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Frameworks for Generalized Forward-Backward

Algorithms∗

Ai Azuma

Abstract

Forward-backward algorithms are an important Dynamic Programming (D.P.)

algorithm in structured prediction especially in sequence labeling. The algorithm

enables us to avoid explicit enumeration of all the possible output candidates and

provides an efficient way to accomplish computation tasks in both learning and

prediction steps of sequence labeling.

In recent years, there is a series of studies in formalization of D.P. based on

algebraic and graph-based frameworks. Such frameworks can subsume many im-

portant computations. In the context of sequence labeling, there are some studies

on a unifying framework for Viterbi algorithms, which is vital in sequence label-

ing tasks. On the other hand, Forward-Backward algorithms are another crucial

algorithm in sequence labeling. A key point of Forward-Backward algorithms lies

in combination of D.P. in both forward and backward manners, while Viterbi

algorithms are D.P. in single direction only. Such combination of D.P. is outside

the scope of the unifying framework for Viterbi algorithms. As a consequence,

there is no adequate framework for generalized Forward-Backward algorithms.

In this dissertation, I first introduce a unifying framework for generalized

Forward-Backward algorithms based on algebraic and graph-theoretic formaliza-

tion. Next, I will introduce some systematic ways to compose complex algebraic

structures from simpler ones. Given this framework, I also show novel instances

of generalized Forward-Backward algorithms. They show promise in various nu-

merical computation in sequence labeling tasks. Finally, in order to demonstrate

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Infor-
mation Science, Nara Institute of Science and Technology, NAIST-IS-DD0561001, March 15,
2013.
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the actual benefit of the framework proposed in this dissertation, I propose a

novel sequence labeling model which utilizes one of proposed instances of the

framework in its learning step. I also show the quantitative result of the model.

Keywords:

forward-backward algorithm, dynamic programming, machine learning, struc-

tured prediction
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一般化前向き後ろ向きアルゴリズムに対する
代数的・グラフ理論的枠組みの研究∗

東 藍

内容梗概

前向き後ろ向きアルゴリズムは構造学習のうち特に系列ラベリングにおいて重
要な動的計画法によるアルゴリズムである．このアルゴリズムにより，可能なす
べての出力候補を陽に列挙することなく，系列ラベリングの学習および予測の過
程における計算タスクを効率的に行うことができる．
近年，動的計画法を代数的かつグラフ理論に基づく枠組みで形式化しようとす
る一連の研究がある．多くの重要な計算がこのような枠組みに包括される．系列
ラベリングの文脈においては，系列ラベリングにおいて重要なヴィタビアルゴリ
ズムに対する統一的枠組みに関する研究がある．一方で，前向き後ろ向きアルゴ
リズムもまた系列ラベリングにおいて重要なアルゴリズムである．前向き後ろ向
きアルゴリズムの重要な点は，前向きの動的計画法と後ろ向きの動的計画法を組
み合わせるところにある．これは一方向のみの動的計画法であるヴィタビアルゴ
リズムとは異なる．このような動的計画法の組み合わせはヴィタビアルゴリズム
に対する統一的枠組みの中には納まらない．結果として，前向き後ろ向きアルゴ
リズムに対する十分な枠組みは未だにないと言える．
本稿ではまず，代数的かつグラフ理論による形式化に基づいて，一般化された
前向き後ろ向きアルゴリズムに対する統一された枠組みを導入する．次に，複雑
な代数構造をより簡易な代数構造から体系的に構成する方法を導入する．この枠
組みを前提として，一般化された前向き後ろ向きアルゴリズムの新規の事例をい
くつか導出する．これらの事例は系列ラベリングのタスクにおける様々な数値計
算において有望である．最後に，本稿において提案する枠組みがもたらす実際的
な恩恵を実証するために，新規の系列ラベリングモデルを提案する．このモデル
の学習の過程において本稿で提案する枠組みの実例の一つが活用される．さらに
このモデルの定量的評価についても述べる．

∗奈良先端科学技術大学院大学 情報科学研究科 情報処理学専攻 博士論文, NAIST-IS-
DD0561001, 2013年 3月 15日.
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Chapter 1

Introduction

1.1 Background

Many learning tasks in the real world involve complex structures in which

there are multiple interrelated labels to be assigned. Structures can be classified

roughly according to their complexity, and the classes include arbitrary graphs,

trees and so on. A simple but notable class that involves structures is sequence

labeling, in which dependencies between labels constitute a linear chain. A lot

of classification or pattern recognition tasks on natural language sentences, genes

and the like can be modeled as sequence labeling.

Sequence labeling involves computation over all candidate output sequences.

For example, the expectation-maximization (EM) algorithm for Hidden Markov

Models (HMMs) [5] requires expected frequencies of labels and adjacent pairs

of labels measured on the current model. Computation of the gradient of the

log-likelihood objective for Conditional Random Fields (CRFs)[16] also involves

model expectations of features or adjacent pairs of features. It is also important

to sum up the joint probabilities or weights over all the output sequence candi-

dates. Such a summation results in the language model
∑

y P (x,y) = P (x) for

generative models like HMMs, where x is an input sequence and y a candidate of

the output sequences. For the case of CRFs, such a summation results in the nor-

malization constant, also known as the partition function, of the input sequence.

In the prediction step of sequence labeling using HMMs or CRFs, the sequence

that maximizes some joint score has to be found among the output sequence can-

didates. These computations are originally defined as summation or maximum

operation on all the possible candidates of output sequences for a given input.



However, naive computation over all the possible output sequences is not feasi-

ble for practical computing purposes because the number of the possible output

sequences is typically proportional to the exponential of a natural measure of the

size of the problem, e.g., the length of the input sequence. Therefore, clever and

efficient procedures are needed to handle the above computations.

The aforementioned computation can be efficiently handled by Dynamic Pro-

gramming (D.P.). For the sequence labeling, such D.P. is often referred to as

“Viterbi algorithms” and “Forward-Backward algorithms” (henceforth abbrevi-

ated as “F.B. algorithms,” or simply “F.B.”). Viterbi algorithms are used to find

the most likely output sequence among candidates. Viterbi algorithms also com-

pute the language model for the case of HMMs and normalization constants for

the case of CRFs. Viterbi algorithms also can be used to find the best candidate

in the prediction step of HMMs and CRFs. Here, what I would like readers to

keep in mind is that Viterbi algorithms are D.P. in single direction only.

F.B. algorithms are crucial to parameter estimation of many probabilistic mod-

els used in sequence labeling tasks. The original F.B. algorithm was developed

to compute local maximization of the log-likelihood function for discrete-time

finite-state HMMs. However, many variants of F.B. algorithms were studied in

recent years. They originated out of the need to optimize the model parameter in

terms of an objective other than the simple log-likelihood, to compute the value

or gradient of complex regularization terms appearing in the objective, to handle

probabilistic models for sequence labeling other than HMMs, and so on. There-

fore, the current implication of the term “Forward-Backward algorithms” has

become much broader in scope than the original one. For example, the variant of

F.B. used in parameter optimization of CRFs is quite analogous to the original

F.B., so it is often simply called “Forward-Backward algorithm.” In addition,

other variants of F.B. are sure to be developed as required. As a consequence,

the scope of the term “Forward-Backward algorithms” keeps growing to include

these variants.

In the past, variants of F.B. were developed and formalized in an ad hoc way

that is applied only to problems at hand. As a result, similar formalization that

would be unified into single generalized formalization has been carried out from

problem to problem. Examples of such ad hoc derivation include Hessian-vector

products of CRFs[27][26], computation of entropy gradient for CRFs [13][18].

Here, a motivation arises. Variants of F.B. have similarities, and their com-
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mon parts can be factored out in a formal way. One of the main goals in this

dissertation is to propose a unified formalization of generalized F.B. algorithms.

It is desirable that the formalization subsumes as many known variants of F.B.

algorithms as possible. Or conversely, it could define a clear scope of the term

“Forward-Backward algorithms.”

There are some unifying frameworks for D.P. [8][21][9][10] They all utilize alge-

braic structures and offer a unified view of D.P. in which recursion steps proceed

in one direction only. In the context of sequence labeling, they reduce to the

algebraic frameworks for Viterbi algorithms. The frameworks subsume variants

of Viterbi algorithms, whose examples include the computation of the language

model of HMMs, the normalization constant of CRFs, the path with the maxi-

mum score among the output candidates, and so on.

However, far too little attention has been paid to algebraic frameworks for

F.B. algorithms. And I would like to argue that some kinds of limitations in the

existing framework for Viterbi algorithms rise to the surface when trying to offer

a unifying framework for known variants of F.B. A key feature of F.B. algorithms

lies in “weighted combination” of D.P. in both forward and backward manners,

while Viterbi algorithms are D.P. in one direction only. The part of “weighted

combination” in F.B. cannot be fully formalized only in terms of the algebraic

structures used in the framework for Viterbi. Thus, there are issues to address.

In order to precisely grasp the key part of F.B. in terms of algebraic structures,

some further concepts are required in addition to the ones used in the existing

frameworks for Viterbi.

I would also like to argue that there is another kind of practical issues in

algebraic frameworks. Discussions based on algebraic frameworks tend to be

occupied with just a catalog of algebras. It is important to offer an unified point

of view on different computations. However, it seems much more desirable to

offer a systematic approach to construct a new algebra. Once we have such

approach, we obtain a systematic approach to derive new variants of Viterbi and

F.B. algorithms.

A common way of formalizing complex objects in mathematics is to provide

a way to induce complex objects from simpler ones. In this dissertation, I will

show some systematic ways to induce complicated semirings from simpler ones.

In that way, we can induce very complex semirings one after another. And we

can easily confirm that complicated variants of F.B. algorithms named above are

3



subsumed by semirings induced in this way.

1.2 Thesis Outline and Contributions

This dissertation addresses the issues stated in the previous section, and makes

the following contributions.

1. In Chapter 2, I will first introduce algebraic and graph-theoretic concepts.

And on that basis I will formalize a unifying framework of generalized

Forward-Backward algorithms.

2. In Chapter 3, I will develop novel instances for the generic framework in-

troduced in Chapter 2. The instances includes sequences of a semiring,

polynomial sequences, the complex numbers, and outer products of them.

It is also demonstrated how existing algorithms are subsumed by the al-

gebraic framework. This Section also discusses further possibilities of the

instances introduced in Section 3.

3. In Chapter 4, I propose a novel model for cascaded sequence labeling. The

optimization procedure of the proposed model requires generalized F.B. and

Viterbi algorithms for complicated calculations. Instances of the generic

framework for Forward-Backward algorithm developed in Section 3 is effec-

tively exploited in the calculations.

4
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Chapter 2

Formalization of

Forward-Backward Algorithms

In this chapter, first I will introduce some definitions in graph theory in order

to formalize “trellis.” Second, I will briefly review some definitions and properties

of some algebraic concepts. Finally, a framework for generalized F.B. algorithms

will be presented.

2.1 Formalization of Trellis

F.B. algorithms can be considered to compute “summation” of “score defined

on sequences.” The set of sequences has to be represented by a remarkably

compact data structure. Conceptually, the set is encoded by a directed acyclic

graph (DAG). A sequence is represented by a directed path in the DAG. It defines

what is called trellis. It is a part of the basis for the framework for generalized

F.B. shown in later. I will introduce some formal notations about DAGs.

