
NAIST-IS-DD1061028

Doctoral Dissertation

Quantitative Analysis of Maintenance Processes

at the Micro Level

Raula Gaikovina Kula

March 15, 2013

Department of Information Systems

Graduate School of Information Science

Nara Institute of Science and Technology

A Doctoral Dissertation

submitted to Graduate School of Information Science,

Nara Institute of Science and Technology

in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Raula Gaikovina Kula

Thesis Committee:

Professor Hajimu Iida (Supervisor)

Professor Ken-ichi Matsumoto (Co-supervisor)

Professor Hiroyuki Seki (Co-supervisor)

Assistant Professor Norihiro Yoshida (Co-supervisor)

Quantitative Analysis of Maintenance Processes

at the Micro Level∗

Raula Gaikovina Kula

Abstract

The current state of mining software repository tools and technologies has

provided opportunities for quantitative studies in software engineering. In this

dissertation, these mined data are used to reconstruct the micro processes per-

formed daily by developers (referred to as Micro Process Analysis (MPA)). We

investigated how MPA complements the current software process improvement

(SPI) initiatives. Unlike typical macro level SPI models, we demonstrated the

application of MPA at the maintenance phase. Specifically, we targeted micro

processes associated with bug & patch resolution and peer review.

For bug and patch processes, we quantitatively re-established Lehman’s law

between maintenance effort and code complexity. With three open source soft-

ware (OSS) projects and a closed experiment, our proposed metrics proved this

relationship to be statistically significant.

For peer review processes, we developed two models to assist OSS members

identifying their social standing and career trajectory. SPI is achieved by more ef-

ficient and higher quality reviews, through the identification of expertise. Provid-

ing a career trajectory model encourages member participation, thus it promotes

the sustainability of peer reviews within a project.

Our techniques and approaches validated the application of MPA for software

maintenance. We concluded that micro processes could serve as supplements to

macro processes, therefore providing an ‘added dimension’ to SPI.

Keywords:

Software Process Improvement, Mining Software Repositories, Software Metrics

∗ Doctoral Dissertation, Department of Information Systems, Graduate School of Information

Science, Nara Institute of Science and Technology, NAIST-IS-DD1061028, March 15, 2013.

i

マイクロレベルでのメンテナンスプロセスの定量的分

析∗

ラウラ・ガイコビナ・クーラ

内容梗概

ソフトウェアリポジトリマイニングやツールの登場は，ソフトウェア工学分

野において定量的な研究の機会を提供している．本研究では，マイクロプロセス

分析と呼ばれる手法を用いて，マイニングされたデータから開発者によって日々

行われているマイクロプロセスを再構築した．これを用いてマイクロプロセス分

析が現在の SPI (Software Process Improvement) をどのように補完しているかに

ついて調査を行った．本論文では、典型的なマクロレベルでの SPI モデルとは

異なる手法としてのマイクロプロセス分析をメンテナンスプロセスに対して適用

した．特にバグ修正，パッチ適用およびピアレビューと関連したマイクロプロセ

スを対象とした．バグ修正，パッチ適用プロセスにおいては，保守に必要な作業

量とコードの複雑性との間で Lehmanの法則を定量的に再検証した。また、３つ

のオープンソースソフトウェア（OSS）プロジェクトでの検証および実験を行い，

提案したメトリクスが前述の関係を統計的に満たすことを示した．ピアレビュー

プロセスにおいては，OSS開発者のコミュニティー内での地位や経歴の特定を支

援することを目的として２つのモデルを構築した．本モデルに基づいて開発者の

専門知識を特定することで，より効率的で高品質なレビューを実現することが可

能となる。また、経歴モデルを提供し，開発者のプロジェクトへの参加を促すこ

とで，プロジェクトの持続可能性を向上させることも期待できる．以上のように、

本研究で提案した技術と手法によってソフトウェアの保守工程におけるマイクロ

プロセス分析の適用を検証した結果、マイクロプロセスはマクロプロセスの補助

としての役割を果たし，SPI に対して新たな側面を提供することが可能であるこ

とを確認した

∗ 奈良先端科学技術大学院大学 情報科学研究科 情報システム学専攻 博士論文, NAIST-IS-

DD1061028, 2013年 03月 15日.

ii

キーワード

Software Process Improvement, リポジトリマイニング, ソフトウェアメトリクス

iii

List of Major Publications

1. Raula Gaikovina Kula, Kyohei Fushida, Norihiro Yoshida, and Hajimu Iida,

“Micro Process Analysis of Maintenance Effort: An OSS Case Study using

Metrics based on Program Slicing,” Journal of Software: Evolution and

Process. (to appear)

2. Raula Gaikovina Kula, Ana Erika Camargo Cruz, Norihiro Yoshida, Kazuki

Hamasaki, Kenji Fujiwara, Xin Yang, Hajimu Iida: “Using Profiling Metrics

to Categorise Peer Review Types in the Android Project,” In Supplemental

Proceedings of the IEEE 23rd International Symposium on Software Relia-

bility Engineering (ISSRE 2012), pp.146-151, Dallas, TX, USA, November

2012.

3. Raula Gaikovina Kula, Kyohei Fushida, Norihiro Yoshida, and Hajimu Iida,

“Experimental Study of Quantitative Analysis of Maintenance Effort using

Program Slicing-based Metrics,” In Proceedings of International Workshop

on Software Quality and Management (SQAM 2012), pp.50-57, Hong Kong,

2012.

4. Raula Gaikovina Kula, Kyohei Fushida, Norihiro Yoshida, and Hajimu

Iida, “Using Program Slicing Metrics for the Analysis of Code Change

Processes,” In Proceedings of 2010 International Workshop on Empirical

Software Engineering in Practice (IWESEP 2010), pages 53-58, December

2010.

5. Raula Gaikovina Kula, Kyohei Fushida, Shinji Kawaguchi, and Hajimu

Iida, “Analysis of Bug Fixing Processes Using Program Slicing Metrics,” In

iv

Proceedings of the 11th Product-Focused Software Process Improvement

(PROFES 2010), LNCS 6156, pages 032-046, June 2010.

Other Related Publications

1. Raula Gaikovina Kula, Hajimu Iida, ”Bug Fixing Process Analysis Using

Program Slicing Techniques,” 6th Forum on Reliable Computer SoftwarE

(FORCE10), 2010, pages 73-80, Mar 2010.

2. Xin Yang, Raula Gaikovina Kula, Camargo Cruz Ana Erika, Norihiro Yoshida,

Kazuki Hamasaki, Kenji Fujiwara, and Hajimu Iida, ”Understanding OSS

Peer Review Roles in Peer Review Social Network (PeRSoN),” In Proceed-

ings of the 19th Asia-Pacific Software Engineering Conference (APSEC2012)

pp.709-712, Hong Kong, 2012.

3. Kazuki Hamasaki, Kenji Fujiwara, Norihiro Yoshida, Raula Gaikovina Kula,

Kyohei Fushida and Hajimu Iida, “Analysis of Patch Reviews in the An-

droid Open Source Project,” The Special Interest Group Technical Reports

of IPSJ, Vol.2012-SE-176, No. 12, 2012.

v

Acknowledgements

During my PhD. journey, had I not being blessed with much guidance, inspiration

and friendship, I would not have been able to overcome all obstacles.

First and foremost, to Professor Hajimu Iida, who is the backbone of my

inspiration to study for my doctorate and my stay in Japan. As a fatherly figure,

since 2007 he guided and advised me both in and outside of the lab, making

me feel most at home. Thank you. To my thesis committee. Professor Ken-ichi

Matsumoto, you have seen my work evolve from my very first master’s seminar till

my final defence. Thank you for your advice. Additionally, thank you Professor

Hiroyuki Seki for your valuable comments and clarifications. You give me more

confidence and added the quality touch to my work.

Yoshida-sensei my advisor and mentor, I enjoyed our discussions in japan-lish

and look forward to more work to be done. Including Fushida-san, you both

instilled much needed confidence and enstowed belief in myself. Thank you so

much. Erika-sensei, you inspired me to do more.

To all my lab members of Software Design, both current and past. Each

person has always inspired me with their work ethic and friendliness. Comments

both large and small and a friendly environment always helps inspire the mind.

Thank you so much.

My international community in NAIST, Hamada-san, Ohta-san and Yurie,

thank you so much over the years. To all current and past students, you all

contributed in one way or another. I am grateful to the MEXT scholarship for

giving me the opportunity to study and the people I have met in Japan. Special

thanks to my PNG colleagues in Japan. Martha, David, Solo, thank you. Ori,

you give me much needed PNG comradeship. Thank you.

I proud to say that I am adopted Filipino. The first people (Bert & Za, Eds

vi

& Jo) overloaded me with all advice and kept me close. Thanks for the friday

talks and sharing your lives. Over the years even if the people have changed, the

homely feeling of family has never eluded. Arashi girls, geek guys and everyone

in between I thank you all. Jimlyns & kuro thanks for the company.

To my grandis guys, the pages do not do justice for your role over the years. Its

like relaxation and inspiration with a little bit of craziness. I believe we needed

that to ease the stress and hassles of research. Akie, lighten up bro. JC, fun

times. Emarc & Clare clare clare, big hugs all around. Through the hardships,

frustrations, joys and just crazy moments. I carry a part of you guys with me.

Thank you guys.

I will never forget the our countless moments. Rusty, my partner in crime,

you kept me going, even if my batteries were down. CC, my cheerleader and light

during the dark moments. Thanks for standing beside me. May more adventures

follow.

Finally, I give thanks to my bloodlines that stretch from Hula all the way

to the tiny point of Paramana, Papua New Guinea. Win and family, Mota and

family, Kukz, Gaiko and G-Rox, you fueled my engine with constant belief.

Finally, I dedicate this thesis for Mummy and Daddy, my very own super

heroes. The dream all started with you and this is your accomplishment. I thank

our lord for being blessed with such loving and inspiring senseis from the very

beginning.

Tanique maparamu.

vii

Contents

1 Introduction 1

1. Dissertation Organisation . 3

I Micro Process Analysis (MPA) 6

2 Background and Theory 7

1. Micro and Macro Process Levels 7

2. Quantitative Software Maintenance Metrics 8

3. Motivation for Study . 9

3.1 Supplements for SPI Models: Bug & Patch Processes . . . 9

3.2 Adoption of SPI for OSS: Peer Review Processes 11

4. Related Work . 12

5. Chapter Summary . 12

3 Systematic Literature Review of SPI and SM 13

1. Motivation . 13

2. Review Process . 13

2.1 Plan Review . 14

2.2 Conduct Review . 15

2.3 Analysis . 16

2.4 Threats to Validity . 17

3. Results . 18

3.1 Specialised Field . 18

3.2 Sources of Studies (RQ1) 18

3.3 Research Methods (RQ2) 20

viii

3.4 Classifications by Study Type (Additional) 20

4. Chapter Summary . 22

II Bug & Patch Processes 23

4 Bug & Patch Process:

Model and Metrics 24

1. Introduction . 24

2. Background and Related Work . 24

2.1 Software Process Analysis and Assessment 24

2.2 Detection and prediction metrics using software repositories 25

2.3 Program Slicing . 25

2.4 Change Impact Analysis 26

3. Issue Resolution Model . 26

4. Proposed Metrics . 27

4.1 Cyclomatic Complexity (CC) based Metrics 28

4.2 Function Count (FC) based Metrics 29

5. Contributions . 30

6. Chapter Summary . 31

5 Case Study: An OSS Setting 32

1. Introduction . 32

2. Approach . 34

2.1 Proposed Approach . 34

3. Case Study and Results . 38

3.1 Experiment Setup . 38

3.2 Determining Effort Thresholds 41

3.3 Metrics Evaluation . 44

3.4 Other Observations of the Micro Processes 46

4. Discussion . 47

4.1 Generalizability of our Approach 47

4.2 Slicing Evaluation . 48

4.3 Applications of the Study 48

ix

4.4 Research Questions revisited 49

5. Chapter Summary and Future Work 52

6 Case Study: A Controlled Experiment 54

1. Introduction . 54

2. Approach . 55

3. Pilot Experiment - AlignMe . 58

4. Analysis and Evaluation . 60

5. Results . 62

5.1 Participants . 62

5.2 Experiment Environment 63

5.3 Evaluation . 64

6. Discussion . 65

6.1 Revisiting Research Questions 66

6.2 Threats to Validity . 66

7. Chapter Summary and Future Work 67

III Peer Review Processes 68

7 OSS Peer Review Process:

Models and Metrics 69

1. Introduction . 69

2. Theory and Related Work . 69

3. The Android Project . 71

3.1 Terminology . 72

4. Peer Review Profiling Metrics . 73

4.1 Threshold Attributes . 75

5. Peer Review Empirical Models . 75

5.1 Profiling Model . 75

5.2 Career Pathways Model 76

6. Contributions . 77

7. Chapter Summary . 77

x

8 Profiling Peer Review Member Types 78

1. Introduction . 78

2. Results . 78

2.1 Extreme threshold evaluation 79

2.2 Member type analysis . 79

2.3 AOSP potential experts 82

2.4 Member types properties 83

3. Discussion . 84

4. Threats to Validity . 85

5. Chapter Summary and Future Work 86

9 Career Trajectory for Peer Review Members 87

1. Introduction . 87

2. Proposed Approach . 87

2.1 Goal/Question/Metric (GQM) 87

2.2 Methodology . 89

3. Application: Analysis by Evolution 89

3.1 Thresholds and Member Types 90

3.2 Case Scenarios . 91

4. Discussion . 95

5. Threats to Validity . 97

5.1 Internal . 97

5.2 External . 97

6. Chapter Summary and Future Work 98

IV Synopsis 99

10 Conclusions 100

V Appendix 103
Appendix . 104

References . 114

xi

List of Figures

1.1 Quantitative data collected during software development at the

Macro (top half) and Micro (bottom half) Levels. 2

3.1 Number of publications per year 18

3.2 Field of study per year . 19

3.3 Sources of publications . 19

3.4 Research methods by field . 20

3.5 Classification by field . 21

4.1 Micro process analysis model . 27

4.2 Example of backward slice and forward slice for a program slice of

an edited function. 28

5.1 An Overview of our approach . 33

5.2 Example illustrating issue 3780 and corresponding rev. 2710. This

shows the data needed to reconstruct the micro process (issue re-

port) and related code change impact(source code) 35

5.3 Workflow for all projects . 39

5.4 Distribution of the datasets . 42

5.5 Detailed analysis of the state changes for Filezilla and WxWidgets. 43

5.6 Matrix showing the comparison of normal and high maintenance

efforts against the metrics. 45

6.1 Screenshot of AlignMe showing the right alignment 57

6.2 AlignMe class diagram. Note that main() is used to instantiate

the align class . 57

xii

6.3 Screenshot of ideal solution for issue 1. This should be the output

with the center option is selected 58

6.4 Screenshot of implementations of the ideal solution for issue 2. a)

shows a width of 45 while b) has a width of 20. 60

6.5 Screenshot of ideal solution for issue 3. The program is able to

execute three times before exiting. 61

6.6 This figure shows the quantitative analysis of the issues related to

LoC. 62

6.7 This figure shows the quantitative analysis of the issues for our

proposed metrics. Note that (a) CC based metrics and (b) FC

based metrics. 62

6.8 This boxplot shows the distribution of time taken to resolve each

issue during the experiment. 63

6.9 (a) shows the perceived difficulty of each task by participants and

(b) is the ranking order of difficulty by participants. All rankings

are from 1 =easy to 5=hardest. 64

7.1 Illustration of our profiling using a radar chart. 76

7.2 Partial representation of a career pathways map. 76

8.1 The figure illustrates comparison between the uncategorised and

the member types of AOSP. 79

8.2 The figure illustrates comparison between the uncategorised and

the member types of AOSP. Solid line represents the submitted

patches by the member types . 80

8.3 The figure illustrates that in AOSP, there are more non-verifiers

than verifiers, however more patches are submitted by verifiers.

Solid line represents the patches submitted by the corresponding

members. 81

8.4 This figure shows the distribution of expert types. Please note that

four expert types had 0 members at this point in time. 82

8.5 Example showing the performances of a) top AOSP contributor

and b) a hidden/potential expert (extreme activity although not a

senior contributor) . 83

xiii

9.1 Overview of our Approach. First we have our question, then we

formed of methodology that uses the two empirical models. 88

9.2 The different thresholds taken during the 13 intervals for the tenure-

ship, patch submission and review activity. 90

9.3 Transitions of members between member type classifications dur-

ing the 13 intervals. 91

9.4 Snapshots of the changing profiles of 1000411. Each snapshot is

taken right after a member type transition (reads top left to right,

then right to left at the bottom. 93

9.5 Illustrates the career map for 1000411 over the 13 intervals. 94

9.6 Historic career pathways map for core members only during the 13

intervals . 94

9.7 Historic career pathways map for all member types during the 13

intervals . 95

10.1 OSS Review Process Model. 109

xiv

List of Tables

3.1 Targeted journals and conferences 14

3.2 Field specific classifications . 17

3.3 Classification of papers . 21

5.1 Information extracted from the software repositories 36

5.2 Software Project Overview . 39

5.3 Issues Sets (High/Normal Maintenance Effort) and Effort Thresholds 44

5.4 P-values for the classic student t-test for statistical significance

(p-value less than 0.05). Non-significant values are in bold 46

6.1 AlignMe function descriptions . 56

6.2 Spearman’s rank correlation of proposed metrics with maintenance

effort . 64

7.1 Expert Matrix: T= Tenureship, S=Submits, R=Reviews, V=Verifications,

X= Extreme Attribute . 74

8.1 Expert Thresholds for AOSP . 80

8.2 Pearson Cor. Matrix: T= Tenureship, S=Submit, R=Review,

V=Verify,(Verifier’s Cor. in brackets) 82

9.1 Time-Frame Intervals . 89

9.2 Pearson Corr. Matrix at Interval 13: T= Tenureship, S=Submit,

R=Review . 92

xv

Chapter 1

Introduction

Advancements in data repository, mining tools and techniques have resulted in

substantial automatic archiving of the fine-grained activities of developers. For

instance, source code repository management technologies such as GIT 1 and

SubVersion (SVN)2 rival the shortcomings of the traditional Concurrent Ver-

sioning System (CVS) 3 . Also, improvements in linkages between both issue

tracking and peer review management systems with source code repositories have

enabled more precise and detailed reconstruction of daily activities of developers

during software development. This has led to an emergence of empirical analy-

sis, especially in the sub-fields of Software Engineering such as mining software

repositories (MSR) and software maintenance (SM).

Practitioners and researchers alike understand the importance of Software

Process Improvement (SPI) for software development. State-of-the-art SPI mod-

els are mostly at project level and are driven by business goals. As seen in Fig.

1.1, most SPI initiative are at the macro level (top half) and are driven by external

factors such as the number of developers, the project schedule and costs.

Studies have highlighted incompatibility issues of SPI initiatives with smaller

organisations, especially in terms of complexity and implementation costs [105,

43, 12, 93, 83, 30]. Other perils such as the accuracy and integrity of the manually

recorded data is questionable. Additionally, most models purposely cover all

1 http://git-scm.com/
2 http://subversion.apache.org/
3 http://www.nongnu.org/cvs/

1

Macro LevelMacro Level

Micro LevelMicro Level

Requirements

Design

Implementation

Testing

Maintenance

of Developers
Project cost
Project Schedule
Project Productivity

Daily developers
activities

Developer’s Workload
Source code evolution

Project Driven

Developer Driven

Data Recording Software Development
Phase

Business Driven

Single phase focus

automatic

Semi‐automatic

(outside factors)

(internal factors)

Figure 1.1: Quantitative data collected during software development at the Macro

(top half) and Micro (bottom half) Levels.

phases. However, studies have shown that over 75% of project costs originate

specifically from the maintenance phase [10, 115].

The bottom half of Fig. 1.1 shows the micro level activities. In contrast to

the macro level, the recording of the data is automatic without additional effort.

We envision that current maturity of tools and techniques of data available now

at the micro level can be utilized to harmonize current SPI models, thus creating

an additional dimension to the quantitative analysis of SPI.

With the rise of Open Source Software (OSS), there is also a need for SPI.

Unlike conventional SPI models which are mainly controlled and driven by upper

management, the livelihood and growth of OSS projects are greatly influenced

at the micro level by developers. Therefore, we believe that the analysis at the

micro level can assist with the adoption of SPI for OSS communities.

In this dissertation, we introduce Micro Process Analysis (MPA). This is de-

fined by the use of data mined at the micro level: software repositories, reported

2

bugs and patches in issue tracking systems and peer reviews of code changes

to reconstruct fine-grained processes of the daily activities of developers. This

dissertation explores how MPA can be used to address the flaws of current SPI

models. Since data collection is automatic, we assume higher integrity. Another

advantage of using MPA is that, unlike typical SPI models, MPA allow us to

focus on specific phases in the life-cycle. Additionally, since OSS is driven mainly

by developers, MPA could be a suitable candidate to drive SPI initiatives.

To demonstrate the application of MPA, we targeted maintenance effort spent

during maintenance phase of a software project. We applied MPA with two of

the main software maintenance activities:

1. Bug & Patch Processes are micro processes related to the resolution of

maintenance issues reported into the system. We proposed program slicing

based metrics to study the relationship of maintenance effort in relation to

the change impact on the source code.

2. Peer Review Processes are micro processes related to code inspection

and review before merge of code change into the source code. Peer review

member profiling for expertise identification can lead to a more efficient and

higher quality review process.

This work has two main contributions. First, it provides an empirical approach

for MPA, which can be used to supplement SPI models. We provide a quantitative

proof of Lehman’s second law of software evolution: ‘As a system evolves its

complexity increases unless work is done to maintain or reduce it’ [66]. (Part II).

