond to elements of the vectors x and c)

4: x needs to satisfy
∑

xi
exp (xxi) = 1:

solve (q1− x) = c for x

Algorithm 4 Calculating the passive dynamics distributions and state costs for all

states

1: for each state xi ε X do

2: Nadj ← number of adjacent states to xi

3: for n← 1 until n = Nadj do

4: produce an arbitrary transition distribution un(·|xi)
(must satisfy un 6= um, ∀m < n)

5: follow un from state xi

6: Tni ← measured immediate cost

7: gather one equation for the system of linear equations to determine pd(·|xi)

Tni = un (x1|xi) logun (x1|xi)− un (x1|xi) logpd (x1|xi)

+ · · ·+ un (xNadj|xi) logun (xNadj|xi)− un (xNadj|xi) logpd (xNadj|xi) + q(xi)

8: end for

9: solve the obtained system of linear equations using algorithm 2 or algorithm 3

and obtain pd(·|xi) and q(xi)

10: end for
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4.3 Computational Experiments to Validate the Proposed Methods

Figure 4.2: Illustration of the generated arbitrary controlled distributions for the com-

putational experiments, for states which have four, six and nine adjacent states. Each

controlled distribution has one specific state which has the double of transition probability

than others (the occupied position is represented in gray color).

measured immediate costs ` (section 4.2) by following the algorithm 4. For these ex-

periments, the same simple 10x10 size grid world (illustrated in figure 3.1) and the

same models of passive dynamics (described in chapter 3) were considered. The same

experimental environment of chapter 3 was used, with the same grid world (figure 3.1)

and the same passive dynamics model with inertia and collisions (hp = 0.9).

The agent was placed occupying each and every possible state, one at a time.

For each state, arbitrary controlled transition distributions were generated in equal

number to adjacent states Nadj. Each controlled distribution had a different state

as the state with biggest transition probability. All remaining adjacent states shared

an equal transition probability. In all experiments the biggest transition probability

corresponded to the double of each of the others. In other words: if there are Nadj

adjacent states to the current state xcur, denoted x1, x2, ... , xNadj, then each one of

the Nadj different controlled transition distributions ui (i ε N | 1 ≤ i ≤ Nadj) will have

a different state xm (m ε N | 1 ≤ m ≤ Nadj) with the highest transition probability

(ui (xm|xcur) = 2 · ui (xi|xcur) ,∀i | i 6= m). This is illustrated in figure 4.2.

In the experiments to test the method for calculating the passive dynamics distribu-

tion pd from measured action costs (section 4.1), the action cost incurred when following

each of the controlled transition distributions in each of the states was measured. The
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(a) Errors of the estimated pd: estimation from action

costs, from immediate costs with gradient descent

method, and from immediate costs with variable

substitution method.

(b) Errors of the estimated q: estimation from imme-

diate costs with gradient descent method, and from

immediate costs with variable substitution method.

Figure 4.3: Box plots of the errors of the estimated values of passive dynamics and state

costs.

corresponding system of linear equations for each state was created (each equation is of

the same form as equation (4.3)), and all obtained systems were solved. The calculated

passive dynamics was correct, with the same transition probabilities as the original

one. In the experiments to test the method for calculating the passive dynamics pd

and state costs q from measured immediate costs ` (section 4.2), the same procedure

was repeated, however the immediate costs ` were measured instead of the action costs.

The state costs were also unknowns in the system, as shown in equation (4.4). As in

the previous case, each controlled distribution had a different state as the state with

biggest transition probability (figure 4.2). Systems of linear equations corresponding to

each state were created and solved, both by using the gradient descent with probability

normalization method (algorithm 2) and and by using the variable substitution method

(algorithm 3).

A box plot of the resulting errors in each case can be seen in figure 4.3. Those errors

26



4.4 Final Considerations of This Chapter

were obtained by taking the absolute difference between each transition probability of

the correct passive dynamics p∗d (previously known) and its corresponding estimate p̂d.

The errors of the state costs estimates q were obtained in the same manner (absolute

difference between the correct q∗ and its corresponding estimate q̂). In all cases the

errors are very small and are within the numerical precision of the simulator software.