Let me introduce some terminology. Consider a DAG G = (V, E). DAGs in

this dissertation are assumed to be linear, that is, there is no more than one arc

between a pair of nodes. The predecessor set of node v ∈ V is denoted by N−(v),

i.e., N−(v)
def≡ {x ∈ V |(x, v) ∈ E}. The successor set of node v ∈ V is denoted

by N+(v), i.e., N+(v)
def≡ {x ∈ V |(v, x) ∈ E}. A source node is a node whose

in-degree is zero. A sink node is a node whose out-degree is zero. Hereafter,

it is assumed that G has only one source node and one sink node. They are

denoted by src(G) and snk(G), respectively. They are abbreviated to src and
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Figure 2.1: An example trellis

snk respectively if G is obvious from the context. Note that it is straightforward

to extend the following discussions to DAGs with multiple source and sink nodes.

Therefore, I omit the discussions for the case where there are multiple sources or

sinks. Let Ψ(u, v) be the set of directed paths whose starting node is u ∈ V and

end node is v ∈ V . Because a directed path in a linear DAG can be uniquely

identified by the set of nodes that constitutes the path, a path is also referred

to as the set of the nodes. Thus, for example, the predicate v ∈ ψ stands for

a relation whether v is in ψ, where v ∈ V and ψ is a directed path in G. For

u, v, w ∈ V , Ψ∼w(u, v) is defined to denote the subset of Ψ(u, v) constrained on

the node w. More formally, Ψ∼w(u, v)
def≡ {x ∈ Ψ(u, v) | w ∈ x}. A path ψ in G

is successful if and only if the starting node is src and end node is snk. The set

of all successful paths in G is denoted by Ψ(G), that is, Ψ(G)
def≡ Ψ(src, snk).

For example, the DAG shown in Fig.2.2.1 has a source labeled “START” and

a sink labeled “STOP”. For that DAG, Ψ(START, STOP) includes seven di-

rected paths, while Ψ∼y5(START, STOP) includes four paths {START, y1, y5,

y6, STOP}, {START, y1, y5, y7, STOP}, {START, y2, y5, y6, STOP} and

{START, y2, y5, y7, STOP}. The path {START, y3, y7, STOP} is successful,

while the path {START, y3, y7} is not.

Weights, features, or some other values may be associated to nodes. They can

be formally defined by functions with the domain of V . Values may also appear

on arcs in addition to nodes in many practical applications. However, for the sake

of simplicity, arcs are considered to just represent transitions between nodes, and

no value is associated to arcs. Because there is a systematic way to transform

G = (V,E) into another DAG G′ = (V ′, E ′) such that functions with the domain

of V ∪ E can be expressed in terms of functions with the domain of V ′. The

method is defining G′ = (V ′, E ′) with V ′ def≡ V ∪ E and E ′ def≡ {(x, y) ∈ V ′ × V ′ |
u ∈ V ∧ (u, v) ∈ E ∨ (u, v) ∈ E ∧ v ∈ V }. Under this transformation, nodes and

6



arcs in G are transformed into nodes in G′, and adjacency between nodes and

arcs in G is replaced by arcs in G′. Henceforth, it is assumed that functions are

defined only on V without loss of generality.

2.2 Algebraic Foundations

Next, I will briefly review some definitions and properties used in later sections

and chapters. The notations shown in this section follow Kuich and Salomaa [15],

Mohri [21], Huang [10] and Li and Eisner [17].

Before introducing algebraic structures used later in this dissertation, let me

first explain why algebraic structures defined in this section is required to offer a

unifying framework for generalized F.B. algorithms.

In the ordinary F.B. algorithm that is used to compute model expectation of

symbol emission or state transitions in HMMs, forward and backward variables

are the real numbers. The combination of forward and backward variables on each

node results in the model expectation of a state. Finally, a weighted summation

over the model expectation of states is carried out to compute the expectation of

symbol emission, in which the weight on each node is emission probability of a

symbol, that is, the real number. In short, all of forward and backward variables

and weights on nodes are the real numbers in the ordinary F.B.

On the other hand, some variants of F.B. algorithms that were developed in

recent years involve forward and backward variables of a pair of the real numbers.

Examples include F.B. algorithms with the expectation semiring[6][17] and with

the entropy semiring[4][11]. They can be viewed as generalized F.B. equipped

with semirings over the two-dimensional real vectors. The addition of the semir-

ings is the ordinary vector addition, that is, the element-wise addition. The mul-

tiplication of the semirings is defined by the convolution between two-dimensional

vectors. D.P. with these semirings in single (either forward or backward) direction

only is an instance of the existing frameworks for generalized Viterbi. However, a

key operation of F.B. is the “weighted combination” of D.P. in both forward and

backward manner. “Combination” is represented by the multiplication of semir-

ings. But, semirings are not good enough to formalize “weighting operation”

because “weights” may come from a domain other than the one of forward and

backward variables. In fact, in F.B. with the expectation or entropy semirings,

forward and backward variables are two-dimensional real vectors while weight

7



on each node is the real number. Thus, the weighting operation in F.B. with

the expectation or entropy semirings is the scalar multiplication between the real

numbers and two-dimensional real vectors. Therefore, in order to offer a unify-

ing framework for generalized F.B. that subsumes F.B. with the expectation or

entropy semirings, such framework should be based on algebraic structures that

capture “multiplication between different domains.”

In this dissertation, I will build the framework for generalized F.B. shown in

Section 2.3 on a semiring and a unital associative algebra over a commutative

semiring.

Definition 1. A monoid is a system (S, +, 0) such that;

1. + is a closed binary operator on the set S, i.e., + : S × S → S.

2. + is associative, i.e., ∀a, b, c ∈ S, (a + b) + c = a + (b + c).

3. S has the identity element for +, i.e., ∃0 ∈ S s.t. s + 0 = 0 + s = s.

Definition 2. A commutative monoid is a monoid (S, +, 0) whose operation is

commutative, i.e., ∀a, b ∈ S, a + b = b + a.

Definition 3. A semiring is a system (K,⊕,⊗, 0̄, 1̄) such that;

1. (K,⊕, 0̄) is a commutative monoid.

2. (K,⊗, 1̄) is a monoid.

3. ⊗ distributes over ⊕, i.e., ∀a, b, c ∈ K,

(a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) ,

c ⊗ (a ⊕ b) = (c ⊗ a) ⊕ (c ⊗ b) .

4. 0̄ is the annihilator,

∀a ∈ K, 0̄ ⊗ a = a ⊗ 0̄ = 0̄ . (2.1)

For the sake of simplicity, I will often denote a semiring (K,⊕,⊗, 0̄, 1̄) as simply

K unless it is confusing.

For a semiring K and a natural number n ∈ N0, n-th power of x ∈ K is defined

as follows,

xn def≡


x ⊗ · · · ⊗ x︸ ︷︷ ︸

n-times

, n ≥ 1 ,

1̄, n = 0 .

(2.2)
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Definition 4. A commutative semiring is a semiring (K,⊕,⊗, 0̄, 1̄) such that ⊗
is commutative, i.e.,

∀a, b ∈ K, a ⊗ b = b ⊗ a .

Definition 5. For a given semiring (K,⊕,⊗, 0̄, 1̄), a semimodule over the semir-

ing K consists of a commutative monoid (M, +, 0) and an operation K×M → M

such that ∀x, y ∈ K and m,n ∈ M ,

x · (m + n) = x · m + x · n , (2.3)

(x ⊕ y) · m = x · m + y · m , (2.4)

(x ⊗ y) · m = x · (y · m) . (2.5)

Note that there is a distinction between left and right semimodule, which

differ in whether the operation between K and M is defined by K × M → M or

M × K → M . However, it is not significant in this dissertation, and they are

always assumed to left ones, as defined above.

A semimodule is a generalization of vector spaces. Elements in M in Definition

5 correspond to “vectors,” so + means “vector addition.” Elements in K corre-

spond to “scalars,” so ⊕ and ⊗ are addition and multiplication between scalars,

respectively. And · : K × M → M corresponds the multiplication between a

scalar and a vector, that is, “scalar multiplication.” In fact, a vector space over

a field K is always a semimodule over K.

Semimodules are not yet enough to offer a framework for generalized F.B. Recall

the discussions in the very beginning of this section. A semimodule has scalars,

which represent node weights, vectors, which represents forward and backward

variables, and scalar multiplication, which represents weighting operation. How-

ever, vectors do not have multiplication, so M in Definition 5 is not a semiring.

Therefore, in order for semimodules to be computed in D.P., multiplication be-

tween vectors should be introduced.

Definition 6. Let (K,⊕,⊗, 0̄, 1̄) a commutative semiring. A unital associative

algebra over a commutative semiring K is a semiring (A, +,×, 0, 1) which is also

a semimodule over K such that the multiplication × : A×A → A is bilinear, that

is,

∀a ∈ K, ∀x, y ∈ A, a · (x × y) = (a · x) × y = x × (a · y) . (2.6)

Roughly speaking, a unital associative algebra over a commutative semiring

consists of two semirings and multiplication between elements of one semiring

and the other.
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Fact 1. A semiring (A, +,×, 0, 1) is a unital associative algebra over N0 with the

following definition.

n · x
def
≡ x + · · · + x︸ ︷︷ ︸

n−times

, n ∈ N0, x ∈ A . (2.7)

2.3 Formalization of Generalized

Forward-Backward Algorithms

In this section, I will present a formalization of generalized F.B. algorithms. I

will also provide the proof of a key property that makes F.B. algorithms beneficial

in many real-world problems. In order to write down definitions and proofs, let

me introduce some additional definitions.

In the following definitions, let (K,⊗,⊕, 0̄, 1̄) denote a commutative semiring,

(A, +,×, 0, 1) denote a unital associative algebra over K. Note that (A, +,×, 0, 1)

itself is also a semiring. A function ϕ : V → A is defined on nodes of a trellis

G = (V,E). The value of ϕ on v ∈ V is denoted by ϕ(v) and called the weight or

potential of node v. In addition, the definition of weight is extended to paths in

G. The weight of a path ψ = {vψ1 , . . . , vψ|ψ|} is defined by ϕ(ψ)
def≡

∏
v∈ψ ϕ(v) =

ϕ(vψ1) × · · · × ϕ(vψ|ψ|). Then, consider the following form of the sum.

Definition 7. For given u, v ∈V, the shortest distance between u, v, denoted by

DA,w(u, v), is defined as follows,

DA,ϕ(u, v)
def
≡

∑
ψ∈Ψ(u,v)

ϕ(ψ) . (2.8)

Note that the definition of Ψ (u, v) appeared in Section 2.2.1.

Some readers may feel uncomfortable with the term “shortest distance.” This

terminology is originally attributed to Mohri[21]. When A in this definition is

substituted by (R, min, +, 0, 1), which is so-called tropical semiring, the “sum”

of (2.8) is equal to the shortest distance between the nodes u, v in the trellis G

with the real-valued node weight w. Therefore, we can easily confirm that this

definition is certainly a generalization of “shortest distance.”

