
NAIST-IS-DD1061027

Doctoral Dissertation

A model-based tracking framework for

non-textured 3D rigid curved objects using

sparse polygonal meshes

Marina Atsumi Oikawa

February 7, 2013

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Marina Atsumi Oikawa

Thesis Committee:

Professor Hirokazu Kato (Supervisor)

Professor Naokazu Yokoya (Co-supervisor)

Associate Professor Jun Miyazaki (Co-supervisor)

Associate Professor Masayuki Kanbara

A model-based tracking framework for

non-textured 3D rigid curved objects using

sparse polygonal meshes∗

Marina Atsumi Oikawa

Abstract

Tracking the 3D pose of a known object is a common task in computer vision

and approaches aiming to achieve real-time tracking are in constant development

to attend different applications and scenarios. Augmented reality, robotic ma-

nipulation and gesture recognition are just some examples where accurate and

robust tracking in real time is essential for a successful application.

The main issue addressed in this thesis is the problem of determining the

pose of non-textured 3D rigid curved objects. A common approach for non-

textured objects tracking uses an edge-based method combined with a wireframe

model representing the object shape. However, in order to accurately recover

the shape of curved objects, high quality meshes are required, creating a trade-

off between computational efficiency and tracking accuracy. Previous approaches

usually impose some restriction, either in the object shape or motion. To solve

this problem, a novel model-based framework for tracking curved objects using

sparse polygonal meshes is proposed, with a model representation that can avoid

the trade-off previously mentioned and which is able to deal with both simple

and complex shapes. It also includes the necessary modifications to efficiently use

the apparent contour of curved objects in model-based tracking. Additionally, a

method to deal with changes in the observable Degrees of Freedom (DOF) of the

target object is also proposed, being able to recover one missing DOF.

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-

mation Science, Nara Institute of Science and Technology, NAIST-IS-DD1061027, February 7,

2013.

i

The effectiveness of the proposed framework is confirmed with quantitative

and qualitative experiments, comparing our approach and the traditional method

using sparse and dense meshes. Results are presented using both synthetic and

real video image data. For further evaluation, an augmented reality application

for rapid prototyping was developed and evaluated through a user study, also

achieving positive results.

Keywords:

Model-based tracking, non-textured rigid curved objects, sparse polygonal meshes,

quadrics, apparent contour, augmented reality.

ii

粗なポリゴンメッシュを用いたテクスチャの無い３次元

曲面物体のモデルベーストラッキングフレームワーク∗

Marina Atsumi Oikawa

内容梗概

既知の物体の３次元位置姿勢のトラッキングはコンピュータービジョンの分野
における一般的な課題であり，異なる応用の要求を満たす実時間トラッキングを
成し遂げることを目的とした様々な手法が提案されている．この応用例としては
拡張現実感，ロボティクスやジェスチャー認識等が挙げられ，これらに応用する
ことを考えた際，正確かつ頑健な実時間トラッキングであることが重要である．
本論文で扱う主な問題は，テクスチャの無い 3次元曲面剛体物体の３次元位置

姿勢の推定である．テクスチャの無い物体の一般的なトラッキング手法は，物体
の形状を表現するワイヤーフレームモデルと組み合わせたエッジベースの手法で
ある．しかし，曲面物体の輪郭線の見た目は静的なものではなく視点により大き
く変化するため，エッジベースのトラッキングを曲面剛体物体のトラッキングに
適用することは容易ではない．さらに正確に曲面剛体物体の形状を構築するため
には高密度なポリゴンメッシュが必要とされ，計算効率とトラッキング精度がト
レードオフの関係にある．これらの問題に対して先行研究では，通常，物体の形
状か動きのいずれかにある制限を課すことで解決を図っている．この制限の例と
して，単純な曲面物体（球体や円柱等）または円運動にしか適用できない等が挙
げられる．これらの欠点を考慮して，本研究では，粗なポリゴンメッシュを用い
たテクスチャの無い 3次元曲面剛体物体のための新たなモデルベーストラッキン
グ法を提案する．この手法の実現のため，3次曲面パッチの表現手法を開発した．
これはオフラインにおいて，メッシュ内の各パッチについて一般的な二次多項式
を計算し，物体の輪郭の滑らかな局所近似を与える表現である．トラッキング中
にはメッシュのエッジを計算に使用するのではなく，この二次曲面の射影を表す
曲線を使用する．この表現を用いることで，モデル形状が簡易であっても複雑で

∗奈良先端科学技術大学院大学情報科学研究科情報処理学専攻博士論文, NAIST-IS-DD1061027,

2013年 2月 7日.

iii

あっても，トラッキング精度を保ちながら，計算効率良く処理することができる．
さらに，観測され得る自由度が 6自由度未満である物体に対し，間違った位置・
姿勢推定を行うことを避けるための，対象物体の観測可能な自由を計算する方法
についても提案する．この手法は，視点位置により観察可能な自由度の数が変化
するような物体に対して，観察不可能だったある 1自由度の復元を行う場合にも
適用可能である．
提案フレームワークの効果は，粗なポリゴンメッシュと密なポリゴンメッシュ

を用いた従来の方法との比較実験を通して，定量的，定性的に証明を行った．ま
た，実験はシミュレータと実環境の両方により行った．さらなる評価のために開
発したラピッドプロトタイピングのための拡張現実感システムを用いた被験者実
験においては肯定的な結果が得られた．

キーワード

モデルベーストラッキング、テクスチャの無い３次元曲面物体、粗なポリゴンメッ
シュ、二次多項式、見かけの輪郭線、拡張現実感.

iv

to the person who inspires me to chase my dreams:

my mother, Cecilia

Contents

1 Introduction 1

1.1. Background and Motivation . 1

1.2. Research problem . 4

1.3. Research goal and approach . 7

1.4. Contributions . 9

1.5. Software . 10

1.6. Outline of the thesis . 11

2 Background and Related Work 12

2.1. Rigid objects tracking . 12

2.1.1 Fiducial marker tracking 13

2.1.2 Natural features tracking 15

2.1.2.1 Model-based tracking 15

2.1.2.2 Combination of approaches 17

2.1.2.3 Real-time Structure-From-Motion tracking 18

2.1.3 Edge-based methods in details 20

2.2. Rigid curved objects tracking . 23

2.2.1 Contour generator and apparent contour 23

2.2.2 Previous work on curved objects tracking 24

2.2.3 Curved objects representation 25

vi

Contents

2.3. Mathematical background . 28

2.3.1 Coordinate frames . 28

2.3.2 Quadric surfaces . 30

2.3.3 Conic curves . 30

2.3.4 Apparent contour of quadrics 31

2.4. Concluding remarks . 31

3 Proposed Tracking Framework 32

3.1. Framework overview . 32

3.2. Offline stage . 34

3.2.1 Polygonal mesh simplification 35

3.2.2 Quadrics patch representation 38

3.2.2.1 Quadrics calculation 38

3.2.2.2 Internal vertices 39

3.2.2.3 Quadrics evaluation 40

3.3. Online stage . 42

3.3.1 Contour patches selection 42

3.3.2 Edge points detection and matching 45

3.3.3 Apparent contour equation 45

3.3.3.1 Quadrics projection 46

3.3.3.1.1 World to camera coordinates 46

3.3.3.1.2 Camera to image coordinates 47

3.3.4 Pose parameters computation 50

3.3.5 Distance calculation . 51

3.3.5.1 Reference points 52

3.3.5.2 Point to conic distance calculation 53

3.4. Concluding remarks . 56

4 Dealing with different number of observable DOF 57

4.1. Measuring the object DOF . 59

4.2. Recovering one DOF . 60

4.2.1 Rotation axis calculation 61

4.2.2 Null space search . 62

4.3. Concluding remarks . 63

vii

Contents

5 Experiments 64

5.1. Quantitative evaluation . 64

5.1.1 The simulator . 64

5.1.2 Experiments configuration 66

5.1.2.1 Experiment I . 68

5.1.2.2 Experiment II . 73

5.1.2.3 Experiment III 76

5.2. Qualitative evaluation . 77

5.2.1 Objects having different number of observable DOF 80

5.2.2 Limitations and failure cases 81

5.2.3 Concluding remarks . 83

6 Augmented Prototyping 84

6.1. Rapid Prototyping . 84

6.2. Related work . 85

6.2.1 Virtual Prototyping . 86

6.2.2 Augmented Prototyping 86

6.3. Proposed AP application . 88

6.3.1 Texture composition algorithm 89

6.3.2 Handling the texture occlusion 90

6.4. User study . 91

6.4.1 Participants . 91

6.4.2 Physical setup . 91

6.4.3 Task description . 92

6.4.4 Results . 94

6.5. Discussion . 96

6.6. Concluding remarks . 97

7 Conclusions 99

7.1. Thesis summary . 99

7.2. Future work and open problems 100

Publication List 103

Acknowledgments 105

viii

Contents

Appendix 108

A. Video sequences . 108

B. Apparent contour of quadrics . 111

C. Polygonal mesh simplification results 113

D. Jacobian matrix Jes . 115

D.1 Jacobian matrix JeC . 115

D.2 Jacobian matrix JCQc . 118

D.3 Jacobian matrix JQcTi
. 120

D.4 Jacobian matrix JTiTMi
. 123

D.5 Jacobian matrix JTMis . 125

Bibliography 129

ix

List of Figures

1.1 Some AR examples . 2

1.2 Examples of non-textured curved objects 3

1.3 Contour representation of dense and sparse polygonal meshes . . . 5

1.4 Changes in the number of observable DOF of the mug 6

1.5 Augmented Prototyping application 7

1.6 Comparison between the standard edge-based tracking and the pro-

posed method . 8

2.1 Different types of fiducial markers 13

2.2 An augmented storytelling book using ARToolKit square markers 14

2.3 An augmented storytelling book using natural features tracking . 16

2.4 Overview of an edge-based tracking system 22

2.5 Contour generator and apparent contour of a curved surface . . . 23

3.1 Overview of the tracking framework 33

3.2 Step (vi) in details . 34

3.3 Comparison between polygonal mesh simplification using PR and

QEM for the Angel. 36

3.4 Comparison between polygonal mesh simplification using PR and

QEM for the Bunny. 36

3.5 Internal vertices calculation . 39

x

List of Figures

3.6 Internal vertices example . 40

3.7 Some examples obtained with the quadrics fitting 41

3.8 Contour edges calculation . 43

3.9 Selection of the edges on the outside contour 44

3.10 Edge points detection and matching 44

3.11 Control points selection . 45

3.12 Quadrics projection of a patch pk 46

3.13 Conic curves on the contour . 48

3.14 Distance calculation . 52

3.15 Different relationships between the detected point p0 and the mesh

edge as well as the conic. 52

3.16 Reference points position . 54

3.17 Point to conic distance . 54

3.18 Updating the reference points position 55

4.1 Examples in which pose parameters can be innacurate 58

4.2 New modules added to the proposed framework 61

4.3 Rotation axis r0 calculation . 62

4.4 Null space search and the DOF recovery process. 63

5.1 Simulator input . 65

5.2 Poses used in the quantitative evaluation 67

5.3 Experiment I: results for accuracy 70

5.4 Polygonal meshes in different levels of details 71

5.5 Experiment I: results for computational time and success rate . . 72

5.6 Experiment II: results for success rate 74

5.7 Experiment II: results for accuracy 75

5.8 Conditions to evaluate r0 . 76

5.9 Average error for all conditions 77

5.10 Qualitative evaluation for the torus 78

5.11 Qualitative evaluation for the angel 79

5.12 Angel III: Tracking evaluation in a cluttered background. 79

5.13 Tracking a mug with and without recovery 80

5.14 Tracking a teapot with and without recovery 81

5.15 Failure caused by large inter-frame motion 82

xi

List of Figures

5.16 Failure caused by large occlusion of the target object 82

5.17 Failure caused by null space search in the wrong rotation axis . . 82

6.1 Prototype representations . 85

6.2 Augmented angel figurine . 89

6.3 Texture occlusion . 90

6.4 Prototype used in the AP evaluation 91

6.5 User interacting with the AP system 92

6.6 Virtual textures available to the user 93

6.7 Average scores for the significant Likert scale measures 95

7.1 Detail on the game controller buttons 101

xii

List of Tables

2.1 Comparison of common model representations of curved surfaces . 27

3.1 Housdorff distance . 37

4.1 Some examples of singular values 60

5.1 Objects description . 67

5.2 Number of valid quadrics according to the number of patches . . . 69

5.3 Re-projection error average (mm) 74

5.4 Number of Failures . 80

6.1 Post-task questionnaire contents 93

6.2 Time for completion of each task (minutes) 94

C.1 Forward distance (M1 → M2) . 113

C.2 Backward distance (M2 → M1) 114

xiii

List of Abbreviations

2D Two Dimensional

3D Three Dimensional

AR Augmented Reality

AP Augmented Prototyping

CAD Computer Aided Design

CT Conics Tracking

DLT Dense Line Tracking

DOF Degrees of Freedom

HMD Head-Mounted Display

HSV Hue, Saturation, Value

QEM Quadric Error Metrics

RP Rapid Prototyping

SLT Sparse Line Tracking

SVD Singular Value Decomposition

VP Virtual Prototyping

VR Virtual Reality

xiv

CHAPTER 1

Introduction

1.1. Background and Motivation

Augmented Reality (AR) is gradually becoming part of people’s life through diffe-

rent applications. By overlaying virtual imagery with the vision of the real envi-

ronment, AR adds a new perspective to what users can see and how they interact

with the real world.

AR has the potential to be applied in various fields. A popular example is in

the entertainment industry, with games such as the EyePetTM [1] and The Eye of

JudgmentTM [2] for PlayStation R⃝3 or the AR cards used in Nintendo 3DSTM[3].

These games have customized cards that when visualized by a webcam or the

game console’s camera, triggers an algorithm that can render virtual characters

in the display as if they really exist in the real world. Some interactions with

these characters are also allowed, which makes the experience more realistic.

Other examples of AR applications include guidance during assembly [4] or

maintenance operations [5, 6], with augmented instructions (virtual arrows, text

or animated agents) indicating which step should be performed by the user. In

this scenario, usually the user wears a HMD (Head-Mounted Display) to visualize

the augmented information on top of the real object. Hence, there is no need

1

Chapter 1. Introduction

to spend time looking for the same information in manuals or other paper based

documentations. Following a similar principle, applications have been also deve-

loped in education [7, 8], medical visualization [9, 10] and car navigation [11, 12],

just to mention some.

With the recent popularization and increase of processing power of smart-

phones and tablet computers, devices that can be used for AR are becoming

smaller, lighter and cheaper. Therefore, their implementation as tools to help

users’ daily life are also becoming common. For instance, by obtaining informa-

tion about the users’ current location, useful annotations about nearby places can

be overlaid in the image captured by the device’s camera and visualized in AR

browsers such as Wikitude [13] or Junaio [14].

However, to realize the applications mentioned above, there are several tech-

nical challenges. Three important properties are listed by Azuma [15] as essential

for AR systems: Integration of real and virtual worlds, interaction in real time,

and registration in 3D. The first property is basically what defines AR systems: A

seamless integration between real and virtual words, in such a way that users can

have the perfect illusion that the two worlds coexist, as illustrated by the exam-

ples in Figure 1.1. The other two properties reinforce this illusion of coexistence

by providing a real-time response to the user and by correctly positioning the

virtual objects with respect to the objects in the real world and to the position of

the camera. This correct alignment is crucial for a successful augmentation and

is directly related to another important definition: tracking.

(a) (b) (c)

Figure 1.1. Some AR examples: (a) A virtual teapot rendered on top of a fiducial

marker. (b) Augmented pop-up book, in which a virtual bear can be seen on

top of the real book in the image captured by the iPad’s camera. (c) Augmented

browser [14] with additional information about places nearby the user.

2

1.1. Background and Motivation

Tracking the 3D pose of a known object is a common task in computer vi-

sion and it aims to continuously recover six Degrees of Freedom (DOF) repre-

senting the object position and orientation relative to the camera while it moves

around the scene [16]. Different approaches for achieving real-time tracking have

been developed, considering the application type, target object shape and features

(textured/non-textured), environment (outdoor/indoor), among other conditions.

In general, they can be vision-based, sensor-based or hybrid.

In vision-based approaches, no special equipment is necessary, only a camera

to capture the image from the real world. This input image is then analyzed to

identify possible features that can be used for tracking, which can be intentio-

nally placed in the environment (e.g. fiducial markers such as the ones used by

ARToolKit [17]), prepared beforehand based on the target object shape [18, 19]

or naturally exist in the scene [20].

Sensor-based approaches use devices such as GPS for obtaining position data

and magnetic or inertial sensors for orientation. They are commonly employed

in outdoor applications, but they can be expensive, prone to error accumulation

and sensitive to perturbations from the environment (e.g. magnetic fields). This

led to hybrid approaches, that combine both, vision and sensor-based methods to

achieve robustness [21, 22, 23, 24], but increase the complexity of the system.

In this thesis, a novel vision-based approach is proposed for tracking non-

textured rigid curved objects. In the target scenario, the object shape is known

beforehand, it is smooth, and no texture information exists on its surface, as

shown in Figure 1.2.

Figure 1.2. Examples of non-textured curved objects. Without texture, the most

distinctive feature that can be used for tracking these objects is their outline.

3

Chapter 1. Introduction

Some examples where curved surfaces tracking can be useful include: Assem-

bling and maintenance operations, where virtual annotations can be linked to

each target component to assist the user during the task; industrial applications,

such as augmented prototyping (Chapter 6), where virtual textures are used to

evaluate the visual appearance of physical prototypes; tracking of human body

parts (e.g. hands), which can be used as user interfaces, among others. In these

applications, a markerless approach is desirable, since visualization of the aug-

mented information on the target object from different views require placement

of multiple markers, which can be difficult if the target object is small or has a

complex shape. Furthermore, for augmented prototyping applications, if markers

are placed on the object’s surface, they become intrusive elements, obstructing

the correct blending of the environment information (e.g. illumination) with the

object’s material properties. As a result, the augmentation does not look realistic.

1.2. Research problem

Approaches for rigid objects tracking have been widely explored, for both marker

and markerless environments. A more detailed survey can be found in [16, 25,

26]. However, few works have been dealing specifically with non-textured curved

objects - in most of the cases, the problem of tracking these kind of surfaces is

only solved for simple shapes, which can be approximated by curved primitives

[27] or by simply treating them as polyhedral objects [28].

Since there are no markers or texture information on the object surface, a

distinctive feature commonly used is the object’s outline or apparent contour -

a curve formed by the projection of the contour generator, that is, parts of the

surface that are tangent to the viewing ray [29]. This apparent contour can be

used with model-based approaches that consider the object edges during tracking

[18, 19]: A wireframe model of the target object is prepared beforehand and used

for matching with the edge information found in the video image. The final pose

is then obtained after an optimization process.

However, since the apparent contour of curved objects changes according to the

viewpoint, to use it in standard edge based tracking methods, some adjustments

are required and in some cases restrictions are imposed on the target object shape

or motion, as explored in more details in Chapter 2.

4

1.2. Research problem

Furthermore, when dealing with curved objects, high quality meshes are re-

quired to accurately represent the object’s shape. This creates a trade-off between

computational efficiency and tracking accuracy : Reducing the number of patches

in the mesh to improve the system efficiency directly affects the object contour

representation. One example is illustrated in Figure 1.3, where a polygonal mesh

representing the angel figurine is rendered on top of the real object: Using a (b)

dense polygonal mesh, it is possible to obtain a good contour approximation, but

at the cost of low efficiency due to the amount of patches that needs to be pro-

cessed. On the other hand, using a sparse polygonal mesh improves efficiency,

but the object contour has a coarse representation as highlighted in (c), which af-

fects tracking accuracy since the error between projected and detected edge points

increases.

Another problem that needs to be considered during tracking is related to the

number of observable DOF of the target object. Consider, for instance, the cup

without handle and the mug cup shown in Figure 1.2. In the first case, the object

has only five DOF, which will cause problems during the optimization loop: The

Jacobian matrix Jes relating the distance between projected and detected edges

and the pose parameters become rank-deficient and, hence, the pose cannot be

correctly calculated. In the second case, when the handle of the mug is visible to

(a) (b) (c)

Figure 1.3. Contour representation of dense and sparse polygonal meshes. (a)

The target object. (b) A dense polygonal mesh in yellow is overlaid on the object,

with a good approximation of the contour highlighted in red. (c) Using a sparse

polygonal mesh results in a coarse representation of the object’s contour.

5

Chapter 1. Introduction

the camera, six DOF can be estimated. However, if during tracking the handle

becomes completely occluded, a rotation invariance in one of the axis is detected

and the mug loses one DOF. When the handle becomes visible again, six pose

parameters cannot be correctly recovered (Figure 1.4). This problem may occur

even for objects without any kind of ambiguity, such as the teapot. If the camera

moves in such a way that only a small part of the teapot is visible (e.g. the sphere

on the lid or the spout), an ambiguity is detected and recovery of the object’s

pose becomes difficult.

Lastly, as previously mentioned, augmented prototyping is one possible appli-

cation of non-textured rigid curved objects tracking. In this case, evaluation of

aesthetic aspects can be easily achieved by enhancing the physical prototype with

AR. However, this augmentation is not straightforward, as illustrated in Figure

1.5: A strategy is necessary to render only the part of the texture that is cur-

rently visible to the camera. It is also necessary to provide realistic blending of

this texture with the object’s material properties and the environment illumina-

tion. Lastly, correct texture rendering when the user’s hand or other objects in

the scene occlude part of the target object also need to be handled.

Motivated by these issues, this thesis describes a novel model-based tracking

framework that can accurately determine the pose of non-textured 3D rigid curved

objects, mainly targeting the following points: A model representation that can

avoid the trade-off between tracking accuracy and computational efficiency when

using sparse polygonal meshes, and which is able to deal with both simple and

(b)(a) (c)

6DoF 5DoF 6DoF

Figure 1.4. Changes in the number of observable DOF of the mug: (a) 6DOF can

be estimated. (b) With the handle occluded, only 5DOF can be estimated. (c) If

the handle becomes visible again, it is not possible to recover six DOF parameters.

6

1.3. Research goal and approach

(a) (b)

Figure 1.5. Augmented Prototyping application. (a) Unrealistic rendering of the

virtual texture. (b) Correct texture rendering, but without handling occlusion.

complex shapes; the necessary modifications to allow the use of the apparent

contour in model-based tracking; how to deal with changes in the observable

DOF of the target object and the applicability of the proposed framework.

1.3. Research goal and approach

To use sparse polygonal meshes for edge-based tracking of curved objects, a new

model representation named quadrics patch representation was developed, where a

general quadric equation is calculated for each patch in the mesh and used to give

local approximations of the object contour. Quadrics are used because they have

simple contour generators. Their apparent contour is represented by conic curves

and can be obtained by using differential geometry [29]. When dealing with sparse

meshes, using conic curves instead of the original edges from the mesh makes the

tracking more accurate because conic curves better approximate the object’s local

shape. Hence, more correct point correspondences can be found.

Unlike standard edge-based tracking systems, our approach does not evaluate

the distance between the detected points in the video image to the points assigned

on the mesh edges; instead, the distance is evaluated to the projection of the

quadrics belonging to the patches located on the object contour for the current

view. For instance, in Figure 1.6 (b), instead of using the model edge (in yellow),

the curve which approximates the local shape of the object contour (in blue) is

used to evaluate the distance between detected and projected edges. The error is

clearly smaller when compared to Figure 1.6 (a).

7

Chapter 1. Introduction

It is important to highlight that several quadrics are calculated for the whole

object, each one associated with one patch (or face) of the model. Thus, each patch

also has one equivalent 2D curve. This makes it possible to apply the proposed

framework to complex object shapes without affecting the computational time

during tracking, since this calculation is done during the offline stage.

To handle objects having less than six DOF, Singular Value Decomposition

(SVD) [30] in the Jacobian matrix Jes is used. Therefore, simple shapes such as

the cup without handle on Figure 1.2, or torus-shaped objects and a sphere can

also be tracked. Moreover, based on the work developed by Kumagai et al. [31],

the proposed framework was extended to allow tracking when the observable DOF

of the target object changes during the tracking sequence.

For realistic rendering of the virtual texture, OpenGL is used with a 2-path

algorithm to combine the texture’s color with the object’s color and render the

final texture only for the most front surface patches. Texture occlusion is solved by

segmenting the prototype’s color using HSV (Hue, Saturation, Value). The final

result is an approach that can correctly render the virtual texture on the object

surface and can be visualized from any viewpoint. Furthermore, it considers the

illumination of the environment, with correct rendering even for objects with

specular surfaces.

(a) (b)

d{

Figure 1.6. Comparison between (a) the standard edge-based tracking and (b) the

proposed method: A large distance d between the sample points on the model

and the detected edge points is evaluated for the first case. In the second case,

the detected edges position is almost coincident with the conic curve (blue line).

8

1.4. Contributions

1.4. Contributions

The main contributions of this thesis are presented below:

• A new model representation for tracking rigid curved surfaces

using sparse polygonal meshes.

By using the proposed quadrics patch representation, the level of detail

of the polygonal mesh used for tracking can be considerably reduced without

affecting accuracy. This is possible because the re-projection error is not cal-

culated using the distance between the points assigned on the mesh edges

to the detected points in the video image; instead, curves representing the

quadrics projection of the patches located on the object contour are used.

A local approach is explored, allowing to apply this representation for sim-

ple and complex shapes. A standard model-based tracking framework was

modified to handle these changes and validation of the proposed method is

presented through quantitative and qualitative experiments.

• A method for dealing with changes in the measurable DOF of the

target object.

In general, many rigid objects found in the real world have six DOF.

However, simple shapes may have one or more unobservable DOF or de-

pending on the viewpoint, an object can present some kind of ambiguity

that leads to a wrong pose parameters estimation. Thus, in the proposed

tracking framework, a method to calculate the number of observable DOF

of the target object was included. When necessary, a recovery process is

triggered, which is able to recover one missing DOF.

• An Augmented Prototyping application.

By using the proposed tracking framework, an augmented prototyping

application was developed. With AR, evaluation of the design and aesthetic

features of the physical prototypes in real-time became easier, saving time

and production costs. Compared to previous approaches using AR to as-

sist design evaluation, the proposed method has an additional advantage

of considering the environment illumination effects on the virtual textures.

Results from a pilot user study comparing the use of a 3D modeling software

and the proposed application are also presented.

9

Chapter 1. Introduction

1.5. Software

The software developed in this thesis was implemented and evaluated under the

Windows Operating System (but not being restricted to it) using the C language.

Additionally, the following libraries and software were used:

• ARToolKit - http://www.hitl.washington.edu/artoolkit/ - a library to de-

velop AR applications using square markers. It provides several functionali-

ties, including methods for video input/output and matrix calculation that

facilitated the implementation of our framework.

