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Abstract

Malware (malicious software) serves as the infrastructure for large-scale cyber

attacks. Malware infection through vulnerabilities in programs is unavoidable

even with careful user operation. Network-connected hosts with a vulnerable

server application are potential targets remote exploit. The number of cases of

malware infection by remote exploit has fallen off because of security measures

and the changing computing environment. By contrast, drive-by downloads, that

is, web-based exploitation that targets web browser vulnerability, is a greater risk

than remote exploits because of the difficulty in protecting network boundaries.

Conventional intrusion detection measures such as signature, outlier detection,

and learning-based detection, are used for detecting individual cyber attacks, but

they have several critical problems in detecting current malware infection. An

observation system that uses a decoy, called a honeypot, can collect attack in-

formation without any risk to the actual host. This system has a significant

advantage in that it can observe in-depth techniques of exploitation and activity

after being compromised by actively being compromised itself. This dissertation

discusses a novel infiltrative observation system based on a client-side honeypot

called Marionette that collects information about drive-by download malware

infection. I preliminarily surveyed an adversary’s anti-detection and exploit au-

tomation techniques. I also enumerated primary requirements for the design and

implementation of the client honeypot according to the attack model, as follows:
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detection precision, inspection performance, information collection, safeguarding,

camouflaging, and seed URL selection. A qualitative comparison was conducted

between high-interaction and low-interaction honeypots in terms of requirements,

which led to the finding that the high-interaction honeypot was an appropriate

architecture to expect drive-by download malware attacks. To improve the ad-

vantages and resolve the weaknesses of the high-interaction system, I proposed

various methods corresponding to the requirements. First, I proposed stepwise

detection in multiple phases of exploitation for detection precision. The combi-

national results of stepwise detection identified various patterns of exploitation.

In particular, even though memory corruption based exploitations are only prob-

abilistically successful, stepwise detection can detect exploitations that do not

succeed. To achieve high inspection performance and safeguarding, I propose

two approaches: 1) a multi honeypot-agent OS, and 2) a multi browser-process.

The first approach employs a distributed and autonomous honeypot system for

scalability. The second approach provides process-level execution on a virtually

isolated environment in order to reduce OS overhead. In order to collect pre-

cise information, my honeypot coordinates both network-based events (HTTP

transactions) and host-based events (DOM structure on web browser) to identify

complex URL graph structures. For camouflaging, my honeypot is based on a

high-interaction system performing as an actual victim with vulnerable applica-

tions. In addition, my client honeypot disperses launching points on various IP

addresses of ISPs through a reverse load-balancer.

To satisfy the requirement of seed URL selection, I propose structural neigh-

borhood URL lookup, which is an effective method that focuses on the locality of

malicious URLs that results from a cost-effective adversarial strategy. My exper-

imental results indicated that my proposed method can discover more than twice

the number of unknown malicious URLs as there are known blacklisted URLs.

I conducted a large-scale field investigation over a period of several months us-

ing the developed client honeypot. I ascertained the methodologies of adversaries

and the stability of my developed system.

Keywords:

intrusion detection, honeypot, malware, vulnerability
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Chapter 1

Introduction

1.1. Cyber attacks and malware

A cyber attack is an activity to intrude in a target computer or network in order

to steal information, compromise, or destroy target systems through a network

or computer system. Nowadays, various social infrastructures have been comput-

erized and networked, and computer systems deal with commercial or personal

information that is exchanged with each other systems via a network. The infor-

mation in computer systems is also very valuable and attractive to adversaries,

who target computer systems in every conceivable way. Unfortunately, network-

ing computer systems enables remote cyber attacks, so any networked computer

system is a potential victim of a cyber attack. The Internet has led to rapid ac-

celeration and development of the computing environment as well as to economic

growth of our computerized society. Although current computer networks are

important in our social infrastructure, the rapid development results in security

(design/management criterion of system and information) problems in various

layers of networks and computer systems.

The aim of cyber attacks has changed over time from simple pranks conducted

to satisfy one’s intellectual curiosity or build self-confidence to those carried out to

achieve monetary gain or make political assertions. Because of these strong mo-

tivations, cyber attacks have become much more sophisticated. Denial of Service

(DoS) and Distributed DoS (DDoS) interfere with routing, domain name system

(DNS), the Web, and other services of attack targets (e.g., business competi-
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tors, hostile nations). Mass-mailing involves sending a massively large number

of e-mails to advertise online items and gain profit. Network infrastructures and

servers providing services are massively overloaded because of DoS/DDoS attacks

and mass-mailing, which have a harmful effect on business continuity.

1.2. Vulnerability exposure

There are two aspects of vulnerability: human vulnerability and program vul-

nerability. One way malware infections can occur is via manual operation of

a computer system by a human victim. This is a cognitive aspect of human

vulnerability, because humans with low computer literacy are easily deceived and

may manually download/install remote software, that is, malware, by themselves.

Previous studies tackled the computer literacy problem from the viewpoints of

computer literacy improvement [73] and user-interface improvement (e.g., User

Account Control [45]).

By contrast, program vulnerability is more serious than human vulnerability

because it causes automatic malware infection. For example, OS (e.g., middle-

ware, network stack), client applications (e.g., web browsers), and server appli-

cations (e.g., web applications) are often targeted. An arbitrary code runs on a

target system after exploiting a vulnerability, and then downloads malware from a

remote server and installs it in the target system. Software vendors generally deal

with vulnerabilities in their software when they are discovered; however, there is

a period of time that a program vulnerability is exposed until the security patch

is applied. In particular, a program is most exposed to risk on the zero-day. This

is the most dangerous period that starts when an attack is released to exploit a

vulnerability on day zero, when the vulnerability has not yet been discovered or

publicly disclosed. The main reasons why a program might have a vulnerabil-

ity are code complexity and increasing code size. Critical programs such as OS

or middleware tend to have timely released security patches (e.g., Windows up-

dates), but security patches for application programs are usually delayed because

the patch management for each application depends on each software vendor. Au-

tomatic security updating is conducted for programs such as Windows updates,

but many third-party applications require manual updates. This patch manage-

2



ment problem results in exposure of a large number of vulnerabilities. Malware

infection via program vulnerabilities is therefore unavoidable even when users

are careful in operating their systems. Countermeasures such as early discovery

of vulnerabilities, secure coding without vulnerabilities, and system protection

mechanisms have already been proposed. However, the increasing number of

vulnerable third-party applications, irregular releases of security patches, and

increases in zero-days have resulted in the exposure of vulnerable systems.

1.3. Malware as cyber attack infrastructure

Most large-scale and collaborative cyber attacks are triggered by malware (malicious

software). An adversary exploits a vulnerability of a target system and runs mal-

ware on the target system. Malware has the functionality to execute secondary

cyber attacks such as the aforementioned attacks. In other words, malware in-

fection itself is not only an individual cyber attack, but also a stepping-stone for

a secondary cyber attack. Therefore, malware infection can result in a loss of

profits and a loss of confidence in our society.

Malware can take the form of not only an individual cyber attack but also as

the infrastructure of large-scale secondary cyber attacks. Malware that is con-

trolled by a remote adversary after infection is called a bot. An adversary sends a

command to bots via a command & control (C&C) channel to manage a collection

of bots called a botnet, and conducts large-scale cyber attacks at a low operational

cost to the adversary. In particular, many incidents of DDoS and mass-mailing

attacks are carried out using botnets. Massively large botnets for DDoS or mass-

mailing attacks have been discovered, including Rustock (2006), Cutwail (2007),

Waledac (2008), Grum (2009), and TDSS (2010). A report said that 90% of all e-

mail sent in 2009 consisted of spam messages [76], and most of these were sent by

botnets. To make matters worse, Zeus, SpyEye, and Citadel, which are sophis-

ticated botnets designed to leak information (e.g., stealing banking credentials

using a man-in-the-browser attack on an infected host) were released one after

another from 2007 to 2012. Many security researchers and engineers are work-

ing on tackling individual cyber attacks (e.g., DDoS detection and mitigation,

spam identification, data loss prevention). However, cyber attacks are usually

3



triggered by malware; in other words, malware infection is a principal factor of

a cyber attack. Therefore, we should preferentially focus on infection discovery

and prevention.

1.4. Integration of infection vectors

Computer systems and network services are dynamically changing as the com-

puting environment evolves. Consequently, the change in the computing envi-

ronment makes it possible to diversify the infection vectors of malware. E-mail

attachments, P2P contents, files via instant messaging, and web hosting files are

representative infection vectors. These infection vectors are based on manual in-

fection by users; therefore, they are gradually declining the computer literacy of

users improves.

A remote exploit targets a vulnerability of a server application; therefore,

all network-connected hosts with a vulnerable server application are potential

victims. Moreover, exploitation and malware infection can succeed without user

interaction. In the early 2000s, CodeRed, which targeted the Internet Information

Service (IIS) vulnerability, and Blaster, which targeted the Distributed Compo-

nent Object Model interface with Remote Procedure Call (RPC-DCOM) vul-

nerability, accounted for the majority of malware infections. In 2008, a critical

vulnerability of RPC-DCOM was targeted by Conficker , and the number of in-

fected hosts reached 12 million [54] in 2009. Windows OS contained many types of

vulnerabilities related to file sharing or other server applications, which became

common infection vectors. However, the number of remote-exploit-based mal-

ware infections has considerably decreased for three main reasons: 1) OSs came

equipped with personal firewall functionality as a basic protection mechanism

against these types of exploitations; 2) unnecessary communication was filtered

using TCP/UDP ports at the network boundary, and 3) the number of hosts con-

necting to the Internet under Network Address Translation (NAT), which filters

packets from outside the network, increased.

From the latter half of the 2000s, various network services (e.g., Video on

Demand, E-commerce, Social Network Services, and other cloud-based services)

have been integrated into the web. Web clients obtained diversified functionalities
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and dealt with richer information, and were consequently targeted by adversaries.

Although client-side computing on the web achieves flexibility of processing and

transaction of rich/complex web content, it creates a large number of vulnera-

bilities in client-side programs. Drive-by downloads are conducted according to

legitimate communication protocols (i.e., HTTP and HTTPS) without protocol

anomalies. Because communication protocols used by drive-by downloads are a

main service of the Internet, it is impossible to apply port-based or protocol-based

blocking. Internet users usually surf web space and access a large number of web-

sites; they then always face the risk of becoming infected with malware. Due to

difficulty of protecting network boundaries, drive-by downloads are a greater risk

than remote exploits.

1.5. Conventional intrusion detection

Intrusion detection, a traditional area of security research, is intended to detect in-

trusion activity from a remote malicious host. The conventional detection method

is based on a signature pattern that indicates characteristic strings of malicious

objects such as attack payloads containing exploit code or malware binaries. It

requires continual analysis of the latest malicious objects and timely generation of

signatures. Signature-based detection has weaknesses against unknown malicious

objects that have different characteristics of past malicious objects. Moreover,

per-packet based signature matching is difficult because the communication mes-

sage of an end-to-end host becomes invisible because the communication channel

(e.g., SSL) is encrypted, or the payload is compressed or obfuscated.

Volume anomaly and outlier/change-point detection have been proposed [88]

for detecting individual cyber attacks (DoS/DDoS, scanning, mass-mailing). These

detection methods are not effective for detecting malware infection, though, be-

cause malware infection activities do not always require large-volume or rapid in-

creases in communication. Conventional malware infection (i.e., remote exploit)

by worm-type malware requires large-volume random scanning and exploiting;

however, the latest type of malware infection (i.e., drive-by download) mainly

requires targeted and limited end-to-end communication without large-volume

random scanning, which is referred to as silent infection.
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Learning-based detection is a popular method of intrusion detection that has

been applied effectively in recent years. Supervised learning preliminarily learns

data clearly defined as benign or malicious based on predefined feature vectors,

and then forecasts the maliciousness of unknown data. However, a serious prob-

lem with supervised learning when applied in the area of security is determining

how to obtain correct learning data. Moreover, unknown malicious objects having

unexpected characteristics are outside the focus of learning-based detection.

1.6. Observation point

An actual victim host is necessary for observation in conventional intrusion de-

tection methods. Moreover, the characteristics of observable information depend

on the situation of the actual victim hosts, i.e., what kind of OS and applications

are running on the host system. By contrast, decoy-based observation can collect

attack information without risk to the actual host. Decoy-based observation is

advantageous in that a decoy system called a honeypot can closely monitor the

in-depth exploitation techniques and activities after they have compromised a

system by actively being compromised itself. It is possible to discover a mali-

cious object early on before an actual user is compromised, so that proactive

countermeasures can be implemented. All of the information obtained from a

honeypot comes from the original malicious activity, because there is no user

in a honeypot. In addition, conventional network-based or host-based intrusion

detection methods have privacy problems in the way they observe and handle

information. Because there is no actual user in a honeypot, the honeypot can

solve/avoid privacy problems. Therefore, decoy-based observation can poten-

tially solve the problems of conventional intrusion detection methods. Darknet

is a network-based observation system for unused IP addresses without actual

users that can observe DDoS, scanning, remote exploits, and misconfigured re-

quest/responses [5]. Darknet has similar characteristics to a honeypot; however,

it only passively observes incoming traffic without interaction.
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1.7. Research objective

This dissertation will discuss a novel infiltrative observation system based on

a client-side honeypot, called Marionette, to collect information about drive-by

download malware infection. Honeypots potentially allow security middleboxes

or end systems to be more secure and sophisticated in many ways, as they are

capable of:

• Understanding the latest attack scheme for security intelligence

• Building a blacklist of attack sources

• Collecting malware and exploit code for signatures/patterns

• Providing attack datasets for other defensive research and technologies

The goal of this study was to tackle the design, implementation and deploy-

ment of a honeypot for understanding adversaries’ intensions and to collect mali-

cious objects in order to develop countermeasures. First, I discuss related defense

approaches in Chapter 2, typical exploit techniques in Chapter 3, and conven-

tional honeypots in Chapter 4. Next, on the basis of the discussions in Chapters

3 and 4, I enumerated the primary requirements for a honeypot. The novel

honeypot that I developed is described in Chapter 5. Chapter 6 discusses newly

discovered properties of malicious websites used for malware infection in the wild.

Furthermore, we propose and evaluate a novel effective method of discovering ma-

licious websites in Chapter 7. Finally, we conclude this work in Chapter 8, and

indicate the future direction of malware infection countermeasures in Chapter 9.
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Chapter 2

Related work

This chapter introduces related works on anti-malware from both proactive and

reactive viewpoints. Improving system robustness is a fundamental solution for

each victim system. Blacklisting is a network-wide applicable solution even if tar-

geted victims are vulnerable. However, these proactive defenses cannot terminate

all malware infection completely. Studies based on victim discovery and malware

analysis are reactive solutions for an infected host in order to complement the

above solution.

2.1. System robustness improvement

Methods for improving system robustness such as identifying vulnerabilities and

adding memory protection mechanisms have been proposed. Two kinds of vulner-

ability that can lead to malware infection are API misuse and memory corruption.

API misuse involves granting false privileges to certain objects or functionalities,

and is directly responsible for falsely defining objects or functionalities in the

program design phase.

Memory corruption occurs in the coding phase. Fuzzing, which is intended

to achieve early discovery of vulnerabilities, generates various input values for

program testing. If an analyzed program has a vulnerability, its input generated

values raise an exception or run as unexpected program behavior. Software ven-

dors can use this mechanism to comprehensively discover potential vulnerabilities

before their software is released.
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To exclude memory-corruption vulnerabilities from the coding phase, there

are compiler functionalities to produce a protection code for buffer overflow such

as the -fstack-protector compiler option of gcc and the /GS [43] compiler

option of Microsoft Visual Studio. Memory protection mechanisms on the OS

layer can protect a victim system from arbitrary-code execution even if a specific

vulnerability is exploited. These mechanisms include STIR [84], IPR [58], ILR

[24], ASLR [77], DEP [2], and ExecShild [82]. In particular, DEP, ASLR, and

ExecShild have already been implemented as basic protection mechanisms of

Windows OS or specific distributions of Linux OS.

2.2. Blacklisting

The web is now the main infection vector for malware infection. With the increase

in the number of threats by malicious websites, network administrators or end

users regularly try to prevent unwanted access to malicious websites by outgoing

traffic through the use of blacklists. A blacklist is a list of identifiers of malicious

communication objects. A typical blacklist contains IP addresses, domain names,

or uniformed resource locators (URLs). In particular, filtering systems against

web-based malware infection use URL blacklists.

A blacklist [38] [37] [80] [81] [12] [25] [20] [36] can be applied to both client-side

filtering and network-side filtering. In the former, the blacklist is applied as a web

browser add-on [20] [40] and a hosts file [25] (a configuration file on the local

system that maps hostnames to IP addresses). The latter consists of DNS level

filtering (e.g., DNSBL and DNS-sinkhole), security appliances, and application

services. The Google search engine displays a warning message with the search

results when a returned URL is known to be malicious. This is an example of

an application service that can effectively prevent malware infection via search

engines.

As mentioned above, a blacklist provides essential information that can be

used for filtering in order to block access to malicious websites. Filtering based

on a blacklist is a simple and powerful countermeasure. However, it is difficult to

discover malicious websites and malicious URLs on the web because of the vast

amount of web content that changes dynamically and that is newly generated by
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Figure 2.1. Lifetime of blacklisted malicious URLs

Survey of public blacklisted URLs (i.e., http://malwaredomainlist.com/ [36], latest list on

2010.11.18) was investigated.

both legitimate and malicious users. This makes it difficult to keep up to date with

newly created malicious URLs for blacklisting. Web content has a lifetime [7].

Thus, we investigated the lifetime of some blacklisted URLs. The length of time

that blacklisted URLs are active from when they were first registered is shown in

Fig. 2.1. The percentage of URLs active for one month is less than 40%, and most

of the URLs return a DNS error (i.e., the domain names have already been deleted

in each name server) or server connection error. The overall results confirm that

the number of URLs that have vanished gradually increases with time. In other

words, blacklisted malicious URLs tend to vanish after a short time. However,

many new malicious URLs are registered to blacklists daily. In these cases, the

substrings of added URLs are often similar to previously registered URLs. This

indicates that adversaries may create new malicious URLs by mutating URL

strings in order to avoid being blacklisted.
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2.3. Victim discovery

It is possible to discover an infected host by using a honeypot. The Cyber Clean

Center (CCC) [10] is a national project sponsored by MIC1 that discovers infected

hosts by using a Windows OS honeypot to detect remote exploits from other

infected hosts. Because victim hosts infected with worm-type malware attempt

a secondary infection, we can regard a source host of a remote exploit as being

infected. CCC notifies Internet Service Providers (ISPs) that it has discovered

some infected hosts, and the ISPs send cleanup information to the hosts.

In the case of drive-by download infection, we can regard web users accessing

malicious websites as potential victims of drive-by download. If the hosts have

vulnerabilities, they will inevitably be infected. Web proxies or network gateways

of organization that use web services, e.g., universities and companies, have access

logs that can be compared to a list of collected malicious websites to identify

potential victims.

2.4. Malware analysis

Malware analysis is a crucial approach to incident response management that

is an organized way to handle security incidents. The goal of malware analysis

is to gain an understanding of the functionalities of malware and to estimate

damage caused by malware infection. Malware contains various kinds of anti-

analysis functionalities (e.g., binary-code obfuscation, virtual machine detection,

code disassembly prevention) that make it more difficult to analyze. There are

two approaches for analyzing malware; dynamic analysis and static analysis.

2.4.1 Dynamic analysis

Dynamic analysis is a method to infer malware’s intention by monitoring malware

behavior (e.g., file/registry/network accesses) on an actual system. This kind of

analysis is applied in order to understand the approximate activities of malware,

although it can only analyze the part of a program that is running. The envi-

ronment for dynamic analysis of malware is called a malware sandbox, and many

1The Ministry of Internal Affairs and Communications, Japan
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malware sandboxes are available (Cuckoo [61] and Anubis [4] are well-known

malware sandboxes).

2.4.2 Static analysis

Static analysis is a method to identify potential functionalities of malware by

analyzing instructions and function calls of a malware program without running

the malware program. Even if it is just part of a program, a static analysis

can analyze it in theory. Almost all malware programs are executable format

files, so reverse engineering methods to reassemble the malware program from

the machine code to the assembler code have also been published [23]. However,

malware usually includes a binary that is packed for anti-analysis protection. The

malware binary then unpacks itself and extracts the original binary code during

execution. Therefore, directly reassembling the malware binary is not effective

for obtaining the assembler of the original binary code. Thus, unpacking methods

have been proposed [39] [14] as a first step in malware analysis.

