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Syntactic Dependency Structure-based Approaches for
Chinese Semantic Role Labeling*

Yanyan Luo

Abstract

Semantic roles, logical relations such as Agent, T heme, etc. that hold between pred-
icates and their participants and circumstances, need to be determined automatically
in a wide range of natural language processing applications. This process is referred
to as Semantic Role Labeling. This dissertation describes how to construct statistical
models for Chinese semantic role labeling, and explores what is helpful for it.

Recently, dependency parsing based methods have achieved much success in seman-
tic role labeling. However, due to errors in dependency parsing, there remains a large
performance gap between semantic role labeling based on oracle parses and semantic
role labeling based on automatic parses in practice. In light of this, this work devotes
considerable effort to investigating the statistical models for semantic role labeling and
what additional features are necessary to close this gap.

Semantic role labeling is often divided into three subtasks: predicate disambigua-
tion, argument identification and argument classification. In this thesis, we propose
a dual decomposition algorithm to alleviate the error propagation between argument
identification subtask and argument classification subtask. In the experiments, we
achieved competitive results compared to the state-of-the-art systems.

Apart from the statistical models for semantic role labeling, we investigate two kinds
of additional features: additional dependency information in the form of N-best parse
features and orthogonal non-dependency information. We compare the above features
in a semantic role labeling system that achieves state-of-the-art results on the corpus.
In the experiments, we achieved top result to our best knowledge.

*Doctoral Dissertation, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1061033, September 4, 2013.
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Chapter 1

Introduction

1.1 Background

Semantic Role Labeling (SRL), the task of identifying arguments for a predicate
and assigning semantically meaningful labels to them, has been widely used by many
applications, like machine translation [26], question answering [34, 42], information
retrieval [41, 47] and text categorization [36]. A semantic role represents semantic
relations that hold between a predicate and its one of the arguments. While the task
of full natural language understanding is poorly understood in general, semantic role
structures constitute a tractable fragment of the full spectrum of human semantic pro-
cessing.

It is generally agreed that the problem of SRL is closely tied to syntactic analysis.
Most previous implementations of semantic role labelers have used constituents of a
phrase structure parsed tree as the syntactic input. However, constituent parsing acts
as a central bottleneck in some languages, like Chinese, that limits the improvement of
SRL. Recently, dependency parsing-based SRL has received much attention. Depen-
dency parsing views the syntactic structure of a sentence as a graph of labeled word-
to-word relations. It became very common especially after the challenges of the shared
tasks held in the CoNLL-2008 and 2009. Our work focuses on syntactic dependency
structure-based SRL since dependency representations make the syntactic-semantic in-
terface conceptually simpler and more intuitive, and dependency parsing does not need
complicated linguistic knowledge as constituent parsing.

Although dependency parsing has better results than constituent parsing, the per-
formance is still not ideal and the performance of SRL fluctuates according to perfor-
mance of dependency parsing. For example, in our experiments, the SRL performance



achieves an F-measure of 87.47%, when we use the gold parse trees. This performance
drops to 77.34% when a real parser (MALT) is used instead. It is worthwhile to inves-
tigate what statistical models for SRL and what additional information is necessary to
improve the SRL performance based on automatic parses in practice and close the gap
between it and SRL based on oracle parses.

1.2 Contributions of This Research

Our principal contributions through this research work are summarized in the fol-
lowing.

Based on a SRL model that can jointly label the predicate senses and their cor-
responding arguments in Chapter 3, we propose a dual decomposition algorithm to
alleviate the error propagation between argument identification subtask and argument
classification subtask by benefitting the argument identification subtask greatly.

The goal is to make use of the possible dependencies between different argument
identification models without greatly increasing the complexity of inference. The dual
decomposition inference approach allows us to explore sub-models for solving opti-
mization problems. In particular, we can iteratively apply exact inferences to the sub-
models, adjusting their potentials to the reflect the constraints of the full problem. The
technique of dual decomposition has recently been shown to yield state-of-the-art per-
formance in dependency parsing [25], text alignment [11], biomedical event extraction
[41] and so on. However, to our best knowledge, it has not been applied to SRL.

Furthermore, two additional features: base chunk constituents related and N-best
parse related features, are explored to our syntactic dependency parsing based SRL
respectively and increasingly in Chapter 6 and Chapter 7. To date, almost all the re-
searches for features that will be helpful for SRL focused on given syntactic depen-
dency results. Our work shows that we are not limited to increasing SRL performance
via depending too much on syntactic parsing, but that we can explore other information
to improve SRL.

1.3 Dissertation Outlines

The rest of dissertation is organized as follows:



Chapter 2: SRL Literature Review This chapter formally defines the concepts of
semantic roles and predicate argument structures, gives an overview of semantic-role
linguistic resources and reviews approaches of previous work.

Chapter 3: Syntactic Dependency Based Predicate Argument Structure Analysis
In this chapter, we construct Chinese SRL to describe the formal definitions for pred-
icate argument structure analysis using dependency syntactic structures as input and
compare several different methods of predicate argument structure analysis for SRL.
Based on this model, we propose other approaches and explore more new features to
improve Chinese predicate argument structure analysis results.

Chapter 4: Robust Integrated Models for SRL First, we describe the dual decompo-
sition inference approach which forms the basis of our approach in this chapter. Based
on this theory, we propose a dual decomposition algorithm for integrating two argu-
ment identification models for SRL. Both argument identification models are nearly
the same, except for the label tag sets and the feature sets used. And each argument
identification model together implements the predicate sense disambiguation simulta-
neously. The integrated argument identification result is highly improved, therefore,
the error propagation from argument identification to argument classification is greatly
decreased.

Chapter 5: Exploring Shallow Parsing Information for SRL In this chapter, we
compare the syntactic dependency parsing based SRL and shallow parsing based SRL,
and investigate the effect of shallow parsing information for syntactic dependency pars-
ing based SRL.

Chapter 6: Exploring Additional Dependency Information for SRL This chapter
investigates effects of additional dependency features from N-best parsing results for
SRL. We also combine the features in Chapter 5 to evaluate the performance of SRL
and investigate what information is helpful for syntactic dependency based semantic
role labeling.

Chapter 7: Conclusions This chapter summarizes the dissertation by summarizing
our main contributions and describes our possible future directions.






Chapter 2

SRL Literature Review

Semantic roles are the equivalence classes which slot connectors associated with
different predicates can be meaningfully grouped into. And they are one of the oldest
classes of constructs in linguistic theory. They are used to indicate the role played
by each entity in a sentence and are ranging from very specific to very general. The
entities that are labelled should have participated in an event. Some of the domain-
specific roles like from airport, to airport, and depart time. Some of the verb-specific
roles like eater and eaten for the verb eat. Although there is no consensus on a definitive
list of semantic roles, some basic semantic roles such as agent, instrument, etc are
followed by all.

Since the work of Gildea and Jurafsky [16], statistical and machine learning ap-
proaches have been the predominant research paradigm in SRL, like most of the sub-
fields in natural language processing and computational linguistics. A prerequisite for
statistical and machine learning approaches to semantic role labeling is the availabil-
ity of a significant amount of semantically interpreted corpora from which automatic
systems can learn.

2.1 Semantic Role Corpora

PropBank and FrameNet are the two most widely used corpora in developing auto-
matic SRL systems. Although both corpora provide semantic roles annotations, they
use very different semantic role labels. The following example taken from Xue [55]
shows the same sentences with different labels in both corpora respectively.

FrameNet



[ Buyer We | always [ LU bought | [ Goods a few dark-red carnations | [ Seller
from her. ]

During the later part of the nineteenth century, [ Seller the landowners | [ LU
sold | [ Goods the land | [ Buyer to developers | in very small lots.

PropBank
[ Arg0 We | always [ Rel bought | [ Argl a few dark-red carnations | [ Arg2 from
her. |
During the later part of the nineteenth century, | Arg0 the landowners | [ Rel sold
] [ Argl the land | [ Arg2 to developers | in very small lots.

Both corpora add a layer of semantic role annotation on top of the Penn Treebank
of constituent syntactic annotation [55]. However, In FrameNet, the semantic roles of
a predicate (called a Lexical Unit (LU) ) are organized by semantic frames, which are
conceptual structures that describe a particular situation or event along with their par-
ticipants. For example, the sell and buy both belong to the semantic frame, which
involves Buyer and Seller exchanging Money and Goods. For the examples from
FrameNet, the seller always labeled Seller and the buyer always labeled Buyer. Unlike
in FrameNet, there is no reference ontology like the semantic frame that provides a
general set of semantic roles. In PropBank, the allowed core arguments for every pred-
icate are listed. For the core arguments, they are represented by an integer prefixed
by Arg and the integer is not more than 5. Although these labels are not meaningful
across different predicates. A general rough convention is that Arg0 corresponds to
the argument having most properties of a ’proto-agent” and Arg/ to a ”’proto-patient”
[13]. For the adjunct-like arguments, each is represented as ArgM, followed by a sec-
ondary tag indicating the type of the modifier, such as ArgM-DIR(direction), ArgM-
TMP(temporal). The predicate-specific nature of the PropBank semantic roles is clear
when compared with the roles in FrameNet. The buyers shown in examples from
PropBank are labeled as Arg0 and Arg2 respectively.

It generally seems that SRL is easier with PropBank than with FrameNet because
of the much larger annotation coverage in PropBank. Statistical systems that carry
out a PropBank-style semantic analysis typically treat role label assignment as a well-
defined classification problem and PropBank based semantic role labelers have been
implemented for other languages than English, for instance Chinese [55].



2.1.1 Chinese PropBank

Chinese PropBank adopts the descriptive framework of English PropBank. The se-
mantic arguments of a predicate are labeled with a contiguous sequence of integer, and
the integer is from O to 5. These labels can only be interpreted in the context of a
specific predicate and they can not be repeated for a specific predicate. That’ s to say,
they are predicate-specific and can occur at most once for a specific predicate. For the
semantic adjuncts, they are still annotated similarly as those in English PropBank. In
other words, they are annotated as ArgM followed by a secondary tag that represents
the semantic classification of the adjunct. Unlike the semantic arguments of a predi-
cate, they are not predicate-specific and can repeated more than one time for a specific
predicate. In Chinese PropBank, there is a limited set of such secondary tags and are
listed in Table 2.1.

Table 2.1: The complete list of functional tags defined in the Chinese PropBank

ADV adverbial FRQ  frequency

EXT extent TMP  temporal
LOC locative MNR  manner
BNF beneficiary CND  conditional
DGR degree DIR direction
DIS  discourse marker PRP purpose
QTY quantity TPC topic
VOC vocative PRD  predicate

Figure 2.1 shows an example from Chinese PropBank, there are two semantic ar-
guments: Arg0! 0 00 00O O (Finance work in Tibet”) and Arg/ 00 00 (re-
markable achievement”). And they represent agent/cause and thing achieved/acquired
respectively; the noun [J [J (“Last year”) is labeled ArgM-TMP where the secondary
tag TMP indicates a temporal modifier.

'In order to save space, core argument Arg0 is short for AO; adjunct-like argument ArgM-TMP is
represented by TMP. Without special explanation, the label representations that appear later will follow
the same rule.



IP

TMP A0 VP
NP-TMP NP-SBJ Rel Al
£ NP-PN NP vV NP-OBJ
Last year /\ l /\
NR NN NN ER#&§ ADJP NP
| o= |
JJ NN

icE - A o1 T1% ‘ |
Tibet finance work .
BRE RHE

remarkable achievement

Figure 2.1: An example of SRL from CPB.