• Blender - http://www.blender.org/ - a 3D modeling software used to edit

the 3D polygonal meshes used in the experiments. It was also used to create

the virtual textures and in the evaluation of the augmented prototyping

application.

• Metro - http://vcg.iei.pi.cnr.it - a tool designed to calculate the difference

between two polygonal meshes. It was used to evaluate the polygonal sim-

plification method to be used in our approach.

• OpenCV - http://opencv.org/ - a library that provides methods for image

processing and computer vision. It was mainly used for the camera cali-

bration and to facilitate the creation of the videos used in the qualitative

experiments.

• OpenGL - http://www.opengl.org/ - a library used for rendering 2D and

3D graphics, being also employed in the edges visibility test.

• OpenVRML - http://www.openvrml.org/ - a library used to help handling

the VRML files containing the virtual textures rendered on the physical

prototypes.

• Pthreads - http://sourceware.org/pthreads-win32/ - a library used to im-

plement multithreading in our framework.

• QSlim - http://mgarland.org/software/qslim.html - a software used for sim-

plifying the polygonal meshes.

10

1.6. Outline of the thesis

1.6. Outline of the thesis

This thesis consists of seven chapters. Chapter 2 provides an overview on rigid

objects tracking and a description of how the problem of tracking curved surfaces

have been tackled by previous approaches. It also introduces some notations and

definitions used throughout the thesis.

Chapter 3 describes the necessary steps for constructing the proposed quadrics

representation, with a detailed description of the tracking framework developed

in this thesis.

Chapter 4 focuses on improvements in the proposed framework, with a method

to deal with objects having variable observable DOF and to recover one missing

DOF when necessary.

Experimental results are presented in Chapter 5 using both, synthetic data

and video images from the real world, with comparative results between standard

approaches and the proposed approach.

In Chapter 6, an application of the proposed framework is developed for aug-

mented prototyping. A user study was conducted to confirm its applicability in a

realistic scenario and results are discussed.

Chapter 7 summarizes this thesis, with discussions about the contributions,

limitations and possible future works. Subsequently, the appendices describe the

video files that were created during evaluation of the proposed framework and the

mathematical tools used for its implementation.

11

CHAPTER 2

Background and Related Work

In the first part of this chapter, an overview of rigid objects tracking and related

research areas is provided. Subsequently, curved objects tracking is explored,

focusing on how this problem has been previously tackled and how it relates

to the proposed approach. Some mathematical background and definitions that

appears throughout the thesis are also presented.

2.1. Rigid objects tracking

Rigid objects are defined as objects with no deformations or articulations, whose

pose is constrained to a small number of parameters. In this research, only rigid

objects are considered, aiming at 2D-3D pose estimation. Hence, 6DOF parame-

ters defining the camera position and orientation need to be estimated.

For 6DOF estimation, there are several approaches suggested in the literature.

A popular and easy one consists of placing fiducial markers in the target object or

in the environment. These fiducial markers are designed with some kind of pattern

to allow their identification. Once they are correctly identified, a verification step

is triggered to find out which marker or markers are visible to the camera and

what is the virtual information related to it that should be presented to the user.

12

2.1. Rigid objects tracking

Early works on marker-based tracking were developed by Rekimoto [32], using

2D matrix codes, and Kato & Billinghurst [17], using square planar markers. Ap-

plications targeting handheld devices were also successfully implemented [33, 34],

with both robustness and computational efficiency. However, as the potentiality

of applications in this area started to increase as well as the improvements of

computational processing power, so did the demand from different types of users

and scenarios. Thus, markerless strategies started to be developed, considering

features that could be naturally found in the target environment (e.g. edges, lines,

or planar areas). Although some approaches using natural features still require

markers only for initialization [35, 36, 37, 38], there are many robust systems

that completely rely on features found in the environment, with or without prior

knowledge about it, as presented in more details in Section 2.1.2.

2.1.1 Fiducial marker tracking

Fiducial markers have been widely used in AR applications and it is a common

starting point for many researchers and enthusiasts of this area. They provide

visual cues that can be easily detected, requiring low-cost equipments to setup

small AR applications.

Many types of markers have been developed along the years, with different

shapes and properties, as exemplified in Figure 2.1. ARToolKit [17] introduced

square markers with black borders, used for detection. Each marker has a pattern

inside it, used to distinguish it from other markers. They are trained beforehand

and when visible to the camera, a corresponding virtual object appears attached

to them, as previously presented in Figure 1.1(a).

(a) (b) (c) (d) (e) (f)

Figure 2.1. Different types of fiducial markers: (a) ARToolKit [17], (b) CyberCode

[39], (c) Intersense [22], (d) ARTag [40], (e) reacTIVision [41], (f) other type of

circular marker [42].

13

Chapter 2. Background and Related Work

The CyberCode was developed by Rekimoto [39] based on a 2D-barcode techno-

logy. A guide bar and four corners are searched on the image to allow the system

to decode the bitmap pattern in the tag. Similar to CyberCode, Fiala [40] develo-

ped a type of square border markers that uses a matrix-pattern to encode an ID,

having a 6x6 interior grid of cells representing the logical symbols 1 or 0. Each

cell carries one bit of digital data and a 36-bits word can be extracted from one

marker after its boundary is determined. They were developed to reduce false

markers detection and identification.

Circular markers were initially explored by Naimark & Foxlin [22] aiming at

wide-area tracking: with the proposed 2D barcode fiducial design, a high number

of different codes could be generated. More recently, Koehler et al. [42] have been

also exploring circular markers, but to improve robustness against occlusion, since

the camera pose can be calculated from the whole marker contour, instead of only

the four corners, as usually done by square markers.

Although many proposed markers have square or circular shapes, another way

to identify them consists of using topological pattern matching. In this case,

each marker has a unique topology that can be matched against a dictionary of

subtrees represented as strings, as implemented in the reacTIVision system [41].

Some problems include difficulty to handle occlusions and the topology needs

to be complex enough to avoid false positive detections, but they are a popular

approach for tangible user interfaces [43, 44, 45].

(a) (b) (c)

Figure 2.2. (a) An augmented storytelling book using ARToolKit square markers:

The pattern (b) can be designed to have close relationship to the virtual content

displayed to the user on the (c) augmented image.

14

2.1. Rigid objects tracking

These researches are just some examples of how fiducial markers represent an

important element in the history of AR development. They have been extensively

explored in many applications and paved the path to bring the technology out of

research labs to the common users. Many types of markers exist and a comparative

study in terms of usability, efficiency, accuracy, and reliability was made by Zhang

et al. [46]. Details about detection and identification methods developed for

markers is also discussed in Koehler et al. [44].

In general, marker-based tracking is a low-cost and robust solution for real-

time tracking, specially for indoor applications. In some systems, the marker can

naturally become part of the target scenario, as shown in Figure 2.2, in which the

design of the pattern is directly related to the contents of the book. However, for

some applications, they may be intrusive and the offline preparation required can

be critical for large-scale environments: Registering hundreds of markers manually

is an arduous task. Hence, new approaches started to be developed relying on

features that naturally exist in the target scene.

2.1.2 Natural features tracking

In visual markerless tracking systems, no fiducial markers are placed in the envi-

ronment and another type of prior knowledge may be available to assist tracking.

Common representations include a CADmodel of the target object, a set of feature

points extracted from the target object (Figure 2.3) or some dominant geometric

structure present in the environment, e.g. planar areas.

More recently, tracking-while-mapping approaches also started to be explored.

These approaches can work without any model of the environment and the camera

pose is estimated by using information that is obtained once the environment

starts to be explored. A brief description of approaches using both strategies is

described in the next sections.

2.1.2.1 Model-based tracking

In model-based tracking, some prior knowledge of the environment is available for

tracking. Features on these models are compared to features found in the scene

and used to estimate the camera pose. Approaches in this category in general use

edges, optical flow, template-matching, or interest-points [16].

15

Chapter 2. Background and Related Work

In edge-based methods, a CAD model of the target object is usually used for

matching with edges found in the video image. Given an initial estimation of

the pose, the model is projected in the image, with control points sampled along

the model edges. Search along the normal of each control point is performed to

find the highest gradient. The camera pose is then obtained by minimizing the

displacement between projected and corresponding detected edges.

These approaches are commonly used for non-textured objects, but since pose

in the next frame is calculated based on the previous frame, it does not handle

well high inter-frame motion. False matches also occur when the object is highly

textured or it is inserted in a scenario with cluttered background, due to matching

with wrong edges (more details about this method is given in Section 2.1.3).

Optical-flow based methods explore temporal information extracted from the

relative movement of the object projection onto the image in order to track it [47].

Some existent works target mainly face [48] or head tracking [49, 50].

For template-matching methods, as the name implies, features are tracked by

comparing the content of each image with a sample template and minimizing the

difference between them. This can be useful for tracking complex patterns that are

difficult to be modeled using local features. Hager & Belhumeur [51] implemented

it for object tracking under planar affine motions and 3D template-matching has

been proposed by Jurie & Dhome [52, 53]. Drawbacks of these methods include

sensitiveness to partial occlusions and illumination changes.

(a) (b)

Figure 2.3. An augmented storytelling book using natural features tracking: (a)

Features extracted from the image on the left are used for rendering (b) virtual

pigs on the book’s page.

16

2.1. Rigid objects tracking

Different from template-matching methods, which uses global region tracking,

interest-points rely on local features. First, a feature detection algorithm is per-

formed (e.g. Harris [54], SUSAN [55] or FAST [56]) to find interest-points in

the images, such as corners or blobs. Then, matching with the trained database

can be done by using similarity measures such as Normalized Cross-Correlation

(NCC) or Sum of Squared Difference (SSD) on image patches.

Other approaches have implemented their own detector and descriptor, crea-

ting feature descriptors - a vector containing detailed appearance information of

distinctive parts of the target image and its neighborhood. The main goal is to

achieve robustness against different factors such as noise, detection error, scale

and rotation invariance, or photometric distortions. For the matching, distance

between vectors, such as Euclidean distance, can be used. Examples of such des-

criptors include SIFT [57] and SURF [58, 59]. Some advantages of these methods

include robustness to cluttered backgrounds, outliers and partial occlusions, but

they can be computationally expensive, sensitive to motion blur and the objects

need to be textured, with no repetitive patterns.

2.1.2.2 Combination of approaches

To achieve robustness and completeness, combination between the approaches

mentioned in the previous section have been also suggested. For instance, since

optical-flow based methods are sensitive to error accumulation, Haag & Nagel’s

[60] approach combines edge elements with optical flow to track moving vehicles

in a video scene.

Contour matching with optical-flow is implemented by Brox et al. [61] to

achieve a general tracking method and overcome the shortcomings presented by

each of the approaches when they are used separately.

A popular and successful combination uses edges and feature points, as an

attempt to compensate the weakness of each method by combining their strength.

To enable tracking of texture and untextured objects in the same framework,

Vacchetti et al. [62] uses multiple hypotheses to handle erroneous edge correspon-

dence, reducing drift as well as sensitiveness to cluttered backgrounds.

Vacchetti et al. [63] also introduced the idea of using keyframes, which are

reference images created during an offline stage, representing the scene from many

different viewpoints (or only one if the scene is not complex). A 3D model of

17

Chapter 2. Background and Related Work

the target object is required and the tracker starts with a small user-supplied

set of keyframes and, if necessary, new keyframes are introduced automatically.

During tracking, online information (calculated from previous frames) and offline

information (from the keyframes) are combined to prevent drift and jittering.

In Rosten & Drummond’s [64] approach, the FAST feature detector is used to

extract feature points, which are used to initialize an edge tracker. Feature points

are back-projected on a CAD model and correspondence between this point cloud

and detected features are established by minimizing the SSD between them. An

on-line learning of a dynamic function that maps the SSD to the inlier probability

is also used to improve feature tracking.

Using a similar idea, Choi & Christensen [65], create keyframes in the offline

stage using keypoint features, which are used for comparison with the input image.

Hence, instead of using keypoints to estimate motion between frames similar to

the aforementioned approaches [62, 64], they are only used to create an initial

estimation for the edge-based tracker. For the pose estimation, an edge-based

tracking system is used with iterative re-weighted least-squares.

2.1.2.3 Real-time Structure-From-Motion tracking

In the previous section, camera pose estimation is achieved by relying on some

prior knowledge about the target object or the scene. Although more complex, it

is also possible to obtain these parameters in completely unknown environments

by retrieving information from them in real-time.

In computer vision, Structure-From-Motion (SFM) aims to estimate both 3D

geometry (structure) and camera pose (motion) using a sparse set of correspon-

dences between image features [66]. Often implemented offline with bundle adjust-

ment, it is a method commonly used for automatic reconstruction of 3D objects

and scenes from video sequences and collections of images [67, 68].

Based on SFM, approaches started to be developed aiming for 3D real-time

camera tracking in complex and unknown environments. Koch et al. [69] sug-

gested an optimized SFM using robust statistics, but with tracking being facili-

tated by the use of fish-eye lens (to capture a large field of view of the scene) and

3DOF inertial rotation sensors.

18

2.1. Rigid objects tracking

Targeting the same goal, real-time tracking in unconstrained environments,

Davison [70] developed an approach using a single moving camera and Simulta-

neous Localization and Mapping (SLAM), a concept usually applied for robotic

exploration. In SLAM, both the pose and the environment structure is acquired

on-the-fly, generating a sparse map of the environment. This approach resulted

in the MonoSLAM [71], that basically creates a probabilistic sparse map of na-

tural landmarks. Instead of performing image processing and feature matching,

landmarks are searched in image regions constrained by estimate uncertainty.

However, for real-time operations, the number of landmarks is limited and the

approach is only applicable in small rooms. To achieve frame-rate operation with

many landmarks, Eade & Drummond [72] developed a monocular SLAM using a

FastSLAM-style particle filter [73].

In the AR context, a well known approach using SLAM was developed by Klein

& Murray [20], where the main difference, compared to previous methods, was in

the implementation of the mapping and tracking as two different processes. In

their approach, named Parallel Tracking and Mapping (PTAM), tracking is not

linked anymore to mapping, bringing several advantages: the tracking method

can be chosen disregarding the mapping approach; and for the mapping, analysis

in every single frame is not needed, just in a small number of keyframes.

In PTAM, the 3D point map is initialized using a stereo image of a small

tracking area and as the camera moves away from the initial pose, new keyframes

and map features are added to the system. Feature tracking is performed by using

FAST corners with image patches and the position of the existent 3D feature

points is improved using a global optimization approach. This approach proved

to be robust enough for tracking a hand-held camera in small AR workspaces,

being also implemented later for mobile phones [74].

To deal with non-textured objects in this SLAM context, Mohamed et al. [75]

developed a hybrid approach using a 3D model of one static object in the scene,

whose edges are used to improve de localization of keyframe-based SLAM. The

segments of the model are used to constrain the camera trajectory by adding

their reprojection-errors in the bundle adjustment. As a result, a compound cost

function that includes the edge information provided by the model and the multi-

view relationships from the unknown parts of the environment is constructed,

allowing tracking of a non-textured object in a cluttered environment. Although

19

Chapter 2. Background and Related Work

effective, the elements in the scene need to remain static.

Instead of generating and tracking a sparse map of features from the environ-

ment, Newcombe et al. [76] proposed a Dense Tracking and Mapping (DTAM)

algorithm, which uses a 3D dense surface model composed of depth maps for dense

monocular camera tracking. With the availability of cheap depth sensors such as

Kinect, Newcombe et al. have also proposed KinectFusion [77]. A truncated

signed distance function is used to constantly update the surface representation

and accurate camera pose tracking is obtained by aligning all depth points with

the complete scene model. Tracking and mapping runs in parallel using GPGPU.

However, similar to PTAM, it only considers static scenes.

Dealing with dynamic scenes makes the problem more challenging, though

an attempt has been implemented by Bleser et al. [78]. In this case, a CAD

model of one object in the scene is used for initialization, from which line models

are created from a given pose and registered on the image to find the initial pose.

During tracking, the model is discarded and the scene is reconstructed using linear

least squares triangulation, being improved recursively over time using Extended

Kalman Filter (EKF).

Sections 2.1.2.1 and 2.1.2.3 summarize some popular tracking approaches, con-

sidering some or none a priori knowledge from the environment. For more details

and other examples, surveys can be found in [16, 79, 25, 47]. Since this research

targets non-textured objects, the most suitable approach to be used is the edge-

based tracking, which is explored in more details below.

2.1.3 Edge-based methods in details

Edges are commonly used for being features easy to extract and relatively stable

under different types of transformations. In this category, there are two types of

implementations [16]: (a) approaches that first extract image contours and later

fit them to the model outlines [80, 81, 82] or (b) approaches that first render

the object model using an initial estimation of the pose and then look for strong

gradients around it for matching [54, 83, 18, 19]. In this section, focus is given on

the second case, since it is the method used in our proposed framework.

20

2.1. Rigid objects tracking

One of the first approaches for real-time tracking using edges was the RAPID

(Real-time Attitude and Position Determination) system [84]. In this method, the

pose from the previous frame and a Kalman filter estimator [[85] are combined to

predict the new position of the object in the current frame.

Control points are placed along the edges of the 3D model and through a one-

dimensional search, they are used for finding and measuring the distance to high

contrast image edges that matches them. The object’s pose is then updated by

minimizing the sum of squared edges normal distances (Figure 2.4).

Other approaches were developed later to improve robustness. Armstrong &

Zisserman [83] reduced the influence of outliers by using RANSAC [86]. Marchand

et al. [87] implemented tracking based on the estimation of a 2D global affine

transformation between two successive images, with the object pose being formu-

lated as an energy minimization process.

In Drummond & Cipolla’s [18] approach, the rigid body motion is represented

using Lie Algebra formalism and robustness is achieved by using an iterative

re-weighted least-square. A robust tracking framework is presented, which was

further extended to allow the use of multiple cameras and tracking of complex

structures, with articulated components or multiple constraints.

A non-linear pose estimation based on a virtual visual servoing approach is

proposed by Comport et al. [19]. Different primitives can be handled by this

framework, including straight lines, circles, cylinders, and spheres. A local moving

edges tracker is used in order to provide real-time tracking of points normal to

the object contours and robustness is obtained by using M-estimators.

Due to its simplicity and since no texture information are available for the

objects targeted in this work, our framework is also edge-based. However, most

of the approaches developed so far targets polyhedral objects, having flat faces

or only targeting simple curved shapes. In the next section, a further analysis on

rigid curved objects tracking is given with some of their important definitions and

properties.

21

Chapter 2. Background and Related Work

(a)

(d)(c)

(b)

(e)

Figure 2.4. Overview of an edge-based tracking system: (a) The target object;

(b) the model is rendered on the video image; (c) control points are placed along

the model edges and used to find nearby edge points through normal search; (d)

model is aligned to the object; (e) the pose is updated.

22

2.2. Rigid curved objects tracking

2.2. Rigid curved objects tracking

Dealing with curved objects using edge-based tracking systems is not straightfor-

ward, mainly because the edges are not static; instead, they change according to

the viewpoint. This feature is called apparent contour and represents the object’s

silhouette, being considered the dominant image feature when few or no texture

is available on the object’s surface.

2.2.1 Contour generator and apparent contour

Considering perspective projection, the contour generator Γ of a curved surface S

is defined as the set of pointsX ∈ S forming a curve in 3D-space for which the rays

from the camera center to S are perpendicular to the points on the surface normal

N. The apparent contour γ consists of all points on the image plane forming the

projection of Γ [29], as illustrated in Figure 2.5. It is an important feature for

curved surfaces, whose deformation contains enough geometrical information to,

for instance, recover the shape of curved objects assuming known motion [88].

camera

Figure 2.5. Contour generator and apparent contour of a curved surface

23

Chapter 2. Background and Related Work

2.2.2 Previous work on curved objects tracking

Some attempts aiming to estimate the structure and motion of apparent contours

include the use of epipolar parameterization [29]; monocular camera but con-

strained to orthographic, weak-perspective and affine projection [89]; conic-stereo

vision [90] or trinocular stereo [91]. In some cases, these approaches are appealing

because a model of the target object is not required. However, they all have some

restriction, such as known viewer motion or requiring multiple cameras.

On the other hand, for tracking curved objects using the apparent contour

inside a framework similar to the one described in Figure 2.4, some adjustments

are required or in some cases restrictions (e.g. shape or motion) are imposed

on the target object. In Rosten & Drummond’s [92] approach, the apparent

contour is calculated by solving an ordinary differential equation and used to

match with image edges. However, using this approach with complex objects

increases computational time due to the number of evaluations of the implicit

function and its derivatives at each point.

A unified approach that can handle fixed and apparent contour edges within

the same framework is proposed by Li et al. [93]. A prediction model is formu-

lated based on the local differential geometric analysis of surfaces using quadratic

approximation. Then, in contrast of the approach developed by Rosten & Drum-

mond [92], the apparent contour is only updated when the prediction error gets

too large, instead of recomputing it for every frame. However, tracking of complex

objects are limited to a certain range of motions and it works better for surfaces

of revolution. Similarly, in Comport et al.’s [19] approach, although curved prim-

itives (e.g. as circle, cylinders and spheres) are included as features to be tracked,

along with straight lines, experiments also targeted only simple shapes.

A combination of contour analysis and optical flow is explored by Brox et al.

[61]. Given an initial pose, the segmentation and contour based pose estimation

are iterated to successively improve the extracted contour and pose. The optical

flow helps to improve the initial pose and to compute additional point correspon-

dences in successive images. However, two requirements are necessary for this

approach: the silhouette have to contain enough details to provide a unique pose

estimation and the motion of the object cannot be too large.

24

2.2. Rigid curved objects tracking

Azad et al. [94] propose a general framework that requires only an accurate

3D polygon model of the object shape that can be rendered by a graphics card.

No assumption regarding the object shape, texture or color is made. A particle

filter based tracking is used, where an appearance-based matching is performed

using online rendering of a fine-grained local view space using the 3D model.

Since a global fine-grained would consume a large amount of memory and com-

putational time, only the views that are close to the current pose estimation are

rendered. However, the main drawback of this approach is the high computational

cost due to the slow read-back from the frame buffer, which remained even after

implementation of a full optimized version for the CPU and GPU.

Kyrki & Kragic [95] propose integration of model-based and model-free cues

with robust estimators to track not only polyhedral objects. The model-based

tracking module is based on Drummond and Cipolla’s [18] approach, including

the representation using Lie algebra. For surfaces of revolution, since one DOF

cannot be estimated (on the axis of revolution), Lie generators are aligned with

the coordinate system attached to the object, removing the effect of the rotation

axis. The same strategy is applied for a sphere, which has three unobservable

DOF. In the model-free part, interest points are extracted using the Harris corner

detector [54] and point tracking is based on minimizing the SSD in the RGB

values. Finally, the measurements of these two types of features are combined

using an Iterated Extended Kalman Filter (IEKF). However, similar to previous

approaches, although curved shapes can be tracked by this framework, they are

limited to spheres and surfaces of revolution (cylinder and cone).

2.2.3 Curved objects representation

In model-based tracking, a first step consists of determine the model represen-

tation to be used to describe the target object. For curved objects, common

representations include collections of curved primitives, polygonal meshes and im-

plicit surfaces.

Curved primitives are simple representations and very appealing because their

formulations can be computed efficiently and in real-time. For instance, a repre-

sentation based on intersections of pairs of quadrics (truncated quadrics) is used

by Drummond & Cipolla [27] for tracking highly articulated structures.

25

Chapter 2. Background and Related Work

A similar approach is implemented by Stenger et al. [96] for tracking articu-

lated hands, in which each part of the hand is modeled by a truncated quadric:

the palm is a truncated cylinder, with the top and bottom being half-ellipsoids;

segments of a cone represent the phalanx; hemispheres represent the joints and

the tips of fingers and thumb. Lastly, ellipsoids, truncated cylinders and trun-

cated cones represent the phalanges of the thumb. This representation has the

advantage of being simple and efficient; however, their use is limited to a small

class of shapes - the ones resembling these kind of shapes, as exemplified in the

description of the hand model.

Polygonal meshes representing the target object shape are another represen-

tation, which can be easily constructed using a 3D modeling software or obtained

by using a 3D laser scanner or similar technology, when dealing with complex

shapes. Once the mesh is obtained, the object can be treated as a polyhedral

model [28] or tracking is supported by other visual cues [94, 95]. However, the

major problem with this representation is the trade-off between computational

efficiency and accuracy when dealing with complex shapes: dense meshes are re-

quired to accurately approximate the object shape. Hence, as mentioned in the

previous section, most of the approaches only handle simple shapes.

Implicit surfaces are a more general and efficient representation used for curved

surfaces. Primitive implicit shapes such as Metaballs [97] can be smoothly com-

bined by summing their functions. For instance, Plaenkers and Fua [98] use

metaballs for tracking people using stereo vision. Metaballs are attached to an

articulated skeleton and arranged in an anatomically-based approximation and

used to simulate the behavior of bone, muscle and fat tissue.

Rosten & Drummond [92] use a sum of Gaussians in R3 to describe the curved

shape. Although it is a general formulation that can define any contour, conside-

ring that a suitable starting point is found, the disadvantage is that it is a complex

model to be implemented. Nevertheless, tracking of complex objects increases the

computational time due to the number of evaluations of the implicit function and

its derivatives at each point.

Khan [99] suggested a silhouette-based 2D-3D pose estimation using implicit

algebraic surfaces. A explicit 3D mesh is used, which is converted to an algebraic

surface. Finally, the pose is estimated from algebraic image silhouette equations.

However, the computational efficiency is also limited by the objects complexity:

26

2.2. Rigid curved objects tracking

The degree of projected polynomials grows too large very quickly, making difficult

to use it for complex objects tracking in real-time applications.

A comparison among the representations described in this section is summa-

rized in Table 2.1. From the previous works analysis, it is possible to notice

the need of a method that can make use of general and accurate models, easy

to be constructed and at the same time able to efficiently run in real-time. To

fulfill these requirements, in our approach, a new representation is proposed by

combining the polygonal mesh and the implicit surface representation.

An implicit algebraic equation, represented by a general quadric, is used to

represent the apparent contour. To make the calculation of this equation easier,

a polygonal mesh representing the object shape is used: it provides the necessary

data for the quadrics fitting, calculated offline. Thus, shortcomings presented by

each of the representations can be overcome: a sparse polygonal mesh can be used

to achieve computational efficiency, while accurate tracking is kept through the

apparent contour of quadrics.

Quadrics have simple contour generators and the calculation of their appa-

rent contour (conic curves) is well defined using differential geometry [29]. Using

the conic curves instead of the original edges from the mesh makes the tracking

more accurate because they approximate better the object local shape and, there-

fore, more correct point correspondences can be found. Since this calculation is

performed during the offline stage, it does not affect the computational time in

the optimization step. Moreover, since this is a local approximation, simple and

complex shapes can be easily handled using the same framework.