Second, we propose an approach for contributors to identify their social standing

within an OSS project and visually map their pathway for career advancement

(Part III).

1. Dissertation Organisation

This thesis is structured into three parts. The first part consists of two chapters.

In the first chapter, brief backgrounds of micro process analysis, software quality

metrics and the motivations are introduced. In the second chapter, we present a

3

literature review of the related fields to identify the current state of micro process

analysis research. The results of the literary review is shown below:

• Quantitative SPI of Software Maintenance 44 papers were selected

from 7 premium journals and conferences. 66% of SPI papers originated

from the industry as opposed to only 10% from OSS and 7% SPI in other

sources. This suggests that SPI has more industry contributions. However,

only 7% of SPI are quantitative (correlation and experimental) studies.

These results suggest that there is a gap between practitioners and re-

searchers in the software process improvement (SPI). The review suggests

there are opportunities for the use of micro process analysis to comple-

ment current models and metrics to provide quantitative SPI initiatives.

(Chapter 2)

Part two has three chapters and presents the analysis of bug and patch pro-

cesses at the micro level. In these chapters, we investigated the relationship

between maintenance effort and its impact on source code. We propose an ap-

proach to quantitatively measure maintenance effort using code based program

slicing metrics. In chapter four, we introduce the problem scenario, related lit-

erature and our proposed models and metrics. Chapter five and six discusses

the application of our approach. Chapter five is the application of our approach

with three open source projects while chapter six is performed in a controlled

environment experiment. The results of the studies are shown below:

• Micro Process Analysis of Maintenance Effort in OSS projects We

quantitatively examined the relationship of high maintenance effort and

corresponding change impact of the code changes. In our case studies of

three OSS projects, we determined that high level maintenance efforts also

exhibited large change impacts on source code for project-specific processes.

At statistically significant levels, results suggest the level of the maintenance

efforts correlates with its impact on source code.(Chapter 5)

• Experimental Study of Quantitative Analysis of Maintenance Ef-

fort To eliminate outside factors influencing our proposed metrics for main-

tenance effort, we performed an experimental case study on a set of pre-

defined maintenance activities. Our results suggested that program slicing

4

metrics have the strongest correlation with maintenance effort, exhibiting

a moderate degree of correlation with maintenance effort. In contrast, the

Lines of Code metric has a weak correlation with maintenance effort. This

study contributes to our ongoing research into the analysis of maintenance

processes.(Chapter 6)

Part three presents the analysis of micro processes of peer reviews. This part

consists of three chapters, describing the use of micro process level metrics for

profiling and understanding the career trajectories of peer review members of an

OSS project. For this study, we solely use the Android project as our case study.

In chapter seven, we introduce the Android peer review as well as our proposed

peer review process models and metrics and related work. Chapter eight presents

our profiling of peer review types while chapter nine extends the profiling metrics

for use to mapping career paths of peer review types. The results of both studies

are as follows:

• Profiling Metrics to Categorise OSS Peer Review Types. We inves-

tigated the three benefits of contributor profiling. First, the identification

of hidden experts. Second, the identification of inactive or disinterested

members to gauge the health of the OSS project. Finally, the assistance

of aspiring members to monitor performance and identifying opportunities

for career improvement. Preliminary results are promising, proving that

our categories are practical, thus opening many avenues for future work.

(Chapter 8)

• Career Trajectory in an OSS Peer Review Community. We pro-

posed OSS historical career trajectory pathways for contributors. Results

proved feasibility, opening many promising avenues for future work. Our

study suggested that these models provide insights into their current stand-

ings in the project and based on historical evidence, possible career path-

ways for career advancement. (Chapter 9)

Our techniques and approaches proved the application of MPA to software

maintenance activities such as bug fixing and peer reviews. The thesis finally

concludes with a discussion and summary of contributions and an outlook into

the future.

5

Part I

Micro Process Analysis (MPA)

6

Chapter 2

Background and Theory

1. Micro and Macro Process Levels

Osterweil first coined the use of macro and micro processes in software engineering

[87]. He proposed macro process research to describe investigations that have em-

phasized the study of overall behaviours of process, while micro process research

focused on the internal workings of the processes. It is not a new approach, in

fact has been in use in fields such as economics, physics and the life sciences.

Nuseibeh further complemented with the idea of fine-grained software process

modelling [86]. This was the idea of building software models at the developer

levels. This was in contrast to the more coarse grained modelling concerned with

more managerial and organisational activities. Morisaki and Iida then introduced

micro process analysis as a study of the developer activity logs to extract the micro

processes [79].

In this dissertation, we further explore the concept of using micro processes

to assist in software maintenance process improvement. Additionally, with the

emergence of mining software repositories (MSR) there are more opportunities to

apply micro process analysis. Recent improvements of data repositories mining

tools and techniques make this research timely as it enables quantitative insights.

7

2. Quantitative Software Maintenance Metrics

Software metrics are classified into three categories: product, process and project

metrics [55]. As a subset of these metrics, software quality metrics focus on

quality aspects. Software quality metrics are further broken down into three

groups: product quality, in-process quality and maintenance quality. In this

dissertation, we specifically focus on the product and process metrics concerned

with maintenance quality.

It is very important to differentiate between maintenance and maintainability.

According to the IEEE standard definitions, the following are definitions:

• Maintenance: The process of modifying a software system or component

after delivery to correct faults, improve performance or other attributes, or

adapt to a changed environment.

• Maintainability: The ease with which a software system or component

can be modified to correct faults, improve performance or other attributes,

or adapt to a changed environment.

In the growing field of software engineering this dissertation covers several

aspects. Generally our work covers the field of Software Process Improvement

(SPI), however since we are specifically interested in the maintenance phase we

also incorporate the Software Maintenance (SM) field.

SPI is concerned with the improvement of software processes, and has a great

number of international initiatives such as CMM and CMMI [61], SPICE (ISO/

IEC15504) [34], ISO/IEC 12207 1 , TSP 2 , GQM [16] and ISO 9000 [99]. These

models have been the standard that mostly used by organisations to monitor

and control their software processes. Most of these models were designed from a

macro level perspective, thus most use only project metrics.

SM is more specific, relating to the processes and activities carried out during

the maintenance phase of the software life-cycle. Consistent with the definitions,

according to ISO/IEC 14764 the maintenance process can be divided into four

types:

1 http://www.12207.com/
2 http://www.sei.cmu.edu/tsp/

8

• Corrective Maintenance: Maintenance performed to correct faults in

hardware or software.

• Adaptive Maintenance: Software maintenance performed to make a

computer program usable in a changed environment.

• Perfective Maintenance: Software maintenance performed to improve

the performance, maintainability, or other attributes of a computer pro-

gram.

• Preventive maintenance: Modification of a software product after deliv-

ery to detect and correct latent faults in the software product before they

become effective faults.

As mentioned in the previous chapter, it is well-known that the maintenance

phase is the most costly in the software development lifecycle. In this dissertation,

we focus on MPA of maintenance activities. In particular, we studied both the

corrective maintenance (bug & patch) and the peer review process, which covers

quality assurance of all maintenance activities.

3. Motivation for Study

In this section we provide a brief introduction and motivation to the two main

parts of the dissertation. Section 3.1 refers to Part II and section 3.2 correspond-

ing to Part III.

3.1 Supplements for SPI Models: Bug & Patch Processes

The assessment and improvement of software processes is rapidly gaining atten-

tion as an important activity in software development, with benefits seen in terms

of cost-efficiency and improved business value [48]. More specifically, these bene-

fits include improved productivity of development, and early defect detection and

maintenance, which all account for a faster time to market [48].

Studies have shown that the maintenance phase of a software development life-

cycle consumes a substantial amount of time and effort as compared to the other

9

development phases [10, 115]. Conventionally, to reduce these costs, most organ-

isations employ Software Process Improvement (SPI) activities. However, more

traditional process assessment models such as the Capability Maturity Model

Integration (CMMI) [61] are generic and tend to cover all phases rather than

focusing on a particular phase. To address this shortfall, in this part of the

dissertation, we primarily focus on the analysis specifically at the maintenance

phase.

Several studies, however, have pointed out some issues relating to current soft-

ware process quality assessment methodologies such as CMMI [61] and interna-

tional standards (i.e., ISO 9000) [99]. Most of these issues relate to the high costs

of assessment and implementation.[105]. Hall and Baddoo both pointed out that

these methodologies can be rather tedious, generic and complex as they assess

all phases of the development life-cycle [43, 12]. In addition, studies have shown

assessments to be higher management support, training, awareness, allocation of

resources, staff involvement and experience of staff as de-motivators of software

process assessments [93, 83]. Putting together all these factors, current software

process assessment models pose difficulties in usage, especially for smaller soft-

ware development organisations. Furthermore, process assessment includes other

aspects such as process effort, human and infrastructure management and the

achievement of process objectives.

To address the high costs and generic features of CMMI, work similar to

Pino [90] suggest processes and models that focus on SPI for Very Small Entities

(VSE - smaller organisations with less than 25 employees). These models are

effective, however, as mentioned by Colla [30], much like SPICE, the focus is

often at the macro level. Different to our approach, these models are driven at

the higher level, therefore still suffer from the lack of quantitative analysis. We

take a different approach by providing a quantitative method of supplementing

these macro models.

The goal of this dissertation is to investigate a simpler and more accurate

approaches for assessment of software process quality. Due to the complications of

assessments of software quality across the entire software development life-cycle,

this study investigates a much easier assessment approach, focusing primarily

on the maintainability aspect of software product quality. Studies have shown

10

that the maintenance phase consumes a substantial amount of time and effort as

compared to the other software phases during the software development life-cycle

[10, 115].

The ISO/IEC 15504 Software Process Improvement and Capability Determi-

nation (SPICE) assessment model [34], does address some of the mentioned issues

of CMMI. However, in contrast to our approach, SPICE and CMMI both have a

higher level of abstraction. SPICE metric results are based on ratings (process

attribute rating and attribute indicators ratings). However, we propose a much

quantitative approach, which is more fine-grained than SPICE. As well as be-

ing cost-efficient, our approach provides results at a more fine-grained level than

SPICE and CMMI, specifically for the quantitative assessment of the effects of

maintenance efforts on source code maintainability.

Another aspect that is not present, purposely, in both SPICE and CMMI are

detailed technical methods for process assessments. Conversely, our approach

uses data-mining techniques and quantitative evaluations of the source code to

assess processes, thus exploring the relationship between process and product.

Part II of the thesis introduces a novel approach measure maintenance effort

and its impact on source code. Using three OSS projects and a closed experiment

we proved this relationship to be statistically significant.

3.2 Adoption of SPI for OSS: Peer Review Processes

In a software project team it is assumed that the most skilled and knowledge-

able members come through experience, defined by their length of membership

tenureship and their historical activities. As an aspiring young member, the

attainment of experience opens possibilities to more project responsibilities, ca-

reer advancement and social standing among their peers. From a management

standpoint, increases in demands/workload due to growth or losing key members

could cause vacancies within the project. Management then has the tedious task

of hiring or promoting current community members.

Visibility of the project team structure and individual identity is even more

notorious in the emerging Open Source Software (OSS) project setting. In most

instances, members are physically distributed, without face-to-face communica-

tion. In recent times, OSS projects have evolved into large and fairly complex

11

systems, arguable competing with their commercial counterparts.

Member’s active participation and interest is vital to the livelihood of an OSS

project. Bird et al. [23] states that the vitality of an OSS project depends on

“it’s ability to attract, absorb and retain developers or face stagnancy and failure”.

Since OSS members are motivated purely by self-interest [64], visibility of ones

standing and career paths could serve as further motivation for sustained activity.

Advancements in data mining and tools and techniques have given birth to this

emerging perspective, also investigated by Capiluppi [27]. Additionally, members

may seek different career paths. For instance, some members may be content

with being just moderate submitters or reviewers.

In part III of the dissertation, we propose a quantitative approach to profiling

and career mapping models based on MPA of the peer review process.

4. Related Work

The dissertation covers a broad spectrum of related literature. Therefore, specific

related work are presented in the earlier chapter for both parts of the dissertation.

These can be found in both chapters 4 (bug & patch) and 7 (peer review).

5. Chapter Summary

In this chapter, we provided a background on the macro and micro process levels

of software development . Since this dissertation is concerned with quantitative

metrics we highlighted the different types of quantitative software metric types.

Later, we introduced the models used in SPI and the different types of SM.

Finally, we introduced the motivations for the two types for the bug & patches

as well as the peer review micro processes.

12

Chapter 3

Systematic Literature Review of

SPI and SM

1. Motivation

This chapter presents a systematic literature review (SLR) of studies related

to fields of Software Process Improvement(SPI) and Software Maintenance(SM).

Since the scope of this dissertation covers two fields of Software Engineering,

the objective of the study is to analyse the trends of each field and how they

interact/complement with each other.

2. Review Process

Following the guidelines from Kitchenham et al. [59], we adopted the following

systematic review steps:

• Step 1 - Plan Review. We define our research questions, publication

selection and criteria and analysis design.

• Step 2 - Conduct Review. Data extraction, filter using criteria and clas-

sification of publications.

• Step 3 - Analysis. Discussion, consider threats and draw conclusions.

13

Table 3.1: Targeted journals and conferences

Name Year

IEEE Transactions on Software Engineering (TSE) 2002-2011

Journal of Software Maintenance and Evolution (JSME) 2002-2011

Software Process: Improvement and Practice (SPIP) 2002-2009

International Conference on Software Engineering (ICSE) 2002-2011

International Conference on Software Maintenance (ICSM) 2002-2011

International Conference on Software Processes (ICSP) 2005-2011

Working Conference on Mining Software Repositories (MSR) 2004-2011

2.1 Plan Review

Research Questions

Based on the motivations outlined in the previous chapter, we constructed the

following research questions:

• RQ1: What are the main data sources of the surveyed papers?

• RQ2: How many are quantitative studies of the maintenance processes at

the micro-level?

Paper Selection Criteria

Since Kitchenham et al. [59] reported that automatic search methods are prone

to quality issues, we decided to instead perform a manual search. As shown in

Table 3.1 1 2 3 4 , we targeted the premium conferences and journals related to

SPI and SM.

The selection criteria are outlined below:

1 As of 2012, JSME is now integrated with Journal of Software: Evolution and Process
2 Since 2009, SPIP was integrated into now the Journal of Software: Evolution and Process
3 Since 2008, ICSP has changed its name to the International Conference on Systems and

Software Processes (ICSSP)
4 Before 2008, MSR was originally a Workshop

14

IC1: The title or keywords includes the following terms; Software Process Im-

provement, maintenance efforts, mining, bugs, micro processes, fine-grained pro-

cesses.

IC2:The abstract contains sufficient information relevant to the three fields.

Additionally, we enforced the following exclusion criteria for quality purposes:

EC1: For SPI related papers, the paper either focuses on smaller organisations

or de-motivation of current SPI initiatives.

EC2: For SM related papers, papers that investigate maintenance efforts and

mining techniques of bugs and maintenance related activities.

EC3: The papers intersect either field.

To reduce potential individual bias and for future replication, we propose to em-

ploy a group critic session. The group will consist of knowledgeable individuals

in software engineering concepts. If a paper is deemed inappropriate, then the

full paper would be consulted for re-evaluation.

Analysis Design

Based on all research questions, we first needed to classify the collected papers

according to their respective fields of either SPI or SM. Using the order of the

keywords, we can classify each paper. To address R1, we classify papers on

the data source, as being either from the industry, open source project or other

sources such as theory, experimental conditions or other public accessible sources

such as the PROMISE repository 5 . For R2, we evaluate the type of research

performed. This is discussed in detail later in the chapter.

2.2 Conduct Review

Using the inclusion criteria, we manually collected 290 papers mainly by extract-

ing the title and abstract from either the journal/conference websites, the ACM

5 http://promise.site.uottawa.ca/SERepository/

15

digital library 6 , IEEE Xplore 7 and the DBLP online database 8 .

Then using the exclusion criteria, we systematically removed inappropriate

and redundant papers. Finally, the group critic session validated the quality of

the selected papers. Our final results contained 44 articles (14 journals and 30

conference/workshop papers).

2.3 Analysis

To assist in the study of the context and the nature of each paper, we prepared the

following both general and field-specific classifications. The general classification

are adopted from Creswell[31]:

• Comparative (Qualitative) - This research is a comparison of two models

or approaches, discussing the benefits and flaws.

• Correlation(Quantitative) - These papers are ’analytical surveys’ de-

scribing a statistical measure of relationship between two phenomena.

• Descriptive (Qualitative) - In this study, these refer to papers that are

an examination of a standard model or theory.

• Evaluation (Qualitative) - These studies are meaningful constructions

of complex social, cultural and psychological issues.

• Experimentation (Quantitative) - These papers attempt to isolate and

control all relevant conditions, so as to observe the effects of when conditions

are manipulated.

• Action Research (Qualitative) - Similar to experimentation papers but

in a real world setting.

As shown in Table 3.2, we designed field-specific classifications. These classi-

fications will be used to address RQ1 and RQ2. The overall goal of the classifi-

cations were to distinguish the context, sources, and types of studies related to

6 http://dl.acm.org/
7 http://ieeexplore.ieee.org/
8 http://www.informatik.uni-trier.de/ ley/db/index.html

16

Table 3.2: Field specific classifications

Field Name Classification Indicators

SPI Model Analysis of new, tailored or classic SPI models

Benchmark Comparison of SPI intiatives across projects

Experiential Document experiences of SPI initiatives

SM Effort Analysis of maintenance efforts

Experiential Document experiences relating to software maintenance

MPA Analysis of maintenance activities at the micro-level

MSR Use of mining software repository techniques

this dissertation.

2.4 Threats to Validity

We identified both potential internal and external threats to the validity of the

systematic review and its results.

Internal

There is a risk of publication and researcher bias in this review. Publication

bias refers to the general problem that positive research outcomes are more likely

to be published than negative ones [59]. We do not regard this as a threat,

especially since our SPI related papers focus on shortfalls of classical SPI models.

For researcher bias, as mentioned in our analysis design, we have consultants to

validate and ensure the process is repeatable and reliable.

External

To address the generalization of the results, we selected papers from premium

journals and the most well-known, highest ranking conferences related to both

SPI and SM in the software engineering field. We are confident that the results

are illustrative of the current state-of-the-art.

17

Figure 3.1: Number of publications per year

3. Results

3.1 Specialised Field

Fig. 3.1 shows the number of publications per year from 2002 to 2011. From

2002 to 2006, there is a steady rise in papers published, with a leap in 2004. This

spike could be explained by the establishment of the MSR working conference,

recognising the field of mining repositories for analysis at the micro-level. Since

2007, the number of papers have steadily increased until 2010.

Taking a closer look, we see in Fig. 3.2 the publications by their respective

fields. Generally there has been more research with SPI until 2010, where we

see a drastic drop together with an increase on SM papers. From 2007 and

onwards, research in both fields seem to increase. This could also be due to

the improvement of respository tools such as CVS, SVN and increased email

communication, enabling this research. From 2008, SPI papers have decreased.

This could be accounted for the merge of SPIP journal into the JSME journal in

2009.

3.2 Sources of Studies (RQ1)

Fig. 3.3(a) shows the publications per year by data source. Since 2004 and then

2007 onwards, there has been an increase on other sources of data, compared to

industry data. According to Hata [47], this is consistent with previous studies

that suggest that there was an increase in public datasets such as the PROMISE

18

0

5

10

15

20

25

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

N
um

be
r o

f P
ub

lic
at
io
ns

SPI SM

Figure 3.2: Field of study per year

0

1

2

3

4

5

6

7

8

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

N
um

be
r o

f P
ub

lic
at
io
ns

Industry OSS Others

0

2

4

6

8

10

12

14

16

18

20

Industry OSS other

SPI SM

a). Source of Publication by Year b). Source of publication by Field

Figure 3.3: Sources of publications

19

20%

3%

37%

17%

23%

SM
action comparative correlation
evaluation experimental

79%

7%

7%
7%

SPI
action descriptive
evaluation experimental

Figure 3.4: Research methods by field

repository.

As seen in Fig. 3.3(b), we further classified the data sources by specialized

field. Results suggest that most SPI studies originate from the industry (66%).

In contrary, most SM studies come from other sources (93%) and OSS (90%).

3.3 Research Methods (RQ2)

Fig. 3.4 illustrates the breakdown of the types of studies undertaken in the

selected papers. Since most the SPI papers originate from the industry, it is not

surprising that 79% of the papers are qualitative (action research) papers. On

the contrary, SM papers (37% correlation and 23% experimental) are quantitative

experimental research. These results address RQ2.

3.4 Classifications by Study Type (Additional)

Table. 3.3 and Fig. 3.5 show the results of the classification employed in this re-

view. In Fig. 3.5, it is shown that 57% of the selected SPI papers were benchmark

studies, followed by models (29%) and then experiential (14%). Over half (53%)

20

Table 3.3: Classification of papers

Field Classification Papers

SPI Model [29, 119, 91, 107]

Benchmark [84, 13, 98, 108, 56, 111, 106, 67]

Experiential [71, 112]

SM Effort [85, 75, 54, 78, 117]

Experiential [52, 103, 101, 3, 2]

MPA [7, 15, 51, 120]

MSR [114, 73, 19, 18, 53, 17, 8, 62, 39, 82, 41, 92, 42, 6, 96, 114]

57%

14%

29%

SPI ‐ Types of Publications

benchmark experiential model

17%

17%

13%

53%

SM ‐ Types of Publications

effort experiental MPA MSR

Figure 3.5: Classification by field

21

of the SM papers are mining repositories (MSR) related. Other were experiential

(17%), effort (17%) and MPA (13%) related.

