Statistical Models of Plant Functions in Jamu Medicines

Farit Mochamad Afendi Lab of Computational Systems Biology Graduate School of Information Sciences Nara Institute of Science and Technology Japan

Doctoral Dissertation

Statistical Models of Plant Functions in Jamu Medicines

Farit Mochamad Afendi

August 8, 2012

Department of Bioinformatics and Genomics Graduate School of Information Science Nara Institute of Science and Technology Japan A Doctoral Dissertation

submitted to the Graduate School of Information Science, Nara Institute of Science and Technology in partial fulfillment of the requirements for the degree of Doctor of Science.

Thesis Committee:	
Professor Shigehiko Kanaya	(Supervisor)
Professor Naotake Ogasawara	(Co-supervisor)
Professor Kotaro Minato	(Co-supervisor)
Associate Professor Md. Altaf-Ul-Amin	(Co-supervisor)

Statistical Models of Plant Functions in Jamu Medicines¹

Farit Mochamad Afendi

Abstract

This study is intended to develop statistical models of plants utilization in Jamu medicines. Exploration using Biplot reveals many plants are rarely utilized while some plants are highly utilized toward specific efficacy. Furthermore, I modeled the ingredients of Jamu formulas using Partial Least Squares Discriminant Analysis (PLS-DA) in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. This model produces 71.6% of correct classification in predicting efficacy. Permutation test then is used to determine plants serve as main ingredients in Jamu formula by evaluating the significance of the PLS-DA coefficients. By performing 1,000 permutation processes I found 231 plants are significant and many of them are supported by scientific papers. Next, in order to explain the role of plants serve as main ingredients in Jamu medicines, information of pharmacological activity of the plants is added to the predictor's block. Then N-PLS-DA model, multiway version of PLS-DA, is utilized to handle the three-dimensional array of the predictor's block. The resulting N-PLS-DA model reveals that the effect of some activities are specific for certain efficacy and the other activities are diverse toward many efficacies.

Keywords: Jamu, efficacy, Biplot, outlier, RobustPCA, PLS-DA, Permutation test, N-PLS-DA

¹Doctoral Dissertation. Department of Bioinformatics and Genomics, Graduate School of Information Science, Nara Institute of Science and Technology, NAIST-IS-DD0961210

Acknowledgements

In the name of Allah, the Most Gracious and the Most Merciful. Alhamdulillah, all praises to Allah for the strengths and His blessing in completing this dissertation.

Special appreciation goes to my supervisor, **Professor Shigehiko Kanaya**, for his supervision and constant support. His invaluable help of constructive comments and suggestions throughout the analysis and dissertation works have contributed to the success of this research.

I would like to thank to Associate Professor Md. Altaf-Ul-Amin for all his valuable comments, suggestions, and reviewing my papers and this dissertation. I also would like to thank to Professor Naotake Ogasawara and Professor Kotaro Minato for their support and knowledge regarding this topic and reviewing this dissertation.

I thank my fellow labmates in **Computational Systems Biology Lab**oratory for the stimulating discussions, and for all the fun we have had in the last three years. In particular, I am grateful to **Mrs. Aki Morita** for her support in developing **KNApSAcK Jamu Database** and also for taking care most of my administration matters. To those who indirectly contributed in this research, your kindness means a lot to me. Thank you very much.

Last but not the least, I would like to thank my family: **my parents** and **my parents in law**, for giving birth to me at the first place and supporting me spiritually throughout my life. And, my special thank to my wife: **Euis Siti Aisyah** for her endless love, prayers, encouragement, and understanding during my doctorate works.

> July 2012 Afendi Farit Mochamad

List of abbreviations

AUC	Area Under Curve
CPCA	Classical Principal Component Analysis
DMB	Disorders of mood and behavior
DOA	Disorders of appetite
Eq-E	Equal prior - Empirical distribution
Eq-N	Equal prior - Normal distribution
FPR	False Positive Rate
FML	Female reproductive organ problems
GST	Gastrointestinal disorders
MCD	Minimum Covariance Determinant
MD	Mahalanobis Distance
MSC	Musculoskeletal and connective tissue disorders
NA-DFC	The National Agency of Drug and Food Control
N-PLS	Multiway Partial Least Square (here, N refers to the dimen-
	sion of predictor's block which can be 3 or larger)
N-PLS-DA	sion of predictor's block which can be 3 or larger) Multiway Partial Least Square Discriminat Analysis (here,
N-PLS-DA	
N-PLS-DA	Multiway Partial Least Square Discriminat Analysis (here,
N-PLS-DA PCA	Multiway Partial Least Square Discriminat Analysis (here, N refers to the dimension of predictor's block which can be
	Multiway Partial Least Square Discriminat Analysis (here, N refers to the dimension of predictor's block which can be 3 or larger)
PCA	Multiway Partial Least Square Discriminat Analysis (here, N refers to the dimension of predictor's block which can be 3 or larger) Principal Component Analysis
PCA PIN	Multiway Partial Least Square Discriminat Analysis (here, N refers to the dimension of predictor's block which can be 3 or larger) Principal Component Analysis Pain and inflammation
PCA PIN PLS	Multiway Partial Least Square Discriminat Analysis (here, N refers to the dimension of predictor's block which can be 3 or larger) Principal Component Analysis Pain and inflammation Partial Least Square

PRESS	Prediction Error Sum of Square
Pr-E	Proportional prior - Empirical distribution
Pr-N	Proportional prior - Normal distribution
RD	Robust Distance
ROBPCA	Robust Principal Component Analysis
ROC	Receiver operating characteristic
RSP	Respiratory diseases
SVD	Singular Value Decomposition
URI	Urinary-related problems
WND	Wounds and skin infection

Contents

1	Intr	Introduction 1			
	1.1	Background	1		
	1.2	Objectives	2		
	1.3	Dissertation outline	3		
2	\mathbf{Rel}	ationship between Plants and Jamu Efficacy	5		
	2.1	KNApSAcK Jamu Database	5		
	2.2	Data set for Biplot analysis	10		
	2.3	Visualizing Multivariate Data with Biplot	11		
		2.3.1 Classical Biplot	12		
		2.3.2 Robust Biplot based on ROBPCA	13		
		2.3.3 Testing For Outlier in Multivariate Case	15		
	2.4	Results	17		
	2.5	Summary	21		
3	Mo	deling Ingredients of Jamu to Predict Efficacy	23		
	3.1	Data set for PLS-DA model	24		
	3.2	PLS-DA	24		

		3.2.1	Selection of the number of components	26
		3.2.2	Utilization of \hat{y}_{il} to predict the efficacies of Jamu reme-	
			dies	28
	3.3	Result	s	30
		3.3.1	Determination of the number of PLS-DA components	30
		3.3.2	Prediction of Jamu efficacy	32
	3.4	Summ	ary	38
4	Det	ermini	ng Plants as Main Ingredients in Jamu Formulas	39
	4.1	Permu	tation Test	40
	4.2	Result	S	43
		4.2.1	PLS-DA of the reduced data	46
	4.3	Summ	ary	50
5	Deg	ree Di	stribution of Jamu Formulas	53
	5.1	Degree	e Distribution	53
	5.2	Result	S	54
	5.3	Summ	ary	57
6	Mu	ltiway	Model of Jamu Medicines	59
	6.1	Data s	et for multiway model	59
	6.2	N-PLS	-DA	64
	6.3	Result	s	67
		6.3.1	Selection of the number of component in N-PLS-DA	
			model	67
		6.3.2	$\label{eq:prediction} \mbox{Prediction of Jamu efficacy using N-PLS-DA model} .$	68
		6.3.3	Characterization of N-PLS-DA components	71
	6.4	Summ	ary	80

7 Conclusions	83
Appendices	97
A List of plants serve as main ingredients	97

List of Figures

2.1	Accessing KNApSAcK Jamu Database	7
2.2	KNApSAcK Jamu Database	8
2.3	Illustration of network connecting efficacy-jamu-plant $\ . \ . \ .$	11
2.4	Plot of robust distance versus plant index	18
2.5	Cumulative percentage of eigenvalue for CPCA and ROBPCA	19
2.6	Biplot configuration based on ROBPCA	20
3.1	Schematic diagram of the data structure used in the PLS-DA	
	$model \dots \dots \dots \dots \dots \dots \dots \dots \dots $	25
3.2	Schematic diagram of the decomposition of both predictor	
	and response blocks for PLS model	27
3.3	PRESS plot of five-folds cross-validation for PLS-DA model .	31
3.4	Plot of predictor's scores (T) for component 1 vs. component 2	33
3.5	Distribution of \hat{y}_{il} corresponding to $Y_l = 0$ and $Y_l = 1$ for all	
	nine efficacies	34
3.6	Results of the PLS-DA model	35
4.1	The schematic diagram of the permutation steps used in this	
	study	42

4.2	Illustration of the coefficient distribution under the null hy-	
	pothesis, obtained using the permutation process $\ldots \ldots$	43
4.3	Plot of frequency of plant usage in Jamu medicines	45
4.4		47
4.4	Illustration of networks connecting Jamu efficacy, Jamu, and	
	plants utilized in Jamu formulas along with their data structure	48
4.5	Results of the Jamu efficacy prediction for simplified scenario	49
4.6	Plot of number of plant utilized in Jamu medicines between	
	original formula versus simplified formula $\ldots \ldots \ldots \ldots$	51
5.1	Illustration of degree-distribution calculation for the bipartite	
	graph connecting Jamu and plants	55
5.2	Degree distribution of networks connecting Jamu and plants.	
	(a) Plant in-degree, and (b) Jamu out-degree	56
6.1	Illustration of a network connecting Jamu efficacy, Jamu,	
	plant, and pharmacological activity of plant $\ldots \ldots \ldots$	60
6.2	Schematic diagram of the decomposition of both predictor	
	and response blocks based on N-PLS model \hdots	63
6.3	Illustration of matricizing process	65
6.4	PRESS plot of the N-PLS-DA model obtained using 5-folds	
	cross-validation	68
6.5	cross-validation	68 70
6.5 6.6		
	Prediction status of Jamu efficacy	
	Prediction status of Jamu efficacy	70
6.6	Prediction status of Jamu efficacy	70

- 6.9 Plot of weight of activity against pharmacological activity index 77
- $6.10\,$ Clustergram of pharmacological activity against Jamu efficacy $\,$ 79 $\,$

List of Tables

2.1	Distribution of Jamu and plant utilized in Jamu for each efficacy	9
2.2	Illustration of data structure relating efficacy-plant obtained	
	from network in Figure 2.3	10
2.3	Distribution of Jamu by number of plant contained in the	
	formula	17
2.4	Distribution of plant according to their usage in Jamu formula	18
3.1	False positive rate in predicting Jamu efficacy	36
4.1	Number of significant plants for each efficacy	44
4.2	Comparison of the performance of the PLS-DA model be-	
	tween all data, reduced variables, and reduced formulas sce-	
	nario	46
4.3	Correlations between PLS-DA coefficients	48
6.1	Distribution of Jamu, plant, and pharmacological activity	
	based on Jamu efficacy for reduced formula scenario $\ . \ . \ .$	61
6.2	List of pharmacological activity	61
6.3	List of component significantly related with the efficacy $\ . \ .$.	72

6.4	${\rm List\ of\ pharmacological\ activity\ significantly\ related\ with\ Jamu}$			
	efficacy	78		

Chapter 1

Introduction

1.1 Background

Jamu is the common name for Indonesian herbal medicines; each Jamu is prepared from a single plants or mixture of several plants. In making Jamu, however, not all parts of the plant are used. Ginger (*Zingiber officinale*) for example, only its rhizome is used. Another example is Tamarind (*Tamarindus indica*) whose fruit is only used. Other plants might be utilized for their leaf, flower, seed, bark, timber, etc. However, in order to simplify notation, I will use the term plants to refer plants as ingredients in Jamu medicines regardless of the part of the plants that is used in making Jamu.

Besides being useful in curing diseases, Jamu remedies help for health maintenance and are used for cosmetic purposes (Beers, 2001; Pramono, 2007). To prepare Jamu, several plants are selected and mixed such that the concoction has the desired efficacy. Traditionally, plants are chosen using previous experiences, which is passed down from generation to generation, and the efficacies of Jamu medicines have been empirically demonstrated (Adnyana & Soemardji, 2007; Pramono, 2007). In curing a particular disease, each ethnic group in Indonesia may have its own formulas, whose specific nature depends strongly on the local plant resources in the region where a given population lives (Adnyana & Soemardji, 2007; Sangat et al., 2000).

Nowadays, many Jamu remedies are produced commercially on an industrial scale in Indonesia. Although individual producers have their own Jamu formula, it is clear that the efficacy is determined by the composition of the plants used (Pramono, 2007). Thus, it may be helpful to model the ingredients of Jamu, i.e. the constituent plants, and use this model to predict efficacy.

Among the ingredients of Jamu formulas are plants used as main ingredients, which contribute primarily to the medicines' efficacies; other plants are used as supporting ingredients (Pramono, 2007). Investigating which plants are main ingredients and which are supporting is important in order to comprehensively understand the mechanisms by which specific plants achieve desired efficacies. A statistical model can be helpful in this regard, by relating plants utilization in Jamu as the predictors and Jamu efficacies as the response. Plants serve as main ingredients will have significant effects on the resulting model.

1.2 Objectives

The objectives of this research are developing a statistical model that captures a systematic utilization of plants in Jamu medicines to achieve desired efficacies. It is expected that, once developed, we can use the model to predict the efficacy of Jamu medicine given the information of the ingredients, i.e. the plants used. In addition, we can also use the model to determine plants perform as main ingredients in Jamu formula by testing the plant's significance in the resulting model, that is, plants serve as main ingredients will have significant effects on the resulting model. Next, the roles of the plants serve as main ingredients will be explored further so that the mechanisms of Jamu medicines to achieve desired efficacy can be described.

1.3 Dissertation outline

This dissertation is organized as follows. In Chapter 2, relationship between Indonesian herbal plants and the efficacy of Jamu is explored using Biplot, a multivariate exploration tool that provides a plot of plants and Jamu efficacy simultaneously.

Chapter 3 describes the efficacy prediction of Jamu formulations by Partial Least Square (PLS) modeling. In this model, the plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses.

Chapter 4 is devoted to determine plants serve as main ingredients in Jamu formula by evaluating the significance of the regression coefficient of PLS model obtained in Chapter 3. Permutation test is proposed for evaluation of significance due to the absence of parametric testing on the coefficient of PLS model. Chapter 4 also proposes the simplification of Jamu formula by utilizing only plants serve as main ingredients.

Chapter 5 explores the degree distribution of Jamu formulation network, i.e. bipartite connection between Jamu and plants. The exploration involving the Jamu out-degree and plant in-degree properties of Jamu formulation network.

Next, in order to explain the role of plants serve as main ingredients in Jamu medicines, information of the reported pharmacological activity of the plants is added to the predictor's block, which can be represented by three-dimensional array, indexed by Jamu, plants, and pharmacological activity. To handle this three-dimensional array of predictor's block, the N-PLS model, an extension of PLS model to deal with multidimensional data, is utilized and the details are discussed in Chapter 6.

Finally, Chapter 7 gives concluding remarks of this dissertation.

Chapter 2

Relationship between Plants and Jamu Efficacy

In this chapter, the relationship between plants and Jamu efficacy is explored. Note that, one plant may be used in many Jamu with varying efficacies. Hence, it is interesting to find out the most significant effects of specific plants by analyzing their usage in Jamu, and considering that the more useful a given plant in having certain effect, the more frequently the plant will be used in Jamu when that effect is desired. Biplot, a multivariate exploration tool, is suitable for this purpose because it provides a plot of observations and variables simultaneously (Gabriel, 1971). Considering plants as observations and efficacy groups as variables, the relationship between them can be explored using a biplot.

2.1 KNApSAcK Jamu Database

In Indonesia, all commercial Jamu must be registered at The National Agency of Drug and Food Control (NA-DFC) in order to have its ingredients inspected and evaluated regarding safety for use in humans. In their website (http://www.pom.go.id/nonpublic/obattradisional/default. asp), this agency provides information about all registered Jamu, along with their ingredients. This information provided the main source of data for this analysis. However, NA-DFC did not provide information regarding the efficacy of registered Jamu. This information were obtained from other sources mainly from the producers.

