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Construction of Reconfigurable Motion Database

for Real-Time Human-Robot Interaction∗

Yutaka Kondo

Abstract

Today, realization of communications with human and robot is crucial for actively

researched human-robot interaction (HRI) and the future direction of human-robot

symbiosis. Especially, natural body gesture for visual information, as well as speech

dialog for audio information, is very important for human-like robots (e.g., humanoids

and androids). The visual information is commonly used in all countries to express

muted feeling or intendment. In addition, for androids which have human-like appear-

ance, human-likeness in the gestures is strongly required.

Therefore, in this thesis, we propose a method to generate android’s body gesture

by real-time reconfiguring a large-scaled motion database which captured humans’ mo-

tions. This method realizes an autonomous HRI system which can interact reactively

and naturally based on a human’s behavior and response.

First, we proposemethods for the construction of the reconfigurable motion database

and the real-time generation of gestures. Then, we describe fundamental mechanism

of the methods. To construct the database, one of natural language processings, a

Bag-of-words which aims at similar sentence classification, is applied into a similar

motion classification. Since the motion sequences are described in a frequency do-

main, these sequences can be classified rapidly based on the semantic similarity which

the motion has. After a dynamic programming matching to more deeply classify the

similar motions, the motions (e.g., gestures) are manually given an appropriate param-

eter (i.e., the target hand position and facial direction in pointing gesture’s case). The

gesture is appropriately synthesized to satisfy a current HRI situation. In addition, we

∗Doctoral Dissertation, Department of Information Systems, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1061010, March 15, 2013.
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propose a motion connection method which enables to smoothly and rapidly react an

user-intended interruption during interaction.

Finally, the proposed method is implemented on an android, Actroid-SIT and we

develop a novel HRI system which can communicate with multiple people. Over 1,700

subjects in total were taken part in evaluation experiments. We confirmed that there

are significant differences among the proposed system and conventional systems for

every evaluation items, the response/residence time of communication, speaker ratio

to the Actroid, and the impression of the Actroid.

Keywords:

body gesture, motion database, real-time planning, human-likeness, android,

human-robot interaction

ii



実時間ヒューマン・ロボットインタラクションのための

再構成可能な動作データベースの構築∗

近藤 豊

内容梗概

現在盛んに研究が行われているヒューマン・ロボットインタラクション（HRI）
や，将来始まる人ロボット共生社会において，人・ロボット間の対話の実現は必
要不可欠である．特に，ヒューマノイドやアンドロイドなどのような人型ロボッ
トの場合，聴覚情報である音声会話の生成に加え，視覚情報であるボディジェス
チャの生成も重要課題となる．ジェスチャは身体言語とも表されるように，音声
言語だけでは伝えることできない感情や意図などの伝達手段として広く用いられ
ている．さらに，アンドロイドはその人間に似た外見的特徴から，ジェスチャに
おいても人間に似た動作表現が要求される．
そこで，本研究では，人間の動作を計測することで得られた大規模な動作デー

タベースを実時間で再構成することで，アンドロイドにおけるボディジェスチャ
を計画する．これにより，人間の行動・反応に基づいて，応答性が高く自然なイ
ンタラクションが可能な自律HRIシステムが実現される．
初めに，提案手法である再構成可能な動作データベースの構築方法と，ジェス

チャの実時間生成を提案し，その基本的な原理について述べる．データベースの
構築には，自然言語処理の類似文章分類手法の 1つであるBag-of-wordsを，類似
動作分類手法として応用する．このとき，動作軌跡を周波数空間で扱うことによ
り，ジェスチャ自身が持つ意味的な類似尺度を基に，高速に分類することが可能
となる．得られた類似動作は，動的計画法により，より詳細に分類が行われ，各
類似動作群，つまり各ジェスチャには適当なパラメータ（例えば，手差し動作の
場合，目標手差し位置と顔の方向）が与えられる．このパラメータを基に，現在
のインタラクションに適した動作が生成されるよう類似動作同士が合成される．

∗奈良先端科学技術大学院大学情報科学研究科情報システム学専攻博士論文,
NAIST-IS-DD1061010, 2013年 3月 15日.
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また，インタラクション実行中のスムーズかつ安全な割り込み手法を合わせて提
案することにより，相手の対話に対して瞬時に応答を返すことが可能となる．
最後に，提案手法をアンドロイドActroid-SITに実装し，多人数とのインタラ

クションが可能な自律HRIシステムを開発する．そして，その設計仕様の詳細を
述べるとともに，提案システムを用いた被験者実験を行う．累計 1,700名以上が
参加した実験結果から，従来システムと比べ，応答時間，対話時間，ロボットへ
の対話開始率，ロボットの印象などすべての評価項目において，有意な差が確認
された．

キーワード

ボディジェスチャ,動作データベース,実時間プランニング,人間らしさ,
アンドロイド,ヒューマン・ロボットインタラクション
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1 INTRODUCTION

Chapter 1

Introduction

1.1 Background

To respond declining birth rate and aging population, robots are expected to replace

a part of human’s workforce. Recent robots require not only accuracy and durability,

which industrial robots have, but also communication and entertainment for capabili-

ties of human-robot interaction (HRI) and human-robot symbiosis. In HRI, realizing

communication between a human and a robot is crucial [1]. And agents such as robots

or computer graphing (CG) agents have been attracting attention as presenters for ex-

planation and guidance to humans [2].

When communicating with human, visual information (e.g., body gesture and fa-

cial expression) is very important factor as well as audio information (e.g., speech

dialogue). The visual information is commonly used in all countries to express muted

feelings [3]. In addition, robots are superior to CG agents as presenters, because they

can indicate a real-world object by pointing or gazing [4]. Especially for androids

which have human-like appearance, human-likeness and interactivity in the gestures

are strongly required to avoid the Uncanny Valley [5, 6].

On the other hand, Google CEO Eric Schmidt advocated that Cloud Computing

technologies has been rapidly developed these years 1. The idea of the cloud computing

is being expanded into not only computers but also every electronics such as smart-

phones, home electronics, tiny gadgets, and sensor network. Robots are ones of the

electronics. Recently, the cloud networked robotics has also been proposed by several

researchers [7, 8, 9]. In the cloud networked robotics, a platform layer locates between

service applications and robotic components. It isolates and coordinates them to realize

multi-area, multi-robot networked robotic services. This fact suggests that robots assist

humans through real-time communication based on huge computational power and

database.

1http://www.google.com/press/podium/ses2006.html

1



1 INTRODUCTION

1.2 Research Aim and Approach

1.2.1 Research Aim

There are two approaches for realizing human-like gesture expressions. The first ap-

proach is an online motion planning approach which is based on a empirical model.

Flash et al. [10] proposed a minimum jerk (i.e., the differential of acceleration) trajec-

tory of human arm’s reaching movement. Chikaraishi et al. [11] proposed an attractor

selection model of natural idling movement.

The second approach is a database reutilization of human’s motions captured by

a motion capture system. Recently, we can easily capture human’s motion, because

optical or image based motion capturing systems are common nowadays. Motion

Graph [12] generates motions by smoothly connecting with similar poses between mo-

tions. Inamura et al. [13] use a Hidden Markov Model [14] to blend different motions.

Since it is difficult to design empirical models for all gestures which have a wide

variety of motion expressions, we propose a novel approach which integrates online

planning methods and data-driven methods to fulfill aforementioned requirements;

human-likeness and interactivity. This proposed motion planning method, named a

Reconfigurable Motion Database (RMDB) has following three main features.

· Motion classification
Collect semantic similar motions captured by different motion capture systems

to construct a pre-designed motion database.

· Motion parameterization
Synthesize similar motions according to motion’s parameter which is fulfilled

user demands such as a speaker and/or on object location.

· Motion interruption
Transitionmotion to motion anytime smoothly and safely by online motion plan-

ning to rapidly react user-intended interruption in HRI.

First, RMDB constructs a pre-designed motion database to classify similar mo-

tions. The motions are described in a frequency domain and transforms them into

features, Bag-of-motion-features which is inspired by a sentence retrieval method,

2
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Bag-of-words [15] and an image retrieval method, Bag-of-features [16]. Bag-of-motion-

features can collect similar motions even captured by different motion capture systems

as shown in Figure 1.1 (a).

Then, RMDB gives a parameter for each similar motion cluster (e.g., gesture).

The parameter indicates target location of a hand, target direction of a head, or target

breadth of both hands. These similar motions are synthesized based on the parameter

byMatch Web [17] for generating target gesture.

In HRI, the interaction should be enabled to rapidly react user-intended interrup-

tion such as topic/speaker switching and speech recognition failure. RMDB can transi-

tion motion to motion smoothly without self-collision inspired by a motion connection

method, Motion Graph [12] and an online planning method, Probabilistic Roadmap

Method (PRM) [18].

In addition, most previous research in HRI only dealt with communication be-

tween one robot and one person. Communication is not only with one-to-one but also

with multi-party. Although several research methods tackled multi-party communi-

cation, these methods focused mainly on the recognition of multi-party conversations

(e.g., [19, 20, 21]).

1.2.2 Approach

We therefore develop an android system which enables multi-party communication us-

ing the RMDB. We also considered natural gaze movement, such as the convergence

of both eyes, and a ratio of eye angle to head angle, based on the knowledge of human

and chimpanzee [22, 23, 24]. The system can communicate smoothly with multiple people

by rapidly switching to each person, and adjusting a gesture to the location of speaker

and/or object as shown in Figure 1.2. These functions are also applied even while

one-to-one HRI, since one-to-one HRI is the subset of multi-party HRI. The num-

ber of situations which our system can deal with are exponentially increased due to

combinatorial explosion compared to conventional one-to-one HRI systems. We solve

this problem by cooperation between a Key-Value Store, which has ACID (Atomic-

ity, Consistency, Isolation, and Durability) properties, and other system components.

Therefore, we do not have to be concerned about the synchronization and scalability

of the system.

To evaluate the effectiveness of our proposed system, we conduct a lot of subject

3
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Pointing DB

Mocap system A

Mocap system C

Mocap system B

(a) Motion classification

Where is the
bathroom?

 Gaze to the speaker

Point the bathroom

(b) Motion parameterization

Hello!

Pardon?

(c) Motion interruption

Figure 1.1: Three main features of the Reconfigurable Motion Database: (a) Motion

classification, (b) Motion parameterization, and (c) Motion interruption
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Thank you for 
coming in!

Hello!

Where is 
the plaza?

A plaza

B plaza

Figure 1.2: Concept of the proposed HRI system which can communicate with multi-

ple people by interruptible communication and gesture adjustment based on a speaker

or object location. To realize these functions in real-time is the purpose of this system.

experiments. These experiments contain not only quantitative evaluations such as the

measurement of response/residence time of communication but also qualitative evalu-

ations such as the analysis of human impressions of a robot.

1.3 Thesis Layout

The rest of this thesis is organized as follows.

· Chapter 2
Introduce related works about methods to generate human-likemotions for robots,

and their applications to HRI systems.

· Chapter 3
Describe the detail of the ReconfigurableMotion Database (RMDB). This method

has three main features: motion classification, motion parameterization, and mo-

tion interruption.

5
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· Chapter 4
Evaluate the performance of the RMDB compared with some conventional meth-

ods. We conduct experiments using one-hour daily interaction motions of 15

subjects.

· Chapter 5
Describe the details of a novel multi-person interaction system implemented on

an android, Actroid-SIT. RMDB is embedded into the system for body gesture.

In addition, our system can generate facial expression and gaze movement.

· Chapter 6
Show the results of multi-party HRI experiments. Over 1,700 subjects in total

took part in the evaluations to compare significant differences among the pro-

posed system and conventional systems.

· Chapter 7
Conclude this thesis and give the directions of future work.

6



2 RELATED WORK

Chapter 2

Related Work
To generate human-likemotion for humanoids and androids, researchers first have tried

to generate the motion by mathematical approaches, such as computational and proba-

bilistic approaches. In recent years, various data-driven methods have been proposed,

because computational performance is rapidly getting better and better. Signal process-

ing methods are also applied to the motion processing methods. And the applications

to HRI systems are also widely attracted attention.