4. Chapter Summary

We conducted a systematic review from both the SPI and SM fields. Papers were

selected from three journals and four conferences. From our results, we can now

answer the research questions.

RQ1: What are the main data sources of the surveyed papers?

According to our results, most SPI research has originated from the industry. On

the contrary, SM research has come from OSS and other sources. The results

suggest that there could be a difference in representation between the practition-

ers and researchers in each respective field. Therefore, our research focused on

SPI for OSS projects should contribute to bridging this gap.

RQ2: How many are quantitative studies of the maintenance processes at the

micro-level?

Based on the data in Fig. 3.5, the correlation and experimental study types ac-

count for 43% of all studies. However, only 7% are SPI related. Together with

RQ1, the results suggest that most industrial studies of SPI are not quantita-

tive. Therefore, our studies suggested that there is a gap in quantitative for SPI.

Specifically, as shown in Table 3.2, out of the 44 studies, only 4 were MPA related.

To conclude, this literature review suggests that there is a gap for quantitative

SPI studies. We envision that our MPA research for OSS projects are the micro

level and should have significant contributions to both SPI and SM fields.

22

Part II

Bug & Patch Processes

23

Chapter 4

Bug & Patch Process:

Model and Metrics

1. Introduction

In this chapter, we investigate the maintenance effort in relation to its change

impact on the source code. As a quantitative proof of Lehman’s law, we proved

this phenomena at statistically significant levels.

2. Background and Related Work

The related literature covers a wide range of fields, however, each has slightly

different motivations and approaches. We divided the related works into detection

and prediction metrics, program slicing, and change impact analysis. To the best

of our knowledge, our objective is novel as we propose techniques to quantitatively

assess software processes.

2.1 Software Process Analysis and Assessment

Several related works have attempted to address the shortfalls of current software

process assessment models. Yoo [116] suggested a model that combined CMMI

and ISO models. Armbrust [9] took a different approach by treating software

as manufacturing product lines, creating easier processes, however, making the

24

processes systematic and generic. Unlike these approaches, we use the data mined

from software repositories for our assessment.

2.2 Detection and prediction metrics using software repos-

itories

Most work related to mining repositories has had objectives related to detection

and prediction of fault proneness in the functions, modules and features during

maintenance [45, 57]. Zimmerman [68] used the extracted information to measure

against software patterns. Fisher [36] mined bug reports and version control

systems, using visualization techniques to understand features.

Like the maintenance effort in this study, similar work studied the effort spent

to fix bugs [110]. Weiss and colleagues estimated the effort to fix an issue based

on prior similar issues, applying time as an indicator for effort. Also, work by

Kim [58] referred to the time to fix bugs as an important factor. Other related

works in this area have proposed heuristic approaches to measure the impact of

code changes [121, 113]. As compared to Kim, we introduce the complexity of

the micro processes to further express maintenance effort.

Models commonly use product metrics for analysis. However, Kamei et. al

[54] proved that process metrics outperform product metrics for bug prediction

models. Our work uses combination of process (complexity of the micro pro-

cesses) and product metrics (our proposed program slicing based metrics) for our

analysis. We explore the process-product relationship, similar to older models

such as the PROFES (PROduct Focused improvement of Embedded Software

processes) improvement methodology [20].

2.3 Program Slicing

First proposed by Weiser [109], Program Slicing refers to a subset of a program’s

behaviour, reducing a program to its minimal form which still produces that be-

haviour. Based on a slicing criterion, program slicing can isolate interprocedural

dependencies at either the module, file or function level.

Many of the metrics widely used in the field of program slicing are related

to the evolution of code [44, 74]; among those, many are cohesion and coupling

25

based approaches. Similar research has used program slicing metrics to classify

bugs using these metrics [88, 63]. Instead of the standard slicing metrics, our

proposed metrics include a count of the number of functions affected to measure

size and the cyclomatic complexity of the code to measure complexity within the

slices.

Work by Nagappan’s group is very similar to ours, but, with a different ob-

jective. They evaluated Windows Server 2003, and assessed the relationships

between the software dependencies and churn measures with the objective of find-

ing efficient predictors of post-release defects [81]. Our work has the objective of

assessing software processes.

2.4 Change Impact Analysis

Program Slicing is well known in the field of change impact analysis. Gallager [38]

illustrated its usefulness as it assisted program comprehension, more specifically

guiding developers to determine which code components were not related to a

software change. Similar to this, Differential Symbolic Execution (DSE) charac-

terized the effects of a set of program changes in terms of behavioural program

differences [89]. There also has been research to predict if a software change is

clean or buggy [57]. Canfora applied program slicing as well, to indexing changes

[26]. German and Hassan and Robles explored the use of change impact graphs to

visualize the impact of code changes to investigate real defects [40]. Hassan pre-

dicted faults using the complexity of code changes [46]. Much like our research,

using information theory, Hassan deduced that code changes with complex micro

processes negatively affect a program. Unlike these other efforts we also have a

different motivation and objective.

3. Issue Resolution Model

Fig. 4.1 illustrates the base micro process model used in the studies. The model

consists of three steps. In the first step, the issue is detected and reported into the

system as a new state. In the second step, the issue undergoes various states until

it is resolved. For instance, most issues usually change its state to either confirmed

and/or accepted before developers begin committing code changes. The second

26

Figure 4.1: Micro process analysis model

step is concluded once all code changes needed to resolve the issue are committed

to the source code. Moving into the third step, the issue changes its state to

closed, thus marking the issue as being resolved. There are some cases when the

solution is not sufficient, so the issue changes its state to reopened, reverting the

micro process to the second step.

4. Proposed Metrics

To measure the impact of the maintenance effort, we propose metrics based on

the behavioural properties of the program. We applied two metrics, 1). McCabe’s

Cyclomatic Complexity (CC) to measure the complexity of the changes and 2).

Function Count (FC) to measure the size of the changes. We selected these two

parameters as they are two widely accepted and relatively simple analytical met-

rics [35]. In addition, we introduced non-program slicing counterparts. Equations

(4.1, 4.4) to evaluate the effectiveness of using the program slicing technique.

Fig. 4.2 illustrates how our approach applied program slicing. For each issue,

we assume that each file edited during a code change is stored in the SCM as a

revision. Therefore for each affected revision we identify all the functions modified

during the code change. We refer to these functions as edited functions. For every

edited function, we then calculate the backward slices and the forward slices. The

backward slice is the set of functions that the edited function depends on. The

forward slice refers to the set of functions that depend on the edited function.

27

Edited Function�

Edited Function�

Edited Function�

 function B�

 function D �

Edited function�

 function E�

 function F�

 function C �

 function A�

For each edited function, the
program slices are generated	

Backward Slice�

Forward Slice�

Source Code�

SCM	

Figure 4.2: Example of backward slice and forward slice for a program slice of an

edited function.

Program slicing ensures that only the source code related to the edited functions

is analysed.

Formally, we define code changes as a sequence of revisions R = ⟨r1, r2, · · · ⟩.
For each revision r, we define FE,r = {f1, f2, · · · } as the set of edited functions in

revision r. Given the edited function f , edited in revision r, we define SB(f) and

SF (f) as backward and forward slices of f . Note that we can assume that SB(f)

is the set of functions which affect f and SF (f) is the set of functions affected by

f .

To define the following metrics, we introduce SB,r as the backward slice and

SF,r as the forward slice in a revision r. Trivially, SB,r =
∪

f∈FE,r
SB(f) and

SF,r =
∪

f∈FE,r
SF (f).

4.1 Cyclomatic Complexity (CC) based Metrics

Given a function f , we define the function C(f) which gets the CC of f . These

proposed metrics shown in Equations (4.1, 4.2, 4.3) are used to measure the total

complexity of all functions in the slice at a certain revision.

28

• EditedFunctionCC. This is the summation of the CC for functions edited

during a code change, i.e., ∑
f∈FE,r

C(f). (4.1)

Rationale: This is the non-program slicing metric for comparison against

both Equations (4.2, 4.3).

• BackwardSliceFunctionCC. This is the summation of the CC for each

function in SB,r, i.e., ∑
f∈SB,r

C(f). (4.2)

Rationale: This metric computes the combined total CC of the functions

that FE,r is dependent on.

• ForwardSliceFunctionCC. This is the summation of the CC for each

function in SF,r, i.e., ∑
f∈SF,r

C(f). (4.3)

Rationale: This metric computes combined total CC of the functions de-

pending on functions in FE,r.

4.2 Function Count (FC) based Metrics

To measure the size of the code change, we introduce three metrics shown in

Equations (4.4, 4.5, 4.6) based on the number of functions affected by the code

change in revision r.

• EditedFC. The number of functions edited during a code change, i.e.,

|FE,r|. (4.4)

Rationale: This is the non-program slicing metric for comparison against

both Equations (4.5, 4.6).

29

• BackwardSliceFC. The number of functions in SB,r, i.e.,

|SB,r|. (4.5)

Rationale: This metric computes the number of functions that FE,r is de-

pendent on.

• ForwardSliceFC. The number of functions in SF,r, i.e.,

|SF,r|. (4.6)

Rationale: This metric computes the number of functions depending on

functions in FE,r.

5. Contributions

Part II (Chapters 5 and 6) of the dissertation makes the following contributions:

New approach to the assessment of software processes. At a fine-grain level,

our approach focuses on the maintainability effort and its relation to the code.

Quantitative expression of maintenance effort in terms of micro processes.

Using project-specific workflows to resolve issues, we used the complexity and

duration of the micro processes to quantitatively calculate maintenance effort.

Proposed program slicing-based metrics to measure change impact. We in-

troduced four program slicing-based metrics at a more precise function level,

measuring the complexity (based on McCabe’s Cyclomatic Complexity) and size

(the number of functions sliced) of an issue.

Determine high maintenance efforts. We were able to identify high main-

tenance efforts based on the distribution of all maintenance efforts within the

software project. We discovered that high maintenance efforts usually have high

change impact on the source code.

Statistically significant correlations between the maintenance efforts and its

change impact on source code. Using the standard t-test, our proposed metrics

improved its p-values over most of the corresponding non-program slicing metrics.

Application to different projects. Our approach yielded similar results across

projects that differed in source code size, workflow, data management systems

and the handling of issues during the maintenance phase.

30

Quantitative correlations of maintenance effort to our proposed metrics. Our

program slicing-based metrics showed moderate to strong (ρ = 0.7-0.8) degree

of correlation. In contrast LoC was shown to have a very weak correlation (ρ =

0.35) with maintenance effort.

6. Chapter Summary

In this chapter, we introduce the motivation and related work for the study of bug

and patch processes at the micro level. We also explain in detail our proposed

models and metrics used for our research with contributions. Case studies are

introduced in Chapters 5 and 6.

31

Chapter 5

Case Study: An OSS Setting

1. Introduction

In Chapter 4, we introduced our proposed model and metrics for MPA of bug

and patch fixing processes. In this chapter, we demonstrate feasibility in three

open source software projects. We demonstrate that maintenance effort affects

the quality of the source code, which pertains to its maintainability. We suspect

that for each project, we can determine the high maintenance efforts and relate

them to having high impact on the code. To test our assumptions, we constructed

the following research questions:

• RQ1. Are we able to determine high maintenance effort?

• RQ2. How much impact does a high maintenance effort have on the source

code?

• RQ3. Is there a correlation between maintenance effort and its impact to

source code?

To evaluate our research questions and proposed approach, we performed a

case study of three open source projects. Mining data from a source code repos-

itory and issue tracking system, we were able to measure the maintenance effort

(based on micro process analysis) and change impact (based on the proposed

metrics). Since most micro processes follow a tailored workflow, we developed

32

Figure 5.1: An Overview of our approach

thresholds to determine project-specific high maintenance efforts. Results indi-

cated that maintenance effort had statistically significant correlations with the

impact on the source code.

Our approach offers a supplement approach for SPI assessment at the micro

level. Based on project-tailored micro process analysis, our approach can be used

to help determine where and how maintenance efforts can be reduced (i.e., the

proper assignment of resources) and if the affected portions of source code are

candidates for maintenance activities such as refactoring, code inspections and

reviews.

Our maintenance effort thresholds enable our approach to be specifically tai-

lored to any project. Since only three projects are used in this study, future

replication across a wider range of projects is needed to generalize our approach.

33

2. Approach

2.1 Proposed Approach

Given this background, we proposed a three-step approach as shown in Fig. 5.1.

The first step is the extraction of the micro processes from both the SCM (Source

Code Management) and the ITS (Issue Tracking Systems). The extraction pro-

vides sufficient data to reconstruct the micro processes of the maintenance effort.

In the second step, we introduce the proposed program slicing metrics to iden-

tify impact in relation to the maintenance effort. In the third step, we propose

grouping parameters to evaluate each maintenance effort. Based on the micro

processes, we determine and group the high maintenance efforts. These steps are

explained below.

Step 1. Extraction of Micro Processes.

Our goal of mining the software repositories was to extract sufficient information

for each issue to be able to reconstruct the related micro processes, and measure

the maintenance for an issue. The micro process involves all the processes from

when an issue is first opened until it is closed.

Fig. 5.2 shows screenshots of the software repositories of an issue that has been

resolved. The example shows a typical change log, with an issue stored using the

TRAC ITS and a source code revision retrieved from an SVN (SubVersioN) SCM

system. To reconstruct this micro process, the highlighted information needs to

be extracted from the software repositories. In addition, Table 5.1 contains a

description of the data extracted that is needed for our approach. We specifically

designed our tool to extract data from the TRAC ITS and SVN systems.

As seen in Fig. 5.2, the extraction method is based on the identification of

the linkage between the issue and the revision in which the code changes were

committed. Our extraction method is based on the two main approaches used

in the field. The two well-known methods for extraction of bug-fix data are by

Fisher et. al [37] and Chen et. al. [28]. The first involves searching the change

logs for keywords such as ‘bug ’ or ‘fix ’ to extract the bug data while the other

manually compares the correctness of change logs. In this research, we applied

a combination of both methods. Additionally, we chose a project that had been

34

2010/02/18
Pag
e 8

Change log

ITS (TRAC Issue #3780)

SCM (SVN at Revision #2710)

Edited functions
containing code

changes at revision
2710

Revision ID

/FileZilla3/trunk/src/putty/psftp.c

…

…

Duration of issue:Duration of issue:
Open and close

dates

Transition states

/FileZilla3/trunk/src/putty/sftp.c

Issue ID

Figure 5.2: Example illustrating issue 3780 and corresponding rev. 2710. This

shows the data needed to reconstruct the micro process (issue report) and related

code change impact(source code)

studied previously, which was known to have high quality change logs. Our

approach searches for code changes based on keywords such as ‘bug ’ or ‘fix ’ as

well as linkages (i.e., referred to as either bug ID or issue ID) from within change

logs of the source code repository. As seen in Fig. 5.2, extraction of the functions

is done by comparing the changes to the previous revision. We implemented

this methodology using our data mining tool. This tool combined simple web

scripts to download, parse and extract the required data from online open source

repositories into a relational database for analysis.

35

Table 5.1: Information extracted from the software repositories

Software Repository Attribute Description

Issue Management System Issue ID (Bug ID) Identification of the issue

Date Open Date when the issues was reported

into the system

Date Closed Date issues was resolved

State Transition states of issue

Source Code Repository Revision ID Identification to track changes made to

source code

Issue ID (Bug ID) link issue to code change

Edit date Refers to the date when the latest

code change was performed

Edited functions Function(s) where code was edited

(compared to previous revision)

Step 2. Proposed Metrics to Measure Change Impact.

We use the proposed metrics in Chapter 4 to measure the change impact. To gen-

erate our metrics, the software analysis tool by GrammaTech called CodeSurfer

[5], a sophisticated and widely used tool for interprocedural program slicing, was

used [88, 4, 74, 22]. Customized scripts within CodeSurfer were used to calculate

the CC and FC within the slices.

Step 3. Grouping Code Changes.

Grouping of issues based on their maintenance effort involves two steps: first

is pre-processing to improve the quality of the data (known as cleansing), and

second is calculating the effort threshold to determine and group high maintenance

efforts. Once the threshold is defined, evaluations on the two groupings to test

correlations are performed.

Pre-processing procedures (Cleansing of the Data).

To improve the quality of our results, we applied filters to the datasets in the

experiment. This process removed data that could negatively affect the results

and gave confidence in the quality of the data collected. From our collected code

changes, we removed issues having the following criteria:

36

• Open issues : Code changes related to issues not yet resolved (i.e., not closed

status)

• Non-code related changes : Code changes related to documentation or im-

ages (changelog.txt, pic.jpg...etc).

• Build related issues : Code changes related to compiling or build errors.

• Revisions with no linkages : Code changes with missing issue tracking in-

formation (i.e, no Bug ID references in the revision change log and vice

versa).

Pre-processing was a two step process: 1) Our tool parsed the data extracted

from the software repositories to remove code changes meeting the criteria men-

tioned above. To remove false positives, we then 2) manually checked all remain-

ing code changes against these filters to ensure high quality results. Using the

above criteria, all the cleansing of the data could be performed automatically,

however, due to time constraints and the current limitations of our tool, the

current implementation provides a semi-automatic verification of the datasets.

Grouping using effort thresholds.

Referring back to Fig. 4.1, we propose that the complexity of the micro processes

for each issue contributes to its maintenance effort. This implies that more com-

plex issues usually have more state changes or takes more time to resolve. Each

micro process fragment is defined as the state change for an issue related to a set

of code changes. For instance, an issue has a ‘new ’ state when first reported and

finally ends up with a ‘closed ’ state when resolved. Duration, which is measured

in the number of days, is defined as the time from when the code change is first

requested in the issue change log (has a ‘new ’ state), until the time when the

issue is closed (‘closed ’ state).

Maintenance effort depends on both the complexity of the micro process as well

as the duration until the resolution of the issue. As seen in Fig 4.1, the complexity

of the micro-process can be measured by the combination of either the number

of state changes and/or the duration of the issue before it was resolved. It seems

likely that there is a mutual dependency between complexity and duration. For

37

instance, we are able to differentiate complex issues that were quickly resolved.

We suggest that such issues could be prone to be reopened.

We formulated effort thresholds, designed to determine maintenance efforts

that require more than the ‘normal’ state changes and duration. Formally, given

an issue i, S(i) is the number of state changes, and D(i) is the duration. We

introduced two effort thresholds: S to represent the state change threshold and

D for the duration threshold. Analysis of the distribution of S(i) and D(i), allows

us to identify the S and D thresholds specific for any project. We propose to set

the effort thresholds based on the outliers of these distributions.

Based on the thresholds, we divided the issues into two groupings, those that

require more than the ‘normal’ maintenance effort (higher effort needed to resolve

denoted as MEHigh) and the rest of the issues (requiring normal or less effort to

resolve denoted as MENormal). High maintenance efforts refers to issues identified

as being higher/above the effort thresholds. Normal maintenance efforts refers

to issues identified as being less than/below the effort thresholds.

MEHigh = {i|i ∈ ME ∧ (S(i) ≥ S ∨D(i) ≥ D)} (5.1)

MENormal = {i|i ∈ ME ∧ (S(i) < S ∧D(i) < D)} (5.2)

Formally, given the maintenance effort ME of any issue , we define high main-

tenance efforts as Equation (5.1) and normal maintenance effort as Equation (5.2).

3. Case Study and Results

3.1 Experiment Setup

To test our approach, we chose three Open Source Software (OSS) projects for

analysis. The chosen projects are Filezilla, which is a File Transfer Protocol

application, WxWidgets, a C++ library that lets developers create GUI applica-

tions for major OS as well as mobile OS and embedded GTK+ architectures, and

Lighttpd, a lightweight open-source web server. At the time when the study was

conducted, the latest release of Filezilla (up to Ver. 3.3.1) had 210,629 Lines Of

Code (LoC), WxWidgets, the largest (up to Ver. 2.9.0) had 409,148 LoC, while

Lighttpd, the smallest (up to Version 1.5.0) had 40,712 LoC.

38

Table 5.2: Software Project Overview

Project Code Change Sets Number of Time Window Release

(after pre-processing) Functions

Filezilla 1 156(100) 8959 Aug 07-Jul 08 Ver. 3.1

Filezilla 2 173(136) 10488 Jan 09-Dec 09 Ver 3.3

WxWidget 1 358(304) 17836 Dec 06-Nov 07 Ver 2.6.4

WxWidget 2 347(303) 23203 Mar 07-Feb 08 Ver 2.8.0

Lighttpd 1 121(58) 856 Aug 07-Sept 08 Ver 1.4.21

Lighttpd 2 101(83) 840 Mar 05-Aug 10 Ver 1.4.28

New Accepted Closed

Moreinfo Reopened

(a) Filezilla workflow

New

Accepted Closed

Infoneeded
_new

Reopened
Confirmed

Portneeded

Infoneeded

(b) WxWidgets workflow

(c) Lighttpd workflow

Figure 5.3: Workflow for all projects

For the experiment, we randomly selected two versions from each project as

datasets for analysis. These datasets, as shown in Table 5.2, are the basis on

which the program slicing based metrics were calculated. Then, using the code

changes from issue reports from the ITS, we calculated the proposed metrics of

the code related to these versions. The time window shows the duration period

in which the issues were resolved. Note that Lighttpd generally has a longer time

window, especially Lighttpd Dataset 2 with almost 4 years to resolve an issue.