2.2 Previous Work

Before Hacioglu’s work [18], most previous implementations of semantic role la-
belers [16, 17] have used constituents as the syntactic input. For the predicate [J [J
(get) in the example of constituent based SRL analysis from Chinese PropBank in
Figure 2.1, the argument of the role A0 is ” O 0O 0O 0O 0O O (finance work in Tibet)”
and the non-terminal node NP-SBJ that corresponds to the words is assigned the ar-
gument role label. A wide range of statistical and machine learning techniques have
been applied to SRL. Pradhan et.al [37, 38] used Support Vector Machine; Zhao and
Kit [58] used Maximum Entropy; Cohn and Blunsom [7] used Conditional Random
Fields to classify the semantic roles. As for Chinese, at present, most Chinese semantic
role labeling systems convert the methods that work for English semantic role labeling
systems, especially, after the occurrence of the English/Chinese PropBank.



In comparison, syntactic dependency based SRL has received relatively little atten-
tion for the SRL until the challenges of the SRL tasks held in CoNLL-2008 [48] and
CoNLL-2009 [19]. Hacioglu [18] first explored Support Vector Machines to imple-
ment the semantic role classifiers using the dependency syntactic input. Generally,
SRL and predicate sense disambiguation are regarded as two independent tasks. In
the CoNLL-2008 and 2009 shared tasks, identifying the correct senses of predicates
is also considered together with SRL. A few researchers have used semantic roles to
help the predicate sense disambiguation [58]. In [58], they first implemented semantic
classification task, then used the semantic role results as features for predicate sense
disambiguation. More people used the estimated predicate senses in semantic role la-
belers [21, 3]. Still other work paid more attention to joint implementation of predicate
sense disambiguation and SRL tasks recently [53, 30].

It is easy to represent a predicate and its semantic roles using the predicate argu-
ment structure. Moreover, the predicate argument structure can work for almost all
the languages. Before the CoNLL-2008 shared task, a predicate argument structure is
composed of a word that is specified as a predicate and a number of word groups that
are considered as arguments accompanying the predicate. Figure 2.2 illustrates the
predicate argument structure for the sentence in Figure 2.1. The predicate is the word
0 O, and its arguments with their associated word groups are also illustrated. After

‘ Predicate: B 15 ’

=2 B B

EF AEEER T BRE R

Figure 2.2: Predicate-argument structure of sample sentence in Figure 2.1.

CoNLL-2008 shared task, the predicate argument structure is also extended and shows
more and more powerful vitality. In this new structure, the predicate word is changed
to predicate sense, and a number of words are considered as arguments accompanying
the predicate sense. The predicate argument structure for sentence in Figure 2.1 under
the dependency-based SRL is shown in the lower part of Figure 2.3. Comparing with
Figure 2.1, it is obvious that syntactic dependency structures offer a more transparent

9



encoding of predicate argument relations. In Figure 2.3, the arguments that have se-
mantic roles for the predicate [1 [J (get) with the meaning representation [J [J .01 are
00O (work), O O (last year) and U O (achievement). Johansson and Nugues [21, 20]

TMP
NMOD OB;\JIMOD
[ NMOD LLSA\‘ l
v v )
=F mE =R T WRE BEE B
last Tibet finance work get remarkable achievement
year
AO
Al
TMP HR %01

“The finance work in Tibet got remarkable achievement last year”

Figure 2.3: Example under dependency-based predicate argument structure analysis.

proposed a framework for joint syntactic dependency parsing and predicate argument
structure analysis. They first generated N-best dependency results to input semantic
pipeline which include: predicate sense disambiguation, argument identification and
argument labeling. After getting the predicate argument structure for each dependency
result from the semantic pipeline, the predicate argument structures together with N-
best dependency results are re-ranked by a linear model. In their framework, they also
used global linguistic constraints to re-rank the predicate argument structures. Their
system achieved the top score in the closed challenge of the CoNLL-2008 shared task
[48].

Meza-Ruiz and Riedel [30] used Markov Logic Networks (MLN), a statistical re-
lational learning framework, to implement the syntactic dependency based predicate
argument analysis, their systems jointly identified predicates, predicate senses, argu-
ments and argument roles by designing formulae that depend on these tasks. Their
experiments indicated integrating predicate disambiguation into the SRL helps to in-
crease the robustness of SRL.

Watanabe et al. [53] proposed a structured model and introduced several types of
features to capture strong dependencies among the elements in predicate argument
structure. Their model successfully handled both non-local dependencies and semantic

10



dependencies between predicate and arguments and achieved comparable results with
the other state-of-the-art systems. Furthermore, it provided ways that more effective
structure learning methods can be applied to learn from predicate argument structure
data.

2.3 Task Description of Semantic Role Labeling

Usually, the overall semantic role labeling (SRL) process can be analyzed as three
different tasks as introduced by Pradhan [39].

1. Argument identification—The words in a sentence can be classified whether it
represents a semantic argument or not.

2. Argument classification—The appropriate semantic role label can be assigned
on the word to identified as a semantic argument.

3. Argument identification and classification—A combination of the two tasks. In
this process, the automatically identified arguments are fed through the argument
classification system.

2.4 Predicate Argument Structure Analysis

Predicate argument structure analysis is the process of identifying predicate argu-
ment structure in texts. Obviously, if we can get the predicate argument structure of
a sentence, then the SRL representation of the sentence can also be obtained. Under
the extended representation of the predicate argument structure, like that in Figure 2.3,
the task of predicate argument structure analysis contains SRL task and predicate sense
disambiguation task.

2.5 Summary

In this chapter, we briefly show some background about syntactic dependency based
semantic role labeling. Comparing with constituent based semantic, syntactic depen-
dency based SRL offer a more transparent encoding of predicate argument relations.

11



Predicate argument structure can well reflect the semantic dependency relations be-
tween a special predicate and its arguments and can be convenient to add any features
between elements in the structure. Furthermore, with this structure, it easy to con-
struct semantic role labeling models for almost all the languages. Therefore, we still
would like to use the predicate argument structure to construct models and explore
what features are helpful for Chinese semantic role labeling in our following work.

12



13

Chapter 3

Syntactic Dependency Based Predicate
Argument Structure Analysis

Predicate argument structure analysis has been proved to be effective for SRL in
many previous work [52, 21]. Most previous work pays little attention to the interaction
between the predicate senses disambiguation task and the argument classification task.
Meza-Ruiz and Riedel [30] and Watanabe et al. [53] indicated that predicate senses
are very helpful for judging the semantic relations of its arguments. However, without
arguments roles, sometimes it is difficult to determine the senses of a predicate.

The following examples having the same verb predicate “drive” with similar syntac-
tic environments show semantic roles are helpful for predicate sense disambiguation.
The types of the role proto-patient of these senses are vehicle and thing in motion re-
spectively. Therefore, if one “proto-patient” of the predicate “’drive” is a vehicle, it is
easy to determine the predicate sense for ”drive” as driver.01”.

1. Paul drove his car fast.
drive.01: drive a vehicle
AQ: Paul (driver) A1l: car (vehicle)

2. Traders drove price sharply higher.
drive.02: cause to move
AQ: trader (driver) Al: price (thing in motion)
A2: higher (secondary predication on A1)

Watanabe et al. [53] proposed a structured model that overcame this limitation and
can identify predicate sense disambiguation and argument roles jointly, which made



both tasks be mutually influenced and determined the most plausible set of assignments
of a predicate sense and its argument roles simultaneously. In their work, a linear
model is applied for predicate argument structure learning. Although linear models
are much easier to add more variables, they can not provide more control over the
interaction of the variables than log linear models. Inspired by this work, we would
like to construct a SRL model that inherits the advantage in [53] and can provide more
control over the interaction of the variables.

3.1 Model Definition for Joint Learning of Argument
Roles and Predicate Senses

The joint model is constructed on the predicate argument structure graph which is
similar as that in Figure 3.1. First, we define an instance as a predicate word and its
corresponding argument words. If there are m predicates in a sentence, then there will
be m instances. Given an instance X = {xi,...,Xp,...,x,} with the predicate position
p, we want to find the corresponding sequence of argument labels and predicate sense
S=ay,...,ap_1,Pap;1,...,a, = (P,A). Each g; for the i-th word in the instance X is
drawn from a set of tags T (A) which contains all the semantic role labels in the corpus
and which follows the definition criteria in Chinese PropBank. In addition, a special
label NONE is added to T'(A). If a word is labeled as NONE, the word will not be
an argument of the current predicate. As for P, this is a member of a sense set 7' (x,)
which contains all possible senses of predicate word x;,. We propose two sorts of label
assignment models Pryy¢q; and Prgjopq. The former incorporates local features only;
the latter also incorporates global features.

Figure 3.1 shows the predicate argument structure graph for sentence in Figure
2.1. The nodes in the frame are all the arguments of the current predicate: U [ (get)
under the sense of [J [J .01. The solid squares are factors which provide scores of label
assignments. By influencing labels of predicate sense and argument roles, the most
plausible label assignments of the nodes are determined by all factors.

3.2 Feature Categories

Factors refer to feature sets and one factor stands for one feature category. In this
section, we will explain four factors which are categorized according to their contribu-
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Fa

Figure 3.1: Direct graphical representation of the predicate arugment structure.

tions to role labels and predicate sense assignments.
To illustrate the feature representational examples that we will describe in this sec-
tion, we will refer to the situation denoted by the Figure 2.3.

3.2.1 Predicate Factor

Features in this category represented by Fp = { fp} are used for scoring the sense of
xp and are independent of the arguments of the predicate x,. For example,

1 if predicate lemma = [J [J (get)
fp(X,p,P) = and P=00 .01
0 otherwise

3.2.2 Argument Factor

This category, defined by Fy = {f4}, scores the semantic label assignment for an
argument and is independent of a predicate sense. For example,

15



1 if current argument lemma
Ja(X,a;) = =00 (work) and a; = Ag
0 otherwise

3.2.3 Predicate-Argument Pairwise Factor

These features associate semantic label and sense simultaneously which permit not
only to use all predicate senses disambiguated, but also to enable semantic role label-
ing to simultaneously help in the predicate sense disambiguation. These features are
defined by Fps = {fpa} and an example is as follows:

1 if current argument lemma
=00 (work) and a; = Ag
and P=00 .01

0 otherwise

fea(X,p,Pa;) =

3.2.4 Global Factor

This feature set is defined F; = {fg} for two purposes: (1) to ensure that the se-
quence of the arguments is assigned according to the predicate frame; (2) to reflect the
joint relation between predicate sense disambiguation and argument assignments. The
sequence of the predicate sense and core argument labels (e.g.A0- O [ .01-AT) is used
to filter out undesirable results and has been successfully exploited in several previous
systems [50, 20].

3.3 Predicate Sense Disambiguation and SRL with a
Local Model

Since the predicate cannot be an argument of itself for Chinese, we define the fol-
lowing local probabilistic model for argument classification and predicate sense dis-

ambiguation.
n

Priocat(S1X) =[] Pr(ailP.X,i,p)-Pr(P|X,p) (3.1
i=1(i#p)

16



where Pr(a;|P,X,i,p) and Pr(P|X,p) are estimated according to the following equa-
tion:

. 1
Pr(ai‘P’XJ’p): A exp{ Z 2‘fA-fz‘\j<X7ai)"i_ Z lfPAkfI"z‘\k<X7pypvai)}a
z (X) Ja;€Fa ! Sra, €Fpa
PAPIX.p) = oo exp{ ¥ Agy fo(X.p,P)},

zr (X) fp €Fp

where Z4 and Z* are normalization functions, i.e.,

ZA: Z CXP{ Z A’fAj-]l‘Aj()(7ai)—’_ Z A’fPAkaAk()(vpaP7ai)};

a; €T (A) Ja;€Fa Sea, €Fpa
ZP="Y exp{ Y ApfaX,p,P)};
PeT(xp) fp EFP

f are the features with associated weight A learned via training. The features are,
typically binary valued functions, defined as four types as mentioned in Section 3.2.