Based on the definitions described above, a formalization of generalized Viterbi

algorithms is described in Algorithm 1.
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Algorithm 1 Generalized Viterbi Algorithms

Input: A trellis G = (V,E), a semiring (A, +,×,0,1) , node weight ϕ : V → A

Output: α(v) = DA,ϕ(src, v), for ∀v ∈ V

1: α(src) ← ϕ(src)

2: for all v ∈ V \ src in a topological order do

3: α(v) ←
∑

x∈N−(v) α(x) × ϕ(v)

4: end for

The correctness of Algorithm 1 is explained as below. First of all, α(src) =

DA,ϕ(src, src) is obvious from the definition. In what follows, for a node x ∈ V ,

assuming

α(v) = DA,ϕ(src, v) (2.9)

holds on ∀v ∈ N−(x), then,

α(x) =
∑

v∈N−(x)

α(v) × ϕ(x)

(∵ line 3 in Algorithm 1)

=
∑

v∈N−(x)

DA,ϕ(src, v) × ϕ(x)

(∵ the assumption (2.9))

=
∑

v∈N−(x)

 ∑
ψ∈Ψ(src,v)

ϕ(ψ)

 × ϕ(x)

(∵ the definition of DA,ϕ(src, v))

=
∑

v∈N−(x)

∑
ψ∈Ψ(src,v)

(ϕ(ψ) × ϕ(x))

(∵ distributivity)

=
∑

ψ∈Ψ(src,x)

ϕ(ψ)

(∵ collects two summations and weight)

= DA,ϕ(src, x) .

(2.10)

Therefore, (2.9) holds for ∀v ∈ V because α is recursively calculated in a topo-

logical order of G.
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From Algorithm 1, a Viterbi algorithm is specified by a trellis G, a semiring

(A, +,×, 0, 1) and a weight function ϕ. Hereinafter, the tuple (G, (A, +,×, 0, 1), ϕ)

is called the specification of a Viterbi algorithm. And α(snk) = DA,ϕ(src, snk) is

called the result of the Viterbi algorithm.

Note that Algorithm 1 itself is not new because it is just an adaptation of

Huang[10]. However, it constitutes one half of the formalization of generalized

Forward-Backward algorithms, which is a new proposal in this dissertation.

In addition to the definitions introduced in the very beginning of this section,

a feature f : V → K is defined on nodes. Given the aforementioned definitions,

the following two kinds of summation are also defined.

Definition 8. The marginalization of the weight ϕ with respect to a given node

v ∈ V , denoted by MA,ϕ(v), is defined as follows,

MA,ϕ(v)
def
≡

∑
ψ∈Ψ∼v(src,snk)

ϕ(ψ) . (2.11)

Note that the definition of Ψ∼v(src, snk) appeared in Section 2.2.1.

Let me explain the concrete interpretation of Definition 8 in HMMs. In finite-

state discrete-time HMMs, a node v ∈ V represents a state or state transition,

and a successful path corresponds to a sequence of state transitions. Therefore,

Ψ∼v(src, snk) is the set of transition sequences consistent to the state or state

transition represented by v. When ϕ is defined by the transition probability

(and ϕ(v) = 1 if v represents a state), then, MA,ϕ(v) is equal to the marginal

probability of the state or state transition represented by v.

Definition 9. The expectation of the feature f with respect to the weight ϕ,

denoted by EA,K,ϕ(f), is defined as follows,

EA,K,ϕ(f)
def
≡

∑
ψ∈Ψ(G)

((⊕
v∈ψ

f(v)

)
· ϕ(ψ)

)
. (2.12)

Again, let me explain the concrete interpretation of Definition 9 in HMMs.

When ϕ is defined by the transition probability and f by the emission probability

of a symbol (and f(v) = 0 if v represents a state transition), then, (⊕v∈ψf(v)) ·
ϕ(ψ) is equal to the probability of the symbol emission in the transition sequence

represented by the path ψ. Therefore EA,K,ϕ(f) is equal to the expectation of the

symbol emission.
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Here, I would like to address an important issue. For the example of HMMs,

the product of the marginal probability and the symbol emission probability on

a node v ∈ V is equal to the probability of the symbol emission at the state

represented by v. The summation of such probability over all node is equal to

the symbol emission probability. That is, for the example of the symbols emission

probability in HMMs, the following equation holds,∑
v∈V

(f(v) ·MA,ϕ(v)) = EA,K,ϕ(f) . (2.13)

F.B. actually computes the form in the left hand of (2.13). On the other hand,

many values of interest are originally defined by the form in the right hand of

(2.13). So, in order for F.B. to compute a value of interest, we often need to prove

an equation like (2.13). For the case of HMMs, this equation can be easily proved

in terms of the conditional independence among states and state transitions.

However, the goal of this dissertation is to offer a unifying framework. The

framework should subsume F.B. in which weights are other than probability.

Therefore, additional assumptions such as conditional independence among nodes

should be avoided, and the following claim has to be proved only in terms of

algebraic structures.

Theorem 1 (Marginalization-Expectation). The following equation holds,∑
v∈V

(f(v) · MA,ϕ(v)) = EA,K,ϕ(f) . (2.14)

Proof of Theorem 1

First, the Kronecker delta for a semiring (A, +,×,0,1) is defined by

δA
P

def≡

{
1, the predicate P is true ,

0, otherwise .
(2.15)

Then,
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∑
v∈V

(f(v) ·MA,ϕ(v)) =
∑
v∈V

f(v) ·

 ∑
ψ∈Ψ∼v(src,snk)

ϕ(ψ)


=

∑
v∈V

(
f(v) ·

(∑
ψ∈Ψ

δA
v∈ψ × ϕ(ψ)

))
note that

∑
ψ∈Ψ∼v(src,snk)

• =
∑
ψ∈Ψ

(δA
v∈ψ × •)


=

∑
v∈V

∑
ψ∈Ψ

(
f(v) ·

(
δA
v∈ψ × ϕ(ψ)

))
(∵ (2.3))

=
∑
ψ∈Ψ

∑
v∈V

(
δA
v∈ψ × (f(v) · ϕ(ψ))

)
(∵ bilinearity of × over ·)

=
∑
ψ∈Ψ

∑
v∈ψ

(f(v) · ϕ(ψ))(
note that

∑
v∈V

(
δA
v∈ψ × •

)
=

∑
v∈ψ

•

)

=
∑
ψ∈Ψ

((∑
v∈ψ

f(v)

)
· ϕ(ψ)

)
(∵ (2.4))

= EA,K,ϕ(f) .

(2.16)

Based on this definition, the formalization of generalized Forward-Backward

algorithms is described in Algorithm 2．
Next, I will show the correctness of Algorithm 2. First, the following equation

can be verified in the same way as (2.9) and (2.10),

β(v) =
∑

x∈N+(v)

DA,ϕ(x, snk) . (2.17)

From the lines 5–8 in Algorithm 2, we can easily confirm

E =
∑
v∈V

(f(v) · (α(v) × β(v))) . (2.18)
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Algorithm 2 Generalized Forward-Backward Algorithms

Input: A trellis G = (V,E), a commutative semiring (K,⊕,⊗, 0̄, 1̄), a feature

f : V → K, a unital associative algebra over K (A, +,×,0,1) , a weight

ϕ : V → A, forward variables α : V → A (calculated by Algorithm 1)

Output: E = EA,K,ϕ(f)

1: β(snk) ← 1

2: for all v ∈ V \ snk in a reversed topological order do

3: β(v) ←
∑

x∈N+(v) ϕ(x) × β(x)

4: end for

5: E ← 0

6: for all v ∈ V do

7: E ← E + (f(v) · (α(v) × β(v)))

8: end for

And

α(v) × β(v) = DA,ϕ(src, v) ×

 ∑
x∈N+(v)

DA,ϕ(x, snk)


=

 ∑
ψ∈Ψ(src,v)

ϕ(ψ)

 ×

 ∑
x∈N+(v)

∑
ψ∈Ψ(x,snk)

ϕ(ψ)


=

∑
ψ∈Ψ∼v(src,snk)

ϕ(ψ)

= MA,ϕ(v) .

(2.19)

Therefore,

E =
∑
v∈V

(f(v) · MA,ϕ(v))

(∵ (2.18), (2.19))

= EA,K,ϕ(f) (∵ Theorem 1) .

(2.20)

Assuming that +, ×, ⊕, ⊗ and · all terminate in a finite length of time, it

also can be shown that Algorithm 2 terminates in a finite length of time since it

traverses a finite number of nodes in a topological order.

From Algorithm 2, a Forward-Backward algorithm is specified by a trellis G,

a commutative semiring (K,⊕,⊗, 0̄, 1̄), a feature function f : V → K, a uni-

tal associative algebra over K (A, +,×,0,1) and a weight function ϕ : V → A.
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Therefore, the tuple (G, (K,⊕,⊗, 0̄, 1̄), f, (A, +,×,0,1), ϕ) is called the specifica-

tion of a Forward-Backward algorithm.
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Chapter 3

Advanced Instances of the

Proposed Frameworks

3.1 Introduction of This Chapter

In this chapter, I will derive an efficient algorithm applicable to much broader

types of summations than ones used in the ordinary Viterbi or Forward-Backward

algorithm. As a result of the generalization proposed in this chapter, for example,

I will derive an efficient algorithm applicable to the following form.

∑
ψ∈Ψ(G)

(∏
v∈ψ

ϕ(v)

) (∑
v∈ψ

f1(v)

)n1

· · ·

(∑
v∈ψ

fK(v)

)nK

, (3.1)

where f1, . . . , fK are K real-valued functions, and n1, . . . , nK are non-negative

integers.

In order to systematically derive Viterbi and F.B. algorithms to compute com-

plex summations like (3.1), I will introduce some definitions and notations in the

next section.

3.2 Preliminaries

The first advanced instance of algebraic systems that complies with the frame-

works is a sequence of over a semiring. A sequence over a semiring is an ordered

list of elements of a semiring.



Definition 10. For a given semiring (A, +,×, 0, 1), a sequence over A is defined

as an ordered list of elements (xi)i∈N0
, where ∀i ∈ N0, xi ∈ A.

The definition of a sequence over a semiring is very similar to the definition

of vector space. In fact, additive operation is introduced as in vector spaces.

However, a sequence over a semiring differs from vector spaces in the following

respects. First, a sequence over a semiring is not requested to have some axioms

for vector spaces. In particular, sequences over a semiring is not required to have

inverse elements of addition and scalar multiplication. Second, unlike vector

spaces, a multiplicative operation have to be defined between two sequences over

a semiring. This allows to sequences of semirings follow the algebraic frameworks

of forward-backward algorithm.

Now, the set of sequences over a semiring A with n elements, denoted by An,

is the main concern in the following.

Definition 11. For a given semiring (A, +,×, 0, 1), the set of all the n-length

sequences over A is denoted by An, that is, An
def
≡ {(ai)i=0,1,...,n−1 | ai ∈ A}

Definition 12. For two elements of An, denoted by a and b, addition between a

and bis defined as follows,

a + b
def
≡ (ai + bi)i=0,...,n−1 . (3.2)

A sequence is denoted by bold-faced alphabets throughout this dissertation

unless otherwise specified.

Fact 2. 0An

def
≡ (0, 0, . . . , 0) is the identity element for the addition of An, that is,

0An + a = a + 0An = a (∀a ∈ An) . (3.3)

For the set of the all sequences over a semiring, three multiplicative opera-

tions are introduced in this dissertation. First two multiplicative operations on

sequences are relatively famous ones, and the last one is, to author’s knowledge,

newly introduced into the contexts of algebraic frameworks for F.B.

Definition 13. Element-wise product on An, denoted by ◦, is defined as follows,

a ◦ b
def
≡ (ai × bi)i=0,...,n−1 . (3.4)
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Fact 3. 1◦
def
≡ (1, 1, . . . , 1) is the identity element for ◦, i.e.,

∀a ∈ An, 1◦ ◦ a = a ◦ 1◦ = a . (3.5)

Fact 4. (An, +, ◦,0An ,1◦) is a semiring.