These results show that our method can calculate the passive dynamics pd and state

costs q correctly, as expected. In the case of estimation from immediate costs, both pro-

posed methods for solving the constrained system of linear equations, gradient descent

(algorithm 2) and variable substitution (algorithm 3) were successful. When using the

gradient descent with probability normalization method, it was observed that in all

cases the correct passive dynamics was obtained right after taking the initial solution

(using the Moore-Penrose pseudo inverse matrix), and normalizing the resulting prob-

abilities to sum up to one (i.e. after step 3 is taken for the first time in algorithm 2).

The iterative algorithm was only used to obtain the correct state costs q. The variable

substitution method obtained similar results.

4.4 Final Considerations of This Chapter

In this chapter we have proposed a method to calculate the passive dynamics distribu-

tion of a system by applying different controlled transition distributions and measuring

incurred costs. The main idea behind the method is to create and solve systems of

linear equations by using the KL divergence equation (equation 2.5).

This method was then extended to calculate both the passive dynamics and state

costs from measured immediate costs. Such extension is important especially when it

is not possible to observe action costs separately, and state costs are also unknown.

We have presented computational experiments which show that this method suc-

cessfully calculates the passive dynamics, and also state costs when applicable.

In the next chapter we will explain how this method can be extended to estimate

the passive dynamics and state costs during Z learning execution.
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5

Passive Dynamics Distribution

Estimation During Z Learning

This chapter describes the main contribution of this thesis. We propose a method to

execute Z learning in a real temporal difference approach (i.e. without the previous

knowledge of immediate costs of the system), following a controlled transition distri-

bution, and without the previous knowledge of the passive dynamics distribution nor

state costs. The method proposed in chapter 4 is used to estimate the passive dynamics

distribution pd and state costs q during the execution of the Z learning algorithm.

Let us consider that the passive dynamics of the system pd and state costs q are

unknown. The only necessary previous knowledge is which transitions are allowed

starting from each state (so that pd = 0 is assumed for impossible transitions).

5.1 Gathering Equations for Passive Dynamics and State

Costs Estimation During Z Learning

Let us consider that a Z learning algorithm will be performed in the considered system,

in which the agent keeps exploring the environment by following a controlled transition

distribution. Let us also assume that the controlled distributions starting at each state

are not always the same, but actually vary over time. This can be obtained by following

the “greedy policy”, i.e. the controlled transition distribution which appears optimal

given the current estimates of the desirability function, according to equation (3.2).

Every time the agent passes by a given state, the controlled transition distribution
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will be different (because the desirability function estimates are updated with each

visit), and therefore a new equation for calculating the passive dynamics distribution

pd and state costs q can be gathered from the measured cost `. The obtained equation

corresponds to equation (4.4).

After a new equation is gathered, one solution to the incomplete system is found.

This is done even if only one equation was gathered so far. The obtained solution must

respect the constraint that the sum of passive dynamics probabilities equals to one.

Even if the solution is not unique (because we still do not have enough equations),

an arbitrary solution which respects the equations and constraint is obtained. This

solution then replaces the current estimates of the passive dynamics distribution pd

and state cost q starting from that state. This procedure is repeated every time the

state is visited, until the necessary number of equations is gathered. This number

corresponds to the number of adjacent states Nadj . Once this happens, the correct

values of the passive dynamics pd and state costs q are calculated for the given state,

using the same procedure as previously described (chapter 4). This is illustrated in

algorithm 5. Neq(xi) corresponds to the number of gathered equations for state xi, and

Nadj(xi) corresponds to the number of adjacent states to state xi.

The estimation of the desirability z (and consequently the optimal cost-to-go v), is

performed as follows: when a transition occurs from a given state xt to a future state

xt+1, the current estimate of the desirability zcur (xt) is updated by following the same

formula as in “greedy Z learning”, but the current estimates of the passive dynamics

and state costs are used instead of the correct values:

znew (xt)←(1−ηt) zcur (xt)+ηtexp (−q̂ (xt)) zcur (xt+1)
p̂d (xt+1|xt)
û (xt+1|xt)

(5.1)

where p̂d (xt+1|xt) is the current estimate of the passive dynamics probability of transi-

tion from the current state xt to the future state xt+1, and q̂ (xt), the current estimate

of the state cost of state xt.