3.4 Predicate Sense Disambiguation and SRL with the
Global Model

Global information is known to be useful in NLP tasks. Nakagawa [33] proposed
a whole-sentence exponential language model for dependency parsing and this model
can incorporate arbitrary features in a sentence. We consider a similar global proba-
bilistic model Prg;opq here for SRL as follows:

1
Praiona (S|X) = ZPr,ml(S\X) -exp { Y A, fo (S,X)} (3.2)
fom€Fa
where Z is a normalizing factor over all candidate sequences and is defined as:
zZ= Z Prl()cal(S’X)'exp{ Z A'f(;mfG,,,(Sa)()}a
SesS(X,p) fem€FG

and S(X, p) is the set of possible configurations of semantic tags and predicate senses
given X and predicate location p. To get the whole sequence of S, we need to perform
computationally expensive search. As is done in previous work [53], we use a simple
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approach, N-best relaxation. Unlike the Pry,.,;(S|X), the product of probability distri-
butions of each word, the probability distribution Pr,p(S|X) is calculated by feature
functions fg defined on an instance X with assignment S. Thereby, we can use any
information in an instance without the independence assumption for assignments of
words in it.

3.5 Online Learning

The perceptron-based online algorithm by Collins [8] is the simplest online algo-
rithm and can provide the state-of-the-art results on various domains including syntac-
tic parsing, text chunking, etc. The main drawback of this perceptron style algorithm
is that it does not have a mechanism for attaining large margin in the training phase.
It may be difficult to obtain good generalization on unseen data. We therefore use a
modified online-learning based on the Passive-Aggressive algorithm (PA) [9].

For the sake of convenience, we introduce the following notations respectively: A =
{A s Ay Afor As } and F = {Fy, Fpa, Fp, F }. Using these global vectors, Prgjopq(S)X)
can also be represented as Pryjpq(S|X) = Zexp(A-F). The best predicate-argument

sequence S for the instance X is then given by
A 1
S = argmax Prgopq(S|X) = argmax Zexp( A-F).
N S

We define the margin attained by the algorithm on round j for the example (X;,S;) as,
V(A (X),S)) = Aj-F(X;,S;) = Aj - F(X;,$))

The margin is positive only if all the relevant labels are ranked higher than all of the

irrelevant labels. However, in the spirit of the binary classification [9], we are not

satisfied by a mere positive margin, so we define the margin to be at least A(S, S) which

is defined by the number of words which have incorrect semantic role and incorrect

predicate sense predictions. Obviously, the largest A(S, S) that can have is the length
of the sentence. The instantaneous loss is defined by the following hinge-loss function.

0 A, (X,8)) > A(S,S
sy {0 YA (X,9) = A(S.5)
A(S,S) — (A, (X,S))  otherwise
Therefore, The PA algorithm can be seen as the following optimization problem that
satisfies the corresponding constraint.

1 . .
A:argmin§||A—A,||2 st. A-F(X,S)—A-F(X,8) > A(S,3)
AeR"
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ALGORITHM 1: The Passive-Agressive Algorithm for SRL

Input: Training set 7 = {X S j}I;I:l , maximum iteration value I'T and
regularization parameter C.
Output: The parameter A that minimizes the hinge-loss function and the margin
of learning data A(S, S) .
A+0,0+0,c+0;
for itr to IT do
for each (X;,S;) in T do
S; = argmax Lexp(A-F(X;,S));
S

o — min [ ©. AFXS)=AFX;.$)+AS;.S)) | |
l ’ 1P (X;,8,)—F(X,,8) || ’
A+— A+ Gj(F(Xj,Sj) —F(Xj,S{'\»;
V< Vv +co;(F(X;,8;) — F(X;,5)));
c+c+1;
end
end
return A=A —v/c;

Using the Lagrangrian and its derivative, it is easy to solve this optimization problem.
The detail of PA algorithm for SRL is presented in Algorithm 1, where N is the number
of instances in the training data. Also, in order to reduce the overfitting problem, we
apply an efficient parameter averaging technique [10]. The vector v and the variable ¢
in Algorithm 1 play this role.

3.6 Features

Earlier research [16, 55] recognized the necessity and importance of syntactic pars-
ing for SRL. Therefore, it is critical to effectively utilize the syntactic structure features
in argument labeling. Unfortunately, to find a useful feature set is usually a nontrivial
task. In our experiments we ignored this task by adapting more of the features that
have been described in recent work on English SRL to Chinese. The features used in
our experiments are listed in Table 3.1 according to the four feature categories defined
above.
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Table 3.1: Features in dependency-based Chinese predicate argument structure analy-

Sis

Predicate Factor

POS
Dependency
Dependency Set

part of speech of the predicate and its parent
dependency relation between the predicate and its head
set of dependency labels for predicate’s dependents

Argument Factor

Lemma

lemmas of the argument and its head

lemma of the leftmost/rightmost dependents of the argu-
ment

lemma of the leftmost/rightmost siblings of the argument

POS

part of speech of the argument and its head

part of speech of of the leftmost/rightmost dependents of
the argument

part of speech of of the leftmost/rightmost siblings of the
argument

Location

location relation between the argument and predicate in the
instance

position of the argument with respect to the predicate in the
dependency tree

Path

dependency label/lemma/part of speech paths between the
argument and predicate with the direction of the edge

Dependency

dependency relation between the argument and its head
dependency relations between the argument’s dependents
and their heads

Predicate-Argument Pairwise Factor

Lemma
POS
Lemma and POS

Path

lemma of the current candidate argument

part of speech of the argument

combination of the lemma and part of speech of the argu-
ment

dependency label path between the argument and predicate
with the direction of the edge

Global Factor

Continued on next page
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Table 3.1 — Continued from previous page

Semantic Sequence the core semantic role sequence with the sense of the pred-
icate in consistent with their location in the sentence.

3.7 Experiments and Discussion

To assess our predicate argument structure analysis model, we evaluated the results
by comparing the output from its pipeline-based model.

3.7.1 Pipeline-based Models

Figure 3.2 shows the architecture of the pipeline-based models. In this method,

Semantic pipeline Global semantic model
Syntactic Predicate Predicate-
dependenc sense —> Argument argument
y parsing disambig. labeling reranking

Figure 3.2: The architecture of the pipeline-based predicate argument structure ana-
lyzer.

first, we determined the best sense for each predicate using Equation 3.3, then use the
predicted sense as features for argument label assignment according to Equation 3.4.

P = argmaxPr(P|X, p)
P

argmax ! exp{ Z Ap fr(X,p,P)} (3-3)

- P, J P, s

p ZP(X) i fr J P

Prigca(SIX) = ] Pr(ailP.X,i,p) (3.4)
i=1(i#p)
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Correspondingly, the Pr(a;|P,X ,i, p) is estimated according to the following equation:

A . 1 N
Pr(a;|P,X,i,p) = ZA—XCXP{ Y Ap fa,(Xa)+ Y, Afps, Jray (X, p,P,ai) },
( ) fAjGFA ! fra, €Fpa

and the normalization factor Z4 becomes as follows:

ZA: Z exp{ Z A’fAijj(Xaai)—’_ Z )LfPAkaAk(Xapapaai)};

a;€T(A) Ja;€Fa fra, €Fpa

finally, based on the predicate argument structures from semantic pipeline, we de-
tected the highest scored argument assignment using the global model in Section 3.4.

3.7.2 Dataset and Setup

We used the Chinese dataset provided by CoNLL-2009 shared task for experiments.
For the SRL-only task in the shared task, the dataset came with MALTParser [35] de-
pendencies. In the training corpus, there are 102,813 predicates including verb pred-
icates and noun predicates; 8,104 predicates are contained in the development corpus
and 12,282 predicates are included in the test corpus. For the details of this dataset,
see [19].

The overall performance of semantic role labeling is calculated using the semantic
evaluation metric of the CONLL-2009 shared task scorer'. It measures the precision,
recall and Fg_ as below:

# of correct pred.senses + # of correct arg.roles

semantic labeled precision Sem.P =
P en #predicates + # of returned arg

# of correct pred.senses + # of correct arg.roles

semantic labeled recall Sem.R = -
#predicates + # arguments

2Sem.P - Sem.R

semantic labeled F;  Sem.F = .
Sem.P + Sem.R

3.7.3 Results and Discussion

Table 3.2 shows the results of the experiments, and also shows the results of the
top 3 systems [3, 57, 30] on the CoNLL-2009 Shared Task participated as SRL-only
system. Furthermore, in order to show clearly our approach can provide more control

"http://ufal.mff.cuni.cz/con112009-st/evalO9.pl
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over the interaction of the variables than that in Watanabe et al. [52, 53], Table 3.2
also shows the result achieved by applying their approach and using our feature sets to
get the SRL result for comparison.

Table 3.2: Predicate argument structure analysis results on Chinese corpus

Systems Sem.P Sem.R Sem.F
Joint Syntactic Dependency-based SRL  82.64 72.68 77.34
Pipeline Dependency-based SRL 82.28 7242 77.04
[Watanabe, 2009] 82.62 71.11 7643
[Bjorkelund, 2009] 82.42 75.12 78.60
[Meza-Ruiz, 2009] 82.66 7336 77.73
[Zhao, 2009] 80.42 7520 77.72

Comparing the two results from joint method and pipeline method respectively, we
see that improvement can be made if we jointly perform inference for predicate sense
disambiguation and argument labeling. For a predicate word with multi-senses, the
pipeline model may not have enough confidence to assign the correct meaning to it.
In that case, this error may easily be propagated to the argument assignment step.
However, the joint probability that they can be correctly disambiguated simultaneously
is larger than incorrect cases.

On the other hand, it can be seen that the improvement is not so big. The main
reason is that most predicates (13.9%) in test corpus only have one sense, while in
train corpus there are more than 30% predicates with multi-senses.

Comparing our result with the result achieved by using Watanabe’s method, it can
be seen that our model truly provides more control over the interaction of the variables.

Comparing our results with the top 3 systems in CoNLL-2009 Shared Task, our
results is not ideal. The main reason may be that Bjorkelund [3] and Zhao [57] applied
feature selection algorithms in order to select the best set of feature templates. On the
other hand, we only used the common feature templates appeared in most previous
research, thus there is still room for performance improvement by applying feature
selection algorithms.
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3.8 Summary

In this chapter, we proposed a structured model that can jointly implement predicate
sense disambiguation and argument role assignment. This model inherits the advan-
tage of the model proposed by Watanabe et al. [53] that can capture both non-local
dependencies between arguments, and inter-dependencies between argument and pred-
icate senses. More precisely, we designed a log linear model-based structure model.
And this model plays an important part in the latter chapters where other methods and
features are explored to improve the Chinese predicate argument structure analysis
results.