2.1 Mathematical Approaches

The mathematical approaches mean that the human-like motion is generated by mathe-

matical models such as a computational neuroscience and probabilistic method. Flash

et al. [10] proposed a method for reaching movement of upper limb based on a minimum

jerk model. Uno et al. [25] also proposed a method for the reaching movement based on

a minimum torque-change model. Chikaraishi et al. [11] proposed a method for a nat-

ural idling motion (i.e., a robot moves based on an attractor selection model [26]) with

online human tracking. These models are suitable for the specific motions. However,

it is difficult to design empirical models for all gestures which have a wide variety of

motion expressions.

In probabilistic methods, a Probabilistic Roadmap Method (PRM) [18] is one of the

motion planning methods. A lot of probabilistic methods inspired by the PRM have

been proposed such as a Rapidly-exploring Random Tree (RRT) [27], RRT-connect [28].

Robots in real world are required to avoid collision between themselves or obstacles.

The PRM inspired methods can plan a collision-free path by sampling the configura-

tion space (C-space) of a robot. It is quite helpful when you use an industrial robot.

However, they generate just a shortest path and it is difficult to generate a human-like

motion.

Robots can also perform multi-modal communications such as dialog, various ges-

tures, and facial expression. Scassellati et al. [29] implemented the function of tracking

7
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human gaze and pointing finger, to enable joint attention which people focus on the

same object with each other. Ogawa et al. [30] evaluated the effectiveness of nodding

while people communicate with a robot.

Generating human-like gaze movement is important to make better interaction

with human. Masuko et al. [31] proposed a method which uses a sharing rate and

a convergence of both eyes for CG agent based on the knowledge of previous re-

searches [22, 23, 24]. It is crucial to apply the method into androids which we use. An-

droids are expected to be more effective for presenting multi-modal information be-

cause of their appearance unlike other robots. However, the appearance sometimes

leads to human’s mis-attention to the android rather than a target object, and causes

debilitating memory loss against the presentation [32]. Therefore, we aimed at making

sure the motions considering human attention and impression.

2.2 Data-driven Approaches

The another approach to generate human-likemotions is data-drivenmethods. It means

a database reutilization of human’s motions captured by a motion capture system. We

can easily capture human’s motion, because optical or image based motion capturing

systems are common nowadays. A Motion Graph [12] generates motions by smoothly

connecting with similar poses between motions. A Match Web [17] retrieves and syn-

thesizes similar motions. Brügmann et al. [33] applied a Verbs and Adverbs [34], which

is a method for phase-based gesture parameterization that can deal with gesture inter-

ruptivity and transitions, into a CG agent. Although this approach is similar to our

approach, it works only on virtual environment because of the potentiality of collision.

The Motion Graph and Match Web is suitable for our research aim. However,

these methods originally focus on accurate motion connection and synthesis of walk-

ing, punching or kicking motions and classifies them based on an apparent similarity

of motion using marker’s positions of motion capture data. In contrast, the gestures we

need are required to measure semantic similarity of motion. For example, wherever

you point to, the gestures are pointing gestures even if their appearance are different

between them. Therefore, we proposed a method for classifying motions in a semantic

meaning. The proposed method is described motions in a frequency domain and trans-

forms them into features. To accelerate motion retrieval, we employ the techniques

of Bag-of-words [15], which aims at similar sentence retrieval, and Bag-of-features [16],

8
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which aims at similar image retrieval, for the similar gesture retrieval using the motion

features.

There are some research methods to retrieve similar motions using the Bag-of-

features. Liu et al. [35] proposed action classification based on image features in video

clips. Raptis et al. [36, 37] also proposed action classification based on joint trajectories.

And Ryoo [38] applied his spatio-temporal matching method [39] into the action predic-

tion problem. Schüldt et al. [40] proposed a local Support Vector Machine [41] approach

which uses the size, the frequency and the velocity of moving patterns in video clips.

2.3 Signal Processing Approaches

Hidden Markov Model (HMM) [14] is a powerful statistical tool for modeling genera-

tive sequences (i.e., signals) that can be characterized by an underlying process gener-

ating an observable sequence. After development of a software Hidden Markov Model

Toolkit 1 which is a portable toolkit for building and manipulating HMM, the HMM

has found application in many areas interested in signal processing, and in particular

speech processing. HMM-based speech synthesis methods have also been studied by

many researchers (e.g., [42, 43, 44, 45, 46]).

Motion trajectory which we use is regarded as a kind of signal. Therefore, motion

synthesis methods can utilize the HMM-based synthesis methods. Inamura et al. [13]

use the HMM to blend different motions. They also applied to a recognition and teach-

ing of human’s motion by the HMM [47]. Although this method is difficult to synthesize

more than two motions at a time, to treat a motion as a kind of signal is also very in-

formative for the construction of RMDB.

2.4 Applications to Human-Robot Interaction System

Previous research methods in HRI mainly focus on one-to-one communication. Ido

et al. [48] developed a Question & Answer (Q & A) communication system which can

react based on a human’s speech and gaze tracking. Sakamoto et al. [21] developed a

tele-communication system which can remotely control an android using facial motion

capture. HRI is also required physical interaction. In application for physical HRI, Lee

et al. [49] proposed a mimetic communication model with impedance control to acquire

1http://htk.eng.cam.ac.uk/
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motion primitives through the imitation learning. Haddadin et al. [50] also proposed

physical HRI which uses collision information to between a robot and a human to

achieve their cooperative tasks. These research methods were effective in a limited

task domain; however, the expansion of the task domain makes the preparation of all

the gestures unfeasible.

Mobile service robots also have been studied bymany researchers (e.g., [51, 52, 53, 54]).

Although the robots can approach people to be face-to-face, the human-like expression

by a robot is out of their interests.

People expect to employ androids more effectively for presenting multi-modal in-

formation because their appearance resembles human compared to other robots. We

believe that an android can also be used as a tele-communication medium. Previous

media, such as video conference systems, have problems with effective presence; since

people do not feel they are sharing physical space [55], it is hard to identify gaze [56] and

so on. And it is unlikely that only one speaker can communicate with the android at

one time. Matsusaka et al. [20, 57] proposed how the robot can participate in multi-party

conversations. This system can estimate the current speaker and the next speaker in

the party by gaze tracking and speech recognition, and react to improve awareness of

the robot. Nakanishi et al. [58], and Sakamoto and Ono [59] proposed how to construct

relations between agents and humans or between robots and humans using the psychol-

ogy of interpersonal relations. These research methods mainly focused on recognizing

the multi-party conversational situation. We are now developing a system on which

RMDB is implemented to enable not only recognition, but also interaction for multiple

people with human-like gestures and facial expression.

10
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Chapter 3

Reconfigurable Motion Database

3.1 Concept

Our proposed motion planning method, a Reconfigurable Motion Database (RMDB)

can generate flexible gestures in real-time. RMDB is based on the Motion Graph [12]

and Match Web [17] which are proposed by Kovar et al. Originally, these methods

aimed at CG animation. To apply these methods to a real robot, however, we need to

additionally give the methods the ability of real-time collision avoidance. To realize

that, we propose a HRI-oriented planning algorithm inspired by the RRT [27].

In addition, theMotion Graph andMatch Web focus on accurate motion connection

and synthesis based on an apparent similarity. In contrast, the gestures are required

to measure semantic similarity of motion. Therefore, we proposed a novel method

for classifying motions in a semantic meaning. The proposed method is described

motions in a frequency domain and transforms them into features. To accelerate motion

retrieval, we employ the techniques of the Bag-of-words [15] technique for the similar

gesture retrieval using the motion features.

3.2 An Android, Actroid-SIT

In HRI, we consider human impressions affected by the appearance of a robot as well

as the robot’s body gestures. Recently, a very human-like robot, or an android has

been developed [60]. In this research, we use one of the android, Actroid-SIT made by

Kokoro company, Ltd. The robot has a human-like figure as shown in Figure 3.1 (a)

and total of 42 degree of freedoms (DOFs) 1 as shown in Table 3.1. Because the Actroid

is driven by pneudraulic actuators, damage caused by accidental collision is much less

than with other motor-drive rigid robots.

For physical simulation (e.g., self-collision check and kinetic simulation based on

a proportional derivative (PD) control), we construct a simulation model as shown in

129 DOFs for body gesture, and 13 DOFs for facial expression

11
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(a) Actroid-SIT

x
z

y

(b) Physical model and the co-

ordinate system in the simula-

tion world

Figure 3.1: An android, Actroid-SIT: (a) its figure and (b) its physical simulationmodel

Table 3.1: The configuration of the DOFS which the Actroid and the physical model

has for each body part

body part
DOFs

Actroid-SIT physical model

Face 13 0

Neck 4 2

Arms 9 × 2 9 × 2
Hands 2 × 2 2 × 2
Torso 3 2

Total 42 26

12
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Figure 3.1 (b). Since we concentrate on a body gesture, not facial expression, we

exclude DOFs corresponding the facial motion. Reduction of DOFs accelerates the

collision detection.

3.3 Motion Classification

3.3.1 Bag-of-Words’ Approach

Bag-of-words model is a simplifying representation used in natural language process-

ing and information retrieval. In this model, a text such as a sentence or a document is

represented as an unordered collection of words, disregarding grammar and even word

order. The bag-of-words model is commonly used in methods of document classifica-

tion, where the frequency of each word is used as a feature for training a classifier.

Recently, the Bag-of-words model has also been used for computer vision. It is

called Bag-of-features. In this model, a image is represented as an unordered collection

of local image features such as a Scale Invariant Feature Transformation (SIFT) [61],

Features from Accelerated Segment Test (FAST) [62], or Speeded-Up Robust Features

(SURF) [63].

3.3.2 Spatio-Temporal Motion Feature

When calculating a similarity of motions, it is important to not only focus on an in-

stant pose but also express a relationship between local motion sequences. In image

processing, for expressing local spatial information of an image, the image is described

in frequency domain.

This idea can be applied into the motion classification. We use a wavelet as a lo-

cal temporal feature of motion. The procedure of transforming from the coordinate

data of a motion p to a motion feature f is described as follow. First, given a three-

dimensional motion sequence p(t) which has N motion capture markers (i.e., 3 × N
dimensional vector) and has already calibrated by a method described in Appendix A,

the velocity ṗi
{x,y,z}(t) for marker i is transformed to a wavelet f

i
{x,y,z}(ω, t) by a con-

tinuous wavelet transform ψ(t) in Equation (3.2). We used Morlet wavelet [64] as the

ψ(t).

13
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storso

sleftsright

(
ptorso

pleft
pright

Figure 3.2: The skeleton model captured by the sensor suitMVN, and its three subsets

of retro-reflective markers of a human’s torso, left and right arms

p(t)T =
(
p1(t)

T . . . pN(t)T
)
, (3.1)

f i
{x,y,z}(ω, t) =

1√
ω

∑
t′
ṗi
{x,y,z}(t

′)ψ

(
t′ − t
ω

)
, (3.2)

where ω is a frequency scale of the wavelet. Since we focus on body gestures, we only

deal with markers of the upper-body. We divide markers on upper body into three sub-

sets: torso (storso), left arm (sleft), and right arm (sright) as shown in Figure 3.2. Then,

the frequency spectrum storso(ω, t) is calculated by Equation (3.3). After calculating

Equation (3.3) within 0 ≤ ω ≤ Ω where Ω is a maximum value of the frequency scale,

the movement (i.e., temporal) feature m(t) is obtained as shown in Equation (3.5).

mleft(t) and mright(t) can be calculated in similar manner from the sets sleft and

sright, respectively.

storso(ω, t) =

∣∣∣∣∣∣
√ ∑

i∈Storso

f i
x(ω, t)

2 + f i
y(ω, t)

2 + f i
z(ω, t)

2

∣∣∣∣∣∣ , (3.3)

mtorso(t)
T =

(
storso(0, t) . . . storso(Ω, t)

)
, (3.4)

m(t)T =
(
mtorso(t)

T mleft(t)
T mright(t)

T
)
. (3.5)
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We use the appearance (i.e., spatial) feature a(t) which is a coordinate data of the

end-effector’s markers shown in Figure 3.2 p{torso,left,right}.

a(t)T =
(
ptorso(t)

T pleft(t)
T pright(t)

T
)
. (3.6)

Finally, we obtain the spatio-temporal motion feature f (t) which includes the

movement featurem(t) and the appearance feature a(t) by Equation (3.7).

f (t)T =
(
m(t)T a(t)T

)
. (3.7)

The motion feature f (t) is independent of the number of markers N . That is, the

feature is independent of the skeleton model and we can unify the variety of motion

data captured by different motion capturing systems. We have three subsets and the

frequency resolution is 40. f (t) is a 3×40+3×3 = 129 dimensional vector. We use a

sensor suitMVN made by Xsens Technologies, Inc. shown in Figure 3.2 for measuring

human’s motions.