39

Both Filezilla and WxWidgets use the TRAC Management System 1 , while

Lighttpd uses Redmine 2 as their ITS. Fig. 5.3 shows the workflow of each

project. For Filezilla and WxWidgets, the workflows were constructed based on

the workflow guidelines available at each TRAC repository. As shown in Fig. 5.3,

WxWidgets has a more complicated workflow in comparison to Filezilla. Offering

more choices for the developers, the WxWidget workflow offers more guidance.

However, its implementation is questionable. On the other hand, Filezilla has a

more simplistic approach. Therefore, in the case of Filezilla, the duration of an

issue rather than the complexity of the micro process could be a better indicator

of maintenance effort. Unlike the other two, Lighttpd had no documented work-

flow. Instead, as shown in Fig. 5.3c, it had a set of selectable states. Using the

extracted issues we were able to construct a simple workflow.

For WxWidgets, we extracted data from the WxWidgets TRAC system (ITS)
3 and WxWidgets SCM 4 inspecting 64,005 revision changes. For Filezila, we

extracted 3,611 revision changes from the Filezilla TRAC (ITS) 5 and Filezilla

SCM 6 . In the case of Lighttpd, its Redmine based system 7 holds both the ITS

and SCM for the project, giving us access to 2,815 revision changes.

Since our extraction is automated, we included pre-processing to ensure high

quality representations of each project, for instance, by removing duplicates. This

can be seen as in the Code Change Sets column of Table 5.2 , where the remaining

code change sets after pre-processing are shown in the brackets. Although, this

pre-processing further reduced the datasets, it also gave us greater confidence in

our data by removing false positives.

As shown in Table 5.2, the number of code change sets extracted are relatively

low compared to the inspected revision changes. We attribute these discrepancies

to missing linkages from the issue tracking system to the revision change log by

our automated tool. This is well-known as one of the perils of mining particularly

1 http://trac.edgewall.org/
2 http://www.redmine.org/
3 http://trac.WxWidgets.org/
4 http://svn.WxWidgets.org/viewvc/wx/WxWidgets/
5 http://trac.filezilla-project.org/
6 http://svn.filezilla-project.org/filezilla/FileZilla3/
7 http://redmine.lighttpd.net/projects/lighttpd/

40

OSS projects, as is also explained by Howison and Crowston [50]. Another reason

for missing code changes may be that the revision changes are not related to our

dataset versions of code, as the functions do not yet exist or have been modified

to a point it is no longer recognizable by our parsing tool.

3.2 Determining Effort Thresholds

To identify high maintenance efforts, we determined effort thresholds by analysing

the distribution of the state changes and the duration of the datasets. Since Fig.

5.4 suggests that these distributions do not follow a normal distribution, thus a

suitable outlier detection model would be using Tukey’s outlier filter [49]. We

used the formula Q3+1.5× IQR to determine the effort thresholds as the outliers

for the thresholds S (change state) and D (duration) as defined at the end of

section 2 of this chapter. Q3 is upper quartile of state changes and duration, and

IQR being the interquartile range.

Using the grouping thresholds equations (5.1 , 5.2), we are able to separate the

issues into a set of high and normal issues. Table 5.3 shows the size of each set,

expressed as the cardinality as well as effort thresholds for S and D for the three

projects. As expected, normal maintenance effort is the larger of the two sets. It

is interesting to note that there are few high maintenance issues for the Lighttpd

project. This could be caused by the relatively longer durations to resolve issues

and the lack of state changes of issues as noticed in Fig. 5.4.

Based on the graphs shown in Fig. 5.4 and Table 5.3, the following observa-

tions can be made about the duration and the state changes.

• The density distribution (curve on the graphs) suggested both parame-

ters (state changes and duration) are standard distributions, justifying our

methodology for determining effort thresholds.

• As seen in the box-plots for the state change distributions, the state change

is constant for all datasets of the same project. This suggests that state

change could be constant for each project.

• As shown in the duration distribution for each project, the duration of

the maintenance effort varies between projects, and even between datasets

41

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

WxWidgets:Change States Distribution

D
en

si
ty

D
at

as
et

2
D

at
as

et
1

0 1 2 3 4

number of change states

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Filezilla:Change States Distribution

D
en

si
ty

D
at

as
et

2
D

at
as

et
1

0 1 2 3 4 5 6 7

number of change states
0.

00
0.

02
0.

04
0.

06

Filezilla:Duration Distribution

D
en

si
ty

D
at

as
et

2
D
at

as
et

1
0 5 10 15 20 25 30

days to resolve issue
0.

00
0

0.
00

2
0.

00
4

0.
00

6
0.

00
8

WxWidgets:Duration Distribution

D
en

si
ty

D
at

as
et

2
D

at
as

et
1

0 100 200 300 400

days to resolve issue

Days to resolve

Days to resolve

Number of change states

Number of change states

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
en

si
ty

D
at

as
et

 2

D

at
as

et
 1

D
at

as
et

 2

D

at
as

et
 1

D
at

as
et

 2

D

at
as

et
 1

D
at

as
et

 2

D

at
as

et
 1

Filezilla: Change States Distribution Filezilla: Duration Distribution

WxWidgets: Change States Distribution WxWidgets : Duration Distribution

Dataset 1
Dataset 2

Dataset 1
Dataset 2

Dataset 1
Dataset 2

Dataset 1
Dataset 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

density.default(x = Lt1$CS)

D
en

si
ty

1
2

0 1 2 3 4 5 6 7

Lighttpd: Change States Distribution

D
en

si
ty

D
at

as
et

 2

D

at
as

et
 1

Number of change states

0.
00

00
0.

00
05

0.
00

10
0.

00
15

Lighttpd:Duration Distribution

D
en

si
ty

D
at

as
et

2

0 500 1000 1500

days to resolve issue

Lighttpd: Duration Distribution

D
en

si
ty

D
at

as
et

 2

D

at
as

et
 1

Days to resolve

Dataset 1
Dataset 2

Dataset 1
Dataset 2

Figure 5.4: Distribution of the datasets

42

0	 	

20	 	

40	 	

60	 	

80	 	

100	 	

120	 	

140	 	

 ne
w	
-‐>	
clo
sed
	

ne
w	
-‐>	
ac
ce
pte
d	 -‐
>	 c
los
ed
	

 ne
w	
-‐>	
mo
rei
nfo
	 -‐>
	 clo
sed
	

 ne
w	
-‐>	
mo
rei
nfo
	 -‐>
	 ne
w	
-‐>	
clo
sed
	

 ne
w	
-‐>	
clo
sed
	 -‐>
	 re
op
en
ed
	 -‐>
	 clo
sed
	

is
su
es
	

Dataset	 1	

Dataset	 2	

(a) Filezilla (1-3 state changes)

0	

20	

40	

60	

80	

100	

120	

140	

 ne
w	
-‐>	
clo
sed
	

 ne
w	
-‐>	
co
nfi
rm
ed
	 -‐>
	 clo
sed
	

 ne
w	
-‐>	
ac
ce
pte
d	 -‐
>	 c
los
ed
	

 ne
w	
-‐>	
po
rtn
ee
de
d	 -‐
>	 c
los
ed
	

 cl
os
ed
	 -‐>
	 re
op
en
ed
	 -‐>
	 clo
sed
	

 ne
w	
-‐>	
inf
on
ee
de
d_
ne
w	
-‐>	
clo
sed
	

 as
sig
ne
d	 -‐
>	 c
on
firm

ed
	 -‐>
	 clo
sed
	

 cl
os
ed
	 -‐>
	 po
rtn
ee
de
d	 -‐
>	 c
los
ed
	

is
su
es
	

Dataset	 1	

Dataset	 2	

(b) WxWidgets (1-2 state changes)

Figure 5.5: Detailed analysis of the state changes for Filezilla and WxWidgets.

within a project. This is also evident for D of the WxWidget datasets in

Table 5.3

To further understand and validate the state changes, we took a closer look

at the state changes lying within the effort thresholds for each project. For both

Filezilla and WxWidgets, we had a closer look as shown in the boxplots of Fig.

5.4 where Filezilla has 1-3 state changes and WxWidgets 1-2). To validate that

the changing states did represent the workflow we took a closer look at the ac-

tual state changes. Fig. 5.5 shows the number of state changes as it represents

the workflow for each project. In addition, most state changes are from ‘new ’

to ‘closed ’, suggesting a simple state change. However, it is interesting that in

WxWidgets, there was some relatively moderate use of the ‘confirmed ’ and ‘ac-

cepted ’ status. Also, in Filezila, the ‘moreinfo’ status was relatively commonly

used. The analysis confirmed that the issues usually followed the workflow pro-

cedures (starting at ‘new ’ and ending with ‘closed ’). It is interesting that some

issues in the WxWidget’s project start from ‘closed ’ and ‘assigned ’ status, causing

slight concern in the workflow.

We found that in Lighttpd, the state changes were rarely used with almost

80%-90% of issues extracted with the New to Fixed state. There were some

instances of other state changes, as shown in Fig. 5.3c. Our results confirmed

43

Table 5.3: Issues Sets (High/Normal Maintenance Effort) and Effort Thresholds

Project High Effort Normal Effort S D

(Set Size) (Set Size)

Filezilla 1 31 69 5 24

Filezilla 2 30 106 5 24

WxWidget 1 96 208 2 190

WxWidget 2 99 204 2 283

Lighttpd 1 5 53 4 1630

Lighttpd 2 10 73 4 1290

that most of the issues do not require a complex process for maintenance effort for

the projects, as all three projects mostly use only one state change. However, use

of the state changes indicates additional maintenance effort, such as reopening,

further information needed or the re-assignment of an issue.

3.3 Metrics Evaluation

Using the effort thresholds specific for each project, each maintenance effort was

determined to be either high or normal. Fig. 5.6 shows the matrix of the main-

tenance effort, expressed in issues, grouped against each metric. Results suggest

that high maintenance effort exhibited higher CC and FC, especially using the

backward and forward slice metrics.

To prove statistical significance, the student t-test was applied to the group-

ings. The results shown in Table 5.4, further prove that in all projects the differ-

ences in the groupings were significant. Generally the program slicing based met-

rics have improved p-values compared to the non-program slicing metrics. The

program slicing-based metrics were enhanced compared to the EditedFunction CC

and EditedFunction FC. BackwardSlice CC and BackwardSlice FC outperformed

all other metrics.

Based on the results of the t-test as well as the visual representation shown

in Fig. 5.6, we can conclude that issues that required high maintenance effort

exhibited higher CC and FC values and that the program slicing metrics enhanced

this relationship, even in cases where the non-program slicing metrics were not

44

0
40

80
12

0
0

40
80

12
0

0
20

0

Simple Complex Simple Complex Simple Complex

0
20

0

0
40

0
80

0

0
40

0
80

0

0
40

0
10

00

Simple Complex Simple Complex Simple Complex

0
60

0

Edited
Function

CC

Backward
Slice
CC

Forward
Slice
CC

Edited
Function

FC

Backward
Slice
FC

Forward
Slice
FC

CC based Metrics FC based Metrics

C
yc

lo
m

at
ic

 C
om

pl
ex

ity

Fu
nc

tio
n

C
ou

nt

Filezilla:
D

ataset 1
Filezilla:

D
ataset 2

W
xW

idgets:
D

ataset 1
W

xW
idgets:

D
ataset 2

0
40

80
0

40
80

0
50

0
15

00
0

50
0

15
00

Lighttpd:
D

ataset 1
Lighttpd:
D

ataset 2

Normal HighNormal HighNormal HighNormal High Normal HighNormal High

Figure 5.6: Matrix showing the comparison of normal and high maintenance

efforts against the metrics.

45

Table 5.4: P-values for the classic student t-test for statistical significance (p-

value less than 0.05). Non-significant values are in bold

Project Edited Backward Forward Edited Backward Forward

Function CC Slice CC Slice CC FC Slice FC Slice FC

Filezilla 1 0.001 0.000 0.003 0.001 0.000 0.004

Filezilla 2 0.009 0.000 0.039 0.016 0.000 0.051

WxWidget 1 0.209 0.008 0.024 0.005 0.017 0.013

WxWidget 2 0.111 0.032 0.019 0.135 0.056 0.009

Lighttpd 1 0.052 0.000 0.128 0.004 0.000 0.006

Lighttpd 2 0.055 0.00 0.196 0.00 0.000 0.007

significant.

3.4 Other Observations of the Micro Processes

During the pre-processing and cleansing procedures of the datasets, there were

a couple of notable differences between all projects. Apart from the obvious

workflow and project size differences, under closer examination, we noticed that

all the projects had different methodologies in handling issues.

Lighttpd exhibited very high thresholds, especially for duration. For instance,

looking at one of the issues, we realised that most fixes are not applied to the

source code until the next main version, therefore a normal fix could be resolved,

but not committed to code until months later, nearing the next release. More

complex issues were being carried over into new revisions before resolved. We

also noticed that state changes were being used mostly to identify duplicates and

invalid issues rather than track issue states.

For both Filezilla and WxWidgets, an issue is usually submitted with a de-

scription of the issue which may also include a screenshot and/or error-log at-

tached. However, it was noticed that almost 90% of WxWidgets issues were

accompanied with a potential solution as a patch. Therefore, the WxWidget de-

veloper, in addition to verifying that the solution is correct, assesses the impact of

the solution on the stability of the current system operation and design. Filezilla

has a more traditional approach, with the developer creating the solution based

only on information provided by the submitter.

46

These observations illustrate that even if the projects organisation and manner

in which to resolve issues are different our proposed approach was successfully

applied.

4. Discussion

In this section we evaluate our approach and how the results could be applied.

We then revisit our research questions. Finally we present the threats to the

validity of the study.

4.1 Generalizability of our Approach

Our research focused on three OSS projects, all very different in terms of tools,

size, workflow and even the micro processes of handing issues as explained in

Section 4.3. Yet, our approach and metrics yielded consistent results, suggesting

that our approach is feasible across OSS projects. Our project-specific effort

threshold method enables us to expand our approach to various projects. Also,

our study proved that this approach can be applied to projects ranging up to 400

kLOC.

From the study, we identified two factors that could influence the effectiveness

of our approach. The first one is the availability of the data. Smaller projects or

newer projects may not have sufficient data for analysis. Also, we assume that

more mature projects would have more data for analysis. Furthermore, although

we have determined that this approach can be applied to projects up to 400

kLOC, this study did not determine the lower limit needed for reliable results.

The second factor is the linkages between the issue management system and its

source code management system. Detailed documentation and linkages from the

SCM and ITS is essential for our approach. It is envisioned that as technologies

improve the documentation and their tracking of linkages between SCM and ITS,

our approach will become more feasible.

47

4.2 Slicing Evaluation

The results in Table 5.4 suggests that the backward slicing outperforms forward

slicing. Firstly, we believe the relationship between the size of backward slice and

the maintenance effort taken to find and fix the bug is directly related. However,

when considering forward slicing, there is a risk of the fix incurring side effect

bugs. We believe this risk could be the cause of the inconsistent results. We did

not validate this, however, this could be one possible reason why the backward

slice metrics is a more reliable metric.

4.3 Applications of the Study

As an empirical study, our work has shown that the proposed methodology is

able to determine the micro processes requiring high maintenance effort, based

on the combination of duration and complexity of the micro processes. There are

two major viewpoints where we can utilize these results, from both a source code

maintainability perspective as well as the project process management point of

view.

Code-based Application.

Identification of high maintenance efforts as well as the affected code, especially

those with relatively high CC and FC characteristics, could be beneficial from a

source code maintenance point of view. These code portions could be candidates

for source code maintenance activities such as refactoring, code reviews and code

inspections. These activities would improve the quality of the source code, thus

ensuring that the complexity of code is kept low. Since there is a correlation

between complexity and maintenance effort, these activities have potential to

reduce the maintenance efforts. However, it is important to note that we only

suggest a causative correlation. Investigation of a causative link is viewed as

future work. In addition, the affected code could be marked as complex, so that

a developer can take extra care when modification of these portions of code are

required.

48

Project Management-based Application.

From a project team standpoint, the ideal scenario is to assign the best developers

and resources to the code changes that require the most effort. To do this, a team

first identifies high maintenance efforts at any point and on a particular version

and compares this to maintenance efforts of previous versions. The team then

assesses if their current workflow is still suitable for the project. Through this, the

team can be reorganized so that the most experienced developers and resources

are assigned to ‘high maintenance effort’ portions of code.

More specifically, in projects similar to WxWidget’s method of handling issues

(i.e., in which a potential solution accompanies the issue), the developer can

already identify which functions will be edited and consequently assess what level

of effort (more experienced developer) should be assigned to this issue beforehand.

In regard to projects like Filezilla and Lighttpd, there could be an additional

verification micro process, in which functions that have potentially high CC and

FC can be validated by the more experienced members of the project team.

Our approach identifies issues that require high maintenance effort also have

considerable change impact on source code. However high effort due to longer

durations to resolve issues can be influenced by other factors, including back-

burners (referring to issues that are of low priority because they do not greatly

affect the system) or simply poor documentation creating a delay in assignment

or breakdowns in the micro processes. Still, this approach can inform project

managers of the current quality of the implemented software processes, giving

useful insights to improve the micro processes. Also, analysis of the changes in

the effort thresholds over versions, although not in the scope of this study, could

prove useful.

4.4 Research Questions revisited

Before this study we constructed three research questions in relation to our as-

sumption that high maintenance effort is related to complex source code. In this

section we revisit each question against the results of the study.

• RQ1. Are we able to determine high maintenance effort? By analysing

micro processes during the maintenance phase, we were able to use an effort

49

threshold to differentiate and group issues that consumed high maintenance

effort. Our approach proved that this threshold is project-specific.

• RQ2. How much impact does high maintenance effort have on the source

code? Results of the study indicate a correlation between high maintenance

effort and code changes with high complexity metrics (proposed FC and CC

based metrics).

• RQ3. Is there a correlation between maintenance effort and its impact

to source code? Applying the standard student t-test, results proved a

significant statistical correlation between maintenance effort and the impact

of its changes to the source code. In some cases, our proposed metrics

outperformed the non-program slicing metrics.

Relative to one of Lehman’s laws of evolution [66], we can logically conclude

that higher maintenance effort would most likely be caused by complex code. This

may seem trivial and common sense, however, in this study, our novel contribution

is that we have quantitatively express this established phenomenon.

Threats to Validity

Internal

The major internal threats would be the accuracy of the tool used for extraction

and the measurement of the data, since the extraction process is automated. To

mitigate this, a combination of manual verification and pre-processed data was

used to ensure the quality of the data collected. It was noticed that the amount

of data extracted is significantly lower than the expected amount of code changes

available. This can be attributed to the missing linkages between ITS and SCM

as well as the lack of proper documentation.

Another threat could be that the pre-processing of the data has an influence

on the results. In a real world scenario, for example, data is usually not pre-

processed. We believe, however, that our pre-processing was based on rules that

can be applied automatically in the real world, as they are not based on human

judgement.

50

Research by Binkley et al. [21], indicated that as data structures increases,

so does the size of the slice, causing accuracy problems. In this study, we did

not address this issue as most large slices (having large FC and/or CC) were

identified as having valid complex interprocedural dependencies. Also, we believe

our case study datasets are under 1 million LoC, therefore not considered large

scale projects. However, we see this as an important issue, especially when looking

at large scale programs and regard this as future work.

External

The major external threat to validity is the generalization of our approach to

different projects, under different software repository systems, and since the micro

processes and resolution workflows differ from project to project. Our effort

threshold method offers project specific measurements to take into account these

differences. In addition, since these are only three projects, we are uncertain if

this is a true representation of an OSS project. Our data is all from OSS projects,

hence we cannot assume that results may be the same for commercial projects.

Generalization of our techniques is seen as the most important priority for future

work.

In this research, we focused solely on change impacts in source code, as we

believe maintenance of software mainly revolves around source code changes. Our

definition of maintenance effort also investigated micro-processes during mainte-

nance. However other aspects such as software architecture issues were not taken

into account. This could be interesting avenues for future work.

Another threat is that our tool used to extract data was specifically made for

the TRAC and Redmine (ITS) as well as SVN SCM systems. We would like to

expand to other tracking systems such as bugzilla ITS and CVS SCM systems.

We plan to further develop our tool to handle other systems so that we can apply

our approach to a wider set of projects.

As mentioned previously, there are not many available projects with sufficient

linking information of the software repositories to date. We, however, believe that

the tools and technologies to manage documentation of software repositories are

steadily improving. This makes our approach more practical in the near future.

51

5. Chapter Summary and Future Work

Software process assessment and improvement can be a rather complicated and

costly exercise that is only suited for larger organisations. Measuring software

quality is also complicated and covers a wide range. In this study, we present a

simpler approach: focus on the micro processes of maintainability of the code.

To the best of our knowledge, this work is the first to express maintenance

effort in terms of the complexity of the micro process. By using effort thresholds,

we were able to determine which micro processes required high maintenance ef-

fort. Also, using novel program slicing-based metrics, we were able to measure

the impact of these efforts on the source code. We concluded that there is a

statistically significant relationship between maintenance effort and its change

impact on the source code.

Although the results are promising, there are still outstanding issues for future

work, including the following:

• Generalization of our approach. Replication of the study with more OSS

projects is needed.

• Explore the correlation between maintenance effort and impact on source

code further. Currently we have identified a correlation but whether this is

causative is another avenue for research

• Explore the change impact to handle large-scale systems. Our program slic-

ing based metrics outperformed the non-program slicing metrics, however

we need to address the issue what to do when program slices become too

large. We plan to study strategies to break down these structures, so that

program slicing is more manageable.

• Study the effort threshold behaviour over a project’s lifetime. The change

in effort thresholds over different releases of a project could potentially

measure the state of the maintenance effort during the duration of the

project.

• Assessment model for the assessment of the maintainability of software.

