
NAIST-IS-DD1161015

Doctoral Dissertation

On the Power and Limitations of Quantum
Computing Models: Quantum Walks and

Communication Complexity

Marcos Villagra

February 14, 2013

Department of Information Processing

Graduate School of Information Science

Nara Institute of Science and Technology



A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of SCIENCE

Marcos Villagra

Thesis Committee:

Professor Yasuhiko Nakashima (Supervisor)

Professor Hiroyuki Seki (Co-supervisor)

Professor Shigeru Yamashita (Co-supervisor, Ritsumeikan University)

Associate Professor Masaki Nakanishi (Co-supervisor, Yamagata University)



On the Power and Limitations of Quantum
Computing Models: Quantum Walks and

Communication Complexity∗

Marcos Villagra

Abstract

To understand the physical limits of computation it is necessary to shift our

classical computer models to ones that take into account physical considerations.

The best current theory of physical reality is quantum mechanics, which take us

to think on computer models based on it. Quantum computation is the study of

the power and limitations of computer models that consider quantum mechanical

effects like interference and entanglement. Several of the classical computing

models like boolean circuits, Turing machines, etc., can be extended to quantum

models of computation. In this research we focus on two particular models: the

decision tree complexity and communication complexity.

This research is divided in two parts. First we consider Quantum Walks, a

very powerful paradigm for the design and analysis of quantum algorithms. Clear

mathematical foundations are still lacking for this paradigm. Hence, as a step

toward this objective, the following question is being addressed: Given a graph,

what is the probability that a quantum walk arrives at a given vertex after some

number of steps? This is a very natural question, and for classical random walks

it can be answered by different combinatorial arguments. For quantum walks

this is a highly non-trivial task. Furthermore, this was only achieved before

for one specific coin operator (Hadamard operator) for walks on the line. Even

considering only walks on lines, generalizing these computations to a general

SU(2) coin operator is a complex task. The main contribution of this part is
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a closed-form formula for the question above for a general symmetric SU(2)

operator for walks on lines. As the second contribution, this thesis presents how

some basic properties of the walk can be deducted by means of weak convergence

theorems for quantum walks.

The second part of this research considers communication complexity; in par-

ticular, quantum nondeterministic multiparty communication. There are three

different types of nondeterminism in quantum computation: i) strong, ii) weak

with quantum proofs, and iii) weak with classical proofs. This thesis is focused

on strong quantum nondeterministic protocols where a correct input is accepted

with positive probability, and an incorrect input is rejected with probability 1.

By extending the definition proposed by de Wolf to nondeterministic tensor-rank

(nrank), this thesis shows that for any boolean function f , when there is no

prior shared entanglement, the strong quantum nondeterministic communication

complexity 1) is upper-bounded by the logarithm of nrank(f) in the Number-

On-Forehead model; and, 2) in the Number-In-Hand model it is lower-bounded

by the logarithm of nrank(f). One application is a new lower bound for the

generalized inner product function on the Number-In-Hand model. As another

application of the main result this thesis shows that when the number of players

in the protocol is o(log log n) we have NQP * BQP in the Number-On-Forehead

model.

Keywords:

Quantum Computing, Decision Trees, Quantum Walks, Communication Com-

plexity, Complexity Classes, Nondeterministic Communication
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Asuncion in Paraguay I knew very well that I wanted to continue my studies

in Japan. The next year I applied to the MEXT scholarship at the Embassy

of Japan in Paraguay and received the good news at the end of the same year.

I arrived in Japan on April 3rd, 2008 and went on to study Japanese language

at Osaka University for six months. From October 2008 to March 2009 I was a

research student at Nara Institute of Science and Technology, and it was during

that time that the first ideas for this thesis started to be developed.

Before starting my graduate studies I had some experience on doing research.

I was involved mainly in artificial intelligence and combinatorial optimization, in

particular, local search heuristics for SAT which involved a lot of programming

and experiments. However, my interests always were on theoretical computer sci-

ence, so I chose quantum complexity theory as the main subject for my graduate

studies.

I have to admit that the transition from experimental algorithmics to a field

rooted in mathematics was not as smooth as I thought it would be. I had the skills

needed but the intuition for mathematical work was not there. That required for

me to start from scratch with math and learn how to do research all over again.

That road had a lot bumps but I strived to the end.

The process for learning how to do research in mathematics was a very grati-

fying experience (as it should be for any endeavor). Sometimes it was frustrating,

specially when I was stuck and completely loss on how to do progress. However,

when I solved a problem, that feeling overwhelmed any other failures I had in

the past. During this learning process I received a lot help from my advisors,

colleagues and friends.

First of all I want to thank my thesis committee Yasuhiko Nakashima, Hi-

royuki Seki, Shigeru Yamashita, and Masaki Nakanishi for all the hard work on

reviewing this thesis. Prof. Nakashima always supported me and gave me confi-
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Special thanks go to Benjamı́n Barán. He was my mentor and the one who

introduced me to science during my college years. An outstanding human being

whose enthusiasm and devotion to science continues to be an example to me and

to his many students.
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Chapter 1

Introduction

In the mid-90s one of the greatest discoveries in computer science was a polynomial-

time algorithm for factoring composite numbers. Given that the security of cryp-

tographic systems depend on the difficulty of factoring large composite numbers,

this discovery implies that all the security of online transactions can be broken us-

ing this algorithm. But there was a catch, this algorithm only runs on a quantum

computer.

A quantum computer is a computing model that directly uses quantum me-

chanical effects for computation. The original idea can be traced back to the

physicist Richard Feynman [Fey82], and was later formalized in the mid-80s by

another physicist, David Deutsch [Deu85]. At that time, people saw the model

as another curious computer model until the seminal paper by Peter Shor, on

the polynomial-time factoring algorithm [Sho94]. This gave a clear evidence that

there could be practical problems that a quantum computer can solve faster than

classical computers. In fact, as a plausible model of computation, it even chal-

lenges the strong version of the Church-Turing Thesis1. This fact was reinforced

when researchers discarded it as a model of analog computation by showing that

a quantum computer is tolerant against a finite amount of noise [NC00].

Since the discovery of Shor’s algorithm, the scientific community started to

get interested and several other quantum algorithms were discovered. Among

those, one of the most important is the algorithm for searching an unstructured

1Strong Church-Turing Thesis: Any algorithmic process can be simulated efficiently

using a probabilistic Turing machine.
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search space discovered by Lov Grover [Gro96]. Given a set of n elements, the

algorithm finds a marked element in O(√n) steps (a quadratic speed-up with

respect to classical search). This bound turned out to be tight [BBBV97] and

presented evidence against the possibility that NP-complete problems could be

efficiently solved by quantum computers.

1.1 Quantum ComputingModels and Paradigms

To be able to say anything formal about quantum computation it is necessary

to develop formal models of it. In the seminal paper of Bernstein and Vazirani

[BV97] the Quantum Turing Machine model was introduced in its current form.

Previous models were developed by Benioff [Ben80], Deutsch [Deu85] and Yao

[Yao93]. In [BV97] it was also shown that the Quantum Turing Machine is

universal with only a polynomial overhead on the simulation of any other machine.

The authors also showed several properties like BQP ⊆ P#P where BQP is the

class of languages with efficient quantum Turing machines.

Another important model is the Quantum Circuit Model originally introduced

by Deutsch [Deu85] which was later developed by Yao [Yao93]. Yao also showed

in the same piece of work that Quantum Turing Machines and Quantum Circuits

are indeed equivalent in power. Shor’s factoring algorithm was given in this model

of computation [Sho94].

The Quantum Turing machine and Quantum Circuits are the models that

could be considered the most significant when researching about the power and

limitations of quantum computation. However, the existing problems in classical

complexity theory carry over to the quantum world including the known barriers

for proving class separations [AB09]. In particular, it is hard to prove lower

bounds on these two models. Furthermore, since quantum mechanics requires

reversible operations, also proving upper bounds turns out to be hard.

In order to prove facts about quantum computation, and at the same time,

to be able to say significant things about it, researchers focused on more simple

models of computation. Two of the more popular and widely studied models are

quantum decision trees and quantum communication.
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1.1.1 Quantum Decision Trees

A Quantum Decision Tree is the quantum counterpart of the well studied decision

tree model. In the quantum computing community, it is common to refer to this

model as quantum query complexity. This thesis uses both names interchange-

ably.

Normally it is easy to see a quantum query algorithm as an algorithm that has

access to a black-box or oracle. Access to the input is only possible by making

queries to this black-box, hence the name. This way, the complexity is measured

in terms of the number of queries to the oracle in order to compute some function.

Other computations, beside the oracles queries, can be made free of cost.

The first algorithm under this model was the celebrated Deutsch-Jozsa algo-

rithm. Also, Shor’s quantum algorithm has in its structure a quantum decision

tree in operation. One lower bound technique is the polynomial method discovered

by Beals, Buhrman, Cleve, Mosca and de Wolf [BBC+01]. This technique allows

to lower bound the quantum query complexity by computing the minimum degree

of an approximating polynomial of the boolean function. An alternative technique

is the quantum adversary method discovered by Ambainis [Amb00]. This tech-

nique is based on upper-bounding the amount of information obtained from each

query. The quantum adversary method is the most researched technique in recent

years with several works improving it to obtain better lower bounds. This cul-

minated recently in a breakthrough result by Reichardt [Rei10]: a variant called

The Negative Adversary method is optimal for quantum query complexity.

In the upper bounds realm it is generally easier to construct quantum query

algorithms. This is mostly due to the fact that we can ignore computations

costs that are not queries to the quantum oracle. However, a “real” quantum

algorithm, i.e., one based on quantum Turing machines or quantum circuits,

needs to take into considerations all computations. Hence, to actually construct

quantum algorithms researchers turned to a new paradigm known as quantum

walks.

Quantum walks are the quantum counterpart of classical random walks and

Markov chains and they served as a paradigm for the design and analysis of

quantum algorithms. It is expected that this tool would make the job easier

for quantum algorithm designers. As an example of the power of the paradigm,

3



Ambainis [Amb07] was able to give an optimal algorithm for the element distinct-

ness problem (see Chapter 2 of this thesis), and Magniez, Santha and Szegedy

showed an almost-optimal algorithm for finding triangles in graphs [MSS07] (later

generalized by Childs and Kothari [CK11] also using quantum walks).

1.1.2 Quantum Communication

The communication model for boolean functions was introduced by Yao [Yao79].

Originally it was motivated by the study of parallel computation and boolean

circuits. However, the wide range of applicability to different areas like data

structures, streaming algorithms, VLSI, etc, made it one of the more studied

models of computation [KN97].

The model is basically the following. There are two or more players with

unlimited computational resources seeking to compute some boolean function.

The input to the function is distributed among the players in a way that any

one player is not able to compute the function by itself, and thus, the party is

forced to communicate. Each player can send a message (string of bits) to any

other player. The communication complexity is defined as the minimum amount

of communication required to compute the function. If we allow the players to

send quantum messages (or quantum bits) to each other we have the quantum

communication model [Yao93].

Most of the research in communication complexity is focused on lower bounds.

We have a tight relation between classical and quantum decision trees and com-

munication: lower bounds in communication imply lower bounds on decision

trees, and, upper bounds for decision trees imply upper bounds for communi-

cation [KN97, BCW98]. Also, by proving lower bounds in communication we

can obtain lower bounds on the size and depth of boolean circuits and Turing

machines [KN97].

There are many lower bound techniques in the literature touching all aspects

of mathematics (for quantum and classical communication). These techniques

range from combinatorial, algebraic, information-theoretic, analytical, geometri-

cal, to name a few. A few year ago the hardest kind of lower bounds to come

by were on quantum communication. This changed upon the discovery of two

important techniques: the norm bound by Linial and Shraibman [LS09c] and the

4



pattern matrix method by Sherstov [She08]2. Previous techniques worked fine

for 2-party communication, however, for three or more players (multiparty com-

munication) they delivered weak bounds, normally exponentially decreasing in

the number of players. The norm bound and the pattern matrix method, with

their generalization to tensors, delivered new and stronger lower bounds for a

variety of problems [LS09b]. Recently, there is a new technique, which is purely

information-theoretic, known as information complexity. This is a very promising

novel technique with new outstanding results [KLL+12].

1.2 Contributions of this Thesis

This work studies some fundamental questions about quantum walks as a tool

for the construction of quantum query algorithms and the communication model

for quantum computation. This thesis can be divided in two big parts. The first

part deals with quantum walks and studies its dynamics as a random process.

The second part of this thesis looks into the communication model, in particular,

quantum nondeterministic communication. Even though nondeterminism is not

a realistic model of communication, it is still important mainly due to the fact

that lower bounds on nondeterministic communication imply lower bounds for

randomized and deterministic communication.

The main contributions can be summarized as follows.

1. A new closed-form formula to compute the induced probability distribution

of quantum walks on lines (Chapter 2).

2. A new lower bound for multiparty strong quantum nondeterministic com-

munication based on tensor rank (Chapter 3).

In the following, a more detailed summary of the contributions of this thesis

is explained.

2Actually, the norm bound and pattern matrix techniques were inspired by Razborov’s

method [Raz03] which used a multidimensional generalization of discrepancy to prove an opti-

mal lower bound on set disjointness.
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1.2.1 Quantum Walks on the Line with Phase Parameters

Here a study of discrete-time coined quantum walks is presented. Clear mathe-

matical foundations are still lacking for this quantum walk model. For example,

in random walks we can relate exactly the eigenvalues of a graph to its hitting

and mixing times [Str05]; on the other hand, in coined quantum walks it is not

known if such a relation exists.

As a step toward finding mathematical foundations of quantum walks, here

the following question is being addressed: What is the probability that a quantum

walk arrives at a given vertex after some number steps? This is a very natural

question, and for random walks it can be answered by several different combi-

natorial arguments [Str05]. For quantum walks, this is a highly non-trivial task.

Furthermore, this was only achieved for one specific coin operator (Hadamard

operator) for walks on the line [ABN+01, Kon03, GJS04, CSL08]. Even consider-

ing only walks on lines, generalizing these computations to a general SU(2) coin

operator is a complex task.

The main contribution of this part of the thesis is a closed-form formula

for the question above for a general symmetric SU(2) operator for walks on

lines (theorem 2.5.1). To this end, first a coin operator with parameters that

alters the phase of the state of the walk on the line is proposed. Then, the

spectrum of the unitary evolution operator of the walk is computed by means

of Fourier analysis. Finally, closed-form solutions can be approximated using

an asymptotic approximation method known as the steepest descent method

[Won01, Mil06] from complex analysis. The error terms for this approximation

can be derived from the steepest descent method itself and the Euler-Maclaurin

summation formula [Apo99].

As the second contribution of this part, some basic properties of the walk are

examined by means of weak convergence theorems for quantum walks [GJS04].

First, the support of the induced probability distribution of the walk is computed.

Then, it is shown how changing the parameters in the coin operator affects the

resulting probability distribution.
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1.2.2 Tensor Rank and Strong Quantum Nondeterminism

in Multiparty Communication

This part of the thesis studies quantum nondeterminism in multiparty communi-

cation. There are three (possibly) different types of nondeterminism in quantum

computation: i) strong, ii) weak with quantum proofs, and iii) weak with classical

proofs. It is common to refer to these notions as NQP-communication, QMA-

communication, and QCMA-communication respectively [RS04, Kla11]. This

work is focused on the first one. A strong quantum nondeterministic protocol

accepts a correct input with positive probability, and rejects an incorrect input

with probability 1.

The main result of this part relates the strong quantum nondeterministic mul-

tiparty communication complexity to the rank of the communication tensor in the

Number-On-Forehead and Number-In-Hand models. In particular, by extending

the definition proposed by de Wolf to nondeterministic tensor-rank (nrank), it

is shown that for any boolean function f when there is no prior shared entangle-

ment between the players, 1) in the Number-On-Forehead model the cost is upper-

bounded by the logarithm of nrank(f), and 2) in the Number-In-Hand model the

cost is lower-bounded by the logarithm of nrank(f). Furthermore, as another ap-

plication, when the number of players is o(log log n) we have NQP * BQP for

Number-On-Forehead communication, where NQP and BQP are the classes of

boolean functions with efficient3 strong quantum nondeterministic protocols and

bounded-error randomized protocols respectively.

1.3 Outline of the Thesis

The first part of this research appears in Chapter 2 where the contributions related

to quantum walks is presented. As motivation, first the chapter starts with a

general definition of a quantum walk with some applications for upper-bounding

decision tree depth. Then the chapter proceeds with developing the main analysis

technique. For the reader with no previous experience with quantum computation

3A protocol is efficient in communication complexity if the cost is polylogarithmic on the

size of the input.
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and decision trees, a brief introduction is presented in appendices A and B.