As of February 2010, 6,533 Jamu produced by local industries in Indonesia were registered at NA-DFC. Among them, 1,223 Jamu are redundant i.e. one Jamu formula from one industry with more than one registration number due to multiple forms of packaging (pills, capsules, powder, volume in one pack, etc). Furthermore, among the remaining 5,310 Jamu, only 3,138 Jamu could be evaluated for their efficacy. These 3,138 Jamu were used for our analysis. In total, these 3,138 Jamu are using 465 plants. To simplify and to obtain more meaningful results, the efficacies of Jamu was classified into 9 groups (see Table 2.1). According to this classification, most Jamu are useful for relieving gastrointestinal disorders, musculoskeletal and connective tissue disorders, and female reproductive organ problems. All data used for this analysis can be accessed at http://kanaya.naist.jp/Jamu/top.jsp integrated in the KNApSAcK database.

Fig. 2.1 depicted the illustration of the usage of KNApSAcK Jamu Database. It starts from KNApSAcK Family Database (Fig. 2.1A), that can be accessed at http://kanaya.naist.jp/KNApSAcK_Family/, by clicking the Jamu icon provided at the KNApSAcK Family Database page to get the KNApSAcK Jamu Database page, which featured in a new window (Fig. 2.1B). Finding Jamu formula in this database can be done either by clicking the 'Herb list', to find Jamu formula based on the herb utilized in

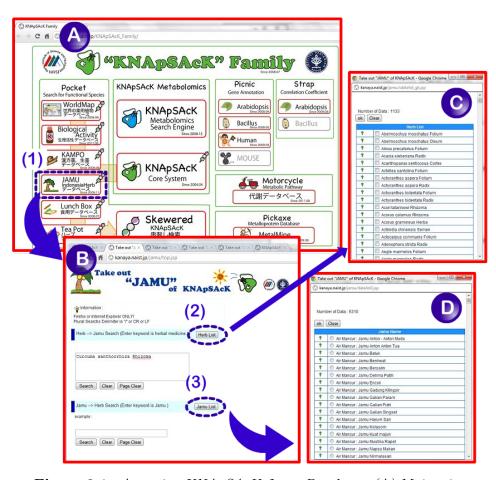


Figure 2.1. Accessing KNApSAcK Jamu Database. (A) Main window for the KNApSAcK family. Users can access the Jamu Database by clicking the Jamu icon (1). (B) Jamu medicine database. List of medicinal plants (C) and formulae (D) can be obtained from Jamu medicine database by clicking the Herb List (2) and Jamu List (3), respectively.

the formula, or by clicking the 'Jamu list', to find the Jamu formula based on the name of the Jamu product. In KNApSAcK Jamu Database, we provide 1,133 herbs (Fig. 2.1C) and 5,310 Jamu product (Fig. 2.1D).

In Fig. 2.1B, I provide illustration of finding Jamu formula that utilized the rhizome of Javanese Turmeric (*Curcuma xanthorriza*). The result of this finding is depicted in Fig. 2.2A. It is recorded that 1,474 Jamu medicines are using this plant in their formula. We can click one of these Jamu to obtain

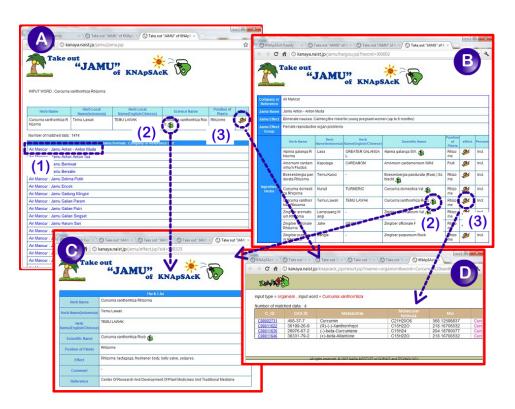


Figure 2.2. Illustration of accessing information provided by KNApSAcK Jamu Database. (A) List of Jamu medicines utilized Curcuma xanthorrhiza. User can obtain further information for specific Jamu medicine (B) by clicking the name of the Jamu (1). Further information for the medicinal plants (C) as well as plants' metabolite (D) can be obtained by clicking plant button (2) and metabolite button (3), respectively.

a complete list of plants utilized in the formula as well as other information such as the efficacy of the Jamu. Fig. 2.2B provides illustration for 'Jamu Anton - Anton Muda' produced by Air Mancur company. The KNApSAcK Jamu database also provide the effect of plant which can be accessed by clicking the green icon near the name of the plant. Illustration for the effect of *Curcuma xanthorriza* is depicted in Fig. 2.2C. In addition, the secondary metabolite reported for the plant also can be accessed via this database. See Fig. 2.2D for the illustration of the secondary metabolite recorded for *Curcuma xanthorriza*.

utilized in Jamu for each	
and plant i	
ion of Jamu a	
ribut	
Table 2.1. $Dist$	5

	000	いい	•
ę	£	32	

Efficacy	Number of	Number of
	Jamu	plants utilized
		in Jamu
		formulas
Urinary-related problems (URI)	72	80
Disorders of appetite (DOA)	249	148
Disorders of mood and behavior (DMB)	22	47
Gastrointestinal disorders (GST)	980	290
Female reproductive organ problems (FML)	398	182
Musculoskeletal and connective tissue disorders (MSC)	840	270
Pain and inflammation (PIN)	311	183
Respiratory diseases (RSP)	107	105
Wounds and skin infection (WND)	159	120

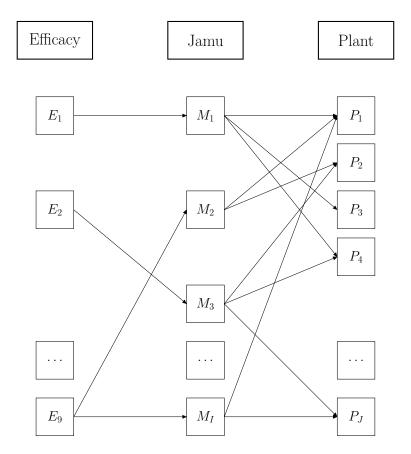

Plant		Effi	cacy	
1 100110	E_1	E_2	•••	E_9
P_1	1	0		2
P_2	0	1		1
P_3	1	0		0
P_4	1	1		0
•••	•••			
P_J	0	1	•••	1

Table 2.2. Illustration of data structure relating efficacy-plant obtained from network in Figure 2.3

2.2 Data set for Biplot analysis

The data structure used in Biplot analysis are as follows. Each Jamu is classified into one efficacy group. In accordance with its ingredients, each Jamu is then assigned to plants it contains. For example, Jamu M_1 whose efficacy is grouped into E_1 use plants P_1 , P_3 , and P_4 . If we draw this relation into a network, as can be seen in Fig. 2.3, node E_1 is connected with M_1 which then is connected with P_1 , P_3 , and P_4 . The other relations, for example Jamu M_2 with efficacy E_9 use P_1 and P_2 in its formula, can be drawn similarly. In the Fig. 2.3, I is equal to number of Jamu (I = 3, 138) whereas J is the number of plants (J = 465).

By utilizing this network, relationship between efficacy and plants can be obtained. If we ignore other nodes not shown in the network, Plant P_1 is used by 2 Jamu (M_2 and M_I) and both Jamu have efficacy E_9 . Tracing the other relations, we can summarize as illustrated in Table 2.2. Thus, applying this idea to our data, we will generate a data matrix **M** with 465 rows and 9 columns, and each cell m_{ij} contains the number of Jamu with efficacy j and use plant i.

Figure 2.3. Illustration of network connecting efficacy-jamu-plant. Efficacy-Jamu connection exhibits the efficacy of Jamu medicines. Each Jamu is connected to one efficacy only. On the other hand, Jamu-plant connection represents the plants utilization in Jamu formula.

2.3 Visualizing Multivariate Data with Biplot

A biplot is an exploration tool in multivariate data analysis that provides a simultaneous plot of observations and variables. Observations are usually represented as points, and variables as vectors. From the plot we can examine relationships among variables, among observations, and the positions of observations relative to variables (Gabriel, 1971).

2.3.1 Classical Biplot

A biplot starts with Singular Value Decomposition (SVD) that decomposes data matrix **M** based on its singular values

$$\mathbf{M} = \mathbf{U}\mathbf{L}\mathbf{A}^t, \tag{2.1}$$

where $\mathbf{U}(\mathbf{A})$ is the orthonormal basis of $\mathbf{MM}^t(\mathbf{M}^t\mathbf{M})$, and \mathbf{L} is the diagonal matrix whose diagonal values are singular values (square root of eigenvalues) of matrix \mathbf{MM}^t or $\mathbf{M}^t\mathbf{M}$ where $r(\mathbf{L}) = r(\mathbf{M}) = r$. Matrix $\mathbf{U}(\mathbf{A})$ can also be regarded as basis for the observation (variable) space of \mathbf{M} , respectively. In creating the plot, we take

$$\mathbf{M} = \mathbf{U}\mathbf{L}^{\theta}\mathbf{L}^{1-\theta}\mathbf{A}^{t}.$$
 (2.2)

Usually $\theta = 0.5$ to give equal weight between plot of observations and variables. By taking

$$\mathbf{G} = \mathbf{U}\mathbf{L}^{\theta} \text{ and } \mathbf{H} = \mathbf{A}\mathbf{L}^{1-\theta}$$
 (2.3)

we obtain

$$\mathbf{M} = \mathbf{G}\mathbf{H}^t. \tag{2.4}$$

G (**H**) contains information about coordinate values of observations (variables). The biplot is then obtained by taking 2 columns of **G** and 2 corresponding columns of **H**. Usually the first two columns, which correspond to the first two largest singular values, are chosen.

On the other hand, conducting Principal Component Analysis (PCA) on \mathbf{M} proceeds as follows. If we work with the covariance matrix $\boldsymbol{\Sigma}$ of \mathbf{M} , the principal component of \mathbf{M} can be obtained by

$$\mathbf{P} = \mathbf{M}\mathbf{V},\tag{2.5}$$

where \mathbf{P} is a matrix of score components, and \mathbf{V} is a matrix of eigenvectors of $\boldsymbol{\Sigma}$. From this, we can obtain \mathbf{M} from \mathbf{P} by

$$\mathbf{M} = \mathbf{P}\mathbf{V}^t. \tag{2.6}$$

If on SVD of \mathbf{M} we start by centering the variables, then $\mathbf{V} = \mathbf{A}$ and $\mathbf{P} = \mathbf{U}\mathbf{L}$.

2.3.2 Robust Biplot based on ROBPCA

It is well known that mean and variance of variables are highly affected by outliers. If an outlier occurs, the mean and variance no longer represent the center and variability of the data. Many attempts have been proposed for dealing with outliers such as excluding them from the analysis; or, if we still want to retain all observations, we give less weight on outlier so that the effect of outliers is reduced.

The previous section connects SVD and Classical PCA (CPCA). Because CPCA is based on covariance, it is affected by outliers. CPCA will yield unreliable results because the first components will be attracted by outliers and will not capture variations of regular observations. Subsequently, SVD and its biplot configuration are also unreliable if outliers are present.

One of the solutions for dealing with outliers in PCA is to replace the classical covariance matrix by a robust one, e.g. by using the Minimum Covariance Determinant (MCD) method (Rousseeuw & Driessen, 1999). In essence, this method tries to find a subset of h observations from the whole

data set n whose covariance matrix has the smallest determinant. However, this method can be applied only for small-to medium dimensions because if h < q (q denotes number of variables), the covariance matrix of any subset h has a zero determinant.

Another solution for robust PCA is concerned with obtaining robust estimates of eigenvectors and eigenvalues without replacing the covariance matrix with the robust one. This method is based on Projection Pursuit (PP) as developed in previous studies (Croux & Ruiz-Gazen, 2005; Li & Chen, 1985). This method can be applied to datasets with many variables and/or many observations.

Hubert et al. (Hubert & Engelen, 2004; Hubert et al., 2005) proposed the Robust PCA (ROBPCA) approach which combines the advantages of both approaches. The principle of PP is used in initial dimension reduction, and then the MCD estimator is applied to this lower-dimensional data space. The four major steps in ROBPCA are as follows.

- 1. SVD is performed on the data to project all observations onto space spanned by n observations.
- 2. A measure of 'outlyingness' is computed for every point. This is obtained by projecting all the observations on many univariate directions through two data points. At most 250 random directions are taken in this step. For every direction, a robust center and scale of the projected data point is computed. Next, the standardized distance of each observation to the center is measured. For each data point the largest distance, which is called 'outlyingness', is considered. The h points with smallest outlyingness are then retained.
- 3. Based on the empirical covariance matrix Σ_1 of this *h*-subset, the

number of principal components to retain, k, is selected.

4. In this stage, the data points are projected onto the k-dimensional subspace spanned by the k largest eigenvectors of Σ_1 . Then their center and covariance matrix are computed by means of a reweighted MCD estimator. The eigenvectors of this scatter matrix then determine the robust principal components.

Let $\tilde{\mathbf{P}}$, $\tilde{\mathbf{L}}$, and $\tilde{\mathbf{V}}$ respectively denote a matrix of scores, a diagonal matrix whose entries are singular values, and a matrix of eigenvectors all obtained from ROBPCA. If we take $\theta = 0.5$, then we have the robust version of Eq. (2.3) as follows

$$\tilde{\mathbf{G}} = \tilde{\mathbf{P}}\tilde{\mathbf{L}}^{-0.5} \text{ and } \tilde{\mathbf{H}} = \tilde{\mathbf{A}}\tilde{\mathbf{L}}^{0.5}.$$
(2.7)

Taking 2 columns in $\tilde{\mathbf{G}}$ and 2 corresponding columns in $\tilde{\mathbf{H}}$ we obtain a robust biplot based on ROBPCA.

2.3.3 Testing For Outlier in Multivariate Case

In the univariate case, checking for outliers can be performed by computing the distance between each observation x_i to the center of the data \bar{x} which is then scaled in units of standard deviation s as shown below

$$z_i = \frac{x_i - \bar{x}}{s}.\tag{2.8}$$

Assuming that data is normally distributed, an observation x_i is regarded as outlier if $|z_i| > z_{\alpha/2}$ for some significance level α .

For the multivariate case, the analog of computing the distance of observation \mathbf{x}_i to the estimated centroid $\bar{\mathbf{x}}$ takes the form of the Mahalanobis Distance (MD)

$$d_i = \sqrt{(\mathbf{x}_i - \bar{\mathbf{x}})\mathbf{S}^{-1}(\mathbf{x}_i - \bar{\mathbf{x}})},$$
(2.9)

where **S** is the sample covariance matrix. If **X** is multivariate normal (μ, Σ) with q variables, then d_i^2 will have a chi-square distribution with degrees of freedom equal to q. Thus, an observation \mathbf{x}_i is regarded as outlier if $d_i^2 > \chi^2_{(q,\alpha/2)}$.

However, it is well known that $\bar{\mathbf{x}}$ and \mathbf{S} are not robust: single extreme observations, or groups of observations, departing from the main data structure will attract $\bar{\mathbf{x}}$ and will inflate \mathbf{S} in its direction. Thus the MDs need to be estimated by a robust procedure in order to provide reliable measures for the recognition of outliers. The MCD estimator is probably most frequently used in practice, partly because a computationally fast algorithm is available (Rousseeuw & Driessen, 1999).

Rousseeuw & Van Zomeren (1990) proposed a Robust Distance (RD) by replacing $\bar{\mathbf{x}}$ and \mathbf{S} with the estimator obtained from MCD, that is, $\bar{\mathbf{x}}_{MCD}$ and \mathbf{S}_{MCD} , respectively, as the following

$$d_i^* = \sqrt{(\mathbf{x}_i - \bar{\mathbf{x}}_{MCD})\mathbf{S}_{MCD}^{-1}(\mathbf{x}_i - \bar{\mathbf{x}}_{MCD})},$$
(2.10)

and used these RDs for multivariate outlier detection. The cutoff value for these RDs is $\chi^2_{(q,\alpha/2)}$ (Rousseeuw & Van Zomeren, 1990). However, the cutoff value $\chi^2_{(q,\alpha/2)}$ is based on the asymptotic distribution of the robust distances, and often flags too many observations as outlying (Hubert & Debruyne, 2010). Therefore, Hardin & Rocke (2005) recommended a scaled F-distribution in approximating the true distribution of the robust distances.