Table 2.1. Comparison of common model representations of curved surfaces

Pros Cons

Curved Primitives Simple Limited to a small class of shapes

Polygonal Mesh Simple Trade-off (efficiency vs. accuracy)

Implicit Surfaces General Difficult to construct the models

27

Chapter 2. Background and Related Work

2.3. Mathematical background

This section presents some mathematical notations used throughout this thesis.

2.3.1 Coordinate frames

Coordinates in 3D space are represented using homogeneous coordinates in the

form of Xw = (xw, yw, zw, 1)
T , where X represents a 4-vector and the subscript w

means the point is in the world coordinate frame. Similarly, Xc = (xc, yc, zc, 1)
T

represents the point in the camera coordinate frame. Corresponding 2D points

projected in the image plane are represented as x = (x, y, 1)T .

The six parameters representing the DOF of the object is represented by the

vector

s = (wx, wy, wz, tx, ty, tz), (2.1)

where W = (wx, wy, wz) corresponds to the rotation and (tx, ty, tz) to the trans-

lation parameters. Considering perspective projection, the rigid body transfor-

mation between the world and the camera coordinate frame is related by a 3x3

rotation matrix R and a translation vector t in R3. By combining R and t, it is

possible to construct a 4x4 modelview matrix T used to convert the 3D points

from the world coordinate frame to the camera coordinate frame, such that:

Xc = TXw = [R|t]Xw. (2.2)

Rotation by an angle θ about an axis in the direction of the unit vector r =

(rx, ry, rz) can be represented by the following equation:(
r11 r12 r13

r21 r22 r23

r31 r32 r33

)
=

(
r2x(1− cos θ) + cos θ rxry(1− cos θ)− rz sin θ rxrz(1− cos θ) + ry sin θ

ryrx(1− cos θ) + rz sin θ r2y(1− cos θ) + cos θ ryrz(1− cos θ)− rx sin θ

rxrz(1− cos θ)− ry sin θ ryrz(1− cos θ) + rx sin θ r2z(1− cos θ) + cos θ

)
.

(2.3)

where

θ =
√

w2
x + w2

y + w2
z ;

rx =
wx

θ
; ry =

wy

θ
and rz =

wz

θ
.

28

2.3. Mathematical background

The length of the vector W represents the angle of rotation and its direction

represents the rotation axis. However, when using this representation, if the varia-

tion in the rotation is very large, non-linearities appear more frequently, resulting

in poor performance. To solve this, information from a previous position and

orientation T0 can be used to represent the amount of change in the parameters,

resulting in:

T = T0TM, (2.4)

where

TM =

(
R t

0 0 0 1

)
=

r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1

 (2.5)

To project Xc into the image plane, T is multiplied to a matrix K, containing

the camera internal parameters:

K =

p11 0 p13 0

0 p22 p23 0

0 0 1 0

 , (2.6)

where p11 and p22 represent the focal length of the camera in the x and y direction,

respectively, and (p13, p23) represent the point where the camera principal axis

meets the image plane. The result is the matrix equation P = K[R|t] used to

project the current view of the object in the image plane at each iteration. In

summary:

h

x

y

1

 = K

xc

yc

zc

1

 = P

xw

yw

zw

1

 . (2.7)

29

Chapter 2. Background and Related Work

2.3.2 Quadric surfaces

Quadric surfaces represent one of the main concepts used in our approach. They

are formally defined as algebraic surfaces of degree 2 in R3 defined implicitly by:

f(x, y, z) = a1x
2 + a2y

2 + a3z
2 + 2a4xy + 2a5yz +

2a6xz + 2b1x+ 2b2y + 2b3z + c = 0, (2.8)

where (a1, a2, a3, a4, a5, a6, b1, b2, b3, c) are real numbers representing the quadric

parameters, not all being zero. Some examples of quadric surfaces include spheres,

ellipsoids and paraboloids.

By using homogeneous coordinates, quadrics can be conveniently written in

matrix form as:

f(x, y, z) = XT
wQXw = 0, (2.9)

with Q representing the following 4x4 symmetric matrix:

Q =

a1 a4 a6 b1

a4 a2 a5 b2

a6 a5 a3 b3

b1 b2 b3 c

 =

[
Q3 q

qT c

]
. (2.10)

2.3.3 Conic curves

A conic curve is an algebraic curve in R2 defined implicitly by:

f(x, y) = c1x
2 + c2y

2 + c3xy + c4x+ c5y + c6 = 0, (2.11)

where (c1, ..., c6) are real constants and c1, c2, c3 are not all zero. Circles, ellipses

and parabolas are some examples of conics. Similar to quadrics, a conic C can

also be represented using homogeneous coordinates:

xTCx = 0 ∴
[
x y 1

]c1
c3
2

c4
2

c3
2

c2
c5
2

c4
2

c5
2

c6

xy
1

 . (2.12)

30

2.4. Concluding remarks

2.3.4 Apparent contour of quadrics

The apparent contour equation employed in this thesis uses the notation developed

by Cipolla & Giblin [29]. Considering the camera center is positioned at O =

(0, 0, 0, 1)T and using the notation given in Equation 2.10, leads to:

A =

(
qqT − cQ3 0

0 0

)
. (2.13)

If the image plane is at z = f , the apparent contour in this plane is defined as

the intersection of the cone of tangent rays with the image plane, i.e., the points

x = (x, y, f)T where:

xT (qqT − cQ3)x = 0 ∴ xTAx = 0 (2.14)

such that qqT − cQ3 represents the parameters of the corresponding conic. Addi-

tional information about calculation of this equation is given in Appendix B.

2.4. Concluding remarks

This chapter presented a summary of some existent tracking approaches, including

markers and markerless methods.

Although the use of markers provides robust tracking, they are not the appro-

priate solution for the target object in this research: markers are more suitable for

objects with flat faces and in some scenarios, such as the augmented prototyping

application developed in Chapter 6, multiple markers are necessary to allow visu-

alization of the augmented information on the target object from different views,

making them intrusive elements in the scenario.

From the analysis of previous approaches using natural features, an edge-

based approach was chosen as the best option. However, most of the edge-based

approaches proposed so far mainly deals with polyhedral objects having flat faces

and sharp edges or simple curved shapes. In the next chapter, more details about

our framework and the new representation developed for accurate and efficient

curved surfaces tracking are presented.

31

CHAPTER 3

Proposed Tracking Framework

This chapter presents a detailed description of the tracking framework developed

in this thesis. In the first section, details about the offline stage are presented, with

the necessary steps for constructing the proposed quadrics representation. The

online stage is explored in the subsequent section, based on a general edge-based

tracking system, with the proper modifications to handle the apparent contour of

curved surfaces.

3.1. Framework overview

The framework proposed in this thesis uses an edge-based tracking system with

a 3D model of the target object prepared beforehand. An overview is shown in

Figure 3.1. During the offline stage (A), the camera internal parameters used to

project 3D points in the image plane are calculated and an accurate 3D model

representing the object is constructed. This model is simplified to obtain a sparse

mesh to be used during tracking and its data are used to create an implicit model

representing local approximations of the entire object. In the online stage (B),

steps (i) to (v) are similar to a standard edge-based tracking [18].

32

3.1. Framework overview

(A) Offline stage

(ii) Update pose

parameters

Manual

initialization

(B) Online stage

(vi) Compute pose

Camera parameters

calculation

Object model

creation

Quadrics

calculation

(iii) Test patches

on the contour

(iv) Assign sample

points along

visible edges

(v) Locate edge

positions in video

image

(i) Capture new

image frame

Dense mesh Md

Sparse mesh Ms

...

Figure 3.1. Overview of the tracking framework: (A) The offline stage with the

camera parameters calculation, model creation and quadrics calculation. (B) The

online stage, with the optimization loop highlighted in red.

The object pose is manually initialized (ii) and a visibility test is performed to

find which patches from the mesh are visible to the camera (iii). Control points are

assigned to the visible edges (iv) of the patches located on the object’s apparent

contour and used to find nearby edge points (v).

For step (vi), the main changes implemented to use the apparent contour

represented by conic curves are shown in Figure 3.2: a cost function (Equation

3.17) is calculated based on the distance between the detected edge points and

the conic curves on the contour. If the error value returned by the cost function

is smaller than a threshold, the loop returns to step (i); otherwise, the pose

parameters are refined.

33

Chapter 3. Proposed Tracking Framework

Calculate cost

function
Error < thresh

or iteration > n

Yes

No Calculate

Jacobian

(ii) Update pose

parameters

Edge position

can be reused

(iv) Assign sample

points along

visible edges

(v) Locate edge

positions in video

image

(v)

(iii) Test patches

on the contour

Yes

No

(i)

Figure 3.2. Step (vi) in details.

After updating the pose parameters, the edge positions are tested again. This

is because a small movement of the apparent contour can change the correct

correspondence between the detected edge points and the patches on the contour.

If the edge positions can be reused, the tracking loop restarts; otherwise, steps

(iv) and (v) are repeated.

3.2. Offline stage

In this stage, parameters of matrix K (Equation 2.6), representing the camera

internal parameters, are obtained by calibrating the camera using OpenCV and

a chessboard image.

An accurate 3D model Md of the target object is also constructed and for our

experiments (Chapter 5), the polygonal mesh of complex shapes was obtained

by using the Range 7 3D laser scanner. Simple shapes, such as the torus, were

modeled using the 3D modeling software Blender. A remeshing method is applied

on Md to create a sparse mesh Ms. Both meshes are required in the offline

calculation of the quadrics described in Subsection 3.2.2.1. During the online

stage, however, Md is discarded and only Ms is used.

34

3.2. Offline stage

3.2.1 Polygonal mesh simplification

Several approaches for simplifying polygonal meshes are available in the literature

[100, 101]. The choice of the method to be used in our framework considered

mainly the following factors: speed, high fidelity to the original appearance of the

object and easy implementation. Since the main goal of our framework is not the

simplification method, only two approaches were tested and compared:

• Poly Reducer (PR) [102], an extension included in Blender. It simplifies the

mesh using a decimation approach, removing vertices at each iteration.

• Quadric Error Metric (QME), developed by Garland [103] and available in

the software package QSlim. It applies a sequence of vertex pair contrac-

tions, each pair having a cost associated, calculated using a quadric metric.

At each iteration, the lowest cost pair is contracted.

Two polygonal meshes were used to evaluate the methods mentioned above:

the angel and the bunny1, whose original dense meshes have 25,370 and 25,000

patches, respectively. Figure 3.3 and Figure 3.4 show some of the polygonal

meshes obtained after the simplification.

Numerical comparison of the results obtained from both approaches was per-

formed using the software Metro [104], which evaluates the difference diff between

two triangular meshes. In this method, no knowledge about the simplification ap-

proach used is necessary and diff is evaluated on the basis of the approximate

error between the meshes.

ConsideringM1 the original dense polygonal mesh andM2 the simplified mesh,

the approximate error between them is defined in Metro as the distance between

corresponding sections of the meshes. The surface of the first mesh (pivot mesh)

is sampled and for each element, a point-to-surface distance to the non-pivot

mesh is calculated. However, since this distance is not symmetric, both a forward

distance E(M1 → M2) and a backward distance E(M2 → M1) are calculated and

a two-sided distance (Hausdorff distance) is obtained by taking the maximum of

E(M1 → M2) and E(M2 → M1).

13D model of the bunny object is available at http://graphics.stanford.edu/data/3Dscanrep/

35

Chapter 3. Proposed Tracking Framework

792 patches 396 patches 198 patches

P
R

Q
E

M

98 patches

Figure 3.3. Comparison between polygonal mesh simplification using PR and

QEM for the Angel.

1560 patches 779 patches 388 patches

P
R

Q
E

M

193 patches

Figure 3.4. Comparison between polygonal mesh simplification using PR and

QEM for the Bunny.

36

3.2. Offline stage

Table 3.1 presents the result of the Hausdorff distance, with the error between

the models for both objects. Results for the forward and backward distance can

be found in Appendix C. For the angel, QEM presented better results with lower

error in all cases. For the bunny, although PR presented better results for 779

and 388 patches, the difference was not very significative to choose it over QEM.

Furthermore, considering the computational time, QEM is able to perform faster:

While PR takes approximately 5-12 sec. to simplify the polygonal mesh, QEM

takes about 1-2 sec. to simplify the same model. Therefore, in our approach,

QEM was chosen as the polygonal simplification method.

Lastly, the choice of the final model to be used for tracking (i.e., the lower limit

of the number of patches that can be used in our framework), was visually done,

considering two conditions: (a) The quality of the final mesh, provided that no

fundamental part of the mesh was deleted and (b) the number of internal vertices

it can produce (to be explained in Section 3.2.2.2).

Table 3.1. Housdorff distance
Object # of patches (M2) Method Distance

Angel

792 patches
PR 0.014928

QEM 0.013797

396 patches
PR 0.035032

QEM 0.02682

198 patches
PR 0.055519

QEM 0.049604

98 patches
PR 0.098271

QEM 0.06694

Bunny

1560 patches
PR 0.176407

QEM 0.081031

779 patches
PR 0.279456

QEM 0.291398

388 patches
PR 0.379191

QEM 0.496251

193 patches
PR 0.55219

QEM 0.496251

37

Chapter 3. Proposed Tracking Framework

3.2.2 Quadrics patch representation

As mentioned in Chapter 1, when dealing with curved objects, high quality meshes

are required to accurately represent the object’s shape. However, this represen-

tation is not computationally efficient, affecting applications where real-time re-

sponse is expected, such as in AR.

A survey describing some methods for recovering quadrics from triangle meshes

can be found in [105]. One simple solution consists of dividing the shape of the

target object in curved primitives such as spheres, cylinders or ellipsoids and

use them for tracking. This has been previously implemented by Drummond &

Cipolla [27] for tracking articulated objects and by Stenger et al. [96] for hands

tracking, both using truncated quadrics. Although it is an efficient method, it

is restricted to a small class of shapes - with parts resembling quadrics. In our

suggested representation, curved primitives represented by quadrics are also used,

but our approach is not affected by the same issue because each patch of the

mesh (not each part of the object) has a corresponding quadric equation. Hence,

it is possible to easily handle simple shapes similar to the duck model as well as

complex shapes, such as the angel figurine shown in Chapter 1, Figure 1.3.

3.2.2.1 Quadrics calculation

In the proposed quadrics patch representation, each patch on the sparse mesh has

a quadric equation associated. The 3D object model is constructed using triangle

patches connected on the positions Vpki = (xi, yi, zi) ∈ pk (k − th patch), where

i = {1, 2, 3} and k represents the number of patches.

In our previous approach [106], quadrics fitting is achieved by a naive calcula-

tion using algebraic fitting. The polygonal meshes have quad patches and for each

patch, quadrics are calculated by using the coordinates and the normal values of

its four vertices. Additionally, vertices belonging to patches surrounding the patch

being analyzed are also included in the fitting. Finally, least-squares are used to

find the values of the quadric parameters. However, the use of adjacent patches

in this implementation may not work in some cases, especially when one of them

has different curvature. This problem becomes more noticeable when dealing with

sparse meshes, since less data points are available.

38

3.2. Offline stage

To achieve a better quadrics fitting with sparse meshes, an approach consi-

dering geometric fitting is suggested. Geometric approaches in general calculate

the shortest distance from the given point to the fitting surface using iterative

algorithms. One example of geometric fitting of quadrics, including a comparison

with results obtained with algebraic fitting can be found at [107].

Equation 2.8 is used to calculate the quadric parameters, where the value

c = 1.0 is fixed and the other nine parameters are calculated for every patch

based on the corresponding vertices positions Vpk. However, since the model has

triangle patches, the existent data in only one patch is not enough to find a

solution. To solve this problem, a set of internal vertices is implemented for all

patches in the mesh.

3.2.2.2 Internal vertices

The internal vertices IVj = (xj, yj, zj), with j = {1, 2, ..., n}, are defined as vertices

that originally belong to the dense mesh Md, but during the simplification process

are deleted. Figure 3.5 illustrates the process to obtain the internal vertices. Each

patch pk in the new mesh have n internal vertices, whose value depends on how

many of the deleted vertices belong to the area bounded by pk.

Find

correspondence

Remeshing

Original dense mesh Md

(approximately 12000 patches)

Sparse mesh Ms

(approximately 250 patches)

pk

Figure 3.5. Internal vertices calculation. A random patch is highlighted and the

yellow dots represent the internal vertices obtained after evaluation of the dense

mesh. This process is repeated for all patches in the offline stage.

39

Chapter 3. Proposed Tracking Framework

Figure 3.6. Internal vertices example.

Data calculated in this step are used only in the offline stage for conics fitting.

During the online stage, just the original vertices Vpk are used to avoid increasing

the computational time in the tracking step.

To verify if the point A = (ax, ay, az) is an internal vertex of the patch pk, first

a bounding test is performed comparing each of the coordinates of A with the

coordinates of the vertices of pk. If these coordinates are not inside the interval

bounded by pk, they can be discarded right away.

If A is a candidate point, the next step consists of checking whether A is within

the boundaries of pk in 3D space. In this case, an extension to 3D of the method

to check if a point is inside a triangle in 2D using barycentric coordinates [108]

was implemented. Figure 3.6 shows some examples of the obtained result, with

the internal vertices being represented by the yellow dots.

3.2.2.3 Quadrics evaluation

The quadrics fitting implemented in our framework uses the internal vertices to

find the quadric that best fits each patch. Hence, the sparser the mesh is, more

data are available for the calculation and a better fitting can be achieved. If less

than nine internal vertices are available, calculation of the quadrics is not possible

and if this patch falls on the object contour, this edge cannot be used for tracking.

In our experiments, although the obtained fitting is suitable for most of the

patches in the mesh, in some cases the fitting may not be the most correct one,

which affects the tracking as a consequence. To improve the overall performance

of our method, the quadric fitting error is also evaluated, based on the result

returned by the implicit equation. If it exceeds a threshold, the patch is discarded

and the corresponding edge contour is not considered for tracking.

40

3.2. Offline stage

(b) Duck: 100 patches

(c) Angel: 250 patches

(d) Bunny: 250 patches

(a) Torus: 150 patches

Figure 3.7. Some examples obtained with the quadrics fitting for four different

objects: (a) Torus, (b) Duck, (c) Angel and (d) Bunny.

41

Chapter 3. Proposed Tracking Framework

The number of internal vertices available for each object is directly related to

the shape of the object and the method used to obtain its 3D model. For instance,

simple shapes can be manually modeled using a 3D modeling software. Then, a

smoothing function can be used to generate more vertices in the final model and

hence more data for the quadrics fitting. If the object model is obtained using a

3D laser scanner, obtaining data for the internal vertices becomes easier because

the amount of point data available are usually high.

Figure 3.7 shows some examples obtained with the quadrics fitting. For each

object used in our experiments, approximately more than 30 internal vertices was

used (this number also depends on the patch location).

3.3. Online stage

Once the model is projected using an initial estimation of the pose, tests are

performed to identify which patches from the polygonal mesh are tangent to the

current viewing ray. OpenGL is used to determine the visible edges, where control

points are placed and used to find points on the apparent contour for matching.

Lastly, a cost function is minimized to find the correct parameters of the object’s

current pose. It represents the module in our framework with the most significative

differences compared to previous approaches.

3.3.1 Contour patches selection

To find which patches from the mesh are on the current object’s contour, first a

test is performed to find all patches that are facing the camera and at the same

time have a neighbor patch facing the opposite direction.

The next step consists in finding which model edges represent the contour

lines. In this case, the dot product between the vector from the camera center

Oc to each vertex Vpki and the normal vector Npki = (nxi, nyi, nzi) at this vertex

is performed for all patches to give the vertex direction:

dir = (Vpki −Ow) ·Npki (3.1)

42

3.3. Online stage

Since this test is performed in the world coordinate frame, it is necessary to

convert the coordinates of Oc = (0, 0, 0, 1)T from the camera coordinate frame to

coordinates in the world coordinate frame Ow = (oxw, oyw, ozw). This can be done

using Equation 2.2, resulting in:

Ow = T−1Oc =

ti11 ti12 ti13 ti14

ti21 ti22 ti23 ti24

ti31 ti32 ti33 ti34

0 0 0 1

0

0

0

1

 =

ti14

ti24

ti34

1

 (3.2)

Thus, Equation 3.1 becomes:

dir = (ti14 − xi, ti24 − yi, ti34 − zi) · (nxi, nyi, nzi) (3.3)

The sign of this calculation is used to obtain the direction of each vertex. If

there is one vertex with different sign than the other two vertices, then it means

they are in opposite directions. The edge connecting the vertices pointing to the

same direction is selected as the edge on the contour used for matching with the

edges detected on the video image (Figure 3.8).

Figure 3.8. Contour edges calculation, where diri, i = 1, 2, 3 represents the di-

rection of each vertex. If diri > 0, it means the vertex i is facing the camera;

otherwise, it is on the opposite side. The contour edge is highlighted in green.

43

Chapter 3. Proposed Tracking Framework

However, for some object shapes, using this approach straightforward includes

edges that are not on the object’s contour. For instance, consider the angel figurine

model shown in Figure 3.9. Some of the patches on the angel’s arms also fulfill the

conditions previously mentioned, but they do not belong to the object’s contour.

To remove these edges, OpenGL is used to perform a depth test and select only

the edges located on the actual contour.

(a) (b) (c) (d)

Test depth

Figure 3.9. Selection of the edges on the outside contour. (a) Target object. (b)

Candidate contour edges. (c) Removal of the highlighted edges that do not belong

to the contour by testing its depth. (d) Object’s actual contour.

edis elen

(a) (b)

Figure 3.10. Edge points detection and matching: (a) Control points are sampled

along the visible contour and (b) used to match with detected edges in the video

image. Nearby detected edges are represented by the pink crosses.

44

3.3. Online stage

3.3.2 Edge points detection and matching

Once the visible edges on the contour are selected, control points are assigned

along them, separated by a regular distance edis, similarly to the method used by

Drummond & Cipolla [18]. Then, search in the normal direction with length elen of

each control point is done to search for nearby pixels with intensity discontinuity,

as shown in Figure 3.10.

Since the control points are placed along the edges selected on the previous

section, in some cases, just part of the edge is on the contour, as illustrated in

Figure 3.11. Therefore, the control points position are also tested to discard the

ones that are sampled on the part of the edge outside the contour.

Figure 3.11. Control points selection. Highlighted by orange, the edges partially

located on the contour. In this case, control points cannot be sampled along the

entire length of the edge.

3.3.3 Apparent contour equation

When a patch pk is located on the object contour, its projection is calculated

according to the viewpoint, but only part of it is used to form the apparent

contour - the length of the conic varies according to the length of the edge of pk

located on the contour. This is illustrated in Figure 3.12: (a) pk has a quadric

Q calculated in world coordinates, which is converted to the camera coordinate

frame and projected in (b) image coordinates. Only the conic segment passing

exactly on the edge of pk is used, highlighted by the pink line. This is done for all

patches on the contour, generating the apparent contour as a collection of different

conic segments as shown in Figure 3.13.

45

Chapter 3. Proposed Tracking Framework

(a) (b)

patch pk

Figure 3.12. Quadrics projection of a patch pk: In (a) world coordinates and (b)

image coordinates, with the length of the conic used highlighted in pink.

3.3.3.1 Quadrics projection

3.3.3.1.1 World to camera coordinates

The quadric parameters Qw are converted from world to camera coordinates Qc

using the notation given in Equation 2.10. By rearranging it using a similar

strategy employed in Equation 3.2, the following Equation is obtained:

XT
wQwXw = 0

XT
c T

T
i QwTiXc = 0 (3.4)

where Xw and Xc are points in the world and camera coordinates, respectively,

and Ti the inverse of the transformation matrix T (Equation 2.5).

Therefore, the quadric parameters in camera coordinates are:

Qc = TT
i QwTi =

ac1 ac4 ac6 bc1

ac4 ac2 ac5 bc2

ac6 ac5 ac3 bc3

bc1 bc2 bc3 cc

 (3.5)

46

3.3. Online stage

3.3.3.1.2 Camera to image coordinates

The quadric parameters are converted to image coordinates by replacing Equation

3.5 in Equation B.8, representing the apparent contour of a quadric:

xTAx = 0

(
x y f

) b2c1 − ccac1 bc1bc2 − ccac4 bc1bc3 − ccac6

bc1bc2 − ccac4 b2c2 − ccac2 bc2bc3 − ccac5

bc1bc3 − ccac6 bc2bc3 − ccac5 b2c3 − ccac3

x

y

f

 = 0. (3.6)

However, Equation B.8 considers the origin of the coordinates in the image

plane is located at the principal point. Assuming f = p11, this means:

h′

x′

y′

1

 =

p11 0 0

0 p11 0

0 0 1

xc

yc

zc

 , (3.7)

which differs from the matrix K used in our approach:

h

x

y

1

 =

p11 0 p13

0 p22 p23

0 0 1

xc

yc

zc

 . (3.8)

To allow the use of Equation B.8, Equation 3.8 was rearranged as:

h

x

y

1

 =

1 0 p13

0 p22
p11

p23

0 0 1

p11 0 0

0 p11 0

0 0 1

xc

yc

zc

 . (3.9)

Replacing Equation 3.7 in Equation 3.8 leads to:

h

x

y

1

 = h′

1 0 p13

0 p22
p11

p23

0 0 1

x′

y′

1

 . (3.10)

47

Chapter 3. Proposed Tracking Framework

Figure 3.13. Conic curves on the contour: Highlighted in blue, the conics obtained

using the proposed quadrics patch representation for the patches belonging to the

object contour.

48

3.3. Online stage

Assuming h = h′:

x

y

1

 =

1 0 p13

0 p22
p11

p23

0 0 1

x′

y′

1

 ∴

 x

y

p11

 =

1 0 p13
p11

0 p22
p11

p23
p11

0 0 1

 x′

y′

p11

 . (3.11)

Therefore: x′

y′

p11

 =

1 0 p13
p11

0 p22
p11

p23
p11

0 0 1

−1 x

y

p11

 . (3.12)

Simplifying the notation: x′

y′

p11

 =

pi11 0 pi13

0 pi22 pi23

0 0 1

−1 x

y

p11

 = K̄

 x

y

p11

 . (3.13)

Thus, the original Equation 3.6 becomes:

(
x y p11

)
K̄

T
AK̄

 x

y

p11

 = 0. (3.14)

A final modification is necessary to change x = (x, y, p11)
T to x = (x, y, 1)T :

(
x y 1

) pi11 0 0

0 pi22 0

pi13p11 pi23p11 p11

A

pi11 0 pi13p11

0 pi22 pi23p11

0 0 p11

x

y

1

 = 0. (3.15)

Using the notation given in Equation 2.12, the parameters of the quadric in

image coordinates (conic curve) is:

c1
c3
2

c4
2

c3
2

c2
c5
2

c4
2

c5
2

c6

 =

 pi11 0 0

0 pi22 0

pi13p11 pi23p11 p11

A

pi11 0 pi13p11

0 pi22 pi23p11

0 0 p11

 . (3.16)

49

Chapter 3. Proposed Tracking Framework

3.3.4 Pose parameters computation

The pose parameters are calculated as a minimization problem and Levenberg-

Marquardt Algorithm (LMA) is used to compute the registration that minimizes

the distance between projected and observed features.

