
NAIST-IS-DD1061018

Doctoral Dissertation

Techniques for Improving Transition-based
Dependency Parsing Algorithms

Katsuhiko Hayashi

March 15th, 2013

Department of Information Processing
Graduate School of Information Science
Nara Institute of Science and Technology

A Doctoral Dissertation
submitted to Graduate School of Information Science,

Nara Institute of Science and Technology
in partial fulfillment of the requirements for the degree of

Doctor of ENGINEERING

Katsuhiko Hayashi

Thesis Committee:
Professor Yuji Matsumoto (Supervisor)
Professor Satoshi Nakamura (Co-supervisor)
Associate Professor Masashi Shimbo (Co-supervisor)
Assistant Professor Mamoru Komachi (Co-supervisor)

Techniques for Improving Transition-based
Dependency Parsing Algorithms∗

Katsuhiko Hayashi

Abstract

The transition systems for dependency analysis usually employ the shift-reduce
parsing algorithm, which offers linear-time complexity, and is much faster than the
graph-based parsers. In recent years, the beam search and dynamic programming
algorithms have been proposed for improving the transition systems. However, the
transition-based algorithms empirically have lower accuracy than the graph-based al-
gorithms. This thesis describes some methods for improving the accuracy of the
transition-based dependency parsing algorithms.

To improve the accuracy of the previous transition systems, we propose a novel top-
down transition system for dependency analysis. Its deductive system is similar to that
of the “Earley” parsing algorithm for the context-free grammars or that of the “Head-
corner” parsing algorithm for head context-free grammars. However, unlike the Earley
and Head-corner parsers, the proposed parser is data-driven and use no explicit gram-
mar rules. Therefore, our proposed parser performs the “Earley” prediction by using
not grammar rules but a statistically learned prediction model. Unlike shift-reduce
parsers, the top-down parser can integrate information of an overall input sentence into
the parser model through the top-down prediction. We empirically show that the pro-
posed parser achieves the state-of-the-art accuracy, but its time complexity O(n2) for a
sentence length n is worse than that of the shift-reduce parser.

The proposed top-down transition system has another important advantage over the
previous transition systems. There are no spurious ambiguity problems in it. By apply-
ing the essence of the non-spuriousity to a bottom-up arc-standard transition system,
we also propose a novel bottom-up transition-based shift-reduce parsing algorithm.

∗Doctoral Dissertation, Department of Information Processing, Graduate School of Information
Science, Nara Institute of Science and Technology, NAIST-IS-DD1061018, March 15th, 2013.

i

This algorithm has not only no spurious ambiguity problems but also the linear-time
complexity. Therefore, it works faster than the top-down parsing algorithm.

The dynamic programming algorithm can be applicable to the proposed shift-reduce
parsing algorithm. The algorithm with dynamic programming can produce not only
k-best outputs but also packed derivation forests which efficiently keep an exponential
number of derivations. The non-spuriosity gurantees that there is an one-to-one cor-
renspondence between a derivation and an output tree, and the k-best lists or packed
forests do not contain any non-unique trees. Through experiments, we also show that
the elimination of spurious ambiguity makes reranking algorithms work better.

Keywords:

Dependency Parsing, Incremental Parsing, Head-corner Parsing, Packed Forest, Sta-
tistical Machine Translation

ii

iii

Acknowledgments

Foremost, I would like to express my sincere gratitude to my advisor Prof. Yuji
Matsumoto for the continuous support of my Ph.D study and research, for his patience,
motivation, enthusiasm, and immense knowledge. His guidance helped me in all the
time of research and writing of this thesis. I could not have imagined having a better
advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.
Satoshi Nakamura, Associate Prof. Masashi Shimbo, and Assistant Prof. Mamoru
Komachi, for their encouragement, insightful comments, and hard questions.

My sincere thanks also goes to Dr. Taro Watanabe, Dr. Jun Suzuki, Hajime Tsukada,
and Dr. Tsutomu Hirao for offering me the internship opportunities in their groups and
leading me working on diverse exciting projects.

I thank my fellow labmates in Computational Linguistics Group: Kiso Tetsuo, Shuhei
Kondo and Katsumasa Yoshikawa for the stimulating discussions, for the sleepless
nights we were working together before deadlines, and for all the fun we have had in
the last three years.

Last but not the least, I would like to thank my family: my parents Yoshihiko
Hayashi and Mayumi Hayashi, for giving birth to me at the first place and support-
ing me spiritually throughout my life.

v

Contents

Acknowledgments iii

1 Introduction 1
1.1 Background . 1
1.2 Data-driven Dependency Parsing . 3

1.2.1 Graph-based Dependency Parsing 3
1.2.2 Transition-based Dependency Parsing 3
1.2.3 Joint Graph/Transition-based Parsing 5

1.3 Contribution of the Thesis . 5
1.3.1 Lack of Top-down Approaches 6
1.3.2 Spurious Ambiguity Problem 7
1.3.3 How to integrate graph-based models with transition-based mod-

els . 7
1.4 Thesis Outline . 8

2 Basics 9
2.1 Notational Convention . 9

2.1.1 Definition of Projective Dependency Graph 9
2.1.2 Definition of Packed Dependency Forests as Hypergraph . . . 11
2.1.3 Transition System for Projective Dependency Parsing 12
2.1.4 Spurious Ambiguity . 13
2.1.5 Correctness of the Transition-based System 13

2.2 Transition-based Parsing Algorithms 13
2.2.1 Arc-Standard Shift-Reduce Parsing 13
2.2.2 Arc-Eager Shift-Reduce Parsing 15
2.2.3 Discriminative Model for Transition Systems 16
2.2.4 Non-Greedy Extension . 16
2.2.5 Dynamic Programming . 17

2.3 Discriminative Learning Algorithm 20
2.3.1 Structured Perceptron . 20
2.3.2 Early Update for Structured Perceptron 21

3 Top-down Transition-based Dependency Parsing 23
3.1 Motivation . 23
3.2 Related Work . 24
3.3 Deductive System . 24
3.4 Statistical Parsing Models . 27

3.4.1 Stack-based Model . 27
3.4.2 Weighted Prediction . 28
3.4.3 Weighted Deductive System 30

3.5 “First” Function for a Lookahead 31
3.6 Experiments . 32

3.6.1 Experimental Setups . 32
3.6.2 Results on English Data . 32
3.6.3 Results on Chinese Data . 35
3.6.4 Error Analysis . 36

3.7 Summary . 37

4 Transition-based Dependency Parsing System without Spurious Ambigu-
ity 39
4.1 Motivation . 39
4.2 Related Work . 40
4.3 Bottom-up Transition-based System using Scanner Action for Elimi-

nating Spurious Ambiguity . 40
4.4 Non-Spurious of the Proposed System 41
4.5 Extraction of Packed Dependency Forests 42
4.6 Experiments (baseline vs. proposed) 44

4.6.1 Experimental Setups . 44
4.6.2 Comparison of arc-standard transition-based parsing with and

without spurious ambiguity: Parsing Accuracy and Time . . . 44
4.6.3 Comparison of arc-standard transition-based parsing with and

without spurious ambiguity: Oracle Accuracy on Packed Forests
and K-best lists . 46

4.7 Summary . 46

vi

5 Dependency Forest Reranking 49
5.1 Introduction . 49
5.2 Related Work . 50

5.2.1 How to Handle Spurious Ambiguity 50
5.2.2 Methods to Improve Dependency Parsing 51

5.3 Arc-Standard Shift-Reduce Parsing 51
5.4 Experiments (Spurious Ambiguity vs. Non-Spurious Ambiguity) . . . 53
5.5 Decoding Algorithms for Hypergraph Search 54

5.5.1 Generalized Viterbi Algorithm 54
5.5.2 K-best Generalized Viterbi Algorithm 56

5.6 Forest Reranking . 57
5.6.1 Discriminative Reranking Model 57
5.6.2 Features for Discriminative Model 58
5.6.3 Oracle for Discriminative Training 59

5.7 Experiments (Discriminative Reranking) 61
5.7.1 Experimental Setting . 61
5.7.2 Test with Gold POS tags . 61
5.7.3 Test with Automatic POS tags 63
5.7.4 Analysis . 64
5.7.5 Experiments on Chinese . 66

5.8 Summary . 67

6 Conclusions 71

Bibliography 75

vii

ix

List of Figures

1.1 An example of a labeled dependency tree 2
1.2 A transition sequence of the deterministic arc-standard shift-reduce de-

pendency parser . 4
1.3 A transition lattice of the arc-standard shift-reduce dependency parser

with beam search . 4

2.1 An example of an unlabeled projective dependency tree for a sentence
“I saw a girl with red hair.” . 10

2.2 An example of packed dependency forest 11
2.3 The arc-standard transition-based deductive system for projective de-

pendency graphs . 14
2.4 The arc-eager transition-based deductive system for projective depen-

dency graphs: means “take anything”. 15
2.5 The arc-standard transition-based dependency parsing deductive sys-

tem for beam search: s0.h denotes a root node index of a tree s0. a↷b
denotes that a tree b is attached to a tree a. 17

2.6 The arc-standard transition-based dependency parsing deductive sys-
tem for beam search with dynamic programming: means “don’t care”. 18

3.1 The non-weighted deductive system of top-down dependency parsing
algorithm: means “don’t care”. 25

3.2 Stages of the top-down deterministic parsing process for a sentence “I
saw a girl”. 26

3.3 Feature window of trees on stack S: The window size d is set to 2.
Each x.h, x.lc and x.rc denotes root, left and right child nodes of a
stack element x. 27

3.4 An example of tree structure: Each h, l and r denotes head, left and
right child nodes. 29

3.5 Scatter plot of parsing time against sentence length, comparing with
top-down, 2nd-MST and shift-reduce parsers (beam size: 8, pred size: 5) 34

3.6 A parsing result of shift-reduce parser for a clause sentence 36
3.7 A parsing result of top-down parser for a clause sentence 37

4.1 The dynamic programming arc-standard transition-based deductive sys-
tem without spurious ambiguity . 41

4.2 An example of a dependency derivation tree produced by the non-
spurious transition-based system: the ∗ symbol on some vertices in-
dicates that head words of them have not been scanned yet. 43

5.1 The arc-standard transition-based dependency parsing system with dy-
namic programming: means “don’t care”. a↷b denotes that a tree b
is attached to a tree a. 52

5.2 An example of packed dependency (derivation) forest 53
5.3 Each plot shows oracle unlabeled accuracies of spurious k-best lists,

spurious forests, and non-spurious forests. The oracle accuracies are
evaluated using unlabeled accuracy including punctuation. 57

x

xi

List of Tables

3.1 Features template for the stack-based model of the top-down transition-
based parsing system: w and t denote a word and a part-of-speech tag. 28

3.2 short caption . 33
3.3 Oracle score, choosing the highest accuracy parse for each sentence

on test data from results of top-down (beam 8, pred 5) and shift-reduce
(beam 8) and MST(2nd) parsers in Table 3.2. 34

3.4 Results for Chinese Data (CoNLL-06) 35
3.5 Sentences which include relative cluases (482 sentences) 35
3.6 Parsing Accuracies for longer sentences than 30. 36

4.1 Unlabeled accuracies and parsing times for parsing the 3019 test sen-
tences . 44

4.2 Unlabeled accuracies and parsing times for parsing the 2000 test sen-
tences . 45

4.3 Unlabeled oracle accuracies and average percentages of distinct trees
in k-best lists for parsing the 3019 test sentences 45

4.4 Unlabeled oracle accuracies and average percentages of distinct output
trees in 1000-best trees extracted from packed forests 46

5.1 Additional feature templates for shift-reduce parsers 54
5.2 Unlabeled accuracy scores (UAS) and parsing times for parsing devel-

opment and test data. 55
5.3 The percentages of distinct dependency trees in 10, 100, 1000 and

10000 best trees extracted from spurious forests with several beam sizes. 56
5.4 Comparison of spurious (sp.) and non-spurious (non-sp.) forests: each

forest is produced by baseline and proposed shift-reduce parsers using
beam size 12 for 39832 training sentences with gold POS tags. 60

5.5 Training times on both spurious and non-spurious packed forests (beam
12) . 60

5.6 Comparison of spurious (sp.) and non-spurious (non-sp.) forests: each
forest is produced by baseline and proposed shift-reduce parsers using
beam size 12 for test data (WSJ23) with gold POS tags. 61

5.7 Unlabeled accuracy scores and cpu times per sentence (parsing+reranking)
when parsing and reranking test data (WSJ23) with gold POS tags . . . 62

5.8 Comparison with other systems . 63
5.9 Accuracy and the number of non-zero weighted features of the lo-

cal reranking models with and without guide features: the first- and
second-order features are named for MSTParser. 64

5.10 Accuracy and the number of non-zero weighted features of the non-
local reranking models with and without guide features: the first- and
second-order features are named for MSTParser. 65

5.11 Unlabeled accuracy, root correct rate, and sentence complete rate: these
scores are measured on test data (WSJ23) without punctuations. 66

5.12 Head correct rate, recall, precision, F-measure, and complete rate of
coordination strutures: these are measured on test data (WSJ23). . . . 66

5.13 Recall, precision, and F-measure of grand-child structures whose grand
parent is an artificial root symbol: these are measured on test data
(WSJ23). 67

5.14 Results on Chinese Treebank data (CTB5): evaluations are performed
without punctuations. 67

xii

1

Chapter 1

Introduction

1.1 Background
Understanding of natural language syntax and parsing is a very important problem

for many useful natural language processing (NLP) applications such as machine trans-
lation [83, 85, 32, 61, 62]. Researchers in the computational linguistics have studied
syntactic formalisms to represent the structure of natural language sentences, and in
recent years lexicalized grammar formalisms have received an increasing amount of
attention from both theoretical and practical standpoints.

Dependency grammar is a kind of lexicalized grammar formalism, has largely devel-
oped especially in Europe [60], and syntactic dependency representations of sentences
have a long history in theoretical linguistics [28, 22, 38, 29, 76, 2, 18].

Recently, the computational parsing community has found renewed interest in de-
pendency parsing due to its efficient computational properties and ability to naturally
model non-nested constructions, which is important in freer-word order languages such
as Czech, Dutch, and German.

A dependency representation consists of lexical entities (words, here) linked by bi-
nary asymmetrical relations, and can be defined as a labeled (or unlabeled) directed
graph. To make the graph a rooted tree, some constraints such as the single-head,
acyclicity and connectedness are imposed on it. Many practical systems for depen-
dency parsing also assume the projectivity constraint [28] so that if word A depends
on word B, then all words between A and B are also subordinate to B. Free word or-
der languages do not conform the projectivity, but non-projective dependency parsing
with higher-order features is usually computationally more expensive than projective
parsing [59]. A projective dependency tree is examplified in Figure 1.1. Dependency

$ John hit the ball with the bat

ROOT

NP-SBJ DEP

NP-OBJ

PP

NP

DEP

Figure 1.1: An example of a labeled dependency tree

arcs in the labeled dependency tree are labeled by functional categories like NP-OBJ,
NP-SBJ and DEP.

There exist both grammar-driven and data-driven methods for dependency parsing.
In the grammar-driven approach, Hays [28] and Gaifman [22] formulated a depen-
dency grammar very close to context-free grammar (CFG) [1], and the well-known
CKY and Earley parsing algorithms [41, 84, 15] can be used for Hays and Gaifman’s
dependency grammar parsing [30, 52]. Bilexical grammar [18] subsumes many lexical
dependency grammars such as head automaton grammar [2], and an efficient dynamic
programming algorithm exists for bilexical grammar parsing [21, 18].

On the other hand, in the NLP community, many recent studies have focused on data-
driven dependency parsing [48]. The head-driven CFG parsing systems [9, 10] exploit
the dependency relations for the construction of a CFG-style constituent representa-
tion, and score parse trees with a generative model. Unlike head-driven CFG parsing,
“pure” data-driven parsers use a statistically learned model solely from annotated data
and do not use any explicit grammar rules. This means that the “pure” data-driven pars-
ing systems produce the form of a dependency structure directly. Henceforth, when we
use the word “data-driven” in this thesis, it means “pure data-driven”.

There are two main approaches to data-driven dependency parsing. One is the graph-
base approach [20, 19, 57] and the other is the transition-based approach [82, 65, 23].
While graph-based parsers have quadratic or higher time complexity, transition-based
parsers typically offer linear-time complexity. Therefore, the transition-based parsers
run faster than the graph-based parsers in practice. Though the current state-of-the-
art graph-based [46, 73, 86] systems outperform the transition-based systems [37, 88],
the practical usefulness of the latter has drawn more and more attention into the NLP
researchers.

We give an overview of the graph-based and transition-based dependency parsing
approaches, and subsequently describe joint approach of the two methods.

2

1.2 Data-driven Dependency Parsing

1.2.1 Graph-based Dependency Parsing

Eisner [19] proposed a generative model of dependency parsing and the cubic chart
(Eisner-CKY) parsing algorithm for projective dependency analysis. Though not ex-
plicitly called graph-based, Eisner-CKY algorithm is viewed as an arc-factored graph-
based parser in which all parameters are associated with individual dependency arcs.

This algorithm has established the foundation of both second-order graph-based
[58, 5] and third-order graph-based parsers [46]. The third-order algorithm considers
substructures containing three dependencies, and it achieves current state-of-the-art ac-
curacy. However, it requires O(n4) time complexity. Recently, vine-pruning technique
has been proposed to improve the efficiency of the third-order graph-based parser [73].
Zhang and McDonald [86] applied cube-pruning [35] to approximate the third-order
graph-based parsing inference by (k-best) Eisner-CKY algorithm.

Non-projective dependency parsing algorithm for an arc-factored model was pro-
posed by McDonald et al. [57]. They adapted the Chu-Liu-Edmonds maximum span-
ning tree (MST) algorithm [7, 16], to find the highest scoring dependency tree. The
MST parsing algorithm has the time complexity of O(n2) but is not capable of taking
higher-order features into account.

Riedel and Clarke [72] used (Incremental) Integer Linear Programming to allow the
use of global language knowledges as constrains for non-projective dependency pars-
ing. Koo et al. [47] solved non-projective dependency parsing by dual decomposition,
in which subgradient method minimizes the dual objective of MST and dynamic pro-
gramming parsing models.