Although we are only in the early stages of validating the generalizability

52

of our approach, the final goal would be to create an assessment framework

and prediction model for this assessment.

In this study we explore the relationship between process and product. An in-

teresting caveat is that as model-driven software development approaches evolve,

and the automation in software evolves along, model elements instead of the

source code will be automated. In such a scenario, the relationship between the

process and product will be an promising research avenue.

As data management processes, tools and techniques improve, we envision

this line of research to prosper. We see this study as a step towards a viable

quantitative approach for software process assessment of the maintainability of

software.

53

Chapter 6

Case Study: A Controlled

Experiment

1. Introduction

In the previous chapter, we demonstrated the application of our approach to three

OSS projects. Most open source projects record maintenance effort coarsely as

the number of days, which we found can be affected by many outside factors such

as priority, developer’s workload and the maintenance work-flow (process) com-

plexity. In this chapter we eliminate these factors using a controlled environment

setting.

According to one of Lehman’s laws of evolution [66], we assume that higher

maintenance effort is most likely caused by complex code. We believe that the

analysis of source code properties and how they correlate to the maintenance

effort during the resolution of an issue could show this quantitative. To test this

theory, we aim to answer the following research questions:

• RQ1. Is there a quantitative relationship between maintenance effort and

source code properties?

Assuming that there is an evident relationship from RQ1, we then con-

structed the next research question:

• RQ2. Can we define a set of code-based metrics from this relationship?

54

Applying our proposed metrics introduced in Chapter 4, we analyse the

relationship.

Our final research question is concerned with the performance our program

slicing based metrics against the conventional (non-program sliced) Lines

of Code (LoC) and CC (Cyclomatic Complexity).

• RQ3. How do the metrics compare in degree of relationship?

To evaluate our research questions and approach, we performed trial experi-

ments on a set of pre-defined maintenance issues. We designed four issues, each

representing the specific type of maintenance activity commonly encountered in

the real world. We measured maintenance effort based on the duration to resolve

each issue, without explicit maintenance processes such as workloads, work-flow

and other environmental factors.

The preliminary results from our trial experiments suggest that the proposed

program slicing metrics have the strongest correlation with maintenance effort,

exhibiting a moderate to strong degree of correlation with maintenance effort

against our proposed metrics. In contrast, the conventional LoC metric had a

very weak correlation with maintenance effort.

We envision that our approach will give quantitative insights on where main-

tenance efforts can be reduced. This could be done by the proper assignment of

resources and the identification of high maintenance-prone portions of code as

candidates for maintenance activities such as refactoring, code inspections and

reviews.

2. Approach

In this study, we decided to use a controlled environment to cover the different

types of issues. There are several advantages: (1) Using a set of pre-determined

issues allows to expose the different types of typical code changes. (2) In addi-

tion, we can pre-define the complexity of the code change. (3) We can measure

accurately the duration taken to resolve the issue. Normally, the duration to re-

solve an issue can be influenced by several factors such as the bug fixing process

55

Table 6.1: AlignMe function descriptions

Function Description

main() runs the program, displays menu to console

and calls up the Align instance

Align::doIt() calls up Strategy::format() function

Align::setStrategy(int) based in input creates either an instance

of RightStrategy or LeftStrategy

Strategy::Strategy() constructor for strategy class

Strategy::format() reads the text from quote.txt and calls

justify(char*) for either RightStrategy or LeftStrategy

Strategy::justify(char*) virtual function is implemented by either

RightStrategy or LeftStrategy

RightStrategy::RightStrategy() constructor

RightStrategy::justify(char*) implements the specific right alignments for the text

LeftStrategy::LeftStrategy() constructor

LeftStrategy::justify(char*) implements the specific left alignments for the text

or work-flow, workload of the developer and in some instances the priority of the

issue.

This study specifically ignores all these factors, so that the maintenance effort

is solely based on the time given to resolve. Thus, D is the time to fix (minutes),

thus maintenance effort ME is defined as:

ME = D (6.1)

The layout of our approach is as follows. First, we introduce the proposed

metrics used to measure the source code properties of the code changes. Later in

the section, we introduce the experiment with the four issues that were used in

the experiment and the feedback questionnaire.

To generate our metrics, the software analysis tool by GrammaTech called

CodeSurfer [5], arguably the most sophisticated and widely used tool for inter-

procedural slicing, was used [88, 4, 22]. Customized scripts within CodeSurfer

were used to calculate the CC and FC within the slices.

56

Figure 6.1: Screenshot of AlignMe showing the right alignment

LeftStrategy RightStrategy

‐ doIt()
‐setStrategy(int)

‐ Strategy()

‐ format()

‐ justify(char*)

‐ justify(char*)‐ justify(char*)
‐ LeftStrategy() ‐ RightStrategy()

AlignMe
Strategy

Figure 6.2: AlignMe class diagram. Note that main() is used to instantiate the

align class

57

Figure 6.3: Screenshot of ideal solution for issue 1. This should be the output

with the center option is selected

3. Pilot Experiment - AlignMe

Software maintenance and evolution are inevitable, with constant changes to code.

According to Yu [118], there are three main software maintenance activities: (a)

Perfective - the addition of a new functionality, (b) Corrective - fixing of faults or

bugs to the software and (c) Adaptive - new file formats or refactoring code. In

this study, we only focused on the first two activities due to two reasons. Firstly,

due to time limitations of the experiment. Secondly, because of the difficulty in

designing adaptive maintenance issue. We designed four issues: Issues 1 and 2

were perfective activities, while issues 3 and 4 addressed some corrective activities.

Another major challenge encountered involved defining a set of issues were

that they had to be solved within a time-frame by novice users to both the pro-

gram and the programming language. Taking these factors into account, we devel-

oped the testing program AlignMe. For easier code understanding and appending

new enhancements to the program, we incorporated software design patterns into

our program.

AlignMe is a console-based application written in C++. It was developed and

run in Visual Studio 2008 Environment on the Windows 7 platform. The main

function of AlignMe is to display text from a stored file (quote.txt) in either

a selectable Left or Right alignment. AlignMe has a total of 78 LoC with 4

58

classes consisting of 10 functions. Table 6.1 shows a summary of the functions

and their descriptions. The class designs in Fig. 6.2, illustrate how the strategy

design pattern is implemented. The strategy design pattern is commonly used to

improve the readability and maintainability of source code. As seen in Fig. 6.2,

the class Strategy is the parent of classes RightStrategy and LeftStrategy.

The following are the maintenance activity issues designed for the experiment:

• Issue 1 - Create a center alignment At the current state, program

offers the two options of either right or left alignment. Participants are

asked to modify the program to add a center alignment. Fig. 6.3 illustrates

the expected output. This is a perfective activity, which the ideal solution

involves extension of the strategy design template to include a CenterStrat-

egy class from the parent Strategy class, with appropriate changes in the

justify() implementation. This issue was designed to have the largest size

in terms of LoC.

• Issue 2 - Allow user input of layout width At this state, the program

has a fixed width for the layout of the text. Issue 2 enables the user to

customize the layout width. This is a perfective activity that is designed

to generate high FC and CC metrics by including modifications to many

functions. Fig. 6.4 shows the desired output. According to our proposed

metrics, this issue should take high maintenance effort as having the highest

FC and CC metrics.

• Issue 3 - Allow subsequent alignment input At this state, the program

only allows a single alignment before exiting automatically. Issue 3 requires

participants to allow the user to run several alignments in one session before

choosing to exit. The issue is a bug because even though returning to the

menu after alignment, it immediately exits if any key is pressed. Fig. 6.5

shows an example of the desired output, where the alignment is run three

times. The ideal solution would be adding a for-loop to the main function,

so the program continues to return to the main menu until the exit option

is selected. This issue was designed to be a simple fix that only affects the

main() function.

59

a) Width = 45, center alignment

b) Width= 20, right alignment

Figure 6.4: Screenshot of implementations of the ideal solution for issue 2. a)

shows a width of 45 while b) has a width of 20.

• Issue 4 - Buffer overrun error Since issue 2 allows user input of the

layout, this creates another bug since the program cannot handle layout

widths greater than 60. Issue 4 requires modifications to allow widths up to

80. In this case, the solution requires the user to manipulate the array size of

the variables storing the text. This has to be done in classes RightStrategy,

LeftStrategy and CenterStrategy. It is a simple fix, however, it requires the

developer’s comprehension of the program.

4. Analysis and Evaluation

Using the proposed metrics, we then performed a quantitative analysis of the

issues previously mentioned. Using our proposed metrics we evaluated each of

the maintenance activities.

Taking a closer look at LoC from Fig. 6.6, we can see that issue 1 has the most

modified lines, while issue 3 has the lowest. In contrast, according to the program

60

Figure 6.5: Screenshot of ideal solution for issue 3. The program is able to execute

three times before exiting.

slicing metrics shown in Fig. 6.7, issue 2 has the highest CC and FC values for

both slicing and non-program slicing metrics. The metrics are contradicting,

because while the CC and FC metrics suggest issue 2 as candidates for high

maintenance effort, LoC metrics, on the other hand suggests issue 1.

61

Issue 1 Issue 2 Issue 3 Issue 4

Li
ne

s
of
 C
od

e
(N
o
co
m
m
en

t c
od

e)

LoC for Issues

added lines edited lines

0

 2

4

 6

8

 1
0

12

 1
4

16

 1
8

20

Figure 6.6: This figure shows the quantitative analysis of the issues related to

LoC.

Cy
cl
om

at
ic
 C
om

pl
ex
ity

 (C
C)

a) CC based Metrics for
Issues

CC BSCC FSCC

Fu
nc
tio

n
Co

un
t (
FC
)

b) FC based Metrics for
Issues

FC BSFC FSFC

0

2

4

 6

8

 1
0

12

 1
4

 1
6

0

5

 1
0

 1
5

 2
0

25

 3
0

Figure 6.7: This figure shows the quantitative analysis of the issues for our pro-

posed metrics. Note that (a) CC based metrics and (b) FC based metrics.

5. Results

5.1 Participants

A total of eight test subjects participated in the experiment. All participants had

a strong programming background and were currently graduate students from the

62

Issue1 Issue2 Issue3 Issue4

Ti
m
e
(m

in
ut
es
)

a) Time to resolve issue

Figure 6.8: This boxplot shows the distribution of time taken to resolve each

issue during the experiment.

Information Science department. In fact, three of the participants had previously

been programming instructors, while the rest had worked on small to medium

software projects. Four of the test subjects preferred C++ while the other four

listed java as the preferred programming language.

5.2 Experiment Environment

During the experiment, each participant was given a 10 minute pre-experiment

tutorial, explaining the technical aspects of the program. After this, an additional

5 minutes was then allocated for questions and/or free time to get familiar with

the program before the maintenance activities. Each task was introduced in the

same sequence for all participants along with screenshots of the desired output as

seen in Fig. 6.3, 6.4 and 6.5. Each task is marked as resolved only after testing

for the desired output. Only then, the next task was introduced. After all the

tasks were completed, a simple questionnaire was filled out by all participants to

collect comments, preferred programming language and difficulty of each issue.

For all participants, the same isolated experiment environment was used.

Please refer to Appendix A for a sample of the tutorial and default answers

of the experiment.

63

Issue1 Issue2 Issue3 Issue4

D
iff
ic
ul
ty
 (1

‐5
)

a) Unranked Evaluation b) Ranked Evaluation

Issue1 Issue2 Issue3 Issue4

0

 1

 2

 3

 4

 5

D
iff
ic
ul
ty
 (1

‐5
)

0

 1

 2

 3

 4

 5

Figure 6.9: (a) shows the perceived difficulty of each task by participants and (b)

is the ranking order of difficulty by participants. All rankings are from 1 =easy

to 5=hardest.

Table 6.2: Spearman’s rank correlation of proposed metrics with maintenance

effort

LoC CC BSCC FSCC FC BSFC FSFC

Other (non C++) Developers 0.27 0.58 0.61 0.50 0.51 0.57 0.51

C++ Developers 0.45 0.78 0.83 0.79 0.69 0.78 0.78

Total Developers 0.35 0.66 0.70 0.63 0.58 0.65 0.62

5.3 Evaluation

For each participant, the average time for completion of the whole experiment

was within 2 hours, with each issue ranging from 10-60 minutes for completion.

Fig. 6.8 shows the distribution of the time taken to solve each issue. Fig. 6.9 (a)

shows the individual ranking of each issue with a score from 1-5, while Fig. 6.9

(b) shows when they are ranked in the order of difficulty. These graphs clearly

suggest that issue 2 was the hardest issue to implement. In reference to issue 2,

one subject commented that the “ C++ syntax used to pass arguments across

functions was the problem”. Other responses noted that unfamiliarity with the

programming language lead to difficulties with issue 2.

In regard to the rest of the issues, participants identified them as typical main-

tenance activities. We assume that the difficulty of issue 1 was greatly aided by

the use of the strategy design pattern as pointed out by a participant. Also, it was

64

interesting to note over 75% of the participants had limited knowledge on design

patterns, but found it very useful. Issues 3 and 4 were noted to be typical code

changes. Issue 3 was seen as the easiest as it only involved minor modifications

within a single function. Issue 4 took slightly more time as modifications had to

be made in several locations, but not significant.

6. Discussion

Our research investigates a quantitative approach to measure maintenance effort

using a set of proposed metrics. In our previous work, we studied real world

projects, with results suggesting false positives of maintenance effort, which take

more time to be resolved due to the following factors: (1) low priority (back-

burner), (2) human resource assignments or even a (3) delay feedback in the bug

fixing work-flow

Analysis of the issues in Fig. 6.6, 6.7, 6.8 and 6.9 suggest that issue 1 is most

likely candidate for high maintenance. However, our proposed metrics instead

suggested issue 2 and was proven by our experiment results.

A controlled environment was used in which other factors such as the bug

fixing process, developer workload, and priority were nullified. Table 6.2 proves

our proposed metrics outperform the conventional metrics. This is significant as

in real life the correlation may not be as strong. The correlation could serve as

guidelines to quantitatively assess maintenance effort and processes, outperform-

ing traditional measures such as LoC. The usage of these metrics can be applied

from two viewpoints.

From a code-based perspective, identification of potentially high maintenance

effort code portions could be candidates for source code maintenance activities

such as refactoring, code reviews and code inspections. These activities would

improve source code quality and maintainability. Correlation between complexity

and maintenance effort, these activities have potential to reduce the maintenance

efforts. In addition, the affected code could be marked as complex, special atten-

tion is taken during code modifications.

From a project team standpoint, proper assignment of the most proficient

resources to be made to these complex code changes. Teams can manage and

65

assess their current work-flow or maintenance processes.

6.1 Revisiting Research Questions

We address our research questions below:

• RQ1. Is there a quantitative relationship between maintenance effort and

source code properties? To evaluate our results, we used the spearman’s

rank correlation as the data is non-parametric. Since familiarity with C++

was perceived to be an influential factor, we classified subjects for partic-

ipants that were comfortable with C++ (C++ developer) and those not

(other developers). Table 6.2 suggests moderate correlations for each set of

metrics.

• RQ2. Can we define a set of code-based metrics from this relationship? As

mentioned in RQ1, our experimental results suggest our proposed metrics

have a moderate to strong degree of correlation with maintenance effort.

• RQ3. How do the metrics compare in degree of relationship? As seen

from Table.6.2, we see a positive association of maintenance effort with the

proposed metrics (except of LoC) in all groupings. It is shown that the pro-

gram slicing-based metrics have the strongest correlations, with backward

slice-based metrics (BSCC - up to 0.83 and BSFC - up to 0.83) had the

strongest degree of correlation. We found that all groupings have similar

differences of correlation for all metrics, thus strongly suggesting a trend.

6.2 Threats to Validity

The main threat is whether our experiment is a true representation of the real

world. A program comprising of 78 lines of code is not a representative of real

world programs, however, we believe that we fundamentally represented basic

maintenance tasks that could be sufficient for a typical programmer could attempt

without prior knowledge of the program. Also in this study, the program slices

were manageable, which may not be the case in the real world. Program slicing

is complex, especially with large systems and this issue is being considered for

66

future work. Another threat was the assessment of participant’s experience and

skill. Keeping this in mind, the issues were designed so that they could be solved

within a reasonable time-frame. We designed the program so that it would be

easily understood by typical programmers.

Internal threats were the accuracy of the data collected. The consistent trend

of the performance of the metrics across the three groupings of correlations gives

us confidence in our results. Another internal threat would be our program slicing

tool. However, as mentioned earlier in the paper, CodeSurfer is one of the most

widely used tools for program slicing.

7. Chapter Summary and Future Work

The purpose of this research is to investigate an alternative quantitative approach

of the analysis of maintenance effort. In this study, we quantitatively expressed

this established phenomena, using several common code-based metrics as well as

our proposed program slicing-based metrics. Although the results are promising,

there are still outstanding issues for future work, including the following:

• More application to the real world. For future work, we would like to apply

our approach to industrial projects.

• Explore other factors of maintenance effort. Evaluate the impact of factors

such as the bug fixing process, developer workload, and issue priority. Also,

explore differences between the non-slicing and slicing based metrics.

• Explore the change impact to handle large-scale systems. Further investigate

strategies to manage large slicing. Heap slicing is a possibility.

• Assessment model for the assessment of the maintainability of software.

Other aspects such as process effort, human and infrastructure management

for the achievement of process objectives will be investigated.

Although, the study is in its early stages of validating the generalization of

our approach, the final goal would be to create a process assessment framework

and prediction model.

67

Part III

Peer Review Processes

68

Chapter 7

OSS Peer Review Process:

Models and Metrics

1. Introduction

In this chapter, we proposed metrics and models to assist peer review members

identify their current standing and career advancement opportunities in an OSS

project. Using MPA (Micro Process Analysis), we proposed expert profiling and

career trajectory metrics and models. This work contributes to the adoption of

SPI (Software Process Improvement) models that are driven at the developer

level.

2. Theory and Related Work

A number of prior studies have shown the effectiveness of code reviews. For

instance, Boehm and Basili [25] noted that review typically catch 60 percent of

product defects. Also, Mantyla and Lassenius [69] also discovered that 75 percent

of defects found during peer reviews improve the software evolvability by making

it easier to understand and modify.

There is a large body of research on peer reviews in OSS [27], [100], [104].

According to Aberdour [1], there are differences in OSS quality assurance as

compared to closed source projects. With code reviews, instead of the traditional

69

round table meetings with physical developers, potential code changes are sub-

mitted as patches via email or review systems for review by core experienced

members of the community. OSS code review processes have been gaining pop-

ularity as it ensures quality, especially in regards to contributions from outside

the core community [95]. In fact, Aberdour states that OSS projects seem to “es-

chew best practices without software quality suffering”. Futhermore, OSS reviews

could be superior due to the larger pool of reviewers [11]. This is since Linus law

[94] that implies that“ given enough eyeballs, all bugs are shallow,”meaning

that if enough people see a software error, at least one of them will probably un-

derstand the cause and be able to fix. Also, Gacek and Lawrie observed that OSS

development faces fewer time and cost pressures than closed-source development

[65].

However, the main difference between OSS projects to the closed software

projects is that contribution is of a voluntary nature. High-quality OSS relies

heavily on having a large, sustainable community to develop code rapidly, debug

code effectively, and build new features. Many studies concluded that creating

a sustainable community should be an OSS project ’s key objective [94], [104].

Several papers such as Lakhani [64] state that suggested motivations include the

personal need for the software, reputation-seeking, and altruism. This is un-

like traditional software projects, where knowledge and the presence of mentors

are crucial [102], OSS depends solely on developer’s self interest and motivation.

Mockus et al. [76] studied Mozilla-a highly modular project that initially had

trouble attracting contributors. They found that participation increased only

after the core team improved documentation, wrote tutorials, and refined devel-

opment tools and processes. This is an example of the importance of attracting

and sustaining contributor’s motivation in an OSS project. Additionally, due to

the distributed nature of OSS, member’s lack the conventional face-to-face inter-

action and structure compared to closed projects. This lack of visibility could

prove detrimental towards members motivation and sense of position within the

community.

Much OSS literature has been performed on different aspects of the OSS peer

review. Researchers have focused on the OSS review process and organisational

structure [11], [95], and its social technical aspects [95], [24], [32]. We assume

70

that most studies have not attempted to profile members.

Finding and profiling experts is not a new concept and used in knowledge

management and collaboration [14] in other fields such as artificial intelligence.

For example, MITRE created an expert finder 1 to help users quickly locate

people who know about a particular subject area. Other implementations are

with the peer review process for journals and conferences. The expertise recom-

mender [72] and expertise browser [76] are examples of approaches to identify

implementation experts. Similar to these approaches, we used data mined from

the software repositories to determine our member types.

Career path analysis and trajectories have been used in other fields such as

biology and implemented in the social sciences and economics [97], [70]. Two

well known state-of-the-art approaches are hierarchical clustering and categorical

based on factorial analysis. Sequence mapping techniques such as self-organising

maps (artificial neural networks) and Markov chains have been proposed to map

pathways of state transitions [97]. We assume that this has not been yet applied

in the OSS peer review setting.

3. The Android Project

The Android Open Source Project (AOSP) is a linux-based operating system for

mobile devices such as smartphones and tablet computers, developed by Google

in conjunction with the Open Handset Alliance 2 . The first Android-powered

smartphones were sold in Q1 2009, and has since grown to become the biggest

smartphone operating system.

AOSP currently has a public and private branch for members to contribute

patches. In this study, we solely focus on the public branch. Using custom scripts,

peer review data was extracted from the online android gerrit code review system
3 .