The following cost function ec(s) is minimized:

ec(s) =
1

n

n∑
i=1

de(Xi, φ(c(Qi, s)))
2 (3.17)

In the equation above, Qi represents the quadric parameters in world coor-

dinates, c(Qi, s) calculates the quadric parameters in camera coordinates and

φ(c(Qi, s))) is the projection of the quadric in camera coordinates in the 2D im-

age plane (conic curve). Finally, the function de represents the distance between

projected features and detected points Xi in image coordinates.

If the initial pose is represented by s0 and n edge points are found in the

video image, a nx6 Jacobian matrix is constructed and used to calculate the pose

parameters as a solution of the equation:

de = Jes(s0)∆s. (3.18)

where ∆s represents a small variation in s and Jes is the Jacobian matrix of a

function describing the influence of each element of de on each element of s:

Jes =
∂de
∂s

. (3.19)

Solving Equation 3.18 for ∆s, where the sum of square errors of de are mini-

mized, leads to:

∆s = (JT
esJes)

−1JT
esde. (3.20)

Finally, the pose vector can be iteratively updated using:

s1 = s0 +∆s. (3.21)

Calculation of Jes is described in details in Appendix D.

In addition, the influence of outliers is removed by using M-Estimators. The

Tukey estimator [16] is used to weight the error returned by de:

50

3.3. Online stage

wi =

k2

6

{
1−

[
1−

(
de
k

)2]3}
, if |de| ⩽ k

k2

6
, otherwise

(3.22)

where k represents the threshold value separating the inliers and outliers points.

The value of k is the double of the nth value of the vector de in ascendant order,

where n represents the number of inliers. The calculated Jacobians also need to

be weighted at each iteration step, given by the derivative of Equation 3.22:

weight =

de

[
1−

(
de
k

)2]2
, if |de| ⩽ k

0, otherwise
(3.23)

3.3.5 Distance calculation

When dealing with static edges, de can be calculated by using the formula of the

distance from a point to a line (Figure 3.14(a)). However, this calculation is not

trivial for the apparent contour of curved surfaces because there is no closed form

to calculate the distance between points to a generic implicit curve.

Mederos et al. [109] proposed an iterative approach to evaluate this distance,

but this makes the original minimization given by Equation 3.17 impractical.

Taubin[110] suggested an analytical approximation to the Euclidean distance of a

point to an implicit curve. However, this first order approximated distance does

not provide good results for our approach - it presents satisfactory results only

when the detected point is very close to the conic.

Furthermore, in some cases the distance is erroneously calculated because it

is considering the whole conic and not the corresponding conic segment passing

exactly on the patch contour. In Figure 3.14(b), although p1 is closer to the

detected point p0, this distance cannot be used because it is further from the

contour edge. Therefore, development of a different strategy to evaluate this

distance is necessary.

51

Chapter 3. Proposed Tracking Framework

p0

p1

d

p1

p2
(a) (b)

p0
d1

d2

Figure 3.14. Distance calculation: (a) Evaluation using the edge from the mesh.

(b) When dealing with conic curves, it is necessary to find the correct conic

segment from which the distance will be calculated. In this case, although d1 < d2,

the correct distance to be used is d2.

3.3.5.1 Reference points

In our approach, reference points, namely p′1 = (x′
1, y

′
1) and p′2 = (x′

2, y
′
2), are

placed on the visible contour edge and used to find two other points on the conic

curve, p1 = (x1, y1) and p2 = (x2, y2), from which the distance is evaluated. This

position changes change according to p0 position, as shown in Figure 3.15, with

p0 in different positions and the respective relationship established with respect

to the contour edge from the mesh as well as the corresponding conic.

To find the position of the reference points, first p0 is orthogonally projected

on the edge from the mesh. The length d1 of this projection is used to calculate

the position of p′1 and p′2, as illustrated in Figure 3.16. Once this position is

determined, two line equations l1 (connecting p0 and p′1) and l2 (connecting p0

and p′2) are calculated. The points p1 and p2 where each of the lines intersect

the conic are used to find another line equation l3. Finally, the distance d2,

representing an approximate distance from the detected point p0 to the conic, is

calculated using the distance of this point to l3 (Figure 3.17).

p0

p1' p2'

p0

p1' p2'

p0

p1' p2'

(a) (b) (c)

Figure 3.15. Different relationships between the detected point p0 and the mesh

edge as well as the conic.

52

3.3. Online stage

3.3.5.2 Point to conic distance calculation

Denoting the points p1 and p2 as pi (as well as p
′
1 and p′2 as p′i), with i = 1, 2 and

considering p0 = (x0, y0) is the detected point in the video image, the point pi

on the conic curve and belonging to the line li passing through p0 and p′i can be

written as: {
xi = (x0 − x′

i)pi + x′
i

yi = (y0 − y′i)pi + y′i
(3.24)

where (c1, ..., c6) are real constants and c1, c2, c3 are not all zero.

pi is found by replacing Equation 3.24 in Equation 2.11, representing a general

conic, resulting in the following equation:

(c1(x0 − x′
i)
2 + c2(y0 − y′i)

2 + c3(x0 − x′
i)(y0 − y′i))p

2
i +

(2c1x
′
i(x0 − x′

i) + 2c2y
′
i(y0 − y′i) + c3(x0y

′
i + x′

iy0 − 2x′
iy

′
i) +

c4(x0 − x′
i) + c5(y0 − y′i))pi +

(c1x
′2
i + c2y

′2
i + c3x

′
iy

′
i + c4x

′
i + c5y

′
i + c6) = 0

(3.25)

Equation 3.25 is a quadratic equation in the form aix2 + bix + ci = 0 with

components:

ai = c1(x0 − x′
i)
2 + c2(y0 − y′i)

2 +

c3(x0 − x′
i)(y0 − y′i)

bi = 2c1x
′
i(x0 − x′

i) + 2c2y
′
i(y0 − y′i) +

c3(x0y
′
i + x′

iy0 − 2x′
iy

′
i) +

c4(x0 − x′
i) + c5(y0 − y′i)

ci = c1x
′2
i + c2y

′2
i + c3x

′
iy

′
i + c4x

′
i + c5y

′
i + c6

(3.26)

which is calculated by finding the roots of the respective quadratic equations:

pi =
−bi ±

√
b2
i − 4aici

2ai

(3.27)

53

Chapter 3. Proposed Tracking Framework

p0

conic

edges from the mesh

d1

p1' p2'd1 d1

Figure 3.16. Reference points position: The length d1 of the orthogonal projection

of p0 is used to find the position of p′1 and p′2.

p0

conic

edges from the mesh

p1' p2'

p1 p2

p0

conic

edges from the mesh

p1' p2'

p1 p2
d2

(a)

(b)

l1 l2

l3

Figure 3.17. Point to conic distance: (a) First, the line passing through p0 and

p′1 as well as the line passing through p0 and p′2 are calculated, to find two points

on the conic, namely p1 and p2. (b) A third line equation, connecting p1 and p2,

is calculated, which is used to find the approximate distance of p0 to the conic.

54

3.3. Online stage

Equation 3.27 returns two values representing the two points where the line li

intersects the conic. The smallest value for pi is chosen, that is, the point closer

to p0. Then, the distance from the point p0 to the line passing through p1 and p2

is evaluated, being expressed by:

(y2 − y1)x+ (x1 − x2)y + (x2y1 − y2x1) = 0 (3.28)

with a = (y2 − y1), b = (x1 − x2) and c = (x2y1 − y2x1). After this calculation,

the formula for the distance of a point to a line can be used.

de =
|ax0 + by0 + c|√

a2 + b2
(3.29)

Since curved surfaces do not present static edges, it is necessary to constantly

check the correct correspondence between p0 and the contour edge. Figure 3.18

shows a small movement of the object to the left, which will associate p0 to a new

contour edge and hence to a different conic. In this example, edge n+1 and edge

n+2 have similar conic curves, but depending on the object shape they may be

associated with conics of different shapes. This affects the result if the correct

correspondence is not always verified.

p0

p1'
p2'

(a)

edge n

edge n+1
edge n+2 p0

p1'
p2'

(b)

edge n

edge n+1 edge n+2 p0

p1' p2'

(c)

edge n

edge n+1
edge n+2

Figure 3.18. Updating the reference points position: A slight movement of the

object to the left results in a new correspondence between detected point and

contour edge.

55

Chapter 3. Proposed Tracking Framework

3.4. Concluding remarks

In this chapter, a framework to solve the trade-off between computational effi-

ciency and accuracy of non-textured rigid curved objects tracking is presented.

To achieve this, the following ideas are introduced:

• Quadrics patch representation: Each patch of the sparse mesh has a corres-

ponding quadric equation, aiming at reducing the error between detected

and projected edges and improving accuracy. It is a simple representation,

easy to calculate and efficient for dealing with curved shapes.

• Internal vertices: Introduced to improve the quadrics fitting, it is imple-

mented using the relationship between the dense and the sparse mesh.

• Formulation of the distance between a point and a conic curve: A new

method for evaluating the distance between projected and detected features

is developed to attend the particularities of the quadrics patch representa-

tion.

Results of a complete evaluation of the proposed framework are given in Chap-

ter 5.

56

CHAPTER 4

Dealing with different number of observable DOF

In general, many rigid objects found in the real world have six DOF, which means

the Jacobian matrix Jes has rank six and pose parameters estimation is possi-

ble using the implementation developed in Chapter 3. However, there are some

scenarios in which this estimation can fail, such as:

(a) The number of observable DOF is less than six and it does not change over

time. For instance, the torus (five DOF) and the sphere (three DOF) shown

in Figure 4.1 (a) make Jes rank-deficient.

(b) The object has variable number of observable DOF, which changes according

to the viewpoint. For instance, when the handle of the mug on Figure 4.1(b)

is visible, six DOF estimation is possible, but if the mug is rotated and the

handle becomes occluded, the mug loses one DOF. If the mug is positioned

again sideways, the six pose parameters cannot be correctly recovered.

(c) The object has six DOF but if after some point during tracking, the main

body of the object is framed out and only part of it is shown. For example,

the teapot in Figure 4.1 (c): When only the spout is visible to the camera,

an ambiguity is detected and accurate pose estimation of the whole body of

the teapot becomes difficult.

57

Chapter 4. Dealing with different number of observable DOF

To deal with these problems, a method to calculate the measurable DOF of

the target object is included in the proposed framework. Then, SVD is used to

estimate the pose for objects with less than six DOF. The same method is used

to trigger a recovery module when changes in the observable DOF of the target

object is detected.

(a)

(b)

(c)

Figure 4.1. Examples in which pose parameters can be inaccurate: (a) torus and

sphere, with less than six unobservable DOF, (b) a mug with different number of

observable DOF depending on the viewpoint, and (c) a teapot with 6DOF, whose

tracking of the main body cannot be recovered after part of it is framed out.

58

4.1. Measuring the object DOF

4.1. Measuring the object DOF

To allow the proposed framework handle the problems described above, first the

measurable DOF of the target object is calculated by counting the non-zero sin-

gular values obtained from the SVD of Jes [31].

Let n be the number of points found on the object model contour through

search on the normal vector direction. Since there is one Jacobian matrix for each

of these points, a n× 6 matrix Jes is constructed and decomposed in:

Jes = UΣV T

=

 u11 . . . u1n

...
. . .

...

un1 . . . unn

σ1 0 . . . 0

0 σ2 0
...

... 0
. . . 0

0 . . . 0 σ6

 vt11 . . . vt16

...
. . .

...

vt61 . . . vt66

 (4.1)

where U is an orthogonal n × 6 matrix, V T is the transpose of an orthogonal

6× 6 matrix and Σ is a 6× 6 diagonal matrix containing the singular values:

Σ = diag(σ1, ..., σ6);σ1 > σ2 > ... > σ6 (4.2)

This decomposition can be always done, no matter how singular the matrix

is, what makes possible to find the solution for the pose parameters even when

matrix Jes has rank<6. The singular values represent the degree of influence on

the image of each change in the pose between frames. The bigger the singular

values, the bigger the changes in the image and accurate estimation of the pose

parameters is possible. If these values are small, it is more difficult to estimate

the changes in the image and, hence, the pose parameters.

When the number of measurable DOF decreases, the singular value of the

missing DOF becomes zero. However, due to computational approximations, these

values may not be completely zero. Some examples are shown in Table 4.1, with

objects having less than six observable DOF (except for the Angel, whose values

are included for comparison reasons). Based on these values, a threshold was

set to test the singular values and determine the measurable DOF of the target

59

Chapter 4. Dealing with different number of observable DOF

object. Hence, if one DOF is missing, the singular value σ6 ≈ 0; if two DOF are

missing, σ5 ≈ σ6 ≈ 0 and so on.

Table 4.1. Some examples of singular values

Object σ1 σ2 σ3 σ4 σ5 σ6

Sphere 1.0 0.915580 0.493656 0.000002 0.000001 0.000001

Torus 1.0 0.859124 0.468501 0.312101 0.112534 0.073765

Cylinder1 1.0 0.950181 0.1443138 0.137475 0.000001 0.0

Angel 1.0 0.789099 0.647687 0.260372 0.192607 0.174466

1 Disregarding the top and bottom of the cylinder.

4.2. Recovering one DOF

In this section, a method to recover the rotation components of one DOF is

proposed, which means σ6 ≈ 0. The vector vt
6 is used to denote the corresponding

values of σ6 on matrix V T = (vt
1 v

t
2 v

t
3 v

t
4 v

t
5 v

t
6)

T and also represents the null space

base of Jesm .

The method to recover one missing DOF is mainly based on the work developed

by Kumagai [111]. The main difference is the method for setting the threshold

value: In the previous work, it is based on the error between the 3D model and

the target object, which is calculated in every frame. However, to use it with the

quadrics representation, this calculation is not necessary, since instead of using

the edges from the 3D model, the quadrics associated to each patch are used.

Therefore, the threshold is set manually once, by checking the singular value

using the method explained in Section 4.1.

If six DOF can be estimated from the contour information of the target object,

the solution for the pose parameters exist in this null space. A one-dimensional

search is performed in this null space to find the necessary values to recover the

object DOF. Figure 4.2 illustrates the changes made in the framework shown in

Figure 3.2, highlighted by the dashed rectangle: Test of the number of observable

DOF and, when necessary, recovery of the missing DOF.

60

4.2. Recovering one DOF

Yes

Calculate

Jacobian

(ii) Update pose

parameters

No

Calculate DoF

Recover

missing DoF
DOF < 6

...

...

Figure 4.2. New modules added to the proposed framework, highlighted by the

orange rectangle.

4.2.1 Rotation axis calculation

If the rotation is represented by a null space base, it means the model is rotated

around an axis where full search of this space is performed. The position of this

rotation axis r0 is calculated by using the vector vt
6 = (v61 v62 v63 v64 v65 v66), where

vt
r = (v61 v62 v63) represents the rotation and vt

t = (v64 v65 v66) the translation

parameters.

When the center of rotation does not pass through the origin, i.e. the direc-

tional vector of r0 does not match the coordinate system axis C, the directional

vector representing the null space is given by:

vt = (vx vy vz) =
vt
r

|vt
r|

(4.3)

The vector lt = (lx ly lz) representing the distance from the center of C to r0

is calculated as:

l =
v × v′

|v × v′|
|v′|
|v|

(4.4)

61

Chapter 4. Dealing with different number of observable DOF

Object

coordinates

3D model

3D model

Top view

Figure 4.3. Rotation axis r0 calculation [111, 31]

Finally, the six parameters representing the position of r0 on the image are

calculated using the direction vector v with the distance vector l:

r0 = (v l) (4.5)

4.2.2 Null space search

As mentioned previously, if the last singular value is below a threshold, it means

that one DOF is missing, which triggers the recovery process. In this case, first

the rotation axis is calculated from the null space represented by the vector vt
6.

Next, the model is rotated with step of width h and recalculation of the pose

parameters is performed. This step is performed once around the rotation axis

representing the null space.

During the search process, the values that exceed the threshold are considered

as possible solutions for the pose. The largest one among them is adopted as the

sought pose parameters. If none of the values are larger than the threshold, the

values used in the pose estimation of the previous frame is used as the result for

the pose of the current frame. This process is illustrated in Figure 4.4.

62

4.3. Concluding remarks

5DoF estimation
σ6 < threshold

(a) Calculate r0

(b) The model is rotated once around r0,

with step of width h and the pose

parameters are recalculated.

6DoF estimation
σ6 > threshold

(c) The values that exceed the threshold

are considered as possible solutions and

the largest one represents the final solution.

Input image

Figure 4.4. Null space search and the DOF recovery process.

4.3. Concluding remarks

This chapter describes a method to allow continuous tracking of objects with less

than six observable DOF, and when the number of observable DOF of the object

changes during the tracking sequence.

The number of observable DOF is calculated by counting the number of non-

zero singular values obtained from the SVD of Jes. Lastly, null space search is

used to find one missing DOF.

Although the current implementation is able to correctly recover one miss-

ing DOF, increasing the recovery method for two or more missing DOF also in-

creases the complexity of the implementation. Furthermore, this implementation

is strongly affected by false positives caused by wrong edge detection, which affects

the null space search. Experiments regarding this implementation are introduced

in Chapter 5, Section 5.2.1).

63

CHAPTER 5

Experiments

Experimental results using our proposed framework are described in two scenarios:

(a) with synthetic data generated by a simulator and (b) with video images from

the real world. The machine used for the tests was a Corei7 3.20Ghz, with 8GB of

RAM and NVIDIA GeForce GTX 560Ti. Comparative results are shown for our

Conics Tracking (CT) against a standard Line Tracking approach using Sparse

(SLT) and Dense (DLT) meshes.

5.1. Quantitative evaluation

In the quantitative evaluation, numerical results to quantify the tracking are ob-

tained using a simulator [112], whose parameters can be easily controlled.

5.1.1 The simulator

In this simulator, three models of the target object in different levels of quality

are accepted as input:

(a) A high quality mesh, which generates a synthetic representation of the real

object and it is used in the edge search step.

64

5.1. Quantitative evaluation

High quality mesh Object's silhouette

(a) (b) (c)

Figure 5.1. Simulator input: (a) high quality, (b) medium quality and (c) sparse

mesh.

(b) A medium quality mesh used with DLT and having approximately 10% of the

total number of patches of the mesh used in (a).

(c) A sparse mesh used to compare SLT and CT.

While the actual evaluation is done mainly between tracking using the mesh

in (c), the high quality mesh in (a) is used only to create a realistic outline of the

target object, as shown in Figure 5.1(a). In Figure 5.1(b) and Figure 5.1(c), the

dense and the sparse mesh, respectively, are represented by the white lines and

overlaid on the target object silhouette.

Depending on the object complexity and the method employed to obtain its

polygonal mesh, the number of patches used in each of the items described above

varies. For instance, if the model is obtained using a 3D laser scanner, the final

model usually has more than 100,000 patches. However, this amount of data is

neither necessary nor computationally efficient. Therefore, to get the model used

in (a), the original model is simply reduced until all redundant data is deleted

and the smoothness of the object is not affected.

For (b), after testing for several objects, it was found that, on reducing the

number of patches of the high quality mesh by around 10%, the final model still

retained smoothness and had a reasonable number of patches to be processed in

real-time. Since data of this polygonal mesh are used later to define the internal

vertices (Chapter 3, Section 3.2.2.2) used in the conics fitting, the polygonal mesh

is tested to ensure that all patches, or more than 95% of the patches, have at least

nine internal vertices.

65

Chapter 5. Experiments

The larger the number of internal vertices, the better the conics fitting. In

our experiments, usually it is possible to have more than 30 internal vertices for

each patch of a complex shape. This is also considered if the mesh is manually

modeled using a 3D modeling software. Lastly, for item (c), the number of patches

is chosen according to the experiment goal as described in the next sections.

The simulation consists of a series of different trials, each one representing

the object in a different initial position P0, manually initialized. Each trial has

a number n of runs specified by the user and in the beginning of each run, the

test model moves back to its initial position. Then, a new pose Pn is produced by

the simulator using Gaussian noise, whose values are the same for all approaches

being compared. The tracking approaches are evaluated by computing the camera

displacement between P0 and Pn. Another parameter that can be also controlled

by the user is the presence of noise in the edge detection process. This noise

aims to simulate similar noise detected when video images are taken from the real

environment.

5.1.2 Experiments configuration

In our experiments, four objects with different shapes and complexity were con-

sidered. For each object, the simulation consisted of a series of 5 trials, each trial

corresponding to the object in a different initial pose and having a total of 100

runs. The initial poses of each object are shown in Figure 5.2. The mesh size

of the four different objects’ models (torus, duck, angel and bunny) used in this

experiment can be found in Table 5.1.

The distance of the objects to the camera was fixed to 350mm and the camera

internal parameters were obtained from a Logitech QuickCam Fusion webcam

calibrated with the OpenCV library. Gaussian noise with mean equal to zero and

standard deviation of σn = 2.0 was added to the edge detection process.

Two experiments were performed in this context: one varying the number of

patches in the mesh to verify the relationship between the quality of the mesh

and the tracking accuracy; the other evaluates the tracking accuracy considering

different amounts of noise by changing the simulator parameters and fixing the

number of patches.

66

5.1. Quantitative evaluation

z

Y
X

Torus

Duck

Bunny

Angel

Figure 5.2. Poses used in the quantitative evaluation. Each pose was tried 100

times with different noise values.

Table 5.1. Objects description

Object Approximate size in mm (x, y, z)

Torus (80, 80, 23)

Duck (80, 110, 100)

Angel (119, 69, 120)

Bunny (120, 90, 120)

67

Chapter 5. Experiments

5.1.2.1 Experiment I

In this first experiment, the main goal is to compare CT and SLT performance

by varying the number of patches in the polygonal mesh. This range is defined

according to the object complexity: Since the torus has a simple shape, a range

from 500 to 50 patches is used; for the duck, 750 to 75 patches, and for the angel

and the bunny, a range of 1,000 to 100 patches. The noise values used to generate

the poses have standard deviation of σa1 = 1.0◦ and σa2 = 10.0mm per frame, for

each axis in the rotation (rx, ry, rz) and translation (tx, ty, tz), respectively.

For each object, the following items are evaluated:

• Accuracy : Mean Squared Error (MSE) of the rotation and the translation

components of the pose parameters vector s.

• Computational time: average processing time.

• Robustness : success rate in 100 runs, based on the error value returned by

the cost function.

The graphs in Figure 5.3 show the accuracy results obtained for all objects in

the 5 poses according to the number of patches of the polygonal mesh. Graphs

(a)(c)(e)(g) summarize the error results for the rotation component in degrees.

They are obtained by calculating the angle θ between the vector r⃗0 (initial rotation

parameters given to the simulator) and the vector r⃗s (rotation parameters after

the optimization process).

When the number of patches is high, SLT performs better than CT. This

happens because for dense meshes, the number of valid quadrics that can be used

for tracking is low, as shown in Table 5.2. The problem becomes worse if for a

certain viewpoint, most of them are located on the contour. For sparse meshes,

the number of quadrics is close to the number of patches, which improves the

results. As the number of patches decreases, SLT performance decreases and at a

certain point, the MSE of CT gets better results. Similar behavior can be seen in

graphs (b)(d)(f)(h) on the right, with the results for the translation components

(in mm): the MSE for CT decreases as the number of patches decreases.

68

5.1. Quantitative evaluation

Furthermore, while the error of SLT increases with the decrease of the number

of patches, the error of CT decreases up to an optimal point where the error starts

to increase again (though with values still lower than SLT). This behavior can be

explained by analyzing the simplified meshes of the target object, illustrated in

Figure 5.4.

Some problems caused by overdoing the polygonal simplification include: Changes

in the object shape (the hole in the middle of the torus when it has less than 150

patches) or deletion of important parts of the object (the beak of the duck when

it has 50 patches and part of the wing and the leg of the angel when it has 100

patches). All these problems affect the quadrics fitting and, as a consequence,

the tracking accuracy. Hence, depending on the object’s shape complexity, the

ideal number of patches to be used with CT changes, being determined by visual

evaluation of the mesh simplification process.

Figure 5.5 (a)(c)(e)(g) shows the average of the success rate in 100 runs, with

CT having low results for dense meshes, but performing better than SLT when

the number of patches decreases, as expected.

Regarding computational time, the average of the results of each method is

shown in Figure 5.5(b)(d)(f)(h). Among the three methods, CT has the best

results. For simple shapes (torus and duck), the computational time varies com-

paratively less than other methods with the decrease of the number of patches.

However, for complex objects (angel and bunny), the trade-off between compu-

tational time and accuracy is clear for SLT: the lower the number of patches the

faster the algorithm performs, but at the same time, MSE becomes higher.

Table 5.2. Number of valid quadrics according to the number of patches
Torus Duck Angel Bunny

Patches Quadrics Patches Quadrics Patches Quadrics Patches Quadrics

500 228 (45.6%) 750 679 (90.53%) 1000 708 (70.8%) 1000 694 (69.4%)

250 237 (94.8%) 500 480 (96%) 750 670 (89.33%) 750 616 (82.13%)

150 149 (99.33%) 250 239 (95.6%) 500 480 (96%) 500 428 (85.6%)

100 94 (94%) 150 140 (93.33%) 250 239 (95.6%) 250 215 (86%)

70 54 (77.14%) 100 87 (87%) 150 130 (86.66%) 150 110 (73.33%)

50 34 (68%) 75 63 (84%) 100 71 (71%) 100 67 (67%)

69

Chapter 5. Experiments

Torus

(a) (b)

Duck

(c) (d)

Angel

(e) (f)

Bunny

(g) (h)

Figure 5.3. Experiment I: results for accuracy, where each row represents one

object: torus, duck, angel and bunny, in this order. Left: MSE of the rotation in

degrees. Right: MSE of the translation in mm.

70

5.1. Quantitative evaluation

750 patches 500 patches 250 patches 150 patches 100 patches 75 patches 50 patches

1000 patches 750 patches 500 patches 250 patches 150 patches 100 patches

500 patches 250 patches 150 patches 100 patches 70 patches 50 patches

1000 patches 750 patches 500 patches 250 patches 150 patches 100 patches

Figure 5.4. Polygonal meshes in different levels of details: When the remeshing is

overdone, accuracy of CT becomes lower because of changes in the original shape

of the object.

On the other hand, CT performs well in both accuracy (up to the optimal

point) and computational time. For all patches, CT has lower computational

time, even though more tests are performed inside the tracking loop. This is

because the conic shape is closer to the actual object’s contour, which makes the

convergence of CT to the right pose parameter values faster than SLT.