Number of plant used in Jamu	Count of Jamu	Percentage
1	454	14.5
2	180	5.7
3	297	9.5
4	487	15.5
5	672	21.4
6	384	12.2
7	208	6.6
8	133	4.2
9	99	3.2
10	75	2.4
> 10	149	4.8
Total	3138	100.0

Table 2.3. Distribution of Jamu by number of plant contained inthe formula

2.4 Results

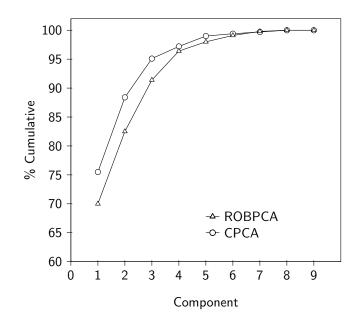

Among 3,138 Jamu, 14.5% of them are extracts of one plant only. The other 85.5% use extracts from at least two plants and most of them use 4 to 6 plants in their formula. I also found Jamu that contain more than 10 plants in the ingredients, but they represent less than 5% of the total (Table 2.3). On the other hand, I found 112 plants, almost a quarter of the total 465 plants, are used by only one Jamu; and approximately half of the 465 plants are used by at most 4 Jamu (Table 2.4). In contrast to these plants, whose frequencies of usage in Jamu are very low, approximately one third of plants are used by more than 10 Jamu.

Fig. 2.4 depicts the RD against the plant index. The red line is the cutoff based on F-distribution following Hardin & Rocke (2005). Clearly, this figure exhibits some plants are outliers because their RDs are larger than the cutoff. Thus, the biplot configuration should be created based on the ROBPCA instead of the CPCA.

	lant usag amu form		Coun	t of pla	int	Percent	age	
		iuiu		110		04.1		
	$egin{array}{cccc} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array}$		$ 112 \\ 59 \\ 55 \\ 24 \\ 13 \\ 15 \\ 15 \\ 15 $			$24.1 \\ 12.7 \\ 11.8 \\ 5.2 \\ 2.8 \\ 3.2$		
						3.2 3.2		
	8			13		2.8		
	9			5		1.1		
	10			3		0.6		
	> 10			151		32.5		
	Total			465		100.0)	
	60 - 50 -			0	1	1		
Robust distance	40 -		c	0				
st dis	30 -	C	D	0		0		
Kobu	20 -	0		0 8 00 c	00	0 0 0		
	10 -	० 8 — ळूव	° ° °	ہ می ⁰⁰ 0				
	0 -)))	
	-100	0	100	200	300	400	500	
			Ţ	Plant	indev			

Table 2.4. Distribution of plant according to their usage in Jamuformula

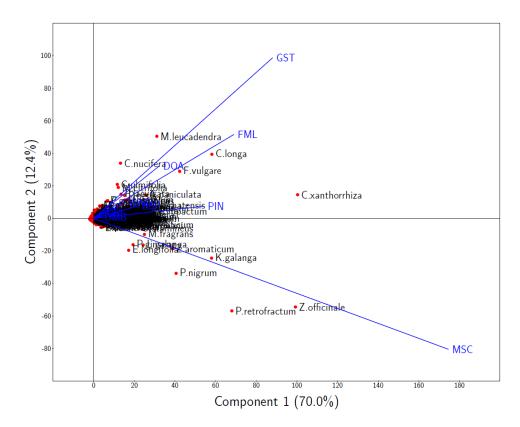

Figure 2.4. Plot of robust distance versus plant index. The red line is the cutoff for detecting outliers, that is, plants with RD larger than the cutoff are considered as outliers.

Figure 2.5. Cumulative percentage of eigenvalue for CPCA and ROBPCA

Applying CPCA and ROBPCA to the dataset gives us eigenvalues whose cumulative percentage is shown in Fig. 2.5. The differences between eigenvalues obtained from CPCA and ROBPCA for the first 3 components are large, whereas the differences for the next 6 components are negligible. We can conclude that these large differences are due to outliers in the dataset. These outliers will attract the first components in CPCA and make them inflate.

Biplot configuration using the first two components of ROBPCA is shown in Fig. 2.6. In the figure, plants are represented as points while Jamu efficacies as vectors. The length of a given efficacy line showing the variability of plants usage for the corresponding efficacy, that is, the longer the efficacy line the larger the variability of plants usage for that efficacy. From Fig. 2.6, it is obvious that efficacy MSC has the largest variability of plant usage, followed by efficacy GST and FML. On the other hand, efficacy DMB has the

Figure 2.6. Biplot configuration based on ROBPCA. Plants and Jamu efficacy are represented as points and vectors, respectively.

smallest variability of plant usage, followed by efficacy URI and RSP. This finding can be addressed due to two factors, that is, the number of Jamu as well as the number of plant utilized in the corresponding efficacy (see Table. 2.1). Efficacies with large variability of plants usage (MSC, GST, and FML) have large values for both factors; in contrast, efficacies with small variability of plants usage (efficacy DMB, URI, and RSP) have small values for both factors.

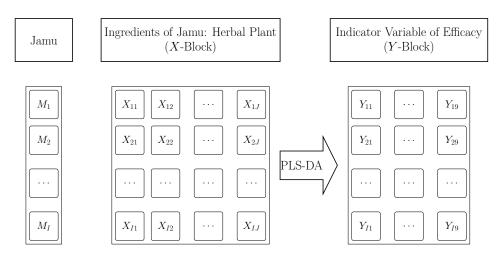
In the configurations, many plants are clustered in the center. Note that, the projection value of plants' point on a given efficacy line is the prediction of the frequency of plants usage on that efficacy. So, these clustered plants are basically plants whose frequencies of usage in Jamu are very low. In contrast to the clustered plants, some plants are spread out and located near the efficacy for which the plants are highly utilized. For example, Ginger (Zingiber officinale) is located near the efficacy MSC. Ginger is well known for its function of refreshing body, and for this reason many Jamu use Ginger for efficacy MSC which can easily be identified from biplot configuration. Another example is Turmeric (Curcuma longa) which located near the efficacy FML. Due to its analgesic and antimicrobial activity, this plant is well known and highly utilized in Indonesia as ingredient of Jamu formula for women during menstruation, which is a problem that classified into efficacy FML. Thus, the biplot configuration exhibits useful information in exploring the relationship between plants and the efficacy of Jamu.

2.5 Summary

In this chapter, relationship between plants and efficacy of Jamu is explored using Biplot, which provides plot of plants and efficacy of Jamu simultaneously. The biplot is closely related to PCA, where, in this case, plot of plants is analog to plot of score of components and plot of efficacy of Jamu is analog to plot of eigenvectors. Due to outliers on plant-efficacy data, the biplot configuration is created based on Robust PCA method. In the biplot configurations, many plants are clustered in the center, which are basically plants whose frequencies of usage in Jamu are very low. In contrast to the clustered plants, some plants are spread out and located near the efficacy of which the plants are highly utilized. Thus, the biplot configuration exhibits useful information in exploring the relationship between plants and the efficacy of Jamu.

Chapter 3

Modeling Ingredients of Jamu to Predict Efficacy


As explained in the previous chapter, Jamu is prepared from a mixture of several plants. The plants are chosen so that the Jamu has the desired efficacy. As a result, the composition of the plants used in Jamu formula determines the efficacy. Thus, it is interesting to model the ingredients of Jamu, i.e. the constituent plants, and use this model to predict efficacy. Partial Least Squares Discriminant Analysis (PLS-DA), a statistical model for classification and discrimination based on Partial Least Square Regression (PLSR), is suitable for this analysis because a large number of plants are used in Jamu, whereas Jamu efficacies can be grouped into categories or classes. In this method, the plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses.

3.1 Data set for PLS-DA model

Fig. 3.1 schematically depicts the relationship between Jamu and efficacy. The data matrix \mathbf{X} in X-block contains plant usage status. The dimension of matrix \mathbf{X} is $(I \times J)$, where I is the number of Jamu (in this case, 3,138), and J is the number of plants (in this case, 465). Because of the availability of information about Jamu products, which are generally not state in detail the mixing ratio of the plants used, then the predictors \mathbf{X} is constructed only in binary data. Each cell x_{ij} is set to 1 if Jamu *i* uses plant *j*, and is set to 0 otherwise. In the present study, nine indicator variables, which correspond to the efficacies listed in Table 2.1, perform as the Y-block in PLS-DA modeling. Thus, the dimension of data matrix \mathbf{Y} is $(I \times 9)$. Each cell y_{il} is set to 1 if Jamu *i* is classified into efficacy group *l*, and is set to 0 otherwise. Note that $\sum_{l=1}^{9} y_{il} = 1$ because each Jamu is classified to one efficacy only.

3.2 PLS-DA

PLS-DA model is a special case of PLSR in which the response variable has the properties of categories or classes; such models are used for classification and discrimination. The group membership of the response variable is transformed into a dummy matrix, which provides the response block for the PLS-DA model. PLS-DA is superior to PCA for reducing dimensionality with the goal of achieving group separation because PLS-DA is guided by among-groups variability, whereas the PCA is guided only by total variability (Barker & Rayens, 2003). Thus, PLS-DA is suitable for this study: Jamu efficacy, which serves as the response, is categorical; the large number of plants used in Jamu formulas serve as the predictors.

Figure 3.1. Schematic diagram of the data structure used in the PLS-DA model. Due to the absence of the mixing ratio of the plants used in Jamu, the X-block is constructed only in binary data: each cell x_{ij} is set to 1 if Jamu i uses plant j, and is set to 0 otherwise. The Y-block also is constructed in binary data formed by nine indicator variables correspond to the 9 efficacies: each cell y_{il} is set to 1 if Jamu i uses plant j, and is set to 0 otherwise.

The details of the PLS-DA modeling are as follows (Barker & Rayens, 2003; Wold et al., 2001). It consists of two steps: decomposition and regression step. In decomposition step, both predictors and responses are decomposed into factors such that the factors of predictors have maximum covariance with the corresponding factors of responses. Fig. 3.2 illustrates the decomposition of PLS-DA model. Let \mathbf{T} ($I \times C$) be a matrix of the underlying factors of \mathbf{X} , obtained by maximizing its covariance with the corresponding factors of \mathbf{Y} :

$$\mathbf{T} = \mathbf{X}\mathbf{W} \tag{3.1}$$

where \mathbf{W} $(J \times C)$ is a matrix of weight, and C is the number of factors extracted. Matrix \mathbf{T} thus is a good predictor of \mathbf{Y} and replaced the original predictors \mathbf{X} during the regression step

$$\mathbf{Y} = \mathbf{T}\mathbf{Q}^t + \mathbf{D} \tag{3.2}$$

where \mathbf{Q} (9 × C) is a matrix of regression coefficients in terms of \mathbf{T} as the predictor. The Y-residuals \mathbf{D} (I × 9) express the deviation between the observed and the predicted responses. Substituting Eq. (3.1) into Eq. (3.2), we obtain the multiple regression model of PLS-DA

$$\mathbf{Y} = \mathbf{X}\mathbf{W}\mathbf{Q}^t + \mathbf{D} = \mathbf{X}\mathbf{B} + \mathbf{D}$$
(3.3)

where the PLS-DA coefficient matrix **B** $(J \times 9)$, the regression coefficients in term of **X** as the predictor, is calculated as

$$\mathbf{B} = \mathbf{W}\mathbf{Q}^t \tag{3.4}$$

Note that each plant has a set of coefficient containing 9 values, one for each efficacy.

3.2.1 Selection of the number of components

In PLS-DA, the number of components must initially be determined. In this analysis, the number of components in PLS-DA is determined by a five-fold cross-validation. The steps are as follows.

- Data is randomly divided into five groups so that each group contains 20% of data, ensuring that each efficacy group is well represented in each of these five groups.
- 2. One of these five groups is chosen as the testing data, and the other four groups are merged and serve as the training data. Next, PLS-DA

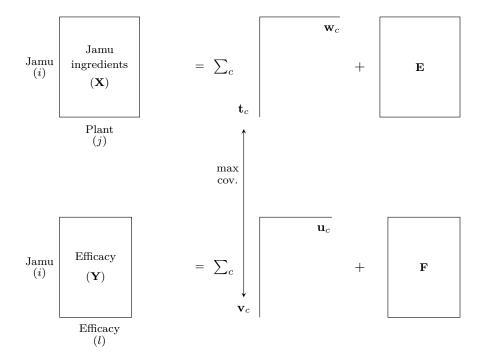


Figure 3.2. Schematic diagram of the decomposition of both predictor and response blocks for PLS model. The X and Y are decomposed into T and V, respectively, such that the covariance among T and V are maximized. The W and U are weights for X and Y, respectively, while E and F are residuals for X and Y, respectively, during this decomposition step of PLS model.

is performed on training data using c = 1 component.

- 3. The model obtained from Step 2 is used to predict the Y-block value of the testing data.
- 4. Steps 2 and 3 are repeated by selecting another group as the testing data. This step is repeated until all the groups have been selected once as the testing data.
- 5. Steps 2 to 4 are repeated by increasing c to c + 1 in every iteration.

Let $\hat{y}_{(-i,l)c}$ denote the prediction of response variable l using the PLS-DA model obtained without observation i, i.e. i is within the testing data, and using c components. After the five-fold cross-validation is performed, Prediction Error Sum of Square (PRESS) using c components for efficacy group l is calculated as

$$PRESS(c)_l = \sum_{i=1}^{I} \left(y_{il} - \hat{y}_{(-i,l)c} \right)^2.$$
(3.5)

This statistic is then plotted as a function of c. The number of components is selected such that the addition of more components does not significantly decrease the PRESS value.

3.2.2 Utilization of \hat{y}_{il} to predict the efficacies of Jamu remedies

In PLS-DA, the efficacy of a particular Jamu can be predicted by utilizing the prediction value of the indicator variable of the efficacy, i.e. \hat{y}_{il} . In this work, I employ two methods using \hat{y}_{il} to predict efficacies: the 'maximum \hat{y}_{il} ' and 'maximum probability' methods. The former method directly determines the efficacy. As explained in the previous section, the larger the value of \hat{y}_{il} , the more useful Jamu *i* is for efficacy *l*. Thus, a given Jamu *i* is predicted to have efficacy *l* if the \hat{y}_{il} value is the largest across l = 1 to 9 for Jamu *i*. The second method utilizes \hat{y}_{il} to calculate the probability of Jamu *i* belong to efficacy *l*, and then this probability is used to predict the efficacy of a particular Jamu. Then, I predicted that a given Jamu *i* has efficacy *l* if the probability of belonging to efficacy *l* is the largest across l = 1 to 9 for Jamu *i*.

The procedure to calculate the posterior probability of Jamu *i* belong to efficacy *l* utilizing \hat{y}_{il} is described below. Here I employ Bayes Theorem as in Bylesjö et al. (2006)

$$P\left(Class_{il}|\hat{Y}_{il}\right) = \frac{P\left(\hat{Y}_{il}|Class_{il}\right)P\left(Class_{il}\right)}{\sum_{l=1}^{q}P\left(\hat{Y}_{il}|Class_{il}\right)P\left(Class_{il}\right)}$$
(3.6)

where q is the number of response classifications, which equals nine in this case. In the formula, $P(Class_{il})$ is the prior probability of Jamu *i* belonging to efficacy *l*. There are two options to determine this prior probability; the probability can be equal across all classes (i.e. equal to 1/9 for all efficacies) or proportional to the frequency of each efficacy class. Furthermore, $P(\hat{Y}_{il}|Class_{il})$ is the probability of Jamu *i* with the predicted indicator variable up to \hat{y}_{il} given that Jamu *i* belongs to efficacy *l*. It is assumed that $(\hat{Y}_{il}|Class_{il})$ has a normal distribution with mean μ_l and variance σ_l^2 (Bylesjö et al., 2006). To avoid overfitting, Bylesjö et al. (2006) has suggested not to directly use the distribution of \hat{y}_{il} obtained from PLS-DA to estimate mean μ_l and variance σ_l^2 , but to generate a distribution using cross-validation as follows.

- 1. A random sample without replacement with size t < I is drawn from the data as the training set to be used to calculate the PLS-DA model.
- 2. The remaining observations are used as the testing set. The PLS-DA model obtained from Step 1 is used to calculate the prediction of the indicator variable of efficacy for the testing set, which is denoted as $\hat{y}_{il,test}$.
- 3. Steps 1 and 2 are repeated s times. The values of $\hat{y}_{il,test}$ across s rounds cross-validation are saved into $\hat{y}_{il,CV}$.