Definition 14. Convolution on An is defined as follows,

a ∗ b
def
≡

(
i∑

k=0

ak × bi−k

)
i=0,...,n−1

. (3.6)

Fact 5.

1∗
def
≡ (1, 0, . . . , 0) (3.7)

is the identity element for ∗, i.e.,

∀a ∈ An, 1∗ ∗ a = a ∗ 1∗ = a . (3.8)

Fact 6. (An, +, ∗,0An ,1∗) is a semiring.

Definition 15. Binomial convolution on An, denoted by an infix operator ⋄, is

defined as follows,

a ⋄ b
def
≡

(
i∑

k=0

(
i

k

)
· ak × bi−k

)
i=0,...,n−1

, (3.9)

where
(

n
i

)
denotes the binomial coefficients.

Note that multiplication between elements of a semiring A and a non-negative

integer
(

i
k

)
should be interpreted in terms of the definition (2.7). In addition,

note the bilinearity (2.6),
(

i
k

)
· (ak × bi−k) =

((
i
k

)
· ak

)
× bi−k = ak ×

((
i
k

)
· ak

)
, so

the parentheses indicating the order of these operations can be omitted.

Fact 7. 1∗, defined in (3.7), is the identity element for the binomial convolution

of An, that is,

∀a ∈ An, 1∗ ⋄ a = a ⋄ 1∗ = a . (3.10)

Theorem 2. (An, +, ⋄,0An ,1∗) is a semiring.
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Proof of Theorem 2

It has been shown that (An, +,0An) is a commutative monoid, and (An, ⋄,1∗)

is a commutative monoid. Thus, only associativity of binomial convolution and

distributivity are required to be shown. ∀a,b, c ∈ An,

((a ⋄ b) ⋄ c)i

=
i∑

j=0

(
i

j

)
· (a ⋄ b)j × ci−j

=
i∑

j=0

(
i

j

)
·

(
j∑

k=0

(
j

k

)
· ak × bj−k

)
× ci−j

=
i∑

j=0

(
j∑

k=0

((
i

j

)(
j

k

))
· ak × bj−k × ci−j

)
(∵ distributivity of A and distributivity of N0 over A)

=
i∑

j=0

(
i∑

k=0

δk≤j ×
(((

i

j

)(
j

k

))
· ak × bj−k × ci−j

))
(

∵ j ≤ i holds in the inner sum, thus

j∑
k=0

• =
i∑

k=0

δk≤j × •

)

=
i∑

k=0

(
i∑

j=0

δk≤j ×
(((

i

j

)(
j

k

))
· ak × bj−k × ci−j

))

(∵ the range of the sum
i∑

k=0

no longer depends on the variable of

the other sum
i∑

j=0

, thus the order of these sums can be exchanged.)

=
i∑

k=0

(
i∑

j=k

((
i

j

)(
j

k

))
· ak × bj−k × ci−j

)
(

∵
i∑

j=0

δk≤j × • =
i∑

j=k

•

)
(3.11)
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=
i∑

k=0

(
i−k∑
ȷ́=0

((
i

ȷ́ + k

)(
ȷ́ + k

k

))
· ak × bȷ́ × ci−k−ȷ́

)
(
∵ linear transform of the variable of the inner sum:j 7→ ȷ́

def≡ j − k
)

=
i∑

k=0

(
i−k∑
j=0

((
i

k

)(
i − k

j

))
· ak × bj × ci−k−j

)
(

∵ ∀i, j, k ∈ N0, i ≥ j ≥ k,

(
i

j

)(
j

k

)
=

(
i

k

)(
i − k

j − k

))
=

i∑
k=0

((
i

k

)
· ak

)
×

(
i−k∑
j=0

(
i − k

j

)
· bj × ci−k−j

)

=
i∑

k=0

(
i

k

)
· ak × (b ⋄ c)i−k

= (a ⋄ (b ⋄ c))i .

Thus, the binomial convolution is associative. And the distributivity is shown as

follows,

(a ⋄ (b + c))i =
i∑

j=0

(
i

j

)
· aj × (b + c)i−j

=
i∑

j=0

((
i

j

)
· aj × bi−j +

(
i

j

)
· aj × ci−j

)

=
i∑

j=0

(
i

j

)
· aj × bi−j +

i∑
j=0

(
i

j

)
· aj × ci−j

= (a ⋄ b)i + (a ⋄ b)i .

(3.12)

Thus, (An, +, ⋄,0,1∗) is a semiring.

Definition 16. For an element x of a given semiring (A, +,×, 0, 1), a n-degree

monomial sequence of x, denoted by Pn(x), is defined by

Pn(x)
def
≡ (1, x, x2, · · · , xn) ∈ An+1 . (3.13)

Note that, for an element of semiring x, the n-th power of x is defined in (2.2).

Theorem 3. The following equation holds,

Pn(x) ⋄ Pn(y) = Pn(x + y) . (3.14)
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Semiring + × 0 1 isomorphic semiring

Element-wise

product

+ ◦ 0Kn 1◦

Convolution + ∗ 0Kn 1∗ element-wise product under the Fourier

transform

Binomial

convolution

+ ⋄ 0Kn 1∗ convolution under binomial transform

Table 3.1: Table of semirings for the set of sequences over a semiring

Proof. Trivial because this is the binomial theorem in A.

Hereinafter, the sequence of the binomial convolution is denoted by ⋄ixi, that

is, for example, ⋄i=0,1,2,...xi = x0 ⋄ x1 ⋄ x2 ⋄ · · · .

Lemma 1.

⋄i∈IPn(xi) = Pn

(∑
i∈I

xi

)
(3.15)

Proof. Trivial from Theorem 3.

Lemma 2. The result of the Viterbi algorithm specified by

(G, (An, +, ⋄,0,1∗), ϕ ◦ Pn) is
∑

ψ∈Ψ

(∑
v∈ψ ϕ(v)

)i

(i = 0, . . . , n).

Proof. Trivial because, from Lemma 1,∑
ψ∈Ψ

(⋄v∈ψPn(ϕ(v))) =
∑
ψ∈Ψ

Pn

(∑
v∈ψ

ϕ(v)

)
. (3.16)

Definition 17. Let K be a commutative semiring, A be a semimodule over K and

(An, +,×, 0, 1) be a semiring, then, · : K⊗An → An with the following definition

is called scalar multiplication,

(r · a)i = r · (a)i (r ∈ K, a ∈ An) .

Theorem 4. Let K be a commutative semiring, A be a unital associative algebra

over K and (An, +,×, 0, 1) be a semiring then, (An, +,×, 0, 1) equipped with the

scalar multiplication defined in Definition 17 is a unital associative algebra over

K.

22



Proof. Trivial.

Lemma 3. The result of the Forward-Backward algorithm specified by

(G, (K,⊕,⊗, 0̄, 1̄), f, (An, +, ⋄,0,1∗), ϕ ◦ Pn) is

∑
ψ∈Ψ

(⊕
v∈ψ

f(v)

)
·

(∑
v∈ψ

ϕ(v)

)i
 , (i = 0, . . . , n) .

Definition 18. Let K be a commutative semiring and A be a unital associative

algebra over K, a tensor over A with rank r ∈ N0 is a r-dimensional array over

elements of A. A tensor over A with rank 0 is defined by an element of A.

Here, the term “rank” is used in its tensor meaning. Do not confuse the usage

with the matrix meaning.

For example, the sequence over A, introduced by Definition 10, is a tensor over

A with rank 1.

For a r-rank tensor over A, each component in the tensor T is uniquely specified

by the notation Ti1,i2,··· ,ir , which means the i1-th component in the first dimension

of the i2-th component in the second dimension of ... of the ir-th component in

the r-th dimension.

Definition 19. Given two tensors over A, T with rank r and T′ with rank r′,

the tensor product of T and T′ is defined by

(T ⊗ T′)i1,i2,...,ir+r′

def
≡ Ti1,i2,··· ,ir × Tir+1,ir+2,··· ,ir+r′

.

Definition 20. Let K be a commutative semiring, T = (An1,...,nr , +T ,×T , 0T , 1T )

be a unital associative algebra over K, and V = (An, +V ,×V , 0V , 1V ) be a vec-

tor space over K, then, T ′ = (An1,··· ,nr,nr+1 , +T ′ ,×T ′ , 0T ′ , 1T ′) with the following

definitions is called the tensor product of algebras T and V .

1. If r = 0, then, T ′ = (An, +V ,×V , 0V , 1V ).

2. If r ≥ 1, given T,T′ ∈ An1,...,nr and a, a′ ∈ An, then T ⊗ a,T′ ⊗ a′ ∈
An1,...,nr,nr+1, and

(a) addition in An1,...,nr,nr+1 is defined by

+T ′ : (T ⊗ a) ⊗ (T′ ⊗ a′) 7→ (T +T T′) ⊗ (a +V a′) , (3.17)
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(b) production in An1,...,nr,nr+1 is defined by

×T ′ : (T ⊗ a) ⊗ (T′ ⊗ a′) 7→ (T ×T T′) ⊗ (a ×V a′) , (3.18)

(c) 0T ′
def
≡ 0T ⊗ 0V ,

(d) 1T ′
def
≡ 1T ⊗ 1V ,

(e) scalar multiplication between K and An1,...,nr,nr+1 is defined by

· : r ⊗ (T ⊗ a) 7→ T ⊗ (r · a) . (3.19)

Theorem 5. The tensor product of (An1,...,nr , +,×, 0, 1) and (An, +,×, 0, 1) is a

unital associative algebra over K.

Proof. Trivial.

From Definition 20 and Theorem 5, we can construct a set of tensors equipped

with the algebraic structure of a unital associative algebra over a commutative

semiring from a set of sequences over a semiring. A tensor product of algebras T =

(An1,...,nr , +T ,×T , 0T , 1T ) constructed by A1 = (An1 , +A1 ,×A1 , 0A1 , 1A1), A2 =

(An2 , +A2 ,×A2 , 0A2 , 1A2), . . . , Ar = (Anr , +Ar ,×Ar , 0Ar , 1Ar) is denoted by A1 ⊗
· · · ⊗ Ar.

Combining tensor products of algebras and the fact described in Lemma 1,

we obtain the specification of the Viterbi or Forward-Backward algorithms that

result in very complicated summations.

Example 1. The result of the Viterbi algorithm specified by

(G,A1 ⊗ · · · ⊗ Ar, Pϕ,ϕ1,...,ϕn) ,

where

Ai

def
≡ (Ani , +, ⋄, 0Ani , 1∗) (i = 1, . . . , r) ,

Pϕ,ϕ1,...,ϕn : v 7→ ϕ(v) · (1, ϕ1(v), (ϕ1(v))2 , . . . , (ϕ1(v))n1)

⊗ (1, ϕ2(v), (ϕ2(v))2 , . . . , (ϕ2(v))n2)

⊗ · · ·
⊗ (1, ϕr(v), (ϕr(v))2 , . . . , (ϕr(v))nr)

is ∑
ψ∈Ψ(G)

(∏
v∈ψ

ϕ(v)

)
×

(∑
v∈ψ

ϕ1(v)

)i1

· · · ×

(∑
v∈ψ

ϕr(v)

)ir

,

(i1 = 0, . . . , n1, . . . , ir = 0, . . . , nr) .
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Example 2. The result of the Forward-Backward algorithm specified by

(G, K, f, A1 ⊗ · · · ⊗ Ar, Pϕ,ϕ1,...,ϕn)

is ∑
ψ∈Ψ(G)

(⊗
v∈ψ

f(v)

)
·

(∏
v∈ψ

ϕ(v)

)
×

(∑
v∈ψ

ϕ1(v)

)i1

· · · ×

(∑
v∈ψ

ϕr(v)

)ir

,

(i1 = 0, . . . , n1, . . . , ir = 0, . . . , nr) .