71

Chapter 5. Experiments

Torus

(a) (b)

Duck

(c) (d)

Angel

(e) (f)

Bunny

(g) (h)

Figure 5.5. Experiment I: results for computational time and success rate in 100

runs, where each row represents one object: duck, angel and bunny, in this order.

Left: Success rate. Right: Computational time.

72

5.1. Quantitative evaluation

5.1.2.2 Experiment II

In this experiment, the polygonal mesh has a fixed number of patches and the

simulator parameters are changed according to the following conditions:

(a) Condition 1: σb11 = 1.0◦ and σb12 = 10.0mm.

(b) Condition 2: σb21 = 1.5◦ and σb22 = 15.0mm.

(c) Condition 3: σb31 = 3.0◦ and σb32 = 15.0mm.

These conditions set the standard deviation of the Gaussian noise applied to

the rotation and translation components, respectively. The number of patches to

be used for each object is chosen after analysis of graphs in Figure 5.3 and Figure

5.5. They basically represent the point where CT had better performance. Thus,

the following number of patches were chosen: 150, 150, 250 and 250, for the torus,

duck, angel and bunny, respectively. Graphs in Figure 5.6 and Figure 5.7 show

the success rate and accuracy results, respectively, obtained for all objects using

the same 5 poses of the previous experiment. For all conditions, CT presented

better accuracy than SLT in both, rotation and translation (graphs (a)(c)(e) and

(b)(d)(f)). This is consistent with Table 5.3, in which the average of the re-

projection error for each condition was lower for CT.

Regarding the success rate, in most of the cases, SLT performed slightly better

than CT. Since bigger amounts of noise means larger displacements from the

original pose, it is expected the re-projection error also increases, affecting the

success rate. On the other hand, comparing the success rate graphs from Figure

5.7 with graphs (c) and (e) of Figure 5.5, the angel (250 patches) and bunny (250

patches) also had lower success rate. Hence, the increase in noise lowered the

success rate of these objects but it was still consistent to the expected result.

The graphs for computational time are omitted because the number of patches

is fixed. The results for each object can be verified in graphs (b)(d)(f)(h) of Figure

5.5. DLT results are also presented in Table 5.3 for comparison purposes, showing

CT can perform better than DLT in some cases. This confirms the assumption

that our proposed tracking system using sparse polygonal meshes and conics can

be as accurate as DLT, with the advantage that it consumes less computational

time.

73

Chapter 5. Experiments

Torus

(a)

Duck

(b)

Angel

(c) (d)

Figure 5.6. Experiment II: results for success rate.

Table 5.3. Re-projection error average (mm)

Object Conditions CLT SLT DLT

Torus

Condition 1 0.875738 1.22747 0.912317

Condition 2 0.881122 1.283912 0.95264

Condition 3 0.887358 1.272762 0.959054

Duck

Condition 1 0.913658 1.40086 0.892352

Condition 2 0.9288624 1.439328 0.9640726

Condition 3 0.9251336 1.490208 0.9994832

Angel

Condition 1 0.863258 1.432444 0.9307736

Condition 2 0.8701316 1.454418 1.0154104

Condition 3 0.9031862 1.499616 1.0396562

Bunny

Condition 1 0.9950724 1.579148 0.964695

Condition 2 1.0593286 1.63444 1.0283068

Condition 3 1.0409218 1.678012 1.0490236

74

5.1. Quantitative evaluation

Torus (150 patches)

(a) (b)

Duck (150 patches)

(c) (d)

Angel (250 patches)

(e) (f)

Bunny (250 patches)

(g) (h)

Figure 5.7. Experiment II: results for accuracy. Left: MSE for the rotation in

degrees. Right: MSE for translation in mm.

75

Chapter 5. Experiments

5.1.2.3 Experiment III

Regarding objects having different number of observable DOF presented in Chap-

ter ??, a synthetic experiment was also implemented to evaluate the accuracy of

the rotation axis r0. Evaluation was done using the simulator in a series of 100

trials with a cylinder having 64 patches (five DOF). The input images for this

simulation were generated by adding Gaussian noise to the ground truth values.

The mean values of the noise for translation and rotation were set to zero, with

standard deviation of σc1 = 0.5cm and σc2 = 1◦, respectively. The following

conditions were tested (Figure 5.8), where C represents the coordinate system:

1. Condition 1: r0 passes in the origin of C and its direction is also consistent

with the direction of C.

2. Condition 2: r0 passes in the origin of C but its direction is not consistent

with the direction of C.

3. Condition 3: r0 does not pass in the origin of C and its direction is con-

sistent with the direction of C.

4. Condition 4: r0 does not pass in the origin of C but its direction is not

consistent with the direction of C.

Condition 1 Condition 2

Condition 3 Condition 4

Figure 5.8. Conditions to evaluate r0 [113, 31]

76

5.2. Qualitative evaluation

Results of the average error of this estimation are shown in Figure 5.9, vali-

dating all evaluated conditions. However, it was noticed that the error in vector

l increases according to the distance of r0 from the origin of C. Hence, if the

distance that separates their origin is big, the error in estimation also increases.

e
rr

o
r

(d
e

g
re

e
s

)
e

rr
o

r
(c

m
)

Condition 1 Condition 2 Condition 3 Condition 4

Condition 1 Condition 2 Condition 3 Condition 4

v (directional vector)

l (distance vector)

Figure 5.9. Average error for all conditions: (a) error for the directional vector

and (b) error for the distance vector [113, 31].

5.2. Qualitative evaluation

Experiments in the previous section provide numerical results to quantify the

tracking performance. In this section, qualitative evaluation is implemented using

video sequences captured from the real world. It aims to confirm that CT can

perform well not only in a synthetic environment, but also in a real environment,

where the presence of noise is bigger and the movement of the object or/and

the camera is more complex. For this evaluation, a handheld monocular camera

Logitech QuickCam Fusion was chosen, with resolution of 640x480 pixels.

77

Chapter 5. Experiments

To ensure a fair comparison, CT and SLT are tested using the same video

sequence, recorded beforehand with frame rate of 30fps. Three conditions are

evaluated:

(a) the user holds the object and moves it arbitrarily;

(b) the object is fixed, while the camera is moving;

(c) tracking in a cluttered background.

To visualize the tracking, the polygonal mesh is rendered on the object’s sur-

face: when tracking succeeds, the mesh is green; if it fails, its color changes to

pink. The performance is finally evaluated by counting the number of frames in

which the tracking fails. Two objects were tested in this first section: torus (sim-

ple shape) and angel (complex shape). Figure 5.10 and Figure 5.11(a) show the

results when the object is being moved by the user, while in Figure 5.11(b), the

camera is moving around the object. For all sequences, the upper images show

CT performing better than SLT, without any failures.

Tracking in a cluttered background is shown in Figure 5.12. As expected, the

number of failures increased for both approaches, due to wrong edge detection

caused by the objects and texture present in the background. Although CT had

lower number of failures compared to SLT, most of the frames where they failed

were the same.

C
T

S
L

T

frame #136 frame #499frame #467frame #461

Figure 5.10. Qualitative evaluation for the torus. In the upper sequence, CT does

not present any failure. In the bottom sequence, SLT fails in some poses.

78

5.2. Qualitative evaluation

Table 5.4 shows more details about the results from these experiments, with

the number of frames recorded in each video sequence and the respective number

of frames in which each approach failed. They confirmed the results obtained in

the quantitative experiments, with CT performing better than SLT when using

sparse polygonal meshes.

C
T

S
L
T

frame #176 frame #700

(a) Angel I (b) Angel II

frame #447 frame #458

Figure 5.11. Qualitative evaluation for the angel. (a) Angel I: The user moves

the object (two images on the left). (b) Angel II: The camera moves around the

object (two images on the right). In the upper sequence, CT does not present any

failure. In the bottom sequence, SLT fails in some poses.

C
T

S
L
T

frame #65 frame #652frame #563frame #102

Figure 5.12. Angel III: Tracking evaluation in a cluttered background.

79

Chapter 5. Experiments

Table 5.4. Number of Failures
Object # of Frames CT failures SLT failures

Torus 605 - (0%) 9 (≈ 1.48%)

Angel I 749 - (0%) 89(≈ 11.88%)

Angel II 702 - (0%) 532(≈ 75.78%)

Angel III 746 173 (23.19%) 213 (28.55%)

5.2.1 Objects having different number of observable DOF

Experiments using video sequences were also performed for objects having diffe-

rent number of observable DOF, described in Chapter 4.

In the upper sequence of Figure 5.13, the mug is being successfully tracked

using the proposed approach. The handle, not visible in the beginning, appears

correctly tracked at the end. In the bottom images, the same result is not achieved

using previous methods. However, the experiments in this case are considered

using standard-edge based tracking [31], that is, the mug model does not use the

quadrics definition presented in our framework. One reason is because the top and

the bottom of the mug are non-smooth patches and cannot be properly handled

by the quadrics patch representation, but the results are presented in this chapter

for the validation of the proposed idea.

frame #150 frame #159 frame #176

W
it
h

 D
o

F
 r

e
c
o

v
e

ry
W

it
h

o
u

t
D

o
F

 r
e

c
o

v
e

ry

Figure 5.13. Tracking a mug with and without recovery [113, 31]

80

5.2. Qualitative evaluation

For the teapot, the quadrics patch representation was used and experiments

were performed to illustrate tracking recovery after the main body of the object

was framed out. In Figure 5.14 (a), the proposed method with recovery and in

Figure 5.14 (b) the previous method without recovery. In this sequence, from top

to bottom, the teapot in the beginning is entirely visualized in the scene. After

only the spout was framed in and the whole teapot is visible to the camera again,

the model is not correctly aligned to the object in (b), but remains aligned in (a).

W
it
h

 D
o

F
 r

e
c
o

v
e

ry
W

it
h

o
u

t
D

o
F

 r
e

c
o

v
e

ry

frame #73 frame #274 frame #568

Figure 5.14. Tracking a teapot with and without recovery.

5.2.2 Limitations and failure cases

As previously mentioned, the proposed method is sensitive to cluttered back-

ground due to wrong edge detection. Other failure cases include high inter-frame

motion (Figure 5.15) and large occlusion of the object, though in both cases

tracking is recovered after few frames and partial occlusion can still be handled

(Figure 5.16).

For the recovery method, failure can happen when search in null space is

performed on the wrong rotation axis (Figure 5.17). To prevent these failures, a

strategy is necessary to avoid wrong edge detection of the object contour.

More details about all video sequences used in this section can be found in

Appendix A.

81

Chapter 5. Experiments

frame #39 frame #57

Figure 5.15. Failure caused by large inter-frame motion and tracking being auto-

matically recovered after some frames.

frame #41 frame #47 frame #152

Figure 5.16. Failure caused by large occlusion of the target object in the second

image. In the other images, partial occlusion can be handled.

frame #317 frame #319 frame #322

Figure 5.17. Failure caused by null space search in the wrong rotation axis [113,

31].

82

5.2. Qualitative evaluation

5.2.3 Concluding remarks

In this chapter, a description of the experimental results performed in both syn-

thetic and in the real environment are presented. Quantitative results comparing

our approach and the traditional method using sparse and dense meshes are pre-

sented in two stages. First, by using several polygonal meshes of the same object

with different number of patches to verify how accuracy, speed and success rate

of each method are affected. Second, by choosing one mesh from the previous

experiment and testing it under different conditions, with simulation of small and

large movements made with the object. In both scenarios, CT is able to perform

better than SLT in most of the cases, validating the proposed approach.

While the quantitative experiments are performed with a simulator, qualitative

results are presented by using video images captured from the real environment.

Thus, success and failure conditions can be evaluated in more realistic conditions,

confirming the quantitative results previously presented. Further results are also

included in the next chapter, with an augmented prototyping application develo-

ped using the proposed framework.

83

CHAPTER 6

Augmented Prototyping

This chapter presents an application of the proposed framework for augmented

prototyping of curved objects. By enhancing physical prototypes with AR, evalua-

tion of its design and aesthetic concepts in real-time becomes easier, saving time

and production costs. Compared to previous approaches using AR to assist design

evaluation, the method proposed in this chapter has an additional advantage by

considering the environment illumination effects on the virtual textures. Results

from a pilot user study comparing the use of a 3D software and the proposed

application are also presented.

6.1. Rapid Prototyping

In a typical design process, after ideas are discussed and represented through

sketches, a 3D model of the product can be constructed for better visualization.

Rapid Prototyping (RP) adds one step forward improving design testing by au-

tomatically constructing physical prototypes using, for instance, a 3D printer.

Prototypes have different usages: functionality and physical testing, visual eva-

luation, marketing, and proof-of-concept [114], as well as facilitate communication

among designers or between designers and clients.

84

6.2. Related work

(a) (b) (d)(c)

Virtual Physical Virtual Physical + Virtual

Figure 6.1. Prototype representations: (a) 3D model constructed in early stages

of the design process, (b) non-textured physical prototype, (c) textured 3D model,

and (d) the augmented prototype, obtained by combining (b) and (c).

However, RP is still time consuming, with some models taking several hours

to be completely done. For instance, Figure 6.1 (b) shows a game controller 1

prototype (width = 13cm, height = 2.5cm, depth = 8cm) built using a 3D printer

ZPrinter 450. It required approximately four hours to print, one night to be

completed dry and around one hour for the final touch.

Using standard RP, the product’s aesthetic is probably the hardest item to

be evaluated, since it is trial-and-error basis. For instance, consider the scenario

where a designer wants to evaluate different textures in a new product. Current

3D printers can print colored and textured prototypes, but producing new proto-

types to evaluate each design is not worth the time and cost, specially for complex

shapes. However, with AR different versions of the planned design can be over-

laid on the prototype in real-time and easily interchanged without the need of

producing new prototypes.

6.2. Related work

During conception and realization of a new product, in general some kind of model

is created to attend as close as possible the product requirements. This model

can be represented by sketches, virtual models or rough physical models, which

are valuable for design evaluation and do not require a complex manufacturing

process. However, when these representations are used alone, some important

visualization properties can be overlooked, leading to unsatisfactory results.

13D model available at http://www.blendswap.com/

85

Chapter 6. Augmented Prototyping

Therefore, the use of prototypes in the form of physical models play an im-

portant role in this process, allowing designers to experience the shape details,

compositions, functionality and improve the final design in a relative fast and less

expensive way [114]. These physical models can be constructed using RP, but

regarding evaluation of aesthetic features, such as color, texture and materials,

they may not be the ideal solution because these features cannot be easily changed

in the physical prototype by traditional means, yet they represent important fea-

tures to the final product evaluation. In this sense, virtual and augmented reality

represent promising technologies to overcome RP shortcomings, as it is presented

in details in the next sections.

6.2.1 Virtual Prototyping

Virtual Prototyping (VP) uses digital models or virtual prototypes in a compu-

tational environment to analyze and validate a product design before physical

fabrication. It can reduce the number of physical iterations and therefore the

associated manufacturing overheads, leading to as faster and cost-effective prod-

uct development [115, 116]. Common fields using Virtual Prototyping (VP) are

aerospace industries [117] and automotive design [118].

Virtual Reality (VR) is a common technology used in VP. However, although

it offers the possibility to reduce production costs when compared to RP, there

are still some drawbacks; for instance, physically touching and manipulating the

prototypes require expensive devices such as VR gloves or haptic devices. This

is specially necessary when evaluating ergonomics, usability, physical interaction

and response [119]. With the advent of AR, simplification and speed-up of the

design process became possible, without the need of special devices.

6.2.2 Augmented Prototyping

Augmented Prototyping (AP) employs AR technology to combine virtual and

physical prototypes [120]. Compared to VP, some advantages include: Evaluation

of aesthetic and ergonomic aspects using a single physical prototype; interaction

in real-time without using special haptic devices and no need to simulate details

of the target scenario, e.g. illumination.

86

6.2. Related work

Benefits of AR for design model perception of users and collaborating partners

are discussed by Dunston et al. [121]. Although in their system no physical

prototypes are constructed and fiducial markers are used to position the 3D model

in the users’ environment, it shows the importance of considering spatial cognition

issues during systems validation.

Lee & Park [122] suggests an augmented foam as an approach of tangible

AR for product design. Foam mock-ups is used because they are easily modifiable

compared to the hard materials used in RP and can be produced in a short period

of time. Fiducial markers are used to register virtual objects on the mock-up,

with hand occlusion correction, so that the virtual object and the users’ hand are

seamlessly synthesized. Tangible AP using markers is further explored by Park

et al. [123] for handheld products development. AR-based tangible interaction

is combined with functional behavior simulation using two tangible objects: The

product’s prototype and a pointer to be used as an interaction tool, both of them

having fiducial markers placed on it to augment the real world image.

Although these systems represent good scenarios of what can be achieved by

AP, using fiducial markers brings some disadvantages, as previously mentioned

in Chapter 2: Markers are intrusive elements in the environment, specially if

the texture to be applied on the object has some transparency; partial occlusion

of the marker may cause tracking failures, and depending on the object shape

or size, it is difficult to place the markers or they may occlude important parts

of the prototype. Approaches for hiding the marker in the video stream exist

(Diminished Reality), but they can only be applied for planar targets [124, 125].

More recently, Herling & Broll [126] proposed an approach that can target almost

planar backgrounds and also non-planar backgrounds. However, for the last case,

the camera needs to remain static or it is limited to small movements.

Spatial AR represents another approach explored for augmentation in RP.

Verlinden & Horvath [120] and Porter et al. [127] proposes augmenting the pro-

totypes using digital projectors to display the virtual information on the object

surface. The main advantages are that HMD or handheld devices are not required

and collaboration between the users can be easily performed. On the other hand,

some drawbacks of this approach includes the shadows that are cast onto the

objects by the user and problems inherent with attempting to use camera based

tracking where the object being tracked is also being projected onto.

87

Chapter 6. Augmented Prototyping

More recently, Gay-Bellile et al. [128] developed an augmented prototyping

application for the automotive field using constrained SLAM with an edge-based

model [75]. In their application, users can interactively customize a real car and

see different designs overlaid on it using a tablet. It is an accurate and stable

approach, but the appearance of the car needs to be learned in an offline step to

initialize the constrained SLAM. Using only point-based model with relocalization

proved not to be enough for the non-textured car. Therefore, if the original

position of the car changes, the environment needs to be relearned.

6.3. Proposed AP application

The AP application proposed in this chapter aims at create a system for fast

evaluation of the product’s aesthetic by a designer. Different appearances of the

target object can be created and overlaid on the physical prototype in real-time,

making visual comparison an easier task. The 3D model of the target object used

to build the prototype is also used for matching with the edge information found

on the video image, fitting well the framework proposed in Chapter 3.

A similar approach aiming at reducing development time during the product

design process was previously developed by Canon Inc. The Canon Mixed Reality

system [129] is a marker-based system, which also supports optical and magnetic-

type sensors based on the requirements of the application. The prototype has a

blue color to deal with the hand occlusion and different designs can be overlaid on

real-time on the prototype’s surface. However, since this approach uses markers,

it cannot handle the use of transparent textures and the effects of the environment

illumination on the virtual design are not considered either.

In the implementation proposed in this chapter, two main points are consid-

ered: How to correctly render the virtual texture on the target object’s surface,

considering its material properties and the effects of the environment illumination,

and occlusion of the texture by the user’s hand or other objects.

Figure 6.2 shows an example of the angel figurine, where the user can easily

modify the object color and texture and see how they fit to the prototype in a

given scenario. It is possible to notice correctly handling of transparent textures

and the hand’s shadow on the object.

88

6.3. Proposed AP application

(a) (b)

(c) (d)

Figure 6.2. Augmented angel figurine. (a) Non-textured prototype. Different

colors (b) and textures (b) can be tested using one physical prototype. (c) Correct

rendering of the texture considering the shadows from the hand.

6.3.1 Texture composition algorithm

For realistic rendering of the virtual texture, OpenGL is used with a 2-path algo-

rithm responsible to combine the texture’s color with the object’s color, where:

(a) Path 1 : update the depth buffer for the target object without updating the

color buffer.

(b) Path 2 : update the color buffer if the Z-Buffer value is equal to the fragment

z value. The following equation is used for the texture blending:

outputColor = frameBufferColor ∗ textureColor. (6.1)

This 2-path approach was adopted because the texture blending has to be

applied only for the most front surface patches. If standard Z-buffer rendering

is used, this texture blending would be applied for several patches which are not

located on the most front surface, if they are rendered before the most front

89

Chapter 6. Augmented Prototyping

surface patches. Theoretically, this implementation would work only for diffuse

objects; however, as shown in Figure 6.2, no problems were identified when using

a specular object, resulting in a realistic texture blending.

6.3.2 Handling the texture occlusion

As shown in Figure 6.3, the occlusion of the object texture is inevitably caused by

the hand or another object existent on the scene, which makes user’s interaction

unnatural. To correctly handle the occlusion of the texture, HSV was used for

color segmentation. Each HSV channel was thresholded and combined into a

mask used to distinguish the object shape from other elements in the scene. Since

the hand color is hard to be segmented because of different skin color tones, the

prototype’s color was used (printed with a color close to white). Hence, it became

easier to test with different users without thresholding the color segmentation for

each one.

(a)

(c) (d)

(b)

Figure 6.3. Texture occlusion on the (a) game controller prototype and the (c)

angel figurine. On the left, the object texture is rendered on the user’s hand. On

the right, correct display of the texture by removing it from the occluded parts.

90

6.4. User study

6.4. User study

A pilot user study comparing our proposed AP application against a 3D modeling

software (Blender version 2.49) was designed to evaluate the perception of the

user when visualizing different textures on a prototype.

6.4.1 Participants

A total of 10 graduate school students, 7 male and 3 female, ranging in age from

25 to 37 years old, participated in this study. 6 participants declared not having

previous experience with any kind of 3D modeling software but all of them have

tried AR before.

6.4.2 Physical setup

The machine used for the tests was a Corei7 3.20Ghz, with 8GB of RAM and

NVIDIA GeForce GTX 560Ti. For the experiment with the 3D modeling software,

a standard PC desktop interface with monitor, keyboard, and mouse were used.

For the AP application, a special HMD was built, using two Point Grey Dra-

gonfly cameras attached to a Sony Personal 3D viewer headset, HMZ-T2 (Figure

6.5). A resolution of 1024x768 was used for the video images, achieving a frame

rate of approximately 15fps.

(b) (c)(a)

Figure 6.4. Prototype used in the AP evaluation: (a) Angel figurine. (b) Blender

interface. (c) View from the HMD in the augmented environment.

91

Chapter 6. Augmented Prototyping

Augmented image

HMD

Figure 6.5. User interacting with the AP system. Highlighted by the colored

boxes, the HMD constructed for this experiment and the user’s augmented view.

6.4.3 Task description

This experiment was divided in two sessions, one for each of the conditions (3D

modeling software and AP application), and the participants were asked to com-

plete the same task in each session. The order for testing each condition was

also changed to reduce order effects (e.g. learning or fatigue). After each session,

participants answered a questionnaire whose contents are shown in Table6.1.

The object used in the experiments was a prearranged non-textured small

angel figurine. Participants were asked to play the role of designers developing a

new skin to this angel figurine. Finally, they had to choose which of the available

designs, in their opinion, represented the best match with the other objects in the

scenario (Figure 6.4).

92

6.4. User study

Three designs were available (Figure 6.6) and the participants could browse

among them as many times as they wanted. An explanatory and training session

was given before each condition and the users’ actions were observed during the

entire session.

For the 3D modeling software evaluation, the scenario was constructed by

taking a picture of the real environment and using it in the 3D environment as

a static background. Interaction with the 3D model (rotate or translate) could

be done using mouse and keyboard inputs. For the augmented environment, the

user was asked to wear a HMD and the augmented information could be visualized

in the real world. In this case, an expert of the system supported the user when

he/she needed to change the object’s texture. However, all other interactions with

the object were done by the user himself/herself using bare hands (Figure 6.5).

Table 6.1. Post-task questionnaire contents

Statements

S1 I found the system helpful for deciding the most suitable texture.

S2 It was easy to compare among different textures on the object.

S3 I perceived the textured object as part of the real environment.

S4 I think the texture was correctly aligned to the object.

S5 It was easy to visualize the texture on the object.

(a) (b) (c)

Figure 6.6. Virtual textures available to the user, rendered on the physical pro-

totype: (a) Transparent marble, (b) red marble and (c) stripped pattern.

93

Chapter 6. Augmented Prototyping

6.4.4 Results

A within-subjects design was used with a single independent variable (3D mode-

ling software and AP system). A Likert scale (7-points, 1 = Disagree, 7 = Agree)

was used to evaluate the overall performance of the system according to five mea-

sures: Helpfulness, Ease of Comparison, Ease of Understanding, Precision and

Ease of Visualization [130]. The hypotheses considered are:

H0: There is no difference between the design selection process using a 3D

modeling software and an AP system.

Ha: There is a significant difference between the design selection process using

a 3D modeling software and an AP system.

A two-tailed t-test was applied and significant differences between conditions

were found for Helpfulness, with t(9) = −3.88065, p < 0.05 and Ease of Under-

standing, with t(9) = −3.43063, rejecting the null hypothesis and accepting the

alternate hypothesis for these metrics. Figure 6.7 shows the average scores of

each measure. The time participants required for completion of each task was

also measured and its average is shown in Table 6.2.

Since the differences between the conditions were evaluated using ordinal vari-

ables (Likert scale), a further evaluation was performed using a non-parametric

statistical test. The null hypothesis was maintained and the Friedman test was

applied. Similar to the t-test, significant differences were found for the metric

Helpfulness and Ease of Understanding, with X2(9) = 7.0, p = 0.008 for both of

them. Therefore, the results of this user study was consistent for both parametric

and non-parametric statistical tests.

Table 6.2. Time for completion of each task (minutes)

3D software AP system

Average 1.7 1.9

Upper bound 7.25 5.55

Lower bound 0.31 0.30

94

6.4. User study

(a) (b)

(c) (d)

(e)

Figure 6.7. Average scores for the significant Likert scale measures: (a) Helpful-

ness, (b) Ease of Comparison, (c) Ease of Understanding, (d) Precision and (e)

Ease of Visualization.

95

Chapter 6. Augmented Prototyping

6.5. Discussion

The results of this pilot user study showed good results for the current imple-

mentation and overall participants enjoyed the experience provided by the AP

application. However, there are some issues to be solved, most of them related to

the tracking, not the application itself: some users pointed out the jittering of the

3D model as distracting and most probably the main problem with this approach.

This explains the lower rating of the Precision metric (Figure 6.7 (d)).

A well known drawback of model-based tracking approaches was also men-

tioned by the participants: although they could move the object being tracked,

fast movements caused tracking failures. Thus, after tracking failed once, some

participants started to manipulate the object more carefully and slowly, making

the interaction unnatural. Some solutions regarding this problem include im-

provement of the quadrics fitting approach and also application of a smoothing

filter on the calculated pose parameters.