1.2.2 Transition-based Dependency Parsing

The deterministic transition-based approach was first proposed by Kudo and Mat-
sumoto [49, 50] and Yamada and Matsumoto [82]. These systems process the input
sentence of length n from left to right repeatedly as long as new dependencies are
added. As the result, the worst case time complexity becomes O(n2).

Nivre [65, 66, 68] proposed more efficient deterministic algorithms that construct a
dependency tree in a single pass over the input sentence. Their so-called arc-standard
and arc-eager shift-reduce algorithms get larger popurality than the other deterministic
approaches due to their efficiency.

3

$
0

π = { /0}
$ | I
1

π = {0}

sh $ | I | saw
2

π = {1}

sh $ | saw
I

3

π = {0}

re↶ $ | saw
I

| her
4

π = {3}

sh $ | saw
I her

5

π = {0}

re↷ $
saw

I her

6

π = { /0}

re↷

Figure 1.2: A transition sequence of the deterministic arc-standard shift-reduce depen-
dency parser

$
0

π = { /0}
$ | I
1

π = {0}

sh $ | I | saw
2

π = {1}

sh

$ | I | saw | her
3

π = {2}

$ | saw
I

4

π = {0}

sh

re↶

$ | I | saw
her

5

π = {1}

$ | saw
I

| her
6

π = {4}

re↷

sh

$ | saw
I her

7

π = {0}

$ | saw
I her

8

π = {0}

re↶

re↷

$
saw

I her

9

π = { /0}

$
saw

I her

10

π = { /0}

re↷

re↷

Figure 1.3: A transition lattice of the arc-standard shift-reduce dependency parser with
beam search

Figure 1.2 shows a parsing process of the arc-standard shift-reduce parsing system
for unlabeled projective dependency analysis. This system has three types of transi-
tions, shift (sh), reduce↶ (re↶) and reduce↷ (re↷). The parser chooses the highest
scoring transition from a configuration to the next configuration, and the final configu-
ration produces a complete dependency tree. However, because the choice is made on
local information, the output tree may be a local optimal solution.

In order to alleviate the local optimum problem of the deterministic algorithms,
many practical systems [87, 37] use the beam search algorithm that develops k con-
figurations at the same position in parallel, as shown in Figure 1.3. A more princi-
pled dynamic programming algorithm was proposed by Huang and Sagae [37]. These
techniques have improved the transition-based systems significantly with little loss of
efficiency.

To handle non-projective dependency structures, some transition-based algorithms
have been proposed such as Covington’s algorithm [14, 67] and Nivre’s sorting algo-
rithm [69]. The former needs O(n2) time complexity, and the latter needs the worst-
case time complexity of O(n2). Attardi’s m-degree reduction algorithm [3] works in

4

linear time, but it can only produce restricted non-projective structures.

1.2.3 Joint Graph/Transition-based Parsing

There is also an alternative approach that integrates graph-based and transition-based
models [74, 87, 70, 54, 4].

Martins et al. [54] formulated their approach as stacking of parsers such that the
output of the first-stage parser is provided to the second as guide features. In particular,
they used a transition-based parser for the first stage and a graph-based parser for the
second stage.

The joint graph-based and transition-based approach [87, 4] uses an arc-eager shift-
reduce parser with a joint graph-based and transition-based model. This approach
improves parsing accuracy significantly, but the large beam size of the shift-reduce
parser harms its efficiency.

Sagae and Lavie [74] showed that combining the outputs of graph-based and transition-
based parsers can improve parsing accuracies. The parser combination reparses an in-
put sentence by the Eisner-CKY or MST algorithm, maximizing votes of the output of
the m initial parsers.

1.3 Contribution of the Thesis
Parsing accuracy of the current transition-based systems [37, 88] is empirically

lower than that of the state-of-the-art graph-based systems [46, 73, 86]. How can we
bridge the performance gap between the transition-based and the graph-based systems?

Here, we bring up three problems on the previous transition-based approaches:

• Lack of top-down (or head-corner) approaches: all existing transition-based
data-driven dependency parsers are bottom-up parsing algorithms. There is no
top-down approach in the data-driven dependency parsing community; by top-
down we mean that the parser starts with the head word (usually, the main verb)
of the sentence and constructs a parse tree in a head-first manner. This approach
intuitively makes sense because the main verb will tell the parser what kinds
of subjects and objects to look for. The observation suggests that top-down
transition-based dependency parsing is interesting from not only theoretical but
also practical perspectives.

5

• Spurious ambiguity problem: if a dependency parsing system has so-called
spurious ambiguity, its many different derivations may produce the same depen-
dency parse tree for an input sentence. For example, two configurations 9 and 10
in Figure 1.3 produce the same dependency tree. This example shows that the
arc-standard shift-reduce parsing system has the spurious ambiguity problem.
If spurious derivations are not pruned and kept in the k-best beams, it leads to
wasted use of the beam as well as duplicated processing.

• How to integrate graph-based models with transition-based models: an easy
way to improve the transition-based models is to integrate graph-based models
with them. Previous work on the joint graph/transition-based approach has a
problem with efficiency. Therefore, a more efficient joint algorithm is greatly
desired.

This thesis addresses three open problems of the previous transition-based systems. All
contribution of this thesis on these probelms is related with improving the data-driven
transition-based systems for unlabeled projective dependency parsing.

1.3.1 Lack of Top-down Approaches

Head-corner parsing was proposed by Kay [42], and this constructs a parse tree
through a head-first walk of it. This thesis presents a data-driven head-corner parser,
following the current trends of dependency parsing.

However, the two parsing formalisms are not compatible; the original head-corner
parser needs head CFG grammar rules [78], but data-driven approach does not use any
grammar rules.

To overcome this problem, we propose weighted prediction which substitutes gram-
mar rule-based prediction. For a practical use, we formalize it as transition-based
parsing, but it takes O(n2) time complexity.

Experiments on English Penn Treebank data [53] show that while the proposed top-
down parser is slower than the shift-reduce dependency parsers, it outperforms them
and works fast enough for practical use.

6

1.3.2 Spurious Ambiguity Problem

The previous transition-based dependency parsing systems have the spurious ambi-
guity problem, i.e. two different derivations may produce the same dependency parse
tree. As mentioned above, the arc-standard transition system for projective dependency
analysis has spurious ambiguity.

One solution to eliminate the spurious ambiguity is to give priority to the construc-
tion of left arcs over that of right arcs (or vice versa). Our proposed top-down parser
does not have any spurious ambiguity problem. This is because the parser always
explores all left dependents of a head word before right dependents.

By taking the essence of the elimination of spurious ambiguity into an arc-standard
transition system, we also propose a transition-based dependency parsing algorithm
without spurious ambiguity, which turns out to be more efficient than the top-down
parser. The time complexity of the proposed parser is linear.

Our experiments empirically show that it works as fast as the previous transition
systems and also achieves higher accuracy than them.

1.3.3 How to integrate graph-based models with transition-based
models

The beam search shift-reduce parser can output m parse trees. If combined with
dynamic programming, it can efficiently store exponential number of parse trees in
a “packed forest” [81]. Packed forests may potentially contain better trees than the
1-best of the baseline parser.

In this thesis, we propose a forest reranking algorithm with higher-order graph-based
features, which works on packed forests produced by the dynamic programming shift-
reduce parser. Like stacking approach, our proposed algorithm can use guide features
from 1-best output from the baseline shift-reduce parser.

Compared with previous joint approaches, the proposed algorithm has the following
advantages:

• Unlike the conventional stacking approach, the first-stage shift-reduce parser
prunes the search space of the second-stage graph-based parser.

• In contrast to joint transition-based/graph-based approaches [87, 4] which re-
quire large beam size and make dynamic programming impractical, our two-
stage approach can integrate two models with little loss of efficiency.

7

Experimental results show that the proposed reranking algorithm achieves about the
same parsing accuracy as third-order graph-based algorithm. It also works faster than
many previous dependency parsing systems. In addition, elimination of spurious am-
biguity from the arc-standard shift-reduce parser improves the efficiency and accuracy
of our approach.

1.4 Thesis Outline
In the rest of this thesis, we will present our proposed algorithms more precisely,

and will show their usufulness through some experiments. The outline of this thesis is
as follows:

• In Chapter 2, we define some basic notions of a projective dependency analysis
in order to introduce our proposed algorithms.

• In Chapter 3, we present a top-down dependency parsing algorithm, and show
some experimental results.

• In Chapter 4, we propose a novel shift-reduce dependency parsing algorithm
without spurious ambiguity. The algorithm is derived by applying a property of
the top-down parser presented in Chapter 3 to an arc-standard transition system.
Then we empirically show the usefullness through some experiments.

• In Chapter 5, we describe a forest reranking algorithm, and experiments show
that it achieves accuracy as high as the state-of-the-art graph-based parsing sys-
tems and runs faster.

Finally, we consider the implications we can draw from the application of the proposed
algorithms to other NLP tasks such as machine translation.

8

9

Chapter 2

Basics

The example tree in Figure 2.1 is a projective dependency graph. We insert an
artificial root node $ at the beginning of each sentence as a unique root of the graph.
This is a standard convention to simplify both theoretical definitions and computational
implementations. Our proposed parsing algorithms in this thesis output only projective
dependency graphs.

In this chapter, we define the projective dependency graph and the transition sys-
tem for its analysis. These definitions are necessary to define our proposed parsing
algorithms. Then, we describe two commonly used transition-based parsers for the
projective dependency analysis, called “arc-standard” and “arc-eager” parsing.

In addtion, we introduce two techniques, “beam search” and “dynamic program-
ming”, to improve the transition-based parsers. We also describe a discriminative
learning algorithm, called Structured Perceptron, and it is widely used for learning
of the discriminative models of the transition-based parsing systems.

2.1 Notational Convention

2.1.1 Definition of Projective Dependency Graph

A dependency graph is defined as follows.

Definition 2.1.1 (Dependency Graph) Given an input sentence W = n0 . . .nn where
n0 is a special root node $, a directed graph is denoted by GW = (VW ,AW) where
VW = {0,1, . . . ,n} is a set of (indices of) nodes and AW ⊆VW ×VW is a set of directed
arcs. The set of arcs is a set of pairs (x,y) where x is a head and y is a dependent

$0 I1 saw2 a3 girl4 with5 red6 hair7 .8

Figure 2.1: An example of an unlabeled projective dependency tree for a sentence “I
saw a girl with red hair.”

of x. x→∗ z denotes a path from x to a node z. A directed graph GW = (VW ,AW) is
well-formed if and only if:

• ROOT: There is no node x such that (x,0) ∈ AW .

• SINGLE-HEAD: If (x,y) ∈ AW then there is no node x′ such that (x′,y) ∈ AW

and x′ ̸= x.

• ACYCLICTY: There is no subset of arcs {(x0,x1),(x1,x2), . . . ,(xl−1,xl)} ⊆ AW

such that x0 = xl .

We call an well-formed directed graph a dependency graph.

Definition 2.1.2 (PROJECTIVITY) A dependency graph GW = (VW ,AW) is projec-
tive if and only if, for every arc (x,y) ∈ AW and node z in x < z < y or y < z < x, there
is a path x→∗ z or y→∗ z.

If a projective dependency graph is connected, we call it a dependency tree, and if not,
a dependency forest. The algorithms we will introduce in Section 2.2 are defined for a
class of the dependency graphs.

The graph of Figure 2.1 is defined as the following dependency graph G:

V = {0,1,2,3,4,5,6,7,8}
A = {(0,2),(2,1),(2,4),(4,3),(2,5),(5,7),(7,6),(2,8)}.

It is easy to see that the graph G is a dependency graph, and all nodes in V are con-
nected. Moreover, all arcs in A satisfy the projectivity condition because there are no
crossing arcs in G. Therefore, the graph G is a projective dependency tree.

10

X($)0, 7

X(saw)1, 7

X(saw)1, 4

X(saw)1, 3

X(I)1, 2

I

X(saw)2, 3

saw

X(her)3, 4

her

X(saw)1, 7

X(her)3, 7

X(with)4, 7

X(with)4, 5

with

X(man)5, 7

X(a)5, 6

a

X(man)6, 7

man

X($)0, 7

X(saw)1, 7

X(saw)1, 4

X(saw)1, 3

X(I)1, 2

I

X(saw)2, 3

saw

X(her)3, 4

her

X(saw)1, 7

X(her)3, 7

X(with)4, 7

X(with)4, 5

with

X(man)5, 7

X(a)5, 6

a

X(man)6, 7

man

Figure 2.2: An example of packed dependency forest

2.1.2 Definition of Packed Dependency Forests as Hypergraph

Dynamic programming algorithm can efficiently encode an exponential number of
parse trees as packed dependency forest. We define the packed dependency forest as a
hypergraph. We defined a hypergraph as follows:

Definition 2.1.3 (Hypergraph) A directed hypergraph is a pair H = ⟨V,E⟩, where V
is the set of vertices and E is the set of hyperedges. Each hyperedge e ∈ E is a pair
e = ⟨T (e),h(e)⟩, where h(e) ∈V is its head vertex and T (e) ∈V+ is an ordered list of
tail vertices. BS(v) is the set of incoming hyperedges {e ∈ E|h(e) = v} of a vertex v.
When the size of the list is two, we call the hyperedge binary, and when the size is one,
call it unary. t is a root node of H.

Figure 2.2 depicts a sample packed dependency forest defined as the hypergraph. A
vertex v is associated with its head word and span information. For example, a vertex
X(saw)1,4 in Figure 2.2 contains its head word “saw”and span from 1 to 4. The vertex
X(saw)1,4 has an incoming binary hyperedge with a list of two tail vertices X(saw)1,3

11

and X(her)3,4. In the packed dependency forest, each binary hyperedges corresponds
to a dependency arc. X($)0,7 is a root node.

2.1.3 Transition System for Projective Dependency Parsing

A transition system is defined as follows:

Definition 2.1.4 (Transition System) A transition system for dependency parsing is
a quadruple S = (C,T, I,Ct), where C is a set of configurations defined below, and
T is a finite set of transitions, each of which is a partial function t : C→ C, I is an
initialization function, mapping an input sentence to a unique initial configuration,
and Ct ⊆C is a set of terminal configurations.

A configuration is defined as follows:

Definition 2.1.5 (Configuration) A configuration is a triple (α ,β ,A). Symbols α and
β are disjoint lists of nodes from VW, which are called stack and buffer respectively.

We denote the stack with its topmost element to the right, and the buffer with its first
element to the left. For example, α |ni denotes some stack with its topmost element ni

and ni|β does some buffer with the first element ni. In addtion, we denote empty stack
and buffer as [].

We write a stack α of a configuration c as α(c), and a buffer β of c as β (c). If t is a
transition and c1, c2 are configurations such that t(c1) = c2, we write

t :
c1

c2
pc (2.1)

as a deduction step, where pc denotes preconditions.
A computation is defined as follows:

Definition 2.1.6 (Computation) A computation of S on W is a sequence γ = c0, . . . ,cm,
m ≥ 0, of configurations in which each configuration is obtained as the value of the
preceding one under some transition.

We write G(γ) for a dependency graph which is produced from a computation γ . We
call γ complete computation whenever c0 = I(W) and cm ∈Ct .

We use the above definitions to define the transition-based dependency parsing al-
gorithms in the following sections.

12

2.1.4 Spurious Ambiguity

For a complete computation γ = c0, . . . ,cm, we denote as DT (γ) the unique depen-
dency tree (or forest) consisting of nodes VW and all arcs in the final configuration cm.
A spurious ambiguity of a transition system S is defined as the following:

Definition 2.1.7 (Spurious Ambiguity) A transition system has spurious ambiguity
if, for some pair of complete computations γ and γ ′ with γ ̸= γ ′, it has DT (γ) =DT (γ ′).

2.1.5 Correctness of the Transition-based System

We define the correctness of the transition system:

Definition 2.1.8 (Correctness) Let S = (C,T, I,Ct) be a transition system for a depen-
dency parsing. If S is correct for a class of dependency graphs, S satisfies the following
two properties (sound and complete):

• Soundness: S is sound for a class of dependency graphs if and only if, for every
sentence W and every computation γ = c0, . . . ,cm for W in S, the parse graph
G(γ) is contained in a class of dependency graphs.

• Completeness: S is complete for a class of dependency graphs if and only if,
for every sentence W and every dependency graph GW for W in a class of de-
pendency graphs, there is a computation γ = c0, . . . ,cm for W in S such that
G(γ) = GW.

We use the above definition for proving the correctess of our proposed top-down
transition-based parsing system for projective dependency graphs.

2.2 Transition-based Parsing Algorithms

2.2.1 Arc-Standard Shift-Reduce Parsing

A configuration for the arc-standard shift-reduce dependency parsing algorithm is
defined as the following:

ℓ : (α ,β ,A) pc

where ℓ is a step size. For an input W = n0, . . . ,nn, the initial configuration c0 (axiom)
and the terminal configuration c2n (goal) are defined in Figure 2.3.

13

input: W = n0 . . .nn

axiom(c0): 0 : ([n0],n1| . . . |nn,())

shift:
ℓ : (α ,ni|β ,A)

ℓ+1 : (α |ni,β ,A)
i < n

reduce↶:
ℓ : (α |n j|ni,β ,A)

ℓ+1 : (α |ni,β ,A∪ (i, j))
i ̸= 0

reduce↷:
ℓ : (α|n j|ni,β ,A)

ℓ+1 : (α |n j,β ,A∪ (j, i))
goal(c2n): 2n : ([n0], [],A)

Figure 2.3: The arc-standard transition-based deductive system for projective depen-
dency graphs

As in Figure 2.3, the transition set T for the arc-standard algorithm contains three
types of transitions:

• The transition reduce↶ adds a dependency arc (j, i) to A, where i is the index of
a node on top of the stack α and j is the index of the second node in the stack α .
In addition, the second node is removed from α . This has as a precondition that
the token i is not the artificial root node index 0.

• The transition reduce↷ adds a dependency arc (i, j) to A, where i is the index of
a node on top of the stack α and j is the index of the second node in the stack α .
In addition, the first node is removed from α .