The parameters for mean μ_l and variance σ_l^2 are estimated as

$$\hat{\mu}_l = \frac{1}{p} \sum_{i=1}^p \hat{y}_{il,CV}$$
(3.7)

$$\hat{\sigma}_l^2 = \frac{1}{p-1} \sum_{i=1}^p \left(\hat{y}_{il,CV} - \hat{\mu}_l \right)^2.$$
(3.8)

where p is the number of elements in $\hat{y}_{il,CV}$, which is equal to the sample size of testing set for each cross-validation round, i.e. (I - t), multiplied by the number of cross-validation rounds s. Moreover, class-conditional probability $P(\hat{Y}_{il}|Class_{il})$ is calculated in the form of a normal cumulative distribution function as

$$P\left(\hat{Y}_{il}|Class_{il}\right) = P\left(\hat{Y}_{il} \le \hat{y}_{il}|Class_{ij}\right) = \int_{-\infty}^{\hat{y}_{il}} \frac{1}{\sqrt{2\pi\hat{\sigma}_l^2}} e^{-(x-\hat{\mu}_l)/(2\hat{\sigma}_l^2)} dx.$$
(3.9)

Hence, in posterior probability $P(\hat{Y}_{il}|Class_{il})$, the likelihood of an observation belonging to class l increases (to a maximum value of 1) as the \hat{y}_{il} value increases.

3.3 Results

3.3.1 Determination of the number of PLS-DA components

The number of components for the PLS-DA model is selected using PRESS. Fig. 3.3 shows the PRESS plot of a five-fold cross-validation. For all indicator variables, the plots remain nearly constant from C = 10 onward. Consequently, the number of components is set to ten. Analysis of PLS-DA using ten components shows the percentage variation accounted during the decomposition step for predictors and responses are equal to 5.5% and

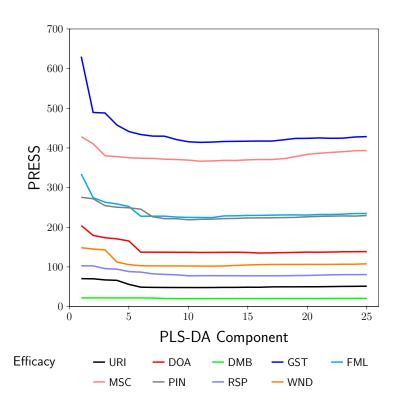
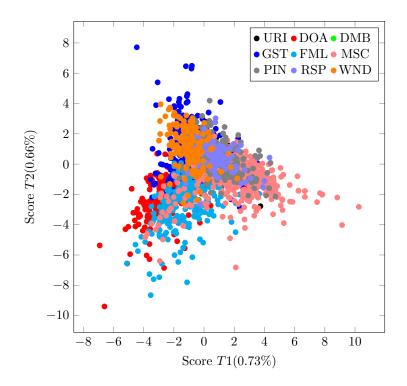


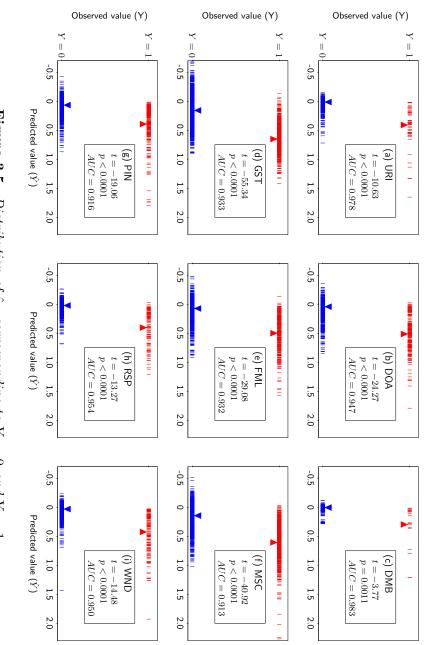
Figure 3.3. PRESS plot of five-folds cross-validation for PLS-DA model. The number of components is set to ten because all plots remain nearly constant from C = 10 onward.

40.5%, respectively. The small amount of predictor variation accounted in PLS-DA model is reasonable considering that more than 500 companies produce the 3,138 Jamu remedies used in this analysis. Although several Jamu medicines, which have different manufacturers, are useful for identical symptoms, each manufacturer has its own Jamu formula because a given plant may be useful as either the main ingredient or as a supporting ingredient (Pramono, 2007). Plants that act as supporting ingredients might be replaced with other plants without affecting the efficacy of the Jamu formula, which makes Jamu formula varies.


3.3.2 Prediction of Jamu efficacy

Matrix \mathbf{T} or factor scores of predictors in PLS can be regarded as a predictors' summary. Plotting these scores can aid in exploring the performance of PLS in predicting responses. Fig. 3.4 plots the first two predictors' scores, and many points from different efficacies overlap. This overlap also occurs for other scores (results not shown), indicates that no specific information regarding the Jamu efficacy can be obtained from each component. It is because many plants are used not specific to one efficacy only but varies to many efficacies. Then the predictors' scores, which summarized the plants usage in Jamu ingredients, also reflecting this non unique usage to many efficacies. Hence, all ten scores must be used simultaneously to predict Jamu efficacy.

From the PLS-DA model, I obtain nine sets of \hat{y}_{il} , one for each efficacy indicator variable. Fig. 3.5 shows the distribution of \hat{y}_{il} corresponding to $Y_l = 0$ and $Y_l = 1$ for each efficacy. It is observed that the averages of \hat{y}_{il} corresponding to $Y_l = 0$ and $Y_l = 1$ are well separated for all efficacies; the averages of \hat{y}_{il} for $Y_l = 1$ are always larger than those for $Y_l = 0$. The *t*-test for each efficacy confirms that both averages are well separated. The *p*-values obtained from this test are less than 0.01 for all efficacies.


Although the averages of \hat{y}_{il} corresponding to $Y_l = 0$ and $Y_l = 1$ are well separated, Fig.3.5 indicates that the efficacies have overlapping regions where both $Y_l = 0$ and $Y_l = 1$ have the same \hat{y}_{il} . However, the Area Under Curve (AUC) statistics of the ROC Curve for all efficacies exceed 0.9. Note that the maximum value of AUC is 1 which corresponds to perfect discrimination. Thus, the AUC indicates that \hat{y}_{il} is a good candidate to discriminate $Y_l = 0$ and $Y_l = 1$.

Meanwhile, the distribution of $\hat{y}_{il,CV}$ is obtained using s = 200 rounds of

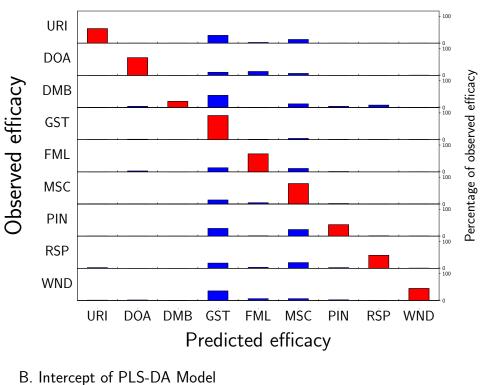


Figure 3.4. Plot of predictor's scores (\mathbf{T}) for component 1 vs. component 2. The overlaping among points from different efficacies, which also occur for other scores (results not shown), indicates that no specific information regarding the Jamu efficacy can be obtained from each component. Thus, all ten scores must be used simultaneously to predict Jamu efficacy.

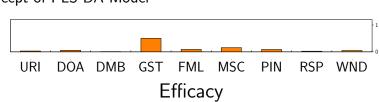

cross-validation. Checking the normality of these distributions using Anderson Darling Normality Test, the *p*-values are less than 0.005 for all efficacies, indicating the distributions of $\hat{y}_{il,CV}$ for all efficacies are non-normal. Hence, I employed two analysis options to calculate $P(\hat{Y}_{il}|Class_{il})$. The first option assumes that the distributions of $(\hat{Y}_{il}|Class_{il})$ are normal, and calculates $P(\hat{Y}_{il}|Class_{il})$ in the form of a normal cumulative distribution function, as in Eq. (3.9). In this option, the distributions of $\hat{y}_{il,CV}$ are generated only to estimate the parameters for the mean μ_l and variance σ_l^2 of the normal distribution. The second option assumes that the distributions of $(\hat{Y}_{il}|Class_{il})$ are non-normal, and calculates $P(\hat{Y}_{il}|Class_{il})$ in the form of the empirical

Figure 3.5. Distribution of \hat{y}_{il} corresponding to $Y_l = 0$ and $Y_l = 1$ for all nine efficacies. The red and blue triangles showing average values of \hat{y}_{il} corresponding to $Y_l = 1$ and $Y_l = 0$, respectively. The plots exhibit that \hat{y}_{il} is a good candidate in predicting efficacy: the averages of \hat{y}_{il} corresponding to $Y_l = 0$ and $Y_l = 1$ are well separated (the t-test confirms that the averages are significantly different), and all AUCs are larger than 0.9.

A. Confusion matrix of Jamu efficacy prediction

Figure 3.6. Results of the PLS-DA model. (A) Confusion matrix of the prediction of Jamu efficacy using the maximum \hat{y}_{il} method. Red bars indicate correctly predicted Jamu; blue bars denote incorrectly predicted Jamu. (B) Intercept of the PLS-DA Model for all nine efficacies. The height of the bars is proportional to the intercept value for the corresponding efficacy.

cumulative distribution function based on the $\hat{y}_{il,CV}$, as follows

$$P\left(\hat{Y}_{il}|Class_{il}\right) = P\left(\hat{Y}_{il,CV} \le \hat{y}_{il}|Class_{il}\right).$$
(3.10)

Thus, in the second option, $P(\hat{Y}_{il}|Class_{il})$ is proportional to $\hat{y}_{il,CV}$ whose

 Table 3.1. False positive rate in predicting Jamu efficacy

Prediction method	False positive rate
Maximum \hat{y}_{il}	0.284
Maximum probability	
Eq-N	0.328
Eq-E	0.439
Pr-N	0.417
Pr-E	0.434

values are less than or equal to \hat{y}_{il} .

Note that we considered two options to determine the prior probability $P(Class_{il})$: (1) the equal prior and (2) the proportional prior, and another two options to calculate the class-conditional probability $P(\hat{Y}_{il}|Class_{il})$: based on (1) the normal cumulative distribution and (2) the empirical cumulative distribution based on $\hat{y}_{il,CV}$. If we combine these pairs of options, there are four possible combinations to calculate the posterior probability $P(\hat{Y}_{il}|Class_{il})$. These four combinations are: (i) equal prior - normal distribution (Eq-N), (ii) equal prior - empirical distribution (Eq-E), (iii) proportional prior - normal distribution (Pr-N), and (iv) proportional prior - empirical distribution (Pr-E). The False Positive Rates (FPRs) in predicting Jamu efficacy for the maximum \hat{y}_{il} method as well as the maximum \hat{y}_{il} method is used to predict the Jamu efficacies, and the result of prediction for each efficacy is shown in Fig. 3.6A.

Among the 3,138 Jamu medicines, the efficacies of 2,248 Jamu medicines (71.6%) can be assigned to an individual efficacy reported. Hence, the efficacy in most Jamu medicines can be predicted on the basis on medicinal plants used. The percentage of correct prediction for each efficacy vary from 22.7% for efficacy DMB to 89.8% for efficacy GST. The low percentage of correct prediction for efficacy DMB can be addressed due to the small number of Jamu for this efficacy, which is only 22 out of 3130 Jamu (see Table 2.1).

Furthermore, beside showing correct prediction, Fig. 3.6A also shows incorrect prediction which most of the incorrect prediction are predicted to efficacy GST, FML, and MSC. This is because, like other regression models, PLS-DA model has a constant or intercept in the regression equation, which in this analysis representing the number of Jamu for the corresponding efficacy. The intercepts for GST, FML, and MSC are larger than those for the other six efficacies (Fig. 3.6B), which consistent with the distribution of Jamu in Table 2.1. The large intercepts for GST, FML, and MSC makes the \hat{y}_{il} for efficacy GST, FML, and MSC are tend to be larger than the \hat{y}_{il} for the other six efficacies, which in turn make some of the prediction of the efficacy are classified to efficacy GST, FML, and MSC regardless the original efficacy of the predicted Jamu.

Another source of error in the prediction of Jamu efficacy is that the plant usage in Jamu is not unique for certain efficacy. As noted previously, many plants are used for more than one efficacy. In particular, medicinal plants for GST and MSC are diverse because poor physical conditions of gastrointestinal, musculoskeletal, and connective tissue systems are derived from many different symptoms, including lifestyle-related diseases such as infectious disease, excessive drinking, overeating and strain, malfunction of liver and renal functions, etc.

3.4 Summary

This chapter discussed about the modeling of the ingredients of Jamu formulas using Partial Least Squares Discriminant Analysis (PLS-DA) in order to predict their efficacy. The plants used in each Jamu medicine served as the predictors, whereas the efficacy of each Jamu provided the responses. Because of the availability of information about Jamu products, which are generally not state in detail about the mixing ratio of the plants used, then the predictors x_{ij} is constructed only in binary data, which are x_{ij} is set to 1 if plant j is used in Jamu i and x_{ij} is set to 0 otherwise.

Utilizing response predictions \hat{y}_{il} obtained from PLS-DA, I predicted the efficacies of Jamu formulations using two methods: maximum \hat{y}_{il} and maximum probability. In predictions of Jamu efficacy, the maximum \hat{y}_{il} method produced a smaller error than that of the maximum probability method. Further exploration on the predictions reveals that intercepts for GST, FML, and MSC are larger than intercepts for the other six efficacies due to large number of Jamu for those three efficacies. It makes some of the prediction of the efficacy are classified to efficacy GST, FML, and MSC regardless the original efficacy of the predicted Jamu.

Determining Plants as Main Ingredients in Jamu Formulas

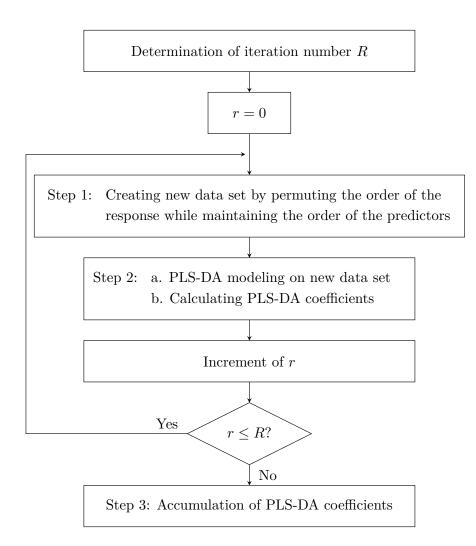
Previous chapter employs PLS-DA model to capture systematic utilization of plant in Jamu medicine to achieve desired efficacy. Hence, the PLS-DA coefficients can be used to investigate which plants are main ingredients and which are supporting by considering that plants serve as main ingredients will have significant effects on the resulting model. Furthermore, due to the absence of parametric testing for the PLS-DA coefficients, the evaluation for significance is performed using permutation testing, in which the distribution of coefficients under the null hypothesis is generated via resampling of the existing data (Good, 2005).

The resampling is performed by permuting the order of the responses (in this case, Jamu efficacies) while maintaining the order of the predictors (in this case, plant utilization as Jamu ingredients) so that the existing relationship between the predictors and the response is destroyed and a new data set is generated under the null hypothesis, i.e., plant utilization in Jamu does not affect Jamu efficacy. If we perform such resampling many times and apply the PLSDA model on the new data generated from the resampling, the accumulation of the PLSDA coefficients obtained from this process generates a distribution, against which a *p*-value can be calculated and subsequently evaluated for significance.

4.1 Permutation Test

Permutation testing is a resampling method intended to provide an underlying distribution of a test statistic under a null hypothesis (denoted as null distribution), which then can be used to calculate the p-value. Unlike conventional statistical testing, which assumes that the null distribution follows some theoretical distribution, permutation testing generates the null distribution empirically through resampling of the data sample at hand. The idea of permutation testing in PLS-DA is illustrated in Fig. 4.1. The details of the steps are as follows.

- 1. Resampling of Jamu data. In this step, we generate a new Jamu data set under the null hypothesis, i.e., that plants are not affecting the Jamu efficacy, by resampling the existing Jamu data set. The resampling process is performed as follows.
 - (a) For each row i in the response block Y_{il} , a uniform random number is generated.
 - (b) The rows in the response block then are sorted according to the value of the uniform random number. Let \tilde{Y}_{il} denote the response after the sorting process.
 - (c) The new response \tilde{Y}_{il} is then merged with the original, i.e., unsorted, predictors X_{ij} to form a new Jamu data set to be used in PLS-DA modeling in Step 2.


The process of permuting the order of the response while maintaining the order of the predictors ensures that any relationship between the predictors and the response in the original Jamu data set will be destroyed. The result of this resampling is a new Jamu data set generated under null hypothesis.