On the other hand, many participants agreed that the AP application made the

visualization of the texture easier, being more realistic and with a color richness

they could not perceive while using the 3D modeling software. The possibility to

move the object in the real world using bare hands were also added as advantages.

These comments confirmed the results obtained through the questionnaires, with

the AP system being more helpful to decide the most suitable texture and to

perceive the textured object as part of the real environment.

Regarding the 3D modeling software, the main complaints were about the

time required to get used to the interface. Although few actions were actually

required for the user to learn, sometimes they got confused with the shortcuts.

Many participants complained about the rotation, which was considered not easy

to control - One participant mentioned that small movements of the mouse were

resulting in large changes. Other comments include the fact that the object did

not seem real because it did not blend correctly with environment elements such

as the lighting direction and shadows. However, the perfect alignment of the

texture on the object was mentioned as a good point in this condition.

At the end of the experiment, users who changed their choice of the design

after evaluation using the different systems were asked to mention the main reason

for this change. Eight of the participants changed their initial choice, mentioning

96

6.6. Concluding remarks

that some textures appeared to be fake in the 3D modeling software, but very

realistic when visualized through the HMD. The stripped pattern was the most

commented one, whose lines could be easily seen following the object’s curves on

the AP application, but according to the participants, it appeared flat on the

other system. They also mentioned about the color of the texture as being more

vivid with AR and opaque in the 3D modeling software.

These observations shows that AP application developed is able to give a

better visualization of the final product design, and by using the suggested im-

plementation considering the effects of the illumination on the object’s texture

was important to help the decision of the final design. The preference of the AP

system was also confirmed with a post-session questionnaire, where users were

asked which system they would prefer if they had to perform a similar task again:

2 participants chose the 3D modeling software and 8 the AP system.

6.6. Concluding remarks

RP is a widely used technique during the development process of new products

to evaluate and validate design solutions. However, there is still room for im-

provements specially regarding minimization of time and cost when changes on

the visual appearance of the design are necessary.

This chapter proposes an AP application for easy evaluation of aesthetic as-

pects of a product in the real world environment, allowing interaction and brows-

ing among different virtual textures in real-time. Different from previous ap-

proaches, fiducial markers are not necessary and since our method completely

relies on the polygonal mesh representing the object shape, it does not require

the object to have any kind of texture, being a suitable application for prototypes

evaluation, since usually they are non-textured objects. Furthermore, effects of

the environment illumination were taken into account in this implementation,

making the object’s augmented appearance more realistic.

With the pilot user study, it was possible to get a first impression of the

acceptance of this idea and improvement points in two main directions: The

tracking approach and future experiments. In the former case, the jittering is

the most important issue to be solved and improvement of the tracking to allow

faster movements of the object are also being considered by improving the tracking

97

Chapter 6. Augmented Prototyping

recovery method. A more complete user study is necessary for further evaluation

and improvement of the application, considering a higher number of participants,

who would be real designers.

98

CHAPTER 7

Conclusions

7.1. Thesis summary

This thesis has investigated the problem of determining the pose of non-textured

3D rigid curved objects using sparse polygonal meshes. A method to solve the

trade-off between computational efficiency and accuracy when dealing with curved

objects using an edge-based tracking system was developed by creating a new

model representation. Furthermore, to improve the framework generality, meth-

ods for dealing with objects having less than six DOF as well as different number

of observable DOF depending on the viewpoint were also implemented. Lastly,

the applicability of the proposed framework was explored with implementation

of an application for AR. To review, these main contributions are summarized

below:

• Quadrics patch representation: This representation was constructed

aiming at the possibility of tracking simple and complex curved shapes in an

efficient manner. A local approximation using a general quadric equation for

each patch on a sparse mesh representing the target object was suggested,

whose calculation was based on the relationship between the dense mesh

that originated the sparse mesh.

99

Chapter 7. Conclusions

Curves representing the quadrics projection of the patches located on the

object contour are used for matching with detected points in the video image.

Finally, a standard model-based tracking framework was modified to handle

these changes and the proposed method was validated trough quantitative

and qualitative experiments.

• Dealing with different observable DOF: A method to test the num-

ber of observable DOF of the target object was included in the tracking

framework, to solve two problems: Tracking of objects having less than six

DOF, and dealing with objects with unobservable DOF at certain poses.

When necessary, a recovery process is triggered, which is able to recover one

missing DOF.

• An Augmented Prototyping application: By using the proposed frame-

work, an augmented prototyping application was developed. Compared to

previous approaches using AR to assist design evaluation, the proposed

method had an additional advantage by considering the environment il-

lumination effects on the virtual textures. Results from a pilot user study

comparing the use of a 3D software and the proposed application were also

presented.

7.2. Future work and open problems

Some suggestions to further improve the framework proposed in this thesis include:

• Edge-based trackers, in general, works well for non-textured objects. Howe-

ver, some disadvantages include sensibility to high inter-frame motion and

it is prone to jittering, which for AR applications may be disturbing, as

pointed out by some of the participants of the user study in Chapter 6.

One possible direction for reducing the jittering include improvements on

the quadrics fitting approach and application of a smoothing filter on the

calculated pose parameters.

• The current version of the DOF recovery process described in Chapter 4,

Section 4.2 is strongly affected by false positives caused by wrong edge de-

tection. Therefore, future works include improvements to reduce these false

100

7.2. Future work and open problems

positives and also implementation of new modules to allow pose estimation

when two or more DOF are missing.

• Currently, the quadrics fitting implementation is closely related to the po-

lygonal simplification method used. Although the QEM approach [103] is

good enough for most of the objects, in some cases, if the object has small

details on it its surface, calculation of the quadrics approximation for these

specific parts becomes difficult. This is because only few internal vertices

are available after the mesh simplification. For instance, consider the game

controller used in Chapter 6. From a side view (Figure 7.1(b)-(c)), the edges

on the game controller buttons also belong to the outline. However, it is not

possible to obtain a good quadrics fitting for these cases. For this specific

object, since only the front view was used for testing the system, it did not

represent a major problem, but depending on the goal of the application,

different simplification methods should be considered.

• To allow a large variety of objects to be tracked by our framework, it is

possible to extend it to deal with curved objects that are not entirely smooth.

An example is the cup shown in Figure 1.2, whose upper and bottom part

are not smooth. To obtain accurate tracking for these types of objects, a

patch classification step can be performed during the offline stage to identify

which patches in the mesh are smooth and which are not. Then, for non-

smooth patches, depending on the edge that is located on the contour, a

different Jacobian and matching method should be triggered.

(a) (c)(b)

Figure 7.1. Detail on the game controller buttons: (a) front view, (b) side view

with 100 patches and (c) side view, with 500 patches.

101

Chapter 7. Conclusions

• With the necessary modifications to attend the restrictions of mobile de-

vices, another possible application of the proposed framework includes AR

targeting mobile devices, in which the data size of the 3D model can be

critical for the tracking performance. By using the proposed approach with

sparse meshes, loading 3D models from a remote server is faster as well as

the tracking itself, with less model data to be analyzed during tracking.

102

Publication List

Journal Paper

1. Marina A. Oikawa, Takafumi Taketomi, Goshiro Yamamoto, Makoto Fuji-

sawa, Toshiyuki Amano, Jun Miyazaki and Hirokazu Kato, “A model-based

tracking framework for textureless 3D rigid curved objects”. SBC Journal

on 3D Interactive Systems, v. 3, no.2, pp. 2-15, 2012 (related to Chapter 3

and 5).

International Conferences

1. Kenzo Kumagai, Marina A. Oikawa, Takafumi Taketomi, Goshiro Yama-

moto, Jun Miyazaki and Hirokazu Kato, “Robust model-based tracking

considering changes in the measurable DoF of the target object”, Proc.

of The 21st International Conference on Pattern Recognition (ICPR2012),

pp. 2157-2160, Tsukuba, Japan, Nov. 2012 (related to Chapter 4 and 5).

2. Marina A. Oikawa, Igor de S. Almeida, Takafumi Taketomi, Goshiro Ya-

mamoto, Jun Miyazaki and Hirokazu Kato, “Augmented prototyping of 3D

rigid curved surfaces”, Proc. of International Symposium on Mixed and

Augmented Reality (ISMAR2012), pp. 307-308, Poster, Atlanta, USA, Nov.

2012 (related to Chapter 6).

103

Publication List

3. Marina A. Oikawa, Takafumi Taketomi, Goshiro Yamamoto, Makoto Fuji-

sawa, Toshiyuki Amano, Jun Miyazaki and Hirokazu Kato, “Local quadrics

surface approximation for real-time tracking of textureless 3D rigid curved

objects”, Proc. of The XIV Symposium on Virtual and Augmented Reality

(SVR2012), pp. 246-253, Niteroi, Brazil, May 2012 (related to Chapter 3

and 5).

4. Marina A. Oikawa, Goshiro Yamamoto, Makoto Fujisawa, Toshiyuki Amano,

Jun Miyazaki and Hirokazu Kato, “Model-based tracking of rigid curved ob-

jects using sparse polygonal meshes”, Proc. of The 21st International Con-

ference on Artificial Reality and Telexistence (ICAT2011), p.145, Poster,

Osaka, Japan, Nov. 2011 (related to Chapter 3).

5. Marina A. Oikawa, Goshiro Yamamoto, Makoto Fujisawa, Toshiyuki Amano,

Jun Miyazaki and Hirokazu Kato, “Quantitative evaluation method for

model-based tracking of 3D rigid curved objects”, Proc. of The 2nd Inter-

national Workshop on AR/MR Registration, Tracking and Benchmarking

(TrakMark2011), Basel, Switzerland, Oct. 2011 (related to Chapter 5).

6. Marina A. Oikawa, Makoto Fujisawa, Toshiyuki Amano, Jun Miyazaki and

Hirokazu Kato, “Apparent contour tracking of 3D rigid curved objects based

on quadrics approximation of the surface”, Proc. of The 3rd Korea-Japan

Workshop in Mixed Reality (KJMR2010), pp.24-27, GyeongJu, Korea, Apr.

2010 (related to Chapter 3).

Award

1. SVR2012 Best Paper Award, May 2012.

104

Acknowledgments

Six years ago I literally crossed half the world to start my path in graduate school.

However, this achievement would not have been possible without the support of

my supervisor Professor Hirokazu Kato, to whom I am truly and heartily grateful

for kindly welcome me in Japan and at the Interactive Media Design Laboratory.

His patience while explaining (and sometimes re-explaining) in details basic con-

cepts in my research field encouraged me to work harder and it was the strength

that pushed me forward during the hard times I wanted to give up. It is countless

the number of times he generously helped me, giving me valuable advices not only

regarding my research topic but also showing me how to be a good researcher. I

also thank him for the numerous opportunities given to me to present our work

in international conferences, which allowed me to enjoy unforgettable new expe-

riences, to meet and exchange ideas with other researchers, and also made me

realize how amazing it is to explore other parts of the world. I feel blessed to have

been lucky enough to have the chance of working with him during all these years.

I also would like to thank my thesis committee and co-supervisors Professor

Naokazu Yokoya and Associate Professor Jun Miyazaki, as well as Associate Pro-

fessor Masayuki Kanbara. Thank you very much for reviewing my thesis and for

the insightful comments and suggestions that helped me to improve the overall

quality of this thesis.

105

Acknowledgments

A special thanks to Assistant Professor Takafumi Taketomi, Assistant Profes-

sor Goshiro Yamamoto and to former Assistant Professors of IMD Lab, Makoto

Fujisawa and Toshiyuki Amano. During my stay in this Lab, they helped me

in so many different ways, giving many constructive comments during the lab

meetings and never being too busy to help me whenever I needed. My thanks

are also extended to all current and former members of IMD Lab. It was a great

pleasure to work in this mixed environment, with students from different coun-

tries and having diverse personalities. In special, I would like to thank the Lab’s

secretary, Ms. Makiko Ueno, for her kindness and help with official documents

and other bureaucracies, Kenzo Kumagai for helping me to complete part of my

work in this thesis and Max Krichenbauer for preparing the HMD used in my

experiments. Also, I would like to thank Atsushi Keiyaki and Yuichiro Fujimoto

for helping me every time I struggled with the Japanese language.

During these six years, I was able to have a comfortable student life thanks

to the support of a Japanese government scholarship. So, I am very grateful to

the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of

Japan for the support given to me during my Master and PhD course at NAIST.

I also owe my deepest gratitude to my best friend, Igor Almeida. I am very

thankful that we were able to share another journey together. Thank you for

all nights you spent in the Lab helping me with my experiments, for helping me

to improve my presentation skills and for the good advices. Thank you for the

patience, for the humorous jokes that always make me forget my tiredness and

for putting up with my moments of stubbornness for more than 15 years.

I also cannot thank enough Henry Chu, Erlyn Manguilimotan and Yuliana

Lukamto for their friendship and help every single time I needed, related to re-

search or not. Our talks and your advices always made me feel better. Also, to

great friends I met in Japan, in special, Remy Martin, Estella Cheung, Elizabeth

Ishikawa, Jordi Polo, Engelene Obien, Nico Prananta, and other NAIST friends,

thank you for the wonderful moments we shared together. Living far from my

family and not being able to visit them as much as I wanted was not easy. But

thanks to you guys, I could feel Japan as my second home and daily life here be-

came easier and enjoyable. Thank you for your company, for the serious and the

silly talks, for always supporting me and for the good memories that will always

warm my heart.

106

I am also indebted to all of you who I asked to proofread my papers and some

chapters of my thesis. This acknowledgment is extended to Rodney Berry and

Samuel Felix. Your comments and corrections were indeed a great help.

I also would like to thank a special person I met in Japan, Humberto Baba,

whose love, friendship and unfaltering patience gave me the support I needed to

keep going through all the ups and downs in this stage of my life.

To my friends in Brazil, who always supported me and made their presence

felt even with the distance and the time zone difference, thank you for always

keeping in touch and cheering me up.

Finally, words will never be enough to thank the ones responsible for all suc-

cessful steps in my life: My wonderful family, whose love and support give me

enough strength to overcome all obstacles, and are my daily dose of motivation.

107

Appendix

A. Video sequences

This appendix contains descriptions of the video sequences used in the qualitative

evaluation of the proposed framework. All videos are available in the following

url: http://imd.naist.jp/videos/quadrics.html.

torus ct slt.avi

Comparison between CT and SLT for

the torus.

angel object ct slt.avi

Comparison between CT and SLT for

the angel when the camera is fixed.

angel camera ct slt.avi

Comparison between CT and SLT for

the angel when the camera is moving.

108

A. Video sequences

angel cluttered.avi

Comparison between CT and SLT for

the angel in a cluttered background.

mug ct slt.avi

Comparison with and without DoF re-

covery for the mug.

teapot.avi

Comparison with and without DoF re-

covery for the teapot.

angel failure.avi

Example of failure conditions caused by

high inter-frame motion.

angel occlusion.avi

Example of failure conditions caused by

object occlusion.

109

Appendix

mug fail.avi

Example of failure conditions caused by

wrong calculation of the rotation axis.

ap demo.avi

Augmented Prototyping application

demonstration.

110

B. Apparent contour of quadrics

B. Apparent contour of quadrics

To obtain the apparent contour equation of quadrics, Cipolla & Giblin [29] con-

sider the cone of rays from the camera center O = (oxc, oyc, ozc, 1)
T that are

tangent to the quadric Q. If a point Xw is on the quadric, any point on the line

joining Xw to O can be written as:

V = λO+ (1− λ)Xw (B.1)

where V = (v1, v2, v3, 1)
T . The condition VTQV = 0 can be tested to know if V

lies on the quadric:

(λOT + (1− λ)XT
w)Q(λO+ (1− λ)Xw) = 0. (B.2)

Solving the previous equation gives a quadratic equation for λ:

(OTQO−OTQXw −XT
wQO+XT

wQXw)λ
2 +

(XT
wQO+OTQXw − 2XT

wQXw)λ+XT
wQXw = 0. (B.3)

Since OTQXw is a 1x1 matrix and Q is a symmetric matrix, it is possible to

write OTQXw = XT
wQ

TO = XT
wQO. This equality allows Equation B.3 to be

rewritten as:

(OTQO−2XT
wQO+XT

wQXw)λ
2+2(XT

wQO−XT
wQXw)λ+XT

wQXw = 0. (B.4)

The equation above is equivalent to the quadratic equation represented by

aλ2+2bλ+ c = 0, with a = OTQO− 2XT
wQO+XT

wQXw, b = XT
wQO−XT

wQXw

and c = XT
wQXw. The line is tangent to the surface S when this quadratic

equation has equal roots, which leads to the condition b2 = ac:

(XT
wQO−XT

wQXw)
2 = (OTQO− 2XT

wQO+XT
wQXw)(X

T
wQXw). (B.5)

Rearranging this equation and considering OTQO is a scalar, it is possible to

obtain:

XT
w[(QO)(OQ)T − (OTQO)Q]Xw = 0, (B.6)

where A = (QO)(OQ)T − (OTQO)Q and represents the matrix of the quadric

cone with vertex in the camera center O and with lines tangent to S.

111

Appendix

Considering the camera center is positioned at O = (0, 0, 0, 1)T and using the

notation given in Equation 2.10, leads to:

A =

(
qqT − cQ3 0

0 0

)
. (B.7)

If the image plane is at z = f , the apparent contour in this plane is defined as

the intersection of the cone of tangent rays with the image plane, i.e., the points

x = (x, y, f)T where:

xT (qqT − cQ3)x = 0 ∴ xTAx = 0 (B.8)

such that qqT − cQ3 represents the parameters of the corresponding conic.

112

C. Polygonal mesh simplification results

C. Polygonal mesh simplification results

Table C.1. Forward distance (M1 → M2)

Object # of patches (M2) Method Max Mean RMS

Angel

792 patches
PR 0.013907 0.001987 0.002657

QEM 0.010014 0.001749 0.002226

396 patches
PR 0.031571 0.003967 0.005322

QEM 0.022625 0.003576 0.004601

198 patches
PR 0.055495 0.007677 0.010241

QEM 0.042865 0.00735 0.00948

98 patches
PR 0.098271 0.015631 0.021469

QEM 0.06694 0.013479 0.017462

Bunny

1560 patches
PR 0.141957 0.014024 0.020734

QEM 0.066781 0.009004 0.011632

779 patches
PR 0.221248 0.023636 0.033621

QEM 0.117667 0.016974 0.021918

388 patches
PR 0.379191 0.049374 0.072899

QEM 0.194659 0.035582 0.045758

193 patches
PR 0.55219 0.089603 0.125469

QEM 0.424752 0.072233 0.089421

113

Appendix

Table C.2. Backward distance (M2 → M1)

Object # of patches (M2) Method Max Mean RMS

Angel

792 patches
PR 0.014928 0.002695 0.00348

QEM 0.013797 0.001735 0.00226

396 patches
PR 0.035032 0.005052 0.006627

QEM 0.02682 0.003449 0.004538

198 patches
PR 0.055519 0.009276 0.012295

QEM 0.049604 0.007061 0.009387

98 patches
PR 0.084748 0.015648 0.020485

QEM 0.060874 0.012748 0.016421

Bunny

1560 patches
PR 0.176407 0.012569 0.018592

QEM 0.081031 0.009611 0.012604

779 patches
PR 0.279456 0.021548 0.031643

QEM 0.291398 0.017787 0.024495

388 patches
PR 0.352182 0.038441 0.057035

QEM 0.496251 0.037833 0.05431

193 patches
PR 0.484969 0.067173 0.093858

QEM 0.496251 0.069241 0.088432

114

D. Jacobian matrix Jes

D. Jacobian matrix Jes

The Jacobian matrix Jes relating the distance between projected and detected

edges and the pose parameter vector s is calculated by:

Jes = JeCJCQcJQcTi
JTiTMi

JTMis, (D.9)

where each term represent the Jacobian of:

a) JeC : the distance function de with respect to the conic parameters.

b) JCQc : the conic parameters with respect to the quadric parameters in camera

coordinates Qc.

c) JQcTi
: the quadric parameters in camera coordinates Qc with respect to the

parameters of Ti, the inverse of the modelview matrix T.

d) JTiTMi
: the inverse of the modelview matrix Ti with respect to the inverse

matrix TMi.

e) JTMis: the inverse matrix TMi with respect to the pose vector s.

D.1 Jacobian matrix JeC

The Jacobian of the distance function with respect to the conic parameters is a

1x6 matrix calculated using the following equation:

JeC = JeL JLX JXP JPA JAC . (D.10)

JeL represents a 1x3 matrix with the partial derivatives of the distance between

the detected point p0 = (x0, y0) and the line l : ax + by + c = 0 passing through

the points p1 = (x1, y1) and p2 = (x2, y2), given in Equation 3.29.

JeL =

(
∂l

∂a

∂l

∂b

∂l

∂c

)
, (D.11)

where:

115

Appendix

∂l

∂a
=

x0(a
2 + b2)− a(ax0 + by0 + c)

(a2 + b2)(
√
a2 + b2)

,

∂l

∂b
=

y0(a
2 + b2)− b(ax0 + by0 + c)

(a2 + b2)(
√
a2 + b2)

,

∂l

∂c
=

√
a2 + b2

(a2 + b2)
=

1√
(a2 + b2)

. (D.12)

From Equation 3.28, each of the components of the line l has values a =

(y2 − y1), b = (x1 − x2), c = (x2y1 − y2x1). The partial derivatives of those terms

with respect to the points p1 and p2 is given by the 3x4 matrix:

JLX =

∂a
∂x1

∂a
∂y1

∂a
∂x2

∂a
∂y2

∂b
∂x1

∂b
∂y1

∂b
∂x2

∂b
∂y2

∂c
∂x1

∂c
∂y1

∂c
∂x2

∂c
∂y2

 =

0 −1 0 1

1 0 −1 0

−y2 x2 y1 −x1

 . (D.13)

JXP is a 4x2 matrix with the partial derivatives of Equation 3.24 with respect

to p1 and p2:

JXP =

∂x1

∂p1

∂x1

∂p2

∂y1
∂p1

∂y1
∂p2

∂x2

∂p1

∂x2

∂p2

∂y2
∂p1

∂y2
∂p2

 =

x0 − x′

1 0

y0 − y′1 0

0 x0 − x′
2

0 y0 − y′2

 . (D.14)

JPA is a 2x6 matrix with partial derivatives of p1 and p2 with respect to the

parameters given in Equation 3.27:

JPA =

 ∂p1
∂a1

∂p1
∂b1

∂p1
∂c1

∂p1
∂a2

∂p1
∂b2

∂p1
∂c2

∂p2
∂a1

∂p2
∂b1

∂p2
∂c1

∂p2
∂a2

∂p2
∂b2

∂p2
∂c2

 =

 ∂p1
∂a1

∂p1
∂b1

∂p1
∂c1

0 0 0

0 0 0 ∂p2
∂a2

∂p2
∂b2

∂p2
∂c2

 ,

(D.15)

where:

116

D. Jacobian matrix Jes

∂p1
∂a1

=
(b1 ±

√
b2
1 − 4a1c1

2a2
1

± c1

(a1 −
√
b2
1 − 4a1c1

,

∂p1
∂b1

=

(
−1± b1√

b2
1 − 4a1c1

)(
1

2a1

)
,

∂p1
∂c1

= ± 1√
b2
1 − 4a1c1

,

∂p1
∂a2

=
(b2 ±

√
b2
2 − 4a2c2

2a2
2

± c2

(a2 −
√
b2
2 − 4a2c2

,

∂p1
∂b2

=

(
−1± b2√

b2
2 − 4a2c2

)(
1

2a2

)
,

∂p1
∂c2

= ± 1√
b2
2 − 4a2c2

. (D.16)

JAC is a 6x6 matrix derived from Equation 3.26, representing the partial deriva-

tives of the quadratic equation parameters aix2+bix+ci = 0 with respect to the

conic parameters:

JAC =

∂a1

∂c1

∂a1

∂c2
. . . ∂a1

∂c6

∂b1

∂c1

∂b1

∂c2
. . . ∂b1

∂c6
...

...
. . .

...

∂c2
∂c1

∂c2
∂c2

. . . ∂c2
∂c6

=

(x0 − x′

1)
2 (y0 − y′1)

2 (x0 − x′
1)(y0 − y′1) 0 0 0

2x′
1(x0 − x′

1) 2y′1(y0 − y′1) (x0y
′
1 + x′

1y0 − 2x′
1y

′
1) (x0 − x′

1) (y0 − y′1) 0

x2
1 y′21 x′

1y
′
1 x′

1 y′1 1

(x0 − x′
2)

2 (y0 − y′2)
2 (x0 − x′

2)(y0 − y′2) 0 0 0

2x′
2(x0 − x′

2) 2y′2(y0 − y′2) (x0y
′
2 + x′

2y0 − 2x′
2y

′
2) (x0 − x′

2) (y0 − y′2) 0

x2
2 y′22 x′

2y
′
2 x′

2 y′2 1

 .

(D.17)

117

Appendix

D.2 Jacobian matrix JCQc

Solving Equation 3.16 using the matrix A given in Equation 3.6, the conic pa-

rameters C = (c1 c2 c3 c4 c5 c6)
T have the following values:

c1 = pi211(b
2
c1 − ccac1),

c2 = pi222(b
2
c2 − ccac2),

c3 = 2pi11pi22(bc1bc2 − ccac4),

c4 = 2pi11p11[pi13(b
2
c1 − ccac1) + pi23(bc1bc2 − ccac4) + (bc1bc3 − ccac6)],

c5 = 2pi22p11[pi13(bc2bc1 − ccac4) + pi23(b
2
c2 − ccac2) + (bc2bc3 − ccac5)],

c6 = p211[pi
2
13(b

2
c1 − ccac1) + 2pi13pi23(bc1bc2 − ccac4)+

2pi13(bc1bc3 − ccac6) + pi213(b
2
c2 − ccac2)+

2pi23(bc3bc2 − ccac5) + (b2c3 − ccac3)]. (D.18)

These expressions are used to calculate the Jacobian JCQc , which corresponds

to a 6x10 matrix with the partial derivatives of the conic parameters with respect

to the quadric parameters in camera coordinates:

JCQc =

∂c1
∂ac1

∂c1
∂ac2

. . . ∂c1
∂cc

∂c2
∂ac1

∂c2
∂ac2

. . . ∂c2
∂cc

...
...

. . .
...