2.4.3 C&C identification

In the mid 2000s, there were various types of malware consisting of joined botnets

(e.g., Agobot, SDbot, Mocbot) that used Internet Relay Chat (IRC) as a command

and control (C&C) channel. Consequently, many IRC-based botnet detection

methods were proposed [1] [19]. The amount of benign IRC communication has

decreased, and thus, the main IRC usage is now C&C. Then, we can easily detect

IRC-based malware and botnets. To avoid detection, the C&C is migrated from

IRC to the original protocol, P2P, or to a benign protocol such as HTTP.

Analyzing malware binaries reveals the destination hosts of malware commu-

nication. Destination hosts of malware communication contain malicious hosts

as well as benign hosts because malware checks Internet connectivity to detect

whether a potential host is running on a malware sandbox. If we can distinguish

between malicious hosts as C&C communication and benign websites accessed

by malware to check their Internet connectivity, we can adopt their C&C in-

formation in the following countermeasures. C&C identification methods One

effective C&C identification method is using taint analysis to track data propa-
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gation on a local internal system and input/output of a network [31]. Another

advanced identification method for P2P based C&C communication is combined

with taint analysis to extract data-propagation flows on an internal host and

protocol reverse-engineering to extract the original communication protocol [86].

2.5. Malware analysis based countermeasure

The extracted information mentioned in the above paragraph on malware analysis

can be used by anti-virus software vendors to generate signatures and take down

botnets.

2.5.1 Malware-signature generation

Anti-virus or security appliance vendors analyze malware to extract characteristic

strings and behaviors as signatures for detecting malware, and timely incorporate

the signatures in detection engines. It is essential to collect unknown malware to

generate a signature. Many anti-virus vendors collect unknown/variant malware

from user submissions or from anti-virus telemetry reports.

Malware collection using a honeypot is a complementary technique to that of

user submission or anti-virus telemetry reports. A honeypot detects exploits and

collects malware installed using exploit code on victim hosts. Because it actively

tries to be exploited, a honeypot can collect information on unknown malware

early, before any actual victims are exploited. Therefore, a honeypot is another

way to provide details of unknown malware to anti-virus vendors.

2.5.2 Botnet takedown

The malware analysis methods previously mentioned can extract the destination

IP address, FQDN, or URL of malware communication by analyzing the malware.

These destinations contain the C&C communication between the malware and the

adversary; therefore we can take mandatory measures by using the information

of these destinations.

If we can successfully shut down C&C communication, we can destroy bot-

nets and prevent potential victims from being affected by cyber attacks from
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botnets. Legal action can be an effective way to provide legal evidence for

mandatory countermeasures in many cases of botnet takedown. Microsoft pro-

vided documentation that detailed a botnet in a federal court of the US in a

lawsuit against a number of John Doe defendants. Many best practices of bot-

net takedown have involved shutting down the C&C communication. OS ven-

dors, security vendors/organizations, and universities cooperated to take down

many botnets (Srizbi in 2009, Waledac in 2010, Rustock in 2011, Nitol/Grum in

2012) [46] [42] [44] [13].Many successful cases were the result of both technical

cooperation between industry partners and legal action.

2.6. Summary

Memory protection and secure programming to achieve system robustness are

actively being studied to counter memory corruption vulnerabilities. Many of

these approaches have already been applied to the basic functionality of OSs and

compilers. Blacklisting can protect potential victims even if they have vulner-

abilities. Malware analysis is used for mandatory countermeasures intended to

achieve botnet takedown.
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Chapter 3

Attack model

It is important to understand the assumed attack model of a drive-by down-

load attack before designing and implementing an appropriate observation sys-

tem. Therefore, I first explain two types of arbitrary code execution vulner-

ability. Then, I survey representative techniques for exploit automation and

anti-detection in the wild.

3.1. Drive-by download

An attack through the Internet that targets server processes (e.g., RPC-DCOM,

the print spooler in the Windows OS) is called a remote exploit. Some examples

are CodeRed and Blaster, which spread rapidly in the early 2000s, and Conficker,

which struck in 2008. Windows OS is equipped with a personal firewall as a basic

functionality against this type of exploit, and network appliances apply many

network boundary protection measures such as blocking unused TCP/UDP ports

and stopping communication from outside the network from getting inside the

network. These measures have helped to gradually reduce the number of unidirec-

tional attacks from external networks. However, a large number of web browser

and plug-in vulnerabilities have been exposed since 2007, and many malicious

websites targeting theses vulnerabilities have appeared. When a vulnerable web

client accesses those malicious websites, the client’s browser or system control is

hijacked, and the client is unknowingly forced to download/install malware with

no user interaction [67]. This type of exploitation is called a drive-by download.
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Unfortunately, because drive-by downloads are executed in accordance with le-

gitimate protocols (i.e., HTTP and HTTPS), port-blocking or protocol-anomaly

based detection methods are not effective as countermeasures. For this reason,

drive-by downloads are now becoming the main malware infection vector. Ma-

licious websites that attempt to perform drive-by downloads lure general public

web clients to their websites by using various techniques: linking the URL of

spam e-mail, search engine optimization, and compromising benign websites so

they serve as landing websites of backend malicious websites.

3.2. Arbitrary code execution

Various types of vulnerabilities exist, including DoS vulnerabilities such as an

infinite loop or memory leak, cross-site scripting vulnerability, and information

leakage. In this dissertation, we consider an exploitable vulnerability for malware

infection because it is the most serious vulnerability to lead to automatically mal-

ware infection. An exploitable vulnerability means that it enables an arbitrary

code to be executed in a compromised target. Identifying exploitable vulnerabil-

ities is important in order to develop an accurate detection method and select

an appropriate honeypot platform. In this section, we explain two exploitable

vulnerabilities, API misuse and memory corruption, and enumerate exploitable

vulnerabilities of web client applications.

3.2.1 API misuse

API misuse is mistakenly granting incorrect privilege to a certain function or ob-

ject in the program design phase. A typical example of API misuse is a Microsoft

Data Access Component (MDAC) vulnerability called MS06-014 or CVE2006-

0003.

var obj = document.createElement(’object’);

obj.setAttribute(’id’,’obj’);

obj.setAttribute(’classid’,’clsid:BD96C556-65A3-11D0-983A-00C04FC29E36’);

try{

var xhr = obj.CreateObject(’msxml2.XMLHTTP’,’’);

var sa = obj.CreateObject(’Shell.Application’,’’);
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var adost = obj.CreateObject(’adodb.stream’,’’);

try{

adost.type =1;

xhr.open(’GET’,’http://example.com/malware.exe’,false);

xhr.send();

adost.open();

adost.Write(xhr.responseBody);

var filepath = ’C:\\a.exe’;

adost.SaveToFile(filepath,2); // <- irrelevant privilege

adost.Close();

}catch(e){}

try{

sa.shellexecute(filepath) // <- irrelevant privilege

}catch(e){}

}catch(e){}

Due to the high flexibility of MDAC functionality, modules must be granted

appropriate privilege. API misuse of MDAC is an example of cross-zone scripting,

which is a vulnerability within a zone-based security solution. The CVE-2006-

0003 vulnerability falsely permits a file download to be output from a remote

host to a local filesystem and then executed without privilege validation. With

this vulnerability, SaveToFile() and shellexecute() with remote downloaded

files should be forbidden; however, a privilege validation is not executed when the

functions are called. Therefore, malicious scripts loaded from a malicious website

can download and execute arbitrary files such as malware.

3.2.2 Memory corruption

Representative memory corruption vulnerabilities are buffer/heap overflow and

format string bug. The first step of exploitation when this vulnerability is tar-

geted is that the instruction pointer is set to arbitrary instructions. In the case of

a drive-by download, an adversary lures victim web clients to malicious websites

and forces them to load web content with exploit code, and then exploits the

vulnerabilities of the web browser and plug-in applications. An exploit code for

memory corruption is composed of a code that attacks certain vulnerabilities for

obtaining control of the instruction pointer and arbitrary instruction code, called

shellcode, after obtaining control. Shellcode, which consists of short instructions,
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generally downloads a malware binary from a remote host and installs it for con-

tinuous intrusion in a target. Moreover, an adversary should know the address

of a shellcode allocation that is the destination address of the obtained control

of the instruction pointer, and should also allocate shellcode to a target process

memory in advance of the exploitation. Because of the strict conditions of this

exploitation, the kind of vulnerability and implementation of the target program

strongly depends on the success of the exploitation. The number of browser-based

exploitations is increasing because of the rich client-side scripting environment

and an epoch-making heap manipulation technique based on it. Heap spraying

is the most popular heap manipulation technique; it enables flexible exploitation

and dramatically increases the success rate of exploitation. Heap spraying in-

volves injecting a vast quantity of instruction blocks that are composed of large

sliding code (e.g., NOP) and shellcode by using JavaScript/VBscript in advance

of the exploitation. Therefore, it is not necessary to recognize the specific address

of allocated shellcode before the exploitation.

3.2.3 Browser and plug-in vulnerability

Exploitable vulnerabilities of web client applications (i.e., web browsers and their

plug-in applications) have been discovered from 2005, as shown in Fig. 3.1.

Publicly known vulnerabilities are given common identifiers of Common Vulner-

abilities and Exposures (CVE) [47], which is a dictionary of publicly known in-

formation on security vulnerabilities and exposures. Conventional vulnerabilities

are contained in OSs; however, in recent years, web applications can trigger them

by processing malicious web content. In 2006, the main targets were web browser

vulnerabilities. In 2007, AdobePDF plug-in vulnerabilities ware discovered and

exploited, and in 2008 Java plug-in vulnerabilities were discovered and exploited.

3.3. Automation for drive-by downloads

A drive-by download is a compilation of recent intrusion techniques. Adversaries

combine various adversarial techniques and achieve sophisticated methods of in-

trusion. In this section, we explain elemental adversarial techniques for exploit

automation.
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Figure 3.1. Exploitable vulnerabilities of web client applications

Exploit kits such as Mpack, Eleonore, Phoenix, and Blackhole are equipped with exploit code

enabling them to exploit these well-known representative vulnerabilities.

3.3.1 Browser fingerprinting

Browser fingerprinting is a method to precisely distinguish which platform a web

client accessing the server is using. The adversary has two objectives: user pro-

filing for anti-security inspection and selecting the appropriate vulnerability for

the following exploitation.

General web client applications describe user-agent information (i.e., OS ver-

sion, browser version) in the HTTP request header. Then a website can recognize

the platform of the accessing web client from the user-agent information in the

HTTP request header. For more precise fingerprinting, a website collects in-

formation by using client side scripting. Client-side scripts can recognize what

types and versions of applications are installed. Web content includes a legitimate
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library for fingerprinting (PluginDetect [18]1). On the basis of the information ob-

tained by browser fingerprinting, the corresponding exploit codes of PDF, Flash,

and Java formats are loaded in the web browser or plug-ins. For example, the

following code for checking the client environment is used in an actual exploit

code in the wild.

if(window.navigator.appName ==

‘‘Microsoft Internet Explorer’’) {

var ua = window.navigator.userAgent;

var re = new RegExp(MSIE ([0-9]{1,}[.0-9]{0,})’’);

re.exec(ua);

ver = parseFloat(RegExp.$1);

if(ver > 7){

...

This JavaScript code refers to the user-agent information about a web browser

and whether it is a major version later than “7”. This checking code determines

whether the target environment satisfies requirements, and if not, no attack is

committed by the exploit code.

After identifying a target platform through browser fingerprinting, a mali-

cious website prepares appropriate exploit codes. A malicious website can un-

derstand what kinds of vulnerabilities a target host contains by checking specific

OS/application version information. If a target host contains vulnerable applica-

tions, a malicious website provides malicious web content with exploit codes cor-

responding to specific vulnerabilities. In many cases, client-side scripts conduct

browser fingerprinting and select target vulnerabilities, then execute a function

that triggers the exploit code.

3.3.2 Multi-vulnerability exploitation

Web browsers and their plug-ins have a variety of vulnerabilities. An existing

vulnerability on a target host strongly depends on the platform (type and version

1PluginDetect can identify the OS, web browser, plug-in and their versions (e.g., Adobe
Flash, Adobe Reader, Java, and ActiveX components)
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of OS and applications). Therefore, an exploit code conducts sequential exploita-

tion targeting multiple vulnerabilities to increase the possibility of a successful

exploitation. An exploit kit, which is a toolkit for easily constructing an exploit

site, typically performs sequential and multiple exploitations. Almost all exploit

kits contain components that can exploit critical vulnerabilities that are mainly

related to Internet Explorer and its plug-in applications.

3.4. Anti-detection techniques

Security has an aspect of an arms race between the attack side and the defense

side, so we should investigate adversarial techniques and use them to design

advanced counter techniques. A drive-by download is a compilation of adversarial

techniques that have been developed over a number of years. We should learn

anti-detection techniques that are fatal to a detection system in order to extract

the requirements of an effective detection system. In this section, we introduce

recent malware anti-detection techniques: code obfuscation, traffic redirection,

client blacklisting, and anti-browser emulation.

3.4.1 Code obfuscation

Malicious sites often have obfuscated malicious scripts, which create exploit codes
or redirect tags to the exploit site, in order to elude IDS signatures and make
analysis more difficult. The scripting engine of a web browser processes an ob-
fuscated script to deobfuscate it using techniques such as an unescape function,
hex escaping, string replacing, or XOR. Obfuscated script includes not only an
exploit code but also redirect functionality. For example, redirect code that leads
a user to a malicious website is described as follows:

<script>

document.write(<iframe src=’’http://example.com/exploit.php’’ hight=’0’ width=’0’>);

</script>

, and the obfuscated code of this malicious redirect code by an obfuscator
(Dean Edwards’ JavaScript Packer [57]) is

<script>

eval(function(p,a,c,k,e,d){e=function(c){return c.toString(36)};

if(!’’.replace(/^/,String)){while(c--){d[c.toString(a)]=k[c]||c.toString(a)}
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k=[function(e){return d[e]}];e=function(){return’\\w+’};c=1};

while(c--){if(k[c]){p=p.replace(new RegExp(’\\b’+e(c)+’\\b’,’g’),k[c])}}

return p}(’5.4(<3 1=’’2://6.7/b.a’’9=\’0\’8=\’0\’>);’,12,12,’|src|http|iframe|

write|document|example|com|width|hight|php|exploit’.split(’|’),0,{}))

</script>

Because entire original code strings can be replaced with different unpre-

dictable strings, it is difficult to use signature matching as a detection method.

Blanc et al. [6] focused on the syntactic structure of obfuscated code and pro-

posed a classification method for obfuscated JavaScript. Jsunpack-n [22] is a tool

for deobfuscating and analyzing malicious HTML/JavaScript. The JavaScript

engine of Jsunpack-n is mainly based on SpiderMonkey [60] provided by Mozilla,

and it enhances DOM emulation. It can also analyze PDF and SWF file for-

mats. Moreover, it conducts signature-based detection to identify typical strings

in exploit code on deobfuscated web content.

Obfuscation for protecting JavaScript code is also used by many legitimate

websites. For this reason, detecting malicious sites by detecting only obfuscated

script will produce false positives. Therefore, we need to use real web browsers

and run web content on them to detect malicious web sites accurately.

3.4.2 Traffic redirection

In most situations, malicious sites have specific responsibilities, which are di-

vided by an adversary. An exploit site does the actual exploitation of a target

web browser and forces it to download a malware executable from a malware

distribution site. A hopping site redirects a target to the next hopping site or

to an exploit site. A hopping site that is accessed first is called a landing site.

These sites are illustrated in Fig.3.2. In this dissertation, we call the redirection

network formed by these sites a malware distribution network (MDN). First, ad-

versaries lure web clients to exploit web sites by using compromised web sites

that are injected with malicious iframe tags or script tags. Once web clients

access the compromised web sites, they are redirected automatically to the next

hopping site or to an exploit site. A hopping site that is injected with a redirect

instruction code, in some cases prepared by adversaries themselves, is chained to

the next hopping site or the exploit site. If only a landing site is accessed, the
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Figure 3.2. Malware distribution network

web client (web browser) is forced to access the exploit site eventually due to the

malicious redirect instructions. Adversaries use this method because it can easily

capture a lot of web clients, evade attack detection, and make it more difficult to

track the adversaries themselves. Representative redirection methods are proto-

col redirect (e.g., HTTP 302 redirect), tag redirect (e.g., frame tag, iframe tag,

script tag, META tag, which sets a refresh attribute), and script redirect (e.g.,

location.href and location.replace methods of JavaScript). In particular, invisi-

ble redirect content (e.g., an iframe that has a small pixel height/width and an

invisible attribute) are often used to avoid being noticed by users.

3.4.3 Client blacklisting

A malicious website usually records IP addresses and user-agent information of

the web client for user profiling and client blacklisting. It regards web clients
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that access it repeatedly as security investigation systems for security, and it

forbids access to specific web clients or replies with harmless web content in

order to circumvent detection. Moreover, known IP addresses used for inspection

(e.g., security organizations or anti-virus vendors) are listed and shared among

adversaries. In particular, online sandbox services are recorded for such lists.

3.4.4 Anti-browser emulation

Tools for analyzing malicious web content are based on interpreters of JavaScript

or PDF files. Malicious web content identifies the behaviors that are different

between a real system and an emulator, so it can detect when it is being analyzed.

For example, gc(), clone(), trap(), untrap(), readline(), and quit() are

debug functions of a JavaScript emulator. Then a real browser returns an error

to debug a function call, but the analyzing tools successfully receive and process

the debug function call. Anti-browser emulation code is represented as follows.

try{quit();}

catch(e){evil_code}

A real web browser catches an error and then executes evil code; however, an

emulator only executes quit() without an error. To counter anti-browser emu-

lation, a client honeypot should eliminate the differences between a real system

and an emulator. Therefore, a client honeypot should adopt complete emulation

engines of all web content, or real web browser and plug-in applications.

3.5. Summary

There are two types of exploitable vulnerabilities: API misuse and memory cor-

ruption. Drive-by downloads target web browsers with these exploitable vul-

nerabilities. Malicious websites conduct drive-by downloads. We reviewed the

techniques adversaries use for anti-detection and automation for exploitation.

Browser fingerprinting identifies the type and version of the target platform. With

the results of browser fingerprinting, a malicious website can target appropriate

vulnerabilities simultaneously. Code obfuscation interferes with emulation-based
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analysis. Traffic redirection constructs a complicated network for malware dis-

tribution by cloaking backend malicious websites. Client blacklisting regards

repeated accesses as security inspections, and replies with harmless web content

to circumvent detection.
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Chapter 4

Honeypot for gathering

intelligence of malware infection

I classify honeypots based on their attack vector and interaction level. I intro-

duce existing implementations of honeypots and their properties according to

these classes. I also enumerate assumed countermeasures based on information

obtained by the honeypot.

4.1. Objective of honeypot

Conventional intrusion detection methods cannot conduct sufficient observation

of malware because of the sophisticated and complex attack techniques that have

been used in recent years. By contrast, a honeypot acts as an actual victim and

interacts with the adversary. A honeypot in general provides a computing re-

source to be scanned, attacked, compromised, or accessed by an adversary. The

resource could essentially be a system, a service, or an application. A honeypot

can gather closer activity of an adversary on a victim host with obtained evidence.

Current honeypots are used for investigating and collecting information on the

exploitation methodologies of adversaries and malware executables. The infor-

mation that is obtained that is not available to conventional intrusion detection

measures is helpful for developing practical countermeasures.
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Figure 4.1. Taxonomy of honeypot

4.2. Taxonomy of honeypot

Honeypots can generally be classified based on two fundamental and independent

aspects: type of attack vectors, and level of interaction [17] [65]. I explain these

aspects in this section and introduce conventional client honeypots in the next

section.

4.2.1 Type of attack vector

Conventional honeypots are designed for receiving server-side attacks and can

thus passively detect them. This type of honeypot is called a server honeypot and

has many implementations corresponding to the infection vector, e.g., a Windows

OS honeypot [64] [62], and a Web server honeypot [63]. A server honeypot utilizes

network services, e.g., RPC, Web application, and SSH, listens on their well-

known ports, and passively monitors any connections initiated by remote hosts.