3.3 Applications

In this section, I assume that the distribution over output sequences is modeled

by CRFs, which is defined as

P (π | x; λ) =
1

Z(λ;x)

(∏
v∈π

ϕ(x, v)

)

with Z(λ;x)
def≡

∑
π∈Ψ(G(x))

(∏
v∈π ϕ(x, v)

)
and ϕ(x, v)

def≡ exp (
∑

k λkfk(x, v)),

where x is the input sequence, and G(x) is the DAG that encodes all the output

paths conditioned on the input x.

For CRFs, it is sometimes necessary to calculate the covariance of feature

functions. For feature functions F1(π), F2(π) (π ∈ Ψ(G(x))), the covariance is

Cov [F1(π), F2(π)] = E [F1(π)F2(π)]

− E [F1(π)] E [F2(π)] .
(3.20)

If both F1 and F2 are of the form
∑

v∈π fk(v), the expectations in the second

term of (3.20) can be calculated by the ordinary forward-backward algorithm.

The first term of (3.20) can be calculated by the generalized forward-backward

algorithm described in Example 2, where ϕ(v) = ϕ(x, v) and ϕ1(v) = fk(v).

The covariance of feature functions is useful for optimization of CRFs. Because

it has rich information of the curvature of the log-likelihood objective function,

i.e., ∂2

∂λi∂λj
L(λ) = −Cov[Fi(x, π), Fj(x, π)] where L is the log-likelihood objective

function for P (π | x; λ). For example, [27] used stochastic gradient methods to

accelerate the optimization of the log-likelihood objective for CRFs. In stochas-

tic gradient methods, it is required to calculate the Hessian-vector product. Al-

though they use automatic differentiation to calculate the Hessian-vector product,
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I can derive an alternative algorithm for it as a specialization of the generalized

forward-backward algorithm. That algorithm is equivalent to the calculation by

the automatic differentiation as far as the computational cost is concerned.

As another practical application of the covariance, I can take differentiation

of more complicated objective functions than the log-likelihood objective. For

example, the objective function used in [13] has the conditional entropy of CRFs,

i.e., H(λ) = E[log P (π|x; λ)]. A specialization of our generalized algorithm offers

an efficient way to calculate the parameter gradient of it.

[14] proposed to use Hamming loss objective function in parameter estimations

involved in sequence labeling. For a correctly annotated input-output sequence

pair (x̂, ŷ), the objective to be optimized is C1(λ; x̂, ŷ) := 1
T

∑
t log P (ŷt|x̂; λ). To

calculate the gradient of this objective function, [14] derived a sort of the forward-

backward algorithm, which is as efficient as the ordinary forward-backward al-

gorithm. I can show that a specialization of the generalization proposed in this

chapter also leads to an equivalent algorithm.

[19] proposed a semi-supervised training method called generalized expectation

criteria to improve accuracy with unlabeled data. The objective used in [19] has

an additional term

−θD(P̂ ||P̃ ) , (3.21)

where θ is a given hyper-parameter, D is the KL divergence, P̂ is a given target

distribution and P̃ is the conditional distribution of labels given a feature fm(x, t)

at time t, i.e., 1

P̃ := P̃ (yt|fm(x, t) = 1; λ) . (3.22)

I now focus on the parameter gradient. Instead of the derivation shown in [19], I

first rephrase P̃ (y|fm(x, t) = 1; λ) as

P̃ (ℓ(v)|fm(v) = 1; λ)

=
1

Um

∑
x∈Um

∑
π∈Ψ(G)

P (π|x; λ)∆fm,y(π) ,
(3.23)

where ℓ(v) is the label assigned to v, Um is the set of sequences where fm is

present for some nodes, and

∆fm,y(π) =
∑
v∈π

fm(v)δℓ(v),y . (3.24)

1In the same way as their paper, I assume that all output sequences are same in length and
fm is binary.

26



Noting the following relation

∆fm(π)
def≡

∑
l

P̂

P̃
∆fm,l(π)

=
∑
v∈π

P̂ (ℓ(v)|fm(v) = 1)

P̃ (ℓ(v)|fm(v) = 1; λ)
fm(v) ,

I get
∂

∂λk

D(P̂ ||P̃ ) = − 1

Um

∑
x∈Um

∑
l

P̂

P̃

∂

∂λk

E [∆fm,l(π)] , (3.25)

and ∑
l

P̂

P̃

∂

∂λk

E [∆fm,l(π)]

= −E[∆fm(π)Fk(x, π)] + E[∆fm(π)]E[Fk(x, π)] .

Here, the first term can be calculated by the generalized order forward-backward

algorithm, the second term by the ordinary forward-backward algorithm.

Note that this calculation can drastically reduce the computational cost com-

pared with the algorithm proposed in [19]. Computational cost needed by our

formulation is scaled by up to a constant factor compared with the ordinary

forward-backward algorithm, whereas [19] takes the forward-backward algorithm

for each label so computational cost is proportional to the number of labels.

3.4 Further Possibilities

In this section, I will show that I can calculate summations that involve quite

complex functions by series expansions.

Consider the following summation∑
ψ∈Ψ(G)

(F1(ψ))i1 × · · · × (Fr(ψ))ir × ϕ(F (ψ)) , (3.26)

where Fi =
∑

v∈ψ fi(v) and ϕ(x) is some complicated function. Even for such a

case, I can approximate the summation by a series expansion of ϕ.
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If ϕ(x) has the Taylor series expansion around x0 ∈ C with the convergence

radius r > 0, and |x − x0| ≤ r for ∀x ∈
[

min
ψ∈Ψ(G)

F (ψ), max
ψ∈Ψ(G)

F (ψ)

]
, then

(3.26) =
∑

ψ∈Ψ(G)

(F1(ψ))i1 × · · · × (Fr(ψ))ir

×
∞∑

n=0

an(x − x0)
n ,

where an
def≡ 1

n!
· dnϕ(x)

dxn

∣∣∣
x=x0

. By truncating higher terms of the expansion, I obtain

the truncated Taylor series expansion for (3.26).

(3.26) ≈
N∑

n=0

an

∑
ψ∈Ψ(G)

(F1(ψ))i1 × · · · × (Fr(ψ))ir × (F ′(ψ))n−1 ,

where F ′(ψ)
def≡

∑
v∈ψ f ′(v), f ′(v)

def≡ f(v) − x0δv=src. All the terms appearing in

the truncated Taylor series expansion can be calculated by the generalized Viterbi

algorithm described in Example 1.

Another possible series expansion is the Fourier series expansion. If ϕ in (3.26)

is a 2L-periodic function that is integrable on [−L, L] (L > 0), then ϕ(x) has

the Fourier series expansion, i.e.,

ϕ(x) =
a0

2
+

∞∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
,

where

an
def≡ 1

L

∫ L

−L

ϕ(x) cos
(nπx

L

)
dx (n = 0, 1, 2, . . . ) ,

bn
def≡ 1

L

∫ L

−L

ϕ(x) sin
(nπx

L

)
dx (n = 1, 2, 3, . . . ) .

By truncating higher terms of the expansion, I obtain

ϕ(x) ≈ a0

2
+

N∑
n=1

(
an cos

(nπx

L

)
+ bn sin

(nπx

L

))
,
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so
(3.26) ≈ a0

2

∑
π∈Ψ(G)

h1,i1(F1(π)) · · ·hM,iM (FM(π))

+
N∑

n=1

an

∑
π∈Ψ(G)

h1,i1(F1(π)) · · ·hM,iM (FM(π))

× cos

(
nπFM+1(π)

L

)
+

N∑
n=1

bn

∑
π∈Ψ(G)

h1,i1(F1(π)) · · ·hM,iM (FM(π))

× sin

(
nπFM+1(π)

L

)

(3.27)

I can calculate all the terms appearing in the truncated Fourier series expansion

above by the generalized forward algorithm proposed in this chapter.

To show a sample application of series expansions, I will describe the expected

F-measure optimization.

[12] utilized the expected f-measure as an objective function in optimization of

logistic regression models. He has just described on single label, non-structured

case. Here, let this criteria be sequentially-extended. I define

Fγ(λ; x̂) := E[Fγ(π)] , (3.28)

where the expectation is taken under CRFs, and Fγ(π) is the label-wise f-measure

for a given output sequence π, i.e., Fγ(π) := (1+γ2)l(π)
|π|+γ2L

. L is the number of labels in

the correctly annotated answer sequence, and l(π) is the number of labels in the

output sequence π that coincide with the correct labels. |π| is the total number of

labels appearing in π. Hereafter, I refer only to the case γ = 1. Let F(π) := F1(π).

For the case where all the possible output sequences have the same number of

labels (length), optimization concerning (3.28) – calculations of value and gradient

– requires the forward-backward algorithm for the form h1,i1(F1(π))h2,i2(F2(π)),

where n1 = 1, h1,1(x)
def≡ exp(x) and n2 = 2, h2,i2(x)

def≡ xi2−1. On the other hand,

for the case where the lengths of the output sequences are different as in [23],

because the denominator in (3.28) is variable in the summation, calculations of

the value and the gradient of (3.28) are not trivial at all.
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However, with the Taylor expansion of the reciprocal function in (3.28), I get

E[F(π)] =
2

Z(λ;x)(L + x0)

×
∞∑

n=0

∑
π∈Ψ(G)

Φ(π)l(π)

(
|π| − x0

−L − x0

)n

,
(3.29)

where x0 is a complex value that satisfies the condition
∣∣∣ |π|−x0

−L−x0

∣∣∣ < 1 (∀π ∈ Ψ(G))

(such a value really exists at any time). By truncating higher terms in the Taylor

series, I can approximate the value as follows,

E[F(π)] ≈ 2

Z(λ;x)(L + x0)

×
N∑

n=0

∑
π∈Ψ(G)

Φ(π)l(π)

(
|π| − x0

−L − x0

)n

.
(3.30)

The summation
∑

π∈Ψ(G) in (3.30) is of the form to which the generalized forward

algorithm is applicable. I can also derive an approximation of the gradient of

(3.30).
∂

∂λk

E[F(π)] = E[F(π)Fk(x, π)]

− E[F(π)]E[Fk(x, π)]

(3.31)

The first and second terms in (3.31) can be approximated by the generalized

forward-backward algorithm in a similar manner to (3.30). Therefore, I can

optimize the objective with numerical optimization routines.

For a given constant N, these calculations are as efficient as the ordinary

forward-backward algorithm, scaled by up to a constant factor. For trellises

in which the length of a node is up to 5, I have experimentally confirmed that

N ∼ 15 proves to be sufficient to approximate the objective and the gradient

with enough precision under the double-precision floating-point arithmetic.

3.5 Conclusions of this Chapter

In this chapter, I proposed a generalization of the forward-backward algorithm,

which is applicable to much broader types of summations over all possible se-

quences than the ordinary forward-backward algorithm. I also show that our
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theorems in this chapter can offer efficient algorithms for some calculations re-

quired in past studies, and even for summations that involve quite complex func-

tions with series expansions.