Figure 3.3 shows the visualization of the movement features m{torso,left,right} of

one-minute gesture motion of a subject. The horizontal axis indicates the time and the

vertical axis indicates the frequency. The frequency spectrum is higher where the color

is brighter. A slow movement appears in a low frequency area and a quick movement

appears in a high frequency area. Both of them provides important information to

describe how a gesture can be expressed.

3.3.3 Bag-of-Motion-Features

For motion classification and retrieval, we employed an idea of image processing tech-

nique: the Bag-of-features. First, the motion feature f is discretized (i.e., cluster) by

K-means method. At this time, the six factorsm{torso,left,right} and a{torso,left,right} are

clustered independently.

Unlike natural language classification or image classification, motion classifica-

tion additionally considers the order of the motion. Therefore, we applied the idea of

Spatial Pyramid Kernel [65] which uses the hierarchical histograms of evenly divided

lattices of an image. Unlike the method [65], we construct hierarchical structure along

the time axis. The motion feature f is evenly divided several times as shown in Fig-

ure 3.4. The histogram intersection between level l’s motions A ,B is calculated by

Equation (3.8) based on the histogram intersection function [66].
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Figure 3.3: The visualization of (a) mtorso, (b) mleft, and (c) mright of a one-minute

motion. The spectrum of the frequency is higher where the color is brighter.
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level 0 (original) level 1 level 2
t

Figure 3.4: The example of a three-level temporal pyramid histogram

Il(A ,B) =

K∑
i=1

min
(

Hl
A (i)

wA
,

Hl
B(i)

wB

)
K∑

i=1

Hl
A (i)

wA

, (3.8)

whereH l
A (i) indicates i-th bin of the level l’s histogram of a motionA andK indicates

the number of bins of the histogram. wA , wB are the number of frames of each motion.

By calculating weighted average of all Il(A ,B), we finally obtained the histogram

intersection I(A ,B) by Equation (3.9).

I(A ,B) =
1

2L
I0(A ,B) +

L∑
l=1

1

2L−l+1
Il(A ,B). (3.9)

We name this method the Bag-of-motion-features.

3.4 Motion Parameterization

3.4.1 Match Web’s Approach

Match Web is a method for motion synthesis. Given a human-like motion sequence,

which is easily obtained from a motion capture system, the Match Web can extract

similar sequence duration from all sequences. The details of the algorithms are as

follows.
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Figure 3.5: Calculation of similar regions between two motion sequences. The similar-

ity is higher where it is black and lower where it is white, and white circles are similar

region.

1. Given two motion sequences A andB, calculate the similarity matrix between

poses Ai andBj (Figure 3.5 cells), in sequences A andB .

2. If the similarity D(Ai,Bj) is a local minimum, attempt to connect other local

minima from the bottom left to the top right in the similarity matrix along less

dissimilar path using a dynamic programming (DP) matching. This path indi-

cates similar region (Figure 3.5 dotted line).

3. The user assigns a meaningful motion region (i.e. reference motion) from a se-

quence, then similar regions (i.e. similar motions) are extracted by searching all

similar regions.

This procedure is repeated for all pairs in case of multiple sequences. Then, given

an arbitrary parameter for each motion group, target motion is synthesized using the

similar motions based on a target parameter.
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3.4.2 Coarse-to-Fine Motion Classification

The original Match Web focuses on accurate motion synthesis based on an apparent

similarity and is also time-consuming to calculate the DP matching. To solve these

problems, we use the Bag-of-motion-features which can rapidly classify based on the

semantic similarity.

In Section 3.3.3, the motion feature f of a motion needs to be divided into primi-

tives by constant time windows to make histograms. This can cause a classified motion

to contain movements unrelated to a target gesture during starting time or ending time

of the time window. There are some solutions to this problem. A simple solution is

to use a finer time window. However, it would need longer computational time. An-

other solution is to apply the Match Web technique to the search region limited by the

Bag-of-motion-features.

In this research, we use the latter approach. After performing motion retrieval by

the Bag-of-motion-features, the retrieved motion is matched with the DP matching in

detail. Because the detail matching is only for the retrieved motions, we expect the

total of the computational time to be still short.

3.4.3 Parametric Motion Synthesis

Given an arbitrary parameter for the gestures, target gestures are synthesized using

similar motions based on the target parameter p̃ as shown in Table 3.2. When calcu-

lating the weighted sum of each i-th similar motion, the weight coefficient wi for p̃i,

which is the gesture parameter of the i-th motion, is given by Equation (3.10), where

c is a constant related to the variance of the parameter p̃. We use Welsch’s weight

function [67] as wi.

wi =
exp

(
−D(p̃,pi)

2

c

)
∑k

j=1 exp
(
−D(p̃,pj)2

c

) . (3.10)

Original Match Web calculates the weighted coefficient by computing a bounding

box of the parameter space and pre-sampling parameters in the space to precisely syn-

thesize motions. This pre-sampling method is time-consuming. And when the num-

ber of similar motions is getting more, we do not have to compute this pre-sampling.

Therefore, we use the concise Equation (3.10).
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3 RECONFIGURABLE MOTION DATABASE

In addition, unlike CG research, the Actroid is driven by the pneudraulic actuators,

and suddenly changing acceleration of the actuator vibrates motion in the correspond-

ing part. Therefore, similar motions are aligned using Dynamic Time Warping [68] to

minimize poses’ differences. In addition, real-time self-collision avoidance is crucial

issue. To solve the issue, we propose an online motion planning method in Section 3.5.

In this thesis, the RMDB has 18 gestures, each of which has more than 10 similar

motions in the motion sequences which is described in Section 4.1.1. Table 3.2 shows

the 18 gestures and their parameters. The terms x, y, z indicate the 3D position of

target, φ, θ indicate yaw (horizontal) and pitch (vertical) angles of the robot’s direc-

tion, and l indicates the breadth between both hands. Gestures #7, #9, #11, #14, #17,

#18 which use only one hand, are archived by either the left hand or the right hand.

RMDB can select an appropriate hand based on the target parameter p̃. And gesture

#1 performs to track speaker’s direction by combining gaze described in Appendix B.

Figure 3.6 shows examples of a pointing gesture #18 POINT where the target pa-

rameter (x, y, z) is shifted from the right side to the left horizontally. This figure shows

precise motion synthesis is achieved while keeping the twist motions of the wrist which

simulate actual human motion.

3.5 Motion Interruption

3.5.1 Motion Graph’s Approach

In CG field, many approaches were proposed for entire body animation using motion

capture data. One of them, Motion graph [12] can generate new motion sequence by

concatenating motions at different timing. The details of the algorithms are as follows.

1. Given the two motion sequences A and B, the algorithm first calculates the

similarity between poses Ai and Bj , in sequences A and B as shown in Fig-

ure 3.7.

2. If the similarityD(Ai,Bj) is locally minimized (the white circles in Figure 3.7),

the algorithm attempts to connect two motions around these two poses by Equa-

tion 3.11.
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3 RECONFIGURABLE MOTION DATABASE

Table 3.2: 18 gestures and their parameters. The terms x, y, z in parameter p̃ indicate

the 3D position of target, φ, θ indicate yaw (horizontal) and pitch (vertical) angles of

the robot’s direction, and l indicates the breadth between both hands.

gesture movement parameter p̃

#1 GAZE Gaze a speaker

(φ, θ)

#2 YES (NOD) Nod several times

#3 NO Nod no

#4 BOW Bow

#5 SHAKE NECK Shake neck several times

#6 THINK Fold both arms

#7 FLEX MUSCLE Flex arm muscles

#8 POINT AT MYSELF Point at myself

#9 BYEBYE Wave hand several times

#10 BYEBYE BOTH Wave both hand several times

#11 SWING Swing hand

#12 SWING BOTH Swing both hands

#13 LOOK AT CLOCK Look at wrist clock

#14 SHAKE Shake arm quickly

(φ, θ, l)#15 SHAKE BOTH Shake both arms quickly

#16 SPREAD BOTH Spread both arms widely

#17 PUNCH Punch something (x, y, z)

#18 POINT Point at something (x, y, z, φ, θ)
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Figure 3.6: Synthetic pointing motions where pointing horizontal location x is ranged

−200 [mm] ≤ x ≤ 300 [mm]
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Ck = α(k)Ai+k +
(
1− α(k)

)
Bj−m+k, (3.11)

α(k) = 2
(
k + 1

m

)3

− 3
(
k + 1

m

)2

+ 1, (3.12)

where i, j, and k are frame index, and C contains, and m is user-defined connection

length. The similarity function D(Ai,Bj) is calculated by appropriately weighting

similarity of body part [12]. However, the motion database which we used has a number

of different gestures and it is difficult to set the appropriate weights for each one of

them. That is why, we used uniform weights for all gestures in the following experi-

ments.

Figure 3.8 shows the example of a Motion Graph which contains 17 reception-

ist’s gestures for the Actroid. The nodes indicates local minima of motions and edges

indicates motions between node to node.

3.5.2 Probabilistic Roadmap Method’s Approach

Probabilistic Roadmap Method (PRM) [18] is a motion planning method, which sam-

ples the configuration space (C-space) of a robot. One of the sampling algorithms,

Rapidly-exploring Random Tree (RRT) [27] is designed for efficiently searching non-

convex high-dimensional spaces. RRT is constructed incrementally in a way that

quickly reduces the expected distance of a randomly-chosen point to the tree. RRT

is particularly suited for path planning problems that involve obstacles and differential

constraints (nonholonomic or kinodynamic). RRT can be considered as a technique

for generating open-loop trajectories for nonlinear systems with state constraints. An

RRT can be intuitively considered as a Monte-Carlo way of biasing search into largest

Voronoi regions. Some variations can be considered as stochastic fractals. Usually,

an RRT alone is insufficient to solve a planning problem. Thus, it can be considered

as a component that can be incorporated into the development of a variety of different

planning algorithms.

Figure 3.9 shows an example of the path planning by the RRT with lattice-shaped

obstacles on two dimensional C-space. The root of the tree placed left below.
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Figure 3.7: The distance of poses between motion sequence A and B. The darker

area is closer pose and white circles are local minima.

Figure 3.8: A Motion Graph of 17 receptionist’s gesture sequences for the Actroid.

The node indicates a transitional timing of a motion and the edge indicates a motion

between node to node.
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Figure 3.9: Two dimensional C-space expansion with lattice-shaped obstacles by the

Rapidly-exploring Random Tree. The root of the tree placed left below.

3.5.3 Motion Feature

First, we define motion features appropriate for HRI; as far as we know, there is no

common expression of motion features. Hereby, RMDB can reconfigure motion se-

quences while keeping following two features of original human’s motion in database.

Key-Pose Information

Key-poses are defined as important instant pose in gesture, for example, the pose to ex-

press object position in pointing or reaching gesture. Thus, lack of key-pose informa-

tion causes to become unnatural and/or meaningless motions. Nakazawa et al. [69] pro-

posed the synthesized human-like dancing motions using key-pose information from

captured human motions.

Velocity Information

Flash et al. [10] proposed a minimum-jerk model as inherent feature of physiologically-

based trajectory. That is, velocity gradient is important factor for description physiologically-

based motion features.

25



3 RECONFIGURABLE MOTION DATABASE

A

C

B

k1

i i+n

0

(a) Limitation of transitional area
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(b) Generation of connecting motion

Figure 3.10: Planning of smooth transition from Ai, which indicates a pose when

interrupted, toBk1, which indicates first key-pose in motionB

3.5.4 Interruptible Motion Planning

Whenever a user interrupts current robot’s reaction, it is necessary to suddenly ter-

minate the reaction and then generate and preform appropriate reaction. Even when

the Euclidean distance D(A ,B) is larger than the threshold, two motions should be

connect while avoiding self-collision. Therefore we solve this problem by PRM. As

shown in Figure 3.10, when the Euclidean distance D(Ai,Bj) is less than the thresh-

old, we can apply original Motion Graph. In contrast, when its value is larger than

the threshold, we let Ai and Bj connect by motion C generated by PRM instead of

originalMotion Graph approach. MotionsA to C and motions C toB are calculated

by original Motion Graph method. Bk1) indicates a first key-pose in the motionB to

smoothly translate.