The second part is related to lower bounds on quantum communication. In

Chapter 3, this thesis studies the notion of strong quantum nondeterministic

communication. Then a brief introduction to tensors is presented. After the

explanation of the main result of the chapter, two applications are given: 1) a new

lower bound on the generalized inner product function in the Number-In-Hand

model in Section 3.4, and 2) the NQP * BQP proof for Number-In-Forehead

communication in Section 3.6. A brief introduction to communication complexity

can be found in Appendix C.
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Quantum Walks
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2.1 Background

The design of quantum algorithms is nowadays one of the major problems in the

quantum computing community. The strategies for writing classical algorithms
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as divide and conquer, dynamic programming, etc, are not easily adapted to

the quantum paradigm. Strategies for designing quantum algorithms are phase

amplification, phase estimation, to name a few. As an example of the applications

of these strategies, Grover’s algorithm uses the amplitude amplification technique,

and Shor’s algorithm relies in reductions to order finding and phase estimation

[NC00]. Therefore, it becomes necessary the study of different approaches to

improve the efficiency of the search.

One of the emergent alternatives for the design of algorithms are quantum

walks, in direct analogy to random walks in classical computing. Random walks

showed to be a successful tool for designing algorithms, and the same success

is expected in the quantum realm. Results in this field showed that quantum

walks can outperform its classical counterpart by exploiting quantum mechanical

effects such as interference and superposition, giving and exponential speedup for

certain types of graphs, and polynomial speedup for some practical applications

[Amb04, Kem03].

The field of quantum walks is very recent and still lacks a solid mathemat-

ical foundation. Markov chain quantum walks already started to build these

foundations by establishing a direct connection to classical Markov chains using

algebraic techniques [Sze04]. However, coined quantum walks are not having the

same luck, and it seems that mathematical techniques for random walks simply

do not work.

Quantum walks are defined by the application of two unitary operators S and

C, where C (coin operator) decides which vertex to move onto, and S (shift op-

erator) performs the actual movement of the walk given the direction decided by

C. Ambainis [Amb04], Kempe [Kem03] and Konno [Kon08] give good surveys of

this model. There are several studies of this walk for specific graphs. On the line,

Ambainis et al. [ABN+01] and Chandrashekar, Srikanth, and Laflamme [CSL08]

show that the variance of the induced probability distribution has a quadratic

improvement over the classical walk (i.e. for t steps is O(t2) and classically

O(t)). Konno computed the induced probability distribution using path inte-

grals [Kon03] and via a weak limit theorem [Kon05]. In the hypercube, Kempe

[Kem05] shows that the hitting time from one corner to its opposite is exponen-

tially faster, while Moore and Russell [MR02] gives the same speed-up for the
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mixing time. For practical applications there are algorithms for hypercubes and

grids. For the hypercube, Shenvi et al. [SKW03] gives an algorithm for solving

SAT with a quadratic improvement, while Potoček et al. [PGKJ09] gives an im-

provement of the same algorithm on the success probability. For grids, Ambainis

et al. [AKR05] show a quadratic speed-up and presents a general framework for

analyzing quantum walks. Also, Ambainis [Amb07] gives an optimal algorithm

for element distinctness over the Jhonson graph with a quadratic speed-up.

Quantum walks on the line is probably the most studied quantum walk model.

Interest on this matter started in computer science with Ambainis, Bach, Nayak,

Vishwanath, and Watrous [ABN+01], where notions of hitting and mixing times

were introduced. In the same piece of work, they computed a closed-form formula

for the induced probability distribution of a Hadamard walk (i.e. a quantum walk

with a Hadamard operator as coin). Furthermore, their formula gives a complete

characterization of the amplitudes in the state of the walk in the asymptotic limit.

It is known that the dynamics of the walk is controlled by the coin operator

[Kem03]. Thus, depending on the application, a good choice of the coin could

make a great difference. This motivated the study of quantum walks on the

line moved by a general SU(2) operator, which has four independent variables.

However if we consider only the resulting probability distribution, one variable

is enough; i.e. any probability distribution resulting from a quantum walk on

the line can be simulated by a general rotation around the z axis with parameter

θ. Nayak and Vishwanath [NV00] gave an intuitive description of the probabil-

ity distribution based on the stationary phase method without giving an explicit

formula for it and without considering the amplitudes of the state of the walk.

Chandrashekar, Srikanth, and Laflamme [CSL08] studied generalized walks using

a SU(2) coin operation. They present an approximate formula for the amplitudes

of the state of the walk. However, their results were based in numerical experi-

ments rather than a complete analytically deducted formula. Grimmet, Janson,

and Scudo [GJS04] showed a ballistic spreading of the walk and they gave an

expression for the limit distribution using weak convergence theorems.
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Table 2.1: Known results of different coins for walks on the line.
Coin Amplitudes of the state Probability distribution

Hadamard closed-form [NV00] closed-form [NV00, Kon03]

SU(2) numerical results [CSL08] numerical results [CSL08],

closed-form [NV00]

Symmetric

SU(2)

closed-form [this work] closed-form [this work]

U(2) explicit formula (not closed-

form) [Kon03, Kon05]

explicit formula (not closed-

form) [Kon05]

2.2 Overview of the Chapter

As a step toward finding mathematical foundations of quantum walks, in this work

the following question is being addressed: Given a graph, what is the probability

that a quantum walk arrives at a given vertex after some number steps? This

is a very natural question, and for random walks it can be answered by several

different combinatorial arguments [Str05].

The main contribution of this chapter is a closed-form formula1 for the ques-

tion above for a general symmetric SU(2) operator for walks on the line (The-

orem 2.5.1). Furthermore, the formula characterizes the amplitudes of the state

of the walk in the asymptotic limit. In comparison to the previous works men-

tioned before (Nayak and Vishwanath [NV00], Chandrashekar et al. [CSL08]),

the closed-form formulas derived in this work were analytically computed for

the amplitudes of the state of the walk (including the induced probability dis-

tribution) for a symmetric SU(2) operator (Table 2.1 shows more clearly these

differences).

In a seminal work, Konno [Kon03, Kon05] gave explicit expressions for the

amplitudes of a U(2) coin, using a discrete path integral method in a clever way.

However, these expressions were not in closed-form, as we claim in this work.

Furthermore, we show how to compute the errors in the asymptotic approxi-

mation, something that was missing from previous works in the literature. To

1A quantity f(n) is in closed-form if we can compute it using at most a fixed number of

“well-known” standard operations, independent of n [GKP94].
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this end, in Section 2.4 a coin operator with parameters that alters the phase

of the state of the walk on the line is proposed. The coin operator is inspired

by the quantum algorithm for SAT proposed by Hogg [Hog00]. In that work,

in order to implement heuristics for quantum algorithms, the author proposed

to add parameters to the unitary operation of a search algorithm. This way,

the situation is similar to classical algorithms where a tunable set of parame-

ters are adjusted according to the problem. After defining the coin operation,

we compute the spectrum of the unitary evolution operator of the walk using

Fourier analysis. In Section 2.5, after having obtained the eigenspectrum of the

walk, we apply the inverse Fourier transform to obtain the state of the walk in

terms of Fourier coefficients. To compute a closed-form solution in the asymp-

totic limit from the Fourier coefficients, we applied the Euler-Maclaurin formula

[Apo99] and the steepest descent method for asymptotic approximation of inte-

grals [Won01]. This method is in fact stronger than the stationary point method

from [NV00] and [SKJ08], where the authors use it to study the asymptotics of

the resulting probability distribution from coin operators with real eigenvalues.

With the steepest descent method we can compute the amplitudes of the state

of the walk resulting from any complex unitary operator. In Section 2.5.3, we

compute the error terms for the approximations made, which can be derived from

the employed methods. Finally, some basic properties of the walk are examined

by means of weak convergence theorems [GJS04]. The support of the induced

probability distribution of the walk is computed, and then we argue how changing

the parameters in the coin operator affects the resulting probability distribution.

2.3 A General Definition

A particle doing a random walk on a graph (V,E) starts in some vertex, and at

every time step it chooses randomly to move to one of the neighboring vertices.

A quantum walk does the same type of movement, but with an additional degree

of freedom known as “chirality” [ABN+01], or just “direction of the walk”. The

direction guides the walk through the edges of the graph, but it can do so in

superposition of all possible directions. The space of directions of the walk is

called coin space, in analogy to a coin toss. At each time step the walker chooses
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a direction, or superposition of directions, and moves accordingly. If the walker

chooses a superposition of directions, it also moves in a superposition of position

states on the graph.

In the following the formal definition of discrete time quantum walks on gen-

eral graphs is presented. First, let Hs be the Hilbert space of positions with

basis states {|u〉 : u ∈ V }, i.e., the walk is moving over the vertices. The coin

space Hc is spanned by basis states {|i〉 : i = 1, 2, . . . , d} where d is the degree

of graph (V,E). For example, let u be the current position of the walk with a

set of neighbors N(u) with |N(u)| ≤ d. Each neighboring vertex is labeled with

a number between 1 and d. The quantum walk first selects a neighboring vertex

with the coin operation C, e.g., if the state of the walk is |u〉⊗ (|2〉+ |6〉) it means

that the walk selected neighbors 2 and 6 denoted as |u2〉 and |u6〉. Then with

operator S it moves and the resulting state is (|u2〉+ |u6〉)⊗ (|2〉+ |6〉).

Definition 2.3.1. The state of the quantum walker |Ψt〉 =
∑

v |ψt(v)〉 at time t is

defined over the joint space Hc⊗Hs with basis states {|d, v〉 : |d〉 ∈ Hc, |v〉 ∈ Hs},
where |ψt(v)〉 =

∑
d α

d
t (v)|d, v〉 and αd

t (v) is the amplitude at time t in direction

d and position v. Also
∑

d,v |αd
t (v)|2 = 1.

Definition 2.3.2. Let |Ψt〉 be the state of the walk at time t as defined in 2.3.1.

The probability of finding the walk on vertex v at time t is given by

P (v, t) = 〈ψt(v)| ψt(v)〉 =
∑

d

|αd
t (v)|2.

The quantum walk is defined by the way it moves at each time step. This is

captured by the following definition.

Definition 2.3.3. The time evolution of the walk is given by

|Ψt〉 = U |Ψt−1〉, or equivalently |Ψt〉 = U t |Ψ0〉 ,

where U = S(C ⊗ I) is a unitary operator defined on the Hilbert space of the

whole system Hc ⊗ Hs, I is the identity matrix acting on Hs, C is the coin

operator acting solely in Hc, and S is the shift operator in charge of moving the

walker.

14



According to this definition, the walk first chooses a direction of movement

using C, and then moves according to the result with operator S. In order to

move, operator S needs to be conditioned on the coin space in the following way,

S =
∑

d,v

|d〉〈d| ⊗ |vd〉〈v|,

whose action can be described as |d, n〉 S−→ |d, vd〉 with vd as the d-th neighbor of

v.

The dynamics is handled by the coin operator. Essentially, C is a rotation in

Hc and it is called a “coin” in analogy to random walks. Operator C is chosen

arbitrarily and we can define walks with different behavior by modifying C. The

most common coins being studied are

H =
1√
2

∑

x,y

(−1)xy|x〉〈y| (Hadamard Coin),

G = 2|ψ〉〈ψ| − I (Grover Coin),

F =
1√
d

∑

x,y

ωxy|x〉〈y| (Discrete Fourier Transform),

where |ψ〉 = F |0〉, d is the dimension of Hc and ω = e2π/d is a d-th root of unity.

Normally the Hadamard coin is used for walks on the line [ABN+01], and Grover’s

and DFT coins were used to study walks on the hypercube [Kem05, KB06, MR02].

2.3.1 Convergence

Let Xt be a random variable representing the position of the walk at time t

distributed according to P (n, t) (Definition 2.3.2). Quantum walks gives rise to

a sequence of random variables {Xt : t ≥ 1} similar to a stochastic process. We

say that the sequence converges weakly to a random variable Z if limt→∞Xt = Z

given that limt→∞E[h(Xt)] = E[h(Z)] for all bounded continuous function h :

R → R. Convergence of random variables indicates that random events settle

into a fixed pattern. This concept plays an important role in results such as the
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weak law of large numbers and the central limit theorem, and therefore it is of

great importance for statistics and stochastic processes.

Weak convergence theorems for lines and d-dimensional grids were developed

by Grimmett, Janson, and Scudo [GJS04]. With the help of weak convergence

theorems we can calculate the asymptotic probability of the density function

associated to the walk when t→∞. For this thesis, only the convergence theorem

for walks on lines is needed [GJS04, Theorem 1].

Let H = span{|d, n〉 : d ∈ {←,→} and n ∈ Z} be the Hilbert space of

the walk on the line. The basis states of H are transformed to Fourier space,

and denote this new space as Hk. Define the variable k ∈ K = [0, 2π) which

denotes the Fourier transform of position n on the line. In Hk a basis state

at time t is denoted as
∣∣∣ψ̃t(k)

〉
=
∑

d

∣∣∣ψ̃d
t (k)

〉
for some k ∈ K, where

∣∣∣ψ̃d
t (k)

〉

is the component of the walk going in direction d. Now define a probability

space Ω = K× {1, 2} with probability measure ∆ = |
〈
ψ̃0(k)

∣∣∣ ψ̃d
t (k)

〉
|2dk/2π on

K × {d}. Let Uk be the unitary operation of the walk in Hk with eigenvalues

λd(k), one for each possible direction over the line. Define a function h : Ω→ R

as h(k, d) = λd(k)
−1 d

dk
λd(k).

Theorem 2.3.1 (Grimmett et al. [GJS04]). Let Z be a random element of Ω

with distribution ∆, then
Xt

t
 h(Z),

where the symbol  denotes weak convergence.

The support of h is exactly in the range [min h,maxh] [GJS04]. As an ex-

ample from [GJS04], consider as coin operation the Hadamard matrix H . The

eigenvectors in Fourier space are

λd(k) =
i√
2
sin k ±

√
1− 1

2
sin2 k.

Then

h(k, d) =
−iλ′d(k)
λd(k)

= ± cos k√
2− sin2 k

.

The support of h, i.e., the points in the line where the probability is not 0, is

concentrated in

[min h,maxh] =

[
− 1√

2
,
1√
2

]
.
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Furthermore, these results can be used to directly compute the asymptotic density

function of the walk on the line as shown in [GJS04].

2.3.2 Quantum Walks and Decision Trees

This section presents some algorithmic applications of quantum walks. For a

more general analysis with applications see Appendix D.

SAT

We start by describing a quantum walk algorithm for SAT discovered by Shenvi,

Kempe, and Whaley [SKW03]. This was possibly the first real application of

quantum walks to a computational problem.

The graph used for the walk is a hypercube with 2n vertices for a SAT formula

with n variables. Each vertex is connected to its neighbors if and only if it has

Hamming distance 1 from it. The objective is to find a target vertex |xtarget〉 that
it is promised to exists.

Theorem 2.3.2 (Shenvi, Kempe, Whaley [SKW03]). Given a SAT formula with

n variables and a unique solution, there exists a coined quantum walk algorithm

that finds the solution in O(
√
2n/2) steps with success probability 1

2
−O(1/n).

In order to obtain a search algorithm, the walk needs to amplify the amplitude

of the target state. To do so, the authors introduce a “perturbed” coin operation

C ′. The idea is that operator C ′ acts by applying a “marking” coin C1 to the

target state, and the original coin C0 to the rest. Each time this operation is

used, it is making an oracle call and flipping the phase of the target state.

The algorithm goes as follows:

1. Create a superposition on all vertices;

2. Apply operator U ′ = S(C ′ ⊗ I), O(
√
2n) times;

3. Measure the position register.

One of the key aspects of the proof is the projection of the hypercube graph

onto a line. The authors then proceed with the analysis of the walk on the line

to prove their claims. For details refer to [SKW03]. The success probability was

recently improved to 1−O(1/n) [PGKJ09].
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Element Distincness

Another interesting application is to the Element Distinctness Problem. Given a

set of positive integers S = {x1, . . . , xn}, determine if there exists indices i 6= j

such that xi = xj , i.e., a collision. Ambainis [Amb07] proved, using quantum

walks, an upper bound of O(n2/3) queries for this problem, matching the lower

bound given by Aaronson and Shi [AS04].

In general, this is a walk on the Johnson graph. This graph have as vertices

subsets A ⊆ [n] with a fixed size |A| = r. A vertex A is connected to another

vertex B if and only if they differ in exactly one element, i.e. |A∩B| = 1. Denote

this graph by Jn,r.

Theorem 2.3.3 (Ambainis [Amb07]). There exists a quantum walk algorithm

that solves the element distinctness problem with O(n2/3) queries and constant

success probability.

This is a walk on Jn,r with r = n2/3. The algorithms goes as follows:

1. Create a superposition on all vertices;

2. Make r queries to the current vertex;

3. Repeat O((n/r)1/2) times:

(a) Apply the conditional phase flip to check for collisions;

(b) Perform O(√r) steps of the quantum walk.

4. Measure the final state.

This is a very rough idea of the algorithm. For details refer to [Amb07]. The

major difference with the walk for SAT is that the flipping operation takes place

outside the quantum walk (step 3.a).

2.4 Walks on the Line with Phase Parameters

This section gives the definition of quantum walks on the line and introduces the

coin operator used in this research.