I have just confirmed that our generalization is runnable on existing calcula-

tions. I am now investigating other possibilities of application of our general-

ization, including optimization of much more complex probabilistic models than

log-linear models and boosting algorithms on sequence labeling tasks.

While I proposed the generalization only for linear chains, it is straightforward

to extend this generalization to trees. However, it will be much more challenging

to find a counterpart in the case of structures that have loops. I am going to

study such a possibility.
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Chapter 4

Application to a Real World Task

- Multilayer Sequence Labeling

4.1 Introduction

Machine learning approach is widely used to classify instances into discrete cat-

egories. In many tasks, however, some set of interrelated labels should be decided

simultaneously. Such tasks are called structured prediction. Sequence labeling is

the simplest subclass of structured prediction problems. In sequence labeling,

the most likely one among all the possible label sequences is predicted for a given

input. Although sequence labeling is the simplest subclass, a lot of real-world

tasks are modeled as problems of this simplest subclass. In addition, it might

offer valuable insight and a toehold for more general and complex structured pre-

diction problems. Many models have been proposed for sequence labeling tasks,

such as Hidden Markov Models (HMM), Conditional Random Fields (CRF) [16],

Max-Margin Markov Networks [25] and others. These models have been applied

to lots of practical tasks in natural language processing (NLP), bioinformatics,

speech recognition, and so on. And they have shown great success in recent years.

In real-world tasks, it is often needed to cascade multiple predictions. A cascade

of predictions here means the situation in which some of predictions are made

based upon the results of other predictions. Sequence labeling is not an exception.

For example, in NLP, I perform named entity recognition or base-phrase chunking

for given sentences based on part-of-speech (POS) labels predicted by another

sequence labeler. Natural languages are especially interpreted to have a hierarchy

of sequential structures on different levels of abstraction. Therefore, many tasks



in NLP are modeled as a cascade of sequence predictions.

If a prediction is based upon the result of another prediction, I call the former

upper stage and the latter lower stage.

Methods pursued for a cascade of predictions –including sequence predictions,

of course–, are desired to perform certain types of capability. The types of ca-

pability is two-folded. One is rich forward information propagation, that is, the

learning and estimation on each stage of predictions should utilize rich informa-

tion of the results of lower stages whenever possible. “Rich information” here

includes next bests and confidence information of the results of lower stages. The

other is backward information propagation, that is, the rich annotated data on an

upper stage should affect the models on lower stages retroactively.

Many current systems for a cascade of sequence predictions adopt a simple

1-best feed-forward approach. They simply take the most likely output at each

prediction stage and transfer it to the next upper stage. Such a framework can

maximize reusability of existing sequence labeling systems. On the other hand,

it exhibits a strong tendency to propagate errors to upper labelers.

Typical improvement on the 1-best approach is to keep k-best results in the

cascade of predictions. However, the more k becomes, the more difficult it is

to enumerate and maintain the k-best results. It is particularly prominent in

sequence labeling.

The essence of this orientation is that the labeler on an upper stage utilizes

the information of all the possible output candidates on lower stages. However,

the size of the output space can become quite large in sequence labeling. It

effectively forbids explicit enumeration of all possible outputs, so it is require to

represent all the labeling possibilities compactly or employ some approximation

schemes. Some studies look in this way. In the method proposed in Finkel et

al. [7], a cascades of sequence predictions is viewed as a Bayesian network, and

sample sequences are drawn at each stage according to the output distribution.

The samples are then used to estimate the entire distribution of the cascade.

In the method proposed in Bunescu [2], an upper labeler uses the probabilities

marginalized on the parts of the output sequences on lower stages as weights for

the features. The weighted features are integrated in the model of the labeler

on the upper stage. A k-best approach and the methods mentioned above are

effective to improve the forward information propagation. However, they can

never contribute on backward information propagation.
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To improve the both directions of information propagation, Some studies pro-

pose the joint learning of multiple sequence labelings. Sutton et al. [24] proposes

the joint learning method in case where multiple labels are assigned to each time

slice of the input sequences. It enables simultaneous learning and estimation of

multiple sequence labelings on the same input sequences, where time slices of

the outputs of all the out sequences are regularly aligned. However, it puts the

distribution of states into Bayesian networks with cyclic dependencies, and exact

inference is not tractable in such a model in general. Therefore, it requires some

approximative inference algorithms in learning or predictions. Moreover, it only

considers the cases where labels of an input sequence and all output sequences

are regularly aligned. It is not clear how to build a joint labeling model which

handles irregular output label sequences like semi-Markov models.

In this chapter, I propose a middle ground for a cascade of sequence predictions.

The proposed method adopts the basic idea of Bunescu [2]. I first assume that

the model on all the sequence labeling stages is probabilistic one. In modeling of

an upper stage, a feature is weighted by the marginal probability of the fragment

of the outputs from a lower stage. However, this is not novel itself because it

is just a paraphrase of Bunescu’s core idea. Our intuition behind the proposed

method is about as follows. Features integrated in the model on each stage are

weighted by the marginal probabilities of the fragments of the outputs on lower

stages. So, if the output distributions on lower stages are changed, the marginal

probability of any fragment is also changed, and this in turn can changes the value

of the features on the upper stage. In other words, the features on an upper stage

indirectly depend on the models on the lower stages. Based on this intuition,

the learning procedure of the model on an upper stage can affect not only direct

model parameters, but also the weights of the features by changing the model on

the lower stages. Supervised learning based on annotated data on an upper stage

may affect the model or model parameters on the lower stages. It could be said

that the information of annotation data on an upper stage is propagated back to

the model on lower stages.

In the next section, I describe the formal notation of our model. In Section

4.3, I propose an optimization procedure according to the intuition noted above.

In Section 4.4, I report an experimental result of our method. The proposed

method shows some improvements on a real-world task in comparison with ordi-

nary methods.
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4.2 Formalization

In this section, I introduce the formal notation of our model. Hereafter, for

the sake of simplicity, I only describe the simplest case in which there are just

two stages, one lower stage of sequence labeling named L1 and one upper stage of

sequence labeling named L2. In L1, the most likely one among a set of possible

sequences is predicted for a given input x. L2 is also a sequence labeling stage for

the same input x and the output of L1. No assumption is made on the structure

of x. The information of x is totally encoded in feature functions. It is only

assumed that the output spaces of both L1 and L2 are conditioned on the initial

input x.

First of all, I describe the formalization of the probabilistic model for L1. The

model for L1 per se is the same as ordinary ones for sequence labeling. For a given

input x, consider a directed acyclic graph (DAG) G1 = (V1, E1). A source of a

DAG G is a node whose in-degree is equal to zero. A sink of a DAG G is nodes

whose out-degree is equal to zero. Let src(G), snk(G) denote the set of source and

sink nodes in G, respectively. A successful path of a DAG G is defined as a directed

path on G whose starting node is a source and end node is a sink. If y denotes a

path on a DAG, let y also denote the set of all the arcs appearing on y for the sake

of shorthand. I denote the set of all the possible successful paths on G1 by Y1.

The space of the output candidates for L1 is exactly equal to Y1. For the modeling

of L1, it is assumed that features of the form f⟨1,k1,e1,x⟩ ∈ R (k1 ∈ K1, e1 ∈ E1)

are allowed to be used. Here, K1 is the index set of the feature types for L1. Such

a feature can capture an aspect of the correlation between adjacent nodes. I call

this kind of features input features for L1. This naming is used to distinguish them

from another kind of features defined on L1, which comes later. Although features

on V1 can be also defined, they are totally omitted in this chapter for brevity.

Hereafter, if a symbol has subscripts, then let the same but boldfaced symbol

without some of the subscripts denote the set over which the omitted subscripts

range. For example, f⟨1,e1,x⟩
def≡

{
f⟨1,k1,e1,x⟩

}
k1∈K1

, f⟨1,k1,x⟩
def≡

{
f⟨1,k1,e1,x⟩

}
e1∈E1

,

f⟨1,x⟩
def≡

{
f⟨1,k1,e1,x⟩

}
k1∈K1,e1∈E1

, and so on. The probabilistic model on L1 forms

the log-linear model, that is,

P1(y1|x; θ1)
def≡ 1

Z1(x; θ1)
exp

(
θ1 · F⟨1,y1,x⟩

)
(y1 ∈ Y1) ,

(4.1)
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where θ⟨1,k1⟩ ∈ R (k1 ∈ K1) is the parameter or weight for the feature of the same

index k1, and F⟨1,k1,y1,x⟩
def≡

∑
e1∈y1

f⟨1,k1,e1,x⟩. Dot operator (·) denotes the inner

product with respect to the subscripts commonly missing in both operands. Z1

is the partition function for P1, defined as

Z1(x; θ1)
def≡

∑
y1∈Y1

exp
(
θ1 · F⟨1,y1,x⟩

)
. (4.2)

It is worth noting that this formalization subsumes both directed and undi-

rected linear-chain graphical models, which are the most typical models for se-

quence labeling, including HMM and CRF. That is, if the elements of V1 are

aligned into regular time slices, and the nodes in each time slice are associated

with possible assignments of labels for that time, I obtain the representation

equivalent to the ordinary linear-chain graphical models, in which all possible

label assignments for each state are expanded. In such configuration, all the

possible successful paths defined in our notation have strict one-to-one corre-

spondence to all the possible joint assignments of labels in linear-chain graphical

models. I purposely employ this DAG-based notation because; it is quite conve-

nient to describe the models and algorithms for our purpose, it allows for labels

to stay in arbitrary time as in semi-Markov models, and it is easily extended

to models for a set of trees instead of sequences by replacing the graph-based

notation with hypergraph-based notation.

Next, I formalize the probabilistic model on the upper stage L2. The same as

L1, consider a DAG G2 = (V2, E2) conditioned on the input x, and the set of

all the possible successful paths on G2, denoted Y2. The space of the output

candidates for L2 becomes Y2.

The form of the features available in designing the probabilistic model for L2,

denoted by P2, is the key of the method proposed in this chapter. A feature on an

arc e2 ∈ E2 can access local characteristics of the confidence-rated superposition

of the L1’s outputs, in addition to the information of the input x. To formu-

late local characteristics of the superposition of the L1’s outputs, I first define

output features of L1, denoted by h⟨1,k′
1,e1⟩ ∈ R (k′

1 ∈ K′
1, e1 ∈ E1). Here, K′

1 is

the index set of the output feature types of L1. Before the output features are

integrated into the model for L2, they all are confidence-rated with respect to

P1, that is, each output feature h⟨1,k′
1,e1⟩ is numerically rated by the estimated

probabilities summed over the sequences emitting that feature. More formally,
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all the L1’s output features are integrated in features for P2 in the form of the

marginalized output features, which are defined as follows;

h̄⟨1,k′
1,e1⟩(θ1)

def≡ h⟨1,k′
1,e1⟩P1(e1|x; θ1)

(k′
1 ∈ K′

1, e1 ∈ E1) ,
(4.3)

where

P1(e1|x; θ1)
def≡

∑
y1∼e1

P1(y1|x; θ1)

=
∑

y1∈Y1

δe1∈y1P1(y1|x; θ1)

(e1 ∈ E1) .