The property of information obtained by a server honeypot depends on the IP

address location of the honeypot because remote exploits conducted by a worm-

infected host usually target neighbor hosts to spread an infection effectively.
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Client-side attacks such as drive-by downloads are triggered by target actions,

so these attacks are outside the scope of server honeypots. In contrast, a type

of client honeypot is equipped with client applications that connect to remote

services and monitor all generated activity. In particular, web browser type hon-

eypots that receive drive-by download attacks, called client honeypot, have been

proposed. These honeypots must actively visit websites as a web browser and

discover malicious websites in a large web space.

4.2.2 Level of interaction

In terms of interaction with adversaries, there are two types of honeypot: high-

interaction and low-interaction. The most significant difference in their archi-

tecture is whether they use a real system or an emulator. The low-interaction

honeypot emulates a vulnerable host and simplifies the detailed processing. It

exhibits high performance but collects less information than that with an actual

system. The high-interaction honeypot employs an actual vulnerable host at-

tached to monitoring modules for observing internal system behavior; therefore,

the honeypot’s performance is on the same level or less than that of an actual

system. A low-interaction system is suitable for surface analysis by high-speed

crawling; however, a simplified rendering engine is an obstacle in conducting in-

depth analysis of exploit techniques.

4.3. Conventional client honeypot

A web browser type of client honeypot is designed for receiving drive-by download

malware infection. The term client honeypot implies a web browser type client

honeypot in this dissertation. Existing implementations of client honeypots are

both low-interaction [71] [29] [55] [16], and high-interaction [83] [70] [35].

The main issue with low-interaction based client honeypots [71] [55] [16] is

determining how to emulate rendering engines of browsers and plug-ins. HoneyC

[71] is a basic model of a low-interaction client honeypot, It consists of three

components: queuer, which collects inspection URLs, visitor, which crawls the

URLs, and analysis engine, which detects an exploitation. PhoneyC [55] and

28



Thug [16] try to emulate basic rendering engines (e.g., DOM and JavaScript) and

vulnerable browser functionalities.

[83] [70] [35] are high-interaction client honeypots. HoneyMonkey [83] and

Capture-HPC [70] can use many VMs for improving inspection performance. In

addition, the current version of Capture-HPC can support multi-browser process-

ing and discriminate which web browser is exploited based on a mapping of the

state changes (e.g., file/registry accesses, process creations) to the process ID of

a web browser. BLADE [35] provides a safe execution environment for browser

processing without modification of the original files. Many high-interaction hon-

eypot implementations monitor a file/registry access event to detect intrusions

in the kernel layer [70] [35]. Monitoring in the kernel layer does not depend on a

specific browser implementation. Therefore, these honeypots can observe events

and be comprehensively implemented. However, such events are extremely prim-

itive, and it is difficult to infer the aim of an application. For example, a web

browser translates HTML into the document object model (DOM), which is a

structural representation format of HTML in a browser’s memory, on its process

memory and processes the semantics of the included web content.

4.4. Providing information for stakeholders, and

countermeasures

Malicious URLs and corresponding domain names and IP addresses are basic in-

formation obtained by the client honeypot. It can also extract exploit codes and

malware binaries from a filesystem or from communication with a malicious web-

site. Moreover, by analyzing an exploit code, the operator of a client honeypot can

understand what type of vulnerability is exploited. I enumerate assumed stake-

holders and their countermeasures based on information obtained by honeypot

in Table 4.1. Stakeholders must take responsibility for their layers and services.

A client honeypot has the ability to accelerate countermeasures on various layers

and services.
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Table 4.1. Information obtained by honeypots; the stakeholders that can benefit

from it, and countermeasures

Information Stakeholder Countermeasure

Vulnerability, exploit code OS, application vendors Software security fix
Malware, exploit code Anti-virus, security appliance vendors Signature generation
Domain name, URL Search engine providers Blocking search result
IP address, domain name, URL Blacklist providers Blacklist registration
IP address, domain name, URL Security operation center Access filtering
Domain name, URL Administrator of compromised website Website security fix
Domain name Domain registrar Deregistration

4.5. Summary

A client honeypot is required to actively interact with web servers on the web

space. There are two levels of interaction: low and high. They both have draw-

backs and advantages. Information obtained by the honeypot can be utilized in

actual countermeasures in cooperation with assumed stakeholders.
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Chapter 5

Design and Implementation of

client honeypot

On the basis of the attack model and existing honeypots described in Chapters 3

and 4, I enumerate primary requirements for the design and implementation of a

client honeypot designed to gather information on malware infection activity. The

proposed methods were evaluated and confirmed to be effective in a laboratory

test and in actual web space.

5.1. Requirements

The procedure for malicious website detection is 1) select an observation point

(i.e., URL) in the web space and 2) inspect the selected observation point and

identify whether it is malicious. A client honeypot, in general, has three basic

components: a URL collecting component, Web browsing component, and con-

tent analyzing component. In HoneyC [71], these are called queuer, visitor, and

analysis engine, respectively. The URL collecting component is responsible for

collecting a list of websites to visit. The URL collecting component can employ

algorithms to create a list of websites (e.g., search engine API). The web brows-

ing component is responsible for interacting with websites. It sends a request

to websites, receives a corresponding response (i.e., web content), and processes

it. The content analyzing component is responsible for identifying whether web

content is malicious.

31



URL collecting
component

Web browsing 
component

Content analyzing 
component

Internal host 
environment

External network 
environment

Seed URL selection

Camouflaging

Safeguarding

Inspection performance

Precise detection

Information collection

Basic components Requirements

Figure 5.1. Basic components of client honeypot and corresponding requirements

In Chapter 3, I surveyed targeted applications and adversary techniques. In

Chapter 4, I classified honeypots and learned of several problems. I use the

information from Chapters 3 and 4 to enumerate the basic requirements for hon-

eypot design and implementation as follows: precise detection, inspection perfor-

mance, information collection, safeguarding, camouflaging, and seed URL selec-

tion. These requirements are classified into internal and external network envi-

ronments. Improving the internal host environment of a honeypot should ensure

precise detection, inspection performance, and information collection. Seed URL

selection does not strongly depend on the internal host environment of the client

honeypot; therefore, improving the external network environment of the client

honeypot should satisfy this requirement. Camouflaging and safeguarding should

be satisfied by improving both the internal and external design of the client hon-

eypot. The correspondence between basic components and requirements is shown

in Fig. 5.1. I circumstantially address the extracted requirements in this section.
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5.1.1 Precise detection

When a honeypot detects exploitation, it regards the URL corresponding to the

detected web content as malicious. I can implement mandatory countermeasures

(e.g., filtering, takedown) using this information.

A false positive, in which a benign website is mistakenly regarded as malicious,

causes critical collateral damage for the benign website that owns that URL. On

the other hand, when a false negative occurs, which is when a malicious website

is mistakenly regarded as a benign website, it is difficult to protect a web client

from the malicious website in the countermeasure phase. Therefore, the detection

method used by the honeypot should be designed so as to reduce the number of

false negatives without producing false positives.

5.1.2 Inspection performance

A client honeypot inspects web content corresponding to a certain URL to iden-

tify whether the URL is benign or malicious. A conventional honeypot (e.g.,

Windows OS honeypot expecting a remote exploit) does not require high perfor-

mance because it only processes communication packets that have arrived from

remote hosts (attackers) and passively detects attacks.

By contrast, a client honeypot should actively crawl web space and inspects

a large amount of web content. Moreover, web content changes dynamically

as time progresses. For example, a benign website is compromised and then

becomes a malicious website, or newly created malicious websites appear in web

space. Due to the dynamism of web content, one-off inspection is not sufficient to

understand the situations of websites in web space. Therefore a client honeypot

should conduct repeated inspections as an actual countermeasure. For a honeypot

to conduct a large-scale inspection, it requires high inspection performance.

5.1.3 Information collection

Countermeasures require the collection of information for not only binary deci-

sions on whether or not a website is malicious but also various kinds of information

such as malware executables, exploitation methods, and relationships with ma-

licious URLs in a malware distribution network. When a web browser accesses
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a certain URL, it secondarily accesses other URLs through remote inclusion of

script/iframe/img/css tags. Consequently, it interacts with various websites si-

multaneously. Conventional client honeypots detect exploitation, but they do not

identify which accessed URLs are malicious or the relationship among accessed

URLs.

5.1.4 Safeguarding

Honeypots have some safety risks. If an adversary manages to compromise my

honeypot, he could try a secondary attack. In many cases, adversaries could use

a compromised host (e.g., honeypot) as a stepping stone to attack another system

that is not under our control or to instrument it to participate in a DDoS attack.

Because high-interaction honeypots can be fully compromised by an adversary, we

need to carefully consider the possible consequences of a compromise. Safeguard-

ing is not only a requirement for client honeypots but also for general honeypots.

In order to maintain continuous operation under our control, a client honeypot

should sustainably control exploitations without being fully compromised and

destroying the honeypot environment.

5.1.5 Camouflaging

Malicious websites interfere with inspections by using various obstacles. Client

blacklisting interferes with repeated inspections. Browser fingerprinting identifies

detailed types and versions of target hosts before the exploitation is carried out.

Therefore, a client honeypot should stealthily conduct inspections and faithfully

perform as an actual victim host.

5.1.6 Seed URL selection

The requirement for precise detection in Sect. 5.1.2 represents how to correctly

identify whether a specific website is malicious. In a contract, the requirement of

a seed URL selection represents how to select URLs for inspection in large web

space. Therefore, precise detection and seed URL selection are complementary in

malicious website detection. It is impossible to inspect the entire web space with a
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Table 5.1. Qualitative comparison between low interaction and high interaction

Type System Detection Information Camouflaging Inspection Safeguarding
accuracy collection performance

Low Emulator Low Low Low High High
interaction (simplified (simplified (unnatural (simplified

processing) processing) behavior) processing)
High Real OS and Potentially Potentially Potentially Low Low
interaction application high high high (equivalent as (equivalent as

victim host) victim host)

client honeypot; therefore, we should preferably select suspicious URLs (in other

words, potential malicious URLs) for inspection. If a certain potential malicious

URL is not in the list for inspection, it is absolutely impossible to discover it.

5.2. Low-interaction and high-interaction

Requirements related to the internal host environment strongly depend on the

level of interaction based on the discussion in Chapter 4. The qualitative com-

parison between low interaction and high interaction is shown in Table 5.1. The

type of interaction strongly depends on the above qualitative differences.

The communication transactions of remote exploits are comparatively simple,

and emulator-based server honeypots have been developed as a countermeasure to

them. In contrast, drive-by downloads use complicated transactions and various

web content formats. Therefore, low interaction is required in order to emulate

various applications and to process file formats. The difficulty of emulation-

based analysis in general results in low detection precision and low information

collection ability. High-interaction performance as an actual victim host allows

the ability to be exploited. Having an ability to be exploited potentially enables

high detection precision and information collection. In the following section, I

propose and evaluate the methods for satisfying the enumerated requirements and

I describe a novel client honeypot I developed called Marionette, which is based

on a high-interaction system. In addition, seed URL selection is independent of
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the internal host environment, so I discuss my proposal for effective seed URL

generation in Chapter 7.

5.3. Exploit detection

First of all, I classify exploitation into three phases: pre-exploitation, exploitation,

and post-exploitation. I explain these three phases of exploitation as follows (Fig.

5.2).

1. Pre-exploitation phase: The pre-exploitation phase consists of tech-

niques for preparing for the exploitation. These techniques include de-

coding obfuscated web content, browser fingerprinting, and manipulating

heap memory.

2. Exploitation phase: In the exploitation phase, the vulnerability is ex-

ploited and arbitrary code runs. In the case of a memory corruption vul-

nerability, the exploit code attacks the target vulnerability and alternates a

temporarily obtained instruction pointer with shellcode previously allocated

in the target process memory.

3. Post-exploitation phase: After obtaining temporary control of the target

process, an adversary installs malware for permanent intrusion. A malware

binary is contained inside an exploit code or is downloaded from a remote

host. The post-exploitation phase consists of behavior such as malware

downloads, execution, and malware activity after infection.

The reason exploitation fails in the pre-exploitation phase is that it stops itself

because the target platform is different from the expected target platform. An ex-

ploitation targeting a memory corruption vulnerability in the exploitation phase

will only be probabilistically successful. A conventional detection method based

on primitive events of filesystem/registry/process on the kernel layer can only

detect malicious activity after an exploitation succeeds in the post-exploitation

phase. Therefore, exploitation failure is outside the scope of this kind of detection

method.

To detect these various exploit activities, my detection methods focus on each

exploit phase. My system performs stepwise detection focusing on the above
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Figure 5.2. Exploitation phases

exploit phases to improve detection coverage. These detection mechanisms are

described here in more detail.

5.3.1 Detecting pre-exploitation phase: Heap manipula-

tion detection

Heap manipulation detection focuses on the discriminative malicious behavior

of a script engine before it exploits a certain vulnerability and aims to detect

that malicious behavior regardless of whether the exploitation is successful or

not. This detection method monitors scripting engines on a browser and detects

anomalous behavior under attack conditions. One example of an attack condition

is heap spraying. Heap spraying involves injecting a vast amount of malicious

instruction code blocks into the heap memory of a target web browser prior to an
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Figure 5.3. Exploitation using heap spraying

exploit attempt in order to ensure the target system is hijacked (Fig.5.3). This

technique is versatile, so it is combined with various types of exploitation because

it is possible to exploit a system by only forcing an instruction pointer to point to

the allocated heap memory space of scripting engines. I focused on the behavior of

heap spraying and implemented the detection function based on a heap memory

anomaly, i.e., the injection of a large number of strings that include small shellcode

blocks and a large piece of slide code, which is a no-operation (NOP) instruction

meant to slide the instruction pointer to an arbitrary destination address. This

detection method detects heap spraying by observing whether or not the number

of allocated heap blocks is over the threshold.

Various detection methods focusing on the memory allocation anomaly have

been proposed. Nozzle [68] analyzes allocated memory strings using JavaScript

and detects shellcode. It inspects memory strings allocated by JavaScript that

are heap objects, and regards an executable string as shellcode. However, this

method is not appropriate for inspecting a large amount of web space, because it

requires large computational resources to inspect all heap blocks by using CPU

emulation.

5.3.2 Detecting the exploitation phase: Dataflow anomaly

detection

Dataflow anomaly detection focuses on the moment that a vulnerability is ex-

ploited. It is also able to detect an exploitation attempt regardless of whether it
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is successful or not. To detect the moment of an attack, this detection module,

called HoneyPatch, monitors the dataflow (i.e., arguments and return values of

certain vulnerable functions) on web browsers and browser helper objects (BHOs)

and determines whether a vulnerable function is being attacked or not. For ex-

ample, the condition for buffer-overflow detection is whether or not the provided

string length is over the buffer size. This detection module is composed of a small

piece of detection code and function-hook code. It is mapped to the target process

memory space at a vulnerable function and intercepts vulnerable function calls.

For this interception of function calls, I use dynamic link library (DLL) injection

by the CreateRemoteThread() API. DLL injection is a method of injecting a

hook function into a process that includes a target function. The interception

of function calls is provided by dynamically rewriting in-process binary images.

This interception method is the same as the detours [26] technique. This detec-

tion module observes the argument data and the results of calculations, and if

malicious argument data are passed, or an unexpected result is returned, these

function calls are recognized as an attack. For example, if a vulnerable function

is implemented as

func(char *str){

char buf[32];

strcpy(buf str);

...

}

, a detection routine for this vulnerability should be implemented as

if(strlen(str) > 32){

alert();

}

. The procedure for HoneyPatch is shown in Fig 5.4.

I implemented modules of HoneyPatch for various vulnerabilities on installed

versions of web browser components and BHOs. My system achieves accurate

detection of malicious web sites constructed using exploit kits or a part of it. In

addition, the system can detect attacks even if they fail because the exploit code
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Figure 5.4. Transparent interception procedure for vulnerable function hooking

passes through the vulnerable point. In this way, my system enables us to see

exploited vulnerabilities and to detect unstable exploitations.

I should consider additional methods for detecting unknown vulnerabilities

that are beyond the focus of HoneyPatch. Data Execution Prevention (DEP)

is an existing memory protection mechanism that detects false data executions

caused by memory corruption. When DEP detects data execution, it raises an

exception while interrupting and then terminating the execution. If a client hon-

eypot enables DEP, it can detect memory corruption. However, a DEP-enabled

client honeypot sacrifices information collection; in other words, it cannot obtain

malware because exploitation would be unsuccessful. To achieve both detec-

tion coverage and information collection, I propose a pass-through DEP handler

that detects data execution but enables exploits to be executed. On a DEP-

enabled honeypot system, a pass-through DEP handler monitors the DEP call-

back function and catches any DEP exceptions that are raised. Then it exe-

cutes a certain code after logging the exceptions. There are various types of

exceptions, e.g., access violation, floating-point/integer misoperation, and break-

points. DEP can be recognized as a type of access violation. When catching an

access violation exception, the pass-through DEP handler grants an execution
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attribution (i.e., PAGE EXECUTE, PAGE EXECUTE READ, PAGE EXECUTE READWRITE,

or PAGE EXECUTE WRITECOPY) to a certain memory page, which raises an excep-

tion. The DEP handler then changes the return value of the caller function that

raises the exception to TRUE1 in order to continue the execution. In this way,

the pass-through DEP handler can detect a DEP alarm and also transparently

execute the exploitation. Ordinary detectors used for system protection should

terminate the exploitation; in contrast, a detector in a honeypot should detect

the exploitation but allow the exploitation to continue in order to collect infor-

mation. My dataflow anomaly detectors can detect the moment of exploitation

and allow it to proceed toward the post-exploitation phase.

5.3.3 Detecting post-exploitation phase: Rule-based event

detection

Process behavior anomaly detection focuses on the behavior of shellcode on a web

browser or BHO after a certain vulnerability has been exploited. This method

is not dependant on a particular vulnerability and is able to detect when an

exploitation attempt is successful. Local resources, such as the file system, reg-

istry, and process space, are monitored and controlled by the process sandbox

mentioned in Sect. 5.5. One of the aim of the process sandbox is to detect the

malicious behavior and prevent infection in order to maintain continuous system

operation. It restricts the creation of a malware executable, the creation process

of malware, and access to critical registries by hooking certain API calls (file

system access, registry access, and process control APIs). The process sandbox

detects the malicious behavior of a process caused by exploit code. In advance

of malicious behavior detection, I created a whitelist of registered legitimate be-

haviors of broser and plug-ins in a normal situation, for example accessing a

cache directory or temporary file’s directory, certain registry keys, and creat-

ing a process. Process behavior anomaly detection determines that behaviors

not registered in the whitelist are malicious behaviors. From the viewpoint of

process event anomalies, this detection method is similar to other conventional

1In an original procedure, a caller function identifies the type of access violation and then
returns FALSE to terminate the execution.
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client honeypots of high-interaction systems (e.g., Capture-HPC) because most

of them detect malicious process events on the basis of the whitelist. Malicious

processes and files that are not created by the web browser in a normal situation

are restricted by the process sandbox. In particular, in the case of a malicious

process trying to create files in a certain directory, file creation is restricted and

the file is copied to a sandbox directory, while the process sandbox returns the

success values of the API calls to the API caller in order to hide the honeypot

aspect from the adversary’s side. I examined the behavior of web browsers and

BHOs in advance to create a whitelist of legitimate behavior in order to reduce

false-positives.

5.3.4 Detection classification

Stepwise-detection adopts detection methods which have no false-positive in each

exploitation phase. It combines detection methods of each exploitation phases

in order to reduce false-negative. In this way, it can detect exploitation failures

which are not detectable for conventional detection such as rule-based detection.

Table 5.2 is detection-alarm based exploit classification. Successful or fail of

exploitation strongly depends on a platform of targeted victim host which has

certain vulnerability. Therefore, if a victim host does not install an additional

plug-in application, an exploitation targeting certain plug-in application must

fail. My stepwise detection can recognize kind of vulnerability, known/unknown,

and successful/fail. In particular, it can detect failed exploitation in previous

phases (i.e., post-exploitation phase and exploitaion phase), although a honeypot

collect incomplete information, in other words, it cannot collect a malware binary.

We should manually analyze exploit code in detail and identify targeted applica-

tion to catch up the latest unknown explitation when spetwise detection discover

failed exploitation. We can feedback detected exploitlation and situation to im-

plementation of client honeypot to improve detection and information gathering.