In our work, the argument identification subtask was ignored by adding a special la-
bel NONE to the predefined semantic role set in argument classification subtask. Label
NONE indicates a word is not an argument. In this case, the argument classification
system plays the role of identifying the arguments and classifying them simultaneously.
This method alleviates the error propagation problem to some extents. However, the
benefit from the argument identification subtask is also ignored. As experiment results
show, our results have lower recall value. In our following work, we would like to
apply different approaches and explore helpful features to improve this problem.
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Chapter 4

Robust Integrated Models for SRL

Predicate argument (PA) structure analysis is most often divided into three subtasks:
predicate sense disambiguation, argument identification and argument classification.
To date, they have mostly been modeled in isolation. However, this approach neglects
logical constraints between them. We therefore exploited integrating predicate sense
disambiguation with the latter two subtasks respectively, which verifies the automatic
predicate sense disambiguation could help the semantic role labeling task. In addition,
a dual decomposition algorithm was used to alleviate the error propagation between
argument identification subtask and argument classification subtask by benefitting the
argument identification subtask greatly. Experiment results show that our approach
leads to a higher performance for predicate-argument analysis than other pipeline ap-
proaches.

4.1 Introduction

Predicate argument structure analysis is a fundamental task in natural language pro-
cessing to find a clause-level semantic representation. An example is shown in Figure
4.1.

Given the predicate token“ wore” with multiple senses, we are to distinguish the
sense of* wore” to be“ to put something on one’ s body” and the sense label is

“ wear.0l ” ; to identify the argument headed by the token“ she” as the” wearer”
and the argument headed by the token“ coat” as the” clothing” . It has obvious
applications for tasks which involve determining who does what to whom, such as

question answering [22, 34, 42], information extraction [47] and text categorization



Wearer Clothing
Vv " TN

She wore a red coat.

wear.01
Figure 4.1: An example for predicate-argument structure.

[36].

Normally, PA structure analysis is regarded as three subtasks: predicate sense disam-
biguation, argument identification and argument classification. A few researchers [58]
performed the latter two subtasks first and used the semantic roles to help the predicate
sense disambiguation. Most researchers [3, 21, 20] performed predicate sense disam-
biguation first and used the predicted predicate senses to help the argument identifi-
cation and argument classification subtasks. However, both the two pipeline methods
ignore possible dependencies between the three subtasks and can result in error propa-
gation problem. Still other researchers ignored the argument identification subtask and
jointly implemented the predicate sense disambiguation subtask and the argument clas-
sification subtask [53]. This method alleviates the error propagation problem to some
extents, while the benefit from the argument identification subtask is also ignored.

To address these issues, we implemented the three subtasks for PA structure analysis
in the following three steps and Figure 4.2 illustrates the architecture of our system.

Firstly, we incorporated non-local dependencies features between predicate senses
and their corresponding argument candidates to help argument identification. Sec-
ondly, the dual decomposition [32, 25, 11] was introduced to integrate two argu-
ment identification models, which were integrated with predicate sense disambigua-
tion. This method enforces the outputs of both argument identification models to agree
with each other as much as possible. In this approach, we iteratively applied the simi-
lar dynamic programming algorithms for the whole joint model and thereby optimized
a dual bound on the model object. In cases where our algorithm converged, we had a
certificate of optimality under the full model.

Finally, we run a joint argument classification model for the identified arguments
from dual decomposition. This joint model implemented predicate sense disambigua-
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Dual decomposition

Predicate sense disambig. [ Predicate sense disambig.
Argument identification Argument identification

e
- Predicate- Local argument
argument classification
reranking

Figure 4.2: The overall architecture of our system.

tion and argument classification simultaneously, which made both subtasks can help
each other. For the sentence in Figure 4.1, if we know* wear” has a sense of* to put
something on one ’ s body ” , then we will guess there should be two arguments: one
is something related(clothing) and another is somebody related(wearer). In the same
way, if we know two arguments: one is wearer and the other is clothing, we can guess
the predicate sense is* to put clothing on wearer ' s body ” . The joint probability that
they are disambiguated correctly simultaneously is larger than incorrect cases.

Experiments on the Chinese corpus provided by CoNLL-2009 shared task show that
(1) the automatic predicate sense disambiguation is helpful for semantic role label-
ing; (2) argument identification subtask greatly benefits from the dual decomposition
method, which leads to higher final performance for PA structure analysis.

The rest of this chapter is organized as following:

Before presenting our algorithm, the theory for our approach about dual Decom-
position will be described in Section 4.2; Section 4.3 outlines two joint models:(1)
argument identification; (2) joint argument classification and predicate sense disam-
biguation, followed by our dual decomposition method to achieve the final argument
identification problem formulation in Section 4.4. Section 4.5 gives the experiment
results and analysis in detail. Finally, Section 4.6 concludes the chapter.
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4.2 Dual Decomposition

4.2.1 Introduction

Dual decomposition, also called Lagrangian relaxation, is a classical method for
combinatorial optimization; it has recently been applied to several inference problems
in natural language processing. Dual decomposition leverages the observation that
many decoding problems can be decomposed into two or more sub-problems that can
be solved efficiently using some exact algorithms. And these subproblems must satisfy
linear constraints to enforce some notion of agreement between solutions to them. The
agreement constraints are incorporated using Lagrange multipliers, and an iterative
algorithm is used to minimize the resulting dual. Dual decomposition algorithm have
the following properties [31].

e They are typically simple and efficientlJ

e They have well-understood formal properties, in particular through connections
to linear programming (LP) relaxations[]

e They produce an exact solution to the original decoding problem with a certifi-
cate of optimality in cases where the underlying LP relaxation is tight.

4.2.2 Lagrangian Relaxation

Consider we have some finite set Y, which is a subset of R?. The score associated
with any vector y € Y is

h(y)=y-6

where 6 is also a vector in R¢. The decoding problem is to find

y* = argmax h(y) = argmax y- 0 4.1)
yey yey

In some cases the problem in Equation 4.1 is intractable and we thus need to resort
to approximations. The first key step in Lagrangian relaxation will be to choose a finite
set Y/  RY and it must has the following properties [31].

e Y C Y'. Thus all the vectors in Y can be found in Y’.
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e For any value 0 € R4, it can be easily found

argmaxy- 0
yey’!

e Assuming there exits linear constraints that make

Y:{y:er'andAyzb}.

The original problem can be converted to be an constrained optimization problem. A
solution to the relaxed problem is an approximate solution to the original problem, and
provides useful information. By using a Lagrangian multiplier, the constraint Ay = b
can be introduced into the objective:

L(u,y) =y-0+u-(Ay—b)

This function combines the original objective function y - 0, with a second term that
incorporates the linear constraints and the Lagrange multipliers. The dual objective is

L(u) = max L(u,y) (4.2)
yey’
Since Y’ also contains some vectors that are not in Y, L(u) > h(y). In other words, L(u)
will be an upper bound on the original problem. The dual problem is to find
)
where p is the number of linear constraints on y.

To minimize the approximate objective L(u), local updates can be used. Each itera-
tion the value returned by L(u) is a candidate upper bound to the original problem, the
smallest of which is kept as the best upper bound. We can iterate until the best upper
bound and the cost of the best feasible solution to a desired tolerance.

Subgradient method, which has been widely applied to solving Lagrangian relax-
ation problems and is often surprisingly effective, in spite of it being a simple method.
The subgradient method is similar to gradient descent, but is applicable to non-differentiable
objective. We set the initial Lagrange multiplier values to be u® =0. Fork=0,1,2,---,
this method iterates

Y = argmax L(uk,y)

yey’
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ukJrl — uk _ ak(Ayk+1 _ b)

where oy is the step size at the k’th iteration. At each iteration, a structure y**! is

found, and is used to update the Lagrange multipliers. y*™! can be found efficiently
for that:
argmax L(u(k) ,y) = argmax (y- 6 + u) . (Ay—0b))
yey’ yey’
= y . 9/
yey’

where 0’ = 6 + ATuX). Therefore the Lagrange multiplier terms are easily incorpo-
rated into the objective function.

A well-known theoretical result is that the subgradient method is guaranteed to
solve the optimality whenever the step-sizes are chosen such that limy_,., oz = 0 and
Y o O = o [43, 1]. One example of such a step-size is 0y = % Komodakis et al. [23]
introduced further possibilities of how to choose the step size.

4.2.3 Dual Decomposition

Dual decomposition is a special case of Lagrangian relaxation. Assuming there are
several finite sets ¥ C R¥ and some finite sets Z C R?. Each set y €Y, z € Zhave the
following respective associated scores

f) =y-0
g(2) —7.002

6, 6@ are vectors in RY and R respectively. The decoding problem is then to find
max y . 9(1) +Z . 9(2)

yeY zeZ (43)
such that Ay+Cz=b

where A e RP*4 C e RP*4 and b € RP.

Under the linear constraints specified by Ay 4+ Cz = b, the decoding problem is to
find the optimal pair of structures. In practice, the linear constraints often specify
agreement constraints between y and z. These agreement constraints specify that the
two vectors are in some sense coherent [31]. The decoding is to find

max y- 6 7.0 4.4)
yeY,zeZ Ay+Cz=b
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Unfortunately, Equation 4.4 is not easily to solve most time, but if for any value of

0' € R?, it is easy to calculate argmax y - o), Similarly, for any value of 8% € R,
yeyY

we can easy calculate argmax z- 02, Then it is easy to get Equation 4.5 by setting
2€Z

y* =argmaxy-0") 7" = argmax z- 612
yeyY ZEZ

and dropping the linear constraints Ay 4+ Cz = b.

(v*,z*) = argmaxy- 0 + 7. (%) 4.5)
yeY,zeZ
The dual decomposition algorithm is then derived in a similar way to before. After
introducing a vector of Lagrange multipliers, # € R?, the Lagrangian is now

L(u,y,z) =y 0V +2-0@ +u- (Ay+Cz—b)

And the dual objective is

L(u): max L(u,y,z) (46)
yeY,zeZ

To find m}%} L(u), a common method is the subgradient algorithm. Initialize the
ue

Lagrange multipliers to u® =0.Fork=0,1,2,---, the following steps are performed:

k+1 k+l)

G = argmax L(u,y, 2)

yeY,zeZ

W = ik o (A A p)

where o, stepsize.

From the assumptions for Equation 4.5, it can be seen that the solution y<+!, z&+!

are calculated easily, because it is easily verified that

argmax L(u¥,y,z) = (argmax y - 0’V argmax z- 9'(2))
yeY,zeZ yeY zEZ

where 8’(0) = 0() 1 ATy/* and 6'®) = 6(2) + CTu*. Thus the dual decomposes into
two easily solved maximization problems [31].
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4.3 Model Definition

All our models were constructed based on the direct graphical representation of the
predicate argument structure which is shown in Figure 3.1.

There are two kinds of vertices in the structure: a predicate vertex and argument
vertices. The label of predicate vertex corresponds to the sense of the predicate. For
argument identification subtask and argument classification subtask, the argument ver-
tices represent in different ways. In argument identification subtask, the argument
vertices correspond to the identification labels, which indicate whether their corre-
sponding words in the sentence are arguments; in argument classification subtask, the
argument vertices correspond to the semantic roles under this predicate sense. The
solid squares are factors, which are vectors of associated potential functions. Each po-
tential function is assigned a real-valued potential value given by features. There are
four kinds of factors and we have presented them in Chapter 3, Section 3.2 in detail.
In order to distinguish their different functions in argument classification subtask and
argument identification, we use B to note factors that work for argument identification
and A for argument classification.