Definition 2.4.1. Let Hc = span{|←〉 , |→〉} and Hs = span{|n〉 : n ∈ Z}.
The state of the walk |Ψt〉 =

∑
n |ψt(n)〉 at time t is defined over the joint

space Hc ⊗ Hs with basis states {|d, n〉 : |d〉 ∈ Hc, |n〉 ∈ Hs}, where |ψt(n)〉 =
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∑
d α

d
t (n)|d, n〉 and αd

t (n) is the amplitude at time t in direction d and position

n. Also
∑

d,n |αd
t (n)|2 = 1.

For the analysis of the walk on the line we consider the projection at time t

onto position n as a 2 dimensional vector, i.e.,
[
α←t (n)

α→t (n)

]

with α←t (n) and α→t (n) representing the amplitude of the walker at position n at

time t going left and right respectively. The probability of being at position n at

time t is thus given by

Pt(n) = 〈ψt(n)|ψt(n)〉 = |α←t (n)|2 + |α→t (n)|2. (2.1)

Throughout the paper, the initial condition is considered as |ψ0(0)〉 = [α←0 , α
→
0 ]T

and |ψ0(n)〉 = [0, 0]T for n 6= 0, with |α←0 |2 + |α→0 |2 = 1.

The quantum walk is defined by the way it moves at each time step. This is

captured by the following definition.

Definition 2.4.2. The time evolution of the walk on the line is given by

|Ψt〉 = U |Ψt−1〉 , or equivalently, |Ψt〉 = U t |Ψ0〉 ,

where U = S(C ⊗ I) is a unitary operator defined on the Hilbert space of the

whole system Hc ⊗ Hs, I is the identity matrix acting on Hs, C is the coin

operator acting solely on Hc, and S is the shift operator in charge of performing

the walk.

According to this definition, the walk first choses a direction of movement

using C, and then moves with operator S. In order to move, operator S needs to

be conditioned on the coin space in the following way,

S =
∑

n

|←〉 〈←| ⊗ |n− 1〉 〈n|+ |→〉 〈→| ⊗ |n + 1〉 〈n| . (2.2)

Definition 2.4.3. The coin operator is defined by C = HTH , where H is the

Hadamard operator2 in charge of mixing amplitudes among states, and T =

eiπτ1 | ←〉〈← |+eiπτ2| →〉〈→ | is the diagonal phase adjustments with τ1, τ2 ∈ [0, 1].

2The Hadamard operator is defined as H = 1√
2

[
1 1

1 −1

]
.
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Figure 2.1: Quantum walk on the line with different values of phase parameters.

The variance of the walk changes depending on τ1 and τ2. Since the probabilities

at odd positions are 0, those points are not plotted.

Let a ≡ eiπτ1 + eiπτ2 and b ≡ eiπτ1 − eiπτ2 . Then, the resulting operator can be

written as

C =
1

2

[
a b

b a

]
,

which have the following effect on HC

| ←〉 −→ (1/2)a| ←〉+ (1/2)b| →〉,
| →〉 −→ (1/2)b| ←〉+ (1/2)a| →〉.

Figure 2.1 shows the dynamics of a walk using C as coin. For different values of

the phase parameters τ1 and τ2 the variance of the induced probability distribution

changes.

The state of the walk at time t can be related to the state at time t + 1

according to the following lemma.

Lemma 2.4.1.

|ψt+1(n)〉 =M+|ψt(n− 1)〉+M−|ψt(n+ 1)〉 (2.3)
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where

M+ =

[
0 0

(1/2)b (1/2)a

]
and M− =

[
(1/2)a (1/2)b

0 0

]
.

Proof. Let |Ψt〉 =
∑

n α
←
t (n)| ←, n〉+ α→t (n)| →, n〉 be the state at time t. Also

denote the amplitudes after applying operators C and S as

(C ⊗ I) |Ψt〉 =
∑

n

α←t (n)′| ←, n〉+ α→t (n)′| →, n〉,

S(C ⊗ I)|Ψt〉 =
∑

n

α←t (n)′′| ←, n〉+ α→t (n)′′| →, n〉.

Now let |Ψt+1〉 =
[
α←t+1(n)

α→t+1(n)

]
be the state at time t + 1. The amplitudes of this

state are related to the amplitudes of |Ψt〉 in the following way
[
α←t+1(n)

α→t+1(n)

]
=

[
α←t (n)′′

α→t (n)′′

]
=

[
α←t (n + 1)′

α→t (n− 1)′

]
.

The contributions to the amplitudes of state |Ψt+1〉 come from position n+1

for the upper component, and from n− 1 for the lower component by definition

of operator S. The amplitudes corresponding to the state after applying C are

computed as follows:

C|ψt(n+ 1)〉 =
[
(1/2)aα←t (n + 1) + (1/2)bα→t (n+ 1)

(1/2)bα←t (n+ 1) + (1/2)aα→t (n+ 1)

]

=

[
α←t (n+ 1)′

α→t (n+ 1)′

]
,

and the same for C |ψt(n− 1)〉. Thus

|ψt+1(n)〉 =
[
(1/2)aα←t (n+ 1) + (1/2)bα→t (n+ 1)

(1/2)bα←t (n− 1) + (1/2)aα→t (n− 1)

]

=M+|ψt(n− 1)〉+M−|ψt(n+ 1)〉,

where

M+ =

[
0 0

(1/2)b (1/2)a

]
and M− =

[
(1/2)a (1/2)b

0 0

]
.
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2.4.1 Analysis

One approach to the analysis of quantum processes is the path integral approach.

This method explicitly computes the amplitude of a certain state as the sum over

all possible paths leading to that state [ABN+01, Kon03]. Solving a path integral

is known to be hard, and we avoid this by following the steps of [ABN+01, MR02,

Kem05] known as the Schrödinger approach. Given the translational invariance

of the walk, it has a simple description in Fourier space [ABN+01]. The Fourier

transform of the walk is analyzed and then transformed back to the original

domain.

The quantum Fourier transform [NC00] of a wave equation is defined by
∣∣∣ψ̃t(k)

〉
=
∑

n

eikn |ψt(n)〉 , (2.4)

and the corresponding inverse Fourier transform is then

|ψt(n)〉 =
1

2π

∫ π

−π
e−ikn

∣∣∣ψ̃t(k)
〉
dk. (2.5)

Applying (2.4) to (2.3) we get
∣∣∣ψ̃t+1(k)

〉
=
∑

n

eiknM+|ψt(n− 1)〉+ eiknM−|ψt(n+ 1)〉

= eikM+

∑

n

eik(n−1) |ψt(n− 1)〉

+ e−ikM−
∑

n

eik(n+1) |ψt(n + 1)〉

= eikM+

∣∣∣ψ̃t(k)
〉
+ e−ikM−

∣∣∣ψ̃t(k)
〉

=
(
eikM+ + e−ikM−

) ∣∣∣ψ̃t(k)
〉
.

Then, the time-evolution in Fourier space is given by
∣∣∣ψ̃t+1(k)

〉
=Mk

∣∣∣ψ̃t(k)
〉

(2.6)

where Mk = eikM+ + e−ikM−. In matrix form

Mk =
1

2

[
ae−ik be−ik

beik aeik

]
. (2.7)
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In general, the state at time t is given by the t-th power of operatorMk applied

to the initial state ∣∣∣ψ̃t(k)
〉
=M t

k

∣∣∣ψ̃0(k)
〉
. (2.8)

The following lemma shows the eigenspectrum of operator Mk.

Lemma 2.4.2. Let Mk be a unitary matrix as in (2.7). The eigenvalues and

eigenvectors of Mk are

λj(k) = 1/2
(
a cos k ±

√
b2 − a2 sin2 k

)

and

|λj(k)〉 = Nj(k)

[
−ia sin k ±

√
b2 − a2 sin2 k

beik

]

respectively, with j = 1, 2. Furthermore, Nj(k) is a normalization coefficient

given by

Nj(k) =

(∣∣∣−ai sin k ±
√
b2 − a2 sin2 k

∣∣∣
2

+ |b|2
)−1/2

.

Proof. The characteristic polynomial of Mk is determined by det(Mk − λI) = 0.

Then

det(Mk − λI) = λ2 − aλ cos k + a2

4
− b2

4
.

Solving the equation gives the eigenvalues

λj(k) =
a cos k ±

√
b2 − a2 sin2 k

2
,

for j = 1, 2. In order to find the eigenvectors, we solve the following system of

linear equations

(Mk − λj(k)I)
[
xj

yj

]
=

[
xj
(
a
2
e−ik − λj(k)

)
+ yj

b
2
e−ik

xj
b
2
eik + yj

(
a
2
eik − λj(k)

)
]
=

[
0

0

]
.

By letting yj = 1, we get xj = (−a+ 2λje
−ik)/b. Given that any multiple of this

vector is still an eigenvector, multiply yj and xj by be
ik and obtain

beik

[
xj

yj

]
=

[
−aeik + 2λj

beik

]
=

[
−ai sin k ±

√
b2 − a2 sin2 k

beik

]
.

Then Nj(k) is 1 divided by the ℓ2-norm of this vector, and multiply the eigenvec-

tors by Nj(k) to normalize them.
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Diagonalize (2.7) to obtain

M t
k =

∑

j∈{1,2}
λj(k)

t|λj(k)〉〈λj(k)|,

where λ1(k) and λ2(k) are the eigenvalues with corresponding eigenvectors |λ1(k)〉
and |λ2(k)〉. Now apply the diagonalized operator to the time evolution (2.8) and

obtain the following form

|ψ̃t(k)〉 =
∑

j

(
λj(k)

t |λj(k)〉 〈λj(k)|
) ∣∣∣ψ̃0(k)

〉

=
∑

j

〈
λj(k)

∣∣∣ ψ̃0(k)
〉
λj(k)

t |λj(k)〉 . (2.9)

The initial state is [α←0 , α
→
0 ]T , and in Fourier space becomes |ψ̃0(k)〉 = [α←0 , α

→
0 ]T

for all k ∈ [−π, π]. To write equation (2.9) in a simpler way define

ξj(k) =
〈
λj(k)

∣∣∣ ψ̃0(k)
〉

= α←0 Nj(k)
(
−ia sin k ±

√
b2 − a2 sin2 k

)∗
+ α→0 Nj(k)b

∗e−ik, (2.10)

where ∗ is the complex conjugate. This can be expressed in matrix form as
[
ξ1(k)

ξ2(k)

]
=

[
(−ia sin k +

√
b2 − a2 sin2 k)∗ b∗e−ikN1(k)

(−ia sin k −
√
b2 − a2 sin2 k)∗ b∗e−ikN2(k)

]
·
[
α←0
α→0

]
.

The state of the walk at time t can be expressed by
∣∣∣ψ̃t(k)

〉
=M t

k

∣∣∣ψ̃0(k)
〉
=
∑

j

λtj(k)ξj(k) |λj(k)〉 . (2.11)

Let α̃←t (k) and α̃→t (k) be the amplitudes of the state
∣∣∣ψ̃t(k)

〉
in Fourier space

going left and right respectively. Then, by equation (2.11) and Lemma 2.4.2

these amplitudes are

α̃←t (k) =
∑

j

λj(k)
tξj(k)Nj(k)

(
−ia sin k ±

√
b2 − a2 sin2 k

)
(2.12)

and

α̃→t (k) =
∑

j

λj(k)
tξj(k)Nj(k)be

ik. (2.13)
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The final step is to reverse back to the original domain of the walk. This is

done by applying (2.5) to (2.12) and (2.13),

α←t (n) =
1

2π

∫ π

−π

∑

j

ξj(k)Nj(k)λ
t
je
−ikn

(
−ia sin k ±

√
b2 − a2 sin2 k

)
dk (2.14)

and

α→t (n) =
1

2π

∫ π

−π

∑

j

ξj(k)Nj(k)be
ikλtje

−ikndk, (2.15)

Note that a discrete walk is being approximated by an integral. The Euler-

Maclaurin summation formula3 gives the error term for these approximations.

Equations (2.14) and (2.15) can be solved by the steepest descent method

from complex analysis, obtaining this way closed-form solutions. This is done in

the next section.

2.5 Asymptotic Approximation

In this section it is shown how to find close-form solutions to the integrals (2.14)

and (2.15). First, in Section 2.5.1 the technique used in this research known

as the steepest descent method is briefly explained. Then, in Section 2.5.2 the

same technique is applied to the integral-forms of the walk (equations (2.14) and

(2.15)).

2.5.1 Steepest Descent Method

Here one of the most powerful methods for asymptotic approximation of integrals

is briefly explained. The method is known as Steepest Descent Approximation

or Saddle Point Method. For a deeper understanding on this technique refer to

[Won01].

The method of steepest descent is an asymptotic approximation method for

certain types of exponential integrals of the form

It =

∫

C
g(z)etf(z)dz (2.16)

3
∑b

n=a f(n) =
∫ b

a
f(x)dx+ f(a)+f(b)

2 +
∑∞

k=1
B2k

(2k)! (f
(2k−1)(b)− f (2k−1)(a)), where each Bi is

a Bernoulli number [Apo99].
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where C is a contour in the complex z-plane and g(z) and f(z) are complex-

valued analytic functions. The parameter t is taken to be real and positive,

and we are interested in the asymptotic behavior of (2.16) as t → ∞ with t >

0. Laplace’s and stationary phase methods are just instances of this general

procedure. The integral is dominated by the highest stationary points of f , i.e.,

if f(z) = u(x, y)+ iv(x, y) with z = x+ iy we expect the integral to be dominated

by points where u is maximum and v is constant. The only possible extrema for

f are the saddle points where f ′(z) = 0. Since f is analytic, u and v satisfy the

Cauchy-Riemann equation
∂2u

∂x2
+
∂2u

∂y2
= 0,

and from the maximum principle [Won01] we have that if ∂2u
∂x2 > 0 then ∂2u

∂y2
< 0

or vice versa. If z0 is the saddle point, then we can deform the contour to C′ (by
Cauchy’s theorem) so that it passes through z0. From the Taylor expansion of

f(z) about z0 we have

f(z) ∼ f(z0) +
1

2
f ′′(z0)(z − z0)2,

where ∼ means “is close up to additive error to”. Then g(z) ∼ g(z0), because for

large t the main contribution to the integral comes from f . Then It becomes

It ∼ g(z0)e
tf(z0)

∫

C′
e

1

2
tf ′′(z0)(z−z0)2dz.

Setting

z − z0 = reiφ and f ′′(z0) = |f ′′(z0)| eiθ

it can be seen that

It ∼ g(z0)e
tf(z0)

∫

C′
exp(

1

2
t |f ′′(z0)| eiθ+2iφr2)eiφdr.

Note that φ is the angle of inclination of the oriented tangent to C at point

z0, i.e., φ = arg(z0) on C [Won01]. Choosing θ+ 2φ = π, i.e., φ = (π − θ)/2 then

It ∼ g(z0)e
tf(z0)eiφ

∫

C′
e−

1

2
t|f ′′(z0)|r2dr
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and solving this as a Gaussian integral4 yields

It = g(z0)e
tf(z0)eiφ

(
2π

t |f ′′(z0)|

)1/2

+O(t−1). (2.17)

The deformation of the contour chosen to make the integration Gaussian

corresponds to the steepest descent path from the saddle point, hence the name

of the method [Won01]. Taking this path is not essential, other methods like

stationary point and Perron’s method take another path with similar results

[Won01].

2.5.2 Asymptotic Approximation of the Walk on the Line

Left Amplitude

First the integral-form corresponding to equation (2.14) is solved. Write the

integral in the form of equation (2.16) by setting n = γt (γ = n/t) and writing

α←t (γt) =
1

2π

∫ π

−π

∑

j

gj(k)e
tfj(k) (2.18)

where

fj(k) = log λj(k)− ikγ, (2.19)

gj(k) = Nj(k)ξj(k)
(
−ia sin k ±

√
b2 − a2 sin2 k

)
. (2.20)

The saddle points θj of fj(k) are defined by the equation

f ′j(θj) = −iγ ∓
a sin θj√

b2 − a2 sin2 θj
= 0.

This equation has a solution at

θj = ± arcsin

(
bγ

a
√
γ2 − 1

)
. (2.21)

Also note that |λj(θj)| = 1. Moreover

fj(θj) = −iγθj + log

(
±b+

√
a2(1− γ2) + b2γ2

2
√
1− γ2

)
(2.22)

4The Gaussian integral or probability integral is given by
∫∞

−∞
e−x2

dx =
√
π.
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and

f ′′j (θj) =
±(γ2 − 1)

√
b2γ2 + a2(1− γ2)
b

. (2.23)

Another solution to the equation f ′(θj) = 0 is at−π−θj in the interval [−π, π].
However, since f ′′(θj) and f

′′(−π − θj) have similar behavior, the computations

do not change.

The contour is the real line in [−π, π] and has no imaginary part, therefore

φ = arg θj = 0 in equation (2.17).