∂c6
∂ac1

∂c6
∂ac2

. . . ∂c6
∂cc

=

∂c1
∂ac1

0 0 0 0 0 ∂c1
∂bc1

0 0 ∂c1
∂cc

0 ∂c2
∂ac2

0 0 0 0 0 ∂c2
∂bc2

0 ∂c2
∂cc

0 0 0 ∂c3
∂ac4

0 0 ∂c3
∂bc1

∂c3
∂bc2

0 ∂c3
∂cc

∂c4
∂ac1

0 0 ∂c4
∂ac4

0 ∂c4
∂ac6

∂c4
∂bc1

∂c4
∂bc2

∂c4
∂bc3

∂c4
∂cc

0 ∂c5
∂ac2

0 ∂c5
∂ac4

∂c5
∂ac5

0 ∂c5
∂bc1

∂c5
∂bc2

∂c5
∂bc3

∂c5
∂cc

∂c6
∂ac1

∂c6
∂ac2

∂c6
∂ac3

∂c6
∂ac4

∂c6
∂ac5

∂c6
∂ac6

∂c6
∂bc1

∂c6
∂bc2

∂c6
∂bc3

∂c6
∂cc

,

(D.19)

where:

118

D. Jacobian matrix Jes

∂c1
∂ac1

= −ccpi
2
11

∂c1
∂bc1

= 2bc1pi
2
11

∂c1
∂cc

= −ac1pi
2
11

∂c2
∂ac2

= −ccpi
2
22

∂c2
∂bc2

= 2bc2pi
2
22

∂c2
∂cc

= −ac2pi
2
22

∂c3
∂ac4

= −2pi11pi22cc
∂c3
∂bc1

= 2pi11pi22bc2
∂c3
∂bc2

= 2pi11pi22bc1

∂c3
∂cc

= −2pi11pi22ac4
∂c4
∂ac1

= −2pi11p11pi13cc
∂c4
∂ac4

= −2pi11p11pi23cc

∂c4
∂ac6

= −2pi11p11cc
∂c4
∂bc2

= 2pi11p11pi23bc1
∂c4
∂bc3

= 2pi11p11bc1

∂c4
∂bc1

= 2pi11p11(2pi13bc1 + pi23bc2 + bc3)
∂c4
∂cc

= −2pi11p11(pi13ac1 + pi23ac4 + ac6)

∂c5
∂ac2

= −2pi22pi23p11cc
∂c5
∂ac4

= −2pi22p11pi13cc
∂c5
∂ac5

= −2pi22p11cc

∂c5
∂bc1

= 2pi22p11pi13bc2
∂c5
∂bc2

= 2pi22p11(pi13bc1 + 2pi23bc2 + bc3)

∂c5
∂bc3

= 2pi22p11bc2
∂c5
∂cc

= −2pi22p11(pi13ac4 + pi23ac2 + ac5)

∂c6
∂ac1

= −pi213p
2
11cc

∂c6
∂ac2

= −pi223p
2
11cc

∂c6
∂ac3

= −p211cc

∂c6
∂ac4

= −2p211pi13pi23cc
∂c6
∂ac5

= −2p211pi23cc
∂c6
∂ac6

= −2p211pi13cc

∂c6
∂bc1

= 2p211(pi
2
13bc1 + pi13bc3 + pi23pi13bc2)

∂c6
∂bc2

= 2p211(pi
2
23bc2 + pi23bc3 + pi23pi13bc1)

∂c6
∂bc3

= 2p211(bc3 + pi13bc1 + pi23bc2)

∂c6
∂cc

= −p211[(pi
2
13ac1 + pi223ac2 + ac3) + 2(pi23pi13ac4 + pi13ac6 + pi23ac5)].

(D.20)

119

Appendix

D.3 Jacobian matrix JQcTi

JQcTi
represents a 10x12 matrix with the partial derivatives of the quadric pa-

rameters in camera coordinates with respect to the parameters of the inverse

modelview matrix Ti. Considering the following notation:

Qc =

ac1 ac4 ac6 bc1

ac4 ac2 ac5 bc2

ac6 ac5 ac3 bc3

bc1 bc2 bc3 cc

 ;Ti =

ti11 ti12 ti13 ti14

ti21 ti22 ti23 ti24

ti31 ti32 ti33 ti34

0 0 0 1

 ;Qw =

aw1 aw4 aw6 bw1

aw4 aw2 aw5 bw2

aw6 aw5 aw3 bw3

bw1 bw2 bw3 cw

 ,

the necessary expressions are obtained using Equation 3.5:

ac1 = ti211aw1 + 2ti11aw4ti21 + 2ti11aw6ti31 + ti221aw2 + 2ti21aw5ti31 + ti231aw3,

ac2 = ti212aw1 + 2ti12aw4ti22 + 2ti12aw6ti32 + ti222aw2 + 2ti22aw5ti32 + ti232aw3,

ac3 = ti213aw1 + 2ti13aw4ti23 + 2ti13aw6ti33 + ti223aw2 + 2ti23aw5ti33 + ti233aw3,

ac4 = ti11(aw1ti12 + aw4ti22 + aw6ti32) + ti21(aw4ti12 + aw2ti22 + aw5ti32)+

ti31(aw6ti12 + aw5ti22 + aw3ti32),

ac5 = ti12(aw1ti13 + aw4ti23 + aw6ti33) + ti22(aw4ti13 + aw2ti23 + aw5ti33)+

ti32(aw6ti13 + aw5ti23 + aw3ti33),

ac6 = ti11(aw1ti13 + aw4ti23 + aw6ti33) + ti21(aw4ti13 + aw2ti23 + aw5ti33)+

ti31(aw6ti13 + aw5ti23 + aw3ti33),

bc1 = ti11(aw1ti14 + aw4ti24 + aw6ti34 + bw1) + ti21(aw4ti14 + aw2ti24 + aw5ti34 + bw2)+

ti31(aw6ti14 + aw5ti24 + aw3ti34 + bw3),

bc2 = ti12(aw1ti14 + aw4ti24 + aw6ti34 + bw1) + ti22(aw4ti14 + aw2ti24 + aw5ti34 + bw2)+

ti32(aw6ti14 + aw5ti24 + aw3ti34 + bw3),

bc3 = ti13(aw1ti14 + aw4ti24 + aw6ti34 + bw1) + ti23(aw4ti14 + aw2ti24 + aw5ti34 + bw2)+

ti33(aw6ti14 + aw5ti24 + aw3ti34 + bw3),

cc = ti214aw1 + 2ti14aw4ti24 + 2ti14aw6ti34 + 2ti14bw1 + ti224aw2+

2ti24aw5ti34 + 2ti24bw2 + ti234aw3 + 2ti34bw3 + cw, (D.21)

120

D. Jacobian matrix Jes

and JQcTi
is calculated as:

JQcTi
=

∂ac1
∂ti11

∂ac1
∂ti12

. . . ∂ac1
∂ti34

...
...

. . .
...

∂ac1
∂ti11

∂ac1
∂ti12

. . . ∂ac1
∂ti34

=

∂ac1
∂ti11

0 0 0 ∂ac1
∂ti21

0 0 0 ∂ac1
∂ti31

0 0 0

0 ∂ac2
∂ti12

0 0 0 ∂ac2
∂ti22

0 0 0 ∂ac2
∂ti32

0 0

0 0 ∂ac3
∂ti13

0 0 0 ∂ac3
∂ti23

0 0 0 ∂ac3
∂ti33

0
∂ac4
∂ti11

∂ac4
∂ti12

0 0 ∂ac4
∂ti21

∂ac4
∂ti22

0 0 ∂ac4
∂ti31

∂ac4
∂ti32

0 0

0 ∂ac5
∂ti12

∂ac5
∂ti13

0 0 ∂ac5
∂ti22

∂ac5
∂ti23

0 0 ∂ac5
∂ti32

∂ac5
∂ti33

0
∂ac6
∂ti11

0 ∂ac6
∂ti13

0 ∂ac6
∂ti21

0 ∂ac6
∂ti23

0 ∂ac6
∂ti31

0 ∂ac6
∂ti33

0
∂bc1
∂ti11

0 0 ∂bc1
∂ti14

∂bc1
∂ti21

0 0 ∂bc1
∂ti24

∂bc1
∂ti31

0 0 ∂bc1
∂ti34

0 ∂bc2
∂ti12

0 ∂bc2
∂ti14

0 ∂bc2
∂ti22

0 ∂bc2
∂ti24

0 ∂bc2
∂ti32

0 ∂bc2
∂ti34

0 0 ∂bc3
∂ti13

∂bc3
∂ti14

0 0 ∂bc3
∂ti23

∂bc3
∂ti24

0 0 ∂bc3
∂ti33

∂bc3
∂ti34

0 0 0 ∂cc
∂ti14

0 0 0 ∂cc
∂ti24

0 0 0 ∂cc
∂ti34

,

(D.22)

where:

∂ac1
∂ti11

= 2aw1ti11 + 2aw4ti21 + 2aw6ti31
∂ac1
∂ti21

= 2aw4ti11 + 2aw2ti21 + 2aw5ti31

∂ac1
∂ti31

= 2aw6ti11 + 2aw5ti21 + 2aw3ti31
∂ac2
∂ti12

= 2aw1ti12 + 2aw4ti22 + 2aw6ti32

∂ac2
∂ti22

= 2aw4ti12 + 2aw2ti22 + 2aw5ti32
∂ac2
∂ti32

= 2aw6ti12 + 2aw5ti22 + 2aw3ti32

∂ac3
∂ti13

= 2aw1ti13 + 2aw4ti23 + 2aw6ti33
∂ac3
∂ti23

= 2aw4ti13 + 2aw2ti23 + 2aw5ti33

∂ac3
∂ti33

= 2aw6ti13 + 2aw5ti23 + 2aw3ti33
∂ac4
∂ti11

= aw1ti12 + aw4ti22 + aw6ti32

∂ac4
∂ti12

= aw1ti11 + aw4ti21 + aw6ti31
∂ac4
∂ti21

= aw4ti12 + aw2ti22 + aw5ti32

∂ac4
∂ti22

= aw4ti11 + aw2ti21 + aw5ti31
∂ac4
∂ti31

= aw6ti12 + aw5ti22 + aw3ti32

∂ac4
∂ti32

= aw6ti11 + aw5ti21 + aw3ti31
∂ac5
∂ti12

= aw1ti13 + aw4ti23 + aw6ti33

121

Appendix

∂ac5
∂ti13

= aw1ti12 + aw4ti22 + aw6ti32
∂ac5
∂ti22

= aw4ti13 + aw2ti23 + aw5ti33

∂ac5
∂ti23

= aw4ti12 + aw2ti22 + aw5ti32
∂ac5
∂ti32

= aw6ti13 + aw5ti23 + aw3ti33

∂ac5
∂ti33

= aw6ti12 + aw5ti22 + aw3ti32
∂ac6
∂ti11

= aw1ti13 + aw4ti23 + aw6ti33

∂ac6
∂ti13

= aw1ti11 + aw4ti21 + aw6ti31
∂ac6
∂ti21

= aw4ti13 + aw2ti23 + aw5ti33

∂ac6
∂ti23

= aw4ti11 + aw2ti21 + aw5ti31
∂ac6
∂ti31

= aw6ti13 + aw5ti23 + aw3ti33

∂ac6
∂ti33

= aw6ti11 + aw5ti21 + aw3ti31
∂bc1
∂ti11

= aw1ti14 + aw4ti24 + aw6ti34 + bw1

∂bc1
∂ti14

= aw1ti11 + aw4ti21 + aw6ti31
∂bc1
∂ti21

= aw4ti14 + aw2ti24 + aw5ti34 + bw2

∂bc1
∂ti24

= aw4ti11 + aw2ti21 + aw5ti31
∂bc1
∂ti31

= aw6ti14 + aw5ti24 + aw5ti34 + bw3

∂bc1
∂ti34

= aw6ti11 + aw5ti21 + aw3ti31
∂bc2
∂ti12

= aw1ti14 + aw4ti24 + aw6ti34 + bw1

∂bc2
∂ti14

= aw1ti12 + aw4ti22 + aw6ti32
∂bc2
∂ti22

= aw4ti14 + aw2ti24 + aw5ti34 + bw2

∂bc2
∂ti24

= aw4ti12 + aw2ti22 + aw5ti32
∂bc2
∂ti32

= aw6ti14 + aw5ti24 + aw3ti34 + bw3

∂bc2
∂ti34

= aw6ti12 + aw5ti22 + aw3ti32
∂bc3
∂ti13

= aw1ti14 + aw4ti24 + aw6ti34 + bw1

∂bc3
∂ti14

= aw1ti13 + aw4ti23 + aw6ti33
∂bc3
∂ti23

= aw4ti14 + aw2ti24 + aw5ti34 + bw2

∂bc3
∂ti24

= aw4ti13 + aw2ti23 + aw5ti33
∂bc3
∂ti33

= aw6ti14 + aw5ti24 + aw3ti34 + bw3

∂bc3
∂ti34

= aw6ti13 + aw5ti23 + aw3ti33

∂cc
∂ti14

= 2aw1ti14 + 2aw4ti24 + 2aw6ti34 + 2bw1

∂cc
∂ti24

= 2aw4ti14 + 2aw2ti24 + 2aw5ti34 + 2bw2

∂cc
∂ti34

= 2aw6ti14 + 2aw5ti24 + 2aw3ti34 + 2bw3

(D.23)

122

D. Jacobian matrix Jes

D.4 Jacobian matrix JTiTMi

JTiTMi
corresponds to a 12x12 matrix with partial derivatives of the inverse mo-

delview matrix Ti with respect to the inverse of the transformation matrix TM.

Using Equation 2.4, matrix Ti is obtained by calculating:

Ti = (T0TM)−1 = TMiT0i (D.24)

where

T0i =

t0i11 t0i12 t0i13 t0i14

t0i21 t0i22 t0i23 t0i24

t0i31 t0i32 t0i33 t0i34

0 0 0 1

 (D.25)

and

TMi =

tm11 tm12 tm13 tm14

tm21 tm22 tm23 tm24

tm31 tm32 tm33 tm34

0 0 0 1

−1

=

tmi11 tmi12 tmi13 tmi14

tmi21 tmi22 tmi23 tmi24

tmi31 tmi32 tmi33 tmi34

0 0 0 1

=

tm11 tm21 tm31 −tm11tm14 − tm21tm24 − tm31t34

tm12 tm22 tm32 −tm12tm14 − tm22tm24 − tm32t34

tm13 tm23 tm33 −tm13tm14 − tm23tm24 − tm33t34

0 0 0 1

 .

(D.26)

The final expressions for Ti correspond to:

ti11 = tmi11t0i11 + tmi12t0i21 + tmi13t0i31,

ti12 = tmi11t0i12 + tmi12t0i22 + tmi13t0i32,

ti13 = tmi11t0i13 + tmi12t0i23 + tmi13t0i33,

ti14 = tmi11t0i14 + tmi12t0i24 + tmi13t0i34 + tmi14,

123

Appendix

ti21 = tmi21t0i11 + tmi22t0i21 + tmi23t0i31,

ti22 = tmi21t0i12 + tmi22t0i22 + tmi23t0i32,

ti23 = tmi21t0i13 + tmi22t0i23 + tmi23t0i33,

ti24 = tmi21t0i14 + tmi22t0i24 + tmi23t0i34 + tmi24,

ti31 = tmi31t0i11 + tmi32t0i21 + tmi33t0i31,

ti32 = tmi31t0i12 + tmi32t0i22 + tmi33t0i32,

ti33 = tmi31t0i13 + tmi32t0i23 + tmi33t0i33,

ti34 = tmi31t0i14 + tmi32t0i24 + tmi33t0i34 + tmi34.

(D.27)

Then, JTiTMi
can be calculated as:

JTiTMi
=

∂ti11
∂tmi11

. . . ∂ti11
∂tmi34

...
. . .

...
∂ti33
∂tmi11

. . . ∂ti33
∂tmi34

∂ti34
∂tmi11

. . . ∂ti34
∂tmi34

=

t0i11 t0i21 t0i31 0 0 0 0 0 0 0 0 0

t0i12 t0i22 t0i32 0 0 0 0 0 0 0 0 0

t0i13 t0i23 t0i33 0 0 0 0 0 0 0 0 0

t0i14 t0i24 t0i34 1 0 0 0 0 0 0 0 0

0 0 0 0 t0i11 t0i21 t0i31 0 0 0 0 0

0 0 0 0 t0i12 t0i22 t0i32 0 0 0 0 0

0 0 0 0 t0i13 t0i23 t0i33 0 0 0 0 0

0 0 0 0 t0i14 t0i24 t0i34 1 0 0 0 0

0 0 0 0 0 0 0 0 t0i11 t0i21 t0i31 0

0 0 0 0 0 0 0 0 t0i12 t0i22 t0i32 0

0 0 0 0 0 0 0 0 t0i13 t0i23 t0i33 0

0 0 0 0 0 0 0 0 t0i14 t0i24 t0i34 1

.

(D.28)

124

D. Jacobian matrix Jes

D.5 Jacobian matrix JTMis

JTMis corresponds to a 12x6 matrix representing the partial derivatives of TMi,

which is calculated using the following expression:

JTMis = JTMiTM
JTMs, (D.29)

where JTMiTM
is a 12x12 matrix representing the partial derivatives of TMi with

respect to TM , calculated using Equation D.26:

JTMiTM
=

∂tmi11
∂tm11

∂tmi11
∂tm12

. . . ∂tmi11
∂tm34

∂tmi12
∂tm11

∂tmi12
∂tm12

. . . ∂tmi12
∂tm34

...
...

. . .
...

∂tmi34
∂tm11

∂tmi34
∂tm12

. . . ∂tmi34
∂tm34

=

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0

−tm14 0 0 −tm11 −tm24 0 0 −tm21 −tm34 0 0 −tm31

0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0

0 −tm14 0 −tm12 0 −tm24 0 −tm22 0 −tm34 0 −tm32

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0

0 0 −tm14 −tm13 0 0 −tm24 −tm23 0 0 −tm34 −tm33

.

(D.30)

and JTMs is a 12x6 matrix of partial derivatives of TM with respect to the pose

parameters vector s, represented by:

JTMs =

∂tm11

∂wx

∂tm11

∂wy
. . . ∂tm11

∂tz
∂tm12

∂wx

∂tm12

∂wy
. . . ∂tm12

∂tz
...

...
. . .

...
∂tm34

∂wx

∂tm34

∂wy
. . . ∂tm34

∂tz

 =

∂r11
∂tx

∂r11
∂ty

∂r11
∂tz

∂R
∂W

...
...

...
∂r33
∂tx

∂r33
∂ty

∂r33
∂tz

∂tx
∂wx

∂tx
∂wy

∂tx
∂wz

∂tx
∂tx

∂tx
∂ty

∂tx
∂tz

∂ty
∂wx

∂ty
∂wy

∂ty
∂wz

∂ty
∂tx

∂ty
∂ty

∂ty
∂tz

∂tz
∂wx

∂tz
∂wy

∂tz
∂wz

∂tz
∂tx

∂tz
∂ty

∂tz
∂tz

.

(D.31)

125

Appendix

To calculate ∂R
∂W

, first the Jacobian matrix relating the parameters of matrixR

in Equation 2.3 with respect to the the vectorQ = (rx ry rz ra); ra = θ is calculated

as:

∂R

∂Q
=

∂r11
∂rx

∂r11
∂ry

∂r11
∂rz

∂r11
∂ra

∂r21
∂rx

∂r21
∂ry

∂r21
∂rz

∂r21
∂ra

...
...

...
...

∂r33
∂rx

∂r33
∂ry

∂r33
∂rz

∂r33
∂ra

=

2(1− cos θ)rx 0 0 (r2x − 1) sin θ

ry(1− cos θ) rx(1− cos θ) − sin θ rxry sin θ − rz cos θ

rz(1− cos θ) sin θ rx(1− cos θ) rxrz sin θ + ry cos θ

ry(1− cos θ) rx(1− cos θ) sin θ rxry sin θ + rz cos θ

0 2(1− cos θ)ry 0 (r2y − 1) sin θ

− sin θ rz(1− cos θ) ry(1− cos θ) ryrz sin θ − rx cos θ

rz(1− cos θ) − sin θ rx(1− cos θ) rxrz sin θ − ry cos θ

sin θ rz(1− cos θ) ry(1− cos θ) ryrz sin θ + rx cos θ

0 0 2(1− cos θ)rz (r2z − 1) sin θ

.

(D.32)

The Jacobian relating the parameters of matrix R in Equation2.3 and repre-

sented by the vector Q = (rx ry rz ra); ra = θ with respect to the parameters of

the vector W results in:

∂Q

∂W
=

∂rx
∂wx

∂rx
∂wy

∂rx
∂wz

∂ry
∂wx

∂ry
∂wy

∂ry
∂wz

∂rz
∂wx

∂rz
∂wy

∂rz
∂wz

∂ra
∂wx

∂ra
∂wy

∂ra
∂wz

 =

1
θ
(1− x2) −xy

θ
−xz
θ

−xy
θ

1
θ
(1− y2) −yz

θ
−xz
θ

−yz
θ

1
θ
(1− z2)

rx ry rz

 . (D.33)

Finally, ∂R
∂W

is calculated as:

∂R

∂W
=

∂R

∂Q

∂Q

∂W
, (D.34)

using the following expressions:

126

D. Jacobian matrix Jes

∂r11
∂wx

= 2rx(1− r2x)
(1− cos θ)

θ
+ rx(r

2
x − 1) sin θ

∂r11
∂wy

= −2r2xry
(1− cos θ)

θ
+ ry(r

2
x − 1) sin θ

∂r11
∂wz

= −2r2xrz
(1− cos θ)

θ
+ rz(r

2
x − 1) sin θ

∂r12
∂wx

=
(1− cos θ)

θ
ry(1− r2x)−

(1− cos θ)

θ
r2xry +

sin θ

θ
rxrz + r2xry sin θ − rxrz cos θ

∂r12
∂wy

= −rxr
2
y

(1− cos θ)

θ
+

(1− cos θ)

θ
rx(1− r2y) +

sin θ

θ
ryrz + rxr

2
y sin θ − ryrz cos θ

∂r12
∂wz

= −rxryrz
(1− cos θ)

θ
− rxryrz

(1− cos θ)

θ
− sin θ

θ
(1− r2z) + rxryrz sin θ − r2z cos θ

∂r13
∂wx

=
(1− cos θ)

θ
rz(1− r2x)− rxry

sin θ

θ
− r2xrz

(1− cos θ)

θ
+ r2xrz sin θ + rxry cos θ

∂r13
∂wy

= −rxryrz
(1− cos θ)

θ
+

sin θ

θ
(1− r2y)− rxryrz

(1− cos θ)

θ
+ rxryrz sin θ + r2y cos θ

∂r13
∂wz

= −rxr
2
z

(1− cos θ)

θ
− ryrz

sin θ

θ
+

(1− cos θ)

θ
rx(1− r2z) + rxr

2
z sin θ + ryrz cos θ

∂r21
∂wx

=
(1− cos θ)

θ
ry(1− r2x)− r2xry

(1− cos θ)

θ
− rxrz

sin θ

θ
+ r2xry sin θ + rxrz cos θ

∂r21
∂wy

= −rxr
2
y

(1− cos θ)

θ
+

(1− cos θ)

θ
rx(1− r2y)− ryrz

sin θ

θ
+ rxr

2
y sin θ + ryrz cos θ

∂r21
∂wz

= −rxryrz
(1− cos θ)

θ
− rxryrz

(1− cos θ)

θ
+

sin θ

θ
(1− r2z) + rxryrz sin θ + r2z cos θ

∂r22
∂wx

= −2rxr
2
y

(1− cos θ)

θ
+ rx(r

2
y − 1) sin θ

∂r22
∂wy

= 2ry(1− r2y)
(1− cos θ)

θ
+ ry(r

2
y − 1) sin θ

∂r22
∂wz

= −2r2yrz
(1− cos θ)

θ
+ rz(r

2
y − 1) sin θ

∂r23
∂wx

= −sin θ

θ
(1− r2x)− rxryrz

(1− cos θ)

θ
− rxryrz

(1− cos θ)

θ
+ rxryrz sin θ − r2x cos θ

∂r23
∂wy

= rxry
sin θ

θ
+

(1− cos θ)

θ
rz(1− r2y)− r2yrz

(1− cos θ)

θ
+ r2yrz sin θ − rxry cos θ

∂r23
∂wz

= rxrz
sin θ

θ
+−ryr

2
z

(1− cos θ)

θ
+

(1− cos θ)

θ
ry(1− r2z) + ryr

2
z sin θ − rxrz cos θ

127

Appendix

∂r31
∂wx

=
(1− cos θ)

θ
rz(1− r2x) + rxry

sin θ

θ
− r2xrz

(1− cos θ)

θ
+ r2xrz sin θ − rxry cos θ

∂r31
∂wy

= −rxryrz
(1− cos θ)

θ
− sin θ

θ
(1− r2y)− rxryrz

(1− cos θ)

θ
+ rxryrz sin θ − r2y cos θ

∂r31
∂wz

= −rxr
2
z

(1− cos θ)

θ
+ ryrz

sin θ

θ
+

(1− cos θ)

θ
rx(1− r2z) + rxr

2
z sin θ − ryrz cos θ

∂r32
∂wx

=
sin θ

θ
(1− r2x)− rxryrz

(1− cos θ)

θ
− rxryrz

(1− cos θ)

θ
+ rxryrz sin θ + r2x cos θ

∂r32
∂wy

= −rxry
sin θ

θ
+

(1− cos θ)

θ
rz(1− r2y)− r2yrz

(1− cos θ)

θ
+ r2yrz sin θ − rxry cos θ

∂r32
∂wz

= −rxrz
sin θ

θ
+−ryr

2
z

(1− cos θ)

θ
+

(1− cos θ)

θ
ry(1− r2z) + ryr

2
z sin θ + rxrz cos θ

∂r33
∂wx

= −2rxr
2
z

(1− cos θ)

θ
+ rx(r

2
z − 1) sin θ

∂r33
∂wy

= −2ryr
2
z

(1− cos θ)

θ
+ ry(r

2
z − 1) sin θ

∂r33
∂wz

= 2rz(1− r2z)
(1− cos θ)

θ
+ rz(r

2
z − 1) sin θ

(D.35)

Finally, the Jacobian matrix is calculated for W = (0, 0, 0). In this case,

θ =
√
02 + 02 + 02 = 0

and

|wi| ≤
√
w2

1 + w2
2 + w2

3; i = 1, 2, 3.

Then,

|wi|√
w2

1 + w2
2 + w2

3

≤ 1; i = 1, 2, 3.

Therefore:

|rx| ≤ 1, |ry| ≤ 1, |rz| ≤ 1.

Furthermore, considering:

lim
x→0

sin θ

θ
= 1 and lim

x→0

1− cos θ

θ
= 0,

128

D. Jacobian matrix Jes

the Jacobian matrix results in:

JTMs =

0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

−1 0 0 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

(D.36)

129

Bibliography

[1] Sony. EyePet. http://www.eyepet.com/, 2009. Accessed in November, 2012.

[2] Sony. The eye of judgment. http://us.playstation.com/games-and-media/

games/the-eye-of-judgment-ps3.html. Accessed in November, 2012.

[3] Nintendo. AR cards. http://www.nintendo.com/3ds/ar-cards. Accessed in

November, 2012.