• Transition shift removes the first node ni in the buffer β and pushes it on top of
the stack α .

The worst-case time complexity of the arc-standard algorithm is O(n), where n is the
length of the input sentence. The arc-standard transition-based system is correct for a
class of the dependency forests. The proof of the correctness is omitted because it is
out of scope here.

The arc-standard transition-based system has spurious ambigutiy. For examle, there
exist the two following complete computations for an input W = n0,n1,n2,n3 , which
produce the same dependency tree with a set of arcs ((0,2),(2,1),(2,3)):

• shift, shift, reduce↶, shift, reduce↷, reduce↷

14

input: W = n0 . . .nn

axiom(c0): 0 : ([n0],n1| . . . |nn,())

shift:
ℓ : (α ,ni|β ,A)

ℓ+1 : (α|ni,β ,A)
i < n

leftarc:
ℓ : (α|ni,n j|β ,A)

ℓ+1 : (α,n j|β ,A∪ (j, i))
i ̸= 0∧¬∃k[(k, i) ∈ A]

rightarc:
ℓ : (α |ni,n j|β ,A)

ℓ+1 : (α|ni|n j,β ,A∪ (i, j))
¬∃k[(k, j) ∈ A]

reduce:
ℓ : (α |ni,β ,A)
ℓ+1 : (α,β ,A)

∃k[(k, i) ∈ A]

goal(cm): m : (, [],A)

Figure 2.4: The arc-eager transition-based deductive system for projective dependency
graphs: means “take anything”.

• shift, shift, shift, reduce↷, reduce↶, reduce↷.

Therefore, the arc-standard transition-based system has spurious ambiguity.

2.2.2 Arc-Eager Shift-Reduce Parsing

A configuration for the arc-eager shift-reduce dependency parsing algorithm is de-
fined as well as that for the arc-standard one:

ℓ : (α ,β ,A) pc

where ℓ is a step size. For an input W = n0, . . . ,nn, the initial configuration c0 (axiom)
and the terminal configuration cm (goal) are defined in Figure 2.4.

The transition set T for the arc-eager transition-based dependency parsing system is
defined in Figure 2.4 and contains four types of transitions:

• The transition leftarc adds a dependency arc (j, i) to A, where i is the index of a
node on top of the stack α and j is the index of the first node in the buffer β . In
addition, this action pops the stack α . They have as a precondition that the token
i is not the artificial root node 0 and does not already have a head.

15

• The transition rightarc adds a dependency arc (i, j) to A, where i is the index of
a node on top of the stack α and j is the index of the first node in the buffer β .
In addition, this action removes the first node n j in the buffer β and push it on
top of the stack α . They have as a precondition that the token j does not already
have a head.

• The transition reduce pops the stack β and is subject to the precondition that the
top token has a head.

• The transition shift removes the first node ni in the buffer β and pushes it on top
of the stack α .

The worst-case time complexity of the arc-standard algorithm is O(n), where n is the
length of the input sentence. The arc-eager transition-based system is correct for a
class of dependency forests. However, it is not sound for a class of dependency trees.
This means that the arc-eager transition system does not always produce a dependency
tree.

The arc-eager transition-based system also has spurious ambiguity. For examle,
there exist the two following complete computations for an input W=n0,n1,n2,n3,n4,n5,
which produce the same dependency tree with a set of arcs ((0,2),(2,1),(2,3),(2,5),(5,4)):

• shift, leftarc, rightarc, rightarc, shift, leftarc, reduce, rightarc, reduce, reduce

• shift, leftarc, rightarc, rightarc, reduce, shift, leftarc, rightarc, reduce, reduce

Therefore, the arc-eager transition-based system has spurious ambiguity.

2.2.3 Discriminative Model for Transition Systems

2.2.4 Non-Greedy Extension

In order to enhance the greedy (deterministic) transition-based system to non-greedy
(nonderministic) one, beam search algorithm is often used. The beam seach transition-
based system develops k configurations of the same step in parallel. The complexity
of the algorithm is O(nk) for an input whose length is n, which subsumes the greedy
algorithm as a special case (k = 1).

As the beam search algorithm has to keep much more configurations than the greedy
one, for more efficient implementation, we reduce the buffer β and a set of arcs A from

16

input: W = n0 . . .nn

axiom(c0): 0 : (0,1, [n0])

shift:
ℓ : (i,α)

ℓ+1 : (i+1,α |ni)
i < n

reduce↶:
ℓ : (i,α |s1|s0)

ℓ+1 : (i,α |s↶1 s0)
s0.h ̸= 0

reduce↷:
ℓ : (i,α |s1|s0)

ℓ+1 : (i,α |s↷1 s0)

goal(c2n): 2n : (n, [s0])

Figure 2.5: The arc-standard transition-based dependency parsing deductive system
for beam search: s0.h denotes a root node index of a tree s0. a↷b denotes that a tree b
is attached to a tree a.

a configuration. Instead of them, we add an index to the definition of the configuration
to indicate a current position of the topmost buffer element, and use not a node but
a tree as the stack element. For example, in the case of the arc-standard transition
system, we rewrite the configuration as the following:

ℓ : (i,α) pc

where i is an index of the topmost element of an input buffer. The arc-standard
transition-based system is also rewritten as shown in Figure 2.5. The stack element
s is a tree itself, and we write a root index of a tree s as s.h. In order to produce
an output tree the parser gathers arcs of the tree by backtracking from the terminal
configuration to the initial configuration.

In fact, the parsing accuracies obtained by the beam search are considerably better
than those obtained by the greedy algorithm. Therefore, in this thesis, our implemented
transition-based systems employ the beam search algorithm as default.

2.2.5 Dynamic Programming

To improve the efficiency of the beam search (arc-standard) transition system, more
principled dynamic programming solutions have been proposed [37]. The key obser-
vation for dynamic programming is to merge equivalent configurations in the same

17

input: W = n0 . . .nn

axiom(c0): 0 : (0,1, [n0]) : /0

shift:

p︷ ︸︸ ︷
ℓ : (, j,α) :

ℓ+1 : (j, j+1,α |n j) : (p)
i < n

reduce↶:

p︷ ︸︸ ︷
: (k, i,α ′|s′0) : π ′

q︷ ︸︸ ︷
ℓ : (i+1, j,α|s0) : π

ℓ+1 : (k, j,α ′|s′↶0 s0) : π ′
s0.h ̸= 0∧ p ∈ π

reduce↷:

p︷ ︸︸ ︷
: (k, i,α ′|s′0) : π ′

q︷ ︸︸ ︷
ℓ : (i+1, j,α|s0) : π

ℓ+1 : (k, j,α ′|s′↷0 s0) : π ′
p ∈ π

goal(c2n): 2n : (0,n, [s0]) : (c0)

Figure 2.6: The arc-standard transition-based dependency parsing deductive system
for beam search with dynamic programming: means “don’t care”.

beam buffer. In the work [37], the configurations in the same beam are merged if they
have the same feature values of a discriminative parsing model. Another important ad-
vantage of dynamic programming is to efficiently encode exponential number of parse
outputs into packed dependency forests defined in Section 2.1.2.

A configuration for the beam search arc-standard transition system with dynamic
programming is defined as follows:

ℓ : (i, j,α) : π

where [i, j] is the span of the topmost element in the stack α , and π is a set of pointers
to the predictor configurations, each of which is a configuration just before pushing
the root node of s0 (s0) into the stack α .

The transition-based system is defined in Figure 2.6. In a shift step, if configuration
p generates configuration q (called “predictor configuration”), then p is added onto π .
When two equivalent shifted configurations get merged, their predictor configurations
get combined. By using the predictor configuration q, a reduce step is defined with the
following deduction step which is extended from the deduction step in Equation 2.1.

cq cp

cr
pc (2.2)

18

where cq is a predictor configuration of p, and p is the preceding configuration of the
resulting configuration cr. In a reduction step, the configuration cq tries to combine
with every predictor configuration p in π , and the resulting configuration inherits the
predictor configurations set π ′ from p.

The key to the above dynamic programming is behind the concept of push compu-
tation. We define the push computation as the following:

Definition 2.2.1 (Push Computation) A computation γ = c0, . . . ,cm, which satisfies
the following two properties, is push computation.

• The initial stack α(c0) is not modified during the computation, and is not even
exposed after the first transition: For every 1 ≤ i ≤ m, there exists a non-empty
stack αi such that α(ci) = α(c0)|αi.

• The overall effect of the computation is to push a single node to the stack: The
stack α(cm) can be written as α(cm) = α(c0)|h, for some h ∈W.

We can build larger push computations by means of two binary operations fla and
fra, defined as follows. Let γ1 = c10, . . . ,c1m1 and γ2 = c20, . . . ,c2m2 be push com-
putations on the same input W such that c1m1 = c20. Then we can build large push
computation by applying the function fra to the two smaller push computations:

fra(γ1,γ2) = c10, . . . ,c1m1,c21, . . . ,c2m2,c

where c is obtained by applying the reduce↷ to c2m2 . The operation fla is defined
analogously.

In the work [51], Kuhlmann et al. mapped a push computation γ = c0, . . . ,cm to
the items of a tabulation-based deductive system [77], whose item form is [i,h, j], as
follows:

β (c0) = ni|β
β (cm) = n j|β
α(cm) = α(c0)|h,

and they proposed a dynamic programming tabulation (chart) parsing algorithm for the
arc-standard transition-based dependency parsing.

Huang and Sagae’s arc-standard shift-reduce parser uses not a chart table but a
graph-structured stack [81] for dynamic programming. In fact, as well as the above

19

Algorithm 1 Structured Perceptron Algorithm

1: Input: data D = (xt ,yt)N
t=1

2: Output: weight vector w
3: Let ∆f(x,y,z) = f(x,y)− f(x,z)
4: repeat
5: for (x,y) ∈ D do
6: ẑ = argmaxz∈Z w · f(x,z)
7: if ẑ ̸= y then
8: w = w+∆f(x,y, ẑ)
9: end if

10: end for
11: until convergence

mappings, we can map a push computation to the item of Huang and Sagae’s system
as follows:

β (c0) = ni|β
β (cm) = n j|β
α(cm) = α(c0)|s0.h,

where s0 is the topmost element of stack α . Each configuration has pointers to the
previous push computations in π , and in a reduction step, the larger push computation
is constructed by combining the current configuration (push computation) with one
configuration (push computation) of them in π .

2.3 Discriminative Learning Algorithm

2.3.1 Structured Perceptron

The transition-based dependency parsing system usually decides the next transition
from a configuration by using a discriminative structured prediction model conditioned
on the parse history of the configuration. Structured perceptron [12] has been widely
used for learning the discriminative model of the transition-based parsing system.

The algorithm 1 shows the structured perceptron algorithm. D = (x,y)N
t=1 is training

data which contains N training instances. Each training instance is a pair of an input x

20

Algorithm 2 Averaged Structured Perceptron Algorithm

1: Input: data D = (xt ,yt)N
t=1

2: Output: weight vector w
3: Let ∆f(x,y,z) = f(x,y)− f(x,z)
4: c← 1
5: repeat
6: for (x,y) ∈ D do
7: ẑ = argmaxz∈Z w · f(x,z)
8: if ẑ ̸= y then
9: w = w+∆f(x,y, ẑ)

10: wa = wa + c∆f(x,y, ẑ)
11: end if
12: c← c+1
13: end for
14: until convergence
15: w = w−wa/c

and its correct structure y. Whenever the predicted ẑ for x differs from y, the structured
perceptron algorithm updates the weights w as follows:

w = w+∆f(x,y, ẑ) (2.3)

where f is a feature function and ∆f(x,y, ẑ) is f(x,y)− f(x, ẑ).
One solution to reduce weight overfitting is weight averaging. We show the averaged

structured perceptron algorithm in Algorithm 2. Weight averaging is accomplished
by modifying the standard structured perceptron algorithm so that the final weights
returned are the average of all weight vectors encountered during the algorithm.

2.3.2 Early Update for Structured Perceptron

The averaged structured perceptron with early update [13] is a variant on the struc-
tured perceptron that deals with the issue that the argmax in line 7 of Algorithm 2
may not be analytically available. The idea is to relace argmax with a beam search
algorithm. The early update heuristic updates weights in the place where the correct
sequence falls off the beam buffer. Huang et al. [36] prooved the convergence proper-
ties of the averaged structured perceptron with early update.

21

23

Chapter 3

Top-down Transition-based
Dependency Parsing

3.1 Motivation
The transition-based parsing algorithms are widely used for dependency analysis

due to their efficiency. However, these parsers have one major problem in that they
can handle only local information, and cannot use the information of the whole input
sentence for the transition decision on a configuration.

The previous study [39] pointed out that the drawbacks of the previous transition-
based parsing systems could be resolved by incorporating top-down information such
as root finding. But the root finding approach is not systematic in the sense that the
essence of the algorithm is not schematized into the transition system.

As we mentioned in Chapter 1, there is no top-down data-driven parsing algorithm.
This thesis presents an O(n2) top-down transition-based parsing algorithm. The pro-
posed algorithm determines all dependency relations of an input sentence top-down in
a head-first manner.

The parsing system is very similar to the Earley parser [15] for CFG or the head-
corner parser [42] for head CFG, but has the following difference. The Earley pre-
diction is tied to a particular grammar rule, but the proposed algorithm is data-driven,
following the current trends of dependency parsing.

To do the prediction without any grammar rules, we introduce a weighted prediction
that is to predict child nodes from parent nodes with a statistically learned model.
Through the weighted prediction, the parser can consider the information of the whole
sentence into determining the dependency relations.

To improve parsing flexibility in deterministic parsing, the proposed top-down parser
uses a beam search algorithm with dynamic programming [37]. The complexity be-
comes O(n2b) where b is the beam size.

To reduce prediction errors, we propose a lookahead technique based on the FIRST
function, inspired by the LL(1) parser [1].

Experimental results show that the proposed top-down parser achieves better results
than other data-driven parsing algorithms.

3.2 Related Work
Alshawi [2] proposed a head automaton which recognizes an input sentence top-

down. Eisner and Satta [21] showed that there is a cubic-time parsing algorithm in the
formalism of the head automaton grammars, which can be equivalently converted into
split-head bilexical context-free grammars (SBCFGs) [55, 40]. Although our proposed
algorithm does not employ the formalism of SBCFGs, it creates left children before
right children, implying that it is free from spurious ambiguity just like parsing algo-
rithms on the SBCFGs. Head-corner parsing algorithm [42] creates dependency trees
top-down, and our algorithm has similar spirit to it.

Nivre [64, 65] proposed two transition-based algorithm, known as “arc-standard”
and “arc-eager” algorithms. The arc-standard algorithm can be regarded as an appli-
cation of the classical shift-reduce algorithm to dependency analysis. The arc-eager
algorithm processes right-dependent top-down, but this does not involve the predic-
tion of lower nodes from higher nodes. Therefore, the arc-eager algorithm is a to-
tally bottom-up algorithm [65]. Zhang [87] proposed a combination approach of the
transition-based algorithm with graph-based algorithm [58], which is the same as our
combination model of stack-based and prediction models.

3.3 Deductive System
Our top-down parsing system has four actions: prediction↶ (pred↶), prediction↷

(pred↷), scanner (scan) and completer (comp). It formally uses the following config-
uration:

ℓ : (i,h, j,α) : π

24

input: W = n0 . . .nn

axiom(c0): 0 : (1,0,n+1,n0) : /0

pred↶:

conf p︷ ︸︸ ︷
ℓ : (i,h, j,sd| . . . |s0) :

ℓ+1 : (i,k,h,sd−1| . . . |s0|nk) : (p)
∃k : i≤ k < h

pred↷:

conf p︷ ︸︸ ︷
ℓ : (i,h, j,sd| . . . |s0) :

ℓ+1 : (i,k, j,sd−1| . . . |s0|nk) : (p)
∃k : i≤ k < j ∧ h < i

scan:
ℓ : (i,h, j,sd| . . . |s0) : π

ℓ+1 : (i+1,h, j,sd| . . . |s0) : π
i = h

comp:

conf q︷ ︸︸ ︷
: (,h′, j′,s′d| . . . |s′0) : π ′

conf p︷ ︸︸ ︷
ℓ : (i,h, j,sd| . . . |s0) : π

ℓ+1 : (i,h′, j′,s′d| . . . |s′1|s′0↷s0) : π ′
q ∈ π, h < i

goal(c3n): 3n : (n+1,0,n+1,s0) : /0

Figure 3.1: The non-weighted deductive system of top-down dependency parsing al-
gorithm: means “don’t care”.

where ℓ is step size, i is the index of a word on the top of an input buffer, h is the index
of a root word of the top tree on stack, j is the index to indicate the right limit (j− 1
inclusive) of predict↷, α is a stack of trees sd| . . . |s0 where s0 is the top tree and d is
the feature window size for dynamic programming [37], and π is a set of pointers to
predictor configurations which are the configurations just before putting word h onto
the stack.

The deductive system of the top-down algorithm is shown in Figure 3.1. The axiom
of this system is a configuration with a stack initialized by the root symbol $. At
each step, the system applies one action to each configuration selected from applicable
actions. Each of three kinds of actions, pred, scan, and comp, occurs n times on an
input sentence of length n, and this system takes 3n steps for a complete analysis.