Information of discovered unknown vulnerabilities supports security patch gen-

eration of OS/application vendors and detection signature of anti-virus/security-

appliance vendors.
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Table 5.2. Detection methods and classification

HM HP PDEP RB Classification
√ √ √ √

Memory corruption, Known, Successful
√ √ √

Memory corruption, Known, Fail
√ √ √

Both memory corruption and API misuse, Known, Successful
√ √ √

Memory corruption, Unknown, Successful
√ √

Memory corruption, Known, Fail
√ √

Memory corruption, Unknown, Fail
√ √

Memory corruption, Unknown, Successful
√

Memory corruption, Unknown, Fail
√ √ √

Both memory corruption and API misuse, Known, Successful
√ √

Both memory corruption and API misuse, Unknown, Successful
√ √

API misuse, Known, Successful
√ √

Both memory corruption and API misuse, Known, Fail
√

API misuse, Unknown, Successful
√

Both memory corruption and API misuse, Unknown, Fail
√

API misuse, Known, Fail
Undetectable

HM: Heap manipulation detection, HP: HoneyPatch, PDEP: Pass-through DEP handler, RB:

Rule-based event detection

5.3.5 Detection evaluation

I evaluated the functions of the developed client honeypot in an experimental

environment and real web space. The experimental environment had a web site

composed of the exploit codes of exploit kits and the Proof of Concept (PoC)

code published on the web.

In the experiment in real web space, I prepare two honeypot systems and try

to indicate the tendencies and differences of the exploitation methods under each

system. I used two systems that were set with MDAC either enabled or disabled.

MDAC’s vulnerability (MS06-014) occurs in Windows XP SP2 and older versions;

newer versions apply a security patch to MDAC. I used the 32,446 URLs listed

by Malware Domain List (MDL) [36] in its latest version at August 21, 2009.

I experimented from August 21 to 23, 2009. The URLs in the MDL include

not only sites having drive-by-download contents but also vanished sites, already

43



fixed sites, and suspicious file hosting sites. I experimented under the conditions

of these two settings, surveyed the attack patterns and detection coverage, and

compared the results of the two settings.

Heap manipulation detection

The distribution of all the heap space and maximum heap block sizes allocated

by a JavaScript engine on a web browser is shown in Fig. 5.5. Heap spraying

scripts of the exploit code in the experimental environment allocated about 500

KB to 4 MB as the maximum heap block, and all the heap space was about 80 to

230 MB. In contrast, the results of the maximum heap block size and all the heap

space allocated for crawling the MDL were widely distributed. I identified that

contents distributed in over 50 MB of all the heap space included heap spraying

code. The heap allocation size of heap spraying depends on the specific address

set as the return address of an instruction pointer in the case of buffer overflow.

Exploitation is successful if heap blocks including shellcode are allocated to that

address. In other words, exploitation fails if the allocated heap blocks do not

reach that address. To reach a certain address, the heap spraying script must

allocate a vast amount of heap space. Meanwhile, a maximum heap block size

does not strongly depend on the possibility of success. I set the threshold of heap

spraying detection, based on the above result, to 50 MB of all the heap space

allocated for crawling. In this regard, I confirmed that heap spraying can stay

below the threshold, although the possibility of success is significantly reduced.

Dataflow anomaly detection

My result indicated that HoneyPatch is able to precisely detect exploitation pro-

vided by PoC codes targeting the vulnerabilities. My implementation of Honey-

Patch is based on the conditions of occurring exploitations described in Section

5.1. This situation of occurring exploitations meets the conditions of HoneyPatch

detection. In contrast, a normal situation does not meet the detection conditions.

My implementation also detects attack attempts that fail to exploit a browser be-

cause it can determine whether an attack has occurred on a vulnerability.
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Rule-based event detection

This detection method may produce false-negatives if attacks using heap spraying

and shellcode fail because there is no file or registry access and process creation

events. At the same time, it can accurately detect attacks targeting MDAC’s

vulnerability (MS06-014) because the attack does not need both heap spraying

and shellcode and is successful in creating a malware executable and malware

process. In my experiment, I described, in advance of crawling, the legitimate

behaviors of newly installed plug-ins, such as the process creation of BHOs and

reading of the setting files. The detection method eliminated assumed false-

positives, but as mentioned above, false-negatives were produced.
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Combination of detection methods

I evaluated the developed variety of detection methods in real space. First, I

enumerate my eight assumed patterns of exploitation, including whether there

are known or unknown vulnerabilities and whether heap spraying is used or not,

in Table 5.3. Here, known and unknown represent whether HoneyPatch can or

cannot detect the vulnerabilities, respectively. A qualitative evaluation of the

coverage of the developed detection methods under the eight condition patterns

is shown in Table 5.4. For example, in pattern B, an attack performs heap

spraying, targets a known vulnerability, but cannot create malicious files and

processes because it fails to hijack the target web browser. As shown in the

table, each detection method produces false-negatives for each of the exploitation

condition patterns.

The detection rate of each method is shown in Table 5.5. Table 5.6 shows

the distribution of exploitation patterns. Of these, 68.4% and 22.4% of the ex-

ploitation attempts are detectable and fail to exploit (patterns B, D, and F) when

MDAC is disabled and enabled, respectively. In addition, 20.2% and 11.6% of

the exploitations are detectable and targeting unknown vulnerabilities (patterns

E and G) when MDAC is disabled and enabled, respectively. When MDAC is

enabled, 79.5% of the exploitations are detectable for the process sandbox be-

cause the MDAC’s vulnerability (MS06-014) is targeted and file creation events

and process creation events occur. In contrast, when MDAC is disabled, 29.4%

of the exploitations are detectable for the process sandbox because exploitation

attempts resulting from heap spraying and the running of shellcode fail. There-

fore, combining the three developed methods would detect these false-negatives

and improve detection coverage.

The percentage of vulnerabilities targeted for exploitation are in Table 5.7.

This information is used for comprehending the prevalence of web-based attacks

toward security researchers and for making security announcements to end users

(e.g., prompting them to apply security patches based on the tendencies of the

targeted browser version and plug-ins).
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Table 5.3. Exploitation patterns

Vulnerability Heap spraying Exploitation Pattern

Known Done Success A

Failure B

None Success C

Failure D

Unknown Done Success E

Failure F

None Success G

Failure H

Table 5.4. Coverage of each detection method

Pattern Pre-exploitation Exploitation Post-exploitation

A
√ √ √

B
√ √

-

C -
√ √

D -
√

-

E
√

-
√

F
√

- -

G - -
√

H - - -

Table 5.5. Detection rate of each detection phase

Detection phase MDAC disabled MDAC enabled

Pre-exploitation 161 (77.7%) 159 (63.8%)

Exploitation 104 (50.2%) 179 (71.8%)

Post-exploitation 61 (29.4%) 198 (79.5%)

Total (unique URLs) 207 249
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Table 5.6. Distribution of exploitation patterns

Pattern MDAC disabled MDAC enabled

A 17 (8.2%) 110 (44.1%)

B 79 (38.1%) 7 (2.8%)

C 6 (2.8%) 54 (21.6%)

D 2 (0.9%) 8 (3.2%)

E 4 (1.9%) 1 (0.4%)

F 61 (29.4%) 41 (16.4%)

G 38 (18.3%) 28 (11.2%)

H - -

Total (unique URLs) 207 249

Table 5.7. Percentage of vulnerabilities targeted for exploitation (observed in

2009)

Vuln. ID MDAC disabled MDAC enabled

MS06-001 0 (0%) 0 (0%)

MS06-014 0 (0%) 171 (63.8%)

MS06-055 4 (3.6%) 2 (0.7%)

MS06-057 16 (14.5%) 17 (6.3%)

MS07-004 6 (5.4%) 1 (0.3%)

MS07-017 5(4.5%) 0 (0%)

CVE-2008-0015 66 (60.0%) 67 (25.0%)

CVE-2006-5198 1 (0.9%) 1 (0.3%)

CVE-2007-0015 0 (0%) 0 (0%)

CVE-2007-3456 0 (0%) 0 (0%)

CVE-2007-5659 3 (2.7%) 4 (1.4%)

CVE-2008-2992 8 (7.2%) 4 (1.4%)

CVE-2009-0658 0 (0%) 0 (0%)

CVE-2009-0927 1 (0.9%) 1 (0.3%)
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5.4. Strategies toward high performance

In this section, I discuss the basic strategy to improve the inspection performance

of a client honeypot with precise information gathering. First, I introduce OS

multiplication, which is a normal honeypot operation, to improve performance.

Next, we consider process multiplication as a new operation for web browser

based honeypots.

5.4.1 OS multiplication

A conventional honeypot running on a high interaction system is separated by an

OS boundary to prevent secondary infection from another host and limit the dam-

age inside a compromised OS. A typical operation of a honeypot that improves its

performance is to employ many OSs simultaneously. A virtual machine monitor

(VMM) is generally used for this honeypot multiplication. A VMM provides a

virtually isolated execution environment for each OS as a virtual machine (VM).

When a specific vulnerability of a honeypot is exploited, the filesystem registry

and other processes on the honeypot OS are usually compromised. Therefore, the

honeypot OS should be restored to the original clean OS image after exploitation.

5.4.2 Process multiplication

A web browser based honeypot (i.e., a client honeypot) should employ many

browser processes simultaneously because a client honeypot requires only web

browsing functionalities at least. In addition, a web browser is not always busy

because it asynchronously sends requests and receives replies from websites . A

web browser cannot start rendering web content and remains idle when it is

receiving reply web content from the website. In particular, the idle time of

the web browser tends to be long when the web content is complicated and has

many transactions and when the round trip time of a website is long. Thus, a

client honeypot can improve inspection performance efficiency by launching other

browser processes when the currently running browser process is idle. In this way,

a client honeypot should simultaneously launch browser processes on the same

OS to reduce OS overhead.
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5.4.3 Process boundary operation for process multiplica-

tion

Process multiplication can resolve the above-mentioned OS overhead problem in

a client honeypot. We should consider how a client honeypot can provide a pro-

cess isolation mechanism for preventing interference by a compromised process,

because a compromised process can negatively affect other processes or can target

the entire system. For example, a compromised process usually installs a rootkit

to invade the kernel layer of a target system, terminates other processes in order

to interfere with monitoring systems (e.g., anti-virus and honeypot systems), or

compromises other processes running on the same OS by using code injection API

or indirectly injecting malicious code by replacing system dynamic link libraries

(DLLs).

It is difficult to precisely determine which browser process is exploited from

the simultaneously running processes when many browser processes run without

a process isolation mechanism on the OS. Therefore, a critical issue is how to

separate the processing boundary for honeypots to achieve process multiplication.

A comparison between OS boundary operation and process boundary operation

is shown in Fig. 5.6.

A mechanism of process isolation has been proposed that involves redirecting

the input/output (I/O) on a high interaction client honeypot [35]. A file created

by the web browser is redirected to a temporarily provided disk space, but a web

browser can transparently access a corresponding file. When a compromised web

browser attempts to create a file and execute it (i.e., a malware file), the I/O

redirection mechanism can prevent the original files from being altered, and the

client honeypot can detect a newly created file as a malware file. Moreover, the

client honeypot does not have to restore the OS image.

I use process multiplication for reducing OS overhead and OS multiplication

for achieving high scalability. My honeypot system is composed of the honeypot-

manager and honeypot-agents. The overview and workflow are illustrated in

Fig. 5.7. The honeypot-manager simultaneously controls honeypot-agents, and

a honeypot-agent also controls numerous web browsers. The honeypot-manager

first activates the VM of the honeypot-agent as the initialization procedure of a

honeypot instance. On an activated honeypot-agent, an agent process launches
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Figure 5.6. OS and process boundary operation

web browsers and makes them inspect URLs. After activation, the honeypot-

agent automatically refers to the honeypot-manager’s database and obtains the

seed URLs for inspection. The honeypot-agent then starts inspecting them. The

honeypot-agent reports results to the honeypot-manager, and retrieves inspection

URLs from the honeypot-manager for inspection again when the honeypot-agent

finishes i nspecting the current seed URLs. The seed URL list and its status

are stored in the honeypot-manager. When the honeypot-agent retrieves some

URLs from the honeypot-manager, the honeypot-agent changes the URL sta-

tus to fetched. When the honeypot-agent finishes inspecting a fetched URL, the

honeypot-agent changes the URL status to finished. When a web browser fin-

ishes inspecting the input URL, the honeypot-agent sends inspection logs to the

honeypot-manager. A bottleneck occurs when a single honeypot-manager con-

trols many honeypot-agents simultaneously, so communication concentrates on

the honeypot-manager side. Thus, the honeypot-manager can control honeypot-

agents until it reaches that peak.
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5.5. Sandbox on honeypot

I assume that sandbox which is a security mechanism for separating running

program is applicable to client honeypot in order to achive both requirements of

safeguarding and high performance. My sandbox mechanism on honeypot system

has following three aims:

• Detection

This is previously mentioned in Sect. 5.3. A sandbox should monitor all

API usages of target process (i.e., browser process and plug-in process) and

detect undefined behaviors.

• System protection

Honeypot system excepts exploitations, however honeypot system should

not completely compromised. A sandbox should protect a honeypot system

and ensure stable and sustainable running of honeypot.

• Process multiplication

To improve inspection perforance of honeypot, a sandbox should provide
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virtually isolated execution environment for each honeypot instance (i.e.,

browser process and plug-in process).

I explain and evaluate proposed sandbox mechanism in this section.

5.5.1 Process multiplication

Drive-by download targets vulnerabilities of client applications related to web

browsing, and enforces download/install malware executables. Conventional drive-

by download targets vulnerabilities contained in only main components of a web

browser (e.g., HTML parser, JavaScript engine). According to the evolving tech-

nology of web and developed plug-in applications, it also targets vulnerabilities

of plug-in applications. Since plug-in application (e.g., Flash, Acrobat, and

Java) can be installed in various web browsers, drive-by download targets both

browser-specific and plug-in vulnerabilities.

There are two types of plug-ins; running inside and outside a browser. The

former is loaded as a rendering engine by a web browser when launching the

web browser or receiving specific web content. For example, rendering engines

of Flash and QuickTime are loaded by a web browser into its process memory.

If a loaded rendering engine has a vulnerability, a browser process is at risk

of being compromised. The latter runs outside a web browser. When a web

browser receives specific web content such as PDF and JAR, it creates a browser-

helper process and delegates rendering. If a rendering engine of the browser-

helper process has a vulnerability, the browser-helper process is at risk of being

compromised.

Objective of sandbox was to analyze process behaviors by per-process sand-

boxing in order to reduce OS overhead. There are three functionalities for improv-

ing performance of a client honeypot with precise information gathering according

to the above-mentioned typical honeypot operation and an attack model.

1. Virtual isolation of process execution

A vulnerable process, which performs a target victim application, should

run independently of other processes and be accurately compromised. After

being compromised, it should be prevented from negatively effecting other
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processes or the OS.

2. Adaptive process creation control

(A) Restrict process behavior after exploitation

A hijacked process becomes a stepping-stone in compromising an entire

target system or intruding into the kernel layer. Thus, a honeypot should

restrict process behavior to some extent; otherwise, the system will be com-

pletely hijacked. Therefore, I investigated how to prevent the hijacking of

my system by malware.

(B) Enable rendering delegation

A web browser delegates the rendering of certain web content to browser-

helper processes such as the plug-in process. If the process sandbox restricts

process creation, web content rendering is stopped and cannot be completed

to inspect an exploitation. The result of over-restriction of process creation

is that an exploitation will not succeed on the honeypot system. Therefore,

the process sandbox should permit the browser-helper process and also in-

ject sandbox functions into it.

3. Consistency of virtual system view between related processes

When sandboxing each process, the file system and registry views are differ-

ent for each process. In cross process rendering, view inconsistency occurs.

For example, the browser-helper process cannot read a file for a plug-in

downloaded by the browser process without file view consistency. There-

fore, related processes should share common file and registry views.

According to the above requirements, I designed and implemented an original

client honeypot.

5.5.2 Process sandbox

File/registry system alteration caused by a hijacked process seriously affects other

processes on the same OS. To prevent direct/indirect interference between hi-
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jacked and normal processes, a honeypot should provide a virtual isolation en-

vironment for each process. I try to sandbox each process (process sandbox) by

using both stealthy API hooking and filesystem/registry I/O redirection. In addi-

tion, as mentioned in Sect.3.2.3, there are exploitations targeting browser-helper

process. For detecting these types of exploitation we should enable coopera-

tive behavior between related processes such as rendering delegation. I explain

the basic mechanisms of API hooking and I/O redirection in this subsection for

achieving virtual isolation of process execution. Next, I describe process creation

control and sandbox propagation for restricting behavior after exploitation and

enabling cooperative behavior between related processes.

Stealthy function hooking

Event monitoring in kernel layer can monitor basically all events. However, due

to capturing all system call events of both related and unrelated processes, event

monitoring in the kernel layer has a large amount of overhead. Therefore, I

consider API hooking per target process. Generally, API hooking in user-land is

easily detectable by malicious codes. Therefore, I must consider stealthy-hooking

APIs.

To control file/registry access, I used API hooking for Win32 APIs. API

hooking is used to intercept a target API procedure and alter it. When a process

uses a specific API, it loads a DLL and calls an API contained in the DLL. The

general API hooking strategy injects a jump code into the head instruction of the

target API for altering the API procedure and jumping to a hook function. The

hook function generally logs arguments of the hooked API and conducts other

procedures. It then returns an instruction pointer to the original API.

Detours [26] is the most standard API hook using the jmp instruction. It

hooks by overwriting the first six bytes of a target function with a jmp instruction

to a hook function. The overwriting code and hook function are loaded into

the target process using any code injection method (e.g., DLL injection using

CreateRemoteThread() API). Some exploit codes attempt to determine if the

target APIs are hooked by using security tools. If a hooked API is exposed by an

exploit code, the exploit code stops running or attempts to prevent API hooking.

I confirmed the above exploit code containing hook-prevention functionality in
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the wild.

; eax is stored address of target function

cmp byte ptr [eax], 0E9h ; hook check (jmp)

jnz short LABEL

cmp dward ptr [eax+5], 90909090h ; thunk check

jz short LABEL

; make prolog and skip first instruction

push ebp

mv ebp, esp

lea eax, [eax+5]

LABEL:

jmp eax

Before calling the target API, this code determines whether the first instruc-

tion of the target API is jmp. The code then determines that the API is hooked

and skips the first instruction to prevent hooking, except that this code deter-

mines jmp + nop as thunk. API hook prevention causes a breakout of process

sandboxing and enables the exploit code to hijack the target system.Therefore, to

counter API hook prevention, we should develop a functionality to make it diffi-

cult to determine whether the head instruction of the target API is replaced with

the jump instruction pointing toward the hook function. I developed a stealthy

API hooking procedure using a combination of adjustment and conditional-jump

instructions.The conditional-jump instruction jumps to an arbitrary address when

specific values of the EFLAGS register satisfy the condition indicated by the type

of conditional-jump ins truction.The EFLAGS register stores the current state of

the processer. For example, four flags; carry flag (CF), zero flag (ZF), sign flag

(SF), and overflow flag (OF), are set to 0 or 1 according to the arith metic results

of the instruction. An example hook instruction is when jz enables the instruc-

tion pointer to jump an arbitrary address set in the operand of jz instruction if

ZF is set to 0. Then, when the following typical instruction sequence example

cmp eax, eax
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jz hook-func-addr

is executed, an instruction pointer can jump an arbitrary address (i.e., hook-func-addr)

because ZF is set to 0 and a condition of jz instruction is always satisfied. I

can generate various combinations of adjustment and conditional-jump instruc-

tions because there are various kinds of flag registers and conditional-jump in-

structions. Therefore, we can generate numerous instruction patterns for my

stealthy API hooking procedure. From the viewpoint of adversaries, however, it

is difficult to recognize whether the target API is hooked before it executes the

head instruction, i.e., adjustment and condit ional-jump instruction sequence,

because it requires processor emulation for detecting the register state, which is

the conditional-jump instruction before it executes them. Due to the difficulty in

creating a specific signature pattern, an exploit code cannot detect this stealthy

API hook.

I/O redirection

To prevent internal alteration in a system, I developed an isolation mechanism

in which a system virtually accesses resources in each process. The alteration

actions affecting system behavior are file-system, registry-system, and process-

access events. I use an I/O redirection mechanism for file and registry access in

each process. Each process can transparently access target file/registry entities.