- PLS-DA modeling on the new Jamu data set. PLS-DA model is performed on the new Jamu data set obtained from Step 1. The matrices X and Y provide the predictors and responses, respectively. The coefficient matrix obtained is denoted by C. Steps 1 and 2 are then repeated R times. In the present study I performed R = 1,000 permutations.
- 3. Accumulation of PLS-DA coefficients. After all permutation rounds R are performed, the PLS-DA coefficient in each round $\tilde{\mathbf{C}}_r$ is accumulated into the coefficient distribution \mathbf{C} , which is the distribution of PLS-DA coefficient under null hypothesis. Let $C_{jl,r}$ denote the coefficient for plant j with respect to efficacy l on permutation round r.

After obtaining the distribution of PLS-DA coefficients under the null hypothesis, the p-value for the effect of plant j on efficacy l is calculated as follows. Note that the hypothesis to be tested is

$$H_0: \beta_{jl} \le 0 \ vs. \ H_1: \beta_{jl} > 0.$$

The null hypothesis states that plant j is not affecting the efficacy j while the alternative hypothesis states that plant j is affecting the efficacy j. Thus,

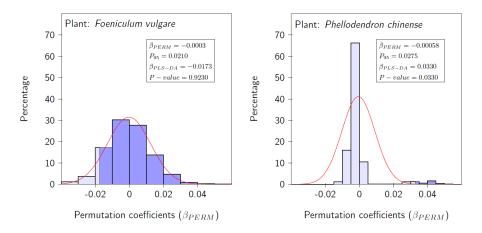


Figure 4.1. The schematic diagram of the permutation steps used in this study

the p-value is calculated as

$$p_{jl} = \frac{1}{R+1} \left\{ \left(\sum_{r=1}^{R} I(C_{jl,r} \ge B_{jl}) \right) + 1 \right\}$$
(4.1)

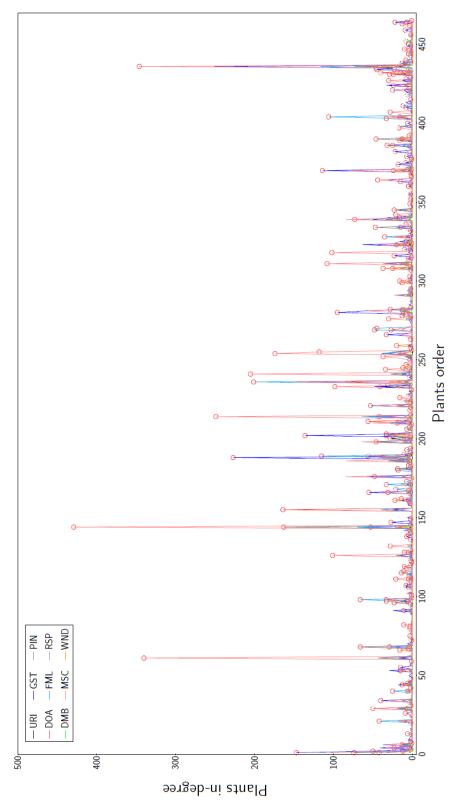
where B_{jl} is the coefficient of plant j on efficacy l obtained from the original data set and $I(C_{jl,r} \ge B_{jl})$ is an identity function that is equal to 1 if the argument is fulfilled, and 0 otherwise. The null hypothesis is rejected if the

Figure 4.2. Illustration of the coefficient distribution under the null hypothesis, obtained using the permutation process

p-value is smaller than the significance level α .

4.2 Results

Fig. 4.2 illustrates the coefficient distribution under the null hypothesis, obtained from the permutation process. In this illustration, both plants are evaluated according to their use in Jamu formulas with efficacy URI. The means of the two distributions (and also for all other distributions) are very close to 0, as expected, indicating that the distributions were generated under null hypothesis. The normal curves were sketched onto both distributions in order to show that not all permutation distributions can be approximated with a normal distribution. This result supports the *p*-value calculation performed using an empirical distribution, as formulated in Eq. (4.1). Using significance level $\alpha = 5\%$, in this illustration we can conclude that *Phellodendron chinense* significantly affects the Jamu efficacy URI, whereas *Foeniculum vulgare* does not.


The results of the significance testing of all plants used in each of the 9

Efficacy	Total	Support from sci- entific papers
URI	20	15 (75.0%)
DOA	21	20 (95.2%)
DMB	12	6 (50.0%)
GST	26	23 (88.5%)
FML	40	30 (75.0%)
MSC	40	39 (97.5%)
PIN	39	37 (94.9%)
RSP	36	33 (91.7%)
WND	43	38 (88.4%)

 Table 4.1. Number of significant plants for each efficacy

efficacies are shown in Table 4.1. Note that one plant may be used for more than one efficacy. From the testing, it is observed that 234 plants (50.3% among all 465 plants) with no significant status for any of the 9 efficacies; however, 231 other plants have significant status: 189 plants (40.6%) are significant only for 1 efficacy; 38 plants (8.2%) are significant for 2 efficacies; and the other 4 plants (0.9%) are significant for 3 efficacies. Exploration on the significant plants in terms of their usage frequency in Jamu medicines as depicted in Figure 4.3 indicates that the significant plants for a given efficacy are usually the plants utilized most intensively in Jamu medicines for that efficacy relative to the usage for other efficacies.

Besides testing plant usage statistically, furthermore, I also determined which of the significant plants have been associated with the corresponding efficacy in the scientific literature. These results are shown in Table 4.1. I found that many of the testing results are supported by scientific papers.

Figure 4.3. Plot of frequency of plant usage in Jamu medicines (plant in-degree) versus plants order. The red circle emphasize the significant plant for a given efficacy. The figure indicates that the significant plants for a given efficacy are usually the plants utilized most intensively in Jamu medicines for that efficacy relative to the usage for other efficacies.

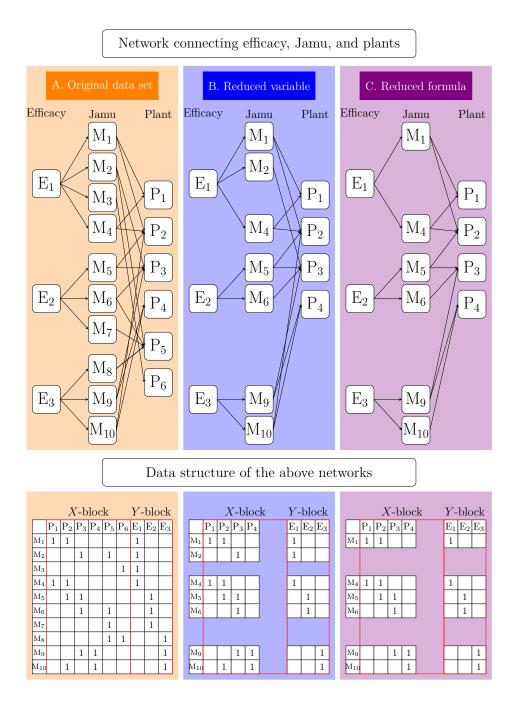

PLS-DA model	# Jamu	# plant	% variati counted for		% correct classification
			X-block	Y-block	
All data	3,138	465	5.5	40.5	71.60
Reduced variables	$3,\!110$	231	9.3	39.8	70.64
Reduced formulas	2,748	231	11.1	70.9	94.21

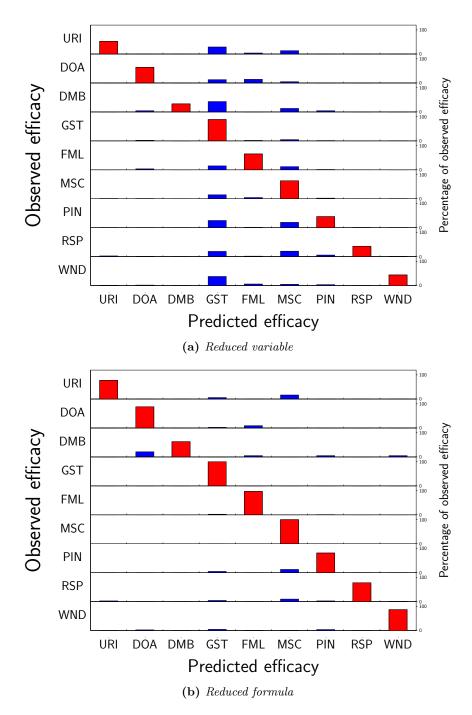
Table 4.2. Comparison of the performance of the PLS-DA model between all data, reduced variables, and reduced formulas scenario

4.2.1 PLS-DA of the reduced data

As noted previously, from permutation testing I was able to determine 231 significant plants. In this section I further explored the performance of a PLS-DA model on reduced data containing only these 231 significant plants, i.e., the other 234 non-significant plants are dropped from the data set. I call this scenario 'PLS-DA for reduced variables'. See Fig. 4.4B for the illustration of the network and data structure for this scenario. As with the PLS-DA model for the original data set, I used 10 components for the reduced-variable scenario. Table 4.2 provides the results of the PLS-DA model for the reduced-variable scenario; Fig. 4.5a shows the results of the efficacy prediction. The PLS-DA model for the reduced-variable scenario performs similarly to PLS-DA on the original data set. The correlations between the PLS-DA coefficients in the original and reduced-variable data sets (see Table 4.3) also confirm that the PLS-DA model for reduced variables exhibits similar performance to that of the PLS-DA model for the original data set. It indicates that the dropped variables, i.e. the non-significant plants, contribute little on the PLS-DA Model so that removing them did not affecting the performance of the PLS-DA model.

Next, the performance of the PLS-DA model was investigated when the Jamu formulas is simplified so that they contain only the main ingredients.

So, in this scenario, besides dropping the non-significant plants from the data set, any plants not significant for a specific efficacy was also dropped, even if they are significant for another efficacy. This scenario is called as

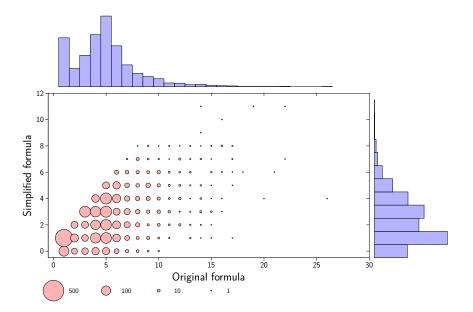

Figure 4.4 (previous page). Networks connecting Jamu efficacy, Jamu, and plants utilized in Jamu formulas. Here, 10 Jamu are categorized into 3 efficacies (M_1 to M_4 for efficacy E_1 , M_5 to M_7 for efficacy E_2 , and M_8 to J_{10} for efficacy E_3). From permutation testing, P_1 and P_2 are the main ingredients for E_1 , P_2 and P_3 are the main ingredients of E_2 , and P_3 and P_4 are the main ingredients for E_3 . In the reduced-variable scenario, all non-main ingredients (P_5 and P_6 in this illustration) are dropped from the analysis but kept the main ingredients. For the reduced-formula scenario, the formulas is simplified by using only main ingredients for the corresponding efficacy. In these two reduced scenarios, Jamu that no longer connected to the remaining plants were dropped from the analysis. I also illustrate the data structure for each network: each row corresponds to Jamu, and the columns in the X-block and Y-block correspond to plant and efficacy group, respectively. Each connection between two objects is denoted by 1 in the corresponding cell.

Efficacy	Original data set vs. Reduced variable	Original data set vs. Reduced formula
URI	0.998	0.704
DOA	0.999	0.955
DMB	0.996	0.517
GST	0.991	0.790
FML	0.993	0.743
MSC	0.984	0.835
PIN	0.948	0.663
RSP	0.977	0.630
WND	0.992	0.739

Table 4.3. Correlations between PLS-DA coefficients

'*PLS-DA model for reduced formulas*'. See Fig. 4.4C for the illustration of the network and data structure for this reduced-formula scenario. Using 10 components, as for the previous PLS-DA models, it is obtained that the PLS-DA model for reduced formulas exhibited superior performance in predicting Jamu efficacy relative to the PLS-DA model of the original data set (see Table 4.2 and Fig. 4.5b).

This findings can be understood as follows. In Chapter 3 it is explained


Figure 4.5. Results of the Jamu efficacy prediction: (a) Reduced variable, and (b) Reduced formula. Red bars indicate correctly predicted Jamu; blue bars denote incorrectly predicted Jamu.

that one source of error in the prediction of efficacy is the use of plants in many efficacies. It is because the inclusion of all uses of the plants, regardless of plant functions whether as main or supporting ingredient, would obscure the main functions of the plant. So, simplifying the Jamu formula using only the main ingredients led to the use of plants in Jamu become more compact, i.e. concentrated only in certain efficacy where these plants serve as main ingredients. This simplification reduces the noise caused by the use of plants serve as supporting ingredients with no significant role in efficacy and subsequently increase the correct prediction of Jamu efficacy produced by PLS-DA model for the reduced formulas scenario compared to PLS-DA model for the original data set. Thus, statistically, it is an indication that Jamu formulas can be simplified by utilizing main ingredients only without losing efficacy.

This simplification greatly reduced the number of plants utilized in each Jamu. Apart from original formula that using one plant only, the number of plants used in simplified formula are reduced between 1 to 22 plants compared to the original formula. Consequently, this simplification will reduces the effort in studying the mechanism of Jamu efficacy by concentrating on fewer plants. In addition, as depicted in Figure 4.6, in simplified formula many Jamu now contain one plant only, although many others are contain two until four plants. It indicates that interaction among plants also plays important role in Jamu to achieve desired efficacy.

4.3 Summary

Plants serve as main ingredients in Jamu formula is determined in this chapter by testing the significance of PLS-DA coefficients obtained in Chapter 3. The idea is that plants serve as main ingredients in a given efficacy should

Figure 4.6. Plot of number of plant utilized in Jamu medicines between original formula versus simplified formula. The size of the bubbles is proportional to the number of Jamu in the corresponding coordinates. The marginal distribution of the number of plant used in Jamu medicines for original formula and simplified formula are depicted at the top and right side of the scatter plot, respectively.

have significance coefficient on that corresponding efficacy. Due to the absence of parametric testing for the coefficients in PLS Regression, permutation testing is proposed. The procedure for permutation test is similar to parametric test only that the underlying distribution for the testing is generated through a resampling process. In each resampling round, the order of the response is permuted while the order of the predictors is maintained. Then the PLS-DA model is applied and the regression coefficients is calculated. After repeating the resampling process many times, accumulation of the calculated coefficients form the underlying distribution for the permutation testing. By performing 1,000 permutation process and using 5% significance level, I found 231 plants are significant for a given efficacy and usually they are utilized most intensively in Jamu medicines for that efficacy relative to the usage for other efficacies, and many of them are supported by scientific papers.

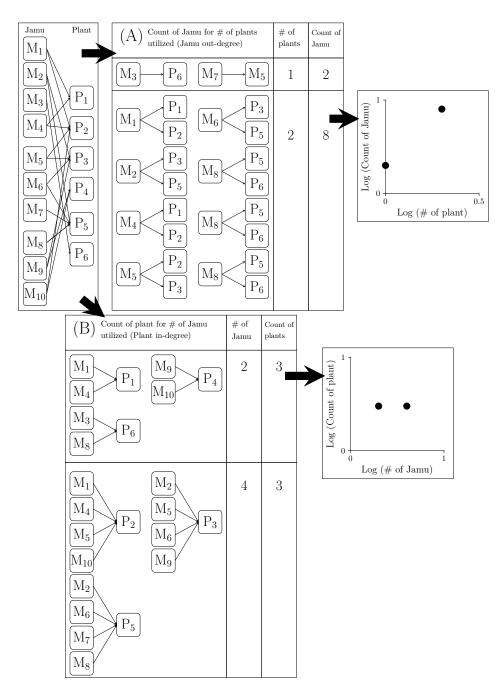
Moreover, the idea of simplifying the Jamu formula by utilizing only plants serve as main ingredients is proposed. PLS-DA model of reduced variable, i.e. removing the non-significant plant, showing similar performance compared with PLS-DA model of the original data set. It indicates that the dropped variables, i.e. the non-significant plants, contribute little on the PLS-DA Model so that removing them did not affecting the performance of the PLS-DA model. Moreover, PLS-DA model of reduced formula, i.e. simplifying the Jamu formula using only the main ingredients, showing better prediction performance compared with PLS-DA model of the original data set. It is because the simplification make the plant usage in Jamu become more compact, i.e. concentrated only in certain efficacy where these plants serve as main ingredients. It reduces the noise caused by the use of plants serve as supporting ingredients with no significant role in efficacy and subsequently increase the correct prediction of Jamu efficacy produced by the PLS-DA model. Thus, it indicates that, statistically, Jamu formula can be simplified by utilizing main plants only without losing its efficacy.