Unlike a conventional shift-reduce parser which directly moves a word from buffer
onto stack in a left to right direction, our top-down system splits the process into two
steps of prediction and scan. A prediction step puts a word onto stack from the middle
of an input string. Action pred↶ selects a word k from words ranged in i≤ k < h when

25

step config stack buffer action config information
0 c0 $0 I1 saw2 a3 girl4 – (1,0,5) : /0
1 c1 $0|saw2 I1 saw2 a3 girl4 pred↷ (1,2,5) : (c0)

2 c2 saw2|I1 I1 saw2 a3 girl4 pred↶ (1,1,2) : (c1)

3 c3 saw2|I1 saw2 a3 girl4 scan (2,1,2) : (c1)

4 c4 $0|I1
↶saw2 saw2 a3 girl4 comp (2,2,5) : (c0)

5 c5 $0|I1
↶saw2 a3 girl4 scan (3,2,5) : (c0)

6 c6 I1
↶saw2|girl4 a3 girl4 pred↷ (3,4,5) : (c5)

7 c7 girl4|a3 a3 girl4 pred↶ (3,3,4) : (c6)

8 c8 girl4|a3 girl4 scan (4,3,4) : (c6)

9 c9 I1
↶saw2|a3

↶girl4 girl4 comp (4,4,5) : (c5)

10 c10 I1
↶saw2|a3

↶girl4 scan (5,4,5) : (c5)

11 c11 $0|I1
↶saw2

↷girl4 comp (5,2,5) : (c0)

12 c12 $0
↷saw2 comp (5,0,5) : /0

Figure 3.2: Stages of the top-down deterministic parsing process for a sentence “I saw
a girl”. We follow the convention and write the stack with its topmost element to the
right, and the buffer with its first element to the left. In this example, we set the window
size d to 1, and write the descendants of trees on stack elements s0 and s1 within depth
1.

i < h which means that left words ranged in i≤ h have not been processed yet. Action
pred↷ selects a word k from words ranged in i ≤ k < j when h < i < j which means
that the partial parse of words from 1 to h has been completed. The word on the top of
buffer is scanned when it is equal to the root word of c0 and input words are scanned
in a left to right direction.

Action comp creates a directed arc from the root word of c′0 on a predictor configu-
ration q to that of c0 on a current configuration c when h < i which means that the word
h has been already scanned1. In other words, action comp does not create an arc with
words which have not been scanned yet. Predicting a word which has been predicted
already is prevented by that both preconditions of pred↶ and pred↷ do not include the
root word h of s0 and words from 1 to i−1 which have been scanned already.

1In a single root tree, the special root symbol $ has exactly one child. Therefore, we do not apply
comp action to a configuration when the condition of it satisfies c1.h = $∧ ℓ ̸= 3n.

26

s2.h

. . .

s1.h

s1.rc

. . .

. . .

. . .

s1.lc

. . .

. . .

. . .

s0.h

s0.rc

. . .

. . .

. . .

s0.lc

. . .

. . .

. . .

Figure 3.3: Feature window of trees on stack S: The window size d is set to 2. Each
x.h, x.lc and x.rc denotes root, left and right child nodes of a stack element x.

3.4 Statistical Parsing Models

3.4.1 Stack-based Model

The proposed algorithm employs a stack-based model for scoring hypothesis. The
score of the model is defined as follows:

scs(i,h, j,α) = θs · fs,act(i,h, j,α) (3.1)

where θs is a weight vector, fs is a feature function, and act is one of the applicable
actions to a configuration ℓ : (i,h, j,α) : π . We use a set of feature templates shown
in Table 3.1. As shown in Figure 3.3, left children s0.l and s1.l of trees on stack for
extracting features are different from those in the work [37] because in our parser the
left children are generated from left to right.

As mentioned in Section 3.1, we apply beam search and dynamic programming
techniques to our top-down parser. Algorithm 1 shows the our beam search algorithm
in which top most b configurations are preserved in a buffer bu f [ℓ] in each step. In
line 10 of Algorithm 3, equivalent configurations in the step ℓ are merged following
the idea of dynamic programming. Two configurations (i,h, j,α) and (i′,h′, j′,α ′) in
the step ℓ are equivalent, notated (i,h, j,α)∼ (i′,h′, j′,α ′), iff

fs,act(i,h, j,α) = fs,act(i′,h′, j′,α ′). (3.2)

When two equivalent predicted configurations are merged, their predictor configura-
tions in π get combined.

27

Features Templates
(1) s0.h.w s0.h.t s0.h.w ◦ s0.h.t

s1.h.w s1.h.t s1.h.w ◦ s1.h.t
q0.h.w q0.h.t q0.h.w ◦ q0.h.t

(2) s0.h.w ◦ s1.h.w s0.h.t ◦ s1.h.t
s0.h.t ◦ q0.h.t s0.h.w ◦ s0.h.t ◦ s1.h.t
s0.h.t ◦ s1.h.w ◦ s1.h.t s0.h.w ◦ s1.h.w ◦ s1.h.t
s0.h.w ◦ s0.h.t ◦ s1.h.w s0.h.w ◦ s0.h.t ◦ s1.h.w ◦ s1.h.t

(3) s0.h.t ◦ q0.h.t ◦ q1.h.t s1.h.t ◦ s0.h.t ◦ q0.h.t
s0.h.w ◦ q0.h.t ◦ q1.h.t s1.h.t ◦ s0.h.w ◦ q0.h.t

(4) s1.h.t ◦ s1.lc.t ◦ s0.h.t s1.h.t ◦ s1.rc.t ◦ s0.h.t
s1.h.t ◦ s1.lc.t ◦ s0.h.t s1.h.t ◦ s1.rc.t ◦ s0.h.t
s1.h.t ◦ s1.lc.t ◦ s0.h.t s1.h.t ◦ s1.rc.t ◦ s0.h.t

(5) s0.h.t ◦ s1.h.t ◦ s2.h.t

Table 3.1: Features template for the stack-based model of the top-down transition-
based parsing system: w and t denote a word and a part-of-speech tag.

3.4.2 Weighted Prediction

The step 0 in Figure 3.2 shows an example of prediction for a head node “$0”, where
the node “saw2” is selected as its child node. To select a probable child node, we define
a statistical model for the prediction. In this thesis, we integrate the score from a graph-
based model [58] which directly models dependency links. The score of the first-order
model is defined as the relation between a child node c and a head node h:

scp(h,c) = θp · fp(h,c) (3.3)

where θp is a weight vector and fp is a features function. Using the score scp, the
top-down parser selects a probable child node in each prediction step.

When we apply beam search to the top-down parser, then we no longer use ∃ but ∀
on pred↶ and pred↷ in Figure 3.1. Therefore, the parser may predict many nodes as an
appropriate child from a single configuration, causing many predicted configurations.
This may cause the beam buffer to be filled only with the configurations, and these may
exclude other configurations, such as scanned or completed configurations. Thus, we
limit the number of predicted configurations from a single configuration by prediction
size implicitly in line 10 of Algorithm 3.

28

Algorithm 3 Top-down Parsing with Beam Search
1: input W = n0, . . . ,nn

2: start← ⟨1,0,n+1,n0⟩
3: bu f [0]←{start}
4: for ℓ← 1 . . .3n do
5: hypo←{}
6: for each con f in bu f [ℓ−1] do
7: for act←applicableAct(con f) do
8: newcon f s←actor(act,con f)
9: addAll newcon f s to hypo

10: end for
11: end for
12: add top b configurations to bu f [ℓ] from hypo
13: end for
14: return best candidate from bu f [3n]

h

rm. . .r1ll. . .l1

Figure 3.4: An example of tree structure: Each h, l and r denotes head, left and right
child nodes.

To improve the prediction accuracy, we introduce a more sophisticated model. The
score of the sibling second-order model is defined as the relationship between c, h and
a sibling node sib:

scp(h,sib,c) = θp · fp(h,sib,c). (3.4)

The first- and sibling second-order models are the same as the definitions of the work
[58], except the scoring factors of the sibling second-order model. The scoring factors
for a tree structure in Figure 3.4 are defined as follows:

scp(h,−, l1)+
l−1

∑
y=1

scp(h, ly, ly+1)+ scp(h,−,r1)+
m−1

∑
y=1

scp(h,ry,ry+1).

This is different from the work [58] in that the scoring factors for left children are
calculated from left to right, while those in [58]’s definition are calculated from right
to left. This is because our top-down parser generates left children from left to right.

29

Note that the score of weighted prediction model in this section is incrementally cal-
culated by using only the information on the current configuration, thus the condition
of configuration merging in Equation 3.2 remains unchanged.

3.4.3 Weighted Deductive System

We extend deductive system to a weighted one, and introduce forward score and
inside score [79, 37]. The forward score is the total score of a sequence from an initial
configuration to the end configuration. The inside score is the score of a top tree s0

in stack α . We define these scores using a combination of stack-based model and
weighted prediction model. The forward and inside scores of the combination model
are as follows: {

scfw = scfw
s + scfw

p
scin = scin

s + scin
p

(3.5)

where scfw
s and scin

s are a forward score and an inside score for stack-based model, and
scfw

p and scin
p are a forward score and an inside score for weighted prediction model.

We add the following tuple of scores to a configuration:

(scfw
s ,scin

s ,scfw
p ,scin

p).

For each action, we define how to efficiently calculate the forward and inside scores2.
In either case of pred↶ or pred↷,

(scfw
s , ,scfw

p ,)

(scfw
s +λ ,0,scfw

p + scp(s0.h,nk),0)

where

λ =

{
θs · fs,pred↶(i,h, j,α) if pred↶
θs · fs,pred↷(i,h, j,α) if pred↷

(3.6)

In the case of scan,
(scfw

s ,scin
s ,scfw

p ,scin
p)

(scfw
s +ξ ,scin

s +ξ ,scfw
p ,scin

p)

2For brevity, we present the formula not by second-order model as equation 3.4 but a first-order one
for weighted prediction.

30

where
ξ = θs · fs,scan(i,h, j,α). (3.7)

In the case of comp,

(sc′fws ,sc′ins ,sc′fwp ,sc′inp) (scfw
s ,scin

s ,scfw
p ,scin

p)

(sc′fws + scin
s +µ,sc′ins + scin

s +µ,
sc′fwp + scin

p + scp(s′0.h,s0.h),

sc′inp + scin
p + scp(s′0.h,s0.h))

where
µ = θs · fs,comp(i,h, j,α)+θs · fs,pred (,h′, j′,α ′). (3.8)

Pred takes either pred↶ or pred↷. Beam search is performed based on the following
linear order for the two configurations p and p′ at the same step, which have (scfw,scin)

and (sc′fw,sc′in) respectively:

p≻ p′ iff scfw > sc′fw or scfw = sc′fw∧ scin > sc′in. (3.9)

We prioritize the forward score over the inside score since forward score pertains to
longer action sequence and is better suited to evaluate hypothesis configurations than
inside score [63].

3.5 “First” Function for a Lookahead
Top-down backtrack parser usually reduces backtracking by precomputing the set

FIRST(·) [1]. We define the set FIRST(·) for our top-down dependency parser:

FIRST(t’) = {ld.t|ld ∈ lmdescendant(Tree, t’)Tree ∈ Corpus}

where t’ is a POS-tag, Tree is a correct dependency tree which exists in Corpus, a
function lmdescendant(Tree, t’) returns the set of the leftmost descendant node ld of
each nodes in Tree whose POS-tag is t’, and ld.t denotes a POS-tag of ld. Though our
parser does not backtrack, it looks ahead when selecting possible child nodes at the
prediction step by using the function FIRST. In case of pred↶:

∀k : i≤ k < h∧ni.t ∈ FIRST(nk.t)
p︷ ︸︸ ︷

ℓ : (i,h, j,sd| . . . |s0) :
ℓ+1 : (i,k,h,sd−1| . . . |s0|nk⟩ : (p)

31

where ni.t is a POS-tag of the node ni on the top of the buffer, and nk.t is a POS-tag
in kth position of an input nodes. The case for pred↷ is the same. If there are no
nodes which satisfy the condition, our top-down parser creates new configurations for
all nodes, and pushes them into hypo in line 9 of Algorithm 3.

3.6 Experiments

3.6.1 Experimental Setups

Experiments were performed on the English Penn Treebank data and the Chinese
CoNLL-06 data. For the English data, we split WSJ part of it into sections 02-21 for
training, section 22 for development and section 23 for testing. We used the stan-
dard head rules [82] to convert phrase structure to dependency structure. For the Chi-
nese data, we used the information of words and fine-grained POS-tags for features.
To compare our algorithm with second-order Eisner-Satta algorithm, we used MST-
Parser3.

We used an early update version of averaged perceptron algorithm [13] for training
of shift-reduce and top-down parsers. A set of feature templates in [37] were used for
the stack-based model, and a set of feature templates in [58] were used for the second-
order prediction model. The weighted prediction and stack-based models of top-down
parser were jointly trained.

3.6.2 Results on English Data

During training, we fixed the prediction size and beam size to 5 and 16, respec-
tively, judged by preliminary experiments on development data. After 25 iterations of
perceptron training, we achieved 92.94 unlabeled accuracy for top-down parser with
the FIRST function and 93.01 unlabeled accuracy for shift-reduce parser on develop-
ment data by setting the beam size to 8 for both parsers and the prediction size to 5 in
top-down parser. These trained models were used for the following testing.

We compared our top-down parsing algorithm with other data-driven parsing algo-
rithms in Table 3.2. The top-down parser achieved comparable unlabeled accuracy
with others, and outperformed them on the sentence complete rate. On the other hand,

3http://www.seas.upenn.edu/ strctlrn/MSTParser/MSTParser.html

32

time accuracy complete root
McDonald06 (2nd) 0.15 91.5 42.1 –
Koo10 [45] – 93.04 – –
Hayashi11 [26] 0.3 92.89 – –
2nd-MST∗ 0.13 92.3 43.7 96.0
Goldberg10 [23] – 89.7 37.5 91.5
Kitagawa10 [43] – 91.3 41.7 –
Zhang08 (Sh beam 64) – 91.4 41.8 –
Zhang08 (Sh+Graph beam 64) – 92.1 45.4 –
Huang10 (beam+DP) 0.04 92.1 – –
Huang10∗ (beam 8+DP) 0.03 92.3 43.5 96.0
Huang10∗ (beam 16+DP) 0.06 92.27 43.7 96.0
Huang10∗ (beam 32+DP) 0.10 92.26 43.8 96.1
Zhang11 (beam 64) [88] – 93.07 49.59 –
top-down∗ (beam 8+pred 5+DP) 0.07 91.7 45.0 94.5
top-down∗ (beam 16+pred 5+DP) 0.12 92.3 45.7 95.7
top-down∗ (beam 32+pred 5+DP) 0.22 92.5 45.9 96.2
top-down∗ (beam 8+pred 5+DP+FIRST) 0.07 91.9 45.0 95.1
top-down∗ (beam 16+pred 5+DP+FIRST) 0.19 92.4 45.3 96.2
top-down∗ (beam 32+pred 5+DP+FIRST) 0.33 92.6 45.5 96.6

Table 3.2: Results for test data: Time measures the parsing time per sentence in sec-
onds. Accuracy is an unlabeled attachment score, complete is a sentence complete
rate, and root is a correct root rate. ∗ indicates our experiments.

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

pa
rs

in
g

tim
e

(c
pu

 s
ec

)

length of input sentence

"shift-reduce"
"2nd-CKY"
"top-down"

Figure 3.5: Scatter plot of parsing time against sentence length, comparing with top-
down, 2nd-MST and shift-reduce parsers (beam size: 8, pred size: 5)

accuracy complete root
oracle (sh+mst) 94.3 52.3 97.7
oracle (top+sh) 94.2 51.7 97.6

oracle (top+mst) 93.8 50.7 97.1
oracle (top+sh+mst) 94.9 55.3 98.1

Table 3.3: Oracle score, choosing the highest accuracy parse for each sentence on
test data from results of top-down (beam 8, pred 5) and shift-reduce (beam 8) and
MST(2nd) parsers in Table 3.2.

the top-down parser was less accurate than shift-reduce parser (Huang10∗) on the cor-
rect root measure. In step 0, top-down parser predicts a child node, a root node of a
complete tree, using little syntactic information, which may lead to errors in the root
node selection. Therefore, we think that it is important to seek more suitable features
for the prediction in future work.

Figure 3.5 presents the parsing time against sentence length. Our proposed top-
down parser is theoretically slower than shift-reduce parser and Figure 3.5 empirically
indicates the trends. The dominant factor comes from the score calculation, and we
will leave it for future work. Table 3.3 shows the oracle score for test data, which is the
score of the highest accuracy parse selected for each sentence from results of several

34

accuracy complete root
top-down (beam:8, pred:5) 90.9 80.4 93.0

shift-reduce (beam:8) 90.8 77.6 93.5
2nd-MST 91.4 79.3 94.2

oracle (sh+mst) 94.0 85.1 95.9
oracle (top+sh) 93.8 84.0 95.6

oracle (top+mst) 93.6 84.2 95.3
oracle (top+sh+mst) 94.7 86.5 96.3

Table 3.4: Results for Chinese Data (CoNLL-06)

Table 3.5: Sentences which include relative cluases (482 sentences)
unlabeled accuracy complete root

top-down 92.1 33.0 95.6
shift-reduce 91.8 29.6 94.6

2nd-CKY 91.9 29.9 94.1

parsers. This indicates that the parses produced by each parser are different from each
other. However, the gains obtained by the combination of top-down and second-MST
parsers are smaller than other combinations. This is because top-down parser uses
the same features as second-MST parser, and these are more effective than those of
stack-based model. It is worth noting that as shown in Figure 3.5, our O(n2b) (b = 8)
top-down parser is much faster than O(n3) Eisner-Satta CKY parsing.

3.6.3 Results on Chinese Data

We also experimented on the Chinese data. Following English experiments, shift-
reduce parser was trained by setting beam size to 16, and top-down parser was trained
with the beam size and the prediction size to 16 and 5, respectively. Table 3.4 shows
the results on the Chinese test data when setting beam size to 8 for both parsers and
prediction size to 5 in top-down parser. The trends of the results are almost the same
as those of the English results.

35

Table 3.6: Parsing Accuracies for longer sentences than 30.
unlabeled accuracy complete root

top-down 91.0 18.0 94.0
shift-reduce 91.5 15.5 95.5

2nd-CKY 91.3 18.3 94.9

Little Lily , as Ms. Cunningham calls herself . . . , really was n’t . . .