Multi-Subtree Rapidly-Exploring Random Trees

In HRI, trajectories without self-collision have to be planned in real-time. However,

PRM is generally computationally expensive with over few dozens of dimensions of

C-space.

We therefore propose a multi-subtree RRT planner. This method is inspired by the

RRT and RRT-connect [28], and it can conduct with multi-core CPU processing effi-

ciently in place of the algorithm for distributed processing [70]. The main algorithm
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Algorithm 1 MULTITHREADED RRT(qinit, qgoal)

BUILD SUBTREES(qinit, qgoal)

while C.size() ≤ MAX CONFIGS do

EXTEND AND INTEGRATE(S, C)

if SEARCH AND CHECK(S, C) then

return SMOOTH(DIJKSTRA PATH(qinit, qgoal))

end if

end while

Algorithm 2 BUILD SUBTREES(qinit, qgoal)

S.add(BUILD TREE(qinit))

S.add(BUILD TREE(qgoal))

for i = 3 to NUM THREADS do

S.add(BUILD TREE(RANDOM CONFIG()))

end for

Algorithm 3 EXTEND AND INTEGRATE(S, C)

for i = 1 to NUM THREADS do

A[i].clear()

EXTEND(T [i],S[i],A[i])

end for

for i = 1 to NUM THREADS do

C.add(A[i])

end for

Algorithm 4 SEARCH AND CHECK(S, C)

for i = 1 to NUM THREADS do

{q1, q2} =NEAREST PAIR(T [i],A[i], C)

if DISTANCE(q1, q2) ≤ THRESHOLD DIST then

P.add(q1, q2)

end if

end for

return IS CONNECTED(S[1],S[2])

Figure 3.11: Multi-subtree RRT algorithms which generate the path from initial pose

qinit to goal pose qgoal. The Algorithm 1 is a main method and the Algorithm 2, 3, 4

are its sub-methods.
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and its sub-algorithms are shown in Figure 3.11. The global variables T and S indi-
cate a set of threads and subtrees, respectively (‖T ‖ = ‖S‖ = NUM THREADS).

The space C is a whole C-space which contains all subtrees. Subtrees extends indepen-
dently in each thread T [i]. The set A represents the added nodes in one extension. By
connectivity between A and each subtree, the algorithm obtains connectivity among

subtrees.

Algorithm 1 shows the abstract of multi-subtree RRT. It plan the trajectory between

initial pose qinit and goal pose qgoal by calculating Algorithm 3 and 4 iteratively, where

the function DIJKSTRA PATH searches the shortest path through subtrees, and finally

the function SMOOTH smoothens the connected path. Algorithm 2 makes subtrees

whose routes are qinit, qgoal, and what RANDOM CONFIG generates. In Algorithm 3,

each subtree extends and integrates the appended nodes in C concurrently. Algorithm 4
searches nearest pair between A[i] and T [i] with NEAREST PAIR, then adds the pair

whose distance is less than THRESHOLD DIST, to the set P in synchronization. The
detail of other functions RANDOM CONFIG, and EXTEND, SMOOTH are described

in [27, 28].

Figure 3.12 shows the results of path planning by the multi-subtree RRT with

lattice-shaped obstacles on two dimensional C-space. Figure 3.12 (a) has one tree

which means RRT, and Figure 3.12 (b) has two subtrees which mean RRT-connect.

Figure 3.12 (c) extendsmore widely in the space than Figure 3.12 (a) and Figure 3.12 (b).

Exclusion of Redundant Movement in Search

In addition to the multi-subtree RRT, we assume that a motion in interaction tends to

exclude redundant movement. Thus, its travel distance should be minimized. Consid-

ering this fact, we propose to limit the search area which results in accelerating the

planning (under 100 [ms] ordinarily). Figure 3.13 shows abstract of our algorithm.

First, a straight-line interpolation trajectory from initial pose to goal pose is given as

a reference, and each range is limited to nearby areas of the reference (Figure 3.13-1).

If there is collision on the way, the trajectory is re-planned in the limited area using

multi-subtree RRT (Figure 3.13-2, 3.13-3). Finally, the planned trajectory is smoothed

(Figure 3.13-4).
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(b) Four subtrees

Figure 3.12: C-space subtree expansions by (a) two subtrees and (b) four subtrees. The

one tree example are shown in Figure 3.9.

1. assign a reference path 2. extend sub-trees 

3. connect nearest pairs 4. generate the motion

restrict a searching space
to nearby the path

re-plan the collided area
with multi-trees

check a pair of sub-trees
whether connectable

after smoothing, generate
the collision-free motion

Figure 3.13: HRI-oriented planning algorithm using multi-subtree RRT (white area:

collision-free, black area: obstacle, gray area: un-calculated)
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Chapter 4

Database Construction and

Performance Evaluation
First, we construct a motion database which contains a lot of captured human mo-

tions by the motion classification. Then, we evaluate the effectiveness of the motion

parameterization and motion interruption using the database.

4.1 Motion Classification

We conduct experiments using total of one-hour motions by 15 subjects to evaluate the

classification performance of the proposed method with three comparative methods

including the conventional methodMatch Web. The computational time of the motion

database construction is also measured.

4.1.1 Database Construction

Motion Measurements

We measured daily interaction motions of 15 subjects who are women and men in

their 20s. 30-minutes motions were used for the learning data set to cluster the Bag-of-

motion-features, another 30-minute motions were for test data. The sensor suit MVN

was used for measurement of motions at 30 [Hz].

Clustering of Motion Features

First, we decide the numbers of clusters K. By conducting experiments to measure

classification performance for all numbers of clusters of Km for m{torso,left,right} and

Ka for a{torso,left,right}, we set the numbers of clusters to four for eachm{torso,left,right}
and six for each a{torso,left,right} (i.e.,K = 3Km+3Ka = 3×4+3×6 = 30). Figure 4.1

shows the result of a Receiver Operating Characteristic (ROC) curve in case of the

number of m{torso,left,right} clusters to four. In ROC curve, higher true positive rate
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Figure 4.1: The ROC curve in case of the number of m{torso,left,right} clusters Km to

four. The number of a{torso,left,right} clusters Ka to six is the best condition of the

true/false positive rates.

and lower false positive rate are better conditions. We confirmed that these numbers

are the best condition of the true/false positive rates for our motion database.

Figure 4.2 (a), (b) show the frequencies of each cluster of the 30-minutes motion

database with respect to the movement features (a)m{torso,left,right} and the appearance

features (b) a{torso,left,right}. Figure 4.2 (a) is in almost ascending order according

to the frequency. That is, the leftmost and largest cluster means almost static pose.

Because subjects often behave idling or waiting with forearm resting on their lap, the

size of the leftmost cluster is so large.

This is the same reason why the leftmost size of the cluster in Figure 4.2 (b) is

much larger than the other clusters. The other clusters indicate that the end-effector

locates somewhere in Cartesian coordinates.
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Motion Division with Time Window

Before constructing the Bag-of-motion-features, the motion feature f needs to be di-

vided into primitives by a time window of length w, as mentioned in Equation (3.8).

Gestures have a variety of time lengths. For example, nodding gesture is shorter and

bye-bye gesture is longer than the other gestures. Therefore, we used the time win-

dow’s length w = 1, 2, 3, 4, 5 [s] and shifted the time window to 0.2 [s] intervals.

Calculation of Features’ Histograms

Next, we construct histograms of the Bag-of-motion-features using aforementioned

motion feature. Figure 4.3 (a), (b) show two examples of the histograms. Figure 4.3 (a)

shows a right-hand’s pointing gesture #18 POINT and Figure 4.3 (b) shows a bow-

ing gesture #4 BOW. The horizontal axis indicates a bin for each m{torso,left,right},

a{torso,left,right} and the vertical axis indicates the frequency of each histogram’s bin.

Since the histogram ofmright in Figure 4.3 (a) has only two activated bins, it means

that the right hand moved at a constant frequency and stopped at a target pointing

location. And since the histogram of aright Figure 4.3 (a) has activated four bins, it

means that the right hand moved a lot in Cartesian coordinates. This also applied to

the histograms ofmtorso and atorso in Figure 4.3 (b), that have a similar pattern to the

case ofmright and aright in Figure 4.3 (a).

4.1.2 Comparative Methods

For evaluation of the performance of the motion classification, we compared the num-

bers of similar motion classification with several comparative methods. One of the

comparative methods is theMatch Web mentioned in Section 3.4.1.

According to the combination of the feature calculation method and the motion

matching method between the proposed method and the Match Web, we have four

comparative experiments as shown in Table 4.1. These methods indicate (a) our pro-

posed method, the Bag-of-motion-features, (b) theMatchWeb, (c) theMatchWeb using

the proposed feature vector f instead of the marker position itself p for the similar-

ity function, and (d) the Bag-of-features using p instead of f for the features. The

method (d) is the almost same as a method proposed by Raptis et al. [36].

The number of the k-means clusters for (d) is K = 60 which is equivalent to
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Figure 4.2: The size of each cluster with respect to the features (a)m and (b) a
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Figure 4.3: The pose sequences and their histograms of (a) a pointing gesture and (b) a

bowing gesture, respectively
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the total number of K-means clusters used for (a). Note that when retrieving similar

motions using (a) and (d), we select only one motion which has the best similarity by

Equation 3.9 among overlapped time windows.

4.1.3 Classification Performance

For motion classification, we used an one-hour motion database in which we appended

30-minutes motions from five different subjects to the previous 30-minutes motions

from the 10 subjects mentioned in Section 4.1.1. We extracted nine query gestures

from the motion database. Table 4.3 describes the movement of the each gesture.

First, we compared the computational time for constructing the motion database

with the four methods. Figure 4.4 shows the result of computational time 1. The most

time-consuming part is the wavelet transform in (a), the DP matching in (b) and (c),

and the K-means clustering in (d). Because the time complexity of the DP matching

is O(N2) for the number of motions N , the computational time of (b) and (c) was

much longer than the others. In contrast, the time complexity of the Bag-of-features’

approach is O(N). Therefore, the time of (a) and (d) was drastically shortened and we

can easily apply the proposed method to a motion database of larger scale.

Figure 4.6 shows the result of the motion classification. The vertical axis indicates

the number of the similar motions classified. The number is dependent on a threshold

for the similarity. In this experiment, we manually adjusted the threshold which a false

positive motion was not classified for each gesture classification. According to the

Figure 4.6, (a) the proposed method has the best classification performance. Since (c)

Table 4.1: Comparative experiments for motion classification. These methods indicate

(a) the Bag-of-motion-features, (b) the Match Web, and (d) a method proposed by

Raptis et al.

Motion feature f Coordinate data p

Histogram matching (a) (d)

DP matching (c) (b)

1We used a computer which has a Core i7 920 (2.66 [GHz] eight cores) and 16 [GB] memories.
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Figure 4.4: The computational time for constructing the

motion database with the methods (a) to (d), respectively

Table 4.2: The actual compu-

tational times of Figure 4.4

method time [min]

(a) 12.5

(b) 572.9

(c) 801.1

(d) 35.3

Table 4.3: Nine target gestures for the classification (a part of Table 3.2)

gesture movement

#2 YES (NOD) Nod several times

#4 BOW Bow

#6 THINK Fold both arms

#9 BYEBYE Wave hand several times

#11 SWING Swing hand

#12 SWING BOTH Swing both hands

#15 SHAKE BOTH Shake both arms quickly

#16 SPREAD BOTH Spread both arms widely

#18 POINT Point at something
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Figure 4.5: Nine target gestures for the classification

has almost the second best performance, it is effective to express motions in frequency

domain. In addition, (a) is better than (d), and (c) is better than (b). That is, the

Bag-of-features’ approach is helpful for motion retrieval as well as image retrieval.

Next, we compared with ground truth of the number of similar motions. The

ground truth is manually counted by an author of this thesis. Figure 4.7 shows the pro-

portion of the number of the classified motions to the true number of the motions for

each comparative method. Since the bowing gesture and nodding gesture have less in-

dividual variation in the movement than the other gestures, their proportion were quite

higher. In contrast, the pointing gesture, folding arms gesture, and shaking gesture

have more individual variation, their proportion was a little lower than the other ges-

tures. However, the proposed method (a) had over 60% proportions for all gestures and

drastically improved the classification performance compared with theMatch Web (b).