AOSP uses the GIT source code management system in conjunction with

gerrit, a web-based collaborative code review tool. Gerrit automatically records

1 http://www.mitre.org/news/the edge/june 98/third.html
2 http://source.android.com/
3 https://android-review.googlesource.com/

71

and tracks all merges into the source code, including details related to the code

patch and the peer review process activities. To track all peer review activities,

we extracted all patches regardless of current state (abandoned, merged or still

open). For each patch report, we used specific features for our analysis. For

identification, we extracted the patch id as well as the member name, id and the

email address of the patch owner. We then extracted all the contributors involved

in that patch report, identified as submitters, reviewers or verifiers.

3.1 Terminology

From the AOSP documentation 4 , we present the following terms to be used

throughout the paper:

• Member. A member of an open source project is an individual that per-

forms any of the peer review activities.

• Peer Review Activities. These activities are usually the roles of: i).

contributor, ii). Reviewers and iii). Verifiers/Approvers. We consider the

submitting patches, reviewing patches and verifying/approving patches as

peer review activities.

• Contributors. A contributor is anyone that makes contributions to

source code, thus submitters of patches. In this paper, we assume that

the contributor is the owner of the code, which in reality is not always the

case.

• Reviewers. Code reviewers are contributors that can review submitted

patches.

• Verifiers and Approvers. A verifier is responsible for testing patches.

Contributors can be invited to become verifiers after contributions of sig-

nificant high-quality code. Approvers are experienced members who are

said to have made significant contributions and were previously verifiers.

This role is by invitation from project leads and has the power to include

4 http://source.android.com/source/roles.html

72

of exclude changes, verifiers as assumed to have a higher social status over

members.

• Project Leads. Project leads are responsible for leading all technical

aspects of the project and assign verifiers and approvers. Typically they

are google employees.

• Time-frame. In order to track member’s review activities over a period

of time, we need a time-frame to measure activity. During this time-frame

there are intervals in-which the activity is assessed and measured.

4. Peer Review Profiling Metrics

According to Mockus [77], expertise is strongly related with experience. Building

on this, we based all of our metrics on membership duration. Also, Bird [24]

states that member’s review activities follow a hazard rate, dropping activity

levels after attainment of high social status. To incorporate this phenomena, our

proposed metrics are designed to provide a contributor’s activity performance

in relation to their tenureship. We measure the activities as a daily rate, thus

identifying inactively of members over time.

Each metric is defined using the following attributes:

• Tenureship - This is a measure of duration (per day) since a member had

joined the project, from the first day till the latest update. Three different

review activities are considered: i). review of a patch, ii). submitting a

patch, or iii). verification of a patch. Members with outstanding tenureship

are referred to as Seniors (T).

• Submit rate - This is a measure of how many patches the member has

submitted. We called members with outstanding submissions Submitter(S).

The derived metric is defined as:

numberofSubmissions

Tenureship
(7.1)

73

Table 7.1: Expert Matrix: T= Tenureship, S=Submits, R=Reviews,

V=Verifications, X= Extreme Attribute

Expert Member Types T S R V

Verifier Core Member (TSVR) X X X X

Verifier SeniorVerifyingSubmitter(TVS) X X X

Verifier SeniorVerifyingReviewer(TVR) X X X

Verifier ActiveMember(SVR) X X X

Non-verifier SeniorSubmittingReviewer(TSR) X X X

Verifier SeniorVerifier(TV) X X

Verifier VerifyingSubmitter(VS) X X

Verifier VerifyingReviewer(VR) X X

Non-verifier SeniorSubmitter(TS) X X

Non-verifier SubmittingReviewer(SR) X X

Non-verifier SeniorReviewer(TR) X X

Verifier Verifier(V) X

Non-verifier Reviewer(R) X

Non-verifier Senior(T) X

Non-verifier Submitter(S) X

Non-verifier Non-expert(N)

• Review rate - This is a measure of how many patches the member has

been involved as a reviewer. We call members with outstanding reviews

Reviewer(R).

The derived metric is defined as:

numberofReviews

Tenureship
(7.2)

• Verify rate - This is a measure of how many patches a contributor has

verified and approved before merging into the source code. We refer to

these members as Verifier(V). We assume that experts should be at least

verifiers, as they are able to approve new code. The derived metric is defined

as:
numberofV erifications

Tenureship
(7.3)

Table 7.1 shows a matrix of all the possible combinations of the proposed

metrics, from which we derived different member types. From our metrics, we

74

identified a combination of 16 different member types, each categorised by the

number of extreme attributes identified.

Table 7.1 also shows that 8 out of the 15 classifications are verifiers. As

mentioned in the previous section, verifiers have higher authority, thus could be

referred to as being the experts.

4.1 Threshold Attributes

In order to identify members with specific outstanding activity attributes, we

defined threshold measures using the pareto principle, as our baseline measure.

The pareto rule, a concept from economics with applications in engineering, states

that roughly 80% of the effects come from 20% of the causes.

Activity rates can be misleading for new members, due to their low tenureship.

We defined a minimal threshold (lower limit) so that a member is only eligible

for categorisation after a defined tenureship duration. We applied the same 20-

80% ratio. Thus, members are required to have tenureship greater than 20% of

the population before being eligible.

5. Peer Review Empirical Models

According to the proposed metrics and the threshold attributes mentioned in the

previous section, we were able to profile and classify into member types.

In this paper, we study member’s historic transition of member types to form

the career pathways map. Both models are described in detail below:

5.1 Profiling Model

Fig. 7.1 shows an example of an individual performance model. In this example,

we see that the individual has outstanding reviews, verifications and submissions,

however, the tenureship is under the threshold. Based on the classification in

Table 7.1, we classify this individual as an active member (SVR). This model is

used in Chapter 8.

75

Figure 7.1: Illustration of our profiling using a radar chart.

Figure 7.2: Partial representation of a career pathways map.

5.2 Career Pathways Model

Fig. 7.2 is a partial representation of the career pathways map. Each transition

is represented by a connected line. Usually the transition is in one direction,

however, the dotted line represents if there have been movement in two directions

between member types. For instance in Fig. 7.2, there are cases where a member

may have become a reviewer (R) before returning to being a non-expert (N). The

member type coloured in black represents a member state that currently has no

members. Verifier types are coloured in purple. N is the starting point for the

map. This model is used in Chapter 9.

76

6. Contributions

The main contributions and findings of Part III (Chapters 8 and 9) can be sum-

marized as follows:

Peer Review Member Profiling. Profiling and categorised Android members

based on contributor activity using our approach.

OSS Health. Identified two possible member types (senior and senior verifiers)

as indicators for the health of an OSS project.

Identifying expertise. The identification of hidden/potential experts. Using

our metrics, we were able to identify new members with high activity levels.

Visibility of OSS member social standing. Using the profiling metrics, mem-

bers are able to assess their current peer review performances in the community.

Historical Career Mapping. Using the member types, we are able to track

the historic member types transitions, thus able to plot career trajectories for

aspiring young members.

We believe that our study is an example of how MPA can be utilised to

promote the adoption of SPI initiatives such as peer review for software quality

assurance.

7. Chapter Summary

In this chapter, we introduce the theory and related works for MPA of the OSS

peer review processes. Since our research is solely using the Android project

as the case study, we provide a brief overview of this project, the project roles

and other terminology used in the studies. Later in the chapter, we present

our proposed metrics and models. The profiling model and metrics are used in

Chapter 8, while Chapter 9 uses career path map model. Finally, we presented

the main contributions of the study.

77

Chapter 8

Profiling Peer Review Member

Types

1. Introduction

In the previous chapter, we introduced the models and metrics for member pro-

filing. In this chapter, we aim to apply our approach to profile and categorise

OSS members based on their historical activities.

To guide our research, we formulated the following research questions:

• RQ1. Can we identify and categorise hidden experts?

• RQ2. Can we identify inactive members or members with declining interest

in the project?

• RQ3. Does our expert classification provide practical expert classifications?

• RQ4. Are we able to identify differences in patch and processes for the

different member types?

2. Results

Using our custom scripts, we extracted 11,512 patch reports over a 38 month

period (2008/10/21 - 2012/01/27). During this time, AOSP recorded 1,040 mem-

bers.

78

Figure 8.1: The figure illustrates comparison between the uncategorised and the

member types of AOSP.

2.1 Extreme threshold evaluation

The pareto principle can be expressed mathematically as a power-law or log-

normal distribution. Log normal distributions are characterized for having only

positive values and are skewed with long tails. Moreover, they must be log-

normally distributed 1 . As an example, we show in Fig.8.1(a) the skewed dis-

tribution of one of our attributes, tenureship. The shaded area represents the

seniors (extreme thresholds of tenureship) of AOSP. To prove our attributes were

log normal distributed, we use Q-Q probability plots (if linear), as shown in Fig.

8.1(b).

We verified the pareto principle for all metrics before calculating the extreme

thresholds. Results are shown in Table 8.1. It is interesting that the verify

threshold is 0%, this validates that verfiers are automatically extreme members

of the project. In Table 8.1, it is shown that members must have at least 12 days

of tenureship before considered eligible for classification.

2.2 Member type analysis

As seen in Fig. 8.2, there are considerably more uncategorised members (917

members) in comparison to member types (314 members). The solid line in the

1 a random variable X is log-normally distributed if log(X) is normally distributed

79

Table 8.1: Expert Thresholds for AOSP

Tenureship Submit Rate Review Rate Verify Rate Eligibility

(Days) (DailyRate) (DailyRate) (DailyRate) (Days)

430.5 0.100 0.121 0 12

Figure 8.2: The figure illustrates comparison between the uncategorised and the

member types of AOSP. Solid line represents the submitted patches by the mem-

ber types

figure represents the number of patches submitted by the corresponding member

types. We can see that a total of 10,050 patch reports were submitted by the

member types as opposed to 1,582 patch reports submitted by non-categorised

members. This illustrates that experts, even though a minority, contribute the

most to the project. This is consistent of the OSS onion model [33], in which

with the minority of inner layers taking more leading and contributing roles than

the outer layers.

In Fig. 8.3, we grouped together the expert types (with verifier related types

as shown in Table 7.1) against the non-verifier categories. Consistent with the

onion model, verifiers have more patch contributions.

In Fig. 8.4, we take a closer look at the expert types introduced in this paper

80

37%

63%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Verifiers Non‐Verifiers

%
 o
f S
pe

ci
al
is
ts

%
 o
f P

at
ch
es
 S
ub

m
its

Verifier vs. Non‐Verifier
Members Patches

Figure 8.3: The figure illustrates that in AOSP, there are more non-verifiers than

verifiers, however more patches are submitted by verifiers. Solid line represents

the patches submitted by the corresponding members.

(Table 7.1). Out of the 8 expert types, four are not represented (expert verifier,

senior verifier, senior verifying submitter and verifying submitter). This suggests

that maybe the verification attribute could be strongly correlated with the other

metrics. Table 8.2 shows the results of the pearson correlation tests between

the three attributes. Between member types (shown in brackets), there is very

strong correlation (0.9) between verify rates and review rates. This indicates

that a verifier’s takes part in as much reviews as verifications. The relationships

between review activities are still not fully understood and could be another

interesting avenue for future work.

As seen in Fig. 8.4, the two top member types possess the tenureship attribute

(seniors with 30% and senior verifiers with 18.2%). From these results we deduce

that senior members could be associated with the project maturity. It would be

interesting to apply our approach to a less mature project. As for an indication

of the current health of the OSS project, we would need to progressively monitor

the progressive growth of senior types over an extended period of time. This will

81

Figure 8.4: This figure shows the distribution of expert types. Please note that

four expert types had 0 members at this point in time.

Table 8.2: Pearson Cor. Matrix: T= Tenureship, S=Submit, R=Review,

V=Verify,(Verifier’s Cor. in brackets)

S R V

S - 0.063(0.36) 0.026(0.32)

R 0.063(0.36) - 0.31(0.90)

V 0.026(0.32) 0.31(0.90) -

be considered for future work.

Finally, core members (with all four extreme attributes) who are considered

the most skilled experts with the highest patch submissions, only account for

6.1% of the member types. From a newbie viewpoint, the ultimate career goal

would be to reach this type.

2.3 AOSP potential experts

One of the main goals of our research was to identify hidden or potential experts.

We approached this using the verifier types. Fig. 8.5 illustrates the identification

82

Figure 8.5: Example showing the performances of a) top AOSP contributor and

b) a hidden/potential expert (extreme activity although not a senior contributor)

of the hidden experts. In Fig. 8.5(a), the profile of the contributor with the

highest attribute scores is shown. It can be observed that the levels of reviews

and verifications are particularly high. On the other hand, Fig. 8.5(b) represents

the profile of a possible potential hidden expert. This is because this contributor

also has extreme activity levels, however, is not considered a senior according to

our thresholds. We find that this contributor has only been a contributor for 43

days, but has been very active, verifying 42 patch reports, submitting 21 patches

and reviewing an additional 41 patch reports. This user could possibly be a newly

employed google developer hired for the Android project, however this claim is

not validated. Validation of our results is to be approached in future work.

2.4 Member types properties

As preliminary results, we used 8 metrics to measure the different properties

of the member types. These metrics are described in Appendix B. Boxplots

comparisons of the median distributions for member types can be located in

Appendix C. Below is a summary of the results:

83

• Senior submitters(TS) and submitters(S) had the longest process review

times. Experts that possessed the reviewers(R) attribute had the most

comments on their patches

• Core members had the most merged patches. However, along with non-

experts and submitters they had also the highest abandoned patches. Core

members tend to submit patches that do not change the size of the code

(edits), whereas experts with the verifying (V) attribute tend to submit

the larger code changes. Additionally, these verifying experts that have not

yet possessed the senior status (T) tend to submit more complex patches,

affecting a wider number of files (V, VR, SVR).

The results suggest that each expert type has a unique contribution to the

project. We believe these insights may assist peer review members plan their

future performances to aspire become a certain expert type other than a core

member.

3. Discussion

We view our results as the initial steps towards profiling and categorising different

member types. Moreover, we also were interested to identify hidden or potential

experts. Our initial results indicate that this can be possibly achieved, however

validation of our results with the actual project members is required. Thus, in

response to RQ1, results suggest that our member types are able to identify these

experts.

In Fig. 8.4, seniors and senior verifiers compose of most (30%) member types.

We suspect that both member types could possibly include inactive or members

with declining interest in the project. Results are inconclusive, however, monitor-

ing both these members types could provide useful towards gauging OSS health.

Therefore, in response to RQ2, although we have not validated the categorisation

of inactive members, we believe our metrics could be useful OSS health indicators.

Our metrics generated 8 possible expert types, however, as seen in Fig. 8.4 four

expert types are not represented. Results suggest a strong correlation between

reviews and verification. Both seniors and senior verifiers types could provide

84

insights into OSS health.

According to the Android documentation, verifiers are “invited members that

have submitted significant amount of high-quality code to the project and demon-

strated their design skills and have made significant technical contributions to the

project ”. Therefore, comparing and understanding their patch review process

and code properties could help aspiring members towards the ultimate goal of

being a core member type. Individual profiling also helps a young member track

and assess her current performance.

Taking all these points into account, in response to RQ3, results suggest that

our metrics and the proposed member types do have practical applications, how-

ever, more work is needed to fully understand all of the derived types.

Finally, our results gave some insights into the properties of each member

types. We can summarise that the tenured members tend to submit much smaller

and specialised patches as opposed to the aspiring young verifying expert. Also,

experts with high reviewing attributes attract attention to their patches then

submitters or senior submitters. Much validation is needed, however in response

to RQ4, the difference of patch and process between member types do provide some

insights expert type properties.

4. Threats to Validity

Currently our thresholds are based on the 20-80% pareto rule. This is only used

as an example of a set baseline, however in its defence, as seen in Fig. 8.2,

Fig. 8.3 and 8.4 the member types, verifiers and the ratio of the number of core

members to their submitted patches consistently show that most of the activities

are performed by a minority. We believe that the pareto rules could be substituted

for other techniques such as Tukey’s outlier equation [49].

We identified that the accuracy and validation of our results with the real

world is a threat. Specifically the issue of email aliasing. By using semi-manual

processes of cross-checking the username, name and email address for duplicates,

we are confident of our contributors list. As future work, we would like to look

at the histories of the Android members, enabling validation of our results.

Our next step is to apply our approach with other similar projects to generalise

85

our results. We believe that with more projects, we should be able to redefine

our thresholds and better understand our expert types.

5. Chapter Summary and Future Work

In summary, the study in this chapter served as a proof of concept for our pro-

filing member types. Using this models we intend to locate experts for certain

locations of components and knowledgeable areas of the system. Also, we would

like to track inactive or members with declining interest so we can devise counter

strategies. Finally, we would like to identify potential ‘rising stars’, providing this

career advancement pathways modelled on current experts.

There are still outstanding issues for future work, including the following:

• validation of results with more real world case studies.

• further investigation of the senior and senior verifiers types at different

stages of an OSS project.

• investigation of peer review processes and code patches between expert

(verifier) and non-expert types.

• improvement of the expert thresholds by exploring validation.

Currently, we only focus on reviewer profiling, assessing current performance

and thier standing in the project. Our overall goal is towards development of an

OSS expert recommendation system.

86

Chapter 9

Career Trajectory for Peer

Review Members

1. Introduction

In this study, we present our approach that uses our proposed profiling and ca-

reer path modelling. Our approach is based on the Goal/Question/Metric (GQM)

paradigm first coined by Basili [16]. The previous chapterm our work [60] pro-

posed peer review profiling metrics to categorise member types based on review

activity levels. Extending on this work, we profile members and then generate

career-pathways based on member’s transitions of the member types.

We used the Android patch peer review community to test our methodology.

Our method traced a member’s review activities over a 38 month period with 13

intervals. We used two case scenarios to simulate the use of our approach with

success. Results proved the feasibility of our approach, suggesting improvements

and possible applications of our approach.

2. Proposed Approach

2.1 Goal/Question/Metric (GQM)

Fig. 9.1 presents the overall approach. As shown, our methodology is based on

Basili’s Goal/Question/Metric (GQM) paradigm [16]. This is presented below:

87

Question Methodology

Q1: Who and where
am I in the project?

Q2: What can I do to
improve my project
standing?

Q3: Who are best
candidates for specialized
project roles?

Profiling
Model

1. Identify
time-period
and data for

analysis

2. Evaluate
thresholds

and baselines

3. Generate
performance
model and

maps

4. Analysis
and Review

Career
pathways
trajectory

map

Ask Question

If Q1 – Use Individual
Performance Model
to assess your
performance and
classification as
member type

If Q2 – Use Career
pathways to plot your
current position. You
can now identify and
choose to follow
historic paths

If Q3 – Use Career
pathways to identify
member types most
suitable to vacancy.

Recommendation: Draw analysis,
recommend and set targets for next
assessment

Figure 9.1: Overview of our Approach. First we have our question, then we

formed of methodology that uses the two empirical models.

• Conceptual Goal. Our goal is to provide visibility and awareness of an

OSS contributor’s social status within the peer review community.

• Question. Our questions are based from two viewpoints. First, from the

member stance, we ask:

1.) Who and where am I in the project?

2.) What can I do to improve my project standing?

Finally, from management point of view, management may ask:

3.) Who are the best candidates for specialized project roles?

• Quantitative Metrics and Models. Instead of the traditional metrics, in

this stage we define our methodology and two quantitative models (profiling

model and career pathways trajectory map) to address our questions.

88

Table 9.1: Time-Frame Intervals

Date Dec-08 Mar-09 Jun-09 Sep-09 Dec-09 Mar-10 Jun-10

Interval 1 2 3 4 5 6 7

Date Sep-10 Dec-10 Mar-11 Jun-11 Sep-11 Dec-11

Interval 8 9 10 11 12 13

2.2 Methodology

In this section we describe the methodology of our approach. As shown in Fig.

9.1, there four steps in our method:

1. Identify time-period and datasets. Firstly we identify the time-period

for the performance evaluation. Quantitative data is collected of all review

activities for the individual.

2. Evaluate thresholds and baselines. Using the threshold attributes, we

measure the individual performance against the outstanding individuals.

Based on the performance levels, we are now able to classify the individual

into the member types in Table 7.1.

3. Generate empirical models. Based on the data collected and the thresh-

olds, we are now able to generate the profiling model and career pathways

map defined in Chapter 7.

4. Analysis and Review. We propose that aspiring members can use the

historic pathways of current member types to plan their career trajectories.

From a management standpoint, management can choose suitable candi-

dates from the member types.

3. Application: Analysis by Evolution

For our analysis, we study the evolution of members during a time-frame. As

shown in Table 9.1, we used a time-frame of 3 months for 13 intervals. Using

our custom scripts, we extracted 11,512 patch reports over a 38 month period

(2008/10/21 - 2012/01/27). During this time, AOSP recorded 2,072 members.

89

0

1

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13
lo

g(
Te

nu
re

 s
hi

p)

Tenureship Threshold (log)

Tenureship Threshold
Lower Limit

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8 9 10 11 12 13lo
g(

su
bm

is
si

on
 ra

te
s)

Submission Threshold (log)

Submits

0

1

2

1 2 3 4 5 6 7 8 9 10 11 12 13

lo
g(

re
vi

ew
 ra

te
s)

Review Threshold (log)

Reviews

Figure 9.2: The different thresholds taken during the 13 intervals for the tenure-

ship, patch submission and review activity.

We used relational databases to analyse our data and the R Tool 1 for sta-

tistical analysis and to generate our profiling charts 2 . Our compiled dataset is

readily available online for download3 .

The rest of the section is divided into two parts. First, in section 3.1 the

threshold evaluation and member types transitions during the time-frame are

presented. Later in section 3.2, we then present two case scenarios to which we

apply our method.