Now using (2.17), the asymptotic expansion can be obtained

α←t (γt) =
1

2π

∑

j

gj(θj)e
tfj(θj)

(
2π

t|f ′′j (θj)|

)1/2

+O(t−1)

=
1

2π

∑

j

Nj(θj)ξj(θj)

[
±b(1− γ)√

1− γ2

]

×
(
±b+

√
a2(1− γ2) + b2γ2

2
√

1− γ2

)t

e−iγθjt

×
(

2π|b|
t|γ2 − 1|

√
b2γ2 + a2(1− γ2)

)1/2

+O(t−1).

Right Amplitude

Next is the solution of equation (2.15). Following the same steps as above, write

the integral as

α→t (γt) =
1

2π

∫ π

−π

∑

j

hj(k)e
tfj(k), (2.24)

where fj is defined in the same way as in (2.19), and

hj(k) = Nj(k)ξj(k)be
ik. (2.25)

Reusing the previous calculations for fj (equations (2.21), (2.22) and (2.23)),
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the asymptotic expansion is

α→t (γt) =
1

2π

∑

j

hj(θj)e
tfj(θj)

(
2π

t|f ′′j (θj)|

)1/2

+O(t−1)

=
1

2π

∑

j

Nj(θj)ξj(θj)be
iθj

×
(
±b+

√
a2(1− γ2) + b2γ2

2
√
1− γ2

)t

e−iγθjt

×
(

2π|b|
t|γ2 − 1|

√
b2γ2 + a2(1− γ2)|

)1/2

+O(t−1)

2.5.3 Closed-form Formulas and Convergence

Formulas

Approximate closed-forms for the amplitudes of the state of the walk on the line

were given. Now the main contribution of this paper can be stated formally.

Theorem 2.5.1. Let γ = n/t and a ≡ eiπτ1 + eiπτ2 , b ≡ eiπτ1 − eiπτ2. If the state

of the walk is

|Ψt〉 =
∑

n

|ψt(n)〉 with |ψt(n)〉 =
[
α←t (n)

α→t (n)

]

then,

α←t (γt) ∼ 1

2π

∑

j

NjξjAj

[
±b(1 − γ)√

1− γ2

]
,

α→t (γt) ∼ 1

2π

∑

j

NjξjAjbe
iθj ,
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where the terms Aj, Nj , ξj and θj are given by

Aj =

(
±b+

√
a2(1− γ2) + b2γ2

2
√
1− γ2

)t

×
(

2π|b|
t|γ2 − 1|

√
b2γ2 + a2(1− γ2)

)1/2

e−iγθjt,

Nj =

(∣∣∣∣−ia sin θj ±
√
b2 − a2 sin2 θj

∣∣∣∣
2

+ |b|2
)
,

ξj = α←0 (0)

(
−ia sin θj ±

√
b2 − a2 sin2 θj

)∗

+ α→0 (0)b∗e−iθj ,

sin θj = ±
(

bγ

a
√
γ2 − 1

)
,

with α←0 (0) and α→0 (0) as the initial amplitudes of the walk for n = 0, and

α←0 (n) = α→0 (n) = 0 for n 6= 0.

In a seminal work, Konno [Kon03, Kon05] gave explicit expressions for the

amplitudes of a U(2) coin using a discrete path integral method. However, these

expressions were not in closed-form, as it is claimed in this work.

In order to assess the quality of the approximation, Figures 2.2 and 2.3 show a

comparison between the probability distributions given by Theorem 2.5.1, and a

numerical simulation of walks that start with an equal superposition of directions

for different values of the parameters. It can be seen that the approximation gives

some errors, however the asymptotic agrees with the simulation. The figures show

that Theorem 2.5.1 is close to the real values of the probability distribution, in

particular in the middle part of the plots.

The errors in the approximation made by Theorem 2.5.1 can be computed

from two parts, the Euler-Maclaurin formula and the steepest descent method

[Won01]. Denote these errors by ǫ and ε respectively. Let Bi =
∑i

r=0

(
i
r

)
Bi−r be

a Bernoulli number [Apo99], and let d ∈ {←,→}. Then, the error for αd
t (γt) is∑

j ǫj,d + εj,d, where

ǫj,d =
∞∑

m=1

B2m

(2m)!

(
∂2m−1

∂k2m−1
α̃d
t (π)−

∂2m−1

∂k2m−1
α̃d
t (−π)

)
(2.26)
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Figure 2.2: Comparison between the probability distributions of numerical sim-

ulation (dark) and Theorem 2.5.1 (dashed) with τ1 = 1/2 and τ2 = 0, t = 100,

and initial state in equal superposition of directions.

and

εj,d =
1

2π

∑

j

etfj(θj)
(

2π

t|f ′′j (θj)|

)1/2

×
( ∞∑

m=1

(−1)m
m!

(
1

2t|f ′′j (θj)|

)m
∂2m

∂k2m
ρj(θj)

)
, (2.27)

where ρj is either equation (2.20) if d =←, or (2.25) if d =→. It can be seen that

if we take m terms from each summation ǫj,d = O(2−m) and εj,d = O(t−m).

Convergence and Properties

For quantum walks on the line and n-dimensional grids there exists weak con-

vergence theorems [GJS04]. In this section, we state the weak convergence of

quantum walks on the line with phase parameters using these previous results.

Then we show some applications of the convergence to compute the support of

the probability density function.
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Figure 2.3: Comparison between the probability distributions of numerical simu-

lation (dark) and Theorem 2.5.1 (dashed) with τ1 = 3/4 and τ2 = 1/2, t = 100,

and initial state in equal superposition of directions.

Theorem 2.5.2. Let Ω = [−π, π]× {1, 2} be a probability space with probability

measure ∆ = |〈ψ̃0(k)|λj(k)〉|2dk/2π for k ∈ [−π, π] and j = 1, 2. Define a map

h : Ω→ R such that for (k, j) ∈ Ω

h(k, j) ≡ hj(k) = (−1)j sin k√
sin2 k + tan2 π

2
(τ1 − τ2)

.

Let Xt be a position of the quantum walk at time t with distribution given by

(2.1), and Z be a random variable of Ω with distribution ∆. Then we have as

t→∞
Xt

t
 h(Z),

where  denotes weak convergence.

Proof. Consider the theorem that states the weak convergence of quantum walks

on the line (Theorem 2.3.1). Let λj(k) be as in Lemma 2.4.2. Then

λ′j(k) =
−a sin k

2
− a2 cos k sin k

2
√
b2 − a2 sin2 k

.
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Dividing this by λj(k) we obtain

−iλ′j(k)
λj(k)

= (−1)j+1 ai sin k√
b2 − a2 sin2(k)

.

Then, after some algebra and observing that b
a
= eiπ/2 tan π

2
(τ1−τ2), the theorem

follows.

As an application of Theorem 2.5.2, we can calculate the position of the two

peaks of the walk for large time.

Corollary 2.5.3. The limit distribution of Xt/t is concentrated on the interval[
− |a|

2
, |a|

2

]
.

Proof. Theorem 2.5.2 have its maximum and minimum values for k = ±π/2 and

the corollary follows.

The maximum probability of Pt(n) is found at the top of these two peaks,

i.e., where n = ±|a|/2 [GJS04]. Considering |n/t| as the speed of the peaks, it

can be seen that by setting τ1 = τ2 it gets its maximum value, i.e., the fastest

spreading of the walk. This corresponds exactly to an identity operator, and the

walk does not mix at all inside the range of Corollary 2.5.3. In order to get high

speed and maximum randomness (i.e. the best mixing for positions inside the

range) for Pt(n), we can set any value such that |τ1 − τ2| = 1/2. This implies

that the support of h is in [−1/
√
2, 1/
√
2]. In this case, the operator simulates

exactly the probability distribution of a Hadamard operator [GJS04].

As another application of Theorem 2.5.2, we can compute the density function

of the random variable Y = Xt/t in the asymptotic limit when t→∞. Following

the steps of [GJS04] for the Hadamard coin, we differentiate the quantity

P (Y ≤ y) =
∑

j

∫

k∈[−π,π]:hj(k)≤y

∣∣∣
〈
ψ̃0(k)

∣∣∣ λj(k)
〉∣∣∣

2 dk

2π
, (2.28)

which yields the density function

f(y) =
|b|/2

π(y2 − 1)
√

(|a|/2)2 − y2
(2.29)

for y ∈ (−|a|/2, |a|/2), under the assumption of Im(α←0 · α→∗0 ) sin(τ1 − τ2)π = 0

and |α←0 | = |α→0 | = 1/
√
2, which agrees with [Kon03, Kon05].
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2.6 Concluding Remarks of the Chapter

This chapter presented a study of discrete-time quantum walks on the line. A

symmetric SU(2) coin operation was proposed and analyzed as a step towards

an understanding of quantum walks. Using Fourier analysis and asymptotic ap-

proximation methods, we computed a closed-form formula for the amplitudes of

the state of the walk. With this formula, we have a direct way to compute the

amplitudes at any time step without recurring to time-consuming simulations

or numerical integration. This also give us a complete characterization of the

induced probability distribution of general quantum walks on the line.

One important question that remains unanswered is the relation between The-

orems 2.5.1 and 2.5.2. Theorem 2.5.1 is based on the computation of saddle points

of the high oscillatory kernel of Fourier coefficients. On the other hand, Theorem

2.5.2 is based on the method of moments (see [GJS04] for details). A relation

between these two density functions could set a common ground for the analysis

of coined quantum walks.
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3.1 Background

Nondeterminism plays a fundamental role in complexity theory. For instance, the

P vs NP problem asks if nondeterministic polynomial time is strictly more pow-

erful than deterministic polynomial time. Even though nondeterministic models

are unrealistic, they can give insights into the power and limitations of realistic

models (i.e., deterministic, random, etc.).

There are two ways of defining a nondeterministic machine, using randomness

or as a proof system: a nondeterministic machine i) accepts a correct input with

positive probability and rejects an incorrect input with probability one; or ii) is a

deterministic machine that receives besides the input, a proof or certificate which

exists if and only if the input is correct. For classical machines (i.e., machines

based on classical mechanics), these two notions of nondeterminism are equiva-

lent. However, in the quantum setting they can be different. In fact, these two

notions give rise to three different kinds of quantum nondeterminism. In strong

quantum nondeterminism, the quantum machine accepts a correct input with

positive probability. In weak quantum nondeterminism, the quantum machine

outputs the correct answer when supplied with a correct proof, which could be

either classical or quantum. Indeed, as efficient computation is concerned, the

corresponding complexity classes are exactly NQP, QMA, and QCMA respec-

tively1.

The study of quantum nondeterminism in the context of query and com-

munication complexities started with de Wolf [dW00]. In particular, de Wolf

[dW00, dW03] introduced the notion of nondeterministic rank of a matrix, which

was proved to completely characterize strong quantum nondeterministic commu-

nication. In the same piece of work it was proved that strong quantum nonde-

terministic protocols are exponentially stronger than classical nondeterministic

protocols. Similarly, Le Gall [LG06] studied weak quantum nondeterministic

communication with classical proofs and showed a quadratic separation for a

total function.

Weak nondeterminism seems a more suitable definition mainly due to the re-

quirement of the existence of a proof, a concept that plays fundamental roles in

1http://qwiki.stanford.edu/index.php/Complexity_Zoo
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complexity theory. In contrast, strong nondeterminism lends itself to a natural

mathematical description in terms of matrix rank. Moreover, strong nondeter-

minism is a more powerful model capable of simulating weak nondeterminism

with classical and quantum proofs. However, if weak nondeterminism is strictly

a less powerful model or not is still an open problem.

The previous results by de Wolf [dW03] and Le Gall [LG06] were on the

context of 2-party communication complexity, i.e., there are two players with two

inputs x, y ∈ {0, 1}n each and they want to compute a function f(x, y). Let

rank(f) be the rank of the communication matrix Mf where Mf [x, y] = f(x, y).

A known result by [BdW01] is ⌈1
2
log rank(f)⌉ ≤ Q(f) ≤ D(f), where D(f) is

the deterministic communication complexity of f and Q(f) the quantum exact

communication complexity2. It is conjectured that D(f) = O(logc rank) for

some arbitrary constant c. This is the log-rank conjecture in communication

complexity, one of the biggest open problems in the field. If it holds, it will

imply that Q(f) and D(f) are polynomially related. This is in stark contrast to

the characterization given by de Wolf [dW03] in terms of the nondeterministic

matrix-rank, which is defined as the minimal rank of a matrix (over the complex

field) whose (x, y)-entry is non-zero if and only if f(x, y) = 1.

3.2 Overview of the Chapter

This work continues the study of strong quantum nondeterminism in the context

of multiparty protocols. Let k ≥ 2 be the number of players evaluating a function

f(x1, . . . , xk) where each xi ∈ {0, 1}n. The players take turns predefined at the

beginning of the protocol. Each time a player sends a bit (or qubit if it is a

quantum protocol), he sends it to the player who follows next. The computation

of the protocol ends when the last player computes f . The communication com-

plexity of the protocol is defined as the minimum number of bits that need to

be transmitted by the players in order to compute f(x1, . . . , xk). There are two

common ways of communication: The Number-On-Forehead model (NOF) where

player i knows all inputs except xi; and, Number-In-Hand model (NIH) where

player i knows only xi. Also, any protocol naturally defines a communication

2All logarithms in this thesis are base 2.
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tensor Tf where Tf [x1, . . . , xk] = f(x1, . . . , xk).

Tensors are natural generalizations of matrices. They are defined as multi-

dimensional arrays while matrices are 2-dimensional arrays. In the same way, the

concept of matrix rank extends to tensor rank. However, the nice properties of

matrix rank do not hold anymore for tensors; for instance, unlike matrix rank for

which there exist polynomial-time algorithms, computing tensor rank is NP-hard

[Ha90]. See the survey paper by Kolda and Bader [KB09] for more differences.

This work extends the concept of nondeterministic matrices to nondeterminis-

tic tensors. The nondeterministic tensor rank, denoted nrank(f), is the minimal

rank of a tensor (over the complex field) whose (x1, . . . , xk)-entry is non-zero if

and only if f(x1, . . . , xk) = 1.

Let SQNOF
k and SQNIH

k denote the k-party strong quantum nondeterministic

communication complexity without prior shared entanglement for the NOF and

NIH models respectively.

Theorem 3.2.1. Let f : ({0, 1}n)k → {0, 1}, then SQNOF
k (f) ≤ ⌈log nrank(f)⌉+

1, and SQNIH
k (f) ≥ ⌈log nrank(f)⌉+ 1.

This theorem generalizes previous results by de Wolf [dW03]. Also, since

SQNIH
k is a lower bound for exact NIH quantum communication3, denoted QNIH

k ,

we obtain the following corollary:

Corollary 3.2.2. ⌈log nrank(f)⌉+ 1 ≤ QNIH
k (f).

The proof of Theorem 3.2.1 is given in Section 3.4. Even though it is a

generalization of the techniques of [dW03], it requires technical insight. The

proof does not generalize in an straightforward manner and it does not yield the

same characterization as in the 2-player case. For example, SQNOF
k cannot be

lower-bounded in general by the tensor rank. To see this consider the k-party

equality function EQ given by EQk(x1, . . . , xk) = 1 if and only if x1 = · · · = xk.

A nondeterministic tensor for EQk is superdiagonal4 with non-zero entries in the

main diagonal, and 0 anywhere else. Thus, it has 2n rank and implies by Theorem

3.2.1 that SQNOF
k (EQk) ≤ n + 1 and SQNIH

k (EQk) ≥ n + 1. In particular, the

3An exact quantum protocol accepts a correct input and rejects an incorrect input with

probability 1.
4An order-k tensor is superdiagonal when T [x1, . . . , xk] 6= 0 if and only if x1 = · · ·xk.

38



communication complexity of EQk is upper-bounded by O(n) in the NOF model.

However, it is easy to show that in the NOF model there exists a classical protocol

for EQk with a cost of 2 bits5. Hence, the characterization for the 2-player

case does not extends to the multiplayer case. In contrast, the lower bound on

SQNIH
k (EQk) that follows from Theorem 3.2.1 is not that loose; using the trivial

protocol, where all players send their inputs, we have SQNIH
k (EQk) = O(kn).

Thus, Theorem 3.2.1 yields a tight bound for EQk whenever k = O(1). However,

whether the same phenomenon extends to all functions in the NIH model is

unknown. See below in this section for some consequences on constructing tensors

with high rank.

A more interesting function is the generalized inner productGIPk(x1, . . . , xk) =

(
∑k

i=1

∧n
j=1 xij) mod 2. Section 3.5 shows that nrank(GIPk) ≥ (k− 1)2n−1 +1.

Thus, the following result follows.

Proposition 3.2.3. SQNIH
k (GIPk) ≥ n+ ⌈log(k − 1)⌉.