It is difficult to directly compare the results to the other related work, because they

used different motion databases. However, for examples of body gesture recognition,

Song et al. [71] measured 24 NATOPS Aircraft Handling Signals 1 with a stereo camera

and classified motions by a Particle Filter [72] based method. Chen et al. [73] captured

1http://groups.csail.mit.edu/mug/natops/
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Figure 4.7: The proportion of the number of the classified similar motions to the true

number of the similar motions with the methods (a) to (d), respectively
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First direction Second direction

Figure 4.8: When a subject acted a pointing gesture, he pointed to two different direc-

tions at a time.

videos of 10 upper-body gestures and classified by a Bag-of-features based method.

They had 60 to 70% and 65 to 70% of the recognition rates compared with ground

truth, respectively. Therefore, we could say that our rates which have more than 60%

are sufficiently large.

Discussion

Moreover, we discuss here in achievement of more numbers of the classification by

the proposed method. During measurement of subjects’ motions, subjects sometimes

strongly acted distinctive gestures. For example, when a subject acted a pointing ges-

ture which is the worst proportion in Figure 4.7, he pointed to two different directions

at a time as shown in Figure 4.8. In this thesis, this gesture was counted as #18 POINT

for the ground truth. However, the gesture’s frequency was quite different from the

target’s one and it is also quite different among people how to count the ground truth.

That is why the classification performance can be changed by how to count the ground

truth and/or how to distinguish among gestures. In speech synthesis methods, they had

also the same problem. We should discuss more how to make the ground truth in the

near future.

4.1.4 Classification with Multi-Skeletons’ Database

The proposed method, Bag-of-motion-features has one more capability which is a

skeleton-independent classification. That is, Bag-of-motion-features can collect se-
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(a) KINECT (b) MotionAnalysis

Figure 4.9: The skeleton-models captured by (a) a RGB-D sensor KINECT and (b) an

optical motion capture system,MotionAnalysis

mantic similar motions captured by different motion capture systems to construct a

pre-designed motion database.

Three Motion Capture Systems

To evaluate the capability, we conducted a motion classification experiment using three

different skeletons captured by three different motion capture systems. One of their

systems is the sensor suit MVN which we used as shown in Figure 3.2. The other

systems are shown in Figure 4.9 (a); a RGB-D sensor KINECT 1 made by Microsoft

Corporation and Figure 4.9 (b) an optical motion capture systemMotionAnalysismade

by Motion Analysis Corporation. Figure 4.9 (a) and (b) are also shown how to divide

their markers on upper body into three subsets: torso (storso), left arm (sleft), and right

arm (sright) as the same as MVN in Figure 3.2.

Since theMatchWeb cannot compute the similarity of motions which have different

skeletal models, we conducted an experiment using only the proposed method.

Classification of Pointing Gesture

One subject’s pointing gestures were captured by the KINECT and MotionAnalysis.

Using these motions and the motion database captured by MVN mentioned in Sec-

1We use an open source library OpenNI to detect the human’s skeleton.
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tion 4.1.1, we conducted a classification experiment for #18 POINT.

Figure 4.10 shows the examples of truly classified pointing gestures in (a), (b) and

(c) data sets, respectively. To compare with ground truth of the number of similar

pointing motions, Figure 4.11 shows the proportion of the number of the classified

motions to the true number of the motions. We used only one subject for conditions (b)

and (c). That is why there were no individual variation in this experiment. Therefore,

over 80% of motions were truly classified in their conditions compared to around 60%

of motions in condition (a).

4.2 Motion Parameterization

We evaluate the precision of synthetic body gestures with respect to the target parame-

ters. The precision is measured based on the number of database gestures (i.e. similar

motions as mentioned above) per unit area. We conduct two experiments with the

#18 POINT which has location parameters, and the #1 GAZE which has angle param-

eters.

4.2.1 Precision of Pointing Gesture

Figure 4.12 (a) shows the area of target locations for #18 POINT. The area is 500 [mm]

× 500 [mm] square and defined as (x, 400 [mm], z) where −100 [mm] ≤ x ≤
400 [mm], 300 [mm] ≤ z ≤ 800 [mm]. Given n database gestures which are

placed at regular intervals in the area, the Actroid generates a gesture by synthesizing

while changing the number n of the similar motions to synthesize. We experimented

n = 4, 5, 9, 16 cases. For each experiment, 1000 target locations were sampled by uni-

form distribution within the area and synthetic gestures generated to satisfy the target

parameters. In case of n = 4, 9, the results are shown in Figure 4.13. White circles in

Figure 4.13 indicate the n database gesture’s target, and plus dots indicate the synthetic

gesture’s position.

As shown in Figure 4.13, the larger number of n was used, the more uniform loca-

tions could be generated. In case of n = 4, the plus dots are dense around four corners.

It causes less density of the central region in the target area. Figure 4.14 shows the re-

sult of mean errors between target location and synthetic gesture’s location. The mean

errors were monotonically decreasing in proportion to n. In usual HRI, small errors
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(a) MVN (b) KINECT (c) MotionAnalysis

Figure 4.10: The three results of the classified pointing gestures in (a), (b) and (c) data

sets, respectively
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Figure 4.11: The proportion of the number of the classified pointing motions to the

true number of the motions with the methods (a) to (c), respectively
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Figure 4.12: The definition of target parameters: (a) target location of #18 POINT and

(b) target angle of #1 GAZE

in gesture are tolerable. If we tolerate about 100 [mm] errors, n = 5 (i.e. 250 [mm]

sampling intervals) has enough accuracy for the pointing gesture.

4.2.2 Precision of Gazing Gesture

Gazing gesture is actually a static pose and not a motion sequence. However the Ac-

troid achieves gaze gesture by smoothly transitioning from pose to pose, and by plan-

ning gaze movement based on the convergence of eyes and the sharing rate of the head

direction and the eye direction. Figure 4.12 (b) shows the range of target angles for

#1 GAZE. The range is defined as (φ, θ) where |φ|≤ 1.0[rad], |θ|≤ 0.5[rad].

As in Section 4.2.1, given n = 6, 8, 14 sampling gestures which are placed at regu-

lar intervals in the range, the Actroid generates gestures by synthesizing the n samples.

For each experiment, 1000 target angles were sampled by uniform distribution within

the area and synthetic gestures were generated to satisfy the angle. In case of n = 6, 8

the results are shown in Figure 4.15, and Figure 4.16 shows the result of mean er-

rors when n = 6, 8, 14. If we tolerate about 0.2[rad] (= 11.4[deg]) errors, n = 6

(i.e. 1.0[rad] sampling intervals) has enough accuracy for the gaze gesture.
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Figure 4.13: Visualization of accessible pointing locations in xz plane: in case of

(a) n = 4 and (b) n = 9, where white circles and plus dots indicate database gesture’s

target and synthetic gesture’s target, respectively
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Figure 4.14: Mean errors between target location and synthetic pointing gesture’s lo-

cation in case of n = 4, 5, 9, 16
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(a) n = 6 (b) n = 8

Figure 4.15: Visualization of accessible gaze angles in φθ plane: in case of (a) n = 6

and (b) n = 8, where white circles and plus dots indicate sampling gesture’s target and

synthetic gesture’s target, respectively

 0

 0.1

 0.2

 0.3

6 8 14

M
ea

n 
er

ro
r 

of
 a

ng
le

s 
[r

ad
]

Number of samples

Figure 4.16: Mean errors between target angle and synthetic gaze gesture’s angle in

case of n = 6, 8, 14
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4.2.3 Discussion

As mentioned above, in usual HRI, small errors are tolerable. Therefore we assumed

to tolerate about 100 [mm] errors for the location and about 0.2[rad] errors for the

angle. As a result of Section 4.2.1 and Section 4.2.2, we have the following guidance

to design a gesture.

· A gesture which has (x, y, z) position parameters:

The sampling resolution should be less than 250 [mm] intervals in a target area.

· A gesture which has (φ, θ) angle parameters:

The sampling resolution should be less than 1.0[rad] intervals in a target range.

4.3 Motion Interruption

4.3.1 Effectiveness of Self-Collision Avoidance

First, we evaluate the effectiveness of the self-collision avoidance as mentioned in

Section 3.5.4. Figure 4.17 shows the comparison between the self-collision avoidance

enabled/disabled with trajectories of both hands in a collision case. In the disabled

case, collision occurred at about 0.4 [s] and the hand’s velocity was changed oscilla-

tory. In the enabled (i.e., the proposed method), there is no collision and two motions

could be connected smoothly.

4.3.2 Evaluation of Velocity Information

Next, we evaluate performance about the connection smoothness by comparing the

proposed method with the following three approaches.

· Direct Connection
Connect two motions directly at an interruption time without any interpolation.

· Linear Interpolation
Connect two motions by straight-line interpolation at an interruption time.

· Motion Graph
Connect two motions using Equation (3.11) at an interruption time even if the

distance is larger.
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Figure 4.17: Comparison between the self-collision avoidance enabled/disabled with

trajectories of both hands when experimented a collision case

We used motions #14 SHAKE BOTH, #7 FLEX MUSCLE, and #16 SPREAD BOTH

in a row as shown in Figure 4.18. We chose these motions to verify the collision avoid-

ance; connection between the two motion tends to collide both hands. In these simula-

tions, we performed 264 trials where transition points are changed at 0.33 [s] intervals

within each motion.

Figure 4.21 shows the averages of hand’s velocity where frames of the connecting

area and its few back and front one. The error bars mean standard deviation that can

be interpreted as acceleration. In both Direct Connection and Motion Graph, higher

velocity and acceleration appear (i.e., it means couldn’t connect smoothly each other).

4.3.3 Evaluation of Key-Pose Information

Next, we verified the smoothness of connected motion in real robot. Retroreflective

markers are attached to the Actroid-SIT as shown in Figure 3.1 (a), and the smoothness

is analyzed quantitatively using motion capture system.

In this experiments, #7 FLEX MUSCLE and #15 SPREAD BOTH in a row shown

in Figure 4.18 are utilized. Figure 4.22 shows y and z values of both hands. Dot-lines
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(1) (2)#14
SHAKE_BOTH

#7
FLEX_MUSCLE

#15
SPREAD_BOTH

Figure 4.18: A series of three gestures connected by Proposed Method, where square

windows show the transition durations

indicate the first key pose timing of the motion. Down-arrows indicate the interruption

timing to shift the next motion.

Figure 4.22 (1) shows the result of interruption at the end of motion #7 to see the

true value of key-pose information of each gesture. We compared key pose values with

Figure 4.22 (2) and Figure 4.22 (3) based on this result.

There are some loss of key-pose information where the second interruption and

the first interruption in Figure 4.22 (2) and Figure 4.22 (3), respectively. However,

with the total data of the whole Actroid markers, we confirmed not to lose the key-

pose information. The exception of that, a loss of the key-pose information and a

sharp velocity changes associated with the self-collision have nothing. It seems to be

maintained their motion features.
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Figure 4.19: The right hand’s speed during transition durations of Figure 4.18 (1) and

(2)
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Figure 4.20: The right hand’s speed of three people during the same gestures as in

Figure 4.18
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Figure 4.21: The average error and the standard deviation of the speed during transi-

tions as shown in (1) Figure 4.19 and (2) Figure 4.20
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Figure 4.22: The result of motion transitions whose initial position are 0 [mm] with

interrupting at different three timings (1), (2) and (3) where gray zone indicates con-

necting motion area
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Chapter 5

Multi-Party Human-Robot Interaction

System

5.1 Concept

Communication with multiple people is more common than one-to-one communica-

tion. We therefore develop the system for multi-person communication. By embedding

the RMDB, we propose gesture adjustment suitable for human’s demand through pa-

rameterization and gaze movement planning which can communicate with multiple

people and adjust a gesture to the location of talker and/or object. We implemented the

HRI system on the Actroid.

5.2 System Configuration

Figure 5.1 shows the system configuration of our proposed system. This system has

six components: the Key-Value Store, the Episode Rule Selector, the Speaker Detector,

the Speech Recognizer, theMotion Planner, and the Dialogue Generator.