[4] I. Barakonyi, T. Psik, and D. Schmalstieg. Agents that talk and hit back:

Animated agents in augmented reality. In Proceedings of The 3rd IEEE

and ACM International Symposium on Mixed and Augmented Reality (IS-

MAR04), pages 141–150, 2004.

[5] H. Alvarez, I. Aguinaga, and D. Borro. Providing guidance for maintenance

operations using automatic markerless augmented reality system. In Pro-

ceedings of the 10th IEEE and ACM International Symposium on Mixed and

Augmented Reality (ISMAR11), pages 181–190, 2011.

[6] S. J. Henderson and S. Feiner. Evaluating the benefits of augmented reality

for task localization in maintenance of an armored personnel carrier turret.

In Proceedings of The 8th IEEE International Symposium on Mixed and

Augmented Reality (ISMAR09), pages 135–144, 2009.

130

Bibliography

[7] Zs. Szalavari, D. Schmalstieg, A. Fuhrmann, and M. Gervautz. Studierstube

- an environment for collaboration in augmented reality. Journal of the

Virtual Reality Society, 3(1):37–48, 1998.

[8] H. Kaufmann, K. Steinbugl, A. Dunser, and J. Gluck. Improving spatial

abilities by geometry education in augmented reality - application and eva-

luation design. In 7th Virtual Reality International Conference (VRIC -

Laval Virtual 2005), pages 25–34, 2005.

[9] B. Schwald, H. Seibert, and T. Weller. A flexible tracking concept applied

to medical scenarios using an ar window. In Proceedings of The 1st Inter-

national Symposium on Mixed and Augmented Reality (ISMAR02), 2002.

[10] C. Bichlmeier, F. Wimmer, S. M. Heining, and N. Navab. Contextual

anatomic mimesis: Hybrid in-situ visualization method for improving multi-

sensory depth perception in medical augmented reality. In Proceedings of

the 6th IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR07), pages 129–138, 2007.

[11] Y. Yamaguchi, T. Nakagawa, K. Akaho, M. Honda, H. Kato, and S. Nishida.

AR-Navi: An in-vehicle navigation system using video-based augmented

reality technology. In Symposium on Human Interface 2007, volume 4558,

pages 1139–1147. Springer-Verlag Berlin Heidelberg, 2007.

[12] Pioneer. Cyber-Navi. http://pioneer.jp/carrozzeria/cybernavi/, 2012. Ac-

cessed in November, 2012.

[13] Wikitude GmbH. What is Wikitude? http://www.wikitude.com/tour/

wikitude-world-browser. Accessed in November, 2012.

[14] Metaio Inc. Junaio. http://www.junaio.com/home/. Accessed in November,

2012.

[15] R. Azuma. A survey of augmented reality. Presence: Teleoperators and

Virtual Environments, 6(4):355–385, 1997.

[16] V. Lepetit and P. Fua. Monocular model-based 3D tracking of rigid objects:

A survey. Foundations and Trends in Computer Graphics and Vision, 2005.

131

Bibliography

[17] H. Kato and M. Billinghurst. Marker tracking and HMD calibration for

a video-based augmented reality conferencing system. In Proceedings of

The 2nd IEEE International Workshop on Augmented Reality, pages 85–94,

1999.

[18] T. Drummond and R. Cipolla. Real-time visual tracking of complex struc-

tures. IEEE Transactions on Pattern Analysis and Machine Intelligence,

24(7):932–946, 2002.

[19] A. I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-

time markerless tracking for augmented reality: The virtual visual servoing

framework. IEEE Transactions on Visualization and Computer Graphics,

12(4):615–628, 2006.

[20] G. Klein and D. Murray. Parallel Tracking and Mapping for small AR

workspaces. In Proceedings of The 6th IEEE and ACM International Sym-

posium on Mixed and Augmented Reality (ISMAR07), pages 225–234, 2007.

[21] S. You, U. Neumann, and R. Azuma. Hybrid inertial and vision tracking

for augmented reality registration. In Proceedings of IEEE Virtual Reality

1999, pages 260–267, 1999.

[22] L. Naimark and E. Foxlin. Circular data matrix fiducial system and robust

image processing for a wearable vision-inertial self-tracker. In Proceedings

of the 1st International Symposium on Mixed and Augmented Reality (IS-

MAR02), pages 27–36, 2002.

[23] M. Ribo, P. Lang, H. Ganster, M. Brandner, C. Stock, and A. Pinz. Hy-

brid tracking for outdoor augmented reality applications. IEEE Computer

Graphics and Applications, 22(6):54–63, 2002.

[24] G. Reitmayr and T. Drummond. Going out: Robust model-based tracking

for outdoor augmented reality. In Proceedings of the Fifth International

Symposium on Mixed and Augmented Reality (ISMAR05), 2006.

[25] V. Teichrieb, J. P. S. M. Lima, E. L. Apolinario, T. S. M. C. de Farias,

M. A. S. Bueno, J. Kelner, and I. H. F. Santos. A survey of online monoc-

132

Bibliography

ular markerless augmented reality. International Journal of Modeling and

Simulation for the Petroleum Industry, 1(1), 2007.

[26] Borko Furht (Ed.). Handbook of Augmented Reality. Springer, 2011.

[27] T. Drummond and R. Cipolla. Real-time tracking of highly articulated

structures in the presence of noisy measurements. In Proceedings of the

Eighth International Conference on Computer Vision, pages 315–320, 2001.

[28] D. G. Lowe. Fitting parameterized three-dimensional models to im-

ages. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13(5):441–450, 1991.

[29] R. Cipolla and P. Giblin. Visual Motion of Curves and Surfaces. Cambridge

University Press, 2000.

[30] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-

ical Recipes: the art of scientific computing. Cambridge University Press,

third edition, 2007.

[31] K. Kumagai, M. A. Oikawa, T. Taketomi, G. Yamamoto, J. Miyazaki, and

H. Kato. Robust model-based tracking considering changes in the mea-

surable DoF of the target object. In Proceedings of the 21st International

Conference on Pattern Recognition, 2012.

[32] J. Rekimoto. Matrix: A realtime object identification and registration

method for augmented reality. In Proceedings of Asia Pacific Computer-

Human Interaction, pages 63–68, 1998.

[33] D. Wagner. Handheld Augmented Reality. PhD thesis, Graz University of

Technology, 2007.

[34] D. Wagner and D. Schmalstieg. ARToolKitPlus for pose tracking on mobile

devices. In Proceedings of the 12th Computer Vision Winter Workshop

(CVWW07), pages 139–146, 2007.

[35] J. Park, S. You, and U. Neuman. Natural feature tracking for extendible

robust augmented realities. In Proceedings of the International Workshop

on Augmented Reality (IWAR98), pages 209–217, 1998.

133

Bibliography

[36] K. W. Chia, A. D. Cheok, and S. J. D. Prince. Online 6DOF augmented

reality registration from natural features. In Proceedings of the 1st Inter-

national Symposium on Mixed and Augmented Reality (ISMAR02), pages

305–313, 2002.

[37] Y. Park, V. Lepetit, and W. Woo. Texture-less object tracking with online

training using an RGB-D camera. In Proceedings of the 10th IEEE and ACM

International Symposium on Mixed and Augmented Reality (ISMAR2011),

pages 121–126, 2011.

[38] K. Hirose and H. Saito. Fast line description for line-based SLAM. In

Proceedings of the British Machine Vision Conference 2012, pages 83.1–

83.11, 2012.

[39] J. Rekimoto and Y. Ayatsuka. CyberCode: designing augmented reality

environments with visual tags. In Proceedings of the 2000 ACM Conference

on Designing Augmented Reality Environments (DARE2000), pages 1–10,

2000.

[40] M. Fiala. ARTag, a fiducial marker system using digital techniques. In

Proceedings of the 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR05), volume 2, pages 590–596, 2005.

[41] R. Bencina and M. Kaltenbrunner. The design and evolution of fiducials for

the reacTIVision system. In Proceedings of the 3rd International Conference

on Generative Systems in the Eletronic Arts, 2005.

[42] J. Koehler, A. Pagani, and D. Stricker. Robust detection and identification

of partially occluded circular markers. In Proceedings of the International

Conference on Computer Vision Theory and Applications (VISAPP2010),

pages 387–392, 2010.

[43] E. Constanza and J. Robinson. A region adjacency tree approach to the de-

tection and design of fiducials. In Proceedings of Video, Vision and Graphics

(VVG2003), pages 63–69, 2003.

[44] J. Koehler, A. Pagani, and D. Stricker. Detection and identification tech-

niques for markers used in computer vision. In Visualization of Large and

134

Bibliography

Unstructured Data Sets - Applications in Geospatial Planning, Modeling and

Engineering (IRTG Workshop), pages 36–44, 2010.

[45] H. Nishino. A 6DOF fiducial tracking method based on topological region

adjacency and angle information for tangible interaction. In Proceedings

of the 4th International Conference on Tangible, Embedded and Embodied

Interaction, pages 253–256, 2010.

[46] X. Zhang, S. Fronz, and N. Navab. Visual marker detection and decoding

in ar systems: A comparative study. In Proceedings of 1st the International

Symposium on Mixed and Augmented Reality (ISMAR02), pages 97–108,

2002.

[47] J. P. Lima, F. Simoes, L. Figueiredo, and J. Kelner. Model based marker-

less tracking applied to augmented reality. SBC Journal on 3D Interactive

Systems, 1:2–15, 2010.

[48] S. B. Gokturk, J.-Y. Bouguet, and R. Grzeszczuk. A data-driven model

for monocular face tracking. In Proceedings of the 8th IEEE International

Conference on Computer Vision, volume 2, pages 701–708, 2001.

[49] H. Li, P. Roivainen, and R. Forchheimer. 3D motion estimation in model-

based facial image coding. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 15(6), 1993.

[50] S. Basu, I. Essa, and A. Pentland. Motion regularization for model-based

head-tracking. In Proceedings of the 13th IEEE Internation Conference in

Pattern Recognition (ICPR96), pages 611–616, 1996.

[51] G. Hager and P. Belhumeur. Efficient region tracking with parametric mod-

els of geometry and illumination. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 20(10):1025–1039, 1998.

[52] F. Jurie and M. Dhome. Real-time 3D template matching. In Proceedings

of The 2001 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR01), volume 1, pages 791–796, 2001.

135

Bibliography

[53] F. Jurie and M. Dhome. Real-time robust template matching. In Proceedings

of the 13th British Machine Vision Conference (BMVC02), pages 123–132,

2002.

[54] C. Harris and M. Stephens. A combined corner and edge detector. In Fourth

Alvey Vision Conference, pages 147–151, 1988.

[55] S. M. Smith and J. M. Brady. SUSAN - a new approach to low level image

processing. International Journal of Computer Vision, 23(1):45–78, 1997.

[56] E. Rosten and T. Drummond. Machine learning for high-speed corner de-

tection. In Proceedings of the 9th European Conference on Computer Vision

(ECCV06), pages 430–443, 2006.

[57] D. G. Lowe. Distinctive image features from scale-invariant keypoints. In-

ternational Journal of Computer Vision, 60(2):91–110, 2004.

[58] H. Bay, T. Tuytelaars, and L. van Gool. SURF: Speeded-Up Robust Fea-

tures. In Proceedings of the 9th European Conference on Computer Vision

(ECCV06), pages 404–417, 2006.

[59] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool. Speeded-Up Robust Fea-

tures (SURF). Computer Vision and Image Understanding, 110(3):346–359,

2008.

[60] M. Haag and H.-H. Nagel. Combination of edge element and optical flow

estimates for 3D model-based vehicle tracking in traffic image sequences.

International Journal of Computer Vision, 35(3):295–319, 1999.

[61] T. Brox, B. Rosenhahn, D. Cremers, and H.-P. Seidel. High accuracy op-

tical flow serves 3D pose tracking: Exploiting contour and flow based con-

straints. In Proceedings of the 9th European Conference on Computer Vision

(ECCV2006), pages 98–111, 2006.

[62] L. Vacchetti, V. Lepetit, and P. Fua. Combining edge and texture infor-

mation for real-time accurate 3D camera tracking. In Proceedings of the

International Symposium on Mixed and Augmented Reality, pages 48–57,

2004.

136

Bibliography

[63] L. Vacchetti, V. Lepetit, and P. Fua. Fusing online and offline information

for stable 3d tracking in real-time. In Proceedings of The International

Conference on Computer Vision and Pattern Recognition (CVPR03), pages

241–248, 2003.

[64] E. Rosten and T. Drummond. Fusing points and lines for high performance

tracking. In IEEE International Conference on Computer Vision, pages

1508–1511, 2005.

[65] C. Choi and H. I. Christensen. Real-time model-based tracking using edge

and keypoint features for robotic manipulation. In Proceedings of The IEEE

International Conference on Robotics and Automation, pages 4048–4055,

2010.

[66] R. Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010.

[67] M. Pollefeys and L. Van Gool. From images to 3D models. Communications

of the ACM, 45(7):50–55, 2002.

[68] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from Internet

photo collections. International Journal of Computer Vision, 80(2):189–210,

2008.

[69] R. Koch, K. Koeser, B. Streckel, and J. F. Evers-Senne. Markerless image-

based 3D tracking for real-time augmented reality applications. InWorkshop

on Image Analysis for Multimedia Interactive Services (WIAMIS), 2005.

[70] A. J. Davison. Real-time simultaneous localisation and mapping with a

single camera. In Proceedings of the Ninth IEEE International Conference

on Computer Vision (ICCV03), volume 2, pages 1403–1410, 2003.

[71] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM: Real-

time single camera SLAM. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 29(6), 2007.

[72] E. Eade and T. Drummond. Scalable monocular SLAM. In Proceedings

of the 2006 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR06), pages 469–476, 2006.

137

Bibliography

[73] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with

unknown data association using fastslam. In IEEE International Conference

on Robotics and Automation (ICRA2003), pages 1985–1991, 2003.

[74] G. Klein and D. Murray. Parallel Tracking and Mapping on a camera

phone. In Proceedings of the 8th IEEE International Symposium on Mixed

and Augmented Reality (ISMAR09), pages 83–86, 2009.

[75] M. Tamaazousti, V. Gay-Bellile, S. N. Collette, and S. Bourgeois. Real-

time accurate localization in a partially known environment: Application

to Augmented Reality on textureless 3D objects. In Proceedings of the

International workshop on AR/MR registration, tracking and benchmarking

(TrakMark2011), 2011.

[76] R. A. Newcombe, S. J. Lovegrove, and A. J. Davidson. DTAM: Dense

Tracking and Mapping in real-time. In Proceedings of the 2011 IEEE Inter-

national Conference on Computer Vision (DTAM2011), pages 2320–2327,

2011.

[77] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. David-

son, P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion:

Real-time dense surface mapping and tracking. In Proceedings of the 10th

IEEE and ACMI nternational Symposium on Mixed and Augmented Reality

(ISMAR 2011), pages 127–136, 2011.

[78] G. Bleser, H. Wuest, and D. Stricker. Online camera pose estimation in par-

tially known and dynamic scenes. In Proceedings of the 5th IEEE and ACM

International Symposium on Mixed and Augmented Reality (ISMAR06),

pages 56–65, 2006.

[79] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. ACM

Computing Surveys, 38(4), 2006.

[80] D. G. Lowe. Robust model-based motion tracking through the integration of

search and estimation. International Journal of Computer Vision, 8(2):113–

122, 1992.

138

Bibliography

[81] D. B. Gennery. Visual tracking of known three-dimensional objects. Inter-

national Journal of Computer Vision, 7(1):243–270, 1992.

[82] D. Koller, K. Daniilidis, and H.-H. Nagel. Model-based object tracking in

monocular image sequences of road traffic scenes. International Journal of

Computer Vision, 10(3):257–281, 1993.

[83] M. Armstrong and A. Zisserman. Robust object tracking. In Proceedings of

Asian Conference on Computer Vision, pages 58–62, 1995.

[84] C. Harris and C. Stennettt. RAPID: a video rate object tracker. In Pro-

ceedings of the 1st British Machine Vision Conference, pages 73–77, 1990.

[85] R. E. Kalman. A new approach to linear filtering and prediction problems.

ASME Journal of Basic Engineering, 82:35–45, 1960.

[86] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartogra-

phy. Communications of the ACM, 24(6):381–395, 1981.

[87] E. Marchand, P. Bouthemy, F. Chaumette, and V. Moreau. Robust real-

time visual tracking using a 2D-3D model-based approach. In Proceedings

of the 7th IEEE International Conference on Computer Vision, volume 1,

pages 262–268, 1999.

[88] R. Cipolla and A. Blake. Surface shape from the deformation of apparent

contours. International Journal of Computer Vision, pages 83–112, 1992.

[89] Y. Furukawa, A. Sethi, J. Ponce, and D. Kriegman. Robust structure and

motion from outlines of smooth curved surfaces. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 28(2):302–315, 2006.

[90] S.D. Ma. Conics-based stereo, motion estimation and pose determination.

International Journal of Computer Vision, 10(1):7–25, 1993.

[91] T. Joshi, N. Ahuja, and J. Ponce. Structure and motion estimation from

dynamic silhouettes under perspective projection. International Journal of

Computer Vision, 31(1):31–50, 1999.

139

Bibliography

[92] E. Rosten and T. Drummond. Rapid rendering of apparent contours of im-

plicit surfaces for realtime tracking. In British Machine Vision Conference,

pages 719–728, 2003.

[93] G. Li, Y. Tsin, and Y. Genc. Exploiting occluding contours for real-time 3D

tracking: A unified approach. In Proceedings of the 11th IEEE International

Conference on Computer Vision, 2007.

[94] P. Azad, D. Munch, T. Asfour, and R. Dillmann. 6-DOF model-based

tracking of arbitrarily shaped 3D objects. In IEEE International Conference

on Robotics and Automation, pages 5204–5209, 2011.

[95] V. Kyrki and D. Kragic. Tracking rigid objects using integration of model-

based and model-free cues. Machine Vision and Applications, 22(2):323–335,

2011.

[96] B. Stenger, P.R.S. Mendonca, and R. Cipolla. Model-based 3D tracking of

an articulated hand. In IEEE Conference on Computer Vision and Pattern

Recognition, volume II, pages 310–315, 2001.

[97] J. F. Blinn. A generalization of algebraic surface drawing. ACM Transac-

tions on Graphics, 1(3):235–256, 1982.

[98] R. Plaenkers and P. Fua. Model-based silhouette extraction for accurate

people tracking. In In Proceedings of the 7th European Conference on Com-

puter Vision, pages 325–339, 2002.

[99] N. Khan. Silhouette-based 2D-3D pose estimation using implicit algebraic

surfaces. Master’s thesis, Saarland University, 2007.

[100] D. P. Luebke. A developer’s survey of polygonal simplification algorithms.

IEEE Computer Graphics and Applications, 21(3):24–35, 2001.

[101] P. Alliez, G. Ucelli, C. Gotsman, and M. Attene. Recent Advances in

Remeshing of Surfaces. Springer Berlin Heidelberg, 2008.

[102] C. Barton. Poly reducer. http://wiki.blender.org/index.php/Extensions:2.4/

Py/Scripts/Mesh/Mesh poly reduce, 2006. Accessed in June, 2010.

140

Bibliography

[103] M. Garland. Quadric-Based Polygonal Surface Simplification. PhD thesis,

Carnegie Mellon University, 1999.

[104] P. Cignoni, C. Rocchini, and R. Scopigno. Metro: measuring error on sim-

plified surfaces. Computer Graphics Forum, 17(2):167–174, 1998. Available

at: http://vcg.iei.pi.cnr.it/software.php.

[105] S. Petitjean. A survey of methods for recovering quadrics in triangle meshes.

ACM Computing Surveys, 2(34):169–201, 2002.

[106] M. A. Oikawa. Apparent contour tracking of rigid curved objects based on

quadrics approximation of the surface. Master’s thesis, Nara Institute of

Science and Technology, 2010.

[107] M. Rouhani and A.D. Sappa. A novel approach to geometric fitting of

implicit quadrics. In IEEE International Conference on Advanced Concepts

for Intelligent Vision Systems, pages 121–132, 2009.

[108] F. Dunn and I. Parberry. 3D Math Primer for Graphics and Game Deve-

lopment. Wordware Publishing, Inc., 2002.

[109] V. H Mederos, J.C.E Sarlabous, and P.B. Sanchez. A new algorithm to com-

pute the euclidean distance from a point to a conic. Revista Investigacion

Operacional, 23(2), 2002.

[110] G. Taubin. Distance approximation for rasterizing implicit curves. ACM

Transactions on Graphics, 13(1):3–42, 1994.

[111] K. Kumagai. Robust model-based tracking for measurable DOF change.

Master’s thesis, Nara Institute of Science and Technology, 2012.

[112] M. A. Oikawa, G. Yamamoto, M. Fujisawa, T. Amano, J. Miyazaki, and

H. Kato. Quantitative evaluation method for model-based tracking of 3d

rigid curved objects. In Proceedings of The 2nd International Workshop on

AR/MR Registration, Tracking and Benchmarking, 2011.

[113] K. Kumagai, G. Yamamoto, M. Fujisawa, T. Amano, J. Miyazaki, and

H. Kato. Improvement of the robustness for model-based tracking based on

141

Bibliography

the measurable dof for tracking targets. In The 16th Annual Conference of

the Virtual Reality Society of Japan, 2011.

[114] J. J. Broek, W. Sleijffers, I. Horvath, and A. F. Lennings. Using physical

models in design. In Proceedings of The Third International Conference on

Computer Aided Industrial Design and Computer Aided Conceptual Design,

2000.

[115] S. H. Choi and A. M. M. Chan. A virtual prototyping system for rapid

product development. Computer-Aided Design, 36(5):401–412, 2004.

[116] G. G. Wang. Definition and review of virtual prototyping. Journal of

Computing and Information Science in Engineering, 2(3), 2002.

[117] G. R. Bennett. The application of virtual prototyping in the development of

complex aerospace products. Aircraft Engineering and Aerospace Techno-

logy, 69(1):19–25, 1997.

[118] A. Kulkarni, A. Kapoor, M. Iyer, and V. Kosse. Virtual prototyping used

as validation tool in automotive design. In Proceeedings of The 19th Inter-

national Congress on Modelling and Simulation, pages 419–425, 2011.

[119] M. Bordegoni and C. Rizzi. Innovation in Product Design - From CAD to

Virtual Prototyping. Springer, 1st edition, 2011.

[120] J. Verlinden and I. Horvath. A critical systems position on augmented pro-

totyping systems for industrial design. In Proceedings of the ASME 2007 In-

ternational Design Engineering Technical Conferences and Computers and

Information in Engineering Conference, 2007.

[121] P. S. Dunston, X. Wang, M. Billinghurst, and B. Hampson. Mixed reality

benefits for design perception. In Proceedings of The 19th International

Symposium on Automation and Robotics in Construction, pages 191–196,

2002.

[122] W. Lee and J. Park. Augmented foam: A tangible augmented reality for

product design. In Proceedings of the International Symposium on Mixed

and Augmented Reality, pages 106–109, 2005.

142

Bibliography

[123] H. Park, H. C. Moon, and J. Y. Lee. Tangible augmented prototyping of

digital handheld products. Computers in Industry, 60:114–125, 2009.

[124] O. Korkalo, M. Aittala, and S. Siltanen. Light-weight marker hiding for

augmented reality. In Proceedings of The IEEE International Symposium

on Mixed and Augmented Reality 2010, pages 247–248, 2010.

[125] N. Kawai, M. Yamasaki, T. Sato, and N. Yokoya. AR marker hiding based

on image inpainting and reflection of illumination changes. In Proceedings of

The IEEE International Symposium on Mixed and Augmented Reality 2012,

pages 293–294, 2012.

[126] J. Herling and W. Broll. Pixmix: A real-time approach to high-quality

diminished reality. In Proceedings of The IEEE International Symposium

on Mixed and Augmented Reality 2012, pages 141–150, 2012.

[127] S. R. Porter, M. R. Marner, R. T. Smith, J. E. Zucco, and B. H. Thomas.

Spatial augmented reality for interactive rapid prototyping. In Proceedings

of the 20th International Conference on Artificial Inteligence and Telexis-

tence, pages 110–117, 2010.

[128] V. Gay-Bellile, S. Bourgeois, M. Tamaazousti, and S. N. Collette. A mobile

markerless Augmented Reality system for the automotive field. InWorkshop

on Tracking Methods and Applications, 2012.

[129] Canon Global. Canon launches new MR (Mixed Reality) sys-

tem, contributing to shorter development times during product design.

http://www.canon.com/news/2012/jun18e.html, 2012. Accessed in Jan-

uary, 2013.

[130] T. Tullis and B. Albert. Measuring the User Experience: Collecting, Ana-

lyzing and Presenting Usability Metrics. Morgan Kaufmann, 2008.

143

	Introduction
	Background and Motivation
	Research problem
	Research goal and approach
	Contributions
	Software
	Outline of the thesis

	Background and Related Work
	Rigid objects tracking
	Fiducial marker tracking
	Natural features tracking
	Model-based tracking
	Combination of approaches
	Real-time Structure-From-Motion tracking

	Edge-based methods in details

	Rigid curved objects tracking
	Contour generator and apparent contour
	Previous work on curved objects tracking
	Curved objects representation

	Mathematical background
	Coordinate frames
	Quadric surfaces
	Conic curves
	Apparent contour of quadrics

	Concluding remarks

	Proposed Tracking Framework
	Framework overview
	Offline stage
	Polygonal mesh simplification
	Quadrics patch representation
	Quadrics calculation
	Internal vertices
	Quadrics evaluation

	Online stage
	Contour patches selection
	Edge points detection and matching
	Apparent contour equation
	Quadrics projection
	World to camera coordinates
	Camera to image coordinates

	Pose parameters computation
	Distance calculation
	Reference points
	Point to conic distance calculation

	Concluding remarks

	Dealing with different number of observable DOF
	Measuring the object DOF
	Recovering one DOF
	Rotation axis calculation
	Null space search

	Concluding remarks

	Experiments
	Quantitative evaluation
	The simulator
	Experiments configuration
	Experiment I
	Experiment II
	Experiment III

	Qualitative evaluation
	Objects having different number of observable DOF
	Limitations and failure cases
	Concluding remarks

	Augmented Prototyping
	Rapid Prototyping
	Related work
	Virtual Prototyping
	Augmented Prototyping

	Proposed AP application
	Texture composition algorithm
	Handling the texture occlusion

	User study
	Participants
	Physical setup
	Task description
	Results

	Discussion
	Concluding remarks

	Conclusions
	Thesis summary
	Future work and open problems

	Publication List
	Acknowledgments
	Appendix
	Video sequences
	Apparent contour of quadrics
	Polygonal mesh simplification results
	Jacobian matrix Jes
	Jacobian matrix JeC
	Jacobian matrix JCQc
	Jacobian matrix JQcTi
	Jacobian matrix JTiTMi
	Jacobian matrix JTMis

	Bibliography