3.1 Thresholds and Member Types

Similar to the case study in Chapter 8, we used the pareto principle as our

threshold to identify review activities that exceeded 80% of the population. We

can see in Fig. 9.2, that the thresholds have a steady rise over the time-frame.

We found a strong correlation between all thresholds over time, especially with

the submit rate threshold (pearson r=0.98). The constant rise suggests that

maintaining extreme attributes requires activity review participation. Table 9.2

shows the correlation between review activity types taken at the final interval

1 http://www.r-project.org/
2 http://cran.r-project.org/web/packages/fmsb/fmsb.pdf
3 http://sdlab.naist.jp/reviewmining/

90

1

10

100

1 2 3 4 5 6 7 8 9 10 11 12 13

C
on

tr
ib

ut
or

s

Transition of Member Types over the 13 Intervals
Int Non Reviewer (R) Verfier (V) VR
Submitter SR SVR Senior (T) TV
TVR TS TSR CORE

Non-expert

Senior

TV
SR

Core
Submitter (S)

Figure 9.3: Transitions of members between member type classifications during

the 13 intervals.

(13). Results suggest a very strong correlation between verification and review

activities.

Fig. 9.3 shows the transition changes between member types over the time-

frame. We can see that both member types senior (T) and non-expert (N) show a

steady growth, while other types such as TV and SR had no members at intervals

8 and 10. Other groups such as submitter (S) and core members (TSVR) look

to have reached a peak and then steadily remain at that level. Such observations

could be important in understanding the roles of these member types in the

community.

3.2 Case Scenarios

To test our method, we applied our approach to a sample of Android review

members. We selected a current core member, known as userid 1000411. We

assume that most contributors would like to become core members at any point

in their review life. In the second scenario, we assume that 1000411 has decided to

91

Table 9.2: Pearson Corr. Matrix at Interval 13: T= Tenureship, S=Submit,

R=Review

T S V R

T - 0.16 0.23 0.24

S 0.16 - 0.50 0.48

V 0.23 0.50 - 0.88

R 0.24 0.48 0.88 -

leave the community, therefore project leads are faced with filling in that vacancy.

Scenario one is addressed by Q1 and Q2, while scenario two by Q3.

Q1. Who and where am I in the project?

Using our profiling model, we are able to trace the performances of user 1000411

over the 13 intervals. As shown in Fig 9.4, we can see this user started out as

member type N, later becoming a verifier type VR and SVR. Eventually, the user

became a core member (TSVR). 1000411 first increased rates in reviewing and

verifications, then submitting and finally gaining tenureship to become a core

member.

Additionally, as shown in Fig. 9.5, we can see a more detailed overview of

the career pathways map for 1000411. 1000411 underwent three member type

transitions to reach the core member status, however, did spend a year (time-

frame 2-5) as a VR member before progressing in her career. These models show

that at any period in time, we are able to dynamically profile and generate a

historic career path for any user.

Q2. What can I do to improve my project standing?

To improve the current standings, we assume that the best approach is to learn

from experience, which is following the footsteps of role models which in this

case are core members. Fig. 9.6 shows all the career paths of the current 17

core members. From the map and corresponding table, we can see that most

core members became SVR types before reaching core member status. 1000411

92

ID:1000411(2008/12/01)

Tenureship

Review

Verify

Submit

ID:1000411(2009/03/01)

Tenureship

Review

Verify

Submit

ID:1000411(2010/03/01)

Tenureship

Review

Verify

Submit

ID:1000411(2010/06/01)

Tenureship

Review

Verify

Submit

N VR

SVRTSVR

Thresholds
Member Attributes

Figure 9.4: Snapshots of the changing profiles of 1000411. Each snapshot is taken

right after a member type transition (reads top left to right, then right to left at

the bottom.

is currently a core member, so we cannot suggest any improvements. However if

she asked the same question back when she was a VR we could suggest that she

raise her submission levels to become a SVR type. As seen in Fig. 9.6, historically

more core members took this same pathway through the SVR member type.

Furthermore, Fig. 9.7 shows all the career pathways of all types over the

13 intervals. As shown in this career map, three of the member types currently

have no members (TVS, TR, VS). It is interesting to note that R, SR and TSR

member types have no higher transition in member types, as members seem to

return to the previous member type.

Q3. Who are the best candidates for specialized project

roles?

It is assumed that a vacancy in a project occurs when either because of over-

bearing workloads or if a core member leaves. In the latter case, we can utilise

93

N

Submit (S) Review(R) Verify(V)

Senior(T)

VRSVR

TSR

TR

Core Members
(TVSR)

TVS

TVR

TV

VS

SR

TS

Submit (S) Review(R) Verify(V)

VS

SR

Example: User ID:1000411

Dec -08 (1)

Mar-09 (2)
to

Mar-10 (5)

Jun-10 (6)

Sept-10 (7)

Time-
Frame T S V R

Member
Type

1 0 0 0 0 N
2 0 0 1 1 VR
3 0 0 1 1 VR
4 0 0 1 1 VR
5 0 0 1 1 VR
6 0 1 1 1 SVR
7 1 1 1 1 Core
8 1 1 1 1 Core
9 1 1 1 1 Core
10 1 1 1 1 Core
11 1 1 1 1 Core
12 1 1 1 1 Core
13 1 1 1 1 Core

Figure 9.5: Illustrates the career map for 1000411 over the 13 intervals.

Non
expert

Submit (S)

Review(R) Verify(V)

Senior(T)

VRSVR

TSR

TR

Core Members
(TVSR)

TVS

TVR

TV

VS

SR

TS

id Paths

1000205 SVR->CORE

1000411 N>VR->SVR->CORE

1000413 V->SVR-> CORE

1000414 N->VR->SVR

1000660 SVR->CORE

1000830 SVR->CORE

1000866 SVR->CORE

1001002 VS->CORE

1001051 VS->CORE

1001100 V->SVR

1001118 SVR->CORE

1001174 SVR->CORE

1001414 V->SVR

1001534 SVR->CORE

1001891 N->VS->SVR->CORE

1002751 V->SVR->CORE

1000980 T->TV->CORE

Core Members Pathways
at Dec-11

Figure 9.6: Historic career pathways map for core members only during the 13

intervals

94

N

Submit (S)

Review(R) Verify(V)

Senior(T)

VRSVR

TSR

TR

Core Members
(TVSR)

TVS

TVR

TV

VS

SR

TS

Two directions

All Member Types Pathways
at Dec-11

Figure 9.7: Historic career pathways map for all member types during the 13

intervals

our method to find the best candidates by identifying users with similar histor-

ical traits. For example if 1000411 was to leave the project, we propose that

contributors that experienced a similar career path could be suitable candidates

to take on the workload. This could be any current member that is currently a

SVR member types as that was the previous member type transition 1000411 has

become a core member. Due to computation costs, we are unable to provide a

concrete answer to the question and regard this as future work.

4. Discussion

The objective of our approach is to provide a visibility of a contributor’s current

standing within an OSS project and possible career trajectories based on historic

95

career paths of successful contributors. Our method should only be used as a

guideline for career trajectories as attainment of higher social standing is only

through project lead selection based on invitation and display of technical skill.

By studying the actual patches of known expert member types could give insights

into the technical expertise needed to attain that member type.

Other benefits that could arise from this work is understanding how OSS

projects are able to sustain a community for its livelihood. For example, OSS

projects might require a certain number of member types for its success. Con-

versely, an increase in other member types might indicate declining interest or

leaving members.

The costs and benefits of transitions from one member type to another could

be another avenue to research. For example, some member types could provide

more attention from reviewers or project leads while others could be stepping

stones into best positions for promotion. Identification of member types satura-

tion points, proximity to other types and features such as the review processes

and patches associated with of different member types could provide insights into

the different qualities of each member types.

Member types could be used to identify expertise and knowledge related to

specific aspects of the project. We suggest that career path of members could

be greatly influenced by the frequency and duration of transitions of the member

types. These metrics could provide additional experience metrics. The investiga-

tion of which member types enjoys shorter review times, which members types

draws more attention of management or a what types are simply stepping stones

into greater roles could be prove interesting future work. For management, we

propose our method to provide more experience metrics as well as identify similar

aspiring members. Other uses could be to assist with the trigation of patches to

suitable reviewers and verifiers.

Currently we use radar charts to visualize our profiling model. From a similar

perspective, the current career mapping is performed manually. As mentioned in

the related work, career path and sequence analysis have been used to analyse

state transitions [70]. Data mining analysis techniques such as Markov chains or

self-organising maps will be explored as future work.

Another important aspect of this work is the validation of our model with the

96

real world. At this early stage of the research we are more concerned with the

proof of concept. We plan to validate our results with actual members. Also,

we would like to investigate the impact of real world events such as new version

releases or departure of a core member on our models.

5. Threats to Validity

5.1 Internal

Currently our thresholds are based on the 20-80% pareto rule. We believe that the

flexibility to adjust the threshold could be favourable for tailoring our approach.

For instance, the pareto rules could be substituted for other techniques such as

Tukey’s outlier equation [49].

In this study, we chose a three month time frame interval. We believe that

this was sufficient to capture member type general transitions, however, there

were cases as seen in Fig. 9.6, where contributors gained more attributes within

an interval. Further investigation is needed to refine the time-frame to capture

member type transitions.

We identified that the accuracy and validation of our data is a threat. Specif-

ically the issue of email aliasing, which was also encountered by Bird [24]. By

using semi-manual processes of cross-checking the username, name and email ad-

dress for duplicates, we are confident of our contributors list. As future work, we

would like to look at the histories of the Android members, enabling validation

of our results.

5.2 External

We believe our method captures the basic review activities, thus can be used for

other real world projects. We believe that the flexibility of the thresholds should

make our method applicable to many different types of projects that employ a

patch peer review system. Our next step is to apply our approach with other

similar projects to generalise our results.

97

6. Chapter Summary and Future Work

We foresee many benefits into the profiling and historic analysis of of OSS peer

review careers. Currently, we only focus on reviewer profiling and historic ca-

reer path generations. Our end goal is towards better understanding of career

advancement and individual identity in an OSS setting. Our motivations stem

from expert finding, knowledge management and understand how to combat the

decline of interest in OSS projects. Finally, the identification of potential “rising

stars” to distribute workloads as well as fill vacancies of specialized project roles.

As a feasibility study, we believe our work opens many avenues for research.

There are still outstanding issues for future work, including the following:

• validation of results with real world activities, such as comparing real life

events with changes/transitions within the models.

• validation of our approach with other real world projects for generalisation.

• investigation of the specialized attributes of member types.

• improvement by investigating other techniques, for instance the thresholds

and automation of career path mapping.

We believe that due to the recent improvements of data repositories mining

tools and techniques, this research is timely and will be able to give quantitative

insights to experience within OSS projects.

98

Part IV

Synopsis

99

Chapter 10

Conclusions

Recent developments in software repositories and mining techniques have given

recent rise to MSR studies. In this dissertation, we would like to apply MSR

techniques to other sub-fields of software engineering such as Software Process

Improvement (SPI) and Software Maintenance (SM). This thesis makes the fol-

lowing contributions to this area.

• Literature Review of Quantitative SPI and SM. 44 papers were se-

lected from 7 premium journals and conferences. 66% of SPI papers orig-

inated from the industry as opposed to only 10% from OSS and 7% SPI

in other sources. This suggests that SPI has more industry contributions.

However only 7% of SPI are quantitative (correlation and experimental)

studies. These results suggest differences between practitioners and re-

searchers in the software process improvement (SPI). The review suggests

there are opportunities for the use of micro process analysis to comple-

ment current models and metrics to provide quantitative SPI initiatives.

(Chapter 2)

• Quantitative relationship between maintenance effort and its im-

pact on source code. In this new approach to complement the current

SPI assessment models, we propose quantitative program sliced metrics to

measure change impact. Together with a quantitative expression of main-

tenance effort, we provide an quantitative proof of Lehman’s second law

of software evolution: ”As a system evolves its complexity increases unless

100

work is done to maintain or reduce it” [66]. Our study was performed on

three OSS projects and a closed experiment to demonstrate general appli-

cation. (Part II)

The benefits of this research is twofold. First, identification of high main-

tenance efforts as well as the affected code, especially those with relatively

high CC and FC characteristics, could be beneficial from a source code

maintenance point of view. These code portions could be candidates for

source code maintenance activities such as refactoring, code reviews and

code inspections. Also, the affected code could be marked as complex, so

that a developer can take extra care when modification of these portions of

code is required. Secondly, from a project team standpoint, the ideal sce-

nario is to assign the best developers and resources to the code changes that

require the most effort. The team can be reorganized so that the most expe-

rienced developers and resources are assigned to ‘high maintenance effort’

portions of code.

In this dissertation, we were able to prove the use of MPA for the expression

of maintenance effort. In terms of practical application to current SPI

models this opens up a new field of investigation. A possible avenue could

be the identification of controllable factors at the micro level to help improve

micro processes.

There are other secondary directions for future work. Firstly, application

of our approach in an industrial setting. Secondly, one of the threats of

using program slicing for change impact is its vulnerability at large scale

use. Research using different techniques such as heap slicing across different

language platforms could be another avenue for future study. In addition,

the accuracy between backward and forward slices could help us detect

defects quicker.Finally, our novel quantitative measurement of maintenance

effort could be used in other applications.

• Peer Review Members Profiling and Career Trajectory in OSS

Projects. Peer review member profiling for expertise identification can

lead to a more efficient and higher quality review process. We propose two

empirical models. First is a profiling type to categorise members based

101

on contribution. This provides a visibility of a member’s current standing

within a project. Second, we propose a career trajectory models based on

the historic transition of member types. (Part III)

Since OSS members are motivated purely by self-interest [64], profiling could

help in two ways. Firstly from a management point of view, we could classify

inactive members. An increase in this category of members could be an

indicator of the degrading health of the project. Secondly, by classifying

expert types, we can study their review habits and activities. Using MPA

we proposed a profiling and career trajectory models to encourage member’s

participation and career advancement.

Application of our models to other real world projects is seen as one of the

many future directions. Another avenue could be the detailed investigation

of member types properties, their benefits and impact to the sustainability

of the project. Also in our profile models, the pareto rule was used as

a threshold rule. Further testing and calibration is needed to determine

the best threshold method. For our career pathways model, at this stage

it is semi-automatic. Markov chains and other probabilistic models and

techniques could be implemented to automate and improve the model.

Our techniques and approaches prove the application of MPA to software

maintenance activities such as bug fixing and peer reviews. On one hand, we

envision that MPA methods will open avenues of more quantitative measurement

to complement the current SPI models. This would be beneficial for smaller

organisations as it saves assessment and implementation costs. Also, specific

phases such as the maintenance phase can be targeted.

On the other hand, the emergence of OSS has seen the adoption of current

SPI strategies. Since OSS is developer driven, it would be appropriate for the

application of MPA for SPI. Profiling and identification of members are the first

step toward finding and recommendation of expertise.

The maturity of tools and technologies has sparked new life for quantitative

process analysis and modelling at the micro level. Our main goal is that our

proposed micro models and techniques are used to inform and complement current

models, thus provides an ”added dimension” to SPI . We end with this quote,

”even at the micro level, it’s the processes that define the product”.

102

Part V

Appendix

103

Appendix

Appendix A - Tutorial Slides

2012/12/12

1

Software Maintenance Effort

C++ Coding Experiment

Software Design lab
Iida‐ken

Outline

• {STOP} Please fill in PART A ‐experiment questions!
• Goal

• Case Study: AlignMe

– Intro
– System Design
– Detailed Code inspection

• Maintenance Tasks
– Task 1 and 2
– Task 3 and 4

• Conclusion and Feedback

Experiment Goal

• Measure effort for code changes (modifications)
with the complexity of portions of code.

• Relationship between effort and source code
properties

e
ff
o
rt

complexity

Experiment: Case Study

• AlignMe – a simple C++ application

• Build and Execute (Single file)
– Compile: g++ ‐o strategy

strategy.cpp

– Run: ./strategy
– Development Environment. (IDE):

Visual Studio 2008

• For this study, illustrates the strategy
design pattern with typical
maintenance activities applied

Displays text from a file (quote.txt) and displays
in the selected alignment (Left(1) or Right(2)).

104

2012/12/12

2

System Design

User selects the desired alignment, system then reads
the text from Quote.txt and displays in the desired
alignment on the monitor

Using the strategy design pattern, left and right strategy
classes are derived from the strategies class. The Align
class creates an instance of the strategy.

Strategy Design Template is used to:
• Define a family of algorithms, encapsulate each one, and

make them interchangeable.
• Capture in an interface, bury implementation details in

derived classes
• Used in refactoring to make code easier to read and append

enhancements

Strategy Implementation

• Strategy
– format()

– virtual justify()

• LeftStrategy
– justify()

• RightStrategy
– justify()

read data from files as
input streams

Concatenate strings

0. Used to terminate string

Length of string

Fill block of memory

Copy string

Alignment Class and Main

Output to screen

User input

set of
named
constants (0,
1, 2, etc..)
i.e.,
Dummy=0,
Left=1,
Right=2

Execute format() for instance of
strategy_ (using pointer)

Maintenance Activities

• Three types of Maintenance Activities (tasks):

– Perfective/Adaptive: Enhancements

• Task 1 and 2

– Corrective: Fixing bugs
• Task 3 and 4

105

2012/12/12

3

Task 1

• Allow user to be able to perform center
alignment

– Hint 1. Follow the design pattern for alignments

Test Case: implement above screenshot for center(3) option

Task 2
• Allow the user to enter a customized

width (#of char in line) variable
– Hint 1. Pass the variables from the main to each

strategies

SYNTAX for C++
public:
method(type var): method/variable(var){}

Key variable:
width_

Test Case: Emulate the above screenshot. Enter :
• Right/Width=45,

Task 3

• A. Fix Exit(0) option.
• B. In addition, make the program run until you

choose exit.

Test Case: Emulate the right screenshot. Enter :
• Right/Width=45,
• Left/Width=50
• Center/Width=55

Task 4
• Make the program able to handle widths of up to
80.

Test Case: Emulate the above screenshot. Enter :
• Width=70

• Test for Left, Right and Center cases

106

2012/12/12

4

Task 1
Task 2

Task 3 Task 4

107

Appendix B - Peer Review Process and Patch

Metrics

Peer Review Process Model

Fig. 10.1 illustrates our proposed micro process review process model used in

this study. Based on the Android review process1 , we defined a generic process

model. The phases are detailed below:

1. Patch Submitted. This is when a patch is submitted by a contributor. We

assume this phase is signified by the registration and creation of a new patch

review.

2. Reviewers Assigned. After submission, reviewers, verifiers and approvers

are assigned to the patch for review.

3. Patch Review. This process is signified by reviewers response and comments

on the code. During this phase there are 3 activities that take place: 3.1)

reviewers make comments and suggestions, 3.2) editing and rework of the

patch and finally 3.2) testing for verification of the patch . Finally the phase

is ended by either acceptance or rejection of the patch.

4. Patch Review Completed. Once the patch is either: a) Merged into the

source code or b) Abandoned, the patch review process is completed.

Note patch status are related to the review process phases Open refers to

phases 1-3, with Merged or Abandoned dependant of the outcome at phase 4.

In this study, we focused on abandoned patches, as well comparing to merged

patches. We regarded the opened patches as outside the scope of this study.

The process metrics are used to evaluate the review process. From these

metrics, we aim to understand review effort for a particular patch.

• Patch Review Duration. This metric measure the duration in which a

patch was reviewed. Unit of measure is the number of days.

1 http://source.android.com/source/life-of-a-patch.html

108

1. Patch Submitted

Assigned
2. Reviewers
Assigned

3.1 Reviewer Comments
3.2 Resubmits of Patch
3.3 Testing and Verification

3. Patch Review

4. Patch Review
Completed

Patch Merged
Patch Abandoned

Patch Review Process

Figure 10.1: OSS Review Process Model.

• Comment Activity. This metric measures the number of comments dur-

ing the review phase. These metrics are useful to gain insight into the

discussions or responsiveness of reviewers.

• Merged Patches. These are the number of merged patches.

• Abandoned Patches. These are the number of abandoned patches.

Patch Code Metrics

Our proposed patch metrics measure the source code properties of the patch,

measuring the size as well as how many files it affects. These are very common

code churn metrics [80]. All sizes are measured per Lines of Code.

• Size of deleted patch. This is a patch that reduces the source code size

after merge with source code.

• Size of merged patch. This is a patch that will increase the source code

size after merge with source code.

• Edit patches. An edit patch is a patch that does not add or reduce the

size of the source code.

• Files affected by patch. Measured in the number of files, we use this

metric to measure the coverage and complexity of the patch. For example,

a patch may be smaller in size, however may affect many files.

109

Appendix C - Results of Expert Type Properties

2012/12/12

1

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

Submitters and Senior Submitters have longer review times

C1

o
f D

ay
s
(l
o
g
)

Patch Review Duration

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

Patches from reviewers tend to have varying process activity levels

C2

o
f C

o
m
m
en
ts

Comment Activity

110

2012/12/12

2

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

Core members have more merged patches

C3

o
f m

er
g
ed

 p
at
ch
es

of Merged Patches

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

Submitters and Core Members
Have more abandoned patches

C4

o
f a

b
an

d
o
n
ed

 p
at
ch
es

of Abandoned Patches

111

2012/12/12

3

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

No significance!
C5

L
in
es
 o
f C

o
d
e

Size of deleted patch

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

Larger code patches
from verifiers and not
the core members

C6

L
in
es
 o
f C

o
d
e

Size of merged patch

112

2012/12/12

4

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

Core Members do just code edits
C7

C
o
u
n
t o

f e
d
it
 p
at
ch

of edit Patch

N R V VR S SR VS SVR T TR TV TVR TS TSR TSV TSVR

Non-Tenured verifiers had
more files affected rather then
core members

C8

o
f f
il
es
 in

 p
at
ch

of files in patch

113

References

[1] M. Aberdour. Achieving quality in open-source software. IEEE Software,

24(1):58 –64, jan.-feb. 2007.