The process sandbox mechanism provides a virtual file system (VFS) for each

process. A VFS conducts I/O redirection and stores the correspondence relation-

ship between the actual target file path and redirected file path into a lookup

table, called a VFS table. A VFS table has three tuples (real file path, virtual file

path, and state). The real file path is a target file path actually input in the API

argument.The virtual file path is a redirected file path, which is named a random

string such as a universal unique identifier (UUID) string, and a file entity is

actually in this fil e path. State denotes the accessibility of file entities. If a web

browser calls the DeleteFile() API to delete RealFilePath A, the I/O redirector

sets the delete flag to the corresponding VFS entry, and the web browser cannot

look this entry up afterwards. A process executing a specific API cannot rec-

ognize the I/O redirection due to the transparent execution of I/O redirection.

Because that exploit code cannot detect the actual redirected VFS path and I/O
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redirection is transparent, the exploit code cannot recognize the I/O redirection.

Even if the exploit code attempts to alter the target system, I/O redirection can

suppress file system and registry alteration on a specific process and prevent it in

other p rocesses. Figure 5.8 shows the I/O redirection procedure. A benign web

browser usually accesses cache directories of the browser; thus, the VFS should

exclude them.

We should also adapt I/O redirection to the registry system because registry

system alternation seriously affects the system environment. I confirmed that

the following system alteration fatally affects the system; create a shortcut file

of an arbitrary program in the StartUp directory, register an arbitrary process

to the RunKey, set an arbitrary URL (it is often a malicious website) into the

StartPage of the browser. I also designed a virtual registry system (VRS) by

using I/O redirection. When create, read, or delete registry key events occur,

the I/O redirector looks up a VRS table and redirects registry I/O in the same

way as the VFS procedure. Thus, the VRS also should exclude registry access

events in a benign browser setup procedure. The VFS and VRS should man-

age entity states. The I/O redirector ensures consistency of the state transition

of file and registry entities. I give concrete examples of VFS entry changing

in move/copy/delete events. When a move event moves RealFilePath A to Re-

alFilePath B, the VFS entry (RealFilePath A, VirtualFilePath A) is changed to

(RealFilePath B, VirtualFilePath A). When a copy event copies RealFilePath A

to RealFilePath B, an additional VFS entry (RealFilePath B, VirtualFilePath A)

is created. When a delete event deletes RealFilePath A, a VFS entry (Real-

FilePath A, VirtualFilePath A) sets the delete flag and cannot be looked up, and

the entity of VirtualFilePath A is not actually deleted.

An entity of a created file is actually in a special working directory for the

VFS, which also includes malware executables. This entity cannot be deleted and

is saved as one of inspection logs. Once a file is created, it cannot be deleted,

even if a delete file event occurs, because the VFS entry sets the delete flag as

inaccessible to the target process.
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Figure 5.8. I/O redirection procedure

Process creation control

When exploitation is successful, an exploit code attempts to execute malware

executables on the compromised target system. To make matters worse, the
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system allows malware to intrude into the kernel layer when permitting arbitrary

process creation. Therefore, the process sandbox should monitor an API that is

able to create a process in order to restrict behavior affecting other processes (e.g.,

process termination and code injection). Some malware executables function as a

downloader, which has only download functionality, and download main malware

components from the Internet. Consequently, if the process sandbox restricts

the creation of a malware process, the honeypot system cannot obtain the main

malware components. However, we can solve the latter problem by using malware

sandbox systems that have permeable internet accessibility [4]. These systems

retrieve and analyze secondary executables.

Process sandbox propagation

General client honeypot implementation only monitors file/registry/process events;

it does not restrict them. Consequently, malware can completely hijack a hon-

eypot system. A honeypot system cleans the VM image of a honeypot and rolls

it back to the primary VM image if it is compromised by malware. In other

words, VM-rollback overhead cannot be prevented. Moreover, the risk of a com-

promised system attacking other systems until VM rollback is a serious limitation

of high-interaction honeypots.

A Web browser delegates plug-in applications for rendering specific web con-

tent. There are two types of rendering delegations: in-browser processing and

out-browser processing. Flash.ocx, which is a Flash plug-in loaded in the

browser process, renders Flash content inside the browser process. On the other

hand, AcroRd32.dll, which is an Acrobat plug-in loaded in the browser pro-

cess, launches new browser-helper processes such as AcroRd32.exe for rendering

a PDF file. In the same way, javaw.exe, which renders JAR files, is launched by

a browser-helper object of Java. Many exploit codes target out-process rendering

engines such as Acrobat and Java. Therefore, the process sandbox should permit

the launching of a specific rendering process to execute seamless processing of web

content. When process creation occurs, the process restrictor determines whether

to create or restrict the process according to a process restriction table. The

process sandbox injects sandbox functionalities (i.e., I/O redirector and process

restrictor) to related browser-helper processes when it is launched. Additionally,
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Figure 5.9. Process creation control and sandbox propagation

a browser-helper process always continues to run after delegated rendering of web

content. Therefore, a parent process, which is a browser process, terminates a

child process, which is also a browser-helper process, after rendering of web con-

tent. The above process creation control and sandbox propagation mechanism is

shown in Fig. 5.9.

Sharing virtual system view

Related processes can refer to the same files using the same VFS table. A child

process is launched and its behaviors are controlled in the same sandbox space

as the browser process (parent process). The above-mentioned sandbox prop-

agation, therefore, enables the sharing of the same file/registry system view as

the parent process and its child process by referring to common VFS/VRS tables

(Fig. 5.10). For sharing VFS/VRS, a parent process (i.e., browser process) noti-

fies a child process (i.e., browser-helper process) of the shared memory address of

the VFS/VRS tables when it is launched. My client honeypot system determines
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Figure 5.10. Sharing virtual file system

that the web browser process and its child process are the same crawling unit.

5.5.3 Multi-process launch/termination control

I describe the launch browser control and dynamic timeout control procedures.

The web browser process is periodically launched to inspect URLs; in other words,

web browsers sequentially access inspection candidate URLs. The web browser

process terminates when the browser finishes inspection, and a honeypot-agent

asynchronously launches another browser process to inspect the next inspection

candidate URL. Unlimited launching of processes consumes a large amount of

memory and processor resources, which destabilizes a system. Therefore, I set the

limit number of running processes and overload conditions such as memory usage,

number of TCP sessions, and Disk I/O. A honeypot-agent launches new browser

process when the number of current process (P current) is under the limit number

of process and the system is not overloaded. This process launch procedure is

repeatedly conducted in constant interval (T interval).

In the dynamic timeout control procedure, I set a default timeout value and

dynamically extend it according to the communication situation between browser
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Algorithm 1 Launch browser control procedure

Limit number of processes P limit ⇐ LimitNumProcValue;

Interval time T interval ⇐ IntervalTimeValue;

while

P current ⇐ number of running browser processes;

if P current < P limit then

if system is not overloaded then

launch new browser process;

end if

end if

sleep (T interval);

end while

and website in order to completely collect web content without interrupting com-

munication. When the elapsed time is over the default timeout value and there

are communication sessions, timeout is extended. If the elapsed time is over the

maximum timeout, the browser is terminated regardless of continuing sessions.

This dynamical timeout setup enables a web browser to completely download

and inspect web content. To understand a browser’s internal state, my imple-

mentation uses IWebBrowser2 [53], a common web browser control interface for

Internet Explorer. The DocumentComplete event notifies the DOM of received

web-content-mapping completion, in other words, rendering of web content is fin-

ished, except for event-driven actions. WatchDog is an interruption timer that

triggers certain corrective actions for the target program. These events simulta-

neously and asynchronously occur.

5.5.4 Implementation of process sandbox

My implementation of client honeypot system is based on Internet Explorer (IE)

6 and a Windows XP SP2 platform. Additionally, vulnerable versions of plug-in

applications (e.g., Adobe, Flash, Java, WinZip, and QuickTime) were installed

on the system. The web browser and OS versions include various exploitable

vulnerabilities, almost all of which can be attacked by many exploit packs, so
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Algorithm 2 Dynamic timeout control procedure

Default WatchDog timeout T timeout ⇐ DefaltTimeOutValue;

Max. timeout Tmax ⇐ MaxTimeOutValue;

Additional time T add ⇐ AdditionalTimeValue;

Elapsed time from launching browser T elapse;

DynamicTimeoutControl()

#DocumentComplete and WatchDog call this function

while T elapse < Tmax

if T elapse < T timeout then

if no established HTTP session then finish;

end if

else if established HTTP sessions exist then

T timeout = T timeout + T add

else finish inspecting;

end if

end while timeout and finish inspecting;

return;

they are suitable as the basis of a honeypot system. I implemented my system

with a specific type of web browser. However, my system is applicable to various

types of browsers because IE 7 and later versions and other browsers such as

Firefox provide a browser control interface.

I indicate that the hooking APIs listed in Table 5.8 enable my proposed client

honeypot system to effectively monitor and control the target process, e.g., web

browser or browser-helper process. I confirmed that hooked APIs performed

as expected. Functions that should be hooked are file operation, file finding,

registry operation, process creation, process termination, and code injection. To

implement my process sandbox, I confirmed that it was accurate and consistent

in a preliminary investigation on public web space and malicious websites.

I implemented honeypot-manager and honeypot-agent programs by mainly

using C++, except API hook functionality by inline assembler. I used a DELL
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Table 5.8. Hooked APIs for I/O redirection and process restriction

Category functionality DLL API example

File operate file kernel32.dll CreateFile(A|W), MoveFileWithProgressW,
CopyFileExW, DeleteFile(A|W)

find file kernel32.dll FindFirstFileExW, GetFileAttributes(W|ExW)

Registry operate registry advapi32.dll RegCreateKeyEx(A|W), RegOpenKeyEx(A|W),
RegSetValueEx(A|W), RegDeleteKey

ntdll.dll ZwCreateKey, ZwOpenKey

Process launch process kernel32.dll WinExec, CreateProcess(A|W)
ntdll.dll ZwCreateProcess(|Ex)

shell32.dll ShellExecuteExW

terminate kernel32.dll ExitProcess

process ntdll.dll ZwTerminateProcess

inject code kernel32.dll CreateRemoteThread

PowerEdge1955 Xeon 2.66 GHz with 4 core processors and 8-GB memory. Each

honeypot-agent VM was assigned 1 core processor and 2 GB of memory.

5.5.5 Evaluation

API hooking and I/O redirection overhead

I evaluated the overhead of API hooking and I/O redirection by using 5,000

benign websites and 2,699 exploit samples obtained from periodical inspections

of a public blacklist for almost four months (2011.08.07 - 2011.11.26). VFS entries

were created in only 10.8% of the benign websites. In these cases, VFS entries

corresponded to access events of plug-in applications, such as Acrobat, Flash,

and Java. For example, when rendering flash content, a browser-helper object

inside the browser accesses the plug-in’s working directory (i.e., plug-in’s content

cache and configuration files). During the rest of the inspections, file access

events are only of the default cache directory of the web browser. VFS entries

were also created in only 5.7% of the malicious websites. On the contrary, 96.9%

(2,618/2,699) of the detected inspection results had one or more VFS entries.

VFS entries are usually created by an exploit code because such codes create files
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Figure 5.11. Distribution of VFS entry numbers

downloaded as malware. The reason no VFS entry was created during detected

inspection is due to failure to exploit the target system or download malware

executables. The entry numbers of the VFS table are shown in Fig. 5.11. As

mentioned above, created VFS entries were at most only about 10%; moreover,

VFS during the inspections of benign and public websites had fewer than 20

entries in 94.6% and 92.2% of the results, respectively. Even if VFS lookup

occurs, almost all VFSs contain fewer than ten entries. In addition, there is no

increase in I/O redirection overhead in proportion to file size because the I/O

redirector only replaces the destination file path with another file path. Thus, I

believe that VFS lookup exhibits negligible low overhead.

Inspection performance

In a client honeypot, the web browser must wait during the sending of a request

and receiving a reply. On the same OS multiplexing applications, my system

processes other applications while specific processes are idle. Therefore, I evalu-

ated how many processes my system launches simultaneously and how long time
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inspection takes.

I discuss how much idle time the browser process requires. Process running

time (T run) is the difference between the process-launch and process-terminate

timestamps. The amount of time it takes for the process to be executed in

the kernel and user modes are represented as T kernel and T user, respectively.

Idle time (T idle), which mainly includes I/O waiting time, is represented as

T run − (T kernel + T user). We can conduct effective inspection when there are

many processes running simultaneously. I obtained T kernel and T user by using

the GetProcessTimes API when each browser process is terminated. The idle

time of the browser process in actual inspections is shown in Fig. 5.12. The

average percentages of the total inspection completion time of the public black-

list and benign websites taken up by idle time ( 1
N

∑N
n=1

T idle

T run ) were 91.2% and

86.3%, respectively. Consequently, I characterize inspection completion time ten-

dency such that idle times of both URL lists occupy most of the total inspection

completion time.

Due to the fact that many blacklisted websites have already vanished, inspec-

tion finishes immediately after receiving a DNS error or server error. Benign

websites contain various types of web content and cause many sessions to cross

to other websites; therefore, inspection sometimes takes several minutes. I inves-

tigated individual inspection completion times of benign and malicious websites

(Fig. 5.13). The average individual inspection completion time of blacklisted

websites was much lower than that of benign websites, and 90% of the inspec-

tions finished within 25 and 154 seconds, respectively. On the contrary, individual

inspection completion times of benign websites were widely distributed due to the

variety and complexity of the web content.

The number of simultaneously running processes is shown in Fig. 5.14. Many

simultaneously running processes can conduct effective inspection. When inspect-

ing a public blacklist, the number of running processes cannot reach the maximum

process number and only about two or three processes run simultaneously due to

short inspection completion time caused by DNS error of vanished websites. On

the contrary, due to long inspection completion time caused by multiple sessions

during the same inspection, the number of running process can easily reach the

maximum process number during the inspections of benign websites. As men-
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Figure 5.12. Idle times of browser process

Inspection completion times that are defined as summations of running and idle time) are

arranged from highest to lowest. I randomly picked 500 inspection samples.
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Figure 5.13. Inspection completion time of each URL

Tmax was set to 360 seconds.

tioned in Sect.5.5.3, the interval time of the launching process (T interval) should

be longer than the process setup time (T setup), i.e., T interval > T setup. I found that

the most efficient T interval was 5 seconds in my inspection environment, although

this strongly depends on hardware specifications. When I set a smaller T interval

than that of the above heuristic set, my client honeypot system exhibited an ex-

tremely high average load. Due to processor and memory resource consumption

of the browser setup procedure, a system should not launch additional browser

processes before the previous browser process is completely setup. Regarding the

setup time of the browser process, I created an interval between the launching of

the browser processes. The setup time is the process loading time and the time

it takes to inject sandbox functionalities into the target process. Overlapping

browser setup procedures easily causes an extremely high average load on the

system. The average time of inspection completion is expressed as 1
N

∑N
n=1 T run

n .

I estimated that the maximum logically possible number of running processes is

P , satisfying the following formula: PT interval ≤ 1
N

∑N
n=1 T run

n . If the average

time of individual inspection completion is less than T interval

P
, the system is often
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Figure 5.14. Distribution of number of simultaneously running processes

P limit was set to 20 processes, and T interval was set to 5 seconds.

saturated with running processes. If it tends to be more than T interval

P
, P can-

not reach the P limit. The number of current running processes does not always

reach the maximum process number when the upper limit is increased. Due to

the fact that many public blacklists are DNS errors, the maximum number of

processes cannot be reached. On the other hand, since sessions are successful

during inspection of benign websites, multiple sessions easily occur and reach the

maximum number of processes.

The total inspection completion times in a single-process/multiple-processes

and single-OS/multi-OS are listed in Table 5.9. When inspecting using a single

browser process, the summation of the above inspection completion time nearly

equals the total inspection completion time of all the URLs on the list. When in-

specting using multiple browser processes, my system can reduce total inspection

completion time because it can conduct overlapped inspections. Due to short

individual inspection completion time for public blacklist inspection, the number

of current running processes peaked at about five. According to the number of
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Table 5.9. Total inspection completion time

URL category Honeypot-agent Process (sec.)

Single process Multi-process

Blacklisted Single agent 18,565 5,123

websites 5 agents 3,686 1,097

10 agents 1,982 573

Benign websites Single agent 46,578 7,183

5 agents 9,892 1,510

10 agents 4,759 566

Each list includes 1,000 URLs. Blacklisted websites’ URLs are the latest registered URLs picked

up excluding duplication of the FQDN or IP address of URLs, and benign websites are the top

1,000 URLs from alexa. Maximum process number is limited to 20.

running process, total inspection completion time peaked for five processes and

was three times faster than that of a single process. On the other hand, there was

a comparatively long individual inspection completion time in benign websites;

there were over ten running processes. Therefore, the total inspection comple-

tion time is about five or six times faster than that of a single process depending

on the number of running processes. Total inspection completion times under

the multi-OS condition linearly decreased independent of properties of both lists.

By combining both multi-OS and multi-process conditions, my client honeypot

performs 30 to 80 faster than that under the single OS/single process condition.

Although these specific values depend on hardware specifications, I confirm that

the performance of my client honeypot can be improved.

Influence of detection

I used 2,699 exploit samples obtained during four months, similar to the experi-

ment discussed in Sect. 5.5.5. I confirmed that the patterns, in which the browser

launches a child process when they are exploited, are Acrobat and Java. When a

web browser receives the MS06-001 exploit code, it launches rundll32.exe and

loads specific vulnerable components; however, I did not observe this exploitation

in my field trial. I classified the seven exploitation patterns listed in Table 5.10.
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Table 5.10. Exploit pattern distribution

Category Pattern Percentage

In-browser Out-browser

Acrobat Java
√

A 28.0
√

B 8.9
√

C 3.2
√ √

D 2.1
√ √

E 20.4
√ √

F 8.1
√ √ √

G 29.6

40% of exploit patterns targets a single application (i.e., pattern A, B and C),

and 60% of exploit patterns (i.e., pattern D, E, F and G) targets several app

lication. The patterns targeting in-process (i.e., patterns A, D, E and G) means

that rendering objects inside the browser process are exploited. These rendering

objects are the original browser’s rendering engines and browser-helper objects

such as Flash. In addition, 72.3% of exploit patterns (i.e., patterns B, C, D,

E, F and G) target browser-helper processes or both browser-helper processes

and web browser. Moreover, 20.2% of exploit patterns only target browser-helper

processes (i.e., patterns B, C and F). Patterns excluding in-process are not suc-

cessful in exploitation unless a web browser launches a browser-helper process.

To increase the success rate of exploitation, many exploit codes are written to

exploit multiple vulnerabilities at once. The results show that most exploitation

patterns are both in-process and out-process exploitation.

5.5.6 Other isolation methods for execution environment

There are also many works of sandbox for isolating running programs, while not

necesarily for honeypot. Linux-VServer [59] is a chroot-based filesystem virtu-

alization/isolation mechanism which creates individual containers for providing

many independent Virtual Private Servers(VPS). Tahoma [15], which is a VM-
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based browser sandbox mechanism, uses VMs to provide sandboxes for each web

browser instance. Middlebox approaches are alternative to previous mentioned

approaches on an end-host, for example SpyProxy [50], BrowserShiled [69] and

WebShild [33] are browser sandbox implementations performing as a Web-proxy.

5.6. Collecting information

I explain how to identify the relationship between malicious URLs on malware

distribution network, and how to extract malware exevutables from the filesystem

on honeypot. In addition my client honeypot performs user interaction for han-

dling dialog window to download click-download malware. Detecting exploitation

and recoding behavior of compromised process have already been mentioned in

Sect. 5.3 and Sect. 5.5.

5.6.1 Link extraction

Malicious websites are structured in multiple stages using redirection. Compro-

mised websites which are originally benign are often used for landing website of

malware distiribution network. In contrast, both exploit websites and malware

distribution website are originally hosted with malicious intention. Categorized

identification of malicious websites is important, because we should take appro-

priate measures, e.g., notify an administrator of compromised website, filter web

accesses toward exploit websites and malware distribution websites.

However, many existing client honeypots cannot extract the site to which the

redirection leads (only extract the first accessed sites). HoneyMonkeys [83] also

tried to extract these redirect chains, but it only tracked a 2-tuple: source URL

and destination URL that indicate the way of traffic redirection relationship.

To track multiple-staged malicious sites in detail, I implemented Link extrac-

tor which is a function to extract the URLs and the category of redirection in

concurrence with patrolling. The function extracts a 3-tuple: source URL, des-

tination URL, and connection category. For example, iframe redirection from

www.xxx.com to www.yyy.com is represented by (www.xxx.com, www.yyy.com,

iframe). In addition, I extract not only redirection but also other auto loading
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URLs (e.g., the URL setting the src attribute in a script tag) and hyperlink URLs

setting anchor tags.