In NIH, using the trivial protocol, we obtain (with Corollary 3.2.2) a bound

in quantum exact communication of n + ⌈log(k − 1)⌉ − 1 ≤ QNIH
k (GIPk) ≤

(k − 1)n+ 1. Improving the lower bound will require new techniques for explicit

construction of linear-rank tensors with important consequences to circuit lower

bounds; see for example Raz [Raz10a] and the paper by Alexeev, Forbes and

Tsimerman [AFT11] for state-of-the-art tensor constructions. In general, it is

open whether SQNIH
k (f) can be upper-bounded in terms of log nrank. This yields

a new log-rank conjecture for strong quantum nondeterministic communication

complexity.

Although the bounds given by Theorem 3.2.1 could be loose for some func-

tions, they are good enough for other applications. For instance, Section 3.6

shows a separation between the NOF models of strong quantum nondeterminism

and bounded-error quantum communication. This is proved by applying Theo-

rem 3.2.1 to a total function previously studied by de Wolf [dW03]. This result

5In the blackboard model (explained in Section 3.3) for k ≥ 3 let the first player check

if x2, . . . , xk are equal. If they are, he sends a 1 bit to the second player who will check if

x1, x3, . . . , xk are equal. If his strings are equal and he received a 1 bit from the first player, he

sends a 1 bit to all players indicating that all strings are equal. In the message-passing model

the same protocol has a cost of O(k) bits.
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could be considered as the quantum analog of a separation previously proved

in [DPV09, CA08, GS10] between classical nondetermistic and randomized NOF

communication.

3.3 Preliminaries

This section presents a small review of tensors and quantum communication.

3.3.1 Tensors

A tensor is a multi-dimensional array defined over some field. An order-d tensor

is an element of the tensor product of d vector spaces.

Definition 3.3.1 (Simple Tensor). Let |vi〉 ∈ V ni be an ni-dimensional vector

for 1 ≤ i ≤ d on some vector space V ni. The ji-th component of |vi〉 is denoted by

vi(ji) for 1 ≤ ji ≤ ni. The tensor product of {|vi〉} is the tensor T ∈ V n1⊗· · ·⊗V nd

whose (j1, . . . , jd)-entry is v1(j1) · · · vd(jd), i.e., T [j1, . . . , jd] = v1(j1) · · · vd(jd).
Then T = |v1〉⊗ · · ·⊗ |vd〉 and we say T is a rank-1 or simple order-d tensor. We

also say that a tensor is of high order if d ≥ 3.

From now on, we will refer to high-order tensors simply as tensors, and low-

order tensor will be matrices, vectors, and scalars as usual.

It is important to note that the set of simple tensors spans the space V n1 ⊗
· · · ⊗ V nd, and hence, there exist tensors that are not simple. This leads to the

definition of rank.

Definition 3.3.2 (Tensor Rank). The rank of a tensor is the minimum r such

that T =
∑r

i=1Ai for simple tensors Ai.

This agrees with the definition of matrix rank. The complexity of computing

tensor rank was studied by H̊astad [Ha90] who showed that it is NP-complete

for any finite field, and NP-hard for the rational numbers.

The process of arranging the elements of an order-k tensor into a matrix is

known as matrization. Since there are many ways of embedding a tensor into a

matrix, in general the permutation of columns is not important, as long as the

corresponding operations remain consistent; see Kolda and Bader[KB09].
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3.3.2 Strong Quantum Nondeterministic Communication

In a multiparty communication protocol there are k ≥ 2 players trying to com-

pute a function f . Let f : ({0, 1}n)k → {0, 1} be a function on k strings

x = (x1, . . . , xk). There are two common ways of communication between the

players: the Number-In-Hand (NIH) and the Number-On-Forehead (NOF) mod-

els. In NIH, player i only knows xi, and in NOF, player i knows all inputs except

xi.

Definition 3.3.3 (Classical Nondeterministic Protocol). Let k be the number of

players. In order to communicate, the players take turns in an order predefined

at the beginning of the protocol. Each player sends exactly one bit to the player

that follows next. The computation of the protocol ends when the last player

computes f . If f(x) = 1 then the protocol accepts x with positive probability;

if f(x) = 0 the protocol rejects x with probability 1. The cost of the protocol is

the total number of bits communicated.

Hence, the classical nondeterministic multiparty communication complexity,

denoted Nk(f), is defined as the minimum number of bits required to compute

f(x). If the model is NIH or NOF, we add a superscript NNIH
k (f) or NNOF

k (f)

respectively. Note that the definition of the multiparty protocols in this thesis

(classical and quantum) are by message-passing, i.e., a player sends a bit only to

the player that follows next. This is in contrast to the more common blackboard

model. In this latter model, when a player sends a bit, he does so by broad-

casting it and reaching all players immediately. Clearly, any lower bound on the

blackboard model is a lower bound for the message-passing model in this paper.

To model NOF and NIH in the quantum setting, we follow the work of Lee,

Schechtman, and Shraibman [LSS09], originally defined by Kerenidis [Ker09].

Definition 3.3.4 (Quantum Multiparty Protocol). Let k be the number of play-

ers in the protocol. Define the Hilbert space by H1⊗· · ·⊗Hk⊗C, where each Hi

is the Hilbert space of player i and C is the one-qubit channel. To communicate

the players take turns predefined at the beginning of the protocol. On the turn

of player i:

1. in NIH, an arbitrary unitary that only depends on xi is applied on Hi⊗C
and acts as the identity anywhere else;
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2. in NOF, an arbitrary unitary that depends on all inputs except xi is applied

on Hi ⊗ C and acts as the identity anywhere else.

The cost of the protocol is the number of rounds.

The initial state is a pure state |0〉 ⊗ · · · ⊗ |0〉 |0〉 without any prior entangle-

ment. If the final state of the protocol on input x1, . . . , xk is |Ψ〉, it outputs 1

with probability p(x1, . . . , xk) = 〈Ψ|Π |Ψ〉, where Π is a projection onto the |1〉
state of the channel.

We say that T is a nondeterministic communication tensor if T [x1, . . . , xk] 6= 0

if and only if f(x1, . . . , xk) = 1. Thus, T can be obtained by replacing each 1-

entry in the original communication tensor by a non-zero complex number. We

also define the nondeterministic rank of f , denoted nrank(f), to be the minimum

rank over the complex field among all nondeterministic tensors for f .

Definition 3.3.5 (Strong Quantum Nondeterministic Protocol). A k-party strong

quantum nondeterministic communication protocol outputs 1 with positive prob-

ability if and only if f(x) = 1.

The k-party quantum nondeterministic communication complexity, denoted

SQk(f), is the cost of an optimum (i.e., minimal cost) k-party quantum non-

deterministic communication protocol. If the model is NIH or NOF, we add a

superscript SQNIH
k (f) or SQNOF

k (f) respectively. From the definition it follows

that SQk is a lower bound for the exact quantum communication complexity Qk

for both NOF and NIH.

The following lemma, given in Lee, Schechtman, and Shraibman [LSS09],

generalizes a previous observation made by Yao [Yao93] and Kremer [Kre95] on

2-party protocols.

Lemma 3.3.1. After ℓ qubits of communication on input (x1, . . . , xk), the state

of a quantum protocol without prior shared entanglement can be written as

∑

m∈{0,1}ℓ

∣∣A1
m(x

1)
〉 ∣∣A2

m(x
2)
〉
· · ·
∣∣Ak

m(x
k)
〉
|mℓ〉 ,

where mℓ is the ℓ-th bit in m, and each vector |At
m(x

t)〉 corresponds to the t-

th player which depends on m and the input xt. If the protocol is NOF then

xt = (x1, . . . , xt−1, xt+1, . . . , xk); if it is NIH then xt = (xt).
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3.4 Proof of Theorem 3.2.1

3.4.1 Lower Bound

The arguments in this section are generalizations of a previous result by [dW03]

from 2-party to k-party communication for k ≥ 3. First we need the following

technical lemma (see below for a proof).

Lemma 3.4.1. If there exist k families of vectors such that {|Ai
1(xi)〉 , . . . , |Ai

r(xi)〉} ⊆
Cd for all i with 1 ≤ i ≤ k and xi ∈ {0, 1}n given that

r∑

i=1

∣∣A1
i (x1)

〉
⊗ · · · ⊗

∣∣Ak
i (xk)

〉
= 0 iff f(x1, . . . , xk) = 0,

then nrank(f) ≤ r.

Now we proceed to prove the lower bound as stated in Theorem 3.2.1.

Lemma 3.4.2. SQNIH
k (f) ≥ ⌈log nrank(f)⌉ + 1

Proof. Consider a NIH ℓ-qubit protocol for f . By Lemma 3.3.1 its final state is

|ψ〉 =
∑

m∈{0,1}ℓ

∣∣A1
m(x1)

〉
· · ·
∣∣Ak

m(xk)
〉
|mℓ〉 . (3.1)

Assume all vectors have the same dimension d. Let S = {m ∈ {0, 1}ℓ : mℓ = 1},
and consider only the part of the state that is projected onto the 1-state of the

channel,

|φ(x1, . . . , xk)〉 =
∑

m∈S

∣∣A1
m(x1)

〉
· · ·
∣∣Ak

m(xk)
〉
|1〉 . (3.2)

The vector |φ(x1, . . . , xk)〉 is 0 if and only if f(x1, . . . , xk) = 0. Thus, by

Lemma 3.4.1, we have that nrank(f) ≤ |S| = 2ℓ−1, which implies the lower

bound.
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Proof of Lemma 3.4.1

Let k ≥ 3. We divide the proof in two cases, when k is odd and even.

Even k: There are k size-r families of d-dimensional vectors. We will construct

two new families of vectors denoted D and F . First, divide the k families in

two groups of size k/2. Then, tensor each family in one group together in the

following way: for each family {|Ai
1(xi)〉 , . . . , |Ai

r(xi)〉} for 1 ≤ i ≤ k/2 construct

a new family

D =





k/2⊗

j=1

∣∣Aj
1(xj)

〉
, . . . ,

k/2⊗

j=1

∣∣Aj
r(xj)

〉




=

{
|A1(y)〉 , . . . , |Ar(y)〉

}
,

where y = (x1, . . . , xk/2). Do the same to construct F for k/2 + 1 ≤ i ≤ k

obtaining

F =





k⊗

j=k/2+1

∣∣Aj
1(xj)

〉
, . . . ,

k⊗

j=k/2+1

∣∣Aj
r(xj)

〉




=

{
|B1(z)〉 , . . . , |Br(z)〉

}
,

where z = (xk/2+1, . . . , xk). Thus, D and F will become two size-r family of

vectors, each vector with dimension dk/2. Then apply the theorem for k = 2

from [dW03] on these two families and the lemma follows.

Odd k: Here we can use the same approach by constructing again two new families

D and F by dividing the families in two groups of size ⌊k/2⌋ and ⌈k/2⌉. However,
although both families will have the same number of elements r, the dimension

of the vectors will be different. In fact, the dimension of the vectors in one

family will be d′ = d⌊k/2⌋ and in the other d′ + 1. So, in order to prove the

theorem we will consider having two families {|A1(y)〉 , . . . , |Ar(y)〉} ⊆ Cd′ and

{|B1(z)〉 , . . . , |Br(z)〉} ⊆ Cd′+1, both with cardinality r.

Denote the entry of each vector |Ai(y)〉 , |Bi(z)〉 by Ai(y)u and Bi(z)v respec-

tively for all (u, v) ∈ [d′]×[d′+1]. Note that, if f(y, z) = 0 then
∑r

i=1Ai(y)uBi(z)v =

0 for all (u, v); if f(y, z) = 1 then
∑r

i=1Ai(y)uBi(z)v 6= 0 for some (u, v). This
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holds because each vector |Ai(y)〉 and |Bi(z)〉 are the set of vectors |At
i(x

t)〉 ten-
sored together and separated in two families of size ⌊k/2⌋ and ⌈k/2⌉ respectively.

The following lemma was implicitly proved by de Wolf [dW03] for families of

vectors with the same dimension. However, we show that the same arguments

hold even if the families have different dimensionality (see below for a proof).

Lemma 3.4.3. Let I be an arbitrary set of real numbers of size 22n+1. Let

α1, . . . , αd′ and β1, . . . , βd′+1 be numbers from I, and define the quantities

ai(y) =

d′∑

u=1

αuAi(y)u and bi(z) =

d′+1∑

v=1

βvBi(z)v.

Also let

v(y, z) =

r∑

i=1

ai(y)bi(z) =

d′∑

u=1

d′+1∑

v=1

αuβv

(
r∑

i=1

Ai(y)uBi(z)v

)
.

There exists α1, . . . , αd′, β1, . . . , βd′+1 ∈ I such that for every (y, z) ∈ f−1(1) we

have v(y, z) 6= 0.

Therefore, by the lemma above we have that v(y, z) = 0 if and only if f(y, z) =

0. Now let |ai〉 and |bi〉 be 2n-dimensional vectors indexed by elements from

{0, 1}n, and let M =
∑r

i=1 |ai〉 〈bi|. Thus M is a nondeterministic order-k tensor

of rank r.

Proof of Lemma 3.4.3

If f(y, z) = 0 then v(y, z) = 0 for all αu, βv. If f(y, z) 6= 0 there exists (u′, v′)

such that v(y, z) 6= 0. Here we use the same arguments given by [dW03], i.e.,

we show that v(y, z) = 0 happens with small probability. In fact, having families

of vectors with different dimensions does not affect the argument. Consider the

situation where all αu and βv were chosen except αu′ and βv′ . Write v(y, z) in

terms of these two coefficients

v(y, z) = c0αu′βv′ + c1αu′ + c2βv′ + c3,

where c0 =
∑r

i=1Ai(y)u′Bi(z)v′ 6= 0. If we fix αu′ then, v(y, z) is a linear equation

with at most one zero for each αu′. Therefore, we have at most 22n+1+22n+1−1 =
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22n+2 − 1 ways of choosing αu′ and βv′ such that v(y, z) = 0. Thus

Pr[v(y, z) = 0] ≤ 22n+1

(22n+1)2
<

22n+2

(22n+1)2
= 2−2n.

By the union bound

Pr[∃(y, z) ∈ f−1(1) s.t. v(y, z) = 0]

≤
∑

(y,z)∈f−1(1)

Pr[v(y, z) = 0] < 22n · 2−2n = 1.

The following is a probabilistic method argument. Since the above probability

is strictly less than 1, there exists sets {a1(y), . . . , ar(y)} and {b1(z), . . . , br(z)}
such that for every (y, z) ∈ f−1(1) we have v(y, z) 6= 0.

3.4.2 Upper Bound

The proof of the upper bound follows by fixing a proper matrization (separating

the cases of odd and even k) of the communication tensor, and then applying the

2-party protocol by de Wolf [dW03].

Lemma 3.4.4. SQNOF
k (f) ≤ ⌈lognrank(f)⌉ + 1.

Proof. Let T be a nondeterministic tensor for f with nrank(f) = r. We divide

the proof in two cases.

Even k: Fix two players, say P1 (Alice) and Pk (Bob). Also fix some matrization

of T , i.e., let M be such matrization and consider it as an operator M : Hk/2+1⊗
· · ·⊗Hk →H1⊗· · ·⊗Hk/2. Thus M is a 2kn/2×2kn/2-matrix that maps elements

from the Hk/2+1 ⊗ · · · ⊗ Hk subspace to the H1 ⊗ · · · ⊗ Hk/2 subspace. Let

also M = UΣV be the singular value decomposition of M such that U, V are

2kn/2×2kn/2 unitary matrices, and Σ is a 2kn/2×2kn/2 diagonal matrix containing

the singular values of M in the diagonal. The number of singular values is at

most rank(M) ≤ r.

Bob computes the state
∣∣φ1···k/2

〉
= c1···k/2ΣV

∣∣x1, . . . , xk/2
〉
where c1···k/2 is

some normalizing constant that depends on x1, . . . , xk/2. Since only the first

entries of Σ are non-zero, the vector
∣∣φ1···k/2

〉
has at most r non-zero entries,
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so the state can be compressed using log r qubits6. Bob sends these qubits to

Alice. Alice then computes U
∣∣φ1···k/2

〉
and measures that state. If Alice observes

xk/2+1, . . . , xk then she puts a 1 on the qubit channel, and otherwise she puts a

0. The probability of Alice putting a 1 on the channel is
∣∣〈xk/2+1, . . . , xk

∣∣U
∣∣φ1···k/2

〉∣∣2

= |c1...,k/2|2
∣∣〈xk/2+1, . . . , xk

∣∣UΣV
∣∣x1, . . . , xk/2

〉∣∣2

= |c1...,k/2|2
∣∣〈xk/2+1, . . . , xk

∣∣M
∣∣x1, . . . , xk/2

〉∣∣2

= |c1...,k/2|2 |M [x1, . . . , xk]|2

= |c1...,k/2|2 |T [x1, . . . , xk]|2 .

Since T [x1, . . . , xk] is non-zero if and only if f(x1, . . . , xk) = 1, this probability

will be positive if and only if f(x1, . . . , xk) = 1. Thus, this is a nondeterministic

protocol with total cost log r + 1.

Odd k: To use the protocol given in the even case, we add an extra degree of

freedom to T .