By following this method, the passive dynamics pd and state costs q, as well as

the desirability function z (and consequently the optimal cost-to-go function v) of the

system can be estimated by the same algorithm, in a temporal difference method.
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5.1 Gathering Equations for Passive Dynamics and State Costs Estimation
During Z Learning

Algorithm 5 Calculating the passive dynamics distributions and state costs during

Z learning

When each state xi is visited:

1: if pd(·|xi) and q(xi) are not yet known then

2: gather one more equation from the measured immediate cost Tni:

Tni = un (x1|xi) logun (x1|xi)− un (x1|xi) logpd (x1|xi)

+ · · ·+ un (xNadj|xi) logun (xNadj|xi)− un (xNadj|xi) logpd (xNadj|xi) + q(xi)

3: if Neq(xi) < Nadj(xi) then

4: get one solution for the incomplete system, which respects:∑
pd(·|xi) = 1

5: else

6: get one solution for the complete system, which respects:∑
pd(·|xi) = 1

7: consider that pd(·|xi) and q(xi) are known for xi

8: end if

9: end if
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5.2 Computational Experiments to Validate the Proposed

Method

Experiments were performed to validate the proposed algorithms of Z learning with

passive dynamics pd and state costs q estimation from measured total immediate costs

`. The convergence curves of the estimated optimal cost-to-go v were compared to the

previously obtained curves, to understand if the convergence speed of Z learning was

affected.

These experiments were performed in the same grid world environment described

in chapter 3 (figure 3.1), using both passive dynamics distributions models (reflexive

environment and absorptive environment).

The chosen method for solving the obtained systems of linear equations in these

experiments was the variable substitution method (chapter 4 algorithm 3), because it

is faster than the gradient descent with probability normalization method (chapter 4

algorithm 2), which is iterative.

In order to calculate the error of the estimated passive dynamics pd and state costs

q, all estimated passive dynamics probabilities were initialized with non-null random

values for transitions to adjacent states, which sum up to one. Passive dynamics tran-

sition probabilities to non-adjacent states are initialized with probability zero. The

estimates of the state costs were initialized with positive random values between zero

and one.

The errors of the estimated optimal cost-to-go v are calculated in the same manner

as in chapter 3, using equation (3.1). The errors of the estimated passive dynamics

distribution are calculated in a similar way, as the sum of the absolute differences

between the estimated values and the correct values, divided by the sum of the correct

values:

Error of p̂d =

∑N
i=1

∑N
j=1 |p̂d (xj|xi)− p∗d (xj|xi)|∑N
i=1

∑N
j=1 p

∗
d (xj|xi)

(5.2)

where N is the total number of states; p̂d (xj|xi) is the current estimate of the passive

dynamics transition probability from state xi to state xj; and p∗d (xj|xi) is the correct

passive dynamics transition probability from state xi to state xj. Similarly, the esti-
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(a) pd estimation error (b) q estimation error

Figure 5.1: pd and q approximation errors. The passive dynamics distribution corre-

sponds to a reflexive environment. The vertical axes are in log scale.

(a) pd estimation error (b) q estimation error

Figure 5.2: pd and q approximation errors. The passive dynamics distribution corre-

sponds to a reflexive environment. The vertical axes are in log scale.

mated state costs error was calculated as:

Error of q̂ =

∑N
i=1 |q̂ (xi)− q∗ (xi)|∑N

i=1 q
∗ (xi)

(5.3)

where q̂ (xi) is the current estimate of the state cost of state xi; and q∗ (xi) is the

correct state cost of state xi. As can be seen in figures 5.1 and 5.2, as the Z learning

with pd and q estimation algorithm is executed, the errors of the estimated passive

dynamics distribution pd and the state costs q consistently reduce as the number of

simulation steps progresses. In the end of the simulation the error was considerably

small and only a few states still did not have their passive dynamics distribution and

state cost completely calculated. In all experiments, by simulation step 5E − 4 this

number was between a minimum of 0.5% and a maximum of 1.2% of all states. By the

last simulation step this number was between 0 and 0.7% of all states.