Link extractor combined two methods: network-based and host-based extrac-

tion. The former is local proxy that traps HTTP access and checks the destination

URL of an HTTP request and the source URL, which is the referrer. The latter

is DOM parser that searches a certain tag from a DOM2 tree on a web browser

after de-obfuscating script runs and extracts the destination URL (i.e., targeted

URL by src attribute) and source URL (i.e., current frame URL). The reason

to combine two methods is that often one method is not sufficient to extract

3-tuples; HTTP access trapping is not effective because it does not identify the

redirect category, while DOM parsing is not effective in the case of a DOM object

dynamically rewritten by a script after trapping a document complete event or

incomplete DOM object when a timeout occurs. In this way, link extractor is

compatible with the redirections. For an unknown category of HTTP access, the

category is set to unknown.

I conducted experiment to collect information of malware distribution network

in April 1 to December 31, 2012. My developed system inspected blacklist URLs

(malwaredomainlist.com) and detected 5,690 inspection. 1,392 landing URLs

corresponding to 5,690 inspection were registered in blacklist. My developed

system newly discovered 759 URLs of exploit site and 1,622 URLs of malware

distribtuion site.

A client honeypot with link extractor is also applicable to diagnosis of benign

website. Benign websites are compromised or include parts of ads which conduct

drive-by donwload and become landing website without consciousness of admin-

istrator of website. In this case, the client honeypot detect exploitation and also

identify both a landing website which is originally benign and redirected URLs

which are originally malicious.

5.6.2 User interaction handling

If a file downloading or security warning event occurs, a web browser creates dialog

boxes prompting a user to click and stops the processing of the web contents.

2Document Object Model (DOM) represents data structure of web contents on the browser
memory.
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These boxes remain until a user pushes the button for activation. For the web

browser to continue processing, the system has an automatic dialog click function

that performs the following steps: 1) search any window that has the same process

ID as the web browser, 2) check which window caption means activation3, and

3) send a button click message to the window. Downloaded files are stored into

VFS.

5.6.3 Malware collection

The process sandbox copies newly created files without cache or config direc-

tories of browser or plug-in. These files are usually malware created by com-

promised process or above mentioned clieck donwload action. An example of

legitimate behavior is creating cache files by web browser in the cache directory.

An example of malicious behavior is creating files in the system directory such as

C:\\WINDOWS\SYSTEM32. My honeypot can extract newly created files without

cache and config from VFS regardless of download types.

5.6.4 Web contents recording

Malicious web contents contain exploit codes or malicious redirect codes that are

also important information for countermeasure such as signature generation. Web

contents are not usually recorded as files on normal web browser. Therefore, all

web contents that are communication data between client honeypot and the web

server are recorded by a local proxy. The local proxy relays the HTTP session as

a simple HTTP proxy server and records the HTTP session. HTTP session data

include the HTTP header and the payload strings that are web contents.

5.7. Camouflaging victim host

We should consider how a honeypot camouflages victim host. We learned anti-

emulation techniques and client blacklisting in Chapter 4. In the former, to

attract drive-by download, I prepare appropriate actual platform with vulnerable

3Window caption of download dialog is usually labeled OK or Save.
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applications to perform victim host, In the latter, I randomize IP address of

honeypot to circumvent client blacklisting.

5.7.1 Victim platform selection and coexistence consider-

lation

An adversary take a measure to using anti browser-emulation techniques previ-

ously mentioned. Therefore we should use real OS and apllications to camouflage

an actual victim host. There is a problem of what kinds of OS and applications

should be installed in a honeypot environment. Vulnerable OS and apllications

are obviously canditates installed in a honeypot environment, however we should

select kinds and versions of them according to coexistence considerlation. For

example, Internet Explorer and Firefox are cannot coexistence in each inspec-

tion, and also version 8.1 and 9.0 of Adobe Reader cannot be installed in same

web browser. Each kind and version of application has a different exploitable

vulnerability, therefore a conflict of coexistence is unavidable on high-interaction

system.

The platform of my developed client honeypot is Internet Explorer 6.0 on

Windows XP SP2. Internet Explorer is wel-known web browser and has numer-

ous users, on the other hand unfortunately adversaries try to find exploitable

vulnerabilities of it. In the result, various exploitable vulnerabilities of it are

explosed and almost all these vulnerabilities can be attacked by exploit kits, it is

suitable as the basis of a honeypot system. Symantec [75] reported that most tar-

geted browser vulnerabilities are related to Internet Explorer 6 or a later version,

and most targeted plug-in vulnerabilities are related to older versions of Acro-

bat Reader and Flash Player. Client honeypots should prepare various types

and versions of common browsers and plug-ins to improve detection coverage be-

cause all users of vulnerable applications are potential victims. For this reason,

I implemented on the above platform the developed client honeypot. Addition-

ally, vulnerable versions of QuickTime 6.5.2, WinZip 10.0, Flash Player 9.45,

Acrobat Reader 8.1 plug-ins and Java 1.6.0 were installed. On the basis of the

Symantec report, I assume that my prepared environment is able to cover most

exploitations. My system can run other versions of Internet Explorer because
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it uses IWebBrowser2 [53], a common web browser control interface for Internet

Explorer. Other web browsers provide similar interfaces for web browser con-

trol (e.g., Firefox provides XULRunner [51]). For my system to run these other

browsers, we need to adjust its web browser control interface to one specific to

the target browser.

How can we select appropriate honeypot platform?

It is a limitation of high-interaction systems that only an exploit code that targets

a specific type of web browser expected by this honeypot implementation can be

detected. On the other hand, a browser’s plug-in exploitation is not affected by

browser type and version because vulnerabilities of plug-ins are independent of

those of a browser. I confirmed that many exploitations target both a web browser

and it’s plug-ins in my field trial. Due to these sequential exploitations, even if

browser exploitation failed, a browser’s plug-in exploitation will be successful and

also detectable to a honeypot.

Document format exploitation

Many reports from security venders indicate that Microsoft Office applications

have been targeted by recent attacks. Some of these attacks are conducted via

web browsers. SnapshotViewer is an ActiveX object, which is an Office com-

ponent that contains vulnerabilities (CVE-2008-2463). A web browser performs

in-process rendering of this vulnerable ActiveX object. However, some exploit

codes targeting office vulnerabilities require the launching of Microsoft Word or

Excel due to out-process rendering. On the other hand, I confirmed that there

are few URLs that have directly accessed office document files (i.e., .doc, .xls)

containing explo it codes in my blacklist inspections. This type of exploitation

is out of the scope of this paper because it is usually used for mail-based target

attacks.

5.7.2 IP address randomization

Other serious anti-detection technique is client blacklisting. A malicious websites

records client access events and regard repeated accesses as a security inspection
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Figure 5.15. Reverse load-balancer for IP address randomization

activity. If a client honeypot is exposed by a malicious website, it is interfered

with inspection.

To counter client blacklisting, I construct a network environment with IP ad-

dress randomization. This network environment is used a reverse load-balancer

which has several tens of broadband routers of Internet Service Providers (ISPs).

Commonly, a load-balancer distributively forwards incoming HTTP requests to

web servers in a server farm. A reverse load-balancer distributively forwards

outgoing HTTP requests to launching points in a IP address pool. It repeatedly

reboots many broadband routers at regular time intervals in order to continuously

obtain new global IP addresses of them. When a client honeypot access mali-

cious websites via this reverse load-balancer, a malicious website receives HTTP

requests with randomly distributed IP addresses (Fig. 5.15). Due to randomness

of client IP addresses, it is difficult to client blacklisting.
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Table 5.11. Total assigned IP address (observed in July, 2012)

ISP # broadband # assigned # single assigned # multiple assigned

router IP address (unique) IP address IP address

ISP A 10 4,856 3,273 1,583

ISP B 5 3,506 3,280 226

ISP C 5 2,764 2,626 138

ISP D 5 1,316 748 568

An ISP provides certain IP address from their IP address pool. If ISPs has

enough number of IP address, let a number of obtained IP address Nip be defined

as Nip = Nisp
Telapse

Tinterval
, where Nisp is a number of broadband router of ISP and

Telapse is elapsed time and Tinterval is interval time of reboot. In my deployment,

25 broadband routers (10 broadband routers of ISP A, 5 broadband routers of

ISP B, 5 broadband routers of ISP C, 5 broadband routers of ISP D) are under

the reverse load-balancer. Each broadband router is rebooted at hourly intervals

and assigned new IP address. Fig. 5.16 indicates that my reverse load-balancer

obtained average unique 466 IP addresses per day and summation of unique IP

address is linearly increasing. The reason that the average unique IP address is

under the theoretical value (25 broadband routers × 24 hours
1 hour

= 600) mentioned

above formula is duplicated assign of IP address that means obtained IP address

have been assigned in past time. Total assigned IP address indicates in Table

5.11. Duplication of assigned IP addresses is shown in Fig. 5.17. In particular,

IP address duplications are occurs in ISP D, however almost all the numbers of

duplicated IP address are under 40 IP addresses for six months. Therefore, IP

address duplication is a trivial issue to short duration (one or a few days) of client

blacklisting.

The inspections using static IP address environment and IP address random-

ization were conducted around the same time in April 2009. The numbers of

detected URLs of static IP address environment and IP address randomization

environment are 147 URLs and 189 URLs, respectively. In other words, 32 URLs

became undetectable. The result indicates two important things: 16.8 (32/189)
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(observed in July, 2012)

% of malicious URLs conducting client blacklisting, and IP address randomiza-

tion can overcome client blacklisting. I assume that IP address randomization

becomes increasingly important according to the growing availability of exploit

kits equipped client blacklisting.

5.8. Architecture and workflow of developed client

honeypot

As previously mentioned, my developed client honeypot, called Marionette, has a

high-interaction architecture equipped proposed methods satisfying enumerated

requirements. First, it accesses web pages based on a seed URL list and collects

web contents and relative URLs (e.g., hyperlink URLs and automatically loading

URLs). Next, if an exploitation attempt occurs, the system collects the accessed

URL, category of vulnerability, and malware executable. The architecture of

Marionette is shown in Fig.5.18. The database (DB) stores the seed URL list for

80



crawling and the crawling log data. The parent process takes the URL list from

the DB and controls crawler processes simultaneously. A crawler process receives

a command from a parent process and crawls the indicated URL. The parent

process uses web browser control, which is a common interface for controlling

web browsers. First, the parent process launches a web browser. Second, it

inputs a target URL as the argument of the browser-navigation function to start

the crawling. The parent process controls the behavior of a web browser based on

the state of the web browser (e.g., download complete event, document mapping

complete event, etc.) provided by callback events. The local proxy located in the

egress network has three functions: 1) acting as an HTTP proxy, 2) recording an

HTTP session log, and 3) filtering malicious communication caused by malware

for safety.

5.9. Summary

On the basis of adversarial techniques mentioned in Chapter 3 and existing hon-

eypots mentioned in Chapter 4, I enumerated requirements of client honeypots:

detection precision, inspection performance, information collection, safeguard-

ing, and camouflaging. I enumerated the primary requirements for designing and

implementing a client honeypot: detection precision, inspection performance,

information collection, safeguarding, camouflaging, and seed URL selection in

Chapter 5. After considering a qualitative comparison between high-interaction

and low-interaction honeypots in terms of requirements, I determined that high-

interaction honeypots have the appropriate architecture to use with drive-by

downloads. To improve the advantages and strengthen the weaknesses of high-

interaction systems, I proposed measures corresponding to the individual require-

ments. First, I proposed stepwise detection in multiple phases of exploitation for

the detection precision. The combinational result of stepwise detection identified

various patterns of exploitation. In particular, even though memory corruption

based exploitations are only probabilistically successful, my stepwise detection

can detect a failed exploitation that is not detectable with conventional detection

techniques. I proposed two approaches to achieve high-inspection performance

and safeguarding,: 1) a multi-honeypot-agent OS, and 2) a multi-browser-process.
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The first approach employs a distributed and autonomous honeypot system for

scalability. The second approach provides process-level execution in a virtually

isolated environment in order to reduce OS overhead. By combining both multi-

OS and multi-process conditions, my system performs 30 to 80 times faster than

that under the single OS/single process condition. To collect precise information,

my system coordinates both network-based events (HTTP transactions) and host-

based events (DOM structures on web browser) to identify complex URL graph

structures. In the experiment, my system newly discovered 759 URLs of ex-

ploit sites and 1,622 URLs of malware distribution sites in the back-end of 1,392

landing URLs. For camouflaging, my honeypot is based on a high-interaction

system performing as an actual victim with vulnerable applications. In addition,

my client honeypot disperses launching points on various IP addresses of ISPs

through a reverse load-balancer.
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Figure 5.17. Distribution of assigned IP address (observed in July, 2012)
Obtained IP addresses are converted to long IP and arranged from lowest to highest.
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Figure 5.18. Architecture of Marionette
The workflow of Marionette is follows; 1) The honeypot-manager activates honeypot-agents, 2)
The agent-process on honeypot-agent retrieves URL lists, 3) The agent-process launches web
browsers and dispatch retrieves URLs to them, 4) Web browsers inspect URLs, and 5) The
agent-process sends ligs to the honeypot-manager.
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Chapter 6

Field investigation and

experiment

In this chapter, we conduct a large-scale field investigation using Marionette

developed in Chapter 5 to confirm feasibility of our implementation and disclose

the prorerty of observed malicious website and collected malware executables.

6.1. Proparty of malicious sites

The result of our large scale field investigation indicates the property of malicious

website. I analyzed the relations between the URL, FQDN, and IP address of

detected malicious web sites in 2009. There were 5,770 unique URLs, 2,130 unique

FQDNs, and 644 unique IP addresses involved with the detected sites. Certain

FQDNs had multiple malicious URLs, such as the file hosting site shown in Fig.

6.1. Likewise, certain IP addresses had multiple FQDNs, such as the hosting

server shown in Fig. 6.2. In particular, large hosting servers hosting malicious

sites including hundreds to 1,300 FQDNs were observed. The number of FQDNs

and URLs on each IP address are shown in Fig. 6.3. This figure represents the

types of hosting: 1) one IP address with one URL on one FQDN, 2) one IP address

with multiple URLs on one FQDN, 3) one IP address with one URL on each of

multiple FQDNs, and 4) one IP address with multiple URLs on multiple FQDNs.

The graph structures of malicious URL hosting types are whown in Fig. 6.4.

These types have advantages and disadvantages with regard to manageability,
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operability, and difficulty of countermeasures for adversaries. Types 3) and 4)

require the maintenance cost of a domain name, but on the other hand they can

easily evade listing on a URL blacklist. In the case of running many web servers

of type 1), an adversary must pay additional server maintenance costs. I assume

adversaries choose applicable types of hosting for themselves in consideration of

the associated cost and trouble.
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Figure 6.4. Variations of malicious URL hosting

6.2. Proparty of web-based malware

I collected about thirty thousand malware executables in this field investiga-

tion.For reducing false-positives, where legitimate files are identified as malicious

by mistake, we differentiated files according to whether or not they were created

after a certain vulnerability was exploited. Then we extract newly created sus-

picious format files (e.g., .exe, .sys, .scr, .vbs, .bat and so on). When malware

executables are classified by SHA1-hash values, there are only 695 unique bina-

ries. The reason that the number of unique binaries is only 1/40 of the number

of collected malware binaries is mentioned in Sect. 6.3.2. I conducted anti-virus

(ClamAV [11]) scanning and behavior analysis using our analysis tool, which
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executes malware executables on a virtual environment and monitors their com-

munication. I compared the executables collected from February to August 2008

in September 2008 to the latest anti-virus pattern file. The results are shown

in Fig. 6.5. Of the executables, 69% were identified as a variant of malware.

In other words, 31% of the executables were false-negatively identified as nor-

mal. What is more, in the case of anti-virus scanning straight after collection,

the identification rate was less than 40%. The rate depends on the period from

discovering a malware and creating an anti-virus pattern file to publicly releasing

the file. Many identified malware are categorized as Trojan-Downloader or vari-

ants of it. Trojan-Downloader has a simple download function, and it downloads

main components (e.g., mass-mailing module, DDoS module, information stealer,

etc.) to the target’s PC. Thus, analyzing only a downloader itself is insufficient

for revealing the primary aim of an adversary.

Next, the malware was analyzed by our dynamic behavior analysis engine,

which executes malware and monitors its communications. This system has two

environments: a closed environment and half-open environment.The former in-

cludes fake servers (i.e., DNS, IRC, HTTP) emulating the real Internet in a virtual

environment, and the latter connects to the real Internet according to need (e.g.,

to download a additional component). In this analysis, each malware was an-

alyzed for 3 minutes in a closed environment. The result of dynamic behavior

analysis of collected malware executables is shown in Table 6.1. Of the mal-

ware, 57% communicate with other hosts, and 96% of those 57% communicate

by HTTP. This result shows a distinction of malware based on infection vectors.

Generally, it said that typical malware such as a bot (Sdbot, Mocbot, Spybot and

so on) uses Internet Relay Chat (IRC) as its main communication protocol, while

web-based malware mainly uses HTTP. The reason that web-based malware uses

HTTP is that it is commonly used by Internet users and is easy to camouflage as a

normal communication to circumvent detection. Communications to other hosts

involve downloading main components by downloader and sending compromised

hosts’ information to adversaries’ servers.

I extracted 239 FQDNs and 110 IP addresses from communications with mal-

ware and 349 remote hosts after infection. Some different malware executables

communicate same destination hosts and same communication pattern such as

88



22%
8%7%5%4%3%20%

31% Trojan . Dow n loaderTrojan . Ag entTrojan . PeedTrojan . Sm allTrojan . SpyTrojan . DropperOtherUnknow n
Figure 6.5. Variants of malware

protocol and payload strings. One of the occasions is that these malware exe-

cutables derived from multiple exploit sites made by same adversary. Therefore,

we assume that specific communication patterns enable rough classification of

malware executables for simplifying malware analysis based on the similarity of

communication pattern in advance of high cost and in-depth analysis such as

reverse code engineering, long-term dynamic analysis and so on.

6.3. Tracking malware distribution networks

To track malware distribution networks, our system extracts the relations between

each URL on those networks. I extracted and analyzed the redirect chain intended

for detected URLs.

6.3.1 Extracting redirect chain

I extracted source-destination URL pairs, those of IP address pairs, and the

category of redirection within detected URLs in Sect. 6.1. 17% of FQDNs and
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Table 6.1. Result of dynamic behavior analysis

Num

Execute 653

Communicate 399

TCP 389

HTTP 382

PORT 80 16

IRC 1

Other 8

UDP 291

DNS 287

Other 19

Non-Comm. 154

Non-Exec. 42

Table 6.2. Statistics for categories of redirect used by detected malicious sites

Category Percentage

Iframe 71.2

Frame 11.3

META-refresh 0.01

HTTP-30x 16.2

Other (JavaScript or Unknown redirect) 0.01

34% of IP address were newly extracted. In other words, these sites were behind

the first accessed URLs.

Detected malicious sites often use multiple redirect and multi-hop redirect

methods. Statistics for the categories of redirect are shown in Table 6.2. Almost

all the redirect methods mainly use iframe.
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6.3.2 Backend aggregation of malware distribution network

A visual representation of a part of the observed malware distribution networks

is shown in Fig. 6.6. Circles and arrows represent URLs and the direction of

redirect, respectively. Most parts of the observed malware distribution networks

represent a feature of scale-free networks. The basic structure is an abundance of

landing sites chaining to several hub nodes (e.g., hopping sites or exploit sites).

Some networks composed of thousands of nodes exist. The reason the number

of unique binaries is only 1/40 of the number of collected malware binaries is

that the same exploit sites were accessed and the same malware executables were

downloaded in many cases. Adversaries employ compromised website as landing

website for disposable use. In contrast, they conceal a backend-core website such

as exploit website and malware distribution website containing important imfor-

mation (e.g., exploit code, malware executable, access inforamtion). Trancking

malware distribution network discloses this aggregated structure.

I assume a representative countermeasure against web-based attacks is URL

or IP filtering. This countermeasure is effective for filtering hub nodes rather

than filtering all nodes from these scale-free networks because the contents of hub

nodes often include exploit codes and that of terminal nodes often include only

redirect instructions. Moreover, because migration of nodes is difficult for large

scale networks, the network structure of large groups is comparatively stable.