Lemma 3.4.5. If T is an order-k tensor with rank r then there exists a tensor T ′

of order k + 1 with rank r where T [x1, . . . , xk] = T ′[x1, . . . , xkxk+1] for all xk+1.

See below for a proof. By the above lemma above we have that T ′[x1, . . . , xkxk+1] =

0 if and only if f(x1, . . . , xk) = 0 for any given xk+1.

Before the protocol starts, each player knows T ′ (which has even order) and

its matrization M ′. We fix two players, P1 (Alice) and Pk (Bob), and they can

now use the protocol for even k.

Proof of Lemma 3.4.5

Let T =
∑r

i=1 |vi1〉 · · · |vik〉 for some family of d-dimensional vectors. Define the

tensor T ′ =
∑r

i=1 |vi1〉 · · · |vik〉
∣∣vik+1

〉
where each

∣∣vik+1

〉
is the all-1 vector. Thus,

component-wise we have that

T [x1, . . . , xk] =

r∑

i=1

vi1(x1) · · · vik(xk),

6A n dimensional vector can be encoded as a quantum state with logn qubits by observing

that a k-qubit state is a 2k-dimensional vector. This fact was used by Raz [Raz99] to show an

exponential separation between classical and quantum 2-party communication.
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and

T ′[x1, . . . , xkxk+1] =
r∑

i=1

vi1(x1) · · · vik(xk)vik+1(xk+1),

where vik+1(xk+1) = 1 for all i and for all inputs xk+1. Then T
′[x1, . . . , xkxk+1] =∑r

i=1 v
i
1(x1) · · · vik(xk) and T ′[x1, . . . , xkxk+1] = T [x1, . . . , xk] for any xk+1.

3.5 Rank Lower Bound for the Generalized In-

ner Product Function

This section shows a lower bound on the nondeterministic rank of the Generalized

Inner Product (GIP) function.

Lemma 3.5.1. nrank(GIPk) ≥ (k − 1)2n−1 + 1.

Proof. First, we start by generalizing the concept of rows and columns for tensors.

Define a fiber to be a vector obtained by fixing every index except one. In general,

a mode-i fiber is a vector obtained by fixing all except the i-th index. Thus, a

matrix column is a mode-1 fiber, and a row is a mode-2 fiber. For order-3 tensors,

we have columns, rows and tubes, and so on for higher order tensors. In the same

way we define a slice to be a two-dimensional section of T obtained by fixing all

but two indices.

Here we will consider a particular form of matrization. Let T ∈ Cn1×···×nk be

an order-k tensor, with ni = 2n for every i. The i-mode unfolding of T , denoted

T(i), is the matrix obtained by arranging the i-mode fibers as columns. The

permutations of the columns of T(i) is not important, as long as the corresponding

operations remain consistent; see Kolda and Bader [KB09]. Define the i-rank of

T as ranki(T ) = rank(T(i)). It is trivial that ranki(T ) ≤ rank(T ) for every i; see

Lathauwer, de Moore, and Vandewalle [dLdMV00].

Now we proceed with the proof. Let T be the order-k nondeterministic com-

munication tensor for GIPk. Let MIPn
be the boolean communication matrix for

GIP2, i.e., the 2-party inner product function on n bits. It is well known that

rank(MIPn
) = 2n − 1; see Example 1.29 in Kushilevitz and Nisan[KN97]. The

same holds even if MIPn
is defined over C.
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Let 1 denote the string of length n with only 1s in it, and let T ′ be the

(x′3, . . . , x
′
k)-slice of T where x′i = 1 for i = 3, . . . , k. In this way T ′[x1, x2] 6= 0

whenever 〈x1| x2〉 = 1 and hence rank(T ′) = rank(MIPn
) = 2n − 1.

Let x(i) denote the string x with the i-th bit flipped. For i = 3, . . . , k consider

the (x′3, . . . , x
′(i)
k )-slice of T denoted T ′i where x

′(i)
k is the string 1 with the ith bit

flipped to 0. Then,

T ′i [x1, x2] 6= 0 whenever 〈x1| x2〉 − x1ix2i = 1. (3.3)

Note that the non-zero entries of T ′i for any i agrees with the non-zero entries of

MIPn−1
, where MIPn−1

is obtained by deleting the i-th bits of x1 and x2 in MIPn

for all x1 and x2. Thus, rank(T
′
i ) = 2n−1 − 1 for all i = 3, . . . , k.

The 1-mode unfolding of T is obtained by fixing every index except x1. Thus

T(1) =
[
T ′ T ′3 · · · T ′k · · ·

]
,

with 2(k−1)n columns, and the right part of T(1) (after T ′k) is filled with the

remaining slices of T that are different to T ′ and each T ′i . We known that

T ′ and each T ′i have (2n − 1) and 2n−1 − 1 linearly independent columns re-

spectively. Also, each of these columns are pair-wise linearly independent. To

see this, just take take any two slices T ′i and T ′j for any i 6= j, fix one col-

umn in each and compute the inner product according to Equation 3.3. Thus,

rank(T ) ≥ rank1(T ) ≥ 2n − 1 + (k − 2)(2n−1 − 1) = (k − 1)2n−1 + 1.

3.6 Some Separations for Complexity Classes

In this section we take a complexity-theoretic view of quantum multiparty com-

munication complexity. Remember that “efficient communication” means that a

protocol computes a function with polylog(n) bits [BFS86].

Definition 3.6.1. We define the following communication complexity classes:

1. BPP is the class of boolean functions with a classical bounded-error pro-

tocol of cost polylog(n);

2. BQP is the class of boolean functions with a quantum bounded-error

protocol of cost polylog(n);
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3. NQP is the class of boolean functions with a quantum strong nondeter-

ministic protocol of cost polylog(n).

In the following two theorems are presented that give separations between the

complexity classes defined above. First, for better understanding, we start by

showing a weaker nevertheless easier to prove result, a separation between NQP

and BPP. Then, that result is used to separate NQP from BQP. Although

this latter result can be proved without the need of the former, starting with the

separation from BPP seems easier to understand.

Theorem 3.6.1. For NOF communication we have NQP * BPP whenever the

number of players k = o(log log n).

Proof. To prove this we exhibit a function f : ({0, 1}n)k → {0, 1} such that

SQNOF
k (f) = O(logn) and RNOF

ǫ,k (f) = Ω(n1/(k+1)/(k22
k

)), where RNOF
ǫ,k denotes

the k-party bounded-error NOF communication complexity with error probability

upper-bounded by ǫ. This will give the separation whenever k = o(log log n).

In particular, we analyze the following total function. Let x1, . . . , xk ∈ {0, 1}n,
then

wn(x1, . . . , xk) =

{
1 if |x1 ∧ · · · ∧ xk| 6= 1

0 if |x1 ∧ · · · ∧ xk| = 1
, (3.4)

where ∧ denotes the bit-wise AND and |x| is the Hamming weight of x. This

function was previously studied by de Wolf [dW03] in the 2-player case.

Upper Bound: For each i let xi = xij1 . . . xijn and let Tj be an order-k tensor

where Tj [x1, . . . , xk] = 1 if x1j ∧ · · · ∧ xkj = 1 and Tj [x1, . . . , xk] = 0 otherwise.

Note that for each j the tensor Tj has rank 1. Define the order-k tensor T by

T [x1, . . . , xk] =

n∑

j=1

Tj [x1, . . . , xk]− 1.

This tensor has rank n. Also T is a nondeterministic communication tensor for

f since T [x1, . . . , xk] = 0 if and only if |x1 ∧ · · · ∧ xk| = 1. Hence, by Theorem

3.2.1 the upper bound follows.

Lower Bound: To prove the lower bound we will use, without loss of generality,
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the sign version of Equation (3.4), i.e.,

f(x1, . . . , xk) =

{
1 if |x1 ∧ · · · ∧ xk| 6= 1

−1 if |x1 ∧ · · · ∧ xk| = 1
. (3.5)

We make use of a result by Lee and Shraibman [LS09a]. Let µα be the

approximate cylinder intersection norm as defined in [LS09a] and let d̃eg(f) be

the approximate degree of a boolean function f [NS92] (see also Appendix C).

Lemma 3.6.2. Let fn : {0, 1}n → {−1, 1} be a symmetric7 function, and let

Ff : ({0, 1}n)k → {−1, 1} be a function (not necessarily symmetric) defined by

Ff(x1, . . . , xk) = f(x1 ∧ · · · ∧ xk). Let α > 1/(1− 2ǫ) and set c = 2e(k − 1)22
k−1

,

then

R1/4,k(Ffn) = Ω(log µα(Ffn)) = Ω

(
d̃eg(fm)

2k

)
,

where n = (c/d̃eg(fm))
k−1mk.

Note that Lemma 3.6.2 is a generalization of [LS09a, Corollary 6.1] to symmet-

ric functions. However, as pointed by the authors of [LS09a], this generalization

is straightforward and can be easily proved by following the proof of [LS09a,

Corollary 6.1], and it is therefore omitted from this work.

Define the following Hamming weight function:

ϕ(x) =

{
1 if |x| 6= 1

−1 if |x| = 1
.

This way we can write Equation 3.5 as f(x1, . . . , xk) = ϕ(x1 ∧ · · · ∧ xk). Also

note that ϕ is symmetric and we can apply Lemma 3.6.2. Together with the

characterization given by Paturi [Pat92] of the approximate degree of symmetric

functions we have that

log µα(f) = Ω

(
n1/(k+1)

k22k

)
. (3.6)

Theorem 3.6.3. For NOF communication we have that NQP * BQP whenever

the number of players k = o(log logn).

7A function is called symmetric if it only depends on the number of 1s in the input.
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Proof. To prove this we rely again in Equation (3.5) and the fact that SQNOF
k (f) =

O(logn). Here we show that Qǫ,k(f) = Ω(n1/(k+1)/(k22
k

)−k), where Qǫ,k denotes

the bounded-error NOF communication complexity with error probability upper-

bounded by ǫ.

Note that to prove Theorem 3.6.1 we derived a lower bound on µα (Equation

3.6). We can use the same lower bound to prove the separation for BQP. In

order to do that we make use of the following two results by Lee, Schechtman,

and Shraibman [LSS09]. Let γα be the approximate quantum norm as defined in

[LSS09].

Lemma 3.6.4. Let T be an order-k sign-tensor, then Qǫ,k(T ) = Ω(log γα(T )).

Lemma 3.6.5. For every order-k tensor T , γ(T ) ≤ µ(T ) ≤ Ckγ(T ), for some

absolute constant C.

Thus, by these two lemmas above and Equation 3.6 we have that

log γα(f) = Ω

(
n1/(k+1)

k22k
− k
)
.

3.7 Concluding Remarks of the Chapter

In this chapter we studied strong quantum nondeterministic communication com-

plexity in multiparty protocols. In particular, it was shown that i) strong quan-

tum nondeterministic NOF communication complexity is upper-bounded by the

logarithm of the rank of the nondeterministic communication tensor; ii) strong

quantum nondeterministic NIH communication complexity is lower-bounded by

the logarithm of the rank of the nondeterministic communication tensor. These

results naturally generalizes previous work by de Wolf [dW03]. Moreover, the

lower bound on NIH is also a lower bound for quantum exact NIH communica-

tion. This fact was used to show a Ω(n + log k) lower bound for the generalized

inner product function.

We also showed thatNQP * BQP when the number of players is o(log log n).

It remains as an open problem to prove the same separations with an increased

number of players.
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In order to prove strong lower bounds using tensor-rank in NIH, we need

stronger construction techniques for tensors. The fact that computing tensor-

rank is NP-complete suggests that this could be a very difficult task. Alterna-

tives for finding lower bounds on tensor-rank include computing the norm of the

communication tensor, or a hardness result for approximating tensor-rank.
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Chapter 4

Concluding Remarks of the

Thesis

4.1 Summary

This work presented fundamental studies on quantum computation in two very

important models in computer science, quantum walks and communication com-

plexity. Both models are intimately connected, in particular, lower bounds in

communication implies lower bounds for decision trees, and upper bounds in de-

cision tree depth (which can be found using quantum walks) implies upper bounds

for communication.

In Chapter 2 we saw some examples of how quantum walks can be used

to construct quantum query algorithms. Proving the correctness of a quantum

algorithm (also randomized algorithms) requires computing the error probability

for correct and incorrect inputs. Hence, in this thesis the problem of computing

the probability distribution induced by quantum walks moving over an infinite

line was tackled. To that end, a technique from complex analysis known as the

steepest descent method was applied to compute a closed-form formula for the

probability distribution. Previous work on the same problem only computed

the probability distribution for specific kinds of quantum walks. In this work, we

analyzed a quantum walk moved by general SU(2) coin operator. Since operators

from this group make use of arbitrary complex number as long as the determinant

is one, it was necessary to make use of the steepest descent method.
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In Chapter 3 we focused on bounds in communication complexity. The main

contribution of this part was a generalization of a lower bound technique pro-

posed by de Wolf [dW03] known as the nondeterministic rank. His technique

only worked for 2-party quantum strong nondeterministic communication, and

therefore, it was necessary to study the behavior of tensor-rank in multiparty

quantum strong nondeterministic protocols. We saw that in the Number-In-

Hand model, strong quantum nondeterministic complexity is lower-bounded by

the logarithm of the nondeterministic tensor-rank of the communication tensor.

In the Number-On-Forehead model, strong quantum nondeterministic commu-

nication complexity is upper-bounded by the logarithm of the nondeterministic

tensor-rank of the communication tensor. Furthermore, this result was later ap-

plied to show the first nontrivial lower bound on the Generalized Inner Product

function for quantum exact multiparty communication in the Number-In-Hand

model. As a second application, we were able to prove a separation between quan-

tum strong nondeterministic communication and bounded 2-sided error quantum

communication, i.e., NQP * BQP for the Number-On-Forehead communication

whenever the number of players is o(log logn).

In summary, this thesis presented techniques that deepen our knowledge of

quantum walks and quantum multiparty communication. Both parts of this thesis

unearthed nontrivial connections between unexplored parts of complex analysis

and abstract algebra. Currently these models are thoroughly studied by several

researchers due to the promising applications to quantum computation. Quantum

walks have been recently proved capable of universal computation [CGW12] and

communication technologies based on quantum physics are striving [MHS+12].

Therefore, a deep understanding of the theoretical foundations of these models is

extremely important.

4.2 Open Problems

To conclude this thesis, a list of what could be (arguably) the most important

open problems left is presented.

1. Quantum Walks

(a) A generalization of the techniques of this thesis to other graphs, e.g,
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hypercube, grids, Cayley graphs, etc.

(b) Relation between the moment of methods [GJS04] and the Fourier

coefficients of quantum walks.

(c) A closed-form formula for the probability distribution of Quantum

Markov Chains [Sze04].

(d) An exact computation of the induced probability distribution.

2. Quantum Nondetermistic Communication

(a) Upper bound on quantum strong nondeterministic communication

in terms of the nondeterministic tensor-rank.

(b) Relation between the norm-bound and nondeterministic rank. Also

its relation to information complexity.

(c) Hardness of approximating tensor-rank.

(d) New techniques for explicit construction of tensors with high rank.

(e) Lower bounds for other models of quantum nondeterministic com-

munication, i.e., QMA and QCMA communication.

(f) Gap between quantum exact and quantum strong nondeterministic

communication.
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Appendix A

Quantum Computation

Building a working quantum computer is one of the grand challenges of the 21st

century. A quantum computer exploits quantum phenomena in order to rapidly

solve complex computational problems in nature. It is not believed to help in

solving efficiently NP-complete problems [BBBV97], nevertheless, it does gives

an speed-up in the solution of several computational problems.

In this chapter, a review of the basic mathematical concepts of quantum

computation is given. Section A.1 argues about the main motivations for the

study of this field. In Section A.2 the basic unit of quantum information is defined,

the qubit. In sections A.2 and A.3 we explain the basic buildings blocks for

quantum computation. Finally, in Section A.4 we present a very general algorithm

for search known as amplitude amplification. For a complete introduction to

quantum computation, we refer the interested reader to the books by Nielsen and

Chuang [NC00] and Kaye, Laflamme and Mosca [KLM07].

A.1 Why Quantum Computing

Quantum computing is a field that mixes three different sciences. Two of the

oldest fields of science, mathematics and physics, and a third and more recent:

computer science. Today, computer science has become an interdisciplinary field

with influences from economics, biology, physics, to name a few. Quantum com-

puting is one of the hottest topics for its potential to solve more rapidly compu-

tational problems, and it also seems to hold the key to answer questions about
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the universe and our existence [Aar04, Aar05]. There are techniques from com-

puter science (and quantum computing) that were used to prove open problems

in mathematical physics (cf. Aaronson [Aar05]).

In the following we will try to argue in favor of the main motivations behind

its study.