[2] P. J. Adams, A. Capiluppi, and C. Boldyreff. Coordination and productivity

issues in free software: The role of brooks’ law. In ICSM, pages 319–328,

2009.

[3] B. Anda. Assessing software system maintainability using structural mea-

sures and expert assessments. In Software Maintenance, 2007. ICSM 2007.

IEEE International Conference on, pages 204 –213, oct. 2007.

[4] P. Anderson, T. Reps, T. Teitelbaum, and M. Zarins. Tool support for

fine-grained software inspection. IEEE Software, 20:42–50, 2003.

[5] P. Anderson and M. Zarins. The codesurfer software understanding plat-

form. In Proc. IWPC’05, pages 147–148, 2005.

[6] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this bug? In ICSE,

pages 361–370, 2006.

[7] A. April, J. H. Hayes, A. Abran, and R. R. Dumke. Software maintenance

maturity model (smmm): the software maintenance process model. Journal

of Software Maintenance, 17(3):197–223, 2005.

[8] J. Aranda and G. Venolia. The secret life of bugs: Going past the errors

and omissions in software repositories. In ICSE, pages 298–308, 2009.

114

[9] O. Armbrust, M. Katahira, Y. Miyamoto, J. Münch, H. Nakao, and

A. Ocampo. Scoping software process models: initial concepts and ex-

perience from defining space standards. In Proc. ICSP’08, pages 160–172,

Berlin, Heidelberg, 2008. Springer-Verlag.

[10] L. J. Arthur. Software evolution: The Software Maintenance Challenge.

Wiley-Interscience, New York, NY, USA, 1988.

[11] J. Asundi and R. Jayant. Patch review processes in open source software

development communities: A comparative case study. In Proc. HICSS ’07,

pages 166c–, Washington, DC, USA, 2007. IEEE Computer Society.

[12] N. Baddoo and T. Hall. Motivators of software process improvement: an

analysis of practitioners’ views. Journal of Systems and Software, 62(2):85

– 96, 2002.

[13] N. Baddoo, T. Hall, and C. O’Keeffe. Using multi dimensional scaling to

analyse software engineers’ de-motivators for spi. Software Process: Im-

provement and Practice, 12(6):511–522, 2007.

[14] K. Balog and M. de Rijke. Determining expert profiles (with an application

to expert finding). In IJCAI, pages 2657–2662, 2007.

[15] P. L. Bannerman. Macro-processes informing micro-processes: The case of

software project performance. In ICSP, pages 12–23, 2008.

[16] V. R. Basili, G. Caldiera, and H. D. Rombach. Experience Factory. John

Wiley and Sons, Inc., 2002.

[17] A. Begel, Y. P. Khoo, and T. Zimmermann. Codebook: discovering and

exploiting relationships in software repositories. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1,

ICSE ’10, pages 125–134, New York, NY, USA, 2010. ACM.

[18] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Duplicate bug

reports considered harmful ... really? In ICSM, pages 337–345, 2008.

115

[19] P. Bhattacharya and I. Neamtiu. Fine-grained incremental learning and

multi-feature tossing graphs to improve bug triaging. In ICSM, pages 1–10,

2010.

[20] A. Bicego, P. Derks, P. Kuvaja, and D. Pfahl. Product focused process im-

provement: Experiences of applying the profes improvement methodology

at dr辰 ger. In Proc. EuroMicro Conference, 1999.

[21] D. Binkley, N. Gold, and M. Harman. An empirical study of static program

slice size. ACM Trans. Softw. Eng. Methodol., April 2007.

[22] D. Binkley and M. Harman. Locating dependence clusters and dependence

pollution. In Proc. ICSM’05, pages 177 – 186, 2005.

[23] C. Bird, A. Gourley, and P. Devanbu. Detecting patch submission and

acceptance in oss projects. In Proc. MSR’07, pages 26–29, Washington,

DC, USA, 2007.

[24] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu. Open

borders? immigration in open source projects. In Proc. MSR ’07, pages

6–14, Washington, DC, USA, 2007. IEEE Computer Society.

[25] B. Boehm and V. Basili. Top 10 list [software development]. Computer,

34(1):135 –137, jan 2001.

[26] G. Canfora and L. Cerulo. Fine grained indexing of software repositories

to support impact analysis. In Proc. MSR’06, pages 105–111, 2006.

[27] A. Capiluppi, P. Lago, and M. Morisio. Characteristics of open source

projects. In Proc. CSMR’03, pages 317 – 327, march 2003.

[28] K. Chen, S. R. Schach, L. Yu, J. Offutt, and G. Z. Heller. Open-source

change logs. Empirical Software Engineering, 9:197–210, 2004.

[29] M. Christiansen and J. Johansen. ImprovAbilitytm guidelines for low-

maturity organizations. Software Process: Improvement and Practice,

13(4):319–325, 2008.

116

[30] P. Colla and J. Montagna. Framework to evaluate software process improve-

ment in small organizations. In Making Globally Distributed Software De-

velopment a Success Story, ICSP, LNCS5007, pages 36–50. Springer Berlin,

2008.

[31] J. W. Creswell. Research Design : Qualitative, Quantitative, and Mixed

Methods Approaches. Thousand Oaks, EUA : Sage, 2002.

[32] K. Crowston and J. Howison. The social structure of Open Source Software

development teams. In OASIS 2003 Workshop (IFIP 8.2 WG), 2003.

[33] K. Crowston and J. Howison. The social structure of free and open source

software development. First Monday, 10(2), 2005.

[34] K. E. Emam. Spice: The Theory and Practice of Software Process Im-

provement and Capability Determination. IEEE Computer Society Press,

Los Alamitos, CA, USA, 1st edition, 1997.

[35] N. E. Fenton and M. Neil. Software metrics: successes, failures and new

directions. Journal of Systems and Software, pages 149 – 157, 1999.

[36] M. Fischer, M. Pinzger, and H. Gall. Analyzing and relating bug report

data for feature tracking. In Proc. WCRE’03, page 90, 2003.

[37] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database

from version control and bug tracking systems. In Proc. ICSM’03, pages

23–32, 2003.

[38] K. Gallagher and J. Lyle. Using program slicing in software maintenance.

IEEE Trans. Soft. Eng., 17(8):751 –761, Aug 1991.

[39] D. M. Germán. An empirical study of fine-grained software modifications.

In ICSM, pages 316–325, 2004.

[40] D. M. German, A. E. Hassan, and G. Robles. Change impact graphs:

Determining the impact of prior code changes. Information and Software

Technology, 51(10):1394–1408, Oct. 2009.

117

[41] Z. Gu, E. T. Barr, D. J. Hamilton, and Z. Su. Has the bug really been

fixed? In Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering - Volume 1, ICSE ’10, pages 55–64, New York, NY,

USA, 2010. ACM.

[42] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characteriz-

ing and predicting which bugs get fixed: an empirical study of microsoft

windows. In Proceedings of the 32nd ACM/IEEE International Conference

on Software Engineering - Volume 1, ICSE ’10, pages 495–504, New York,

NY, USA, 2010. ACM.

[43] T. Hall, S. Beecham, and A. Rainer. Requirements problems in twelve

software companies: an empirical analysis. In Proc. IEE Software, volume

149, pages 153 – 160, Oct. 2002.

[44] T. Hall and P. Wernick. Program slicing metrics and evolvability: an initial

study. pages 35 – 40, sept. 2005.

[45] A. Hassan and R. Holt. Predicting change propagation in software systems.

In Proc. ICSM’04, pages 284 – 293, Sept. 2004.

[46] A. E. Hassan. Predicting faults using the complexity of code changes. In

Proc. ICSE’09, pages 78–88, 2009.

[47] H. Hata. Fault-prone Module Prediction Using Version Histories. PhD

thesis, Osaka University, 2012.

[48] J. D. Herbsleb and D. R. Goldenson. A systematic survey of cmm experience

and results. In Proc. ICSE ’96, pages 323–330, 1996.

[49] D. C. Hoaglin, F. Mosteller, and J. W. Tukey. Understanding robust and

exploratory data anlysis. Wiley Series in Probability and Mathematical

Statistics New York, 1983.

[50] J. Howison and K. Crowston. The perils and pitfalls of mining source-forge.

In Proc. MSR’04, pages 7–11, Edinburgh, UK,, 2004.

118

[51] C. Jensen and W. Scacchi. Role migration and advancement processes in

ossd projects: A comparative case study. In ICSE, pages 364–374, 2007.

[52] M. Jørgensen and D. I. K. Sjøberg. Impact of experience on maintenance

skills. Journal of Software Maintenance, 14(2):123–146, 2002.

[53] H. H. Kagdi, M. Hammad, and J. I. Maletic. Who can help me with this

source code change? In ICSM, pages 157–166, 2008.

[54] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and

A. Hassan. Revisiting common bug prediction findings using effort-aware

models. In Proc. ICSM’10, pages 1 –10, sept. 2010.

[55] S. H. Kan. Metrics and models in software quality engineering. Addison-

Wesley, 1995.

[56] N. Khurshid, P. L. Bannerman, and M. Staples. Overcoming the first hurdle:

Why organizations do not adopt cmmi. In ICSP, pages 38–49, 2009.

[57] S. Kim, J. E. James Whitehead, and Y. Zhang. Classifying software

changes: Clean or buggy? IEEE Trans. Soft. Eng., pages 181–196, 2008.

[58] S. Kim and E. J. Whitehead. How long did it take to fix bugs? pages

173–174, New York, New York, USA, 2006. ACM Press.

[59] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin,

K. E. Emam, and J. Rosenberg. Preliminary guidelines for empirical re-

search in software engineering. IEEE Transactions on Software Engineering,

28:721–734, 2002.

[60] R. G. Kula, A. E. Camargo Cruz, N. Yoshida, F. K. Hamasaki, Kazuki and,

X. Yang, and H. Iida. Using profiling metrics to categorise peer review types

in the android project. In Proc. ISSRE’12, Dallas, TX, USA, 2012.

[61] M. K. Kulpa and K. A. Johnson. Interpreting the Cmmi: A Process Im-

provement Approach. CRC Press, Inc., Boca Raton, FL, USA, 2003.

[62] H.-J. Kung. Quantitative method to determine software maintenance life

cycle. In ICSM, pages 232–241, 2004.

119

[63] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue. Experimental eval-

uation of program slicing for fault localization. Empirical Software Engi-

neering, 7:49–76, 2002.

[64] K. Lakhani and R. Wolf. Why hackers do what they do: Understanding

motivation and effort in free/open source software projects. In Perspectives

on Free and Open Source Software. Cambridge, Mass: MIT Press, 2005.

[65] T. Lawrie and C. Gacek. Issues of dependability in open source software

development. SIGSOFT Softw. Eng. Notes, 27(3):34–37, May 2002.

[66] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski. Metrics and

laws of software evolution-the nineties view. In Proc. METRICS’97, pages

20 –32, nov 1997.

[67] N. G. Lester, F. G. Wilkie, D. McFall, and M. P. Ware. Investigating

the role of cmmi with expanding company size for small- to medium-sized

enterprises. Journal of Software Maintenance, 22(1):17–31, 2010.

[68] B. Livshits and T. Zimmermann. Dynamine: finding common error patterns

by mining software revision histories. volume 30, pages 296–305, New York,

NY, USA, Sept. 2005.

[69] M. Mantyla and C. Lassenius. What types of defects are really discovered

in code reviews? IEEE Trans. Soft. Eng., 35(3):430–448, May-June 2009.

[70] S. Massoni, M. Olteanu, and P. Rousset. Career-path analysis using optimal

matching and self-organizing maps. In Proc. WSOM ’09, pages 154–162,

Berlin, Heidelberg, 2009. Springer-Verlag.

[71] F. McCaffery and G. Coleman. Lightweight spi assessments: what is the

real cost? Software Process: Improvement and Practice, 14(5):271–278,

2009.

[72] D. W. McDonald and M. S. Ackerman. Expertise recommender: a flexible

recommendation system and architecture. In Proc. CSCW ’00, CSCW ’00,

pages 231–240, NY, USA, 2000. ACM.

120

[73] T. Menzies, J. D. Stefano, C. Cunanan, and R. Chapman. Mining repos-

itories to assist in project planning and resource allocation. IEE Seminar

Digests, 2004(917):75–79, 2004.

[74] T. Meyers and D. Binkley. Slice-based cohesion metrics and software inter-

vention. In Proc. WCRE’04, pages 256 – 265, nov. 2004.

[75] A. Mockus. Succession: Measuring transfer of code and developer pro-

ductivity. In Proceedings of the 31st International Conference on Software

Engineering, ICSE ’09, pages 67–77, Washington, DC, USA, 2009. IEEE

Computer Society.

[76] A. Mockus, R. T. Fielding, and J. D. Herbsleb. Two case studies of open

source software development: Apache and mozilla. ACM Trans. Softw. Eng.

Methodol., 11(3):309–346, July 2002.

[77] A. Mockus and J. D. Herbsleb. Expertise browser: a quantitative approach

to identifying expertise. In Proc. ICSE ’02, pages 503–512. ACM, 2002.

[78] A. Mockus, D. M. Weiss, and P. Zhang. Understanding and predicting

effort in software projects. In ICSE, pages 274–284, 2003.

[79] S. Morisaki and H. Iida. Fine-grained software process analysis to ongoing

distributed software development. In Proc. SOFTPIT 2007, volume 7, pages

26–30. Munich, Germany, 2007.

[80] J. C. Munson and S. G. Elbaum. Code churn: a measure for estimating the

impact of code change. In In Proc. ICSM’98, pages 24–31, 1998.

[81] N. Nagappan and T. Ball. Using software dependencies and churn metrics

to predict field failures: An empirical case study. pages 364 –373, Sept.

2007.

[82] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. Al-Kofahi, and T. N. Nguyen.

Recurring bug fixes in object-oriented programs. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering - Volume 1,

ICSE ’10, pages 315–324, New York, NY, USA, 2010. ACM.

121

[83] M. Niazi and M. Babar. De-motivators of software process improvement:

An analysis of vietnamese practitioners views. In Proc. PROFES 2007,

LNCS4589, pages 118–131. Springer Berlin / Heidelberg, 2007.

[84] M. Niazi, M. A. Babar, and N. M. Katugampola. Demotivators of soft-

ware process improvement: an empirical investigation. Software Process:

Improvement and Practice, 13(3):249–264, 2008.

[85] K. Nishizono, S. Morisakl, R. Vivanco, and K. ichi Matsumoto. Source code

comprehension strategies and metrics to predict comprehension effort in

software maintenance and evolution tasks - an empirical study with industry

practitioners. In ICSM, pages 473–481, 2011.

[86] B. Nuseibeh, A. Finkelstein, and J. Kramer. Fine-grain process modelling.

In IWSSD, pages 42–46, 1993.

[87] L. Osterweil. Unifying microprocess and macroprocess research. In M. Li,

B. Boehm, and L. Osterweil, editors, Unifying the Software Process Spec-

trum, volume 3840 of Lecture Notes in Computer Science, pages 68–74.

Springer Berlin Heidelberg, 2006.

[88] K. Pan, S. Kim, and J. Whitehead, E.J. Bug classification using program

slicing metrics. pages 31 –42, sept. 2006.

[89] S. Person, M. B. Dwyer, S. Elbaum, and C. S. Pǎsǎreanu. Differential

symbolic execution. In Proc. SIGSOFT ’08/FSE-16, pages 226–237. ACM,

2008.

[90] F. J. Pino, J. A. H. Alegria, J. C. Vidal, F. Garćıa, and M. Piattini. A

process for driving process improvement in vses. In Trustworthy Software

Development Processes, ICSP, LNCS5543, pages 342–353. Springer Berlin,

2009.

[91] F. J. Pino, J. A. H. Alegria, J. C. Vidal, F. Garćıa, and M. Piattini. A

process for driving process improvement in vses. In ICSP, pages 342–353,

2009.

122

[92] F. Rahman and P. Devanbu. Ownership, experience and defects: a fine-

grained study of authorship. In Proceedings of the 33rd International Con-

ference on Software Engineering, ICSE ’11, pages 491–500, New York, NY,

USA, 2011. ACM.

[93] A. Rainer and T. Hall. Key success factors for implementing software pro-

cess improvement: a maturity-based analysis. Journal of Systems and Soft-

ware, 62(2):71 – 84, 2002.

[94] E. S. Raymond. The Cathedral; the Bazaar: Musings on Linux and Open

Source by an Accidental Revolutionary. O’Reilly Media Inc., Sebastopol,

2008.

[95] P. C. Rigby, D. M. German, and M.-A. Storey. Open source software peer

review practices: a case study of the apache server. In Proc. ICSE’08, pages

541–550, New York, NY, USA, 2008.

[96] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer review

on open source software projects. In Proceedings of the 33rd International

Conference on Software Engineering, ICSE ’11, pages 541–550, New York,

NY, USA, 2011. ACM.

[97] P. Rousset and J.-F. Giret. Classifying qualitative time series with som:

The typology of career paths in france. In Computational and Ambient

Intelligence, volume 4507 of LNCS, pages 757–764. Springer Berlin Heidel-

berg, 2007.

[98] M. Sanders and I. Richardson. Research into long-term improvements in

small- to medium-sized organisations using spice as a framework for stan-

dards. Software Process: Improvement and Practice, 12(4):351–359, 2007.

[99] C. H. Schmauch. ISO 9000 for Software Developers. ASQ Quality Press,

2nd edition, 1995.

[100] B. D. Sethanandha. Improving open source software patch contribution

process: methods and tools. In Proc. ICSE ’11, pages 1134–1135, New

York, NY, USA, 2011. ACM.

123

[101] J. Sillito and E. Wynn. The social context of software maintenance. In

ICSM, pages 325–334, 2007.

[102] S. Sim and R. Holt. The ramp-up problem in software projects: a case

study of how software immigrants naturalize. In Proc. ICSE’98, pages 361

–370, apr 1998.

[103] H. M. Sneed and P. Brössler. Critical success factors in software

maintenance-a case study. In ICSM, pages 190–198, 2003.

[104] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris. Code quality

analysis in open source software development. Information Systems Jour-

nal, 12(1):43–60, 2002.

[105] M. Staples, M. Niazi, R. Jeffery, A. Abrahams, P. Byatt, and R. Murphy.

An exploratory study of why organizations do not adopt cmmi. Journal of

Systems and Software, 80(6):883 – 895, 2007.

[106] P. S. Taylor, D. Greer, G. Coleman, K. McDaid, and F. Keenan. Preparing

small software companies for tailored agile method adoption: Minimally

intrusive risk assessment. Software Process: Improvement and Practice,

13(5):421–437, 2008.

[107] A. Tuffley, B. Grove, and G. McNair. Spice for small organisations. Software

Process: Improvement and Practice, 9(1):23–31, 2004.

[108] C. G. von Wangenheim, T. Varkoi, and C. F. Salviano. Standard based

software process assessments in small companies. Software Process: Im-

provement and Practice, 11(3):329–335, 2006.

[109] M. Weiser. Program slicing. In Proc. ICSE’81, pages 439–449, Piscataway,

NJ, USA, 1981.

[110] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take

to fix this bug? In Proc. MSR’07, pages 1–10, 2007.

[111] F. G. Wilkie, D. McFall, and F. McCaffery. An evaluation of cmmi pro-

cess areas for small- to medium-sized software development organisations.

Software Process: Improvement and Practice, 10(2):189–201, 2005.

124

[112] Y. Ye and K. Kishida. Toward an understanding of the motivation of open

source software developers. In ICSE, pages 419–429, 2003.

[113] A. Ying, G. Murphy, R. Ng, and M. Chu-Carroll. Predicting source code

changes by mining change history. IEEE Trans. Soft. Eng., 30(9):574 – 586,

Sept. 2004.

[114] A. T. T. Ying, G. C. Murphy, R. Ng, and M. C. Chu-Carroll. Predicting

source code changes by mining change history. IEEE Trans. Softw. Eng.,

30(9):574–586, Sept. 2004.

[115] S. Yip and T. Lam. A software maintenance survey. In Proc APEC’94,

pages 70 –79, Dec 1994.

[116] C. Yoo, J. Yoon, B. Lee, C. Lee, J. Lee, S. Hyun, and C. Wu. A uni-

fied model for the implementation of both iso 9001:2000 and cmmi by iso-

certified organizations. Journal of Systems and Software, 79(7):954 – 961,

2006.

[117] L. Yu. Indirectly predicting the maintenance effort of open-source software.

Journal of Software Maintenance, 18(5):311–332, 2006.

[118] L. Yu. Mining change logs and release notes to understand software main-

tenance and evolution. CLEI Electronic Journal, 12(2):1 – 10, 2009.

[119] S. Zhang, Y. Wang, Y. Yang, and J. Xiao. Capability assessment of indi-

vidual software development processes using software repositories and dea.

In ICSP, pages 147–159, 2008.

[120] L. Zhu, D. R. Jeffery, M. Staples, M. Huo, and T. T. Tran. Effects of

architecture and technical development process on micro-process. In ICSP,

pages 49–60, 2007.

[121] T. Zimmermann and N. Nagappan. Predicting defects using network anal-

ysis on dependency graphs. In Proc. ICSE’08, pages 531–540, 2008.

125