4.3.1 Argument Identification

Given a sentence X = {xy,...,x,,...,X,} with the predicate position p, we de-
fined the local probabilistic model Pri¢  (B|X) in Equation 4.7. Since for Chi-
nese, the predicate cannot be an argument of itself, we define a label sequence B =
<b1 voabp 1 by, ,bn> for X with each b; indicating whether the index word is an

argument or not.

n

i i . redlabel
Prlzcal(B‘X) = H PrOb;gcal(bi‘PaXalap) 'PrObZ;:ala ‘ (P|X7p> (47)
i=1(i#p)
where P indicates the sense of the predicate word x,,. For this joint task, three kinds of
features are applied. Fp = < f3j> is an argument factor for identification assignment of
one argument candidate. Fpg = (fpp,) is a predicate argument pair-wise factor for iden-
tification assignment of one argument candidate and predicate sense determination.
Fp = (fp) is a predicate factor for disambiguating predicate senses. We also define
their corresponding weight vectors Ag, = <lf3j >, App = <lfPBk> and Ap, = <AfPI >
respectively.

32



predlabel

Based on these definitions, the probi¢ local

; and prob could be represented as

loca

probif, (bilP,X,i,p) = ———exp{ ) Ags, f3;(X,Di)

local(X) fBjEFB
+ Z )’fPkaPBk(X>p7P)bi)})

frB, EFpp
and
bpredlahel(P’X ) ;CX { Z A f (X P)}
local Zpredlabel X p fr, /By P ’
local ( ) fp €Fp
where Zlff . and Zf;rcefllabd are normalized factors and are defined below:

Zlocal - Z exp{ Z A‘fB fB (X b)

b;eT(B) fB €Fp

+ Z A’fPkaPBk (X,p,Pbi)};

frB, €FpB

Zia "= X el ¥ Ay fn(Xop P}
PET(xp) fp,€Fp

Normally, a binary label set is enough for argument identification. In our model, we
defined two label sets. In our model, we defined two label sets. One is a binary label
set T(B) = {ARG,NONE} and the other is T(B') = T(A)U{NONE}. T(A) contains
all the semantic role labels in the training corpus. It is obvious that the 7/(B) can be
viewed as the subdivision of 7' (B’). In addition, for argument identification classifier
with T'(B), the features in Fpp are not used. Whereas for the classifier with the 7' (B’),
another global model is proposed:

1

Pr, lobal(B/|X) Prlocal(Bl|X €Xp{ Z 2’meme (B/ )} (48)
global fom€Fc

where fg,, is one of the feature functions defined on global features and Ay, is its

corresponding feature value; Z4

elobal is for normalizing and is defined as:

Zglobal Z Prlocal(B/|X exP{ Z A‘meme (B/ )}

B'eB'(X,p) fen€Fc

and B'(X, p) stands for all the possible label sequences. For the computation conve-
nience, the beam search algorithm was used.
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4.3.2 Joint Predicate Sense Disambiguation and Argument Classi-

fication
Given the identified argument sequence B = by,--- ,b,,, m < |x|, this joint task is
to determine such a sequence S = ay,---,P,--- ,a, = (A,P). Each q; is a semantic

role for the ith word in the sequence and this word is indicated as an argument. i.e.
b; = ARG is determined in argument identification step. P still indicates the sense of

the predicate word x,,.
arglabel
P local

. And these two models are similar with those mentioned in Chapter 3.

In this model, we propose two sorts of label assignment models: and

arglabel
P rglobal

First, we define the label assignment model Prf’rcgé?bel in Equation 4.9 only using

local factors. This model is also similar with the argument identification model. In
argument identification model ,the final results for predicate sense are ignored.

label Label dlabel
probirst(s|x B) = T probl (a[X.b.P)- probfl™ (PIX.p)  (49)
i=1,i#p
Also, we introduce several new feature vectors. Fy = < fAj> is an argument factor
for semantic role assignment of one argument. Fpy = < prk> is a predicate argument
pair-wise factor for semantic role assignment of one argument and predicate sense
assignment. We also define their corresponding weight vectors: Ap, = <A’fA<> and
J

Apy, = <7Lfmk> respectively. In addition, a global factor Fg = (fg,) is introduced,
which is a feature vector for label assignments of all arguments and predicate sense
and Ap, = <)~fcq> is a learned weight or parameter associated with F;. Using these

arglabel

expressions, prob, °

can be represented as :

label 1
probi,e,  (ailX b, P) = Zarslabel “araianer P Z AJA Ja; (X, bisa;)

local fA EFy (4.10)
Z ;LfPAkaAk(Xapvpabivai)}
Sra, EFPA
where Zlaarcgé?bel is a normalization factor over the identified argument b;, i.e.,

label
Zisd = X, el Y Ap fa,(Xbia)+ Y Ag fea, (X, p,Pbisai)}
a;€T(A) fA EFy fra, €FPA

predlabel

local - it has the same formulation mentioned in Section 4.3.1.

as for the prob
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. arguable
Second, we define a label assignment model pr global

(Fp, Fpa, F4) but also global feature vector Fg as follows:

global A elg

arglabel _ 1 arglabel
Prglubal (S|X) " arglabel PTiocal exp {f Z }Lqu qu (S7X) }
G

using not only feature vectors

(4.11)

Where the normalization factor over the label sequence from local model is defined

as:

arglabel arglabel
Zglobal - Z Pliocal exp Z )'qu qu (SvX)
SeS(X,p) f6,€FG

4.3.3 Features

The features used in our models are listed in Table 4.1. We use ID and CL to

distinguish features used in argument identification and argument classification steps

respectively; we use superscript B and B’ to indicate classifiers with tag sets 7'(B) and

T(B') in the argument identification step.

Table 4.1: Features in our system

Factor  Features Step
POS, lemma of the predicate and its parent IDB ’ ,IDB,CL
F Dependency label of the predicate IDB ’ ,IDB,CL
Frameset of the predicate IDB ' ,IDB
Set of the dependency labels of predicate * s dependents IDB ’ ,IDB,CL
POS, lemma of the argument (candidate) and its parent IDB ' , IDB,CL
Lemma, POS of the leftmost/rightmost dependent/sibling of IDB * ,IDB,CL
Fy/Fy the argument (candidate)
Dependency labels of the argument (candidate) and its de- IDB '’ , IDB,CL
pendents
Position of the argument (candidate) with respect to predi- IDB ’ ,IDB,CL
cate in the dependency tree. Such as parent, child, grand-
parent et al.
Location relation between the argument (candidate) and IDB '’ ,IDB,CL

predicate in the sentence with values in before, after, equal
Continued on next page
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Table 4.1 — Continued from previous page

Lemma, POS and dependency paths between the argument IDB ' ,IDB,CL
(candidate) and predicate with the direction of the edge. i.e.

Nt VV

Lemma of the current argument (candidate) IDB ' ,CL
Fou)Frs Combination of Lemma and POS of the current argument IDB ' ,CL

(candidate)

POS of the current argument (candidate) IDB’

Dependency label path between the argument (candidate) IDB ' ,CL
and the predicate in the dependency tree.

Fs Sequence of the predicate sense and core argument labelsin IDB * , CL
the structure.

The features in our model can be categorized into four types by the factors (solid
squares) in Figure 3.1. Three factors are local factors and each factor is a vector of
local features. The last factor is a global factor consisting of global features. Since
factors Fy, Fps, Fg have been introduced in Chapter 3 Section 3.2, we just introduce
factors Fp and Fpp in the following.

Fp
features belong to this type action as scoring a identification assignment for a
specified argument and these features do not depend on predicate sense.

Fpp
features in this type are used for capturing the local dependencies between a
predicate sense and one of its arguments. These features influence both the pred-
icate sense and the argument identification subtasks and make both subtasks can
learn from each other.

4.3.4 Parameter Estimation

Unlike the Part-of-Speech(PoS) tagging and word segmentation tasks [27], the fea-
ture space in predicate argument structure analysis is much larger. We chose predication-
based Passive-Aggressive online learning [9] with parameter averaging technique used
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in [53] to estimate the weights. Passive-Aggressive(PA) learning is an error-driven
learner that shifts weights towards features of the gold solution and away from fea-
tures of the current guess, whenever the current model makes a mistake.

The PA learning algorithm we used here is the same as that in Algorithm 1. And the
C in this PA algorithm is set to 1.0.

4.4 Our Dual Decomposition Algorithm

Dual decomposition is a method of solving global optimization problems that can
be decomposed into efficiently solvable local sub-problems [32]. Under two labels
sets T(B) and T (B'), there are two argument identification models and their outputs
are represented by B and B’ respectively. In order to implement joint inference, we
iteratively applied exact inferences to the both models, adjusting their potentials to
reflect the constraints of the full problem.

4.4.1 Dual Problem Formulation

Before describing the dual decomposition inference for two argument identification
model integrations, we restate the inference problem under our joint model.

Firstly, we introduce a boolean matrix c’. Using this matrix, it is easy to encode
the output B: CB € {0, 1}/BIx{ARGNONE}| " gimilarly, we could define a matrix C5' €
{0, 1}B'1x{ARG.NONE}| 1y mapping T(B') to {ARG,NONE} with a simple rule, for
any b; € B' and b; =tag € T(B'), if tag # NONE, then tag is mapped to ARG, this
matrix encodes the output from the joint model:

If the word x; with the label "tag” is included in the output of the B’, then Cirag=1.
Otherwise, it equals 0; finally, let I be the index set of all (i,7ag) for matrix C, then the
maximum likelihood assignment to our original model can be found by optimizing:

argmax <Pr;gcal (B,C?.X) +Pr£,‘fobal (B’,CB/,X>>
BB (4.12)
such that €% =¥

The Lagrangian relaxation of this optimization problem is :
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local

+ Z u(i,tag) <CB/(i,tag) —CB(i,tag)>
(itag)el

L(B/,B,u) = Prgfr)bal (B/7CB/7X) +Prid (B’CB’X)
(4.13)

If L* is the optimal value of Equation 4.12, then for any value of u, L* = argmax L(B, B, u)
under the constraints in Equation 4.12. Since L(u) is maximized over a larger space,
the dual problem obtains the upper bound L(u).

In this case, the original problem is decomposed into two terms:

argmin (argmax [Préffobal <B’,CBI,X) + ) u(i,tag)CB/(i,tag)]
u B B (ijtag)el

+argmax [Prfzwl (B,CB,X) — Z u(i,tag)CB(i,tag)] )
B,CB (itag)el

As in previous work [32], we solve the dual variable u by subgradient optimization
methods which are iterative algorithm with updates:

Wt =u+a- (Cér(i,tag) —CB/r(i,tag)>
where ¢ is a step size. It is obvious that u can be solved by repeatedly performing
inference in the argument identification task explained in Section 4.3.1.

4.4.2 Convergence

According to Korte [2], if lima” =0and } 7 ; a” = oo, the subgradient method can
r—yoo
be shown to solve the dual problem:

lim L(u") = L(u).

r—roo u

As mentioned before, the dual provides an upper bound on the primal problem:

(B,CB X) + Prid <B’,CB’,X)) < min L(u) (4.14)

id
argmax (Pr global
ucRI

local
BB CB=CP
Our dual decomposition algorithm provides an inference method that is exact upon
convergence. In this case, the equality in Equation 4.14 is satisfied. When the equality
is not satisfied, i.e. when the Algorithm 2 does not converge, the B’ can still be used.
While B and B’ may differ, B’ will likely be more similar to B than the assignment of
the independent model.
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ALGORITHM 2: The parsing algorithm for inter two argument identification
classifiers
for r=11t0 1T do
o 0.1 x 1;
P argmax [Préffabal (B’,CB/,X> + X (irag)el ur(i,tag)CB/(i,tag)} ;
B'7CB/

CP anglggax [Pr;‘fobal (B,C®.X) — Y(isag)el ur(i,tag)CB(i,tag)} ;

if ¢ = CP" then;
return CB";
Wil e +o- (Cér(i,tag) — CB7r(i,tag)>

end

return Bcé,mr ;

4.4.3 Joint Parsing Algorithm

The joint algorithm for a u that optimizes the argmin L(«) which can be iteratively
obtained via sub-gradient descent. Algorithm 2 shows our joint parsing procedure.
The learning rate 1/r decays with the number of iterations r.