A.1.1 Building Quantum Computers

The original idea on quantum computing was proposed by Feynman in 1982

[Fey82] mainly motivated by the necessity of simulating quantum physics using

a computer. Later in 1985, Deutsch [Deu85] formalized the notion of quantum

computation generalizing the Turing machine model. Besides being an interesting

model by itself, the quantum Turing machine did not woke up any immediate

interest. One clear example that showed that quantum computers could be more

powerful than classical computers was the Deutsch-Jozsa algorithm [DJ92]. Given

a boolean function f on n bits, the algorithm decides if f is constant (outputs

0 on all inputs or 1 on all inputs) or balanced (outputs 0 for half of the inputs

and 1 for the other half). To solve this problem with a classical computer, Θ(2n)

evaluations of f are needed. The Deutsch-Jozsa algorithm only requires linear

time. This was the first exponential separation between a classical computer and

a quantum computer.

The problem solved by the Deutsch-Jozsa algorithm does not have any prac-

tical application and there was no enough motivation for the study of quantum

computation. This was true until a breakthrough result: A polynomial-time algo-

rithm for factoring large composite numbers [Sho94]. This result is simply known

as Shor’s Algorithm (by the name of its discoverer). Today, all the security of the

world is based on the assumption that factoring is hard, and from that point on

quantum computing started to bloom. Several fields inside quantum computing

developed like Quantum Complexity Theory, Quantum Error Correcting Codes,

Quantum Cryptography, etc. Also, people started to race for building the first

quantum computer, however, this turned out to be more than a challenge. A

recent survey on building quantum computers can be found in [LJL+10].

Besides all advantages that quantum computers could bring, the most impor-

tant (arguably) reason for studying quantum computation is to test the theory
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of quantum mechanics. If we fail in this attempt, it could give evidence (for the

first time) that maybe there is something wrong in the theory.

A.1.2 Computational Hardness

After the discovery of Shor’s algorithm, several researchers saw this as a compu-

tational hardness result. Another group of people not believing in the possibility

of building a quantum computer took Shor’s algorithm as evidence against.

For theoretical computer science, what Shor’s algorithm brought was the ne-

cessity to rethink on the most famous universal computation model: The Turing

Machine. The Strong Church-Turing Thesis reads: “Any computational model

can be efficiently simulated by a Turing machine1”. The fact that there exists a

plausible model (Quantum Turing Machine) that cannot be simulated efficiently

by a Turing machine hits hard on the theoretical foundations of the field. Shor’s

algorithm gives evidence of a computational model beyond the classical Turing

machine, which everyone thought to be correct. From this point of view, quan-

tum computing brings forward questions about the physical limits of computation

[Aar05].

A.2 Quantum Bits and Registers

A.2.1 The Qubit

A classical bit holds two states: 1 or 0. To extend this notion to quantum bits,

or just qubits, define it as a vector on a Hilbert space. We denote vectors using

the Dirac notation, i.e., |ψ〉 is a vector in some vector space, and 〈ψ| represents
its dual in the dual vector space of functionals.

Definition A.2.1. Let H = span{|0〉 , |1〉} be a Hilbert space equipped with a

ℓ2-norm. A qubit is a vector |ψ〉 ∈ H over the complex field defined as

|ψ〉 = α |0〉+ β |1〉 ,

where |α|2 + |β|2 = 1.

1The Turing machine could be deterministic or probabilistic.
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The set {|0〉 , |1〉} is known as the computational basis which is an orthonormal

basis for H. These vectors can be written in matrix notation as

|0〉 =
[
1

0

]
and |1〉 =

[
0

1

]
,

which is a canonical basis for a 2 dimensional space.

A qubit could be considered as a 1-bit register holding the two states |0〉 and
|1〉 at the same time. In general it is known as a superposition state. Contrarily

to a classical bit, which could be queried obtaining a deterministic answer (either

0 or 1), when we query a qubit we get a probabilistic answer. This answer will

be 0 with probability |α|2 or 1 with probability |β|2.

A.2.2 Registers

In order to generalize a system to n qubits we need to introduce tensor vector

spaces.

Definition A.2.2. Let H = span{|x〉 : x ∈ {0, 1}n} be a Hilbert space with a

ℓ2-norm. An n qubit state is a vector |ψ〉 ∈ H defined as

|ψ〉 =
∑

x∈{0,1}n
αx |x〉 ,

where 1 =
∑

x |αx|2, and |x〉 = |x1〉 ⊗ · · · ⊗ |xn〉 with each |xi〉 ∈ span{|0〉 , |1〉}.

Observe that the number of possible basis states for a n-qubit register scales

exponentially faster. This seems to store an exponential amount of information.

However, by the Holevo bound [NC00], in order to recover information faithfullly,

n is the maximum number of bits one can store in an n-qubit register.

A.2.3 Operations

Algorithms for quantum computers are built as a sequence of quantum opera-

tions (or gates, in analogy to classical circuits) acting on qubit registers. These

quantum operations are essentially unitary operations defined over some Hilbert

space.
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1-qubit Operations

Maybe the simplest operation is the NOT operator. Given a qubit |ψ〉 =
α |0〉+ β |1〉, it interchanges the amplitudes in the following way

NOT (α |0〉+ β |1〉) = β |0〉+ α |1〉 .

This operation is easily defined as

NOT ≡ |0〉 〈1|+ |1〉 〈0|

=

[
0 1

1 0

]
.

Another important quantum gate is the Hadamard operation denoted with H .

It is basically a rotation operation and agrees exactly with a Fourier transform

on a 2-dimensional space. It acts in the following way

H |i〉 = 1√
2
(|0〉+ (−1)i |1〉).

This operation is defined as

H ≡ 1√
2

∑

i,j∈{0,1}
(−1)i·j |i〉 〈j|

=
1√
2

[
1 1

1 −1

]
.

2-qubits Operations

A very popular generalization of the NOT operation is CNOT, which stands

for controlled-NOT. This gate flips a target qubit if and only if another qubit is

set to 1, and it is denoted by CNOT . Its actions are

CNOT : |00〉 −→ |00〉
|01〉 −→ |01〉
|10〉 −→ |11〉
|11〉 −→ |10〉 .
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Here, the first qubit controls the fliping of the second qubit. It resembles exactly

a conditional statement for quantum computation. Formally it is defined as

CNOT ≡
∑

i,j∈{0,1}
|0〉 〈0| ⊗ |j〉 〈j|+ |1〉 〈1| ⊗ |1− j〉 〈j|

=




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 .

A second very important 2-quibts operation is SWAP. This operation inter-

changes the state of two different qubits

SWAP |i, j〉 = |j, i〉 .

The operation is formally defined as

SWAP ≡
∑

i,j∈{0,1}
|i〉 〈j| ⊗ |j〉 〈i|

=




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1


 .

n-qubits Operations

It is easy to see that for an n-qubit system, the number of rows and columns

in the matrix representation of the operators grow exponentially faster. To define

operations on n-qubits, the braket notation is a convenient tool.

A generalization of the Hadamard gate to n qubits is known as the Walsh-

Hadamard transform denoted as W . It can be written as

W ≡ 1√
2n

∑

x,y∈{0,1}n
(−1)x·y |x〉 〈y| .

Further generalizations of other operations like CNOT, controlled-SWAP, etc

is straightforward.
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A.3 Measurements and Observables

Evolution in a closed quantum system is unitary. The previous section presented

different types of unitary operators. However, to read-out the result of a quantum

computation we need to be able to measure the state of the system. In this section

we will see a basic introduction to the process of measurement of a quantum

system.

First we start by defining an observable. In simple terms, this is the dynamic

variable we want to measure, e.g., velocity, energy, spin, etc. Normally, in quan-

tum computation we want to know if a qubit is in state |0〉 or |1〉. Formally, an

observable is a Hermitian operator that acts on the Hilbert space of the system

whose eigenvalues and eigenvectors correspond to the values and states of the

dynamic variable.

To be able to measure an observable we need to make a measurement. For-

mally, a measurement is a set of linear operators {Mm} that acts on the Hilbert

space of the system being observed. The index m refers to the outcome of the

measurement.

Say that the system is in state |ψ〉. When we measure it, the probability that

m occurs is

P (m) = 〈ψ|M †mMm |ψ〉 ,
and the state of the system is

Mm |ψ〉√
P (m)

.

In the type of measurements we deal with in this thesis, called projective

measurements, we want each m to be an eigenvalue of an observable. Given an

obervable O, its spectral decomposition is

O =
∑

m

mPm,

where Pm is a projection onto the subspace with eigenvalue m. Thus, the proba-

bility of getting m is

P (m) = 〈ψ|Pm |ψ〉 ,
and the state of the system is

Pm |ψ〉√
P (m)

.
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A.4 Quantum Search Algorithms

The most popular and also the first search algorithm was given by Grover [Gro96].

This is an algorithm for unstructured search, i.e., given n objects, with no infor-

mation about how they are positioned in the search space, find a set of marked

objects. Grover showed an upper bound of O(√n) operations for a set of n

objects. This is a quadratic speed-up with respect to classical algorithms (clas-

sically for a randomized algorithm Ω(n) steps are required). This bound is tight

as showed by Bennett, Bernstein, Brassard, and Vazirani [BBBV97].

The field of quantum search algorithms is a very popular area. Several prob-

lems in the query model of computation were developed for graphs, matrices,

groups, etc (cf. The Quantum Algorithms Zoo2). Also, there exist several lower

bound methods, mainly based on adversary arguments [vS06] and polynomials

[BBC+01].

There are basically two main techniques for making search algorithms: Ampli-

tude Amplification and Quantum Walks. Here we briefly give an intuitive picture

of how a general search algorithm works by amplitude amplification. Quantum

walks can be seen as a generalization of this search procedure, where some struc-

ture is given to the search space.

Amplitude amplification [BHMT02] is an algorithm for unstructured search

spaces. Its a generalization of Grover’s algorithm and it has the same query

complexity, i.e., O(√n) queries for a set with n elements. The Hilbert space is

decomposed in terms of a direct sum of good and bad subspaces H = Hgood⊕Hbad.

The good subspace Hgood is spanned by the marked elements, and the bad

subspace Hbad is the orthogonal complement. Denote a vector in H as |ψ〉 =
α |ψgood〉 + β |ψbad〉, where Hgood = span{|ψgood〉} and Hbad = span{|ψbad〉}. The

amplification process is realized by the repeated application of the following op-

erator,

Q = −AS0A
−1Sx.

The operator Sx is the oracle, and it changes the sign of the amplitudes of good

states, i.e., if f(x) = 1 then |x〉 is transformed to − |x〉. Operator S0 changes

only the sign of the zero state. Finally, A is any unitary operation in charge of

2http://www.its.caltech.edu/ sjordan/zoo.html
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exploring the search space, e.g., A could be the Walsh-Hadamard operation as in

Grover’s algorithm.

Let p = 〈ψgood| ψgood〉 be the probability of measuring a vector from Hgood. In

order to use Q to amplify p, we define the state of the algorithm as |ψ〉 = A |0〉,
and then apply t times operator Q, i.e.,

|ψt〉 = Qt |ψ〉 .

If t = O( 1√
p
) with p = m/n where m is the number of marked elements, we have

that t = O(
√
n). For details refer to [BHMT02].
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Appendix B

Decision Tree Complexity

Today it is still very difficult to answer many questions on the power and limita-

tions of computational models like Turing machines, RAM, etc. Therefore, it is

convenient to address these questions in more idealized models of computation.

In this chapter we review the basics of the decision tree model.

B.1 Deterministic Decision Trees

Let f : {0, 1}n → {0, 1} be a boolean function. A decision tree A for f on input is

a binary tree where the nodes at level i = 1, . . . , n are labeled with xi. Each node

has two outgoing edges labeled 0 and 1. The computation on input x = x1 · · ·xn
starts at the root and proceeds down the tree by choosing one of the two children.

If at the root we choose the edge labeled 1 we let x1 = 1 and so on till all the

variables have a value assigned. When the last variable xn is assigned a value,

we move to a leaf which will contain the value f(x).

The assignment of values to nodes of the tree does not follow any particular

order. At each level of the tree we could have given a value to any remaining

unassigned variable. This way, we can view a computation on a decision tree as

using a black-box or oracle at each level. This black-box has access to each bit

of the input, and the algorithm needs to query the black-box in order to know

the input. Hence, we can define the cost of a decision tree A on input x, denoted

cost(A, x), as the depth of the tree, or equivalently, as the number of queries

made to the black-box.
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Definition B.1.1 (Deterministic Decision Tree Complexity). The decision tree

complexity of a function f : {0, 1}n → {0, 1} is defined as

D̂(f) = min
A∈Tf

max
x∈{0,1}n

cost(A, x),

where Tf is the set of all decision trees computing f .

It is clear that D̂(f) ≤ n for any f , since the full binary tree of depth n has

2n leafs.

B.2 Randomized Decision Trees

In a randomized decision tree, every time we choose a child we do so randomly.

A more convenient, but equivalent, way to define a randomized decision tree is

as a probability distribution over deterministic decision trees.

We will put emphasis on decision trees that could err on inputs. Normally

this type of algorithms are called Montecarlo (2-sided error or bounded-error)

algorithms. Let Tf,ǫ be the set of deterministic decision trees computing f that

err on at most a fraction ǫ of the inputs.

Definition B.2.1 (Randomized Decision Tree Complexity). Let Pf be a set of

probability distributions over Tf,ǫ. The randomized decision tree complexity with

error bound ǫ is defined as

R̂ǫ(f) = min
P∈Pf

max
x∈{0,1}n

EA∈P [cost(A, x)],

where EA∈P [cost(A, x)] denotes the expected value of the cost under the proba-

bility distribution P .

It is clear that R̂(f) ≤ D̂(f) for any f since a randomized decision tree is

a generalization of a deterministic decision tree. Similarly, we can define the

randomized decision tree complexity for Las Vegas (0-sided error) algorithms.

B.3 Lower Bounds for Classical Decision Trees

Here we give one (maybe the only one) technique for lower-bounding randomized

decision tree complexity. For deterministic trees it is common to prove a lower
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bound by adversary arguments. However, since any lower bound technique for

R̂ǫ(f) is also good for D̂(f), we will concentrate on randomized trees. This will

also be useful when studying quantum decision trees later on this chapter.

B.3.1 Yao’s Minimax Principle

The technique which bares the name of Andrew Chi-Chih Yao appeared in [Yao77].

Yao showed that we can lower bound randomized decision trees by considering

instead deterministic decision trees.

Let I be a finite set of inputs and let Af be a set of deterministic algorithms

for a boolean function f that fails to give a correct answer on some inputs. We

denote by cost(A, x) the cost incurred by algorithm A ∈ Af on input x ∈ I. Also
let ϕ(A, x) = 0 if A gives the correct answer for x, and ϕ(A, x) = 1 otherwise.

Definition B.3.1 (Distributional Complexity). Let ǫ ∈ [0, 1]. For any distribu-

tion P on the inputs, let Υ(ǫ) be the subset of Af given by Υ(ǫ) = {A : A ∈
Af ,

∑
x∈I P (x) · ϕ(A, x) ≤ ǫ}. The Distributional complexity with error ǫ for a

boolean function f is defined as

Ûǫ(f) = max
P

min
A∈Υ(ǫ)

∑

x∈I
P (x) · cost(A, x).

Definition B.3.2 (Randomized Complexity). We say that a distribution Q on

the family Af is ǫ-tolerant if maxx∈I
∑

A∈Af
Q(A) ·ϕ(A, x) ≤ ǫ. Let ǫ ∈ [0, 1] and

given an ǫ-tolerant distribution Q, the randomized complexity with error ǫ is

R̂ǫ(f) = min
Q

max
x∈I

∑

A∈Af

Q(A) · cost(A, x).

Yao’s minimax principle claims that 1
2
Û(f)2ǫ ≤ R̂ǫ(f). However, the most

common way to state it and use it in practice is the following.

Theorem B.3.1 (Minimax Principle for Montecarlo Algorithms). Given a prob-

ability distribution Q that is ǫ-tolerant on Af and a probability distribution P on

I, for all 0 < ǫ < 1/2

1

2
min

A∈Υ(2ǫ)

∑

x∈I
P (x) · cost(A, x) ≤ max

x∈I

∑

A∈Af

Q(A) · cost(A, x).
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In simple terms, given a randomized algorithm, its worst-case running time

can be lower-bounded by giving a hard distribution over the inputs on the best

deterministic algorithm.

For Las Vegas algorithms we have Û(f)ǫ = R̂ǫ(f) and is proved by using the

celebrated Von Neumann’s Minimax Theorem. However, in Yao’s original paper

[Yao77], Theorem B.3.1 is given without proof. In the next section we give a proof

by using a similar approach of Fich, Meyer auf der Heide, Radge and Widgerson

[FMRW85] for Las Vegas algorithms.

B.3.2 Proof of Theorem B.3.1

As stated in the previous section, the proof will follow an approach given by Fich

et al. [FMRW85, Lemma 4]. Their approach does not yield a characterization for

Las Vegas algorithms (only the lower bound), but it is sufficient for our purposes.