(4.4)

Here, the notation
∑

y1∼e1
represents the summation over sequences consistent

with an arc e1 ∈ E1, that is, the summation over the set {y1 ∈ Y1 | e1 ∈ y1}. δP
denotes the indicator function for a predicate P . The input features for P2 on

an arc e2 ∈ E2 are permitted to arbitrarily combine the information of x and the

L1’s marginalized output features h̄1, in addition to the local characteristics of

the arc at hand e2. In summary, an input feature for L2 on an arc e2 ∈ E2 is of

the form

f⟨2,k2,e2,x⟩
(
h̄1(θ1)

)
∈ R (k2 ∈ K2) , (4.5)

where K2 is the index set of the input feature types for L2. To make the opti-

mization procedure feasible, smoothness condition on any L2’s input feature is

assumed with respect to all the L1’s output features, that is,
∂f⟨2,k2,e2,x⟩
∂h̄⟨1,k′1,e1⟩

is always

guaranteed to exist for ∀k′
1, e1, k2, e2. For given input features f⟨2,x⟩

(
h̄1(θ1)

)
and

parameters θ⟨2,k2⟩ ∈ R (k2 ∈ K2), the probabilistic model for L2 is defined as

follows;
P2(y2|x; θ1, θ2)

def≡ 1

Z2(x; θ1,θ2)
exp

(
θ2 · F⟨2,y2,x⟩

(
h̄1(θ1)

))
(y2 ∈ Y2) ,

(4.6)

where F⟨2,k2,y2,x⟩
(
h̄1(θ1)

)def≡
∑

e2∈y2
f⟨2,k2,e2,x⟩

(
h̄1(θ1)

)
and Z2 is the partition func-

tion of P2, defined by

Z2(x; θ1,θ2)

def≡
∑

y2∈Y2

exp
(
θ2 · F⟨2,y2,x⟩

(
h̄1(θ1)

))
.

(4.7)
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The definition of P2 (4.6) reveals one of the most important points in this method.

P2 is viewed not only as the function of the ordinary direct parameters θ2 but

also as the function of θ1, which represents the parameters for the L1’s model,

through the intermediate variables h̄1. So optimization procedure on P2 may

affect the determination of the values not only of the direct parameters θ2 but

also of the indirect ones θ1.

If the result of L1 is reduced to the single golden output ỹ1, i.e. P1(y1|x) =

δy1=ỹ1 , the definitions above boil down to the formulation of the simple 1-best

feed forward architecture.

4.3 Optimization Algorithm

In this section, I describe optimization procedure for the model formulated in

the previous section. Let D = {⟨x̂, ⟨G1, ŷ1⟩, ⟨G2, ŷ2⟩⟩m}m=1,2,··· ,M denote anno-

tated data for the supervised learning of the model. Here, ⟨G1, ŷ1⟩ is a pair of

a DAG and correctly annotated successful sequence for L1. The same holds for

⟨G2, ŷ2⟩. For given D, I can define the conditional log-likelihood function on L1

and L2 respectively, that is,

L1 (θ1;D)

def≡
∑

⟨x̂,ŷ1⟩∈D

log (P1 (ŷ1|x̂; θ1)) −
|θ1|
2σ1

2

(4.8)

and
L2 (θ1,θ2;D)

def≡
∑

⟨x̂,ŷ2⟩∈D

log (P2 (ŷ2|x̂; θ1,θ2)) −
|θ2|
2σ2

2
.

(4.9)

Here, σ1
2, σ2

2 are the variances of the prior distributions of the parameters. For

the sake of simplicity, I set the prior distribution as the zero-mean uni-variance

Gaussian. To optimize the both probabilistic models P1 and P2 jointly, I also

define the joint conditional log-likelihood function

L (θ1,θ2;D)
def≡ L1 + L2 . (4.10)
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Figure 4.1: Computation Graph of the Proposed Model

The parameter values to be learned are the ones that (possibly locally) maximize

this objective function, i.e.,

⟨θ̂1, θ̂2⟩
def≡ argmax

⟨θ1,θ2⟩
L (θ1, θ2;D) . (4.11)

“argmax” stands for the argument of a local maximum.

I employ gradient-based parameter optimization here. Optimization procedure

repeatedly searches a direction in the parameter space which is ascendent with

respect to the objective function, and updates the parameter values into that

direction by small advances. Many existing optimization routines like steepest

descent or conjugation gradient do that job only by giving the objective value

and gradients on parameter values to be updated. So, the optimization problem

here boils down to the calculation of the objective value and gradients on given

parameter values.

Before entering the detailed description of the algorithm for calculating the ob-

jective function and gradients, I note the functional relations among the objective

function and previously defined variables. A diagram is shown in Fig.4.1. This

diagram illustrates the functional relations among the parameters, input and out-

put feature functions, models, and objective function. The variables at the head

of a directed arrow in the figure is directly defined in terms of the ones at the tail

of the same arrow. The value of the objective function on given parameter values

can be calculated in order of the arrows shown in the diagram. On the other

hand, the parameter gradients are calculated step-by-step in reverse order of the

arrows. The functional relations illustrated in the Fig.4.1 ensure some forms of

the chain rule of differentiation among the variables. The chain rule is iteratively

used to decompose the calculation of the gradients into a divide-and-conquer fash-

ion. These two directions of stepwise computation are analogous to the forward
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Algorithm 3 Gradient-based optimization of the model parameters

Input: θ1, θ2

Output: argmax
⟨θ1, θ2⟩

L

1: while θ1 or θ2 changes significantly do

2: calculate Z1 by (4.2), h̄1 by (4.3) with the F-B on G1, and then L1 by (4.8)

3: calculate f⟨2,x⟩ according to their definitions

4: calculate Z2 by (4.7) with the F-B on G2, and then L2 by (4.9) and L by

(4.10)

5: calculate ∂L1

∂θ1
and ∂L2

∂θ2
by (4.13) with the F-B on G1 and G2, respectively

6: calculate ∂L
∂f⟨1,x⟩

by (4.17) with the F-B on G2,
∂f⟨1,x⟩
∂h̄1

, and them ∂L2

∂h̄1
=

∂L
∂f⟨1,x⟩

· ∂f⟨1,x⟩
∂h̄1

7: calculate ∂L2

∂θ1
by (4.19) with Algorithm 4

8: ⟨θ1, θ2⟩ ← update-parameters
(
θ1, θ2,L, ∂L

∂θ1
, ∂L

∂θ2

)
9: end while

and back propagation for multilayer feedforward neural networks, respectively.

Algorithm 3 shows the whole picture of the gradient-based optimization proce-

dure for our model. I first describe the flow to calculate the objective value for a

given parameters θ1 and θ2, which is shown from line 2 through 4 in Algorithm

3. The values of marginalized output features h̄⟨1,x⟩ can be calculated by (4.3).

Because they are the simple marginals of features, the ordinary forward-backward

algorithm (hereafter, abbreviated as “F-B”) on G1 offers an efficient way to calcu-

late their values. Although nothing definite about the forms of the input features

for L2 is presented in this chapter, f⟨2,x⟩ can be calculated once the values of h̄⟨1,x⟩

have been obtained. Finally, L1, L2 and then L are easy to calculate because they

are no different from the ordinary log-likelihood computation.

Now I describe the algorithm to calculate the parameter gradients,

∂L
∂θ1

=
∂L1

∂θ1

+
∂L2

∂θ1

,
∂L
∂θ2

=
∂L2

∂θ2

. (4.12)

Line 5 through line 7 in Algorithm 3 describe the gradient computation. The

terms ∂L1

∂θ1
and ∂L2

∂θ2
in (4.12) become the same forms that appear in the ordinary

CRF optimization, i.e., the difference between the empirical frequencies of the
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features and the model expectations of them,

∂L1

∂θ1

= Ẽ
[
F⟨1,y1,x⟩

]
− EP1

[
F⟨1,y1,x⟩

]
− |θ1|

σ1
2

,

∂L2

∂θ2

= Ẽ
[
F⟨2,y2,x⟩

]
− EP2

[
F⟨2,y2,x⟩

]
− |θ2|

σ2
2

.

(4.13)

These calculations are performed by the ordinary F-B on G1 and G2, respectively.

Using the chain rule of differentiation derived from the functional relations illus-

trated in Fig.4.1, the remaining term ∂L2

∂θ1
in (4.12) can be decomposed as follows;

∂L2

∂θ1

=
∂L2

∂f⟨2,x⟩
·
∂f⟨2,x⟩

∂θ1

=
∂L2

∂f⟨2,x⟩
·
∂f⟨2,x⟩

∂h̄1

· ∂h̄1

∂θ1

. (4.14)

Note that Leibniz’s notation here denotes a Jacobian with the index sets omitted

in the numerator and the denominator, for example,

∂f⟨2,x⟩

∂h̄1

def≡
{

∂f⟨2,k2,e2,x⟩

∂h⟨1,k′
1,e1⟩

}
k2∈K2,e2∈E2,k′

1∈K′
1,e1∈E1

. (4.15)

And also recall that dot operators here stand for the inner product with respect

to the index sets commonly omitted in both operands, for example,

∂L2

∂f2
· ∂f2
∂h̄1

=
∑

k2∈K2,e2∈E2

∂L2

∂f⟨2,k2,e2,x⟩
·
∂f⟨2,k2,e2,x⟩

∂h̄1

.
(4.16)

I describe the manipulation of each factor in the right side of (4.14) in turn.

Noting
∂f⟨2,k2,e2,x⟩
∂f⟨2,k̀2,è2,x⟩

= δk2=k̀2
δe2=è2 , each element of the first factor of (4.14) ∂L2

∂f⟨2,x⟩

can be transformed as follows;

∂L2

∂f⟨2,k2,e2,x⟩
= θ⟨2,k2⟩

∑
⟨x̂,ŷ2⟩∈D

(δe2∈ŷ2 − P2(e2|x̂; θ1, θ2)) . (4.17)

P2(e2|x̂; θ1,θ2), the marginal probability on e2, can be obtained as a by-product

of the F-B for (4.13).

As described in the previous section, it is assumed that the values of the sec-

ond factor
∂f⟨2,x⟩
∂h̄1

is guaranteed to exists for any given θ1, and the procedure for

calculating them is fixed in advance. The procedure for some of concrete features

is exemplified in the previous section.
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From the definition of h̄1 (4.3), each element of the third factor of (4.14) ∂h̄1

∂θ1

becomes
∂h̄⟨1,k′

1,e1⟩

∂θ⟨1,k1⟩
= h⟨1,k′

1,e1⟩CovP1(y1|x)

[
δe1∈y1 , F⟨1,k1,y1,x⟩

]
. (4.18)

There exists efficient D.P. to calculate the covariance value (4.18) (without going

into that detail because it is equivalent to the one shown later in this chapter),

and of course I can run such D.P. for ∀k′
1 ∈ K′

1, e1 ∈ E1. However, the size of

the Jacobian ∂h̄1

∂θ1
is equal to |K′

1| × |E1| × |K1|. Since it is too large in many

tasks likely to arise in practice, I should avoid to calculate all the elements of

this Jacobian in a straightforward way. Instead of such naive computation, if the

values of ∂L2

∂f⟨2,x⟩
and

∂f⟨2,x⟩
∂h̄1

are obtained, then I can compute ∂L2

∂h̄1
= ∂L2

∂f⟨2,x⟩
· ∂f⟨2,x⟩

∂h̄1
,

and from (4.14) and (4.18),

∂L2

∂θ1

=
∂L2

∂h̄1

· ∂h̄1

∂θ1

= EP1(y1|x)

[
H ′

⟨1,y1⟩F⟨1,y1,x⟩
]

− EP1(y1|x)

[
H ′

⟨1,y1⟩
]
EP1(y1|x)

[
F⟨1,y1,x⟩

]
,

(4.19)

where H ′
⟨1,y1⟩

def≡
∑

e1∈y1

∂L2

∂h̄⟨1,e1⟩
· h⟨1,e1⟩. In other words, ∂L2

∂θ⟨1,k1⟩
becomes the co-

variance between the k1-th input feature for L1 and the hypothetical feature

h′
⟨1,e1⟩

def≡ ∂L2

∂h̄⟨1,e1⟩
· h⟨1,e1⟩.