If the algorithm converges, then we have found a u, which optimizes the value of c?
and C® by B’ and B. Hence, it is still a solution to our original optimization problem.
However, when the algorithm does not converge, the result sequence B’ is alternative
for the optimized result of argument identification, because the independent classifier
with 7' (B’) has better performance than classifier with 7'(B). Even in that case, the two
results may include some inconsistency, but they will likely be more consistent than
that of independent models.

4.5 Experiments and Discussions

4.5.1 Experimental Settings

The dataset setting is the same as that mentioned in Chapter 3 Section 3.7.2. In
order to get the syntactic parsing features for Predicate argument structure analysis.
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The second order MST parser [4] is trained using the Passive-Aggressive algorithm
which is similar to Algorithm 1 in Chapter 3.

The number of iteration for Passive-Aggressive algorithm was set to 5. Since it is
difficult to calculate all the possible assignment sequences for global model, we apply
beam search to generate N-bests by local model and apply global features for them. A
larger N makes the training and calculation expensive and more N local outputs would
lead to more local results having the same global features. In our experiments, the
value of N is 3.

As for the evaluation, we still use the criteria listed in Chapter 3 Section 3.7.2
which are provided by CoNLL-2009 shared task.

4.5.2 Predicate Argument Analysis and Discussion

Table 4.2 lists the performance of predicate argument analysis in our model and
the newly top 3 systems in the latter three rows. The first two rows show when the
predicate senses are used to label semantic roles, the performance of the predicate
argument analysis can be improved from 77.47 to 78.97. And as expected, the lower
recall problem also is improved. Comparing with the SRL result without argument
identification step in first row, the recall is improved by 0.2 percent.

Table 4.2: Results on Chinese dataset of CoNLL-2009 shared task

Systems Sem.P Sem.R Sem.F
Without argument identification and PA factor 81.5  73.82  77.47
Without argument identification 82.94 7536 78.97
With dual decomposition 83.31 7592 79.44
[Bjorkelund, 2009] 8242 75.12 78.60
[Meza-Ruiz, 2009] 82.66 7336 77.73
[Zhao, 2009] 80.42 7520 77.72

Since the dual decomposition is applied in argument identification step, we can also
see that the predicate argument structure analysis can benefit from argument identifi-
cation task. Also, with dual decomposition method, the result is better than the current
best results.
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4.5.3 Argument Identification Performance with Dual Decomposi-
tion

In order to see how many improvement can be obtained from dual decomposition
method, the performance of predicate argument structure analysis is calculated using
the unlabeled semantic evaluation metric of the CoNLL-2009 shared task score. It
measures the performance of the argument identification task by the unlabeled preci-
sion (UP), unlabeled recall (UR) and unlabeled F; (UF) score.

# predicates 4 # of correct arguments

#predicates 4 # of returned arguments
# predicates 4 # of correct argument

semantic unlabeled precision UP =

semantic unlabeled recall UR =

#predicates + # arguments
2UP-UR

semantic unlabeled UF = ———.
UP+UR

Table 4.3 shows the changes of the performance with different maximum iteration
IT in Algorithm 2.

Table 4.3: Performances on the argument identification task assuming a fixed number
of iteration

Iterations  UP UR UF

0 90.3 82.03 85.97
1 90.41 82.1 86.06
3 90.48 82.21 86.15
5 90.55 82.25 86.2
10 90.44 82.41 86.24

From these results, it can be seen that the larger IT is, the better the performance is
when IT is not big enough, which can be explained by the reason that the number of it-
erations are required for convergence (we donot give the detail about the convergence.
This convergence can be reflected by the results with tiny fluctuations); also the dual
decomposition method gives a significant gain in recall and precision over the method
without argument identification task, which boosts the performance of predicate argu-
ment structure analysis on the Chinese test set.
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4.6 Summary

In this chapter, we briefly describe some knowledge related dual decomposition in-
ference approach. By applying this inference approach, it provides a possible way
that we can use the important information from argument identification subtask, while
alleviate the error propagation between argument identification and argument classifi-
cation subtasks.

As summarizing in Chapter 3, by adding a special label NONE to argument clas-
sification subtask, the subtask can play the role of identifying the arguments. In this
case, the argument classification subtask can also be viewed as argument identification
subtask. By introducing linear constraints, we present a dual decomposition algorithm
to combine this argument classification subtask and another simpler argument identi-
fication subtask. This approach is greatly helpful for improving the performance of
argument identification, which is indirectly related to the final selection preference. As
seen from the experiments in Section 4.5.2, this approach improves our lower recall
problem and we achieved the best result reported so far on the same dataset.

It is noteworthy that the runtime penalty is kept minimal by using dual decompo-
sition, the total time consuming is still considerable since the expensive computation
time is required for predicate argument structure analysis. Table 4.4 lists the asymp-
totic of our models with respect to one prediction with n candidate arguments; each
predicate has |T(P)| senses and IT iterations for dual decomposition. Other symbols
have in Table 4.4 have the same definitions as in Section 4.3.1. In the future, we want
to apply some pruning techniques to reduce the number of argument candidates.

Table 4.4: Time complexity analysis

Systems Complexity
Without argument identification ~ O(n|T(P)||T(B')|)
With dual decomposition O(nIT|T(P)||T(B)|)

In our method, we just focused on applying the dual decomposition method in ar-
gument identification. Ideally, we look forward to discovering the best way to take
advantage of this method in the whole predicate argument structure analysis, which
can lead to a true joint system. In addition, we also need to conduct feature engineer-
ing experiments to figure out which features are useful for predicate argument structure
analysis.
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Chapter 5

Exploring Shallow Parsing
Information for SRL

The bulk of previous work on automatic SRL has primarily focused on using full
constituent parse of sentences to define argument boundaries and to extract relevant
information for training classifiers. However, there have been some attempts at relax-
ing the necessity of using syntactic information derived from full parse trees. Sun et.al
[46, 45] addressed the Chinese SRL problem on the basis of shallow syntactic infor-
mation at the level of phrase chunks. In their approach, Chinese SRL is formulated
as a sequence labeling problem, performing IOB2 decisions on the syntactic chunks
of a sentence. However, this method ignores the full syntactic parsing information en-
tirely, and we believe that even the accuracy of full syntactic parsing is not ideal, it is
still helpful for SRL. Moreover, their method is inapplicable to syntactic dependency
based SRL since a chunk usually consists of successive words. Little is known how
the SRL over word units performs with shallow syntactic information.

In this chapter, we first implemented a SRL system, which only used shallow syntac-
tic related information, to see how the SRL over word units performances without any
full dependency syntactic information. Then we added these shallow syntactic related
features to our syntactic dependency based SRL and observed how shallow syntactic
related information influence the SRL results.



5.1 Shallow Parsing-based SRL

Shallow parsing-based SRL in our method is formalized as the task of assigning
argument role labels and predicate sense to word units without using dependency in-
formation but use shallow syntactic related information.

5.1.1 Chinese Shallow Parsing

Chinese shallow parsing has been researched for years and a variety of chunk def-
initions have been proposed. In our system, we used the chunk definition presented
in [6] which also provided a chunk extraction tool!. This tool extracted chunks from
Chinese Tree Bank (CTB) and was developed by modifying the English tool? used in
the CoNLL-2000 shared task. We also use the sentence in Figure 2.1 to illustrate the
definition of chunks in line CH in Figure 5.1. In this example, ” O OO O [0 ” (finance
work) is a noun phrase and is composed by two nouns.

WORD | 4 FE iR &k TAE Jiyges BFE D%+
POS NN NR NN NN VvV JJ NN
CH [NP] [NP] [ NP ] [VP] [ADJP] [NP]
TAG | B-NP B-NP B-NP I-NP B-VP B-ADJP  B-NP
SRL | TMP NONE NONE A0 H5.01 NONE Al

Figure 5.1: Example under shallow parsing-based SRL.

The problem of Chinese chunking has been regarded as a sequential labeling task
in previous research. As the Inside/Outside representation for proper chunks that was
first introduced in [40], we use the following set of three tags for presenting proper
chunks which can be reflected by TAG line in Figure 5.1 .

B Current word is the beginning of a chunk.

I  Current word is inside of a chunk.

"http://www.nlplab.cn/chenwl/chunking.html
http://ilk.uvt.nl/team/sabine/chunklink/chunklink\_2-2-2000\_for\_conll.pl
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O  Current word is outside of a chunk.

We carried out Chinese chunking task with software package CRF++>. Unlike hid-
den Markov models(HMMs), it can capture many correlated features of the inputs. As
this package has a single exponential model for the joint probability of the entire paths
given the input sentence, it overcomes the label bias problem in maximum entropy
Markov models (MEMMs). To illustrate conveniently, we denote a word in focus with
a fixed window x_px_1xgx11x12, Where xq is the current word. The feature template
used is defined as:

e Uni-gram word/POS tag features: x_,, x_1, xo, X4+1 and x5.

e Bi-gram word/POS tag features: x_,x_1, x_1X0, XoX+1 and x4 1x42.

5.1.2 Features

In Figure 5.1, words, labeled as NONE in the line SRL, are not arguments for the
predicate: U [0 (get) and the predicate sense is represented as [ [1.01. Obviously,
words in chunks do not have equal importance for SRL. Headwords represent the main
meaning of the chunks. The base phrase chunking related features are only applied to
these headwords. The rules described in Sun and Jurafsky [44] are used to extract
headwords as listed in Table 5.1. For non-headwords, only the lemma and POS infor-
mation is used.

Table 5.2 shows the chunking related features for headwords. These features also
meet the classification definition in Chapter 3 Section 3.2. Verb Class in Table 5.2 is
represented similarly as Verb.C1C2, which means this verb has two senses. For its first
sense, it has one core argument and for its second sense, it has two core arguments.
These verb classes are extracted from Chinese PropBank [55].

Table 5.2: Features in shallow parsing-based Chinese SRL

Predicate Factor

POS part of speech of the predicate
part of speech of the words that immediately precede and

follow the predicate

Continued on next page
Shttp://crfpp.sourceforge.net/
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Table 5.2 — Continued from previous page

Verb Class

the verb classification according to its framesets annotated
in CPB

Lemma

lemma of the predicate
lemma of the words that immediately precede and follow
the predicate

Argument Factor

Chunk

chunk tag of headword with IB representation (e.g. B—NP)
chunk tag of the chunk where the headword belongs to

the number of words in a chunk

the POS sequence of words in a chunk, for example, for
00007 (finance work) is "NN_NN”

the position of the chunk with respect to the predi-
cate(Position)

the conjunctions of Position and headword, predicate and
verb class

the conjunctions of Position and POS of headword, predi-
cate and verb class

lemma/POS of one word immediately before/after of the
chunk

Path

a chain of chunk types between the headword and the pred-
icate

the length of the chunk chain between the headword and the
predicate

Predicate

POS tag/lefomma of the predicate
verb class of the predicate
verb formation of the predicate®

Predicate-Argument Pairwise Factor

Lemma
POS
Lemma and POS

lemma of the current argument

part of speech of the argument

combination of the lemma and part of speech of the argu-
ment

Continued on next page

4Sun [46] defined 9 kinds of word formation for Chinese compound words and put forward an

algorithm to abstract them. This information is shown very useful for Chinese SRL.