Chapter 5

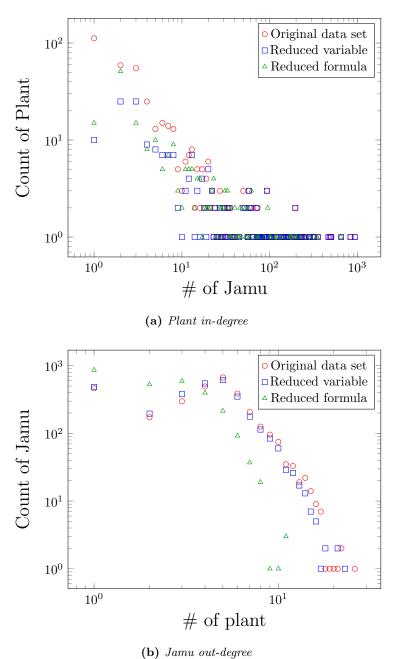
Degree Distribution of Jamu Formulas

In this chapter, a bipartite network connecting Jamu and plant is used to explore the properties of Jamu formulation. The exploration involving the Jamu out-degree and plant in-degree properties of Jamu formulation network.

5.1 Degree Distribution


In the study of networks, the degree of a node is the number of connections or edges the node has to other nodes; the degree distribution is the probability distribution of these degrees over the whole network. If the network is directed, as in our case of Jamu-plant connections, then each node has two different degrees, the in-degree and the out-degree, which represent the numbers of incoming and outgoing connections, respectively.

To characterize the relationships between Jamu and plants, a powerlaw analysis of this network is performed; Fig. 5.1 shows the procedure for this power-law analysis. The counts of Jamu corresponding to numbers of plants utilized in the formula (Jamu out-degree), and counts of plants corresponding to numbers of Jamu utilizing those plants (plant in-degree) are obtained as the core for the power-law analysis.


5.2 Results

For original data set, a clear linear decreasing trend of plant in-degree distribution (Fig. 5.2a) was observed demonstrating that plant utilization in Jamu follows a scale-free property. This means that the majority of plants are not widely used in Jamu formulas, whereas some plants are utilized frequently. Thus, the mechanism of plant utilization in Jamu can be explained by growing bipartite graphs (Guillaume & Latapy, 2006; Ohkubo et al., 2005) corresponding to the Barabási and Albert (BA) model (Barabási & Albert, 1999). In this model, each formulation of new Jamu medicine represents addition of a new plant or removal of a pre-existing one from a prior formula, using preferential attachment. Preferential attachment means that there is a higher probability to utilize a specific plant with larger utilization in Jamu formulas, a phenomenon called rich-get-richer (Barabási & Albert, 1999).

From Chapter 4 it is observed that the plants serve as main ingredients are the plants utilized most intensively in Jamu medicines. So, the preferential attachment of the scale-free pattern observed in plant in-degree distribution indicates that the Jamu formulation is started by choosing plants serve as main ingredients and then, if necessary, additional plants as supporting ingredients are added to the formula. Meanwhile, a scale-free property is not observed in the Jamu out-degree distributions for the original data set as well as for the reduced-variable and reduced-formula scenarios (Fig. 5.2b).

Figure 5.1. Illustration of degree-distribution calculation for the bipartite graph connecting Jamu and plants. Part (A) showing process for Jamu out-degree, while part (B) for plant in-degree.

(1)

Figure 5.2. Degree distribution of networks connecting Jamu and plants. (a) Plant in-degree, and (b) Jamu out-degree

On the other hand, a scale-free pattern is not observed in the plant in-degree distribution of the reduced-variable and reduced-formula scenario (Fig. 5.2a). This is because some points on the upper left part of the scatter plot of both reduced scenarios are dropped which make the linear pattern of both scatter plots are not as smooth as the scatter plot for the original dataset. The points on the upper left part of plant in-degree distribution are those for plants with low frequency of usage in Jamu medicines. From Chapter 4, these plants are regarded as supporting ingredients. So, dropping them during simplification of Jamu formulas destroys a scale-free pattern which previously observed in the original data set.

Interestingly, destruction of a scale-free pattern is also observed in plant in-degree distribution in Kampo medicines (Afendi et al., 2012), which was originally imported from China. The modern version of Kampo can be viewed as a reduced version of Chinese medicines, resulting from the seclusion of Japan from the outside world during the Edo period from 1600 onwards, leading to a reduction in the number of medicinal plants relative to the thousands of crude drugs used in traditional Chinese medicines. Thus, the simplification in fact happen in real situation as observed in modern Kampo medicines.

5.3 Summary

This chapter explores the plant in-degree distribution of Jamu formula. For original data set the distribution shows a scale-free pattern, meaning that there is a higher probability to utilize a specific plant with larger utilization in Jamu formulas. Regarding that the plants serve as main ingredients are the plants utilized most intensively in Jamu medicines then it indicates that the Jamu formulation is started by choosing plants serve as main ingredients and then, if necessary, additional plants as supporting ingredients are added to the formula. However, the plant in-degree distributions of the reduced version, due to the simplification process of dropping the supporting ingredients, are showing a destroyed scale free pattern, a similar pattern which also found in Kampo medicines that can be viewed as a reduced version of the Chinese medicines.

Chapter 6

Multiway Model of Jamu Medicines

In previous section, PLS-DA model has been developed to capture systematic utilization of plants in Jamu medicines to achieve desired efficacy. Plants serve as main ingredients also have been determined by testing the significance of coefficients in the resulting PLS-DA model. The next question arise is then what are the roles of the plants that serve as main ingredients in Jamu medicines. In order to answer this question, the reported pharmacological activity of the plants is added to the predictor's block. The pharmacological activity itself describes the beneficial or adverse effects of a plant on living matter. Thus, the additional of this new information is suitable for describing the roles of the plants in Jamu medicines which in turn useful in explaining the mechanism of Jamu medicines to achieve desired efficacy.

6.1 Data set for multiway model

The present study utilized 2,748 Jamu medicines that have been reduced so that the formula uses only the main ingredients. On the whole, these

Figure 6.1. Illustration of a network connecting Jamu efficacy, Jamu, plant, and pharmacological activity of plant

2,748 Jamu use 231 plants while the number of the reported pharmacological activity of these 231 plants is equal to 46. On the other hand, each Jamu is classified into one of nine efficacy grouping. Fig. 6.1 illustrates the network connecting the efficacy of Jamu, Jamu medicine, plant, and pharmacological activity, while Table 6.1 describes the distribution of Jamu according to the nine efficacy grouping as well as the number of plant utilized in the corresponding efficacy and the number of pharmacological activity of the plants. In addition, Table 6.2 provides the list of pharmacological activity correspond to each efficacy.

Efficacy	Number of Jamu	Number of plants used in the corresponding efficacy	Number of pharmacological activity of the corresponding plants
URI	66	20	20
DOA	228	21	23
DMB	19	12	19
GST	720	26	32
FML	377	40	33
MSC	798	40	32
PIN	292	39	32
RSP	105	36	32
WND	143	43	34

Table 6.1. Distribution of Jamu, plant, and pharmacological activity based on Jamu efficacy for reduced formula scenario

Table 6.2. List of pharmacological activity correspond to each efficacy. In this table, '1' and '-' indicates connection and no connection, repectively, between pharmacological activity and Jamu efficacy.

Pharmacological	URI	DOA	GST	FML	MSC	PIN	RSP	WND
activity								
Adaptogen	-	-	1	1	1	-	-	1
Analgesic	1	1	1	1	1	1	1	1
Antacid	-	-	1	1	-	1	1	-
Anthelmintic	-	1	1	-	-	1	1	1
Antiarthritic	1	1	1	1	1	1	1	1
Antiasthmatic	-	-	1	1	1	1	1	1
Antimicrobial	1	1	1	1	1	1	1	1
Antibilious	-	-	-	-	-	1	-	1
Anticholesterolemic	-	1	-	1	-	-	-	-
Antidermatosic	-	-	-	1	-	-	-	1
Antiemetic	-	-	-	-	1	1	1	1
Antihaemorrhoidal	-	-	1	-	1	-	-	-
Antiinflammatory	1	1	1	1	1	1	1	1
Antipruritic	-	-	-	1	-	-	-	1
						Continu	ed on ne	xt page

Pharmacological activity	URI	DOA	GST	FML	MSC	PIN	RSP	WNE
Antipyretic	1	1	1	1	1	1	1	1
Antirheumatic	1	1	-	1	1	1	1	1
Antispasmodic	1	1	1	1	1	1	1	1
Antitumor	-	-	1	1	1	1	1	1
Antitussive	1	-	1	1	1	1	1	1
Laxative	1	1	1	1	-	1	1	-
Aphrodisiac	1	-	1	-	1	1	1	1
Astringent	1	-	1	1	-	1	1	1
Bitter	1	1	1	1	1	1	1	1
Cardiotonic	-	1	1	1	1	1	1	1
Carminative	-	1	1	1	-	-	-	-
Cholagogue	-	1	1	1	-	1	1	1
Decongestant	1	1	1	1	1	1	1	1
Demulcent	1	-	-	1	1	1	1	1
Depurative	-	1	1	-	1	1	-	1
Diaphoretic	-	-	-	1	1	1	1	1
Digestive	-	1	1	1	-	1	1	1
Diuretic	1	1	1	1	1	-	1	1
Emetic	-	-	-	-	1	1	1	-
Emmenagogue	-	-	1	1	1	1	1	1
Expectorant	1	-	1	-	1	1	1	-
Galactogogue	-	1	-	1	-	-	-	-
Hepatic	-	-	1	-	-	-	-	-
Hypnotic	1	-	-	1	1	-	-	-
Hypoglycaemic	-	-	1	-	1	-	-	-
Hypotensive	-	-	1	1	-	-	1	1
Kidney	-	-	-	-	1	-	-	-
Nervine	-	1	-	-	1	-	-	1
Rubefacient	1	-	-	-	1	1	1	1
Sedative	1	1	1	1	1	1	1	1
Stimulant	-	1	1	1	1	1	1	1
Vulnerary	1	1	1	1	1	1	1	1

Table 6.2 – continued from previous page

During the modeling process, the ingredients of Jamu provide the predictor while the Jamu efficacy serves as the response. In order to identify the function of the plants in Jamu to achieve specific efficacy, the reported

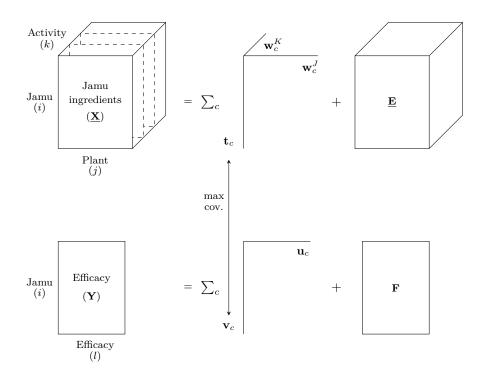


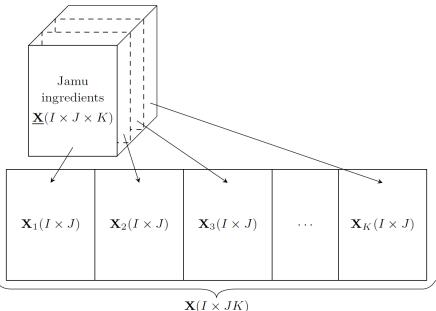
Figure 6.2. Schematic diagram of the decomposition of both predictor and response blocks based on N-PLS model. Similar to PLS model, the $\underline{\mathbf{X}}$ and \mathbf{Y} are decomposed into \mathbf{T} and \mathbf{V} , respectively, such that the covariance among \mathbf{T} and \mathbf{V} are maximized. However, now the predictor's block has two weights instead of one, that is, \mathbf{W}^J and \mathbf{W}^K which are correspond to plant and pharmacological activity, respectively.

pharmacological activities of the plants are added to the predictors block. Thus, the predictors block can be represented as a three-dimensional array $\underline{\mathbf{X}}$ $(I \times J \times K)$ indexed by Jamu medicine (i), plant (j), and pharmacological activity (k) as depicted in Fig. 6.2. Furthermore, the response block is represented as matrix \mathbf{Y} $(I \times 9)$. The detail about the elements of array $\underline{\mathbf{X}}$ and matrix \mathbf{Y} is as the following.

Let x_{ijk} (i = 1, 2, ..., I; j = 1, 2, ..., J; k = 1, 2, ..., K; I = 2, 748; J = 231; K = 46) denotes the usage status of plant j with pharmacological activity k in Jamu i, where $x_{ijk} = 1$ if the plant j with pharmacological activity

k is used in Jamu *i*, and $x_{ijk} = 0$ otherwise. On the other hand, let y_{il} (l = 1, 2, ..., 9) represents the status of Jamu *i* on efficacy *l*, where $y_{il} = 1$ if Jamu *i* is classified into efficacy *l*, and $y_{il} = 0$ otherwise.

6.2 N-PLS-DA


An extension of PLSR to deal with multidimensional data known as Multiway Partial Least Squares has been developed by Bro (1996) and is called as N-PLS. In this model, the same principle of PLSR for two dimensional data is utilized, that is, both predictor and response blocks are decomposed successively into multilinear model such that the pairwise scores have maximal covariance. The score of the predictor is then regressed to the response variable. Fig. 6.2 illustrates the decomposition of N-PLS model. Moreover, N-PLS model can also be used for discrimination purpose, which is called as N-PLS-DA, that is the multiway version of PLS-DA, by utilizing the dummy matrix of group membership as the response variable.

Consider the three-dimensional array $\underline{\mathbf{X}}$ of the ingredients of Jamu extended with the information of reported pharmacological activity of the plants and the matrix \mathbf{Y} of the Jamu efficacy as defined in the previous section. The decomposition of both the predictor and the response block based on N-PLS model are as follows

$$X_{ijk} = \sum_{c=1}^{C} T_{ic} W_{jc}^{J} W_{kc}^{K} + E_{ijk}$$
(6.1)

$$Y_{il} = \sum_{c=1}^{C} V_{ic} U_{lc} + F_{il}$$
(6.2)

The array $\underline{\mathbf{X}}$ is decomposed into a tri-linear model consists of one score vector for Jamu called \mathbf{t}_c ($I \times 1$), and two weight vectors, one for plant

 $\mathbf{A}(I \times JK)$

Figure 6.3. Illustration of matricizing three-dimensional array $\underline{\mathbf{X}}$ $(I \times J \times K)$ into matrix \mathbf{X} $(I \times JK)$

called \mathbf{w}_c^J $(J \times 1)$ and one for pharmacological activity called \mathbf{w}_c^K $(K \times 1)$. Similarly, a bi-linear model is used in decomposing the matrix \mathbf{Y} into one score vector \mathbf{v}_c $(I \times 1)$ and one weight vector \mathbf{u}_c (9×1) . The decomposition is conducted such that the covariance among the score of predictor \mathbf{t} and the corresponding score of the response \mathbf{v} is maximized. All scores and weights are indexed with c showing that they correspond to cth multiway component, while C represents the total number of multiway components used in N-PLS model. Moreover, \mathbf{E} and \mathbf{F} are the residuals of the decomposition of the three-dimensional array \mathbf{X} and matrix \mathbf{Y} , respectively.