Figure 3.6: A parsing result of shift-reduce parser for a clause sentence

3.6.4 Error Analysis

We analyzed the results on English data. To compare the trends of the top-down
parsing results with those of other parsing results under an equal condition, we set
the hyperparameters of the top-down parser to achieve almost the same results with
other parsers (92.3 unlabeled accuracy). This results in the beam width of 12 and the
prediction size of 5. Table 3.5 shows the parsing accuracies for sentences containing
relative clauses. For these sentences, the results of the top-down parser are better than
those of other parsers. The difference between the accuracies of the top-down and 2nd-
CKY parsers is statistically significant by Mcnemar’s test (0.01). For shift-reduce and
CKY parsers, it is difficult to parse the sentences which include relative clauses and
more than one verbs because they use only local information of the input sentence. On
the other hand, the top-down parser can incorporate global information of the overall
input sentence, and parses those sentences better than the others. In Figure 3.6, we
show a result of the shift-reduce parser for a clause sentence, and in Figure 3.7, show
that of the top-down parser for the sentence. This sentence has a clause (squred framing
words), and these results clearly indicate that the top-down parser parses it well while
the shift-reduce parser fails to parse it (dotted arcs indicate the mistakes).

On the other hand, we investigate sentences which the top-down parser fails to parse
correcly. Table 3.6 shows the parsing accuracies for longer sentences than 30 words. It
is obvious from this result that the top-down parser is worse at parsing long sentences
than other parsers. This is because the longer the input sentence is, the more the

36

Little Lily , as Ms. Cunningham calls herself . . . , really was n’t . . .

Figure 3.7: A parsing result of top-down parser for a clause sentence

prediction of the top-down parser is, and it is more likely to fail to predict dependents
of a head correctly. Especially, the root correct rate of the top-down parser is much
worse than that of other parsers. In the initial step, the top-down parser needs to select
(predict) the root word from all words in the input sentence, and the root prediction
for long sentences makes the results of the top-down parser be worse than those of the
other parsers.

3.7 Summary
In this chapter, we have presented a novel head-driven parsing algorithm and empir-

ically shown that it is as practical as other dependency parsing algorithms. Our head-
driven parser has potential for handling non-projective structures better than other non-
projective dependency algorithms [58, 3, 70, 46]. We are in the process of extending
our head-driven parser for non-projective structures as our future work.

37

39

Chapter 4

Transition-based Dependency Parsing
System without Spurious Ambiguity

4.1 Motivation
The proposed top-down parser in Chapter 3 has no spurious ambigutities because

all left arcs of a head are always created before its right arcs are created. Additionaly,
this algorithm always returns not a dependency forest but a dependency tree, while
the arc-eager transition-based dependency parsing algorithm is not sound for a class of
dependency trees. These are strong advantages of the proposed top-down dependency
parsing algorithm over the previous transition-based dependency parsing algorithms.
However, it needs higher time complexity than them.

In this chapter, we propose a transition-based dependency parsing algorithm without
spurious ambiguity. This algorithm is more efficient than the top-down dependency
parsing algorithm of Chapter 3.

To accomplish this, we apply the essence of the top-down parsing algorithm to the
arc-standard transition-based parsing algorithm.

We first introduce a bottom-up transition-based parsing system without spurious am-
biguity, and then describe a method to extract packed dependency forests from the
parser’s outputs. We investigate its usefulness by comparing its output packed depen-
dency forests with those of the usual arc-standard transition-based parsing (which has
spurious ambiguities).

4.2 Related Work
Alshawi’s split head automaton removes the spurious ambiguity of the classical lexi-

calized CKY parsing [11] because each constructions of left and right arcs is separated
from each other.

On the other hand, in recent years, Cohen et al. [8] have proposed a method to
eliminate the spurious ambiguity of shift-reduce transition-based systems, which cover
existing systems such as the arc-standard transition-based and Attardi’s non-projective
transition-based systems [3]. This method introduces some boolean values on each
stack elements as constraints to perform reductions as early as they become available
in a computation. They proved that the non-spurious arc-standard transition-based
system S′ is equivalent with the original arc-standard transition-based system S from
the following point of view:

• For each complete computation γ ′ of S′, there is a complete computation γ of S
such that DT (γ) = DT (γ ′).

• For each complete computation γ of S, there is a complete computation γ ′ of S′

such that DT (γ) = DT (γ ′).

However, the system S′ is not sound for a class of dependency trees, and this means
that S′ sometimes produces not a dependency tree but a dependency forest. A novel
transition-based parsing algorithm proposed in this chapter is not only a non-spurious
ambiguity system but also sound for a class of dependency trees.

4.3 Bottom-up Transition-based System using Scanner
Action for Eliminating Spurious Ambiguity

One solution to remove spurious ambiguity of dependency parsing is to give priority
to the construction of left arcs over that of right arcs (or vice versa) [17]. For example,
an Head-corner dependency parser [27] attaches all the left dependents to a word before
the right dependents. The parser uses a scan action to stop the construction of left arcs.

We apply this idea to the arc-standard transition system and show the resulting tran-
sition system in Figure 4.1. A configuration of the system is defined as follows:

ℓ : (i, j,α) : π (4.1)

40

axiom(c0) : 0 : (0,1,w0) : /0

goal(c3n) : 3n : (0,n,s0) : /0

shift :

conf p︷ ︸︸ ︷
ℓ : (, j,sd|sd−1| . . . |s1|s0) :

ℓ+1 : (j, j+1,sd−1| . . . |s0|w∗j) : (p)
j < n

scan :
ℓ : (i, j,sd|sd−1| . . . |s1|s∗0) : π

ℓ+1 : (i, j,sd|sd−1| . . . |s1|s0) : π

reduce↶ :

conf p︷ ︸︸ ︷
: (i, j,s′d|s′d−1| . . . |s′0|s′0) : π ′

conf q︷ ︸︸ ︷
ℓ : (j,k,sd|sd−1| . . . |s1|s∗0) : π

ℓ+1 : (i,k,s′d|s′d−1| . . . |s′1|s′0↶s∗0) : π ′
s′0.h.w ̸= w0∧ p ∈ π

reduce↷ :

conf p︷ ︸︸ ︷
: (i, j,s′d|s′d−1| . . . |s′1|s′0) : π ′

conf q︷ ︸︸ ︷
ℓ : (j,k,sd|sd−1| . . . |s1|s0) : π

ℓ+1 : (i,k,s′d|s′d−1| . . . |s′1|s′0↷s0) : π ′
p ∈ π

Figure 4.1: The dynamic programming arc-standard transition-based deductive system
without spurious ambiguity

and this is the same as that of the arc-standard shift-reduce dependency parsing algo-
rithm with dynamic programming, but has the following difference. Our system uses
the ∗ symbol to indicate that the root node of the topmost element on stack has not
been scanned yet.

The shift and reduce↷ actions can be used only when the root of the topmost element
on the stack has already been scanned, and all left arcs are always attached to the head
before the head is scanned. This separate construction of left and right arcs enables
the system to eliminate the spurious ambiguity problem. Note that henceforth, we call
parsers, k-best lists, forests, and such with spurious ambiguity “spurious”and without
spurious ambiguity “non-spurious”.

4.4 Non-Spurious of the Proposed System
To prove that our proposed system has no spurious ambiguity problems, we need to

show that different complete computations of it for an input W always produce diffrent
trees, i.e., if γ1 ̸= γ2 are its complete computations for input W, then DT (γ1) ̸=DT (γ2).

41

To do so, following Cohen et al. [8], we write γ1 as αc1β1 and γ2 as αc2β2, with α
the common prefix among both two computations, and c1, c2 configurations such that
c1 ̸= c2. Note that α cannot be empty, since both computations must at least have the
axiom in common. We call c0 the last configuration in α , and t1, t2 the transitions that
produce c1, c2 respectively from c0.

We consider the following two cases.

• Case 1: t1 and t2 are scan and reduce↶ actions respectively. If the reduce↶ action
(t2) creates an arc (x,y) (x,y∈W and y< x), the arc cannot be created in the other
computation γ1 because after scanning the head word x of the topmost stack
element of c0, it cannot reduce its left words including y. Therefore, DT (γ1) ̸=
DT (γ2).

• Case 2: t1 and t2 are shift and reduce↷ actions respectively. If each head word of
the topmost and second stack elements of c0 is x, y, after shifting a word x+1,
x get reduced by its right words (x <), or x reduces its right words and then get
reduced by one of its left words including y. Therefore, DT (γ1) ̸= DT (γ2).

4.5 Extraction of Packed Dependency Forests
The dynamic programming can be applied to the arc-standard transition-based sys-

tem without spurious ambiguity, and the system is able to produce packed dependency
forests. The arc-standard shift-reduce parser without spurious ambiguity takes 3n steps
to finish parsing, and the additional n scan actions add surplus vertices and (unary) hy-
peredges to a packed forest as shown in Figure 4.2.

However, it is easy to remove them from the packed forest because a consequent
configuration of a scan action has a unique antecedent configuration and all the hyper-
edges going out from a vertex corresponding to the consequent configuration can be
attached to the vertex corresponding to the antecedent configuration. A scan weight of
the removed unary hyperedge is added to each weight of the hyperedges attached to
the antecedent.

Note that the consequent (scanned) configuration produced by a scan action will
be never merged with other configurations in the same step by dynamic programming
because of the following reasons:

• If two scanned configurations in the ℓ step were merged, their antecedent con-
figurations in the ℓ−1 step must be merged previously.

42

sUb�rV
0, 3

sUb�rV
0, 2

sUb�rV∗
0, 2

sUAV
0, 1

sUAV∗
0, 1

A

sUb�rV∗
1, 2

b�r

sU?2`V
2, 3

sU?2`V∗
2, 3

?2`

sUb�rV
0, 3

sUb�rV
0, 2

sUb�rV∗
0, 2

sUAV
0, 1

sUAV∗
0, 1

A

sUb�rV∗
1, 2

b�r

sU?2`V
2, 3

sU?2`V∗
2, 3

?2`

Figure 4.2: An example of a dependency derivation tree produced by the non-spurious
transition-based system: the ∗ symbol on some vertices indicates that head words of
them have not been scanned yet.

• The root node of the topmost element in stack of a scanned configuration does
not contain the ∗ symbol, but those of shifted and left reduced condigurations
contain it.

• Each index j of scanned and right reduced configurations is always different
from each other because the scanned configuration has not processed right in-
dexed words from the index of the root node of the topmost element in the stack
yet, while the right reduced configuration has processed them already.

These guarantee that a consequent configuration of a scan action has a unique an-
tecedent configuration even in case of using dynamic programming.

43

8 16 32 64 128 256

sp.
accuracy 85.0 85.0 85.0 84.9 84.9 84.8
milli sec. 0.016 0.03 0.059 0.121 0.273 0.711

non-sp.
accuracy 84.9 85.0 85.0 84.9 84.9 84.8
milli sec. 0.018 0.034 0.068 0.142 0.334 0.858

Table 4.1: Unlabeled accuracies and parsing times (+forest dumping times, milli sec.)
for parsing the 3019 test sentences with spurious shift-reduce and proposed shift-
reduce parser (non-sp) using several beam sizes: the parsing accuracies are reported as
unlabeled accuracy including punctuations.

4.6 Experiments (baseline vs. proposed)

4.6.1 Experimental Setups

Experiments were performed on the English Penn Treebank (PTB) data with auto-
matic part-of-speech tags. We used Stanford POS tagger1 with a model used 10-way
jackknifing to tag training data. The tagging accuracies on training was 97.1. We ran-
domly selected three disjoint sets of 5000, 2000, and 3019 sentences from the WSJ
part of PTB, and used the set of 5000 sentences for training and that of 2000 and
3019sentences for testing. While the 2000 sentence have average 22.2 words, the 3019
sentences have average 46.7 words and are more difficult to parse them than shorter
sentences. We used the standard head rules [82] to convert phrase structure to depen-
dency structure. We used an early update version of averaged perceptron algorithm
[11] for training of the original dynamic programming arc-standard transition-based
system and the proposed dynamic programming arc-standard transition-based system
without spurious ambigutiy.

4.6.2 Comparison of arc-standard transition-based parsing with
and without spurious ambiguity: Parsing Accuracy and Time

We evaluate parsing accuracies and cpu times (milli sec.) for parsing 3019 and
2000 test data with each baseline and proposed shift-reduce dependency parser with
several beam sizes, and the results are shown in Table 4.1 and 4.2. The results for 3019

1http://nlp.stanford.edu/software/tagger.shtml

44

8 16 32 64 128 256

sp.
accuracy 89.5 89.5 89.6 89.5 89.4 89.4
milli sec. 0.006 0.012 0.024 0.048 0.1 0.22

non-sp.
accuracy 89.5 89.6 89.6 89.6 89.6 89.6
milli sec. 0.007 0.014 0.028 0.051 0.119 0.294

Table 4.2: Unlabeled accuracies and parsing times (+forest dumping times, milli sec.)
for parsing the 2000 test sentences with spurious shift-reduce and proposed shift-
reduce parser (non-sp) using several beam sizes: the parsing accuracies are reported as
unlabeled accuracy including punctuations.

8 16 32 64 128 256

sp.
oracle acc. 86.9 88.1 89.1 90.1 90.9 91.6

% of distinct trees 96.0 94.4 92.7 90.9 88.8 86.7

non-sp.
oracle acc. 86.8 88.0 89.0 90.0 90.9 91.7

% of distinct trees 100.0 100.0 100.0 100.0 100.0 100.0

Table 4.3: Unlabeled oracle accuracies and average percentages of distinct trees in k-
best lists for parsing the 3019 test sentences with spurious shift-reduce and proposed
shift-reduce parser (non-sp) using several beam sizes: the oracle accuracies are re-
ported as unlabeled accuracy including punctuations.

sentences (long sentences) show that the proposed parser is slower than the baseline
parser. It is likely that this is caused by the additional n scan actions. On the other
hand, the results for 2000 sentences (short sentences) show that the parsing times of
the proposed parser are almost the same as those of the baseline parser even in the case
of setting beam size larger. We conjecture from these results that the parsing speed
of the proposed parser is not very sensitive to a length of an input sentence unless
the length is extremely long. The results also show that the parsing acuuracies of the
proposed parser are almost the same as those of the baseline parser.

45

8 16 32 64 128 256
oracle acc. 89.5 91.4 93.2 94.5 95.7 96.6

sp. # of hyperedges 152.7 300.3 612.7 1277.0 2714.3 5868.7
% of distinct trees 76.4 73.3 76.3 80.1 82.5 84.2

oracle acc. 89.0 91.3 93.1 94.5 95.8 96.7
non-sp. # of hyperedges 138.8 277.7 571.7 1211.2 2632.3 5829.8

% of distinct trees 100.0 100.0 100.0 100.0 100.0 100.0

Table 4.4: Unlabeled oracle accuracies and average percentages of distinct output trees
in 1000-best trees extracted from packed forests produced by baseline shift-reduce
and proposed shift-reduce parser (non-sp) using several beam sizes (by parsing 3019
long sentences): the parsing accuracies are reported as unlabeled accuracy including
punctuations.

4.6.3 Comparison of arc-standard transition-based parsing with
and without spurious ambiguity: Oracle Accuracy on Packed
Forests and K-best lists

We compare oracle accuracies in k-best lists produced by baseline and proposed
dependency parsers with several beam sizes. The results in Table 4.3 show that while
all output trees in k-best lists produced by the proposed parser are unique, k-best lists
produced by the baseline parser have some non-unique output trees in them. However,
when setting beam size k smaller, the oracle accuracies in k-best lists produced by the
proposed parser are slightly less than those in k-best lists produced by the proposed
parser. Table 4.4 show the statistics of packed forests produced by each baseline and
proposed parser. The oracle accuracies of packed forests without spurious ambiguity
are also less than those of packed forests with spurious ambiguity when setting beam
size k smaller. We guess that this comes from the fact that the proposed parser needs
to set beam size larger than the baseline parser.

4.7 Summary
In this chapter, we have presented a novel arc-standard shift-reduce dependency

parser without spurious ambiguity, inspired by the top-down dependency parser pro-
posed in Chapter 3. In the next chapter, we’ll use non-spurious packed forests produced

46

by our proposed parser in this chapter to a dependency forest reranking approach, and
show that the non-spuriosity is important to improve its accuracy and efficiency.

47

49

Chapter 5

Dependency Forest Reranking

5.1 Introduction
There are two main approaches to data-driven dependency parsing. One is a graph-

based approach and the other is a transition-based approach.
In the graph-based approach, global optimization algorithms find the highest-scoring

tree with locally factored models [57]. While third-order graph-based models achieve
state-of-the-art accuracy, it has O(n4) time complexity for a sentence of length n. Re-
cently, some pruning techniques have been proposed to improve the efficiency of third-
order models [73, 86].

The transition-based approach usually employs shift-reduce parsing algorithms with
linear-time complexity [68]. However, it greedily chooses the transition with the high-
est score and the resulting transition sequence is not always globally optimal. The
beam search algorithm improves parsing flexibility in deterministic parsing [87, 88],
and dynamic programming makes beam search more efficient [37].

There is also an alternative approach that integrates graph-based and transition-based
models [74, 87, 54]. Martins et al. [54] formulated their approach as stacking of parsers
where the output of the first-stage parser is provided to the second as guide features.
In particular, they used a transition-based parser for the first stage and a graph-based
parser for the second stage. The main drawback of the stacking approach is that the
efficiency of the transition-based parser is sacrificed because the second-stage employs
full parsing.

This thesis proposes an efficient stacked parsing method through discriminative
reranking with higher-order graph-based features, which works on the forests output
by the first-stage dynamic programming shift-reduce parser and integrates non-local

features efficiently with cube-pruning [35]. The advantages of our method are as fol-
lows:

• Unlike the conventional stacking approach, the first-stage shift-reduce parser
prunes the search space of the second-stage graph-based parser.

• In addition to guide features, the second-stage graph-based parser can employ
the scores of the first-stage parser which cannot be incorporated in standard
graph-based models.

• In contrast to joint transition-based/graph-based approaches [87, 4] which re-
quire large beam size and make dynamic programming impractical, our two-
stage approach can integrate both models with little loss of efficiency.

In addition, elimination of so-called spurious ambiguity from the arc-standard shift-
reduce parser improves the efficiency and accuracy of our approach.

5.2 Related Work

5.2.1 How to Handle Spurious Ambiguity

The graph-based approach employs Eisner and Satta [21]’s algorithm where spuri-
ous ambiguities are eliminated by the notion of split head automaton grammars [2].