The number of passive references (in-degree) from each node and the number

of join nodes which are underlying UPLs from certain URL to leaf URLs for

redirection are shown in Fig. 6.7. The numbers are arranged from highest to

lowest. A measure against nodes having many passive references (the left side

of Fig. 6.7) would be effective. For example, if we filter the top ten URLs

with regard to in-degree, we could defeat about 85% of detected malicious URLs

without filtering each detected URL.

6.4. Lifetime of malware distribution networks

I checked the same sites on our URL list periodically for half a year. I observed

the changing structure of malware distribution networks and the decrease of the

malicious sites within. The increase and decrease of the number of sites in five
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Figure 6.6. Visualization of detected malware distribution networks

of our chosen networks and the total number of detected URLs are shown in Fig.

6.9. This figure includes the top three large scale networks. As time advanced,

the number of chain nodes gradually decreased for the majority.

Small scale networks and stand alone sites have the tendency to be com-

paratively unstable (i.e., to disappear within a short time or merge with other

networks). In contrast, the structure of large networks is comparatively stable

because node migration is difficult in large scale networks. For example, 91.6% of

the nodes in the largest network (network A) had existed for at least 5 months.

Meanwhile, small scale networks tend to survive shorter than that of large scale in
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our result. I assume that aggregated structure has trade-off between low manage-

ment cost to high migration cost. For this reason, filtering of large scale networks

is more effective than that of small scale networks or stand alone sites.

6.5. Summary

I confirmed the feasibility of my client honeypot implementation and disclosed

the properties of observed malicious websites and collected malware executa-

bles. In particular, my investigation result revealed various hosting structures of

malicious URLs and aggregated malware distribution networks. Small malware
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distribution networks and stand-alone malicious websites have a tendency to be

comparatively unstable. In contrast, large malware distribution networks are

comparatively stable. Moreover, if we filter the top ten passive referenced URLs

that are backend-core websites, we can defeat about 85% of detected malicious

URLs without filtering each detected URL. These properties are expected to be

useful in taking appropriate and scalable countermeasures to malicious websites.
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Chapter 7

Discovering malicious website

To satisfy the requirement of seed URL selection, I consider how to effectively

select inspection URLs in the web space. I propose an effective method for

discovering potential malicious URLs in the neighborhood of a malicious URL

by using a search engine.

7.1. For seed URL extraction

User-report-based malicious URL collection is used by many websites that pro-

vide blacklists. Generally, user reports have lower accuracy and reliability than

automatically generated reports, but suspicious URLs can be collected from a

wide variety of web users. Many related works have proposed methods to dis-

cover malicious URLs on the web. These methods sample and inspect URLs in

various keyword categories from search engine results [49] [79]. In Ref. [79], search

results for specific keyword categories tended to involve malicious URLs related

to drive-by downloads.

In Ref. [66], the large web repository of a search engine is used for lightweight

screening as the first step in web inspection. However, this screening method has

to directly scan the search engine’s repository, which is not normally disclosed

to the public, so a party other than the search engine provider cannot use this

method for generating blacklist URLs. Moreover, because the entire web space

must be crawled and its contents evaluated, large-scale equipment is needed.

One effective method for discovering malicious URLs by using a search engine
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is encompassed by WebCop [74]. WebCop focuses on only click-download infec-

tions and identifies landing sites by using the bottom-up approach. This approach

starts with the final destination download URL and follows the web graph hy-

perlink in the reverse direction to identify higher level landing sites. By focusing

on a seed URL provided in the telemetry report from an anti-virus application,

WebCop utilizes web graph information, which is stored by search engines, ef-

fectively. This method does not need random crawling. However, when malware

download URLs are accessed due to an exploit code (i.e., drive-by downloads),

we cannot discover the linkage information between malicious URLs from a web

graph based on search engine results. This is because there is no hyperlink rela-

tionship between a landing URL (or an exploit URL) and a malware download

URL. For this reason, drive-by downloads are out of the scope of this method.

7.2. Structural neighborhood URL lookup

Above mentioned related works make blacklisting more efficient. However, an

adversary may try to change a malicious URL to avoid blacklisting. There are

mainly two ways to avoid URL blacklisting: creating a new domain and changing

existing URL elements (i.e., sub domain, path name, file name, and URL parame-

ter). For an adversary, the operational and financial cost of the latter is generally

lower than that of the former because there are requirements for registering a

new domain name. In contrast, sub domains can easily and arbitrarily be created

under a specific domain by its owner. An administrator of a specific website can

also alternate paths, file names, and path names of web content on the site. For

example, if an adversary is the owner of the domain name example.com, he or

she can create the sub domain www.example.com. In addition, if an adversary is

an administrator of the website www.example.com, he or she is able to copy/move

malicious web content from “/malicious1.html” to “/malicious2.html”. This

anti-blacklisting technique is a serious obstacle to blacklisting.

To improve blacklisting, I propose a method for discovering unknown mali-

cious URLs. My proposed method is based on my assumption that unknown

malicious URLs are located in the URL structural neighborhood of known ma-

licious URLs; the method conducts a structural neighborhood URL lookup near
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known malicious URLs. Stractural neighborhood URL lookup targets a specific

web space on the basis of the structure of malicious URLs and effectively retrieves

URLs in that web space. Exploring URLs in a specific web space is a functionality

of commercial search engines. I inspected web contents indicated by a candidate

URL, and if the content was malicious, I added the URL to a blacklist. In this

work, I also implemented an original system for identifying unknown malicious

URLs and confirmed the effectiveness of my system in real web space. The main

contributions of my proposed structural neighborhood URL lookup are

• a search method to extract candidate URLs from a narrowed web-space

search range for blacklisting,

• effective identification of unknown malicious URLs, and

• detection of two types of malware infection, i.e., drive-by download and

click-download.

7.2.1 Proposed method

To discover unknown malicious URLs effectively, it is important to focus on a

limited web space that has a high probability of containing potential malicious

URLs. One strategy to avoid blacklisting is for an adversary to mutate a mali-

cious URL. Therefore, I assume that a newly created malicious URL is located in

the structural neighborhood of a known malicious URL owned by an adversary.

On the basis of this assumption, I propose an effective method for discovering

malicious URLs that looks up only the structural neighborhood of known ma-

licious URLs and retr ieves URLs there as blacklist candidates. A conceptual

example of structural neighborhood URL lookup is in Fig. 7.1. The proposed

method reduces inessential large-scale crawling of web space, which is a serious

problem in other methods, and discovers unknown malicious URLs effectively.

The method (Fig. 7.2) executes the following steps.

A. Collect a seed URL

B. Search for neighborhood URLs of the corresponding seed URL to extract

candidate URLs
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.com
.example
www1

/exploit1.php /exploit2.php /malware.exeKnown malicious URL

Potential malicious URLwww2/worm1.exe

Structural neighborhood URL lookup, proposed method
Figure 7.1. Structural neighborhood URL lookup

My approach discovers potential malicious URLs existing in neighborhood of known malicious

URL (http://www1.example.com/exploit1.php).

C. Crawl candidate URLs and identify malicious URLs through dynamic and

static content analysis

When the malicious content is detected, at the minimum, by either the dynamic

analysis or static analysis, the URL containing that content can be added to a

blacklist as a ne wly identified malicious URL. Detailed explanations of each step

are in Sects. 7.2.1, 7.2.1, and 7.2.1, respectively.

Malware infections via the web are not only triggered by click-downloads but

also drive-by downloads; the latter is out of the scope of the reverse hyperlink-

traversal proposed by WebCop.The impact of automatic infection is greater than

that of manual infection. Therefore, my proposed method focuses on not only

click-downloads but also drive-by downloads. WebCop focuses on a web-graph-

based neighborhood, while my approach focuses on a URL-structure-based neigh-
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Figure 7.2. Procedure of proposed method

borhood. My proposed method can retrieve various kinds of candidate URLs that

are exploit URLs, corresponding to landing URLs and malware download URLs,

because it focuses on the loc ality of malicious URLs. My method does not track

reverse hyperlinks from download URLs to corresponding landing URLs, so the

landing URLs for click-download infection are out of its scope. Table 7.1 shows

the coverage of the above two approaches. Due to the difference in coverage

by the two approaches, a consolidated solution to broaden the coverage of both

approaches can be obtained in the future.

Collecting seed URLs

A URL that is currently or was previously known to be malicious is desirable as a

seed URL because the proposed method is based on my assumption that unknown
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Table 7.1. Applicable coverages of reverse hyperlink-traversal and structural

neighborhood URL lookup

Click-download Drive-by download
Landing Malware Landing Exploit Malware

URL download URL URL URL downlaod URL
Reverse

√ √
- - -

hyperlink-traversal
Structural -

√ √ √ √

neighborhood URL lookup

malicious URLs tend to be located next to known malicious URLs created by the

same adversary. We can use a URL detected by intrusion detection system or

a public blacklist URL as a seed URL. Various kinds of malicious URLs (e.g.,

landing URLs, exploit URLs, and malware download URLs) can be registered in

a blacklist. My proposed method can target all these malicious URLs. It can use

a seed URL in combination with existing blacklists, so it has scalability for seed

URL collection.

Searching structural neighborhood of URLs

The proposed method next searches the neighborhood of the seed URL through a

search engine. In this way, can extract URLs structurally located next to known

malicious URLs, called neighborhood URLs, as candidates for blacklisting. For

this extraction, I use a site-specific search, which is a search engine function.

This search function enables us to extract URLs by focusing on a limited range,

such as a specific domain or URL. How to determine a search range must also

be considered. If we set the top-level domain (TLD) of a target URL as the

search range, we retrieve too many general sub domains under the TLD that

have no relationship with each other. In addition, search engines have limits on

the number of search result URLs returned, and we cannot collect more URLs

than this limit. For example, the upper limit of major search engines, such

as Google, Yahoo, and Bing, is 1,000 URLs. Therefore, to keep the number

of extracted search result URLs within the limit, the structural neighborhood
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URL lookup targets multiple granularities of a search range, from fine-grained

partitions in the URL path to coarse-grained partitions in the domain. Thus,

a locality-sensitive lookup is possible. Creating a search query and structural

neighborhood URL lookup are described below.

Disassembling URL string to create search query

To create the search query, I disassemble a URL string to determine the gran-

ularity of a search range. First, consider the meaning of a URL structure and

its disassembled strings. In RFC1738 [28], HTTP URLs are described as mainly

composed of domain-parts and path-parts. A domain-part indicates where a web-

site is located in the Internet; either the domain name or IP address is set in the

domain-part. A path-part indicates where web content is located in a specific

website described in the domain-part. A domain name consists of one or more

labels that are concatenated and delimited by dots (“.”), and the hierarchy of

domains descends from the right to the left label. In a similar way, a path is

delimited by a forward slash (“/”), and the hierarchy of paths descends from

the left to the right. In the URL disassembling phase, first, the URL is split

into the domain-part and path-part elements. Then, the elements are concate-

nated in higher hierarchy order to create URL substrings. A path-part is a slash

(“/”)-delimited string that is divided into prefixes, with directories as the unit.

For example, path-part “path1/path2/index.html” is divided into two prefixes:

“path1/” and “path1/path2/”. A domain-part is a dot (“.”)-delimited string

that is divided into suffixes, with domains as the unit. For example, the domain-

part “www.example.co.jp” is divided into three suffixes: “jp”, “co.jp”, and

“example.co.jp”.

Each suffix of a domain-part can be composed of a URL substring by itself.

The URL substring for a search query can be composed of only a suffix of a

domain name or a string concatenating FQDN, i.e., the whole domain name,

and a path-part prefix. Thus, we can create two types of URL substring: one

composed of a domain-part suffix, and one composed of an FQDN and a path-part

prefix. The steps of the above process are shown in Fig. 7.3.

The TLD (e.g., “.jp”) and public suffix (e.g., “.co.jp”) indicate the public

domain space. The administration of a large number of general sub domains is
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… <2nd level> <Top level> <Top depth> <2nd depth> …

<Top level>

<2nd level> . <Top level>
… .<2nd level> . <Top level>
… .<2nd level> . <Top level> /  <Top depth>
… .<2nd level> . <Top level> /  <Top depth> / <2nd depth>
… .<2nd level> . <Top level> /  <Top depth> / <2nd depth> /…

Domain-part elements Path-part elements

If it a
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R
L substring 

is public suffix dom
a

in, 
it is e

xclude
d.

Seed URL      http:// <domain-part> / <path-part> 

Domain-part Path-part

URL substring

Figure 7.3. Disassembling URL string and creating URL substring for search

query

1. Extract domain-part and path-part from URL string. 2. Split each part into elements. 3.

Concatenate elements in higher hierarchy order to create URL substrings.

delegated away from that of a higher-level domain. Thus, the results include

URLs on unspecified sub domains. Due to this, we should exclude the TLD

and public suffix from the URL substring for a site-specific search query. By

comparing a suffix domain string to TLD strings provided by IANA [27], we

can determine whether a suffix domain is a TLD. However, administration of a

specific domain name under the TLD is delegated to each domain name registrar,

so there is no algorithmic method to identify whether a specific domain name is a

public suffix. Instead, I refer to the public suffix list [52] published by the Mozilla

project.

Lookup neighboring URL

A site-specific search is used for my structural neighborhood URL lookup of can-

didate URLs. If we assign a specific domain or URL as the query in a site-specific

search, we can retrieve URLs in the target search range. An example site-specific
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search command is “site:string”. We can assign a domain name or URL sub-

string to string, e.g., the search range “site:example.com” targets URLs having

the domain-part *.example.com (i.e., arbitrary sub domains of “example.com”).

In a similar way, the search range “site:www.example.com/path1/” targets URLs

having the domain-part www.example.com and the path-part path1/* (i.e., arbi-

trary sub-directories of “path1/”).

URL crawling and contents inspection

In my proposed method, neighborhood URLs located next to malicious URLs are

only candidate URLs for blacklisting at this time. To identify whether a URL is

actually malicious, we have to inspect the web content of that URL. Therefore,

my method collects web content and evaluates whether it is malicious.

There are two typical inspection methods: static content analysis and dynamic

content analysis. Static content analysis scans whether strings with malicious

characteristics are included in an object (i.e., web content). Dynamic content

analysis monitors internal system behavior for anomalies that may indicate the

system is being attacked (e.g., file accesses, registry accesses, and process creation

events). This analysis can detect an exploitation attempt, whether it is known

or unknown. However, a client-environment-dependent exploit code is out of the

scope of dynamic content detection mentioned in Chapter 3. For this reason, we

must consider what kind of crawler environment should be prepared for crawling

malicious websites. In addition, if a URL directly hosts a malware executable

(e.g., http://www.example.com/malware.exe), web browsers are not attacked

by the exploit code; the malware executable is downloaded manually. In contrast,

static content analysis can detect known malware executables or exploit codes if

the signature file is already updated, although it cannot detect unknown malware

executables or exploit codes. Due to this, considering the difference in detection

coverage between dynamic analysis and static analysis, I developed a system

containing a hybrid detector that conducts dynamic contents analysis based on a

real system that contains vulnerabilities. The system also conducts static contents

analysis through anti-virus applications and an exploit-code detection tool. These

analyses are described next subsection.

103



High interactive crawling and drive-by download detecting

Two types of client honeypot architecture, i.e., high-interaction and low-interaction,

have been proposed in recent research. The latter is basically composed of a

browser emulator for collecting and inspecting web content through anti-virus

applications [55] [71]. Web browser emulators omit or simplify rendered web con-

tents, so they cannot collect the corresponding web access automatically launched

by a previously accessed web content. For example, JavaScript redirect functions

or redirect tags created by dynamic HTML techniques are proceeded in runtime.

In other words, emulators cannot collect the entirety of web contents. The for-

mer uses a real web browser that completely renders entire web contents and

monitors the internal system behavior to detect any exploitation [35] [70]. For

these reasons, a high-interaction client honeypot is desirable for collecting web

contents.

As mentioned above, a high-interaction client honeypot drives a web browser

containing vulnerabilities to access websites and detect drive-by download attacks

by identifying malicious system behavior. I used Marionette that I developed as

mentioned in Chapter 5. Marionette is mainly composed of a vulnerable web

browser and a local proxy that is an HTTP proxy server for collecting web con-

tents. To camouflage as a victim machine to analyze malicious URLs that can

detect analysis, Marionette uses a real web browser and plug-in applications and

collects a series of web contents. Because all HTTP sessions pass through the

local proxy, we can extract all web contents as files from the HTTP session data

via the local proxy. Moreover, because Marionette monitors file system events in

a local system, it can collect newly created files, which are malware executables

in most cases. Marionette sets an identifier (crawl ID) to a series of web accesses

from the same input URL (e.g., extra web accesses caused by the iframe tag and

script). If Marionette detects exploitation caused by an exploit code in a specific

crawl, Marionette attaches a “malicious” attribution to the crawl ID.

Marionette can collect click-download-based malware executables. If a web

browser accesses a URL that directly indicates an executable (e.g., http://xxx.com/malware.exe)

and file download starts, the web browser creates dialog boxes prompting the user

to click and stop the processing of the web browser contents. Marionette has an

automatic dialog-click function so that it can download those executables.
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File inspection

The collected files include malicious redirect code, exploit code, and malware ex-

ecutables. However, click-download-based malware infection, such as files down-

loaded and installed through user interaction, is out of the scope of a dynamic

analysis. In addition, a high-interaction client honeypot generally cannot detect

a non-executed exploit code, as mentioned above. For these reasons, to inspect

files downloaded from the web, I use anti-virus applications and an exploit-code

detection tool. In particular, a local proxy in front of Marionette collects web con-

tents (e.g., .html, .js, .pdf, and .exe files). Marionette also collects newly created

files in the local system, excluding benign files such as cache and configuration

files.

Basically, an anti-virus application compares a file to signatures, which are

small sets of characteristic strings contained in malicious content, and determines

whether the file is malware. Signatures that are typical exploit codes or mali-

cious redirect codes 1 are registered in anti-virus applications. However, because

malicious codes are normally obfuscated by scripting language such as JavaScript

and VBscript, many varieties of potential malicious content exist on the web .

Therefore, signature-based detection obtains many false-negatives. Legitimate

websites also use obfuscation techniques to protect their web content. If we de-

termine all obfuscated web content to be malicious, the results may then include

many false-positives. To counter obfuscation of malicious web contents, web con-

tent de-obfuscation tools have been published, such as jsunpack-n [22]. This tool

unpacks obfuscated script by running an emulation on a JavaScript interpreter.

It also detects strings with malicious characteristics in web contents by compar-

ing them to signatures.For example, the exploit code targeting CVE-2006-3730

includes both WebViewFolderIcon.WebViewFolderIcon.1 and setSlice, which

are strings registered in th e rule file. Jsunpack-n provides additional functions for

SpiderMonkey [60], which is an implementation of a JavaScript emulator. That

is, it compares de-obfuscated content that is plain text to the original signature

and detects exploit code strings in obfuscated web contents.

1A zero-pixel iframe is typically hidden in a redirection code.
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7.2.2 Experiment of structural neighborhood URL lookup

I experimentally investigated the effectiveness of my proposed method by using

actual blacklisted URLs. In my experiment, the developed system crawled both

seed URLs and neighborhood URLs and inspected web contents indicated by

those URLs to determine whether they were malicious. I conducted this process

three times, at two-week intervals, to discover the change in the number of URLs

identified. Anti-virus applications and jsunpack-n were installed on other VMs.

Stractural neighborhood URL lookup and URL inspection took about half a day

and about two days respectively in this experiment.

File inspection was conducted by a de-obfuscation/exploit-detection tool (i.e.,

jsunpack-n 0.3.2c), and five anti-virus applications (i.e., NOD32 Antivirus 4,

Kaspersky Internet Security 2010, Symantec Norton AntiVirus, TrendMicro Virus-

Buster 2011 Cloud, and ClamAV) were prepared. I regard a URL detected by at

least one anti-virus application as a malicious URL.

This was a small-scale experiment, but the results may indicate what percent-

age of URLs located in the neighborhood of known malicious URLs are unknown

malicious ones.

Search engine result

First, I extracted blacklist URLs registered at malwaredomainlist.com [36] from

2010.7.1 to the present to use as seed URLs. As mentioned above, the procedure of

seed URL collection, structural neighborhood URL lookup, and URL inspection

was conducted three times, at two-week intervals. The reason why repeated trials

are conducted is updating both seed URLs and search engine repository as time

progresses, therefore we can obtain various types of URLs on repeated trials.