46



Table 5.2 — Continued from previous page

Global Factor
Semantic Sequence the core semantic label sequence with the sense of the pred-

icate in consistent with their location in the sentence.

5.2 Shallow Parsing Information for Syntactic Depen-
dency based SRL

As the syntactic dependency based SRL models in Chapter 3 can achieve compet-
itive results compared to the state-of-the-art systems, we still use the same models in
this chapter.

5.3 Results and Discussions

5.3.1 Experimental Setting

We use the same dataset as that in Chapter 3. In order to be convenient for com-
parison, two kinds of dependency parsing results are provided, the first is from MALT
parser, the second is from second-order MST parser > [4]. For this parser, McDonald
et al [28] modified the MIRA learning algorithm for structured domains in which the
optimization problem can be solved by using the Hidreth’s algorithm [5]. It is ob-
vious that using such an optimization technique is more expensive than not using an
optimization technique. Thus, instead of the modified MIRA, we adopted the Passive-
aggressive algorithm that similar to Algorithm 1. Table 5.3 compares its performance
with given MALT dependencies.

Most of features templates are “standard” which have been widely used in previous
dependency-based SRL research and has been listed in Chapter 3, we do not explain
’standard” features here. As for the base phrase chunking related features, they are the
same as shown in Table 5.2.

Shttp://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.tar.gz
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Table 5.1: Head rules for Chinese chunks

Parent Direction Priority List
ADIJP Right ADJP JJ AD
ADVP Right ADVP AD CS JINP PP P VA VV
CLP Right CLP M NN NP
CpP Right CPIP VP
DNP Right DEG DNP DEC QP
DVP Right DEV AD VP
DP Left M(r) DP DT OD
IP Right VP IP NP
LST Right CD NP QP
LCP Right LCPLC
NP Right NP NN IP NR NT
PP Left P PP
PRN Left PU
UCP Left IP NP VP
VCD Left VV VA VE
VP Left VE VC VV VNV VPT VRD VSB
VCD VP
QP Right QP CLP CD
VPT Left VA VV
VRD Left VVI VA
VSB Right VV VE
Parsers labeled attachment wunlabeled attach- Label accuracy
score(LAS) ment score(UAS) score(LA)
MALT parser 78.46 80.70 85.45
MST parser  82.00 84.90 88.57

Table 5.3: Dependency performance comparison among MALT parser and second-

order MST parser on the test corpus.
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5.3.2 SRL Performance

Still using the semantic evaluation metric of the CoNLL-2009 shared task scorer,
Table 5.4 gives the comparison of SRL performance before and after adding the pro-
posed base phrase chunking related features on the test data. Lines with —/4 show the
SRL performance without/with base phrase chunking related features. As seen on this
table, without gold dependency parse, the best SRL is up to 80.52 in F; score. To the
best of author’s knowledge, there are few Chinese SRL results more than 80%.

P(%) | R(%) | ¥1(%)
Gold parsing — 88.68 | 86.30 | 87.47
Gold parsing + 90.03 | 87.71 | 88.86
MALT — 82.64 | 72.68 | 77.34
MALT + 84.17 | 74.67 | 79.13
MST-2 — 83.01 | 75.39 | 79.02
MST-2 + 84.49 | 76.92 | 80.52
+ 80.77 | 66.62 | 73.02

Table 5.4: SRL results without/with base phrase chunking information.

The last row in Table 5.4 also shows the SRL performance without any dependency
syntactic information, but only with base phrase chunking related features. Comparing
the results only with dependency syntactic features, it confirmes our belief that even
the accuracy of full syntactic parsing is not ideal, it is still helpful for SRL. And to our
best knowledge, it is also the first to apply shallow parsing information to word units
for SRL.

On the other hand, comparing the lines with —, it shows dependency parsing play
the central role in Chinese SRL as most research does. Comparing their corresponding
lines with 4, Chinese SRL can still benefit a lot from shallow parsing information. An
example from the corpus is shown in Figure 5.2.

Figure 5.2a shows the gold dependency parsing result and the gold predicate argu-
ment structure; Figure 5.2b shows the dependency parsing result from MALT parser
and the predicate argument structure as a result of the predicted parse; Figure 5.2c
shows the predicate argument structure which is predicted after adding base phrase
chunking related features. In Figure 5.2c, the subscripts stand for chunk types. From
Figure 5.2b, it can be seen that the argument A1 is not identified by the dependency
based SRL because of dependency errors. Comparing Figure 5.2b and 5.2c, we can
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Figure 5.2: An example that the argument prediction error brought by MALT parse
errors is corrected by introducing base phrase chunking related features.
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see that after adding the base phrase chunking related features, this SRL error brought
by dependency parsing errors is corrected.

Line MALT+ and line MST-2— show that even the dependency parsing result from
MALT is not better than that from second order MST, with the aid of chunking related
features, Chinese SRL can still get comparable results.

5.4 Summary

In this chapter, we first explored the SRL performance over word units by the shal-
low parsing based SRL that did not use any dependency syntactic information. Then
added these base phrase chunking related features to a dependency based SRL system
and investigated the benefit that our Chinese SRL model can get from them. Evalu-
ations on the corpus show that chunking information well complements dependency
based SRL. With these features, the F-measure of our dependency based SRL reached
more than 80. However, without any dependency syntactic information, the perfor-
mance of shallow parsing based SRL can not compete with the performance of depen-
dency based SRL.
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Chapter 6

Exploring Additional Dependency
Information for SRL

6.1 Introduction

In recent years, SRL has become an important component in many kinds of deep
natural language processing applications, such as question answering [34], event ex-
traction [41], document categorization [36]. SRL aims at identifying the semantic
relations between predicates in a sentence and their associated arguments, with these
relations drawn from a pre-specific list of possible semantic roles for corresponding
predicates. Syntax information is essential in SRL systems. To date, both constituent
parsing and dependency parsing based SRL have been investigated [55, 21], with de-
pendency based systems giving superior results in CoNLL 2008 [48] and CoNLL 2009
shared tasks [19].

However, the performance gap is still quite large between SRL systems using oracle
“perfect” dependency parses and SRL systems using automatic dependency parses.
We observe as much as 10% F-score difference in our experiments. Clearly, errors in
the 1-best dependency parse affects SRL prediction. This leaves an open question: in
order to improve dependency based SRL, is it more worthwhile to incorporate more
dependency information (in the form of N-best parse), or to incorporate an entirely
separate source of information, such as base phrase chunks? We perform such an
analysis in this paper, using the state-of-the-art Chinese SRL system in Chapter 3.

In the following, we first describe related work in Section 6.2. Then present how to
get N-best dependency parsing results and how to apply the N-bests to SRL in Section
6.3. The experimental results and discussions are shown in Section 6.4. Furthermore,



combining the chunking related features in Table 5.2, we also explored which informa-
tion is important for SRL and answered the open question by the experimental results.
Finally, our work is concluded in Section 6.5.

6.2 Related Work

A substantial amount of research has focused on dependency-based SRL [30, 27]
since the CoNLL-2009 shared task and rich linguistic features [57] are applied. For
dependency related features, most studies focused on extracting them from the best
dependency result. Johansson and Nugues [21] tried to use N-best dependency parsing
results. In their work, they applied 16-best dependency trees to generate predicate-
argument structures and applied both syntactic trees and predicate-argument structures
to a linear model. This model reranked the predicate-argument structures and the top
16 dependency trees at the same time. Though their work suggests that N-best depen-
dency parsing can enhance the SRL, little is known about how the N-best dependency
parsing related features perform on SRL.

6.3 Dependency Parsing

Dependency parsing has been researched for years and a variety of methods have
been proposed [56, 14]. In this chapter, we used the MSTParser [28, 29] which trans-
lates the problem of dependency parsing into finding maximum spanning trees for
directed graphs. Since in our experiments, we used the second-order spanning tree
parsing and we will focus on introducing it.

6.3.1 First-order Spanning Tree Parsing

Given a generic input sentence x = x1,- - ,X,, if y represents a generic dependency
tree for sentence x and contains a set of edges like (i, j) € y if there is a dependency in
y from word x; to x;.

If the score of an edge can be calculated as the dot product between a high dimen-
sional feature representation of the edge and a weight vector
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then the score of a dependency tree y for sentence x can be calculated as the sum of the
scores of all edges in the tree.
sy)= Y s(i)= 3, o f(i))
(i.j)ey (i.j)ey
And dependency parsing is the task of finding the dependency tree y with highest score
for a given sentence x.

6.3.2 Second-order Spanning Tree Parsing

Different from first-order spanning tree parsing, the score of a tree is the sum of ad-
jacent edge pairs. To quantify this, consider the example from Figure 2.3, with words
indexed: root(0) O O (1) --- O O (7). Under the first-order spanning tree formulation,
the score of this tree would be,

5(0,5) +s(5,1) +5(4,2) +5(4,3) +5(5,4) +5(5,7) +5(7,6).
However, in the second-order spanning tree model, the score of this tree would be,
s(0,—,5)+s(5,—,1)+s(4,—,2)+s(4,2,3)
—|-S(5, _74) +S(5, _77) +S(7, _a6)
Here the score function is s(i,k, j), which is the score of creating a pair of adjacent
edges, from word x; to word x; and x;. For instance, s(4,2,3) is the score of creating
dependency edges from [0 0 to J O and from O O to [0 0. The score functions are
relative to the left or right of the head, but can not on different sides of the head. This
left/right dependence makes it is possible to define polynomial second-order projective
parsing algorithms. For example, if the word x; has the modifiers as shown, the score
can be defined:
ijfl
S(Xi, —,Xi ) + Z S('xi7xik7xik+l)
k=1
Im—1
+S(-xi7 _7-xij+1) + Z S(-xiaxikuxikH )
k=j+1

Eisner [14] proposed a first-order algorithm in 0(n3). This algorithm parses the
left and right dependents of a word independently and combines them at a later stage.
McDonald and Pereira [29] extended this algorithm to second-order case. Figure 6.1
illustrates the extended algorithm. For this algorithm, the key insight is to delay com-
pletion of items until all the dependents of the head have been gathered.
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Figure 6.1: An extension of the Eisner algorithm to second-order dependency parsing.

6.3.3 Online Learning

Online learning algorithm have been shown to be robust in structure learning. Mc-
Donald et al [28] modified the MIRA learning algorithm for dependency parsing. In-
stead of this optimization technique that is more expensive than not using an optimiza-
tion technique, the Passive-aggressive algorithm is adopted. Algorithm 3 illustrates
the details.

6.3.4 Error Analysis for Dependency-based SRL

Using the gold parse of dependency relations between a predicate and its arguments
and according to these relations, we classified SRL errors into following three types,
and used C, G, O to represent them separately.

e C: children of a predicate should be arguments but they are tagged incorrectly.

e G: grand children of a predicate should be arguments but they are tagged incor-
rectly.

e O: arguments are incorrectly tagged and these arguments are not children or
grandchildren of a predicate
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ALGORITHM 3: The Passive-Agressive Algorithm for Dependency Parsing

Input: Training set T = {x;, y,}?: |» maximum iteration value I'T and
regularization parameter C.