5.3 System Components

5.3.1 Key-Value Store

The Key-Value Store is one of the dictionary data structures that have a set of pairs,

which include the index (Key) and the related value (Value). The Key-Value Store has

been developed as an alternative to the Relational Database [74] which is inferior due to

an overhead of network communication and the difficulty of parallel processing. Since

the Key-Value Store uses a distributed hash table, it is easy to process in parallel with

redundancy. We use Redis 1 which is one of the Key-Value Store implementations, and

let it perform as a web server.

1http://redis.io/
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All components in the HRI system access this Key-Value Store using a RESTful

API [75]. This API is thread-safe and allows dynamic changes of connection among

modules. Various architectures have been proposed for robot systems, and stability and

flexibility have been studied in these architectures. In recent architectures, OpenRTM-

aist [76] and ROS [77] have become popular. Since they provide operating system-like

functionality, they are heavy and inconvenient to use only for connections and commu-

nication among the components of the system. Therefore, we applied the Key-Value

Store to the robot system as a centralized administrative framework.

5.3.2 Episode Rule Selector

The Episode Rule Selector decides the reaction of the Actroid based on the episode

rule database when sensory data changes. Kanda et al. [53] originally proposed the idea

of the Episode Rule Selector. In this research, the episode rules are described using a

script language, Jython 1. Therefore, the rules can be modified and added online even

while the system is running. Each episode rule contains the following three functions.

· Precondition
Return a score calculated based on the speaker’s dialogue, existence of the speaker,

and the number of people, etc., which are obtained from the Key-Value Store.

· Interaction
Configure a gesture’s type and its parameter, and a reply’s words and emotions.

In the case of Figure 5.1, the Actroid replies: “What’s your name?” with two

gestures to promote the next interaction.

· Posteffect
Terminate this rule, and set or reset several condition flags in the Key-Value Store

for the next interaction. The key “already asked name” can be seen in Figure 5.1.

This key is the flag for the next continuous interaction “My name is ...”, which

we expected.

The algorithm of Episode Rule Selector is shown in Figure 5.2. While the sys-

tem is running, the algorithm repeats the following procedures. First, the episode

1http://www.jython.org/
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while system is running do

R ← {R ∪ updated or added rules}
r = arg max

ri∈R
ri.precondition.

r.interaction

r.posteffect

end while

Figure 5.2: The algorithm of the Episode Rule Selector implemented on the proposed

HRI system. The terms R indicates the episode rule database and r indicates the rule

which the system selected.

rule database R is loaded. Then, the system selects the episode rule r which has

the maximum score of the precondition in R, and the functions of r.interaction and

r.posteffect are called in order. This interaction loop can be interrupted even if a pre-

vious r.interaction is not finished. Current gesture can be transitioned to the next

gesture smoothly thanks to motion interruption, and the VoiceText can interrupt current

voice and resume with the next voice. By planning the interruption-aware interaction,

we accelerate reaction speed.

Our system can deal with action episode rules which show that the robot actively

performs an interaction when there is no speaker, as well as reaction episode rules

which are passive rules when the speaker asks a question. Appendix C describes how

to make the episode rule by Jython.

For example, one of the passive rules is to receive question about the Actroid’s age.

It has a Preconditionwhich matches speaker’s keywords to a set {“how”, “old”, “you”,
“built”, “made”}, an Interaction which makes two gestures POINT AT MYSELF and
POINT based on speaker’s location and one dialogue “I am three years old, and you?”,

and an Posteffect set a flag “already asked age.”

5.3.3 Motion Planner

ThisMotion Planner have already been described in Section 3.4 and Section 3.5.

5.3.4 Dialogue Generator

The Actroid can control facial expression and gaze direction in the same way as a

human. Retargeting the human’s facial expression into the Actroid’s facial expression
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(a) SAD/ANGRY (b) NORMAL (c) JOYFUL/HAPPY

Figure 5.3: Comparison of facial expressions: (a) SAD/ANGRY, (b) NORMAL, and

(c) JOYFUL/HAPPY. The Actroid can control only the eyebrow, eyelid and cheek for

facial expressions.

is very difficult because of the complexity of the actuator. Therefore, in our system,

the module to control facial expression and gaze is implemented independently with

the RMDB. In addition, we describe speech generation here.

Since the Actroid has the eyebrow, eyelid and cheek joints for controlling fa-

cial expression, we use the Actroid to perform simple facial expression as shown

in Figure 5.3. The Actroid has five emotions: NORMAL, SAD/ANGRY, and JOY-

FUL/HAPPY. To distinguish between SAD/ANGRY, and JOYFUL/HAPPY, we also

change voice parameters (i.e., speed, pitch, volume, and pause time) to make the ex-

pressions unique using a voice synthesis software, VoiceText 1 made by HOYA Service

Corporation.

5.3.5 Speaker Detector

To detect the speaker’s position and to count the number of people around the Ac-

troid, we use an IEEE 1394 camera (Sony DFW-VL500) located next to the Actroid.

Figure 5.4 shows the result of the image processing. Circles in this figure indicate the

1http://voicetext.jp/
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Figure 5.4: An example of the image processing, where circles indicate the results of

face detection and the blue square indicates the result of color extraction for micro-

phone detection

result of face detection by Haar-like features [78] in theOpenCV 2 library. A blue square

also indicates the result of a color extraction of tapes attached on the microphone. It is

difficult to detect a speaker (i.e., the person who is speaking) only with face informa-

tion. Therefore we assumed a person who has a microphone is the speaker. We used

two different colors (yellow and blue) for detection.

5.3.6 Speech Recognizer

Julius 1 is employed as speech recognition software, and we employ the Yahoo Key-

phrase Extraction Web API 2 to extract important keywords, which are a subset of the

sentence recognized by Julius. The keyword sometimes consists of multiple words.

The API scores each keyword based on its importance. In Figure 5.1, the sentence:

“Who are you?” is divided into the keywords “you”, “who”, and the sentence: “Who

2http://sourceforge.net/projects/opencvlibrary/
1http://julius.sourceforge.jp/
2http://developer.yahoo.co.jp/webapi/jlp/keyphrase/v1/extract.html
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are you?”. For robust matching, the whole sentence is added as a low priority keyword.

In Japanese especially, it is very difficult to grammatically recognize the speaker’s

speech. However, this system employ word spotting approach with scored keywords.

For example, in case of replying to: “What is your name?”, Table 5.1 shows four

answers which mean almost the same: “My name is Kondo.”, but their grammar and

the way of speaking are different. However, their primary keywords are the speaker’s

name “Kondo” in all cases, so that the Actroid can reply: “Your name is Kondo, isn’t

it?”.

Table 5.1: Sentences and the sets of their keyword and score for replying to “Who are

you?” Higher score indicates the keyword is more important. 100 is the highest score

and 0 is the lowest score.

sentence the set of keyword and score

My name is Kondo. {“Kondo”=100, “name”=46, “my”=21}
Please call me Kondo. {“Kondo”=100, “call”=39, “me”=21}
I am Kondo. {“Kondo”=100, “I”=21}
This is Kondo. {“Kondo”=100, “this”=18}
Kondo. {“Kondo”=100}
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Chapter 6

Subject Experiments of Multi-Party

Interaction
To evaluate the effectiveness of our proposed system, we conduct a lot of subject ex-

periments. These experiments contain not only quantitative evaluations such as the

measurement of response/residence time of communication but also qualitative evalu-

ations such as the analysis of human impressions of the Actroid.

6.1 Response Time

First, to verify the effectiveness of interruptivity, conversations between 68 speakers

and the robot were conducted by interruptible (i.e., the interruption is enabled) and

un-interruptible (i.e., the interruption is disabled).

6.1.1 Method

Table 6.1 shows the number of subjects and the number of communications; one com-

munication is defined as the period when a human talks to a robot and the robot reply.

In Table 6.1, α is the number of communications where a human interrupts the previous

interaction and β is the number of communications where a human didn’t interrupt. It

is desirable for HRI that the response time in case of both α and β is equivalent each

other. Interruption due to failure of speech recognition is not distinctive. When the

Table 6.1: The number of subjects and communications

un-interruptible interruptible

# of subjects 30 38

# of communications
α 29 48

β 98 130
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Figure 6.1: The snapshots of HRI experiments whose subjects are in various age groups
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Figure 6.2: Comparison of the response time between un-interruptible and interrupt-

ible

HRI system cannot decide the reaction from result of speech recognition failure, the

robot reacts for the request ”Can you say it one more time, please?”

Experiments were conducted for visitors who are in various age groups. Figure 6.1

shows the snapshots of experiments.

6.1.2 Results

Figure 6.2 shows average and standard deviation of response time. The response time

is defined as the duration from the moment which subject finishes speaking to the mo-

ment which Actroid-SIT starts executing the gesture. The main causes of the deviation,

are the difference of gesture length and whether success or failure of recognition by

Julius (i.e., the failure case is required more calculation time).

First, if the subject did not interrupt during the robot communicates, interruptible

and un-interruptible have the same algorithm. That’s why, they have little difference as

seeing the data which people did not interrupt in Figure 6.2. On the other hands, they

have the significant difference with the data which people attempted to interrupt. While

with un-interruptible the response time is twice slower, with interruptible it is almost

same time as in non-interruption case. Therefore, we confirmed reducing response

time. That is, our proposed method, interruptible can make HRI more smoothly.
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6.1.3 Discussion

Through whole experiments, younger and elder person tend to interrupt the previous

interaction more than adults do 1. Adults understand that robots are immature and

imperfect in communication and thus we can see their behavior to wait the incorrect

reaction without interruption. However, we cannot see such behavior in younger or

older person. The proposed HRI system is more effective for them.

6.2 Speaker Ratio and Residence Time

We evaluate the effectiveness of the proposed method, i.e., motion interruptivity and

motion parameterization. To do that, we compare the proposed system to the systems

where motion interruption and/or motion parameterization are not implemented.

6.2.1 Hypotheses and Predictions

The proposed motion interruption and parameterization make an HRI system more re-

sponsive and active. We believe people feel comfortable to communicate through the

system, because the motion parameterization makes the Actroid active thanks to ges-

tures which has φ, θ parameters such as idlingmotion by gesture #1 GAZE. This is why

the Actroid is busy looking around at people, and subjects might feel easy talking to the

Actroid. In addition, the motion interruption makes for responsive communication as

mentioned in Section 6.1. Thus, the response time (i.e., the latency of communication)

is decreased nevertheless the communication can be lively and durable. We expect that

a better HRI system gets higher speaker ratio and longer residence time. Hereby, we

made the following predictions.

· Prediction 1
The motion parameterization will increase people who voluntarily speak to the

Actroid.

· Prediction 2
The motion interruption will increase the residence time with the Actroid.

1Experiment were conducted for visitors, thus we couldn’t collect their true age information. Each

person is divided into three large groups manually, so there is ambiguity in these data. But we can

confirm the tendency of communication depending on age.
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6.2.2 Conditions

We controlled two conditions, the motion interruption (interruptible) and the motion

parameterization (parametric). Combining these conditions, there are four compar-

ative systems, UI+NP, I+NP, UI+P, and I+P. The systems are shown in Table 6.2.

Each system is indicated as follows:

· UI+NP is a conventional interaction system which does not consider both mo-
tion interruption and parameterization.

· I+NP is the one-to-one interaction system which enabled only the motion inter-
ruption.

· UI+P can parameterize gestures but cannot interrupt interaction.

· I+P is the multi-party interaction system which we proposed.

Of course the systems UI+NP, I+NP, and UI+P can interact with multiple peo-

ple, but UI+NP and UI+P cannot interrupt the interaction and, UI+NP and I+NP can

interact with people assuming that they are in front of the Actroid.

6.2.3 Method

Participants

Experiments were conducted for four weekdays in the Heijo palace site, Japan. One

of the above-mentioned systems was evaluated on one of the weekdays. 1,662 visitors

in total took part in these experiments as the subjects. Table 6.2 shows the number of

the speakers, non-speakers, and their totals (i.e., subjects) for each day. The subject in

the table is the number of people who approach the Actroid, the speaker is the number

of subjects who voluntarily spoke to the Actroid, and the non-speaker is the number

of subjects who did not speak to the Actroid (i.e., subject = speaker + non-speaker).

Subjects were in various age groups and had a similar age distribution for each day.