In the results, 12.6% of search query responses included one or more neigh-

borhood URLs. However, the remaining responses were not indexed in search

engines. I assume this was because some websites had already vanished or were

out of the scope of the search engine indexing. In this experiment, I retrieved

the top 200 URLs from the search API responses. Only 0.97% of the search

query responses had more URLs than the upper limit. Meanwhile, the number of

seed URLs increased in both the second and third trial because public blacklists

are kept up-to-date and I used the latest version of the blacklist in each trial.
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Table 7.2. Blacklist URLs and neighborhood URLs generated by my method

Date # Blacklist # Neighborhood # Total

URLs URLs Inspected URLs

2010.11.22 11,702 47,628 59,330

2010.12.6 12,295 50,353 62,648

2010.12.20 12,866 54,677 67,543

According to the increase in the number of seed URLs, the number of neighbor-

hood URLs also increased. Table 7.2 shows the number of collected URLs for my

experiment.

The structural neighborhood URL lookup uses two search engine APIs: Yahoo

V2 search [87] and Bing search [34]. We can thus collect various candidate URLs

from diversified sources (i.e., multiple search engines).

Inspection results

The statuses of crawled URLs are shown in Table 7.3. Although I used all the

latest URLs registered since 2010.7.1, only 10 – 13% of the seed URLs were

active. Moreover, the percentage of URLs corresponding to malware infection

may be less than that of active URLs because websites that hosted malicious web

contents in the past may have already been fixed. Naturally, my method cannot

determine whether a vanished URL or its web content was malicious. Although

most blacklisted URLs tended to have already vanished, many neighborhood

URLs retrieved by the search engine tended to be active. The reason is that

the search engine crawler checks the status of a URL and determines whether to

eliminate the index for that URL from the results based on its status.

The number of newly detected malicious URLs is shown in Table 7.4. My

experimental results showed that the number of unknown malicious URLs dis-

covered by my method was more than twice the number of seed blacklist URLs. In

addition, the percentages of newly identified URLs in the second and third trials

were 83.0 and 54.6%, respectively. This result indicates that repeated inspection

can identify newly created malicious URLs because candidate URLs retrieved

from a search engine’s index are updated daily, according to the increasing num-
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Table 7.3. URL status
Date Type DNS error or HTTP HTTP error

connect fail success (40x or 50x)

(%) (%) (%)

2010.11.22 Blacklist 81.1 13.2 5.6

Neighborhood 18.2 79.8 1.9

2010.12.6 Blacklist 80.2 13.5 6.1

Neighborhood 19.5 76.4 4.0

2010.12.20 Blacklist 85.0 10.7 4.2

Neighborhood 35.0 62.0 2.9

Table 7.4. Detection results
Date Type Detected

2010.11.22 Blacklist 222

Neighborhood 402

2010.12.6 Blacklist 231

Neighborhood 622

2010.12.20 Blacklist 164

Neighborhood 278

Total (unique) Blacklist 388

Neighborhood 1,057

ber of mutated malicious URLs.

There is a difference between the detection coverage of each detection method.

HCH can detect drive-by download attacks by monitoring internal system behav-

ior. Anti-virus applications can detect malicious code strings through their sig-

natures and mainly focus on malware executable files. Jsunpack-n first unpacks

obfuscated JavaScript to plain text. Because it conducts signature matching

after unpacking obfuscated content, its detection accuracy is generally higher

than that of simple signature matching. However, advanced Javascript obfusca-

tion and interference-analysis techniques increase the false-negatives in signature-
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Table 7.5. Difference in coverage between dynamic analysis and static analysis

A: HCH detected, B: jsunpack-n detected, C: anti-virus detected.

Detection method # Identified URLs

Any (DA ∪ DB ∪ DC) 1,445

DA 338

DB 789

DC 1,020

DA − DA ∩ DB − DA ∩ DC 36

DB − DA ∩ DB − DB ∩ DC 298

DC − DA ∩ DC − DB ∩ DC 545

matching-based detection. The difference in coverage between each detection

method is shown in Table 7.5. The overall number of URLs detected by each

method and the number of URLs detected only by each method and not by

the others are shown. URLs detected by only HCH are not detected by other

signature-based detection methods. The results show that my system can detect

a zero-day exploitation. URLs that trigger drive-by download infections, where

an exploitation detected by HCH or an exploit code is included in web content

(i.e., DA ∪ DB), make up 62.2% of all detected URLs. URLs that could lead

to click-download infection, where a file download by click-action is identified as

malware by anti-virus applications (i.e., DC − DA ∩ DC − DB ∩ DC), make up

37.8% of all detected URLs.

Divergence search engine results

Table 7.6 shows duplications in search engine results. According to their in-

dividual algorithms for indexing web pages, search engines have different web

repositories from each other. The percentage of neighborhood URLs in each

search engine result is approximately proportional to the percentage of detected

URLs. However, the search results greatly differed from each other for suspicious

web spaces. Moreover, almost all the identified malicious URLs did not have a

common source, i.e., were not extracted by the same search engine. Thus, we can
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Table 7.6. URL coverage of search engines in suspicious web space

SA: Yahoo V2 search API, SB : Bing search API.

Neighborhood (%) Detection (%)

SA − SA ∩ SB 32.4 28.1

SB − SA ∩ SB 61.3 71.4

SA ∩ SB 6.4 1.4

Table 7.7. Examples of malicious neighborhood URLs

Seed URL Created URL substring Intersection Neighborhood malicious URL

http://xxx.info/gray/codebase/ hollo.exe xxx.info FQDN http://xxx.info/media/help/Thumbplay.php

xxx.info/gray/ http://xxx.info/order/

xxx.info/gray/codebase/ http://xxx.info/order/login.php

http://yyy.ru/credo/ela/l.php yyy.ru FQDN, http://yyy.ru/credo/ela/img1.php?s=i708

http://yyy.ru/credo/icon/stat.php yyy.ru/credo/ substring http://yyy.ru/credo/ela/img1.php?s=i900

yyy.ru/credo/ela/ of path name http://yyy.ru/credo/ela/img1.php?s=i933

yyy.ru/credo/icon/ Private http://www.yyy.ru/credo/ela/index.php

suffix domain

http://dsplms.zzz.cc/t/go.php?sid=1 zzz.cc Private http://1.tredomain.zzz.cc/1/load.php?

http://balation.zzz.cc/c/index.php dsplms.zzz.cc suffix domain http://antivirus-upd.zzz.cc/1/pdf.php

... dsplms.zzz.cc/t/ http://expa43.zzz.cc/bl3/

balation.zzz.cc

balation.zzz.cc/c/

retrieve a large number of candidate URLs by using different search engines.

Locality of neighborhood

Examples of malicious neighborhood URLs are shown in Table 7.7. Intersections

between seed URLs and neighborhood malicious URLs are the sub domain names,

directory names, file names, and URL parameters in these results.

The number of malicious URLs located in the neighborhood of another mali-

cious URL is shown in Fig. 7.4. I discovered 699 FQDNs and 352 private suffix

domains.About 40% of the identified URLs were single URLs on each FQDN

(upper left of Fig. 7.4), i.e., there are no neighborhood malicious URLs on th e

same FQDN. However, about 14% of indentified URLs were single URLs on each

private suffix domain (lower left of Fig. 7.4). The reason for this difference is that

there are many FQDNs in parts of shared domains (e.g., dynamic DNS service),

and these domains have different FQDNs but the same privat e suffix domain.
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Figure 7.4. Degree of neighborhood
Distribution of URLs contained in specific FQDN/private suffix domain. X-axis indicates num-
ber of URLs contained in same FQDN/private suffix domain.

The line indicating private suffix domain in Fig. 7.4 shifts to the right of the line

indicating FQDN because of these shared domains. The 14% stand-alone mali-

cious URLs represents two patterns: detected seed URLs having no neighborhood

URL, and detected neighborhood URLs having an already vanished seed URL.

One specific FQDN contained 212 URLs (upper right of Fig. 7.4). The proposed

method should be able to effectively collect a group of malicious URLs in the

same neighborhood. Typical patterns of discovered malicious neighborhood are

shown in Fig. 7.5.
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Figure 7.5. Discovered malicious neighborhoods

Effectiveness of proposed method

One way to evaluate my proposed method is to check how many newly detected

malicious URLs are already listed in public blacklists. The more URLs discovered

than are listed by public blacklists, the more effective my proposed method.

Obviously, newly identified URLs in this experiment were not registered in the

seed blacklist. The number of newly discovered unknown malicious URLs was

several times that of original blacklist URLs. I checked how many of the identified

URLs were registered in the latest version of the seed blacklist on 2011.1.26 and

found that none of them were.

Another famous public blacklist is Google Safe Browsing [20]. Safe Browsing

provides hash values of malicious URLs, so I investigated how many URLs iden-

tified by my method were included in a Google Safe Browsing hash list. Only

16 of the identified URLs were included in the list. These results show that an

adversary can avoid being registered in a conventional public blacklist by creating

many mutated URLs. However, neighborhood-search-based URL inspection can

discover potential malicious URLs that are not registered by public blacklists.

Ref. [79] surveyed discover rates of URL selection methods such as keyword

serach and spam URL. I compared proposed method and other URL selection

methods in the viewpoint of inspection effort in Table 7.8.
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Table 7.8. Discover rates of URL selection methods

Method # inspection URL # discovered URL Discover rate

Keyword search 175,362 253 0.14 %

Spam URL 11,460 19 0.16 %

Structural neighborhood 92,365 1,057 1.14 %

URL lookup

Keyword search used keywords related with adult, music, news and warez categories in Ref. [79].

7.2.3 Discussion of structural neighborhood URL lookup

Avoidance of proposed method by new domain creation

If an adversary creates a new domain to avoid blacklisting, my proposed method

cannot discover URLs on that domain. Domain registration for a criminal aim

often occurs continually, so some registrars strictly review this registration. With

the new domain registration requirements, it will be more difficult for adver-

saries to operate as they did before. The requirement that registrants must

submit paper documentation will make setting up domains a more costly and

time-consuming process. Considering this, it will not be easy for adversaries to

avoid my proposed detection method.

Controversial domain filtering

Domain filtering is effective for malicious domains created by an adversary for

criminal purposes. However, collateral damage to legitimate websites or URLs

is unavoidable when shared domains are filtered. Therefore, we should check

whether a specific domain is shared when we apply domain filtering. It is not

easy to determine whether a specific domain is a shared domain.

7.3. Summary

By focusing on the locality of malicious URLs, I proposed a structural neighbor-

hood URL lookup which is an effective method for discovering malicious URLs

113



by using search engines. Known blacklisted malicious URLs have already van-

ished; in contrast, unknown malicious URLs neighboring them are still active.

My experimental results showed that my proposed method can discover more

than twice the number of unknown malicious URLs as the number of known ma-

licious URLs in a blacklist. By carrying out in-depth analysis and repeated trials,

it is possible to discover newly created malicious unknown URLs. My designed

system is simple and easy to develop because detection methods such as client

honeypots, JavaScript analyzers, and anti-virus applications are available for free

or as common commercial tools.
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Chapter 8

Conclusion

This study focused on a countermeasure to malware infection in consideration

of the critical role malware plays as the infrastructure of a cyber attack. An

infiltrative intrusion detection technique using a honeypot solves many problems

that conventional intrusion detection techniques have: difficulty of network-level

detection, validation of accuracy, and privacy issues of real victim users. This

study investigated recent exploitation techniques for drive-by downloads, which

are the main infection vectors for malware in current cyber space, and it reviewed

existing honeypots in Chapters 3 and 4.

On the basis of adversarial techniques mentioned in Chapter 3 and existing

honeypots mentioned in Chapter 4, I enumerated requirements of client hon-

eypots: detection precision, inspection performance, information collection, safe-

guarding, and camouflaging. I enumerated the primary requirements for designing

and implementing a client honeypot: detection precision, inspection performance,

information collection, safeguarding, camouflaging, and seed URL selection in

Chapter 5. After considering a qualitative comparison between high-interaction

and low-interaction honeypots in terms of requirements, I determined that high-

interaction honeypots have the appropriate architecture to use with drive-by

downloads. To improve the advantages and strengthen the weaknesses of high-

interaction systems, I proposed measures corresponding to the individual require-

ments. First, I proposed stepwise detection in multiple phases of exploitation for

the detection precision. The combinational result of stepwise detection identified

various patterns of exploitation. In particular, even though memory corruption
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based exploitations are only probabilistically successful, my stepwise detection

can detect a failed exploitation that is not detectable with conventional detection

techniques. I proposed two approaches to achieve high-inspection performance

and safeguarding,: 1) a multi-honeypot-agent OS, and 2) a multi-browser-process.

The first approach employs a distributed and autonomous honeypot system for

scalability. The second approach provides process-level execution in a virtually

isolated environment in order to reduce OS overhead. By combining both multi-

OS and multi-process conditions, my system performs 30 to 80 times faster than

that under the single OS/single process condition. To collect precise information,

my system coordinates both network-based events (HTTP transactions) and host-

based events (DOM structures on web browser) to identify complex URL graph

structures. In the experiment, my system newly discovered 759 URLs of ex-

ploit sites and 1,622 URLs of malware distribution sites in the back-end of 1,392

landing URLs. For camouflaging, my honeypot is based on a high-interaction

system performing as an actual victim with vulnerable applications. In addition,

my client honeypot disperses launching points on various IP addresses of ISPs

through a reverse load-balancer.

I confirmed the feasibility of my client honeypot implementation and disclosed

the properties of observed malicious websites and collected malware executables

in Chapter 6. In particular, my investigation result revealed various hosting struc-

tures of malicious URLs and aggregated malware distribution networks. Small

malware distribution networks and stand-alone malicious websites have a ten-

dency to be comparatively unstable. In contrast, large malware distribution

networks are comparatively stable. Moreover, if we filter the top ten passive

referenced URLs that are backend-core websites, we can defeat about 85% of

detected malicious URLs without filtering each detected URL. These properties

are expected to be useful in taking appropriate and scalable countermeasures to

malicious websites.

By focusing on the locality of malicious URLs, I proposed a structural neigh-

borhood URL lookup which is an effective method for discovering malicious URLs

by using search engines in Chapter 7. Known blacklisted malicious URLs have

already vanished; in contrast, unknown malicious URLs neighboring them are

still active. My experimental results showed that my proposed method can dis-
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cover more than twice the number of unknown malicious URLs as the number

of known malicious URLs in a blacklist. By carrying out in-depth analysis and

repeated trials, it is possible to discover newly created malicious unknown URLs.

My designed system is simple and easy to develop because detection methods

such as client honeypots, JavaScript analyzers, and anti-virus applications are

available for free or as common commercial tools.

The proposed methods improved the external network environment such as

IP address randomization and structural neighborhood URL lookup based on

adversary strategies, which indicates they were highly effective in my experiments.

Nevertheless, it is necessary to continuously improve or update my methodologies

in order to deal with the changing strategies of adversaries. However, I assume

that these methods will mean that the current strategies adversaries use are no

longer cost-effective. These methods will impose on adversaries a management

and/or monetary cost to circumvent them. The general mechanisms of OSs mean

that the proposed methods will be useful in intrusion detection systems and

security forensics to improve the host environment.
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Chapter 9

Future work

Many studies have produced countermeasures to vulnerabilities as an aspect of

software engineering; however, they have not achieved a fundamental solution

that improves system robustness. Many Java vulnerabilities on any OS are univer-

sally exploitable because they are a type of API misuse that can gain unauthorized

access to the system and perform without memory corruption. Moreover, return-

oriented programming (ROP) circumvents recent memory protection mechanisms

in Windows 7 and 8. There are many Java exploit codes and also exploit codes

with ROP registered in online databases (e.g., Metasploit [41]). Therefore, I fore-

cast that new vulnerabilities of software will be continuously abused from now

on. Malware infection will continue to play a major role in cyber attacks in the

future, so infiltrative observation by using honeypots focused on malware infec-

tion is a complementary way to counter cyber attacks. In this chapter, I discuss

the future direction of anti-malware infection research and countermeasures.

9.1. For sustainable observation

New applications and communication services are continually being introduced,

and adversaries will continue to look for faults in a target system to establish

infection vectors. My proposed stepwise detection can detect exploitations even

if exploitations fail. A failed exploitation is a clear sign of an unknown infec-

tion vector; i.e., an unknown vulnerability targeting other types or versions of

applications on a victim system. Based on this important knowledge, we should
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preferentially analyze these failed exploitations and update the honeypot envi-

ronment (e.g., installing corresponding vulnerable versions of web browsers or

plug-ins) in a timely manner. The proposed methods designed for an internal

host environment are applicable to the latest Windows platform because they

utilize common middleware (i.e., filesystem, registry, browser control interface

and Win32 subsystem). The proposed methods designed for an external network

environment are universally applicable to any honeypot environment, because

they are independent of a honeypot platform. The cycle of detecting exploita-

tion and updating the environment enables the honeypot to perform sustainable

observation for the latest malware infection activity.

9.2. Trade-off between cost and benefit: Increas-

ing cost of cyber attack

Security research is a competition between the attack side and the defense side,

and unfortunately, it is difficult to completely eliminate cyber attacks as long as

computer systems have valuable information. There are trade-offs for the adver-

sary between the attack cost and the obtained benefit. The attack cost represents

a monetary cost and a time cost. For example, to maintain the malicious web-

sites, an adversary must spend money to maintain servers and domains, and must

spend a lot of time to carefully monitor them for security inspections. If my de-

fensive technologies increase the attack cost, the obtained benefit will become

inadequate to compensate for the attack cost, and an adversary might give up on

conducting attacks.

9.3. Sharing security datasets

Cyber attacks have become dramatically commercial and specialized in recent

years, for example, Pay-per-install [8] and Exploit-as-a-Service [21]. To counter

these organized cyber crime syndications, security engineers and researchers should

develop a close collaborative relationship. The most important thing is to share

actual security datasets. Although KDDCup99 [32] and CAIDA dataset [9] are
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used in the evaluation o anomaly detectors, the evaluation is still difficult due

to the lack of ground truth. In addition, because communication datasets con-

tains actual user communication, the datasets must require that payloads be

removed or IP addresses be masked. In contrast, a honeypot can produce a

dataset with grand truth (e.g., malicious URL and also the reason why it is ma-

licious). Moreover, there are no actual users on honeypot systems, so the privacy

issue is not a concern with datasets obtained on honeypot systems. Datasets col-

lected by a honeypot can be applied to provide other security countermeasures

such as learning-based detection; therefore, honeypots and other countermeasure

are complementary to each other. Honeynet project [78], Shadow server [72],

Wepawet [85], and Anubis [4] also promote dataset sharing for research purposes

or actual countermeasures in order to encourage security research and counter-

measures.

I have already provided a dataset for academic study groups at events such as

the anti-Malware Engineering Workshop (MWS) [3] and the International Work-

shop on Security (IWSEC) [30], and many anti-malware ideas and technologies

were proposed. We instituted a new Japanese Chapter of the Honeynet Project

in cooperation with members of the Nippon CSIRT Association (NCA) in 2012,

and we will contribute to sharing security knowledge, datasets, and tools to the

global honeypot research community.

9.4. Evidence of compromise

A high interaction honeypot basically performs as a real victim. Information

obtained by a honeypot on the internal environment indicates individual pieces

of evidence of compromise (i.e., hash value of malware, file name, registry, IP

address, and domain name), which are called Indicators of Compromise (IOC).

Traditional methods of identifying security abuses or incidents do not work suf-

ficiently; e.g., signature-based detection methods can easily be avoided by ad-

versaries. OpenIOC [56] organizes evidence of compromise and provides it to

relevant groups in order to improve the understanding, discovery, and sharing of

security intelligence. Cyber Observable eXpression (CybOX [48]) also provides

a common structure for representing both network-level and host-level cyber ob-
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servables (actually OpenIOC is a subset of CybOX). Structured and normalized

representation must accelerate sharing and exchanging security information. In-

formation obtained by a honeypot is suitable for providing these cyber security

expressions, because it contains the procedure of a compromise without noise.

9.5. Diversified honeypot collaboration for com-

plicated attack cycle

Cyber attack specialization and collaboration (Pay-Per-Install [8], Exploit-as-a-

Service [21]) have become complicated and sophisticated. Therefore, conventional

observation systems may only be able to observe certain aspects in the attack cycle

in the future. This study discussed an observation system for web-based malware

infection as the current main infection vector. After compromising the target

host, adversaries steal personal or credential information and use it for secondary

cyber attacks, for example, to compromise a website using the credentials of the

website administrator. To observe the entire attack cycle, we should consider a

collaborative observation system using various diversified honeypot deployments

that camouflage various services employed in cyber attacks.
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