Given that the probability distribution q is ǫ-tolerant on Af we have that

ǫ ≥ max
x∈I




∑

A∈Af

Q(A) · ϕ(A, x)





≥
∑

x∈I
P (x)

∑

A∈A0

Q(A) · ϕ(A, x)

=
∑

A∈Af

Q(A)
∑

x∈I
P (x) · ϕ(A, x)

≥ min
A∈Af

{
∑

x∈I
P (x) · ϕ(A, x)

}
.

If we replace the family Af with Υ(2ǫ) we see that

ǫ ≥ max
x∈I




∑

A∈Af

Q(A) · ϕ(A, x)





≥ max
x∈I




∑

A∈Υ(2ǫ)

Q(A) · ϕ(A, x)





≥ min
A∈Υ(2ǫ)

{
1

2

∑

x∈I
P (x) · ϕ(A, x)

}
,

69



where the second inequality follows from Υ(2ǫ) ⊆ Af , and the last inequality is

given by the definition of Υ(2ǫ) where the summation divided by 2 cannot be

greater than ǫ. Hence,

max
x∈I




∑

A∈Af

Q(A) · ϕ(A, x)



 ≥

1

2
min

A∈Υ(2ǫ)

{
∑

x∈I
P (x) · ϕ(A, x)

}
.

By noting that ϕ maps to {0, 1} and cost(A, x) maps to N, now we can safely

replace the function ϕ in the inequality above by cost(A, x) to obtain the desired

inequality.

The proof given above appears in [Vil] and an alternative proof was given by

Nikolov [Nik].

B.4 Quantum Decision Trees

From now on it will be more convenient to consider oracles instead of decision

trees. In this model, we have a black-box (or oracle) which have access to the

input, and the complexity of the algorithm is measured in terms of the number of

queries made to this black-box in order to compute some function f : {0, 1}n →
{0, 1}.

For x ∈ {0, 1}n, a classical query consists of an index i ∈ [n] and the answer

xi. For quantum computation, the query needs to be done in a reversible manner.

A natural way is to have a pair (i, d), where i is the index and d ∈ {0, 1}, and
the output will be another pair (i, d⊕ xi). Then, a quantum query is an unitary

operator Ox that takes as input a quantum state |i, d〉 and produces another state

|i, d⊕ xi〉. More formally,

Ox |i, d, z〉 =
{
|i, d, z〉 if i = 0 or xi = 0

|i, d⊕ 1, z〉 if i ∈ [n] and xi = 1,
(B.1)

where |z〉 is an ancilla state which the oracle uses for any other computation not

involved in the query.

A quantum query algorithm starts in some arbitrary state that is independent

of the oracle, e.g., the state |0〉. Then proceeds on applying arbitrary unitary
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operators alternated with calls to the oracle and ending with a measurement.

More formally, a T -query quantum algorithm on input x computes the state

∣∣ψT
x

〉
= UTOxUT−1 . . . U1OxU0 |0〉 . (B.2)

Then, this state is measured and we obtain the output which could be for example

the leftmost qubit and will contain f(x). The algorithm has error at most ǫ if we

measure a 1 or 0 in the leftmost qubit with probability 1− ǫ whenever f(x) = 1

or f(x) = 0 respectively.

There are mainly two lower bound techniques for quantum query complexity:

Quantum adversary and polynomial methods. We recommend to the interested

reader the survey by Høyer and Špalek [Hv05] for further reading. Here we will

concentrate on the polynomial method which is explained next.

B.5 The Polynomial Method for Quantum Query

Complexity

First we present some basic properties of polynomials. A boolean function f on

n variables can be represented by an n-variate polynomial p : Rn → R. Since

xm = x for any m when restricted to boolean variables, we can deal exclusively

with multilinear polynomials. Then there exists a unique multilinear polynomial

such that p(x) = f(x) for all x ∈ {0, 1}. We use deg(f) to denote the degree of the

unique multilinear polynomial that represents f . We also define the approximate

degree of f denoted by d̃eg(f) whenever |f(x) − p(x)| ≤ 1/3 for all x ∈ {0, 1}n
and p is of minimum degree.

Since multilinear polynomials could be difficult to handle, the following state-

ment allow us to transform multilinear polynomials into univariate polynomials.

Definition B.5.1 (Symmetrization). The symmetrization psym of p is defined as

psym(x1, . . . , xn) =

∑
π∈Sn

p(xπ(1), . . . , xπ(n))

n!

where Sn is the symmetric group.

71



Lemma B.5.1 (Minsky and Papert [MP88]). If p : Rn → R is a multilinear

polynomial of degree d then, there exists a polynomial q : R → R with degree at

most d such that q(x1 + · · ·+ xn) = psymm(x1, . . . , xn).

The following connection between polynomials and quantum query complexity

was discovered by Beals, Buhrman, Cleve, Mosca and de Wolf [BBC+01]. The

theorem and the proof presented here is by Andrew Childs.

Theorem B.5.2. The acceptance probability of a t-query quantum algorithm for

a problem with black-box input x ∈ {0, 1}n is a polynomial in x1, . . . , xn of degree

at most 2t.

Proof. The proof is by induction on t. When t = 0 the algorithm makes no

queries and the success probability is independent of the input, i.e., a constant

and the polynomial degree is 0.

For the induction step, note that a query maps |i, b〉 to (−1)bxi |i, b〉 = (1 −
2xi) |i, b〉. Hence, after each query the degree of the polynomial in the amplitude

increases by at most 1.
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Appendix C

Communication Complexity

The communication model for boolean functions was proposed by Yao [Yao77].

In this model, two parties (say Alice and Bob) seek to evaluate a function f(x, y)

with minimal communication (i.e., minimal number of bits), where x is only

known to Alice and y is only known to Bob. Today it is one of the most studied

computing models with several applications spanning data structures, streaming

algorithms, boolean circuits and more [KN97].

With the emergence of quantum computing, the communication model evolved

naturally to a model where the parties can send qubits [Yao93]. Several authors

showed the existence of exponential and quadratic gaps between the classical and

quantum communication models (see the survey paper by de Wolf [dW02] for a

good account of these separations).

In this thesis we focus on communication protocols where the number of play-

ers is three or more. This situation is normally called multiparty communication.

In the next section we make a brief introductory overview of classical multiparty

communication. For further reading on the communication model we recom-

mend the reader the book by Kushilevitz and Nisan [KN97]. For recent results

in the area see the survey papers by Lee and Schraibman [LS09b] and Razboroz

[Raz10b].
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C.1 Multiparty Communication

In a multiparty communication protocol there are k ≥ 2 players seeking to com-

pute a boolean function f . Let f : ({0, 1}n)k → {0, 1} be a function on k

strings x = (x1, . . . , xk), where each xi ∈ {0, 1}n. There are two common ways of

communication between the players: The Number-In-Hand (NIH) and Number-

On-Forehead (NOF) models. In NIH, player i knows only xi, and in NOF, player

i knows all inputs except xi. Furthermore, the players can communicate in two

different ways. In the blackboard model , we imagine that every time a player

wants to send a message he does so by writing in a hypothetical black-board

which all players can see. Therefore, when a player sends a message, it arrives at

the same time to all players in the party. In the message-passing model, before

the protocol starts there is a predefined fixed order of communication between

the players. Thus, every time a player sends a message, he does so by sending it

to only one player according to the fixed order.

The deterministic k-party communication complexity Dk(f) of a boolean func-

tion f is defined as the minimum cost of a protocol, over all protocols for f , over

the worst-case input. We can also define other modes of computation appropri-

ately like 2-sided error, 1-sided error, etc.

Define the k-party communication tensor Tf of a boolean function f as an

order-k tensor Tf [x1, . . . , xk] = f(x1, . . . , xk). A NIH or NOF protocol partitions

Tf in combinatorial objects called cubes or cylinder intersections respectively.

We will denote both objects simply as C and the context will make explicit to

which combinatorial object we are refering to.

Definition C.1.1 (Cube). Define a combinatorial cube as a subset C ⊆ ({0, 1}n)k
such that for some sets A1, . . . , Ak ⊆ {0, 1}n we have D = A1 × · · · ×Ak.

Definition C.1.2 (Cylinder Intersection). Define a cylinder in the i-th dimension

as a subset Ci ⊆ ({0, 1}n)k that does not depend on the i-th coordinate, i.e., if

(x1, . . . , xi−1, xi, xi+1, . . . , xk) ∈ Ci then (x1, . . . , xi−1, x
′
i, xi+1, . . . , xk) ∈ Ci for all

x′i ∈ {0, 1}n. A cylinder intersection is defined as an intersection of cylinders in

all dimensions C = C1 ∩ · · · ∩ Ck.

Let z ∈ {0, 1}. We say that C is a z-cylinder intersection (z-cube) if f(x) = z

for all x ∈ C. Define a z-cover for f as a set of z-cylinder intersections (z-cubes)
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that contain all z-inputs of f . Note that cylinder intersections (cubes) in a cover

can be intersecting. Denote by Covz(f) the minimal size of a z-cover of f .

Define the cover number Cov(f) = Cov0(f) + Cov1(f). It is a well known

fact that logCov(f) ≤ Dk(f).

C.2 Nondeterministic Communication

In this section we extend the notion of nondeterministic computation to commu-

nication. Remember that there are essentially two equivalent ways of defining a

nondeterministic computation, using randomness or as a proof system. Accord-

ing to the first definition, a nondeterministic protocol accepts a correct input

with positive probability, and rejects an incorrect input with probability one. In

the second definition, a nondeterministic protocol is a deterministic protocol that

receives besides the input a proof or certificate which exists if and only if the

input is correct. We see in Chapter 3 of this thesis that for quantum protocols

these two notions can be different.

Theorem C.2.1 ([KN97]). Let f : ({0, 1}n)k → {0, 1}. The k-party nondeter-

ministic communication complexity of f is N1
k (f) = logCov1(f). The k-party

co-nondeterministic communication complexity of f is N0
k (f) = logCov0(f). If

the communication is NOF of NIH then the cover is made of cylinder intersections

or cubes respectively.

There is a tight lower bound (up to logarithmic additive factor) for N1
k (f).

Put a hard distribution on the 1-inputs of f and measure the size of the largest

1-cylinder intersection (the same for cubes) [KN97, Proposition 2.15]. However,

this quantity could be hard to compute or even estimate. We will see in the

next section an alternative and powerful way of lower-bounding deterministic

and nondeterministic communication complexity.
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C.3 The Norm Bound

Linial and Shraibman [LS09c] introduced the use of factorization norms1 as tools

for proving lower bounds in randomized and quantum communication complex-

ity in the 2-party setting. Later, their techniques were extended to multiparty

communication in the works of Lee and Shraibman [LS09a] and Lee, Schecthman

and Shraibman [LSS09].

In this section, we present only the generalization of the factorization norms

for communication given by Lee and Shraibman [LS09a]. This generalization

already covers the 2-party case at the expense of the loss of some intuition. We

also make use w.l.o.g. of sign tensors (±1 valued) instead of boolean tensors (0/1

valued).

Definition C.3.1 (Cylinder Intersection Norm). Let T be an order-k sign tensor.

The cylinder intersection norm is defined by

µ(T ) = min

{
∑

i

|αi| : T =
∑

i

αiχ(Ci)

}
,

where αi ∈ {−1, 1}, Ci is a cylinder intersection, and χ(Ci) is an order-k tensor

where χ(Ci)[x1, . . . , xk] = 1 if (x1, . . . , xk) ∈ Ci and 0 otherwise.

Definition C.3.2 (Approximate Cylinder Intersection Norm). Let T be an order-

k sign tensor and α ≥ 1. The α-approximate cylinder intersection norm is defined

as

µα(T ) = min
T ′

{µ(T ′) : 1 ≤ T ◦ T ′ ≤ α},

where ◦ denotes the Hadamard (entry-wise) product. When α→∞,

µα(T ) = min
T ′

{µ(T ′) : 1 ≤ T ◦ T ′}.

Lee and Shraibman showed the following lower bound on communication for

any k ≥ 2.

1Let M be a matrix that acts as a linear operator on two normed spaces M : (X, ‖ · ‖X)→
(Y, ‖ · ‖Y ). The operator norm ‖M‖ is defined as the supremum of ‖Mx‖Y over all x ∈ X with

‖x‖X = 1. Factorization norms are defined by considering all possible ways of expressing M as

the composition of two linear operators via a given middle normed space [LS09c].
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Theorem C.3.1. Let α = 1/(1− 2ǫ) and ǫ ∈ (0, 1/2). Rk,ǫ(f) = Ω(µαǫ(Tf )) and

N1
k (f) = Ω(µ∞(Tf )).

In the same piece of work it was also shown that µ∞(Tf ) = 1/Disc(f) where

Disc(f) is the generalized discrepancy of f . This naturally implies N1
k (f) =

Ω(1/Disc(f)).

Definition C.3.3 (Discrepancy). Let λ be some probability measure on ({0, 1}n)k.
The discrepancy of f with respect to λ is

Discλ(f) = max
C
〈Tf ◦ λ, χ(C)〉,

where the maximum is taken over all cylinder intersections (combinatorial cubes).

The general discrepancy is

Disc(f) = min
λ
Discλ(f).
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Appendix D

A General Approach to Coined

Quantum Walk Analysis for

Regular Graphs

This appendix presents a more general application of the spectral analysis ap-

proach used in Chapter2 for quantum walks on line.

D.1 General Analysis

Let (V,E) be a graph of degree d. Remember that a quantum walk on (V,E) is

given by the time evolution

|Ψt〉 = U t |Ψ0〉 (D.1)

where U = S(C ⊗ I). The shift operator is

S =
∑

d,v

|d〉 〈d| ⊗ |vd〉 〈v| , (D.2)

and the coin operator C is an element of U(d)1. We will assume that the initial

state |Ψ0〉 is some arbitrary superposition of directions and vertices of the graph,

i.e.,

|Ψ0〉 =
∑

v

|ψ0(v)〉 (D.3)

1U(d) is the group of d×d unitary matrices with matrix multiplication as the group operation.
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where |ψt(v)〉 =
∑

d α
v,d
t |d, v〉 is the state at vertex v at step t.

Diagonalize operator U on the |d, v〉 basis to obtain

U =
∑

λ

λ |λ〉 〈λ| . (D.4)

Thus

|Ψt〉 = U t |Ψ0〉
=
∑

λ

λt
∑

v′

〈λ| ψ0(v
′)〉 |λ〉

=
∑

λ

λt
∑

d′,v′

αd′,v′

0 〈λ| d′, v′〉 |λ〉 , (D.5)

and the formulas for each amplitude is

αd,v
t =

∑

λ,d′,v′

λtαd′,v′

0 〈λ| d′, v′〉λd,v (D.6)

where λd,v is the (d, v)-th component of eigenvector |λ〉.
Here we can see that all what we need to compute the evolution of the quantum

walk is completely determined by the eigenspectrum of operator U . In general,

however, computing the eigenspectrum of a general unitary operator can be a

daunting task. Hence, the need to exploit the translation symmetries of the walk

with Fourier analysis.

D.2 An Application to Search

We will assume that the graph (V,E) has some marked vertex v̄. To apply

the general analysis given in the previous section, we make use of the approach

developed by Shenvi et al. [SKW03] which was briefly explained in Section 2.3.2.

Let G be the Grover operator and C ′ = −Id where Id is the d × d identity

operator. We define the coin operator as

C = G⊗ I|V | + (C ′ −G)⊗ |v̄〉 〈v̄| .

From this definition it is easy to see that the operator G is applied to all the

unmarked nodes and only C ′ is applied to v̄. This way, C ′ serves as a phase flip

in order to amplify the amplitude on v̄ during the search.

The search algorithm goes as follows:
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1. Start with initial state |Ψ0〉 on a superposition of all states and directions.

2. Apply |Ψt〉 = (SC)t |Ψ0〉 for t = O(
√
|V |).

3. Measure |Ψt〉 in the |v〉 basis. If the result of the measurement yields v̄

then output “found”, else “not found”.

If we let Πv̄ be a projection operator on v̄ the probability of finding v̄ is thus

given by

Pt(v̄) = 〈Ψt|Πv̄ |Ψt〉
=
∑

d

|αd,v̄
t |2. (D.7)

D.2.1 Example: Walking the Line

For such a walk just let G be the line with n vertices. Here there are two options:

1) the line could have reflecting end-points, or 2) it could be a circle with vertices

n and −n connected as neighbors. These two kinds of walks were previously

studied in [ABN+01].

D.2.2 Example: SAT

To obtain an algorithm for SAT just letG be a hypercube. For a SAT formula with

n variables, an n-dimensional hypercube is a graph where each node corresponds

to an assignment of boolean values to the variables. Two vertices are connected

if and only if the Hamming distance between them is exactly one. See figure D.1.

The walk on the hypercube moves from vertex to vertex by flipping exactly

one variable and checking if the formula is true on that assignment. The walk on

the hypercube was thoroughly analyzed in [SKW03].

80



!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!!!"

!#!"

!!#"

#!!"

##!"

!##"

#!#"

###"

Figure D.1: Hypercube on 3 variables.
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