The final problem is to derive an efficient way to compute the first term of

(4.19). The second term of (4.19) can be calculated by the ordinary F-B because

it consists of the marginals of arc features. There are two derivations of the

algorithm for calculating the first term. I describe briefly the both derivations.

One is a variant of the F-B on the expectation semiring proposed in Li et

al.[17] First, the F-B is generalized to the expectation semiring with respect to

the hypothetical feature h′
⟨1,e1⟩, and by summing up the marginals of the feature

vectors f⟨1,e1,x⟩ on all the arcs under the distribution of the semiring, then I

obtain the expectation of the feature vector f⟨1,e1,x⟩ on the semiring potential.

This expectation is equal to the first term of (4.19). 1

Another derivation is to apply the automatic differentiation (AD)[28, 3] on

the F-B calculating EP1

[
F⟨1,y1,x⟩

]
. It exploits the fact that ∂

∂λ
EP ′

1

[
F⟨1,y1,x⟩

] ∣∣∣
λ=0

is equal to the first term of (4.19), where λ ∈ R is a dummy parameter, and

1For the detailed description, see Li et al.[17] and its references.
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P ′
1(y1|x)

def≡ 1
Z1

exp
(
θ1 · F⟨1,y1,x⟩ + λH ′

⟨1,y1⟩

)
. It is easy to derive the F-B for

calculating the value EP ′
1

[
F⟨1,y1,x⟩

] ∣∣∣
λ=0

. AD transforms this F-B into another

algorithm for calculating the differentiation w.r.t. λ evaluated at the point λ =

0. This transformation is achieved in an automatic manner, by replacing all

appearances of λ in the F-B with a dual number λ + ε. The dual number is a

variant of the complex number, with a kind of the imaginary unit ε with the

property ε2 = 0. Like the usual complex numbers, the arithmetic operations and

the exponential function are generalized to the dual numbers, and the ordinary

F-B is also generalized to the dual numbers. The imaginary part of the resulting

values is equal to the needed differentiation. Anyway, these two derivations lead

to the same algorithm, and the resulting algorithm is shown as Algorithm 4. 2

The final line in the loop of Algorithm 3 can be implemented by various opti-

mization routines and line search algorithms.

4.4 Experiment

I examined effectiveness of the method proposed in this chapter on a real task.

The task is to annotate the POS tags and to perform base-phrase chunking on

English sentences.

Base-phrase chunking is a task to classify continuous subsequences of words

into syntactic categories. This task is performed by annotating a chunking label

on each word [22]. The types of chunking label consist of “Begin-Category”,

which represents the beginning of a chunk, “Inside-Category”, which represents

the inside of a chunk, and “Other.” Usually, POS labeling runs first before base-

phrase chunking is performed. Therefore, this task is a typical interesting case

where a sequence labeling depends on the output from other sequence labelers.

The data used for our experiment consist of English sentences from the Wall

Street Journal. They are annotated by humans in the Penn Treebank project

[20] and consist of 10948 sentences and 259104 words. I divided them into two

groups, training data consisting of 8936 sentences and 211727 words and test

data consisting of 2012 sentences and 47377 words. The number of the POS label

2For example, Berz[1] gives a detailed description of the reason why the dual number is used
for this purpose.
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Algorithm 4 Forward-backward Algorithm for Calculating Feature Covariances

Input: f⟨1,x⟩, ϕe1

def≡ exp
(
θ1 · f⟨1,e1,x⟩

)
, h′

e1

def≡ ∂L2

∂h̄⟨1,e1⟩
· h⟨1,e1⟩

Output: qk1 = CovP(y1|x)

[
H ′

⟨1,y1⟩, F⟨1,k1,y1,x⟩

] (∀k1 ∈ K1

)
1: for ∀v1 ∈ src(G1), αv1 ← 1, α′

v1
← 1

2: for all v1 ∈ V1 in a topological order do

3: prev ← {x ∈ V1 | (x, v1) ∈ E1}
4: αv1 ←

∑
x∈N−

ϕ(x,v1)αx, α′
v1

←
∑

x∈N−
ϕ(x,v1)

(
h′

(x,v1)αx + α′
x

)
5: end for

6: Z1 ←
∑

x∈snk(G1)

αx

7: for ∀v1 ∈ snk(G1), βv1 ← 1, β′
v1

← 1

8: for all v1 ∈ V1 in a reverse topological order do

9: next ← {x ∈ V1 | (v1, x) ∈ E1}
10: βv1 ←

∑
x∈N+

ϕ(v1,x)βx, β′
v1

←
∑

x∈N+

ϕ(v1,x)

(
h′

(v1,x)βx + β′
x

)
11: end for

12: for ∀k1 ∈ K1, qk1 ← 0

13: for all (u1, v1) ∈ E1 do

14: p ← ϕ(u1,v1)

(
αu1β

′
v1

+ α′
u1

βv1

)
/Z1

15: for ∀k1 ∈ K1, qk1 ← qk1 + pf⟨1,k1,e1,x⟩

16: end for

types is equal to 45. The number of the label types used in base-phrase chunking

is equal to 23.

I compare the proposed method to two existing sequence labeling methods as

baselines. The POS labeler is the same in all the three methods used in this

experiment. This labeler is a simple CRF and learned by ordinary optimization

procedure. One baseline method is the 1-best pipeline method. A simple CRF

model is learned for the chunking labeling, on the input sentences and the most

likely POS label sequences predicted by the already learned POS labeler. I call

this method “CRF + CRF.” The other baseline method has a CRF model for

the chunking labeling, which uses the marginalized features offered by the POS

labeler. However, the parameters of the POS labeler are fixed in the training

of the chunking model. This method corresponds to the method proposed in

Bunescu [2]. I call this baseline “CRF + CRF-MF” (“MF” for “marginalized
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=== Node feature templates ===

Node is source

Node is sink

Input word on the same time slice

Suffix of input word on the same time slice, n characters (n ∈ [1, 2, 3])

Initial word character is capitalized†

All word characters are capitalized†

Input word included in the vocabulary of POS T †

(T ∈ {(All possible POS labels)})
Input word contains numbers†

POS label‡

=== Arc feature templates ===

Tail node is source

Head node is sink

Corresponding ordered pair of POS labels‡

Table 4.1: List of feature templates.

features”). The proposed method is the same as “CRF + CRF-MF”, except that

the both labelers are jointly trained by the procedure described in Section 4.3. I

call this proposed method “CRF + CRF-BP” (“BP” for “back propagation”).

In “CRF + CRF-BP,” the objective function for joint learning (4.10) is not

guaranteed to be convex, so optimization procedure is sensible to the initial con-

figuration of the model parameters. In this experiment, I set the parameter values

learned by “CRF + CRF-MF” as the initial values for the training of the “CRF +

CRF-BP” method. Feature templates used in this experiment are listed in Table

4.4. Note that, all node features are combined with the corresponding node label

(POS or chunking label) feature, all arc features are combined with the feature

of the corresponding arc label pair. Features marked by † in Table 4.4 are instan-

tiated on each time slice in five character window. Features marked by ‡ are not

used in POS labeler, and marginalized as output features for “CRF + CRF-MF”

and “CRF + CRF-BP.”

Although I only described the formalization and optimization procedure of the

models with arc features, I use node features in the experiment.
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CRF CRF CRF

+ CRF + CRF-MF +CRF-BP

POS labeling 0.956 (0.956) 0.958

Base-phrase 0.921 0.927 0.931

chunking

Table 4.2: Experimental result (F-measure)

Table 2 shows the result of the methods I mentioned. From Table 2, the

proposed method outperforms two baseline methods on both POS labeling and

chunking performance. Particularly, the improvement in POS labeling perfor-

mance by the proposed method “CRF + CRF-BP” shows that optimization pro-

cedure provides some form of backward information propagation in comparison

to “CRF + CRF-MF.”

4.5 Conclusions for this Chapter

In this chapter, I adopt the method to weight features on an upper sequence

labeling stage by the marginalized probabilities estimated by the model on lower

stages. I also point out that the model on an upper stage is considered to depend

on the model on lower stages indirectly. In addition, I propose optimization pro-

cedure that enables the joint optimization of the multiple models on the different

level of stages. I perform an experiment on a real-world task, and our method

outperforms existing methods.

I examined the effectiveness of the proposed method only on one task in com-

parison to just a few existing methods. In the future, I hope to compare our

method to other competing methods like joint learning approaches in terms of

both accuracy and computational efficiency, and perform extensive experiments

on various tasks.
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Chapter 5

Conclusions

In this dissertation, I presented a graph-theoretic formalization of Forward-

Backward algorithm. Based on the graph-theoretic formalization, I also presented

an algebraic framework for Forward-Backward algorithm. The combination of

these frameworks constitutes the theoretical foundation for many generalizations

of Forward-Backward algorithm, which is illustrated by examples. And as one of

the main contributions of this dissertation, I showed a new kinds of generalization

of Forward-Backward algorithm, which is introduced by the binomial convolution

semiring. As shown in this dissertation, this generalization of F.B. subsumes

many kinds of existing variants of F.B., and it not only offers the unified point of

view of these variants of F.B., but also is insightful in induction of new variants

of F.B.

I also presented a new application of F.B. algorithm on sequence labeling task,

the multilayer sequence labeling. The multilayer sequence labeling is a very useful

model for the case where a sequence labeling task depends on the output of an-

other kind of sequence labeling task. Such cascaded tasks appear very frequently

especially in NLP. I verified that this model is quantitatively useful in a partic-

ular NLP task. Due to the formalization and generalization of F.B. algorithm

presented in this dissertation, the rigorous formalization and algorithm used for

the parameter optimization of this model is immediately available.

As its name indicates, the generalization of F.B. algorithm shown in this dis-

sertation focuses on sequential structures that can be encoded in trellises. There

are many classes of data structures that have dynamic programming very similar

to F.B. algorithm, including Inside-Outside algorithm on trees, message passing

algorithm on cycle-free factor graphs, etc. It is a remaining question how to



adapt the formalization of F.B. presented in this dissertation to such wider range

of data structures. Once we have had such formalization, the algebraic frame-

work for F.B. presented in this dissertation immediately offers the methodology

for computing much more complicated numerical values on data structures other

than sequential ones.

It also remains an open question whether there are any other algebras useful to

induce a variant of F.B. that is applied to problems in the real world. Recently,

the amount and complexity of structured data handled in real world applications

is drastically growing, and the algorithms utilized in that application also needs

to shift with that. I would like to formalize such variants of F.B. by a not ad-hoc

but systematic and unified way. For that purpose, we still need to specify the

unseen nature of F.B. algorithm.

I keep looking for further sophisticated formalization and generalization of

Forward-Backward algorithm.
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