However, the arc-standard transition-based parser has the spurious ambiguity prob-
lem. Cohen et al. [8] proposed a method to eliminate the spurious ambiguity of
shift-reduce transition systems, which covers existing systems such as the arc-standard
and non-projective transition-based parsers [3]. While many transition sequences,
which produce the same dependency tree, remain in Cohen’s system and it rules non-
canonical sequences out during parsing, in our non-spurious system, there exists just
one transition sequence which produces the tree.

The arc-eager shift-reduce parser also has a spurious ambiguity problem. Goldberg
and Nivre [24] attacked this problem by not only training with a canonical transition
sequence but also with alternate optimal transitions that are calculated dynamically for
a current state.

50

5.2.2 Methods to Improve Dependency Parsing

Higher-order features like third-order dependency relations are essential to improve
dependency parsing accuracy [45, 73, 86]. A reranking approach is one effective solu-
tion to introduce rich features to a parser model in the context of constituency parsing
[6, 33].

Hall [25] applied a k-best maximum spanning tree algorithm to non-projective de-
pendency analysis, and showed that k-best discriminative reranking improves parsing
accuracy in several languages. Sangati [75] proposed a k-best dependency reranking
algorithm using a third-order generative model, and Hayashi et al. [26] extended it to
a forest algorithm. Though forest reranking requires some approximations to integrate
non-local features, it can explore larger search space than k-best reranking.

The stacking approach [70, 54] uses the output of one dependency parser to provide
guide features for another. Stacking improves the parsing accuracy of second stage
parsers on various language datasets.

The joint graph-based and transition-based approach [87, 4] uses an arc-eager shift-
reduce parser with a joint graph-based and transition-based model. Though it improves
parsing accuracy significantly, the large beam size of the shift-reduce parser harms its
efficiency.

Sagae and Lavie [74] showed that combining the outputs of graph-based and transition-
based parsers can improve parsing accuracies.

5.3 Arc-Standard Shift-Reduce Parsing
We use a beam search shift-reduce parser with dynamic programming as our baseline

system. Figure 2.3 shows it as a deductive system [77]. A configuration is defined as
the following:

ℓ : (i, j,sd|sd−1| . . . |s1|s0) : π

where ℓ is the step size, [i, j] is the span of the topmost stack element s0, sd|sd−1| . . . |s1

shows a stack with d elements at the top, where d is the window size used for defining
features. The axiom is initialized with an input sentence of length n, x = w0 . . .wn

where w0 is a special root symbol $0. The system takes 2n steps for a complete analy-
sis.

51

axiom(c0) : 0 : (0,1,w0) : /0

goal(c2n) : 2n : (0,n,s0) : /0

shift :

conf p︷ ︸︸ ︷
ℓ : (, j,sd|sd−1| . . . |s1|s0) :

ℓ+1 : (j, j+1,sd−1| . . . |s0|w j) : (p)
i < n

reduce↶ :

conf p︷ ︸︸ ︷
: (i, j,s′d|s′d−1| . . . |s′1|s′0) : π ′

conf q︷ ︸︸ ︷
ℓ : (j,k,sd|sd−1| . . . |s1|s0) : π

ℓ+1 : (i,k,s′d|s′d−1| . . . |s′1|s′0↶s0) : π ′
s′0.h.w ̸= w0∧ p ∈ π

reduce↷ :

conf p︷ ︸︸ ︷
: (i, j,s′d|s′d−1| . . . |s′1|s′0) : π ′

conf q︷ ︸︸ ︷
ℓ : (j,k,sd|sd−1| . . . |s1|s0) : π

ℓ+1 : (i,k,s′d|s′d−1| . . . |s′1|s′0↷s0) : π ′
p ∈ π

Figure 5.1: The arc-standard transition-based dependency parsing system with dy-
namic programming: means “don’t care”. a↷b denotes that a tree b is attached to a
tree a.

π is a set of pointers to the predictor configurations, each of which is the configura-
tion just before shifting the root word of s0 into stack1. Dynamic programming merges
equivalent configurations in the same step if they have the same feature values. We add
the feature templates shown in Table 5.1 to Huang and Sagae’s feature templates [37].

Dynamic programming not only makes the beam search shift-reduce parser more
efficient but it also can produce a packed forest encoding an exponential number of
dependency trees.

A packed dependency forest can be represented by a weighted (directed) hypergraph.
A weighted hypergraph is a pair H = ⟨V,E⟩, where V is the set of vertices and E is the
set of hyperedges. Each hyperedge e∈ E is a tuple e = ⟨T (e),h(e), fe⟩, where h(e)∈V
is its head vertex, T (e) ∈V+ is an ordered list of tail vertices, and fe is a weight for e.

Figure 5.2 shows an example of a packed forest. Each binary hyperedge corresponds
to a reduce action, and each leaf vertex corresponds to a shift action. Each vertex
also corresponds to a configuration, and parse histories on the configurations can be
encoded into the vertices. In the example, information about the topmost stack element
is attached to the corresponding vertex marked with a non-terminal symbol X.

1As mentioned in Chapter 2, Huang and Sagae’s dynamic programming [37] is based on a notion of
a push computation [51].

52

X($)0, 7

IXher(saw)1, 7

IXher(saw)1, 4

IX(saw)1, 3

X(I)1, 2

I

X(saw)2, 3

saw

X(her)3, 4

her

IXher,with(saw)
1, 7

Xwith(her)3, 7

Xman(with)4, 7

X(with)4, 5

with

aX(man)5, 7

X(a)5, 6

a

X(man)6, 7

man

X($)0, 7

IXher(saw)1, 7

IXher(saw)1, 4

IX(saw)1, 3

X(I)1, 2

I

X(saw)2, 3

saw

X(her)3, 4

her

IXher,with(saw)
1, 7

Xwith(her)3, 7

Xman(with)4, 7

X(with)4, 5

with

aX(man)5, 7

X(a)5, 6

a

X(man)6, 7

man

Figure 5.2: An example of packed dependency (derivation) forest: note that this forest
is intuitively correct, but in practice dynamic programming shift-reduce parser pro-
duces more inefficient forests because of its hard condition of merging equivalent con-
figurations.

Weights are omitted in the example. In practice, we attach each reduction weight to
the corresponding hyperedge, and add the shift weight to the reduction weight when a
shifted word is reduced.

5.4 Experiments (Spurious Ambiguity vs. Non-Spurious
Ambiguity)

We conducted experiments on the English Penn Treebank (PTB) data to compare
spurious and non-spurious shift-reduce parsers. We split the WSJ part of PTB into
sections 02-21 for training, section 22 for development, and section 23 for test. We
used the standard head rules [82] to convert phrase structure to dependency structure.

We used an early update version of averaged perceptron algorithm [13, 36] for train-
ing two shift-reduce dependency parsers. In all experiments, we fixed beam size to 12
for training both parsers.

53

s0.h.t ◦ s0.lc.t ◦ s0.lc2.t s0.h.t ◦ s0.rc.t ◦ s0.rc2.t
s1.h.t ◦ s1.lc.t ◦ s1.lc2.t s1.h.t ◦ s1.rc.t ◦ s1.rc2.t
s0.h.t ◦ s0.lc.t ◦ s0.lc2.t ◦ q0.t
s0.h.t ◦ s0.rc.t ◦ s0.rc2.t ◦ q0.t
s0.h.t ◦ s1.h.t ◦ q0.t ◦ q1.t
s0.h.w ◦ s1.h.t ◦ q0.t ◦ q1.t

Table 5.1: Additional feature templates for shift-reduce parsers: q denotes input queue.
h, lc and rc are head, leftmost child and rightmost child of a stack element s. lc2 and
rc2 denote the second leftmost and rightmost children. t and w are a part-of-speech
(POS) tag and a word.

Table 5.2 shows experimental results for parsing the development and test datasets
with each of the spurious and non-spurious shift-reduce parsers using several beam
sizes. Parsing accuracies were evaluated by both unlabeled accuracy scores (UAS)
with and without punctuations. The parsing times were measured on an Intel Core
i7 2.8GHz. The average cpu time (per sentence) includes that of dumping packed
forests. This result indicates that the non-spurious shift-reduce parser achieves better
accuracies than the spurious shift-reduce parser without loss of efficiency.

Figure 5.3 shows oracle unlabeled accuracies of spurious k-best lists, non-spurious
k-best lists, spurious forests, and non-spurious forests. We extract an oracle tree from
each packed forest using the forest oracle algorithm [33]. Both forests produce much
better results than the k-best lists, and non-spurious forests have almost the same oracle
accuracies as spurious forests.

However, as shown in Table 5.3, spurious forests encode a number of non-unique
dependency trees while all dependency trees in non-spurious forests are distinct from
each other.

5.5 Decoding Algorithms for Hypergraph Search

5.5.1 Generalized Viterbi Algorithm

We introduce a dynamic programming algorithm for the highest derivation search
problem on a hypergraph H = (V,E).

First, we define a derivation with back-pointers D̂ of a vertex v as a tuple ⟨e, j⟩ such
that e ∈ BS(e) and j ∈ 1,2, . . . ,k|e|. There is one-to-one correspondence between the

54

8 16 32

spurious
UAS (w/o punc.) 92.5 / 93.5 92.7 / 93.6 92.6 / 93.6

dev.
milli sec. (per sent.) 0.01 0.017 0.03

non-sp.
UAS (w/o punc.) 92.5 / 93.6 92.6 / 93.6 92.6 / 93.6

milli sec. (per sent.) 0.01 0.018 0.03

spurious
UAS (w/o punc.) 92.7 / 93.3 92.7 / 93.3 92.7 / 93.3

test
milli sec. (per sent.) 0.01 0.017 0.03

non-sp.
UAS (w/o punc.) 92.8 / 93.4 92.9 / 93.5 92.9 / 93.5

milli sec. (per sent.) 0.01 0.018 0.03

64 128 256

spurious
UAS (w/o punc.) 92.6 / 93.6 92.6 / 93.6 92.6 / 93.6

dev.
milli sec. (per sent.) 0.06 0.13 0.25

non-sp.
UAS (w/o punc.) 92.6 / 93.6 92.6 / 93.6 92.6 / 93.6

milli sec. (per sent.) 0.07 0.13 0.25

spurious
UAS (w/o punc.) 92.8 / 93.3 92.8 / 93.3 92.7 / 93.3

test
milli sec. (per sent.) 0.06 0.13 0.25

non-sp.
UAS (w/o punc.) 92.9 / 93.5 92.9 / 93.5 92.9 / 93.5

milli sec. (per sent.) 0.06 0.13 0.25

Table 5.2: Unlabeled accuracy scores (UAS) and parsing times (+forest dumping times,
milli sec. per sentence) for parsing development (WSJ22) and test (WSJ23) data with
spurious shift-reduce and proposed shift-reduce parser (non-sp.) using several beam
sizes.

derivation with back-pointers and derivations of v:

⟨e,(j1, . . . , j|e|)⟩ ∼ ⟨e,(D j1(T1(e)), . . . ,D j|e|(T|e|(e)))⟩ (5.1)

where Di(v) denotes the i-th best derivation of v.
By using a scoring function s, an ordering on derivations is defined as D̂′ ≤ D̂ if

s(D̂′)≤ s(D̂).
Algorithm 4 show the 1-best Viterbi algorithm. This traverses the hypergraph in

topological order, and calculates the 1-best derivation of each vertex v. If the arity of
the hyperedge is constant, the time complexity of this algorithm is O(|E|).

55

beam size 8 32 128
% of distinct trees (/10) 93.5 94.8 95.0
% of distinct trees (/100) 81.8 84.9 87.2
% of distinct trees (/1000) 70.6 73.1 77.6
% of distinct trees (/10000) 62.1 64.3 65.6

Table 5.3: The percentages of distinct dependency trees in 10, 100, 1000 and 10000
best trees extracted from spurious forests with several beam sizes.

Algorithm 4 Viterbi Algorithm
1: Input: a hypergraph H = ⟨V,E⟩
2: Output: 1-best derivation D̂1(t)
3: for v ∈V in topoligical order do
4: for e ∈ BS(v) do
5: D̂1(v)←max≤(D̂1(v),⟨e,1⟩)
6: end for
7: end for

5.5.2 K-best Generalized Viterbi Algorithm

Huang and Zhang [34] generalizes the 1-best Viterbi algorithm to extract k-best
derivations. We introduce their “algorithm 2” here, and show it in Algorithm 5.

We denote D1(v), . . . ,Dk(v) as a vector D(v), and the k-best derivations search prob-
lem is to find D(t) where t is a root node of a hypergraph H. As well as the 1-best
Viterbi algorithm, Huang and Zhang’s algorithm 2 traverses the hypergraph in topo-
logical order (FindKbest).

First, the algorithm enumerates 1-best derivation for each incoming hyperedge in
BS(v), and insert each of the 1-best derivation into cand[v] (GetCandidate).

Then, it calls the AppendNext function until getting kth-best derivations for v or
cand[v] becomes empty. The AppendNext function pops the best derivation ⟨e, j⟩ from
cand[v] and insert it into D(v) (p), and then its |e| next best elements {⟨e, jl⟩|1 ≤ l ≤
|e|} are inserted into cand[v] by using di whose elements are all 0 except di

i = 1.
The overall time complexity of this algorithm is O(|E|+ |V |k logk).

56

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 0 500 1000 1500 2000 2500 3000

or
ac

le
 u

nl
ab

el
ed

 a
cc

ur
ac

y

ave. # of hyperedges

beam 16

beam 64

beam 64

"kbest"
"forest"

"non-sp-kbest"
"non-sp-forest"

Figure 5.3: Each plot shows oracle unlabeled accuracies of spurious k-best lists, spuri-
ous forests, and non-spurious forests. The oracle accuracies are evaluated using unla-
beled accuracy including punctuation.

5.6 Forest Reranking

5.6.1 Discriminative Reranking Model

We define a reranking model based on the graph-based features as the following:

ŷ = argmax
y∈H

α · fg(x,y) (5.2)

where α is a weight vector, fg is a feature vector (g indicates “graph-based”), and H is
a dependency forest.

This model assumes a hyperedge factorization which induces a decomposition of
the feature vector as the following:

α · fg(x,y) = ∑
e∈y

α · fg,e(e). (5.3)

The search problem can be solved by simply using the (generalized) Viterbi algorithm
[44].

57

When using non-local features, the hyperedge factorization is redefined to the fol-
lowing:

α · fg(x,y) = ∑
e∈y

α · fg,e(e)+α · fg,e,N(e) (5.4)

where fg,e,N is a non-local feature vector. Though the cube-pruning algorithm [35] is an
approximate decoding technique based on a k-best Viterbi algorithm, it can calculate
the non-local scores efficiently.

The baseline score can be taken into the reranker as a linear interpolation:

ŷ = argmax
y∈H

β · sctr(x,y)+α · fg(x,y) (5.5)

where sctr is the score from the baseline parser (tr indicates “transition-based”), and β
is a scaling factor.

5.6.2 Features for Discriminative Model

Local Features

While the inference algorithm is a simple Viterbi algorithm, the discriminative model
can use all tri-sibling features and some grand-sibling features2 [45] as a local scoring
factor in addition to the first- and sibling second-order graph-based features. This is
because the first stage shift-reduce parser uses features described in Section 5.3 and
this information can be encoded into vertices of a hypergraph.

The reranking model also uses guide features extracted from the 1-best tree predicted
by the first stage shift-reduce parser. We define the guide features as first-order rela-
tions like those used in Nivre [70] though our parser handles only unlabeled and pro-
jective dependency structures. We summarize the features for discriminative reranking
model as the following:

• First- and second-order features: these features are the same as those used in
MST parser3.

• Grand-child features: we define tri-gram POS features with POS tags of grand
parent, parent, and rightmost or leftmost child.

2The grand-child and grand-sibling features can be used only when interacting with the leftmost or
rightmost child and sibling. In experiments, the grand-sibling features were not effective in improving
parsing accuracy. Therefore, in case of local reranking, we used only grand-child features.

3http://www.seas.upenn.edu/~strctlrn/MSTParser/MSTParser.html

58

• Tri-sibling features: we define tri-gram features with three POS-tags of child,
sibling, and tri-sibling. We also define tri-gram features with one word and two
POS tags of the above.

• Guide feaures: we define a feature indicating whether an arc from the child to
the parent is present in the 1-best tree predicted by the first-stage shift-reduce
parser, conjoined with the POS tags of the parent and child.

• PP-Attachment features: when a parent word is a preposition, we define tri-gram
features with the parent word and POS tags of grand parent and rightmost child.

Non-local Features

To define richer features as a non-local factor, we extend a local reranking algorithm
to augment each k-best item with all child vertices of its head vertex4. Information
about all children enables the reranker to calculate the following features when reduc-
ing the head vertex:

• Grand-child features: we define tri-gram features with one word and two POS
tags of grand parent, parent, and child.

• Grand-sibling features: we define 4-gram POS features with POS tags of grand
parent, parent, sibling and child. We also define coordination features with POS
tags of grand parent, parent and child when the sibling word is a coordinate
conjunction.

• Valency features: we define a feature indicating the number of children of a head,
conjoined with each of its word and POS tag.

When using the non-local features, we removed the local grand-child features from the
model.

5.6.3 Oracle for Discriminative Training

A discriminative reranking model is trained on packed forests by using their oracle
trees as correct. Therefore, more accurate oracles are essential to train a discriminative

4If each item is augmented with richer information, even features based on the entire subtree can be
defined.

59

sp. non-sp.
ave. # of hyperedges 141.9 133.3
ave. # of vertices 199.1 187.6
ave. % of distinct trees 82.5 100.0
1-best UAS (w/ punc.) 92.5 92.6
oracle UAS (w/ punc.) 100.0 100.0

Table 5.4: Comparison of spurious (sp.) and non-spurious (non-sp.) forests: each
forest is produced by baseline and proposed shift-reduce parsers using beam size 12
for 39832 training sentences with gold POS tags.

reranker pre-comp. training
spurious 16.4 min. 34.9 min.
non-spurious 15.5 min. 32.9 min.
spurious non-local 17.3 min. 64.3 min.
non-spurious non-local 16.2 min. 60.3 min.