Most importantly, the error in the estimation of those quantities does not seem

to have a significant impact in the speed of convergence of the Z learning algorithm,

as can be seen in figure 5.3. The convergence of the estimates of the optimal cost-
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(a) Error of estimated v: passive dynamics correspond-

ing to a reflexive environment

(b) Error of estimated v: passive dynamics correspond-

ing to an absorptive environment

Figure 5.3: Comparison of the optimal cost-to-go v estimation errors during Z learning

execution (according to equation (3.1)), for the two algorithms (Z learning with estima-

tion of pd and q from total costs, and pure Z learning without pd nor q estimation), for

both experimental passive dynamics distributions (reflexive environment and absorptive

environment). The vertical axes are in log scale. It can be observed that for both pd distri-

butions (reflexive and absorptive) the errors of the two algorithms are very similar, which

indicates that the proposed method does not significantly affect the convergence speed of

the optimal cost-to-go estimates.

to-go function v for the cases with pd and q estimation was only slightly slower than

the convergence of the estimated v in traditional Z learning. This was consistently

observed for both simulated passive dynamics distributions (absorptive environment

and reflexive environment).

It is difficult to visualize the difference of the two convergence curves (our method

and traditional Z learning) even in log scale (figure 5.3). For that reason we have plotted

the difference of the two convergence curves (Z learning with estimation - traditional

Z learning) for both environments in figure 5.4. It can be observed that our method

starts with a bigger error, because the correct values of pd and q have not yet been

estimated. As the time steps evolve and the estimates of pd and q improve, the error
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(a) Reflexive environment

(b) Absorptive environment

Figure 5.4: Differences between the two convergence curves, Z learning with pd and q

estimation, and traditional Z learning. Positive values mean that the error of our method

is bigger.

of out method becomes smaller and oscillates, and stabilizes near zero.

5.2.1 Comparison with a Traditional Reinforcement Learning Method

We have also compared the performance of our method and traditional Z learning with

Q learning, a traditional reinforcement learning method used in traditional MDPs. For

that it was necessary to create a corresponding MDPs with symbolic actions, with the

same optimal cost-to-go (or optimal value) functions as our LMDPs. A method to

achieve that is explained in (14). For each state x a symbolic action u1 is defined, and

its induced transition distribution corresponds to the optimal transition distribution

u∗(·|x). The remaining Nadj − 1 symbolic actions (u2, · · · , uNadj
) induce transition

probability distributions obtained from u∗(·|x) by circular shifting. The obtained MDPs

are guaranteed to have the same optimal cost-to-go as our LMDPs. As can be seen in

figure 5.5, the Q learning method has slower convergence than traditional Z learning,

and our method is also faster than Q learning. In our experiments the decaying rate η

for all algorithms decayed according to η = c/(c + t) where t is the current time step.

The constant c was optimised for each algorithm.
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(a) Reflexive environment

(b) Absorptive environment

Figure 5.5: Approximation error of the optimal cost-to-go function for Q learning, tra-

ditional Z learning and our method. The data was averaged over 10 runs, with different

random number sequences. The vertical axes are in log scale.

5.2.2 Difficulties Faced in the Practical Application of the Method

A few difficulties have emerged regarding the application of this method in practice.

Such difficulties are now described.

5.2.2.1 Uniqueness of Solutions to the Systems of Linear Equations

The obtained systems of linear equations should have an unique solution when the

number of obtained equations equals the number of unknowns (i.e. the number of

adjacent states Nadj). However, if the followed controlled distributions when visiting

a given state (according to the greedy policy) are not sufficiently different from each

other, the determinant of the matrix of equations can be too near zero, and actually be

considered null within the numerical precision of the simulator software. This causes

the software to be unable to find a unique solution to the system, even when Nadj
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equations are gathered. In the experiments presented in this section a heuristic solution

was adopted, by gathering taking the Moore Penrose pseudo-inverse matrix of the

coefficients matrix, and also taking two more equations than necessary (Nadj + 2) for

each state. After this solution was adopted, the number of cases in which the system

did not present a unique solution was almost completely avoided.