Furthermore, let \mathbf{X}_k $(I \times J)$ be the *k*th slice of $\underline{\mathbf{X}}$ $(I \times J \times K)$ for the corresponding *k*th pharmacological activity, then matricizing three-dimensional array $\underline{\mathbf{X}}$ into matrix \mathbf{X} $(I \times JK)$ is performed as follows (Smilde et al., 2004)

$$\mathbf{X} = [\mathbf{X}_1 | \mathbf{X}_2 | \dots | \mathbf{X}_K] \tag{6.3}$$

Fig. 6.3 depicts this unfolding process of array $\underline{\mathbf{X}}$ into matrix \mathbf{X} . Using this notation, the score \mathbf{t}_c of the *c*th component can be calculated as (Smilde, 1997)

$$\mathbf{t}_c = \mathbf{X}(\mathbf{w}_c^K \otimes \mathbf{w}_c^J) \text{ or } t_{ic} = \sum_{j=1}^J \sum_{k=1}^K x_{ijk} w_{jc}^J w_{kc}^K$$
(6.4)

From Eq. (6.4), the weight corresponding to *c*th component, $\mathbf{w}_c \ (JK \times 1)$, can be defined as

$$\mathbf{w}_c = (\mathbf{w}_c^K \otimes \mathbf{w}_c^J) \tag{6.5}$$

Smilde (1997) also described that, due to the deflation in \mathbf{X} during the decomposition, the weight matrix \mathbf{W} ($JK \times C$) that can be applied directly to the original unfolded matrix \mathbf{X} is defined as

$$\mathbf{W} = [\mathbf{w}_1 | (\mathbf{I}_{JK} - \mathbf{w}_1 \mathbf{w}_1^t) \mathbf{w}_2 | \dots |$$

$$(\mathbf{I}_{JK} - \mathbf{w}_1 \mathbf{w}_1^t) (\mathbf{I}_{JK} - \mathbf{w}_2 \mathbf{w}_2^t) \dots (\mathbf{I}_{JK} - \mathbf{w}_{Q-1} \mathbf{w}_{Q-1}^t) \mathbf{w}_Q]$$
(6.6)

Hence, the scores in \mathbf{T} $(I \times C)$ expressed directly in terms of the X-columns is

$$\mathbf{T} = \mathbf{X}\mathbf{W} \tag{6.7}$$

After the decomposition procedure, the next step is to regress \mathbf{Y} on the component scores \mathbf{T}

$$\hat{\mathbf{Y}} = \mathbf{TB} \tag{6.8}$$

with

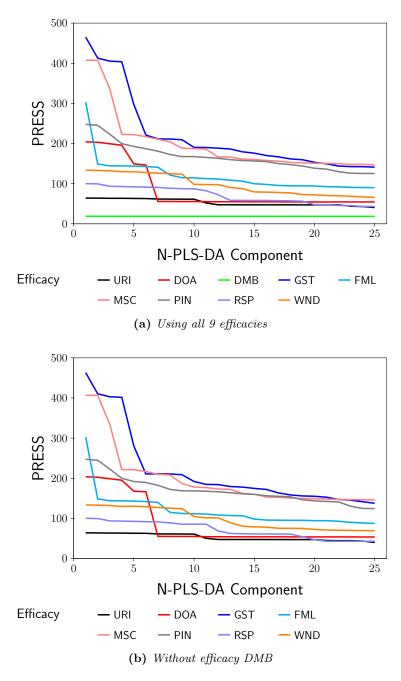
$$\mathbf{B} = (\mathbf{T}^t \mathbf{T})^{-1} \mathbf{T}^t \mathbf{Y}$$
(6.9)

From Eq. (6.7) and (6.8) we have

$$\hat{\mathbf{Y}} = \mathbf{XWB} \tag{6.10}$$

Therefore, the regression coefficients \mathbf{B}_{NPLS} ($JK \times 9$) needed to predict \mathbf{Y} from \mathbf{X} are obtained as

$$\mathbf{B}_{NPLS} = \mathbf{WB} \tag{6.11}$$


6.3 Results

6.3.1 Selection of the number of component in N-PLS-DA model

In this work, the number of component in N-PLS-DA model is selected using 5-folds cross-validation as in PLS-DA model, that is, the data set is splitted randomly into 5 sets, and, for a given number of component, each set is once selected as testing set and the other four are merged as training set. Next, the N-PLS-DA model is applied to the training set and use the obtained model to predict the response of the testing set. Prediction Error Sum of Squares (PRESS) for efficacy l using number of component c is then calculated as

$$PRESS(c)_{l} = \sum_{i=1}^{I} (y_{il} - \hat{y}_{(-i,l)c})^{2}$$

where $\hat{y}_{(-i,l)c}$ is the prediction of the response for the testing set using number of component c. Fig. 6.4a shows the plot of the PRESS statistic against the number of component. As the number of component increased, some efficacy show a large decrease on their PRESS statistic (efficacy GST, FML, MSC, and DOA), while the other showing a moderate decrease (efficacy PIN) and small decrease (efficacy URI, RSP, WND, and DMB). However, from this figure it is obtained that the plot nearly constant from c = 23onward. Using 23 components the N-PLS-DA model produces 56.5% and 67.9% in explaining variation of the predictor block and the response block, respectively.

Figure 6.4. *PRESS plot of the N-PLS-DA model obtained using* 5-folds cross-validation

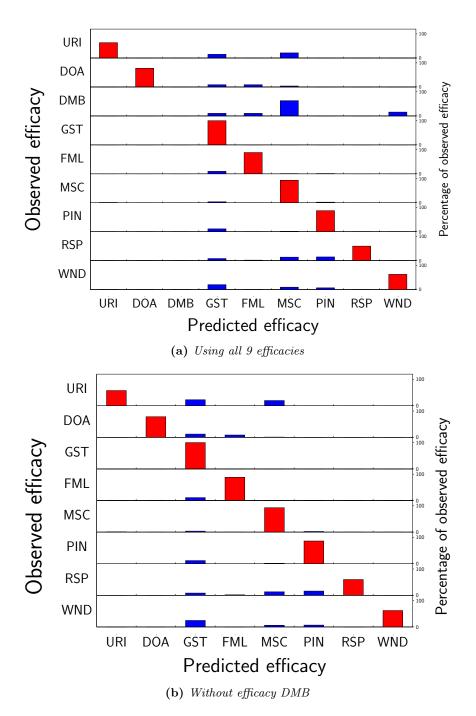
6.3.2 Prediction of Jamu efficacy using N-PLS-DA model

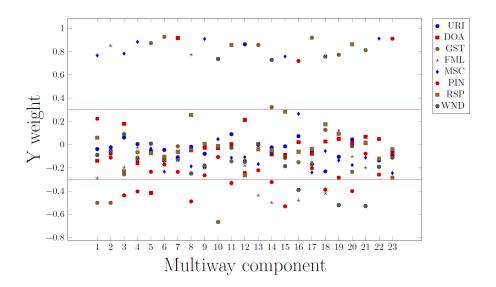
Furthermore, I utilized the N-PLS-DA model to predict the Jamu efficacy as follows. Note that the N-PLS-DA model produces matrix $\hat{\mathbf{Y}}$ ($I \times 9$) as the

prediction of the response, i.e. the dummy matrix of Jamu efficacy group. So, each Jamu has a set of prediction consisting of nine values and each one corresponds to a specific efficacy, that is \hat{y}_{il} ; l = 1 to 9. On the other hand, because each Jamu is classified into one efficacy group only, then for a given Jamu *i*, the maximum value of the row of the dummy matrix is 1 on the column which corresponds to the observed efficacy of Jamu *i*. Thus, a given Jamu *i* is predicted to have efficacy *l* if the \hat{y}_{il} value is the largest across l = 1 to 9 for Jamu *i*.

Using this procedure, I obtained the total correct classification of Jamu efficacy is 88.1%, while the detail of the results of the classification for each efficacy is depicted in Fig. 6.5a. The performance of the N-PLS-DA model in predicting the Jamu efficacy vary across the efficacy groups, from 0% of correct classification for efficacy DMB to 100% of correct classification for efficacy GST. Furthermore, I found a large positive correlation (r = 0.726) between the percentage of correct classification and the number of Jamu classified to the corresponding efficacy. Thus, the poor performance of N-PLS-DA on efficacy DMB can be addressed due to the small number of Jamu in efficacy DMB. Therefore, I drop Jamu with efficacy DMB from our analysis, resulting new dimension of the array $\underline{\mathbf{X}}$ (2729 × 225 × 46) and the matrix \mathbf{Y} (2729 × 8).

Fig. 6.4b shows the PRESS plot of the 5-folds cross-validation for the new data set, i.e. without the efficacy DMB. Based on this plot, I use 23 components for the N-PLS-DA model which produces 57.0% and 67.7% in explaining variation of the predictor block and the response block, respectively. Moreover, utilizing the N-PLS-DA model to predict the Jamu efficacy, I obtain 88.4% of total correct classification while the detail of the results of the classification for each efficacy is depicted in Fig. 6.5b.




Figure 6.5. Prediction status of Jamu efficacy

Note that the percentage of total correct classification for N-PLS-DA model is smaller compare to PLS-DA model for reduced formula, although the dataset for N-PLS-DA model is the extension, by adding the pharmacological activity, of the dataset for PLS-DA model for reduced formula. So, adding complexity of the dataset, which is expected would increase the predicting performance of the model, even reduce the total correct classification in predicting Jamu efficacy. However, in this analysis, adding complexity to the dataset by adding the reported pharmacological activity also adding noise to the dataset in form of pharmacological activity that not affecting a given efficacy. This noise then reduces the predicting performance of the N-PLS-DA model compare to PLS-DA model for reduced formula. Thus the N-PLS-DA model will be used only as means for evaluating which pharmacological activity affecting Jamu efficacy and *not* for predicting Jamu efficacy.

6.3.3 Characterization of N-PLS-DA components

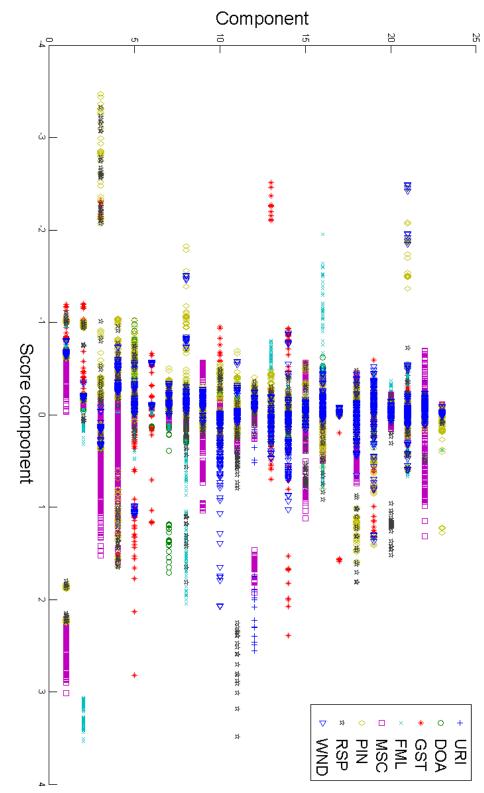
Fig. 6.6 showing plot of the response weight, i.e. vector \mathbf{u} obtained from the decomposition process of N-PLS-DA model, against the number of components. This plot is useful to characterize the information extracted on each component regarding the efficacy of Jamu. Note that for a given component, the vector \mathbf{u} consists of 8 values and each corresponds to a specific efficacy. Thus, a component with large weight on a specific efficacy means that the component contains useful information in predicting that efficacy.

Many methods have been proposed in considering the loadings or weights of a component differ significantly from zero (Peres-Neto et al., 2003; Richman, 1988; Hair et al., 2010). In this work, however, I adopt the guidelines from Hair et al. (2010) that all weights (in absolute values) of 0.3 or above are significant for sample sizes of 350 or greater. As an example, for component 1, only the two largest weights, which are 0.766 and -0.499 for efficacy

Figure 6.6. Plot of response weight (\mathbf{u}) against number of N-PLS-DA component. The red line is created at 0.3 and -0.3 as threshold for significancy. Any point beyond threshold is regarded as significant.

Efficacy	Component related with the corresponding efficacy				
Enleady	Positive contribution	Negative contribution			
URI	12	-			
DOA	7	5			
GST	5, 6, 13, 14, 17, 19, 21	1, 2, 10			
FML	2, 8	11, 13, 14, 16, 18			
MSC	1, 3, 4, 9, 15, 22	-			
PIN	16, 23	3, 4, 8, 11, 14, 15, 18, 20			
RSP	11, 20	-			
WND	10, 14, 18	16, 19, 21			

Table 6.3. List of component significantly related with the efficacy


MSC and GST, respectively, that larger than the threshold of 0.3. Thus, component 1 primarily comprises of information that positively related with efficacy MSC, and negatively related with efficacy GST. The results for all 23 components are summarized in Table 6.3.

Having the components significantly related with the efficacy as listed

in Table 6.3 allows us to concentrate on much fewer than 23 components in evaluating the pharmacological activity that significantly affecting a given efficacy. As an example, in investigating significant pharmacological activity for efficacy URI only component 12 is needed, while for efficacy DOA only component 7 and 5 are needed.

Note that in N-PLS-DA, the component in predictor block is obtained by maximizing the covariance with the component in response block. Therefore, we can expect a consistency between the result of the response components and the predictor components. Plot of the score of the predictor, i.e. vector \mathbf{t} , against the number of component is shown in Fig. 6.7. Taking component 1 as an example, it is obvious from Fig. 6.7 that large scores in \mathbf{t}_1 are corresponding to efficacy MSC while the small scores correspond to efficacy GST. On the other hand, in \mathbf{u}_1 , the weight for efficacy MSC is 0.766, so the value can be considered as large; while the weight for efficacy GST is -0.499, so the value can be considered as small. Thus, the pattern in \mathbf{t} is consistent with \mathbf{u} , that is, large score in \mathbf{t} corresponds with positive weight in \mathbf{u} , while small score in \mathbf{t} corresponds with negative weight in \mathbf{u} . So, the performance of the score of predictor \mathbf{t} in discriminating the efficacies is consistent with the result of the response weight \mathbf{u} .

Having this consistency allows us to explore the predictor weight, and subsequently the pharmacological activity, that corresponds to a specific efficacy using the result of the response weight \mathbf{u} as summarized in Table 6.3. For instance, as indicated previously, from Table 6.3 the efficacy DOA is best described using component 5 and 7, and we expect that Jamu with efficacy DOA has large score in component 7 and small score in component 5. Consequently, the predictor weight \mathbf{w} that best describes the efficacy DOA should be positive with large magnitude on component 7 and negative

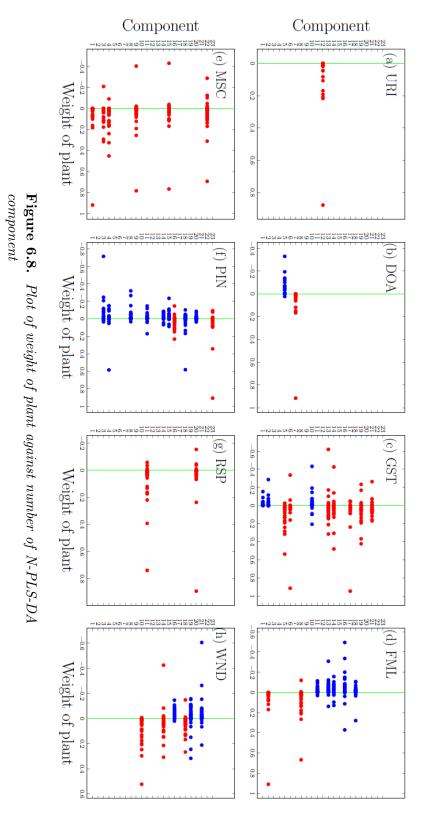


Figure 6.7. Plot of predictor's scores (t) against number of N-PLS-DA component

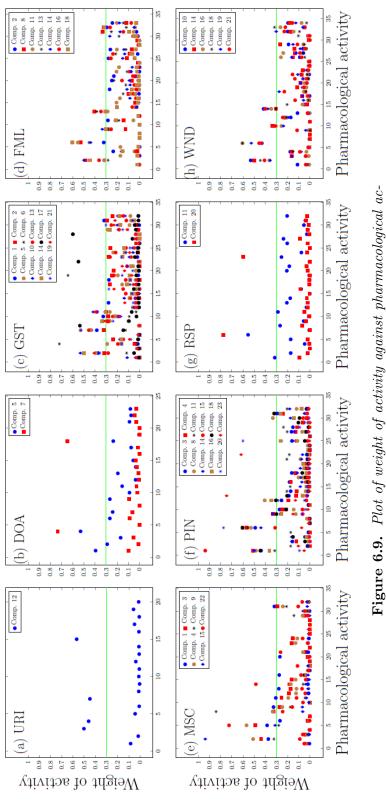

with large magnitude on component 5. Fig. 6.8 gives plot of weight of plant \mathbf{w}^J for the corresponding component that best describe a given efficacy. So, for efficacy DOA, only the weight of plant for component 5 and 7 are provided. It is observed that most of the weights \mathbf{w}^J for component 7 are positive while for component 5 are negative. This result is also applies to the other efficacies, that is, the sign of most of the weight \mathbf{w}^J agree with the component contribution on the corresponding efficacy. On the other hand, all weights of pharmacological activity \mathbf{w}^K are non-negative. Because the weight of the predictor \mathbf{w} is a product of \mathbf{w}^J and \mathbf{w}^K (see Eq. (6.5)), then the sign of the weight \mathbf{w} is determined by the sign of \mathbf{w}^J and \mathbf{w}^K .

Fig. 6.9 depicts the weight of pharmacological activity \mathbf{w}^{K} for the corresponding component that best describe a given efficacy. A threshold line is created at 0.3 in order to identify the pharmacological activity that is significantly related with the efficacy, that is, the weight \mathbf{w}^{K} of the significant pharmacological activity should be larger than 0.3. Table 6.4 provides the list of significant pharmacological activity for each efficacy.