Table 5.5: Training times on both spurious and non-spurious packed forests (beam
12): pre-comp. denotes cpu time for feature extraction and attaching features to all
hyperedges. The non-local models were trained setting k-best size of cube-pruning to
5, and non-local features were calculated on-the-fly while training.

reranking model well. While large size forests have much more accurate oracles than
small size forests, large forests have too many hyperedges to train a discriminative
model on them, as shown in Figure 5.3. The usual forest reranking algorithms [33,
26] remove low quality hyperedges from large forests by using inside-outside forest
pruning. However, producing large forests and pruning them are computationally very
expensive. Instead, we propose a simpler method to produce small forests which have
more accurate oracles by forcing beam search shift-reduce parser to keep correct state
in the beam buffer. As the result, a correct tree can be always encoded in a produced
packed forests.

60

sp. non-sp.
ave. # of hyperedges 127.0 119.1
ave. # of vertices 178.6 168.5
ave. % of distinct trees 82.4 100.0
1-best UAS (w/ punc.) 92.8 92.9
oracle UAS (w/ punc.) 97.0 97.0

Table 5.6: Comparison of spurious (sp.) and non-spurious (non-sp.) forests: each
forest is produced by baseline and proposed shift-reduce parsers using beam size 12
for test data (WSJ23) with gold POS tags.

5.7 Experiments (Discriminative Reranking)

5.7.1 Experimental Setting

Following [33], the training set (WSJ02-21) is split into 20 folds, and each fold is
parsed by each of the spurious and non-spurious shift-reduce parsers using beam size
12 with the model trained on sentences from the remaining 19 folds, dumping the
outputs as packed forests.

The reranker is modeled by either equation (5.2) or (5.5). By our preliminary exper-
iments using development data (WSJ22), we modeled the reranker as equation (5.2)
when training but as equation (5.5) when testing5 (i.e., the scores of the first-stage
parser are not considered during training of the reranking model). This prevents the
discriminative reranking features from under-training [80, 31].

A discriminative reranking model is trained on the packed forests by using the aver-
aged perceptron algorithm with 5 iterations. When training non-local reranking mod-
els, we set k-best size of cube-pruning to 5.

5.7.2 Test with Gold POS tags

We show the comparison of dumped spurious and non-spurious packed forests for
training data in Table 5.4. Both oracle accuracies are 100.0 due to the method described
in Section 5.6.3. The 1-best accuracy of the non-spurious forests is higher than that of

5The scaling factor β was tuned by minimum error rate training (MERT) algorithm [71] using de-
velopment data. The MERT algorithm is suited to tune low-dimensional parameters. The β was set to
about 1.2 in case of local reranking, and to about 1.5 in case of non-local reranking.

61

system w/ rerank. milli sec. (per sent.) UAS (w/o punc.)
sr (12) – 0.011 92.8 / 93.3

(8) w/ local 0.009 + 0.0056 93.03 / 93.69
(12) w/ local 0.011 + 0.0079 93.03 / 93.68
(32) w/ local 0.03 + 0.019 93.07 / 93.67
(64) w/ local 0.06 + 0.039 93.0 / 93.61

(12, k=3) w/ non-local 0.011 + 0.0085 93.17 / 93.78
(64, k=3) w/ non-local 0.06 + 0.046 93.19 / 93.78

non-sp sr (12) – 0.012 92.9 / 93.5
(8) w/ local 0.01 + 0.005 93.05 / 93.73

(12) w/ local 0.012 + 0.0074 93.21 / 93.87
(32) w/ local 0.031 + 0.0184 93.22 / 93.84
(64) w/ local 0.061 + 0.0375 93.23 / 93.83

(12, k=3) w/ non-local 0.012 + 0.0083 93.28 / 93.9
(64, k=3) w/ non-local 0.061 + 0.045 93.39 / 93.96

Table 5.7: Unlabeled accuracy scores and cpu times per sentence (parsing+reranking)
when parsing and reranking test data (WSJ23) with gold POS tags: shift-reduce parser
is denoted as sr (beam size, k: k-best size of cube pruning).

the spurious forests. As we expected, the results show that there are many non-unique
dependency trees in the spurious forests. The spurious forests also get larger than the
non-spurious forests.

Table 5.5 shows how long training on spurious and non-spurious forests took on an
Opteron 8356 2.3GHz. It is clear from the results that training on non-spurious forests
is more efficient than that on spurious forests.

Table 5.6 shows the statistics of spurious and non-spurious packed forests dumped
by shift-reduce parsers using beam size 12 for test data. The trends are similar to
those for training data shown in Table 5.4. We show the results of the forest reranking
algorithms for test data in Table 5.7. Each spurious and non-spurious shift-reduce
parser produces packed forests using four beam sizes 8, 12, 32, and 64. The reranking
on non-spurious forests achieves better accuracies and is slightly faster than that on
spurious forests consistently.

62

system tok./sec. UAS (o/ punc.)
sr (12) 2130 92.5
w/ local (12) 1290 92.8
non-sp sr (12) 1950 92.6
w/ local (12) 1300 92.98
w/ non-local (12, k=1) 1280 93.1
w/ non-local (12, k=3) 1180 93.12
w/ non-local (12, k=12) 1060 93.12
Huang10 sr (8) 782 92.1
Rush12 sr (16) 4780 92.5
Rush12 sr (64) 1280 92.7
Koo10 – 93.04
Rush12 third 20 93.3
Rush12 vine 4400 93.1
H-Zhang12 third 50 92.81
H-Zhang12 (label) 220 93.06
Y-Zhang11 (64, label) 680 92.9
Bohnet12 (80, label) 120 93.39

Table 5.8: Comparison with other systems: the results were evaluated on testing data
(WSJ23) with automatic POS tags: label means labeled dependency parsing and the
cpu times of our systems were taken on Intel Core i7 2.8GHz.

5.7.3 Test with Automatic POS tags

To compare the proposed reranking system with other systems, we evaluate its pars-
ing accuracy on test data with automatic POS tags. We used the Stanford POS tagger6

with a model trained on sections 02-21 to tag development and test data, and used 10-
way jackknifing to tag training data. The tagging accuracies on training, development,
and test data were 97.1, 97.2, and 97.5.

Table 5.8 lists the accuracy and parsing speed of our proposed systems together with
results from related work. The difference of the parsing time does not represent the
efficiency of the algorithm directly because each system was implemented in different
programming language and the times were measured on different environments.

The accuracy of local reranking on non-spurious forests is the best among unlabeled

6http://nlp.stanford.edu/software/tagger.shtml

63

w/ guide. o/ guide.
PPPPPPPPPPfeature

UAS
92.98 92.86

Linear (first) 89,330 89,215
CorePos (first) 1,047,948 1,053,796
TwoObs (first) 1,303,911 1,325,990
Sibling (second) 290,291 292,849
Trip (second) 19,333 19,267
Grand-child 16,975 16,951
Guide 4,934 –
Tri-sibling 277,770 279,720
PP-Attachment 32,695 32,993
total 3,083,187 3,110,781

Table 5.9: Accuracy and the number of non-zero weighted features of the local rerank-
ing models with and without guide features: the first- and second-order features are
named for MSTParser.

shift-reduce parsers, but slightly behind the third-order graph-based systems [45, 86,
73]. It is likely that the difference comes from the fact that our local reranking model
can define only some of the grand-child related features.

To define all grand-child features and other non-local features, we also experimented
with the non-local reranking algorithm on non-spurious packed forests. It achieved al-
most the same accuracy as the previous third-order graph-based algorithms. Moreover,
the computational overhead is very small when setting k-best size of cube-pruning
small.

5.7.4 Analysis

One advantage of our reranking approach is that guide features can be defined as in
stacked parsing. To analyze the effect of the guide features on parsing accuracy, we
remove the guide features from baseline reranking models with and without non-local
features used in Section 5.7.3. The results are shown in Table 5.9 and 5.10. The parsing
accuracies of the baseline reranking models are better than those of the models without
guide features though the number of guide features is not large. Additionally, each

64

w/ guide. o/ guide.
PPPPPPPPPPfeature

UAS
93.12 93.04

Linear (first) 88,634 88,934
CorePos (first) 1,035,897 1,045,242
TwoObs (first) 1,274,834 1,301,103
Sibling (second) 284,341 288,796
Trip (second) 19,201 19,219
Guide 4,916 –
Tri-sibling 272,418 276,025
PP-Attachment 32,085 32,577
Grand-child 718,064 730,663
Grand-sibling 72,865 73,103
Valency 49,262 49,677
total 3,852,517 3,905,339

Table 5.10: Accuracy and the number of non-zero weighted features of the non-local
reranking models with and without guide features: the first- and second-order features
are named for MSTParser.

model with guide features is smaller than that without guide features. This indicates
that stacking has a good effect on training the models.

To further investigate the effects of guide features, we tried to define unlabeled ver-
sions of the second-order guide features used in [54, 56]. However, these features
did not produce good results, and investigation to determine the cause is an important
future work.

We also examined parsing errors in more detail. Table 5.11 shows root and sentence
complete rates of three systems, the non-spurious shift-reduce parser, local reranking,
and non-local reranking. The two reranking systems outperform the shift-reduce parser
significantly, and the non-local reranking system is the best among them.

Part of the difference between the shift-reduce parser and reranking systems comes
from the correction of coordination errors. Table 5.12 shows the head correct rate,
recall, precision, F-measure and complete rate of coordination structures, by which
we mean the head and siblings of a token whose POS tag is CC. The head correct
rate denotes how correct a head of the CC token is. The recall, precision, F-measure
are measured by counting arcs between the head and siblings. When the head of the

65

system UAS root comp.
non-sp sr 92.6 95.8 45.6
local 92.98 96.1 48.1
non-local 93.12 96.3 48.2

Table 5.11: Unlabeled accuracy, root correct rate, and sentence complete rate: these
scores are measured on test data (WSJ23) without punctuations.

non-sp sr local non-local

head correct 87.73 88.97 88.83
recall 82.38 84.35 84.11
precision 83.07 84.57 83.98
F-measure 82.72 84.46 84.05
comp. 62.92 64.52 65.18

Table 5.12: Head correct rate, recall, precision, F-measure, and complete rate of coor-
dination strutures: these are measured on test data (WSJ23).

CC token is incorrect, all arcs of the coordination structure are counted as incorrect.
Therefore, the recall, precision, F-measure are greatly affected by the head correct
rate, and though the complete rate of non-local reranking is higher than that of local
reranking, the results of the first three measures are lower.

We assume that the improvements of non-local reranking over the others can be
mainly attributed to the better prediction of the structures around the sentence root
because most of the non-local features are useful for predicting these structures. Table
5.13 shows the recall, precision and F-measure of grand-child structures whose grand
parent is a sentence root symbol $. The results support the above assumption. The root
correct rate directly influences on prediction of the overall structures of a sentence, and
it is likely that the reduction of root prediction errors brings better results.

5.7.5 Experiments on Chinese

We also experiment on the Penn Chinese Treebank (CTB5). Following Huang and
Sagae [37], we split it into training (secs 001-815 and 1001-1136), development (secs
886-931 and 1148-1151), and test (secs 816-885 and 1137-1147) sets, and use the
head rules of Zhang’s work [87]. The training set is split into 10 folds to dump packed

66

system recall precision F-measure
non-sp sr 91.58 92.5 92.04
local 91.96 92.95 92.45
non-local 92.44 93.07 92.75

Table 5.13: Recall, precision, and F-measure of grand-child structures whose grand
parent is an artificial root symbol: these are measured on test data (WSJ23).

system UAS root comp.
sr (12) 85.3 78.6 33.4
w/ non-local (12, k=3) 85.8 79.4 34.2
non-sp sr (12) 85.3 78.4 33.7
w/ non-local (12, k=3) 85.9 79.6 34.3

Table 5.14: Results on Chinese Treebank data (CTB5): evaluations are performed
without punctuations.

forests for training of reranking models.
We set the beam size of both spurious and non-spurious parsers to 12, and the num-

ber of perceptron training iterations to 25 for the parsers and to 8 for both rerankers.
Table 5.14 shows the results for the test sets. As we expected, reranking on non-
spurious forests outperforms that on spurious forests.

5.8 Summary
We have presented a discriminative forest reranking algorithm for dependency pars-

ing. This can be seen as a kind of joint transition-based and graph-based approach
because the first-stage parser is a shift-reduce parser and the second-stage reranker
uses a graph-based model.

Additionally, we have proposed a dynamic programming arc-standard transition-
based dependency parser without spurious ambiguity, along with a heuristic that en-
codes the correct tree in the output packed forest for reranker training, and shown that
forest reranking works well on packed forests produced by the proposed parser.

To improve the accuracy of reranking, we will engage in feature engineering. We
need to further investigate effective higher-order guide and non-local features. It also
seems promising to extend the unlabeled reranker to a labeled one because labeled

67

information often improves unlabeled dependency accuracy.
In this thesis, we adopt a reranking approach, but a rescoring approach is more

promising to improve efficiency because it does not have the overhead of dumping
packed forests.

68

Algorithm 5 k-best Viterbi Algorithm
1: Input: a hypergraph H = ⟨V,E⟩
2: Output: k-best derivations D(t) = {D1(t) . . .Dk(t)}
3: function FindKBest(k)
4: for v ∈V in topological order do
5: KBest(v, k)
6: end for
7: end function
8:

9: function KBest(v, k)
10: GetCandidates(v, k)
11: while |D̂(v)|< k and |cand[v]|> 0 do
12: AppendNext(cand[v], D̂(v))
13: end while
14: end function
15:

16: function GetCandidates(v, k)
17: temp←{⟨e,1⟩|e ∈ BS(v)}
18: cand[v]← the top k elements in temp
19: HEAPIFY(cand[v])
20: end function
21:

22: function AppendNext(cand, p)
23: ⟨e,1⟩ ← Extract-Min(cand)
24: append ⟨e,1⟩ to p
25: for i← 1 . . . |e| do
26: j’← j+di
27: if j′i ≤ |D̂(Ti(e))| and ⟨j′,e⟩ ̸∈ cand then
28: insert(cand,⟨j′,e⟩)
29: end if
30: end for
31: end function

69

71

Chapter 6

Conclusions

The transition-based approach is one of the most promising approaches for data-
driven dependency parsing because of its computational efficiency. However, its search
algorithm is incremental and non-optimal, and causes more parse errors than the state-
of-the-art graph-based algorithms.

In this thesis, we have brought up three problems on existing transition-based pars-
ing algorithms for unlabeled projective dependency analysis, and addressed these prob-
lems for improving the transition-based systems.

In Chapter 3, we have presented a data-driven top-down (head-coner) parser, and
shown its usefulness through experiments on English data. This study is a first ap-
proach to data-driven top-down dependency parsing, and also brings a new direction
of studies on data-driven dependency parsing.

In Chapter 4, by applying non-spuriosity property of the proposed top-down parser
to the arc-standard shift-reduce parser, we have proposed a novel shift-reduce pars-
ing algorithm without spurious ambiguity. This parser not only works as fast as the
previous shift-reduce parsing algorithms but also achieves higher accuracy.

In Chapter 5, we have presented a forest reranking algorithm which can combine
higher-order graph-based models efficienty with transition-based models. This rerank-
ing approach achieves the state-of-the-accuracy and works much faster than the higher-
order graph-based parser. In addition, we have showed that our proposed shift-reduce
parser in Chapter 4 improves the efficiency and accuracy of reranking.

As we mentioned in the first line of Chapter 1, many NLP applications such as
machine translation [62, 61] use a syntax tree of a sentence as their input. Because
these applications need to return their outputs to the users as fast as possible, a not
only highly accurate but also fast parser must be required.

Through step-by-step problem solving, in this thesis, we have accomplished improv-
ing the parsing accuracy of previous transition-based systems with little loss of their
efficiency. We believe that the proposed parsing systems in this thesis are useful for
the many NLP applications and applied to them.

However, there remain several promising and interesting future works on our ap-
proaches. Here, we refer to the following two future works.

• Extention to handle non-projective dependency trees.

• Extention to handle labeled dependency arcs.

All algorithms proposed in this thesis are for unlabeled projective dependency pars-
ing. Extentions of two transition-based parsers proposed in Chapters 3 and 4 to handle
non-projective dependency structures might be very interesting from algorithmic per-
spectives. It also seems promising to extend our algorithms to handle labeled depen-
dency arcs because labeled information often improves dependency parsing accuracy.

In future, we plan to address these futher problems.

72

73

Appendix

Correctness of the Top-down Transition-based Parsing
Algorithm for a class of Projective Dependency Graphs

To prove the correctness of the system in Figure 3.1 for the projective dependency
graph, we use the proof strategy of [68]. The correct deductive system is both sound
and complete.

Theorem Appendix.1 The deductive system in Figure 3.1 is correct for the class of
dependency forest.

Proof Appendix.1 To show soundness, we show that Gp0 = (VW , /0), which is a di-
rected graph defined by the axiom, is well-formed and projective, and that every tran-
sition preserves this property.

• ROOT: The node 0 is a root in Gp0 , and the node 0 is on the top of stack of
p0. The two pred actions put a word onto the top of stack, and predict an arc
from root or its descendant to the child. The comp actions add the predicted arcs
which include no arc of (x,0).
• SINGLE-HEAD: Gp0 is single-head. A node y is no longer in stack and queue

after a comp action creates an arc (x,y). The node y cannot make any arc (x′,y)
after the removal.

• ACYCLICITY: Gp0 is acyclic. A cycle is created only if an arc (x,y) is added
when there is a directed path y→∗ x. The node x is no longer in stack and queue
when the directed path y→∗ x was made by adding an arc (l,x). There is no
chance to add the arc (x,y) on the directed path y→∗ x.

• PROJECTIVITY: Gp0 is projective. Projectivity is violated by adding an arc
(x,y) when there is a node l in x < l < y or y < l < x with the path to or from
the outside of the span x and y. When pred↷ creates an arc relation from x to
y, the node y cannot be scanned before all nodes l in x < l < y are scanned and

completed. When pred↶ creates an arc relation from x to y, the node y cannot
be scanned before all nodes k in k < y are scanned and completed, and the node
x cannot be scanned before all nodes l in y < l < x are scanned and completed.
In those processes, the node l in x < l < y or y < l < x does not make a path to
or from the outside of the span x and y, and a path x→∗ l or y→∗ l is created.
2

To show completeness, we show that for any sentence W, and dependency forest
GW = (VW ,AW), there is a transition sequence C0,m such that Gpm = GW by an induc-
tive method.