5.2.2.2 Solution with many zeros for the partially constructed systems of

linear equations

this difficulty was found when using the variable substitution method (chapter 4 algo-

rithm 3) to solve incomplete systems, i.e. systems with a number of equations smaller

than the number of adjacent states (Neq < Nadj). When using a standard algorithm to

solve such systems the obtained solution usually has many null values. For example,

when using the standard Matlab routine the solution has at most a number of nonzero

values equal to the number of equations Neq. This is a problem when the correct state

costs q are positive values (i.e. q > 0 which is usually the case), because each ele-

ment of the unknowns vector c of the system Ac = b corresponds to a subtraction of

the form q(x) − log (pd(x
′|x)), where x is the current state and x′ is a possible future

state. Since the probability pd(x
′|x) is smaller than one, the logarithm is smaller then

zero, and therefore if the subtraction is to result in zero the estimated q(x) turns out

to be a negative number. This means that the estimated state costs become rewards

when those should actually be costs. In order to overcome this problem the incomplete

systems were solved using the Moore-Penrose pseudoinverse matrix, which maximizes

the Euclidean (L2) norm and finds a dense solution.

5.3 Final Considerations of This Chapter

In this chapter we have extended the method proposed in the previous chapter to

estimate the passive dynamics distribution and state costs of a system during the

execution of Z learning. Such method can be applied when following a distribution

different than passive dynamics. The main concept behind this method is to follow a

policy which changes over time (such as the greedy policy), and measure the incurred

immediate costs every time a state is left. Since the policy changes over time, the
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measured costs will always be different, therefore a different equation for calculating

the passive dynamics and state costs for that state can be gathered.

Even if the necessary number of equations for correctly calculating the passive

dynamics and state costs for a given state is not yet obtained, one solution of the

incomplete system (with infinite solutions) will be taken as the current estimate.

We have shown with computational experiments that the method works correctly,

and that the usage of the estimates of passive dynamics and state costs instead of the

correct values does not represent a significant reduction of the convergence speed in

terms of simulation steps.

In the next chapter we present concluding remarks and future work possibilities.
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Conclusion

We have proposed a method for the direct application of Z learning in a true temporal

difference approach, without the need for previous knowledge about the passive dynam-

ics of the system nor of state costs. All that is required is the possibility to measure

immediate costs (total costs) incurred in state transitions, as well as the knowledge

of impossible state transitions and of the controlled state transitions imposed to the

system. By following this approach, the system does not have to follow the passive dy-

namics if it is unknown. The agent is free to follow any policy (which has characteristic

of exploration) during the Z learning execution. The characteristic of learning by trial

and error of temporal difference methods is preserved, and Z learning can be applied

without the previous knowledge of the passive dynamics of the system.

The current work represents an important step in the direction of achieving di-

rect application of the framework of LMDPs to solve realistic problems formulated in

discrete time, in a temporal difference approach.

6.1 Issues and Future Work

The proposed method needs to have the equations for calculating the passive dynamics

of each state stored in memory. Those equations must be kept until the necessary

number of equations is gathered and the correct values of the passive dynamics and

state cost are calculated. Once this is done for a given state, then the equations for

that state can be discarded. This might have an impact in memory consumption.

Future work might address this problem, proposing methods in which the storage of
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equations is not necessary. One possibility to solve this problem could take advantage

of the geometrical interpretation of the solution of a linear system as a projection of

hyperplanes. As soon as a new equation is gathered, the current estimate of pd and q

(which corresponds to a point in the hyperspace of solutions) would then be projected

into the hyperplane which corresponds to the newly acquired equation. The feasibility

of such method still remains to be verified.

After this work, the only remaining limitation for the direct application of Z learn-

ing in real problems is the possibility to impose any desired controlled transition dis-

tribution. In most realistic problems, symbolic actions might exist and the transition

distributions might be dependent of those actions. An extension of the current method

to consider symbolic actions (and transition distributions which are caused by such

actions) remains to be developed.
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