Settings

We used the Actroid as a receptionist and used Q & A communication, such as Q:

“Where is the bathroom?” A: “It is on your right.” It can also communicate dozens
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Speaker

Camera

Actroid-SIT
Microphone

Figure 6.3: Snapshot of HRI experiments when a speaker asks the Actroid-SIT

Table 6.2: The number of subjects, speakers and non-speakers with respect to four

comparative systems. The terms interruptible/un-interruptible means the motion in-

terruptivity was enabled/disabled and parametric/non-parametric means the motion

parameterization was enabled/disabled.

system condition speaker non-speaker subject

UI+NP un-interruptible and non-parametric 226 241 467

I+NP interruptible and non-parametric 165 267 432

UI+P un-interruptible and parametric 263 166 429

I+P interruptible and parametric 206 128 334
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of daily conversations such as Q: “How old are you?” A: “I was born three years ago.

And you?” Figure 6.3 shows a snapshot of the communication when a speaker asked

a question to the Actroid.

We assumed that among the subjects, only one subject would be allowed to speak

to the Actroid at one time. This assumption is plausible because it is difficult, even

for humans, to answer questions asked by multiple people simultaneously. We regard

a single person as a special case of multi-party HRI; we do not control the number of

attendees at one time.

6.2.4 Measurement

Two measurements were conducted:

· Speaker ratio
Define as the ratio of subject who spoke to the Actroid (i.e, speaker

subject
).

· Residence time
Define as the duration from the moment when the subject starts speaking to the

moment when the subject puts his/her microphone back onto its stand 1.

6.2.5 Results

First, we verified the Prediction 1. Figure 6.4 shows the results of speaker and non-

speaker for each system. A chi-square test was revealed significant differences among

conditions (χ2(3) = 62.765, p < .01, φ = 0.194). A residual analysis revealed that

speaker in UI+NP is significantly low (residual= −1.79, p < .10) and non-speaker

in UI+NP is significantly high (residual= 1.79, p < .10). speaker in I+NP is sig-

nificantly low (residual= −6.552, p < .01) and non-speaker is significantly high

(residual= 6.552, p < .01) in I+NP. speaker in UI+P is significantly high (residual=

4.064, p < .01) and non-speaker is significantly low (residual= −4.064, p < .01)

in UI+P. speaker in I+P are significantly high (residual= 4.601, p < .01) and non-

speaker in I+P are significantly low (residual= −4.601, p < .01). These results im-

plicitly indicates the motion parameterization increases speaker ratio.

1We assumed that in many cases, putting the microphone back represents to lose interest in the

Actroid.
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Figure 6.4: Comparison of speaker and non-speaker between four experimental sys-

tems
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Figure 6.5: Comparison of the mean and the standard error of the residence time be-

tween four experimental systems
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Next, we verified the Prediction 2. Figure 6.5 shows the mean and the standard er-

ror of the residence time for each system. A 2× 2 two-way repeated-measure analysis

of variance (ANOVA) was conducted (Nh = 208.96). A significant main effect in in-

terruptiblewas revealed (F (1, 856) = 39.22, p < .01, η2 = .044). Thus, we confirmed

that the motion interruption makes HRI a more durable form of communication.

6.3 Human Impression

In previous Section 6.2, we confirmed the motion interruptivity makes communication

more durable and the motion parameterization makes people easier to approach the

Actroid. In this section, we evaluate the effectiveness of the motion parameterization

after approaching the Actroid (i.e., during communication).

6.3.1 Hypothesis and Prediction

The proposed motion parameterization makes people easier to approach the Actroid.

We believe this result is caused by people perceived more positive impression of the

Actroid. Thus, we made the following prediction.

· Prediction
By the motion parameterization, people will perceive more positive impression,

that is, better impression to the Actroid.

6.3.2 Conditions

In this section, we controlled only one condition, the motion parameterization. The

interruptivity was always enabled, because we have already confirmed the interruptiv-

ity makes more responsive and durable communication. We assumed the result means

people perceived better impression of the Actroid. Thus, we measured human impres-

sions of the Actroid with two systems I+NP and I+P as mentioned in Section 6.2.2.

6.3.3 Method

Participants

Experiments were conducted with 42 subjects of various age groups (20 subjects for

the I+NP and 22 subjects for the I+P). All subjects were visitors who attended an open
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house day of our university and voluntarily answered a questionnaire at the end of the

communication with the Actroid. One of the systems was changed to another system

every one hour. We let subjects interact freely, without suggesting anything, such as

sitting position or timing during the communication process.

Settings

Subjects sit down on one of three seats placed in front of the Actroid, then communi-

cate with each other for a few minutes. Figure 6.6 shows the snapshots of the commu-

nications with the condition I+P, when the speaker sat on (a) right-side seat, (b) center

seat, and (c) left-side seat. As shown in Figure 6.6, the head and body of the Actroid

faced the speaker’s direction by motion parameterization. The other settings are the

same as described in Section 6.2.3.

6.3.4 Measurement

We used the Semantic Differential (SD) method [79] for the evaluation of human im-

pressions of the android. After the communication with the Actroid was finished, each

subject answered a questionnaire with 28 antonymous adjective pairs on a Likert scale

from one to seven points (i.e., one: the worst, seven: the best), as a SD profile. Each

adjective pair is shown in Table 6.3. The higher score represents a positive impression,

that is, a better impression.

6.3.5 Results

The results of the mean and the standard error of the SD profiles are shown in Fig-

ure 6.7. This figure shows that almost all scores in I+P are higher. Through detailed

analysis we found that the parameterization increases not only the speaker’s score, but

also his/her neighbor’s score.

Next, a factor analysis was conducted (eigenvalue ≥ 1, cumulative variance ≤
50%, factor loading≥ 0.5). Figure 6.8 shows four factor scores by Bartlettmethod [80]

and Promax rotation [81]. Each factor contains some adjectives as shown in Table 6.4.

Note that we name each factor based on its adjectives.

A student t-test revealed that activity (p < .01), sophistication (p < .01), speedi-

ness (p < .01), and friendliness (p < .1) in I+P are significantly higher than ones in
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Speaker

(a) Right-side

Speaker

(b) Center

Speaker

(c) Left-side

Figure 6.6: Snapshots of HRI experiments with the system I+P where a speaker is

located (a) right-side, (b) center and (c) left-side of chairs

Table 6.3: 28 antonymous adjective pairs (left-side: positive, right-side: negative)

described in the questionnaire

positive negative positive negative

good bad sensitive insensitive

kind afraid fulfilling empty

cute hateful bright dark

fun boring active passive

warm cold familiar unfamiliar

approachable unapproachable fast slow

humanly mechanical quick dull

cheerful awful interesting uninteresting

friendly unfriendly considerate selfish

likable dislikable complicated simple

positive negative safe dangerous

affable disgusting comprehensive incomprehensive

wise stupid intense mild

flashy plain strong weak
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Figure 6.7: The mean and the standard error of the SD profiles of I+NP and I+P scores.

We used a Likert scale from one to seven points (i.e., one: the worst, seven: the best)

for the questionnaire.
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Figure 6.8: The mean scores and the standard errors of the four factors friendliness, ac-

tivity, sophistication, and speediness by analyzing the SD profiles shown in Figure 6.7.

The higher score represents a positive impression

Table 6.4: Four factors given by the factor analysis and their containing adjectives

(positive ones only)

factor adjectives

friendliness cute, like, friendly, cheerful, positive, kind, fun

activity active, fulfilling, sensitive, considerate

sophistication comprehensive, approachable, wise

speediness flashy, quick, fast, warm
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I+NP. Therefore, our hypothesis which the motion parameterization makes more pos-

itive impression was supported. This result might indicate that the subjects implicitly

perceived the Actroid as being wiser and moving quicker by the motion parameteri-

zation. Therefore, we concluded that body gesture planning is one of the most useful

functions for a more human-like HRI system.
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Chapter 7

Conclusion

7.1 Construction of Reconfigurable Motion Database

In this thesis, we focused on online body gesture planning for android based on a pro-

posed Reconfigurable Motion Database (RMDB) in human-robot interaction (HRI)

and human-robot symbiosis (HRS). The RMDB is the integration of data-driven meth-

ods and online planning methods. Hereby, user-intended interruption can be allowed

in our HRI system while keeping features of original human-like motion in database.

In addition, the RMDB can adjust gestures based on speaker and/or object location by

motion parameterization and synthesis. Given a human-like motion sequence, which

is easily obtained from a motion capture system, RMDB classifies similar motion se-

quences and memorizes them as a parametric gesture. The classification method called

a Bag-of-motion-features can retrieve motions based on a semantic similarity. This

method uses a wavelet as a local temporal feature of a motion. This idea is inspired by

an image processing technique which expresses a local spatial information of an image

in frequency domain. Motion is finally classified by comparing the Bag-of-motion-

features which is also inspired by an image retrieval method, the Bag-of-features.

We conducted experiments using one-hour motions of 15 subjects to construct the

motion database and evaluate its performance of the proposed method with several

conventional methods. First, through the results of the accuracy of a pointing gesture

and idle gesture, we confirmed that the mean errors of a location or angle parameters

decrease monotonically in proportion to the number of sampling gestures. As a result,

we had a common guidance to design a new parametric motion. Next, the number of

correctly classified motions by the proposed method was larger than the others for all

nine query gestures. The computational time of the motion database construction was

also much shorter than the others. Finally, we also confirmed that the proposed method

can interrupt motion to motion anytime without loss of key pose information and sharp

velocity changes associated with self-collision. It seems to be maintained their motion

features.
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7.2 Application to Human-Robot Interaction

We developed a novel interaction system on an android Actroid-SIT which the RMDB

is embedded for body gesture. In addition, our system can generate facial expression

with five emotions, and includes gaze movement based on the knowledge of social

animals. The system architecture is inspired by the Episode Rule Selector, and its

components are connected via the Key-Value Store. The Key-Value Store has ACID

(Atomicity, Consistency, Isolation, and Durability) properties. Therefore, we solve the

issue on synchronization among components.

Experimental results revealed the effectiveness of the RMDB method for the im-

provement of human impressions. In first experiments, over 60 subjects attended the

experiment to evaluate the effectiveness of proposed method, and we confirmed the

feasibility of smooth communication, especially for children and seniors. Our system

is considered about interruption on the way in HRI. Therefore, a robot can reply rapidly

against human query.

To compare a speaker ratio (i.e., the ratio of the number of people who start speak-

ing to the Actroid, to the number of people who approach the Actroid) and the resi-

dence time of communication with or without the motion interruption and parameteri-

zation that we proposed, we conducted multi-party HRI experiments for 1,662 subjects

in total. With our HRI system the speaker ratio was over 60%, though that of conven-

tional systems was less than 50%. The residence time of communication was longer in

our HRI system. Thus, interruptivity makes communication in HRI more durable and

responsive.

By analyzing human impressions of the Actroid, we proved that motion parame-

terization contributes to the Actroid being wiser and more comprehensive. In these

experiments, the Actroid generates appropriate gestures using the parameterization of

RMDB, and can face in the speaker’s direction. As a result of the SDmethod and factor

analysis, a 1% level of significant differences between parametric and non-parametric

gestures exist in activity, sophistication, and speediness factors. We found that the way

of communication is dissimilar among age, gender, and character.
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7.3 Future Work

We are now using only upper-body motion for body gestures. However, it is important

to expand the proposed method into whole-body gestures including facial expression,

because humanoids can control their whole-body motion and androids can control their

facial expression. In addition, our method is original for motion retrieval and classifi-

cation, but we hope that the method can be applied to online motion recognition.

Furthermore, we need to make the system more advanced by adding and/or up-

grading its components. For example, we would like to implement a speech recogni-

tion component for multiple voices. If the component could be successful to work, we

would easily evaluate the effectiveness of our HRI system with multiple people. We

must also consider the automatic creation of episode rules by through a human history

of tele-operation based on aWizard of Oz method [82].
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[40] C. Schüldt, I. Laptev, and B. Caputo, “Recognizing human actions: A local svm

approach,” in Proceedings of ACM International Conference on Pattern Recog-

nition, pp. 32–36, 2004.

[41] C. Cortes and V. Vapnik, “Support-vector networks,”Machine Learning, vol. 20,

no. 3, pp. 273–297, 1995.