• If |W |= 1, the projective dependency graph for W is GW = ({0}, /0) and Gp0 =

GW .

• Assume that the claim holds for sentences with length less or equal to t, and
assume that |W | = t + 1 and GW = (VW ,AW). The subgraph GW ′ is defined as
(VW − t,A−t) where A−t = AW −{(x,y)|x = t ∨ y = t}. If GW is a dependency
forest, then GW ′ is also a dependency forest. It is obvious that there is a transition
sequence for constructing GW except arcs which have a node t as a head or a
dependent1. There is a state pq = q : ⟨i,x, t +1⟩ : for i and x (0≤ x < i < t+1).
When x is the head of t, pred↷ to t creates a state pq+1 = q+1 : ⟨i, t, t+1⟩ : {pq}.
At least one node y in i ≤ y < t becomes the dependent of t by pred↶ and there
is a transition sequence for constructing a tree rooted by y. After constructing
a subtree rooted by t and spaned from i to t, t is scaned, and then comp creates
an arc from x to t. It is obvious that the remaining transition sequence exists.
Therefore, we can construct a transition sequence C0,m such that Gpm = GW . 2

The deductive sysmtem in Figure 3.1 is both sound and complete. Therefore, it is
correct. 2

1This transition sequence is defined for GW ′ , but it is possible to be regarded as the definition for GW
as long as the transition sequence is indifferent from the node t.

74

75

Bibliography

[1] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation and Compiling,
volume 1: Parsing. Prentice-Hall, 1972.

[2] H. Alshawi. Head automata for speech translation. In Proc. the ICSLP, 1996.

[3] G. Attardi. Experiments with a multilanguage non-projective dependency parser.
In Proc. of the 10th Conference on Natural Language Learning, pages 166–170,
2006.

[4] B. Bohnet and J. Kuhn. The best of bothworlds – a graph-based completion
model for transition-based parsers. In Proceedings of the 13th Conference of
the European Chapter of the Association for Computational Linguistics, pages
77–87, 2012.

[5] X. Carreras. Experiments with a higher-order projective dependency parser. In
Proc. the CoNLL-EMNLP, pages 957–961, 2007.

[6] E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discrim-
inative reranking. In Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics, pages 173–180, 2005.

[7] Y.-J. Chu and T.-H. Liu. On the shortest arborescence of a directed graph. Science
Sinica, 14(1396-1400):270, 1965.

[8] S. B. Cohen, C. Gómez-Rodrı́guez, and G. Satta. Elimination of spurious ambi-
guity in transition-based dependency parsing. Technical report, 2012.

[9] M. Collins. Three generative, lexicalised models for statistical parsing. In Proc.
the 35th ACL, pages 16–23, 1997.

[10] M. Collins. Head-driven statistical models for natural language parsing. PhD
thesis, University of Pennsylvania, 1999.

[11] M. Collins. Discriminative reranking for natural language parsing. In Proc. the
ICML, 2000.

[12] M. Collins. Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the 2002 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1–8, 2002.

[13] M. Collins and B. Roark. Incremental parsing with the perceptron algorithm. In
Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL’04), 2004.

[14] M. A. Covington. A fundamental algorithm for dependency parsing. In Pro-
ceedings of the 39th annual ACM southeast conference, pages 95–102. Citeseer,
2001.

[15] J. Earley. An efficient context-free parsing algorithm. Communications of the
Association for Computing Machinery, 13(2):94–102, 1970.

[16] J. Edmonds. Optimum branchings. Journal of Research of the National Bureau
of Standards B, 71:233–240, 1967.

[17] J. Eisner. Bilexical grammars and a cubic-time probabilistic parser. In Proceed-
ings of the 5th International Workshop on Parsing Technologies (IWPT), pages
54–65, 1997.

[18] J. Eisner. Bilexical grammars and their cubic-time parsing algorithms. Advances
in Probabilistic and Other Parsing Technologies, 16:29–61, 2000.

[19] J. M. Eisner. An empirical comparison of probability models for dependency
grammar. In Technical Report, pages 1–18, 1996.

[20] J. M. Eisner. Three new probabilistic models for dependency parsing: An explo-
ration. In Proc. the 16th COLING, pages 340–345, 1996.

[21] J. M. Eisner and G. Satta. Efficient parsing for bilexical context-free grammars
and head automaton grammars. In Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics, pages 457–464, 1999.

[22] H. Gaifman. Dependency systems and phrase-structure systems. Information and
control, 8(3):304–337, 1965.

76

[23] Y. Goldberg and M. Elhadad. An efficient algorithm for easy-first non-directional
dependency parsing. In Proc. the HLT-NAACL, pages 742–750, 2010.

[24] Y. Goldberg and J. Nivre. A dynamic oracle for arc-eager dependency parsing. In
Proceedings of the 24rd International Conference on Computational Linguistics
(Coling 2012), 2012.

[25] K. Hall. K-best spanning tree parsing. In Proceedings of the 45th Annual Meeting
of the Association of Computational Linguistics, pages 392–399, 2007.

[26] K. Hayashi, T. Watanabe, M. Asahara, and Y. Matsumoto. The third-order vari-
ational reranking on packed-shared dependency forests. In Proceedings of the
2011 Conference on Empirical Methods in Natural Language Processing, pages
1479–1488, 2011.

[27] K. Hayashi, T. Watanabe, M. Asahara, and Y. Matsumoto. Head-driven
transition-based parsing with top-down prediction. In Proceedings of the 50th
Annual Meeting of the Association for Computational Linguistics, pages 657–
665, 2012.

[28] D. G. Hays. Dependency theory: A formalism and some observations. Language,
40(4):511–525, 1964.

[29] P. Hellwig. Dependency unification grammar. In Proceedings of the 11th cofer-
ence on Computational linguistics, pages 195–198. Association for Computa-
tional Linguistics, 1986.

[30] T. Holan, V. Kuboň, and M. Plátek. A prototype of a grammar checker for czech.
In Proceedings of the fifth conference on Applied natural language processing,
pages 147–154. Association for Computational Linguistics, 1997.

[31] K. Hollingshead and B. Roark. Reranking with baseline system scores and ranks
as features. In CSLU-08-001, Center for Spoken Language Understanding, Ore-
gon Health and Science University, 2008.

[32] L. Huang. Statistical syntax-directed translation with extended domain of local-
ity. In In Proc. AMTA 2006, pages 66–73, 2006.

77

[33] L. Huang. Forest reranking: Discriminative parsing with non-local features. In
Proceedings of the 46th Annual Meeting of the Association for Computational
Linguistics, pages 586–594, 2008.

[34] L. Huang and D. Chiang. Better k-best parsing. In Proceedings of the 11th Inter-
national Conference on Parsing Technologies (IWPT’05), pages 53–64, 2005.

[35] L. Huang and D. Chiang. Forest rescoring: Faster decoding with integrated lan-
guage models. In Proceedings of the 45th Annual Meeting of the Association of
Computat ional Linguistics, pages 144–151, 2007.

[36] L. Huang, S. Fayong, and Y. Guo. Structured perceptron with inexact search. In
Proceedings of the 2012 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
142–151, 2012.

[37] L. Huang and K. Sagae. Dynamic programming for linear-time incremental pars-
ing. In Proceedings of the 48th Annual Meeting of the Association for Computa-
tional Linguistics (ACL’10), pages 1077–1086, 2010.

[38] R. A. Hudson. Word grammar. Blackwell Oxford, 1984.

[39] H. Isozaki, H. Kazawa, and T. Hirao. A deterministic word dependency analyzer
enhanced with preference learning. In Proc. the 21st COLING, pages 275–281,
2004.

[40] M. Johnson. Transforming projective bilexical dependency grammars into
efficiently-parsable CFGs with unfold-fold. In Proceedings of the 45th Annual
Meeting of the Association for Computational Linguistics (ACL’07), pages 168–
175, 2007.

[41] T. Kasami. An efficient recognition and syntax analysis algorithm for context-
free languages. Technical report, DTIC Document, 1965.

[42] M. Kay. Head driven parsing. In Proc. the IWPT, 1989.

[43] K. Kitagawa and K. Tanaka-Ishii. Tree-based deterministic dependency parsing
— an application to nivre’s method —. In Proc. the 48th ACL 2010 Short Papers,
pages 189–193, July 2010.

78

[44] D. Klein and C. D. Manning. Parsing and hypergraphs. In Proceedings of the 7th
International Workshop on Parsing Technologies, 2001.

[45] T. Koo and M. Collins. Efficient third-order dependency parsers. In Proceed-
ings of the 48th Annual Meeting of the Association for Computational Linguistics
(ACL’10), pages 1–11, 2010.

[46] T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposi-
tion for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1288–
1298, 2010.

[47] T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposi-
tion for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1288–
1298, October 2010.

[48] S. Kübler, R. T. McDonald, and J. Nivre. Dependency Parsing. Morgan & Clay-
pool Publishers, 2009.

[49] T. Kudo and Y. Matsumoto. Japanese dependency structure analysis based on
support vector machines. In Proceedings of the 2000 Joint SIGDAT conference
on Empirical methods in natural language processing and very large corpora:
held in conjunction with the 38th Annual Meeting of the Association for Com-
putational Linguistics-Volume 13, pages 18–25. Association for Computational
Linguistics, 2000.

[50] T. Kudo and Y. Matsumoto. Japanese dependency analysis using cascaded chunk-
ing. In proceedings of the 6th conference on Natural language learning-Volume
20, pages 1–7. Association for Computational Linguistics, 2002.

[51] M. Kuhlmann, C. Gómez-Rodrı́guez, and G. Satta. Dynamic programming algo-
rithms for transition-based dependency parsers. In Proceedings of the 49th An-
nual Meeting of the Association for Computational Linguistics, pages 673–682,
2011.

[52] V. Lombardo and L. Lesmo. An earley-type recognizer for dependency grammar.
In Proc. the 16th COLING, pages 723–728, 1996.

79

[53] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330,
1993.

[54] T. Martins, F. André, D. Das, N. A. Smith, and E. P. Xing. Stacking dependency
parsers. In Proceedings of the 2008 Conference on Empirical Methods in Natural
Language Processing, pages 157–166, 2008.

[55] D. McAllester. A reformulation of eisner and satta’s cubic time parser for split
head automata grammars. 1999. http://ttic.uchicago.edu/ dmcallester/.

[56] D. McClosky, W. Che, M. Recasens, M. Wang, R. Socher, and C. D. Manning.
Stanford’s system for parsing the english web. In Proceedings of First Workshop
on Syntactic Analysis of Non-Canonical Language (SANCL) at NAACL 2012,
2012.

[57] R. McDonald, K. Crammer, and F. Pereira. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL’05), pages 91–98, 2005.

[58] R. McDonald and F. Pereira. Online learning of approximate dependency parsing
algorithms. In Proc. EACL, pages 81–88, 2006.

[59] R. McDonald and G. Satta. On the complexity of non-projective data-driven
dependency parsing. In Proc. of IWPT, pages 121–132, 2007.

[60] I. A. Melčuk. Dependency syntax: theory and practice. State University of New
York Press, 1988.

[61] H. Mi and L. Huang. Forest-based translation rule extraction. In Proc. of the
2008 Conference on Empirical Methods in Natural Language Processing, pages
206–214, Honolulu, Hawaii, 2008.

[62] H. Mi, L. Huang, and Q. Liu. Forest-based translation. In Proceedings of the 45th
Annual Meeting of the Association of Computational Linguistics, pages 192–199,
Columbus, Ohio, June 2008.

[63] M.-J. Nederhof. Weighted deductive parsing and knuth’s algorithm. Computa-
tional Linguistics, 29:135–143, 2003.

80

[64] J. Nivre. An efficient algorithm for projective dependency parsing. In Proceed-
ings of the 10th International Conference on Parsing Technologies (IWPT’03),
pages 149–160, 2003.

[65] J. Nivre. Incrementality in deterministic dependency parsing. In Proc. the ACL
Workshop Incremental Parsing: Bringing Engineering and Cognition Together,
pages 50–57, 2004.

[66] J. Nivre. Inductive Dependency Parsing of Natural Language Text. PhD thesis,
School of Mathematics and Systems Engineering, Växjö University, 2005.

[67] J. Nivre. Constraints on non-projective dependency parsing. In Eleventh Confer-
ence of the European Chapter of the Association for Computational Linguistics
(EACL), pages 73–80, 2006.

[68] J. Nivre. Algorithms for deterministic incremental dependency parsing. Compu-
tational Linguistics, 34:513–553, 2008.

[69] J. Nivre. Sorting out dependency parsing. Advances in Natural Language Pro-
cessing, pages 16–27, 2008.

[70] J. Nivre and R. McDonald. Integrating graph-based and transition-based depen-
dency parsers. In Proceedings of ACL-08: HLT, pages 950–958, 2008.

[71] F. J. Och. Minimum error rate training in statistical machine translation. In Proc.
the 41st ACL, pages 160–167, 2003.

[72] S. Riedel and J. Clarke. Incremental integer linear programming for non-
projective dependency parsing. In Proceedings of the 2006 Conference on Em-
pirical Methods in Natural Language Processing, pages 129–137, July 2006.

[73] A. Rush and S. Petrov. Vine pruning for efficient multi-pass dependency parsing.
In Proceedings of the 2012 Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Language Technologies, pages
498–507, 2012.

[74] K. Sagae and A. Lavie. Parser combination by reparsing. In Proc. HLT, pages
129–132, 2006.

81

[75] F. Sangati, W. Zuidema, and R. Bod. A generative re-ranking model for depen-
dency parsing. In Proceedings of the 11th International Conference on Parsing
Technologies (IWPT’09), pages 238–241, 2009.

[76] P. Sgall, E. Hajicová, and J. Panevová. The meaning of the sentence in its seman-
tic and pragmatic aspects. Springer, 1986.

[77] S. M. Shieber, Y. Schabes, and F. C. N. Pereira. Principles and implementation
of deductive parsing. J. Log. Program., 24(1&2):3–36, 1995.

[78] K. Sikkel and R. op den Akker. Predictive head-corner chart parsing. Recent
Advances in Parsing Technology. Kluwer Academic, Netherlands, pages 169–
182, 1996.

[79] A. Stolcke. An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities. Computational Linguistics, 21(2):165–201, 1995.

[80] C. Sutton, M. Sindelar, and A. McCallum. Reducing weight undertraining in
structured discriminative learning. In Conference on Human Language Tech-
nology and North American Association for Computational Linguistics (HLT-
NAACL), 2006.

[81] M. Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for Prac-
tical Systems. Kluwer Academic Publisher, 1986.

[82] H. Yamada and Y. Matsumoto. Statistical dependency analysis with support vec-
tor machines. In Proceedings of the 10th International Conference on Parsing
Technologies (IWPT’03), pages 195–206, 2003.

[83] K. Yamada and K. Knight. A syntax-based statistical translation model. In Pro-
ceedings of 39th Annual Meeting of the Association for Computational Linguis-
tics, pages 523–530, Toulouse, France, July 2001.

[84] D. H. Younger. Recognition and parsing of context-free languages in time ¡ i¿
n¡/i¿¡ sup¿ 3¡/sup¿. Information and control, 10(2):189–208, 1967.

[85] D. Yuan and M. Palmer. Machine translation using probabilistic synchronous de-
pendency insertion grammars. In Proceedings of the 42rd Annual Meeting of the
Association of Computational Linguistics, pages 541–548, Ann Arbor, Michigan,
June 2005.

82

[86] H. Zhang and R. McDonald. Generalized higher-order dependency parsing with
cube pruning. In Proceedings of the 2012 Joint Conference on Empirical Methods
in Natural Language Processing and Computational Natural Language Learn-
ing, pages 320–331, 2012.

[87] Y. Zhang and S. Clark. A tale of two parsers: Investigating and combining graph-
based and transition-based dependency parsing using beam-search. In Proceed-
ings of the 2008 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 562–571, 2008.

[88] Y. Zhang and J. Nivre. Transition-based dependency parsing with rich non-local
features. In Proceedings of the 49th Annual Meeting of the Association for Com-
putational Linguistics: Human Language Technologies, pages 188–193, 2011.

83

85

List of Publication

International Journal Papers
• Katsuhiko Hayashi, Shuhei Kondo, Yuji Matsumoto. Efficient Stacked Depen-

dency Parsing by Forest Reranking. Transactions of the Association for Compu-
tational Linguistics, 2013.

Domestic Journal Papers
• Katsuhiko Hayashi, Taro Watanabe, Hajime Tsukada, Hideki Isozaki, and Sei-

ichi Yamamoto. Max-margin Learning for Statistical Machine Translation. Trans-
actions of the Japanese Society for Artificial Intelligence, Vol.25, No.5, pp.560-
569, July 2010 (in Japanese).

International Conference
• Katsuhiko Hayashi, Taro Watanabe (NICT), Masayuki Asahara and Yuji Mat-

sumoto. Head-driven Transition-based Parsing with Top-down Prediction. In
Proceedings of the 50th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), Jeju, South Korea, pp.657-665, July 2012,
oral.

• Katsuhiko Hayashi, Taro Watanabe (NICT), Masayuki Asahara, and Yuji Mat-
sumoto. Third-order variational reranking on packed-shared dependency forests.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, Edinburgh, Scotland, UK, pp.1479-1488, July 2011, oral.

• Katsuhiko Hayashi, Hajime Tsukada (NTT), Katsuhito Sudoh (NTT), Kevin
Duh (NTT), and Seiichi Yamamoto (Doshisha Univ). Hierarchical phrase-based

machine translation with word-based reordering model. In Proceedings of the
23rd International Conference on Computational Linguistics (COLING 2010),
Beijing, China, pp.439-446, August 2010, oral.

Other Publications
• Katsuhiko Hayashi, Taro Watanabe, Masayuki Asahara, and Yuji Matsumoto.

Split Head Automata for Dependency Parsing. In Information Processing Soci-
ety of Japan SIG notes, NL-206, pp.1-8, May, 2012. (In Japanese)

Awards
• Young Scientist Award of Information Processing Society of Japan SIG notes,

NL-206.

86