Output: The parameter @ that minimizes the hinge-loss function and the margin

of learning data A(y,¥) .
W<+ 0,0+ 0,c+ 0;
for itr to IT do
for each (x;,y;) in T do
¥ = argmax ® - F(x;,y);
;= ml.: <C, A~F(x,,ﬁt)—A-F(x[,y,)A-i-Az(yt,)?,) ) :
I Cxroye)—=F (e 30)

@ < O+ 0j(F (xe,y1) = F (%, 5));
V 4= U +c0j(F (xr,31) — F (x¢,91));
c+c+1;

end
end
return @ = ® — v /c;

C| 9.59% | 2,072/21,604
G | 90.85% 139/153
O | 43.93% | 2,626/5,955

Table 6.1: The distribution of SRL errors on Test corpus by the joint model.

Table 6.1 shows the distribution of three errors observed in the test corpus(see Sec-
tion 5.3.1) after tagging by our joint model. For example, there are a total of 21,604
arguments that are children of predicates and among them, and 2,072(9.59%) are er-

Trors.

6.3.5 Features from N-best Dependency Parsing

According to the statistics of corpus, it is found that about 77.96% arguments are
children of predicates. If we can reduce the head errors for dependents, the C errors
caused by dependency parsing errors should be decreased, and SRL tagging results
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N-best | P(%) | R (%) | Fi1(%)
1 83.01 | 75.39 | 79.02
3 82.52 | 77.16 | 79.75
5 82.74 | 77.10 | 79.82
10 82.44 | 7698 | 79.62

Table 6.2: SRL results with N-best dependency parsing related features.

would be improved. Under this hypothesis, we extracted the following features from
N-best dependency parsing results. These features are also included in the ” standard”
feature set when N = 1. For the “standard” features which has been listed in Chapter
3, we do not explain once again.

Arguments’ heads: lemma/pos; lemma and pos; dependency label; whether are pred-
icates.

Position: position of the argument candidates with respect to the predicate posi-
tion in the tree; position of the heads of the argument candidates with respect to the
predicate position in the sentence.

Chain: the left-to-right chain of the dependency labels of the predicate’s dependents.

6.4 Experiments and Discussions

The experimental settings are the same as the settings in the former chapters.

6.4.1 Performance

Table 6.2 shows the Chinese SRL results after adding the N-best dependency parsing
related features. It is not surprising that SRL can get better performance when N >
1, because the larger N, a more accurate dependency parsing results can be likely
obtained. When N =5, SRL gets the best performance 79.82 in F; with 0.8 point
improvement.

Figure 6.2a shows the gold dependency parsing result and the gold predicate ar-
gument structure; the dependency parsing result in Figure 6.2b is from second-order
MST parser, and the predicate argument structure in this figure is predicted based on it;
Figure 6.2c shows SRL result after adding 5-best dependency related features. From
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Figure 6.2: An example that the argument prediction error brought by second order

MST parse errors is corrected by introducing N-best dependency related features.
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N-best | Correct (#) | Error(#) | Noise(#)
1 18,428 3,176 -
3 19,071 2,533 4,636
5 19,392 2,212 5,667
10 19,738 1,866 7,699

Table 6.3: Dependency accuracy and the noise changes with different N.

this figure, we can see that the N-best dependency related features helped in correcting
the wrong argument prediction.

However, the improvement declines when N = 10. A larger N may result in adding
more accurate dependency parsing, however, it can also result in including more noises.
For the MST parser using second order algorithm, Table 6.3 shows how the choice of
the value of N affects the dependency parsing. The Correct(#) column represents the
number of cases where the correct parent of an argument is predicted within the N-
best. For example, in 3-best, it counts the number of arguments where their parents are
correctly predicted in at least one of the 3 predictions. In the case where the parent is
not predicted in any tree, they are counted as an error, as listed in the second column.
The third column (Noise), is defined under a hypothesis: correct dependency relations
generate correct SRL results, wrong dependency relations generate incorrect SRL re-
sults. It represents the number of wrong dependency relations in Correct case which
can cause bad influence for SRL results. For example, if 3 best heads for an argument
are top-1, top-2, top-3 respectively, and top-1 is the correct one, then this case is a
Correct case and the number of noise are 2; if none of the three results are correct, then
this case is an Error case, and no noise. From this table, it obviously indicates that the
benefit for dependency parsing brought by a larger N is less than the noise brought by
the N.

Now, it is time to answer the open question: in order to improve dependency based
SRL, is it more worthwhile to incorporate more dependency information in the form of
N-best parse, or to incorporate base phrase chunks information ? Table 5.4 and 6.2,
it can be seen that SRL benefit more from chunking related features than from N-best
parse related features.

Table 6.4 shows the the results of Chinese SRL after adding base phrase chunking
information and N-best parsing related features and gives the comparison with the
previous work. From Table 6.2 and 6.4 we can see that after adding the chunking
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N-best | P(%) | R (%) | Fi1(%)
[Bjorkelund, 2009] - 82.42 | 75.12 | 78.60
[Meza-Ruiz, 2009] - 82.66 | 73.36 | 77.73
[Zhao, 2009] - 80.42 | 75.20 | 77.72
MST-2 + 1 84.49 | 76.92 | 80.52
MST-2 + 3 83.81 | 78.51 | 81.07
MST-2 + 5 83.71 | 78.40 | 80.97

Table 6.4: SRL results with base phrase chunking information and N-best parsing
related features.

N-best | C(%) | G(%) | O(%)
MST-2— 1 25.37 | 86.93 | 59.06
MST-2— 3 22.83 | 78.43 | 56.84
MST-2— 5 22.83 | 78.43 | 57.36
MST-2+ 1 23.93 | 86.93 | 54.70
MST-2+ 3 21.5 | 76.47 | 53.05
MST-2+ 5 21.66 | 76.47 | 53.38

Table 6.5: SRL error changes with different features

related features, the impact of N-best parsing related features is a little reduced.

6.4.2 Discussion

In Section 6.4.1, we see that both chunking and N-best parsing related features are
helpful for Chinese SRL to some extent. In order to understand how they affect SRL,
we analyze the results from three types of errors introduced in Section 6.3.4. Table 6.5
shows the error changes when different features are added.

Since accurate dependency information is not always available, the three types of
errors should become larger when automatic dependency parsers are used. From Ta-
ble 6.1 and 6.5, the C and O errors increased as expected, while G decreased, the
main reason is that arguments, that are grandchildren of predicates, are relocated in the
dependency trees because dependency errors, and these locations make them easier to
be tagged. From first and fourth rows, it suggests that shallow parsing information are
helpful to reduce the C and O errors. Comparing the fourth line with second and third

61



rows, it explains why SRL achieving more improvements from chunking than from
N-best dependency. When N changed from 1 to 3, the errors decreased obviously,
however, when the N = 5, there are no obviously different changes.

6.5 Summary

In this paper, we first introduced how to get the N-best dependency parsing results
and explored how to use this information to SRL. Then combined these N-best depen-
dency parsing related features with base phrase chunking related features to investigate
the benefit that our Chinese SRL model can get from them. Evaluations on the CoNLL
2009 Chinese corpus show that chunking information well complements dependency
based SRL, achieving more improvements compared to N-best dependency informa-
tion. With those additional features, our dependency based SRL achieves the best
result on the same Chinese corpus to our knowledge.
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Chapter 7

Conclusions

This chapter summarizes the dissertation and gives future directions we intend to
explore.

7.1 Conclusions

This dissertation explored which models and what information are helpful for depen-
dency based semantic role labeling. Our contributions by this thesis have the following
characters.

e We proposed a log linear model-based structure model that joint implement
predicate sense disambiguation and semantic role labeling simultaneously: This
model can capture dependencies underlying in predicate argument structure: in-
cluding dependencies between arguments, dependencies between predicate and
its corresponding arguments under its some predicate sense. We conducted
experiments for our and a pipeline dependency based SRL models using the
same feature sets. Comparing the performance of the pipeline model, our model
achieved performance improvement and achieved competitive results compared
to the state-of-the-art systems which use time-consuming feature selection algo-
rithms.

e We applied dual decomposition inference to construct a pipeline syntactic depen-
dency based SRL: In this system, we proposed a dual decomposition algorithm
which can greatly improve the performance of argument identification and in-
directly improve the final selection performance. In the evaluation experiments,



the system achieved the best performance reported so far on the same dataset.
And by using the proposed dual decomposition algorithm, the runtime penalty
is kept minimal.

e We focused on investigating the benefit that SRL can get from shallow parsing:
Firstly, we got chunking information by CRF model; then explored the SRL per-
formance by the shallow parsing based SRL which applied the chunking related
features only. Finally, we applied these base phrase chunking related features
together with the dependency related features to our Chinese SRL model and
observed the SRL performance. From experiments, it can be seen that chunking
related features can well complement dependency based SRL. However, shallow
parsing based SRL can not compete with syntactic dependency based SRL over
the word units.

e We discussed the use of N-best dependency parsing related features for syntac-
tic dependency based SRL: We first explored the influence for SRL brought by
adding several N-best parsing related features to our dependency based SRL sys-
tem. In addition to these features, we also added the chunking related features
used in previous chapter. With these features, the F; value of our dependency
based SRL is more than 80%. From experiments, it can also seen that chunk-
ing information nicely complements syntactic dependency based SRL, achieving
more improvement compared to N-best dependent information.

While all our experiments are for Chinese, it is possible to design experiments for
other languages with our approaches.

7.2 Future Directions

There are several directions we would like to try.

7.2.1 Exploring More Features for SRL

Our experiment results show that we are not limited to increasing SRL performance
via more accurate syntactic parsing, but that we can explore other information, which
is easier to get and is helpful for SRL. This also determines our future work. In our
future work, we would like to explore more features and their influence for SRL.
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7.2.2 Incorporating Unlabeled Data

All the models for predicate argument structure analysis in our work are supervised
methods which only use labeled data. As it is known, it is very expensive to prepare
labeled data for each predicate. Recently, semi-supervised learning methods have been
explored in a number of work, like word segmentation [54], pos tagging [51], depen-
dency parsing [49, 24] and so on.

Recently, semi-supervised learning methods for semantic role labeling [15, 12] have
attracted much researchers’ attention. But there is still room for further improvements
of predicate argument structure analysis using unlabeled data.

7.2.3 Apply SRL to Other NLP Applications

One possible way may be exploring opinion mining of product reviews based on
predicate argument structure information. Online product reviews are becoming in-
creasing available. In order to make an informed decision, potential customers usually
prefer to referring to a lot of online reviews. It is worth to explore whether SRL can
help to understand consumer reviews.
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Appendix A

List of Publications

Journal Papers

e Luo Yanyan, Asahara Masayuki, Matsumoto Yuji. ”Robust Integrated Models
for Chinese Predicate-Argument Structure Analysis”. China Communications,
Vol.9, No.3, 10-18, 2012. (Chapter 5).

International Conference Papers

e Yanyan Luo, Masayuki Asahara and Yuji Matsumoto. “Dual decomposition
method for Chinese predicate-argument structure analysis”. In Proceedings of
the 7th International Conference on Natural Language Processing and Knowl-
edge Engineering (NLPKE’11). 409-414. 2011. (Chapter 5).

e Yanyan Luo, Kevin Duh and Yuji Matsumoto. What information is helpful for
dependency based semantic role labeling”. International Joint Conference on
Natural Language Processing (IJCNLP), 2013. Accepted. (Chapters 6 and 7).

Awards

e Best paper award of the 7th International Conference on Natural Language Pro-
cessing and Knowledge Engineering, 2011. ”Dual decomposition method for
Chinese predicate-argument structure analysis”
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