[42] T. Yoshimura, K. Tokuda, T. Masuko, T. Kobayashi, and T. Kitamura, “Simulta-

neous modeling of spectrum, pitch and duration in hmm-based speech synthesis,”

in Proceedings of Eurospeech, pp. 2347–2350, 1999.

[43] Z. H. Ling, Y. J. Wu, Y. P. Wang, L. Qin, and R. H. Wang, “Ustc system for

blizzard challenge 2006 an improved hmm-based speech synthesis method,” in

Blizzard Challenge Workshop, 2006.

[44] H. Zen, T. Toda, M. Nakamura, and K. Tokuda, “Details of nitech hmm-based

speech synthesis system for the blizzard challenge 2005,” IEICE Transaction on

Information and Systems, no. 1, pp. 325–333, 2007.

[45] A. W. Black, H. Zen, and K. Tokuda, “Statistical parametric speech synthesis,”

in Proceedings of ICASSP, pp. 1229–1232, 2007.

[46] J. Yu, M. Zhang, J. Tao, and X. Wang, “A novel hmm-based tts system using both

continuous hmms and discrete hmms,” in Proceedings of ICASSP, pp. 709–712,

2007.

[47] T. Inamura, “Recognition, teaching and generation of human’s motion by hmm,”

Journal of Robotics Society of Japan, vol. 29, no. 5, pp. 419–422, 2011.

[48] J. Ido, Y. Matsumoto, T. Ogasawara, and R. Nishimura, “Humanoid with in-

teraction ability using vision and speech information,” in Proceedings of IEEE

International Conference on Robots and Systems, pp. 1316–1321, 2006.

[49] D. Lee, C. Ott, and Y. Nakamura, “Mimetic communication with impedance con-

trol for physical human-robot interaction,” in Proceedings of IEEE International

Conference on Robotics and Automation, pp. 1535–1542, 2009.

86



REFERENCES
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A MOTION RETARGETING ALGORITHM

Appendix

A. Motion Retargeting Algorithm

Captured motions need to transform from a human to a robot coordinates. In this

research, it is required to register these two coordinates, because there are lots of sub-

jects and they move freely. The invariant transform is also utilized to calibrate the

motions. Therefore, we define a dissimilarity between human and robot appearances

as Equation (A.1), which is defined as the distance between all of human’s retroreflec-

tive marker p′
i

(
= (x′i, y

′
i, z

′
i)
)
and corresponding robot’s marker pi. We generate robot

motion sequences by minimizing the equation.

arg min
θ,xo,yo

∑
i

wi‖pi −Tθ,xo,yop
′
i‖2. (A.1)

The coordinate system is shown in Figure 3.1 (b). Tθ,xo,yo indicates top-view rigid

two dimensional transformation matrix. xo and yo are translation, θ is an angle of

rotation about z axis, and the weight coefficient wi is chosen empirically to assign

more important markers. This optimization has a closed-form solution [83]:

θ = arctan

∑
i wi(xiy

′
i − x′iyi)− 1∑

i
wi

(x̄iȳ
′
i − x̄′iȳi)∑

iwi(xix
′
i + yiy

′
i)− 1∑

i
wi

(x̄ix̄
′
i + ȳiȳ

′
i)
, (A.2)

xo =
1∑
i wi

(x̄− x̄′ cos θ − ȳ′ sin θ), (A.3)

yo =
1∑
i wi

(ȳ + x̄′ sin θ − ȳ′ cos θ), (A.4)

where x̄ =
∑

i wixi and the other terms with bar are defined similarly. Figure A.1

shows an example to transform a pointing gesture. The blue and red points in the

middle row of Figure A.1, indicate the positions of human’s retroreflective markers

p′ and robot’s markers p, respectively. We eliminated motions whose dissimilarity

calculated by Equation (A.1) is more than a threshold.
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Figure A.1: The results of conversions to appropriate Actroid-SIT configuration from

captured pointing sequence
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B GAZE MOVEMENT PLANNING

B. Gaze Movement Planning

Masuko et al. [31] proposed a method for gaze movement of a CG avatar. We applied

this method for the Actroid’s gaze movement.

B.1 Sharing Rate and Convergence

Gaze angle Vx indicates the angle between the front direction and the gaze direction as

shown in Figure B.1. Vx is the sum of the head angleHx between the head direction and

the gaze direction Ex. The sharing rate Dx = Ex

Vx
indicates the ratio of eye movement

to head movement in gaze motion. Although the sharing rate is altered by ages and/or

sexes, in this paper, we employ the sharing rate defined in Equation (B.1).

Dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 |Vx| ≤ π
12

π
6
−|Vx|

π
12

π
12
≤ |Vx| ≤ π

6
.

0 otherwise

(B.1)

Eye convergence occurs due to a gap in the direction from both eyes, when gazing

at an object located at finite distance. Let (x, y, z) be an object position. Given that the

direction of the object is Ex, the direction of left eye Exl, and that of the right eye Exr,

Exl +Exr = Ex

2
can be satisfied. Then, we generate angles Vx and Hx considering the

sharing rate and convergence by the following equations:

Vx = tan−1
(
x

z

)
, (B.2)

Hx = (1− αDx)Vx, (B.3)

where α (0 ≤ α ≤ 1) is for adjustment of the convergence ratio, which is empirically

assigned. Next, given an object point (x̀, ỳ, z̀) calculated by (x, y, z) rotatingHx along

head coordinates, we measure (x̀ − l
2
, ỳ, z̀ + d) as the length from the right eye to

the object and (x̀ + l
2
, ỳ, z̀ + d) as the same for the left eye. We calculate angles

Exl, Exr by Equations (B.4) and (B.5). Finally, we can plan the gaze motion as shown

in Figure B.2. There are examples of angle Vx as −π
3
,−π

6
,+π

6
,+π

3
, respectively.
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Ex

Hx

(x,y,z)

Vx

Exr

Exl

l

d

X

Z

Figure B.1: The definition of the angles of the head and both eyes by considering the

sharing rate and convergence

Figure B.2: Examples of gaze motions facing angle Vx = −π
3
,−π

6
,+π

6
,+π

3
, respec-

tively
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Exl = tan−1

(
x̀+ l

2

z̀

)
, (B.4)

Exr = tan−1

(
x̀− l

2

z̀

)
. (B.5)

B.2 Perception of Gaze

It is required to determine the α for the evaluation of the convergence and sharing

rate. We conducted two comparison experiments. The Actroid first faces front for

three seconds, then performs gaze motion toward (x, 500 [mm], 0 [mm]) where |x| ≤
400 [mm] at 100 [mm] intervals randomly for five seconds. The experiments were

conducted for 11 subjects. Each subject stands 1800 [mm] from the Actroid, and

marks perceived locations on the bar placed between the subject and Actroid, eight

times in total.

Figure B.3 (a) and Figure B.3 (b) show the relation between target location x and

subject’s estimated location during the experiments of convergence and sharing rate,

respectively. As shown in Figure B.3 (a), in the case of existence of convergence the

estimation was closer to the true value than that in the case of absence of convergence.

The data among |x| ≤ 200 [mm] has 5% level of significant difference by t-tests.
Figure B.3 (b) shows the effects of the sharing rate. The smaller α values (i.e., the

smaller eye movements), the closer to the true value. The data between α = 1.0 and

0.5 when |x| ≤ 200 [mm], has 5% level of significant difference by t-tests. How-

ever, Bahill et al. [22] claimed that 86% of humans expresses gaze motion only by eye

movement while their gaze direction is within π
12
. Figure B.4 shows the relation be-

tween target location x and eye direction Ex, and the Actroid’s face appearance when

α = 1.0, 0.5, respectively. In the result of α = 1.0, the eye direction Ex >
π
12
when

x = ±200 [mm]. The Actroid presents overestimation of gaze direction and the face
poses tend to be more to the right, as you can see in Figure B.4. Because of that, we

used α = 0.5 in this paper.
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(a) Convergence (b) Sharing rate

Figure B.3: Comparison of the precision (a) with or without convergence, and (b)

several α ratios.
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(a) Target location and eye direction

(b) α = 1.0

(c) α = 0.5

Figure B.4: Relation between target location x and eye direction Ex: (a) the chart and

the Actroid’s appearance when α = (b) 1.0 and (c) 0.5
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C. Design of Episode Rule

Our HRI system has around 200 episode rules. The episode rules are described using

a script language, Jython. In this section, we describe how to design the episode rules

using three examples. The examples indicate the response to the question “What’s your

name?” (Figure C.1), “My name is...” (Figure C.2), and “You are cute.” (Figure C.3).

The following three functions are defined in their scripts.

checkPrecondition(self, words, location)

This function has two arguments. The words contains a set of pairs which have a key-

word and its score. The location contains the three dimensional location of a speaker.

According to their sensory data and the history of interaction which the HRI system

has, this function returns a value.

generateInteraction(self)

If a rule whose score of the function checkPrecondition was the highest, its other

functions generateInteraction and applyPosteffect are called in order. The gener-

ateInteraction returns next interaction scenario which contains a type of gesture and

its parameter, response sentences, and an emotion.

applyPosteffect(self)

This function is called to set the posteffect of the selected rule, when a current interac-

tion is finished. The posteffect is utilized for next continuous interaction.
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import jarray
from java.util import *
from jp.naist.robotics.mpt.hri import *

class WhatYourName(AbstractEpisodeRule):
def __init__(self):

self.motion = Gesture.Motion.POINTING_MYSELF
self.param = jarray.zeros(2, "d")
self.emotion = Dialogue.Emotion.NORMAL

   
def checkPrecondition(self, words, location):

if SharedData.getBoolean("hri.alreadyAskedName"):
return 0

sum = 0
for w in words.keySet():
if self.containAny(w, [“you”, “name", “what", ”who"]):

sum += words[w]
self.param = self.locationToAngle(location)
return sum

def generateInteraction(self):
sentence = “My name is " + SharedData.get(u"robot.name”) \

+ ”. What’s your name?”
return Interaction(self.motion, self.param, sentence, self.emotion)

def applyPosteffect(self):
SharedData.setBoolean("hri.alreadyAskedName", True)

Figure C.1: The episode rule script for the question “What’s your name?”
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import jarray
from java.util import *
from jp.naist.robotics.mpt.hri import *

class MyNameIs(AbstractEpisodeRule):
def __init__(self):

self.motion = Gesture.Motion.BOTH_SPREADING
self.param = jarray.zeros(3, "d”)
self.emotion = Dialogue.Emotion.NORMAL
self.speaker = ””

def checkPrecondition(self, words, location):
if SharedData.getBoolean("hri.knowSpeakerName"):

return 0
sum = 0
if SharedData.getBoolean("hri.alreadyAskedName"):

sum += 100
for w in words.keySet():

if self.containAny(w, [”I“, ”my“, ”name"]):
sum += words[w]

self.speaker = self.primeKeyword(words)
return sum

def generateInteraction(self):
sentence = “Your name is " + self.speaker + ”, isn’t it?”
return Interaction(self.motion, self.param, sentence, self.emotion)

 
def applyPosteffect(self):

SharedData.setBoolean("hri.knowSpeakerName", True)
SharedData.set("speaker.name", self.speaker)

Figure C.2: The episode rule script for the question “My name is ...”

100



C DESIGN OF EPISODE RULE

import jarray
from java.util import *
from jp.naist.robotics.mpt.hri import *

class YouAreCute(AbstractEpisodeRule):
def __init__(self):

self.motion = Gesture.Motion.NO
self.motion2 = Gesture.Motion.POINTING
self.param = jarray.zeros(2, "d")
self.param2 = jarray.zeros(3, "d")
self.emotion = Dialogue.Emotion.HAPPY
self.phrase = “cute”

def checkPrecondition(self, words, location):
sum = 0
for w in words.keySet():

if self.containAny(w, [“you", “your"]):
sum += words[w]

elif self.containAny(w, [“cute", ”beautiful", “pretty”]):
self.phrase = w 
sum += words[w]

self.param = self.locationToAngle(location)
self.param2 = location
return sum

def generateInteraction(self):
ml = ArrayList()
ml.add(self.motion)
ml.add(self.motion2)
pl = ArrayList()
pl.add(self.param)
pl.add(self.param2)
sentence = ”No way! You’re more ” + self.phrase;
return Interaction(ml, pl, sentence, self.emotion)

Figure C.3: The episode rule script for the question “You are cute.”
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