In order to help identify the relationship between Jamu efficacy and the pharmacological activity, Fig. 6.10 depicts the clustergram of Jamu efficacy and the pharmacological activity based on the results shown in Table 6.4. The cluster of Jamu efficacy and the pharmacological activity was performed using Ward Linkage based on the Euclid Distance among the entities. The clustering of the pharmacological activity side clearly exhibits two groups. The first group consists of activities useful for one or two efficacies only. This group can be regarded as a group of specific activity because the effect of the activities are specific for certain efficacy. For example the diuretic activity, which from the clustergram, is useful for efficacy URI and DOA. Diuretic is

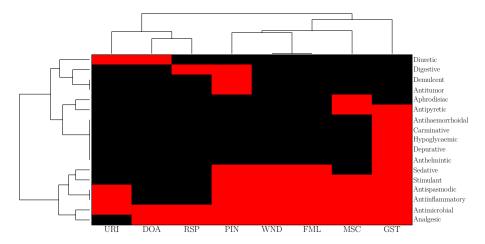


Table 6.4. List of pharmacological activity significantly related withJamu efficacy

Efficacy	Pharmacological activity
URI	Antimicrobial, Antiinflammatory, Antispasmodic,
	Diuretic
DOA	Analgesic, Antimicrobial, Diuretic
GST	Analgesic, Anthelmintic, Antimicrobial,
	Antihaemorrhoidal, Antiinflammatory, Antipyretic,
	Antispasmodic, Carminative, Depurative,
	Hypoglycaemic, Sedative, Stimulant
FML	Analgesic, Antimicrobial, Antiinflammatory,
	Antispasmodic, Sedative, Stimulant
MSC	Analgesic, Antimicrobial, Antiinflammatory,
	Antipyretic, Antispasmodic, Aphrodisiac, Stimulant
PIN	Analgesic, Antimicrobial, Antiinflammatory,
	Antispasmodic, Antitumor, Demulcent, Digestive,
	Sedative, Stimulant
RSP	Analgesic, Antimicrobial, Digestive
WND	Analgesic, Antimicrobial, Antiinflammatory,
	Antispasmodic, Sedative, Stimulant

an agent that increases the secretion and elimination of urine from the body (Hoffmann, 2003). Obviously, this activity is beneficial for the efficacy URI. Diuretic also help the body eliminate waste and support the whole process of inner cleansing, which is an action that is useful for efficacy DOA especially related with a slimming purpose. Another example is the activities antihaemorrhoidal, carminative, hypoglycaemic, depurative, and anthelmintic which are specifically related with efficacy GST. Antihaemorrhoidal means an activity that treats haemorrhoids (piles), while the carminative is defined as an activity that eases discomfort caused by flatulence. Hypoglycaemic activity help reduce the levels of sugar in the blood, whereas the depurative eliminates toxins and purifies the system especially the blood, and the anthelmintic helpful in expels parasites from the gut. Thus, all of these activities are helpful for the problem related with the digestive system, i.e.

Figure 6.10. Clustergram of pharmacological activity against Jamu efficacy

the efficacy GST.

Furthermore, the second group of activity revealed by the clustergram consists of activities useful for at least four efficacies. In contrast to the first group, this group can be regarded as the general activities because of the diverse efficacies related to this group. Among all activities clustered to this group, antimicrobial activity is significantly related with all 8 efficacies. We can interpret this result as follows. Due to the environmental conditions, hygiene, and its location as a tropical country which led to many microbes that are harmful to health, then it is reasonable that antimicrobial activity is important and should be available in many Jamu formulas in Indonesia. No wonder that many popular medicinal plants in Indonesia such as Temulawak (*Curcuma xanthorriza*), Ginger (*Zingiber officinale*), Turmeric (*Curcuma longa*) or Kencur (*Kaempferia galanga*) have content of this activity (Duke et al., 2002).

Next, antiinflammation, antispasmodic, analgesic, sedative, and stimulant are also clustered into this general activity group. The reasons are as follow. Since many health problems or diseases are often accompanied with inflammation or spasm, then the plants with antiinflammation and/or antispasmodic activity are chosen in many Jamu formulas. Those health problems or diseases are also often creating pain or other discomforts, which causing plants with activity analgesic, i.e. pain killer, or sedative, i.e. gently calms, reducing nervousness, distress and irritation, are often chosen in many Jamu medicines. Finally, stimulant activity, which excites or quickens activity of the physiological processes, is important for the recovery reason after one experiencing those health problems or diseases.

From the previous explanation regarding the grouping of pharmacological activity, it can be concluded that in formulating Jamu the plants are selected so that, beside curing the targeted diseases or health problems as indicated by the specific activities, the plants also should overcome the other discomforts caused by the targeted diseases or health problems as indicated by the general activities. It is in accordance with the process of making the Jamu medicines that involving whole part of plant and not only the specific active components. Hence, all the active components, which then become the specific or the general activities, are involved during the curing process of Jamu medicines toward the targeted diseases or health problems.

6.4 Summary

This chapter is intended to explore the role of plants serve as main ingredients by adding information of reported pharmacological activity of the plants into the predictors block, which can be represented by three-dimensional array, indexed by Jamu, plants, and pharmacological activity. To handle this three-dimensional array of predictor's block, multiway version of PLS-DA (N-PLS-DA) model is utilized. The N-PLS-DA model has the same principles as PLS-DA, which are decomposition of predictors and responses block into factors subject to the factor of predictors has maximum covariance with the corresponding factor of responses and then the factor of predictors is regressed to the responses. The difference is that N-PLS-DA has two weights correspond to plants and activities, respectively. Exploration on weights of the pharmacological activity of the resulting N-PLS-DA model reveals that the effect of some activities are specific for certain efficacy and the other activities are diverse toward many efficacies. As a result, in formulating Jamu the plants are selected so that, besides curing the targeted diseases or health problems as indicated by the specific activities, the plants also should overcome the other discomforts caused by the targeted diseases or health problems as indicated by the general activities.

Chapter

Conclusions

By utilizing biplot configuration, I explored the relationship between Indonesian herbal plants and efficacy of jamu. Due to outliers, the biplot configuration is created based on robust PCA method. In the biplot configurations, many plants are clustered in the center, which are basically plants whose frequencies of usage in Jamu are very low. In contrast to the clustered plants, some plants are spread out and located near the efficacy of which the plants are highly utilized.

PLS-DA is used to model Jamu ingredients, which are a mixture of plants, to predict efficacies. Data regarding the usage of plant ingredients provide the predictors, whereas Jamu efficacies are the responses. I utilized \hat{y}_{il} obtained from the PLS-DA to predict Jamu efficacy using two methods: maximum \hat{y}_{il} and maximum probability. The prediction of Jamu efficacy using maximum \hat{y}_{il} produced smaller errors than prediction using the maximum probability method. Hence, I used the maximum \hat{y}_{il} method to predict Jamu efficacy, and this method resulted in 71.6% correct classification. Further exploration on the predictions reveals that intercepts for GST, FML, and MSC are larger than intercepts for the other six efficacies due to large number of Jamu for those three efficacies. It makes some of the prediction of the efficacy are classified to efficacy GST, FML, and MSC regardless the original efficacy of the predicted Jamu.

Permutation tests can be used to identify the plants serve as main ingredients for a given efficacy; these are usually the plants utilized most intensively in Jamu medicines for that efficacy relative to the usage for other efficacies. I also found that many of the main ingredients identified by the permutation test in the present study are supported by scientific papers. Furthermore, compared with PLS-DA model using original data, PLS-DA model for reduced variables exhibits similar performance, and PLS-DA model for reduced formulas exhibits better performance in predicting Jamu efficacy. It is because, the dropped variables in PLS-DA model for reduced variables, i.e. the non-significant plants, contribute little on the PLS-DA Model so that removing them did not affecting the performance of the PLS-DA model. In addition, the simplification in PLS-DA model for reduced formulas make the plant usage in Jamu become more compact, i.e. concentrated only in certain efficacy where these plants serve as main ingredients. It reduces the noise caused by the use of plants serve as supporting ingredients with no significant role in efficacy and subsequently increase the correct prediction of Jamu efficacy produced by the PLS-DA model. Thus, it indicates that, statistically, Jamu formulas can be simplified by utilizing only the main plants, without losing efficacy.

Moreover, in the original data set, the pattern of plant in-degree distributions exhibits a scale-free property. Regarding that the plants serve as main ingredients are the plants utilized most intensively in Jamu medicines then it indicates that the Jamu formulation is started by choosing plants serve as main ingredients and then, if necessary, additional plants as supporting ingredients are added to the formula. However, the plant in-degree distributions of the reduced version, due to the simplification process of dropping the supporting ingredients, are showing a destroyed scale free pattern, a similar pattern which also found in Kampo medicines that can be viewed as a reduced version of the Chinese medicines.

The relationship between ingredients of Jamu formula, which consist of plants, along with plant's pharmacological activity and Jamu efficacy can be modeled via N-PLS-DA model, i.e. the multiway version of PLS-DA model, in order to understand the mechanism of Jamu medicines to achieve desired efficacy. Exploration on weights of the pharmacological activity of the resulting N-PLS-DA model reveals that the beneficial of some activities are specific for certain efficacy and the other activities are diverse toward many efficacies. As a result, in formulating Jamu the plants are selected so that, besides curing the targeted diseases or health problems as indicated by the specific activities, the plants also should overcome the other discomforts caused by the targeted diseases or health problems as indicated by the general activities.

Bibliography

- Adnyana, I. K., & Soemardji, A. A. (2007). Evaluation of Pharmacological Efficacy of Jamu Medicine. Toyama: Institute of Natural Medicine, University of Toyama.
- Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., Ikeda, S., Takahashi, H., Altaf-Ul-AMin, M., Darusman, L. K., Saito, K., & Kanaya, S. (2012). Knapsack family databases: Integrated metabolite-plant species databases for multifaceted plant researches. *Plant and Cell Physiol*, .
- Barabási, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509–512.
- Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. J. Chemometrics, 17, 166–173.
- Beers, S. J. (2001). Jamu: The Ancient Indonesian Art of Healing. Vermont: Periplus Editions (HK) Ltd.
- Bro, R. (1996). Multi-way calibration. multi-linear pls. Journal of Chemometrics, 10, 47–61.

- Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J. K., Holmes, E., & Trygg, J. (2006). Opls discriminant analysis: combining the strengths of pls-da and simca classification. J. Chemometrics, 20, 341–351.
- Croux, C., & Ruiz-Gazen, A. (2005). High breakdown estimators for principal components: the projection-pursuit approach. *Journal of Multivariate Analysis*, 95, 206–226.
- Duke, J. A., Bogenschutz-Godwin, M. J., duCellier, J., & Duke, P. K. (2002). Handbook of medicinal herbs, 2nd ed.. CRC Press.
- Gabriel, K. R. (1971). The biplot graphic display of matrices with application to principal component analysis. *Biometrika*, 58, 453–467.
- Good, P. I. (2005). Permutation, Parametric and Bootstrap Tests of Hypotheses, 3rd edition. New York: Springer.
- Guillaume, J. L., & Latapy, M. (2006). Bipartite graphs as models of complex networks. *Physica A.*, 371, 795–813.
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. W. (2010). Multivariate Data Analysis, 7th Ed.. Prentice Hall.
- Hardin, J., & Rocke, D. M. (2005). The distribution of robust distance. J. Comput. Graph. Stat., 14, 928–946.
- Hoffmann, D. (2003). Medical herbalism: the science and practice of herbal medicine. Rochester Vermont: Healing Arts Press.
- Hubert, M., & Debruyne, M. (2010). Minimum covariance determinant. Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 36–43.
- Hubert, M., & Engelen, S. (2004). Robust pca and classification in biosciences. *Bioinformatics*, 20, 1728–1736.

- Hubert, M., Rousseeuw, P. J., & Branden, K. V. (2005). Robpca: a new approach to robust principal component analysis. *Technometrics*, 47, 64–79.
- Li, G., & Chen, Z. (1985). Projection-pursuit approach to robust dispersion matrices and principal components: primary theory and monte carlo. J. Amer. Statist. Assoc., 80, 759–766.
- Ohkubo, J., Tanaka, K., & Horiguchi, T. (2005). Generation of complex bipartite graphs by using a preferential rewiring process. *Physical Review*, 72, 036120, 1–10.
- Peres-Neto, P. R., Jackson, D. A., & Somers, K. M. (2003). Giving meaningful interpretation to ordination axes: Assessing loading significance in principal component analysis. *Ecology*, 84, 2347–2363.
- Pramono, S. (2007). Jamu in Indonesian Daily Life and Industry. Toyama: Institute of Natural Medicine, University of Toyama.
- Richman, M. B. (1988). A cautionary note concerning a commonly applied eigenanalysis procedure. *Tellus*, 40B, 50–58.
- Rousseeuw, P. J., & Driessen, K. V. (1999). A fast algorithm for the minimum covariance determinant estimator. *Technometrics*, 41, 212–223.
- Rousseeuw, P. J., & Van Zomeren, B. C. (1990). Unmasking multivariate outliers and leverage points. Journal of the American Statistical Association, 85(411), 633–651.
- Sangat, H. M., Zuhud, E. A. M., & Damayanti, E. K. (2000). Kamus Penyakit dan Tumbuhan Obat Indonesia [Etnofitomedika]. Jakarta: Yayasan Obor Indonesia.

- Smilde, A. K. (1997). Comments on multilinear pls. Journal of Chemometrics, 11, 367–377.
- Smilde, A. K., Bro, R., & Geladi, P. (2004). Multi-way analysis with application in the chemical sciences. West Sussex, England: John Wiley & Sons.
- Wold, S., Sjöström, M., & Eriksson, L. (2001). Pls-regression: a basic tool of chemometrics. *Chemometrics and Intelligent Laboratory Systems*, 58, 109–130.

Achievements

Reviewed publications

- Farit Mochamad Afendi, Taketo Okada, Mami Yamazaki, Aki Hirai-Morita, Yukiko Nakamura, Kensuke Nakamura, Shun Ikeda, Hiroki Takahashi, Md. Altaf-Ul-Amin, Latifah K. Darusman, Kazuki Saito and Shigehiko Kanaya, 2012, Knapsack family databases: Integrated metabolite-plant species databases for multifaceted plant researches. Plant and Cell Physiol, Vol. 53(2), e1 doi:10.1093/pcp/pcr165 (in Chapter 5).
- Farit Mochamad Afendi, Tetsuo Katsuragi, Akira Kato, Noritaka Nishihara, Kensuke Nakamura, Yukiko Nakamura, Ken Tanaka, Aki Hirai Morita, Altaf-Ul-Amin, Hiroki Takahashi and Shigehiko Kanaya, 2012, Systems Biology Approaches and Metabolomics for Understanding Japanese Traditional Kampo Medicine, Current Pharmacogenomics and Personalized Medicine, Vol. 10, 110-124 (in Chapter 4).
- Farit Mochamad Afendi, Latifah K Darusman, Aki Hirai Morita, Md Altaf-Ul-Amin, Hiroki Takahashi, Kensuke Nakamura, Ken Tanaka, and Shigehiko Kanaya, 2012, Efficacy Prediction of Jamu Formulations

by PLS Modeling, Current Computer-Aided Drug Design (in Chapter 3).

- Farit Mochamad Afendi, Latifah K Darusman, Masato Fukuyama, Md Altaf-Ul-Amin, and Shigehiko Kanaya, 2012, A Bootstrapping Approach for Investigating the Consistency of Assignment of Plants to Jamu Efficacy by PLS-DA Model, Malaysian Journal of Mathematical Sciences, Vol. 6(2), 147-164 (in Chapter 4).
- Taketo Okada, <u>Farit Mochamad Afendi</u>, Md Altaf-Ul-Amin, Hiroki Takahashi, Kensuke Nakamura, and Shigehiko Kanaya, 2010, Metabolomics of Medicinal Plants: The Importance of Multivariate Analysis of Analytical Chemistry Data, Current Computer-Aided Drug Design, Vol. 6, 179-196 (in Chapter 2).

International conferences

- Farit Mochamad Afendi, Latifah K Darusman, Aki Hirai, Md Altaf-Ul-Amin, Hiroki Takahashi, Kensuke Nakamura, and Shigehiko Kanaya, 2010, System Biology Approach for Elucidating the Relationship between Indonesian Herbal Plants and the Efficacy of Jamu, IEEE International Conference on Data Mining Workshops, ICDM 2010 (December 14-17 2010, University of Technology Sydney, Sydney, Australia) (in Chapter 2)
- Farit Mochamad Afendi, Sulistiyani, Aki Hirai, Md Altaf-Ul-Amin, Hiroki Takahashi, Kensuke Nakamura, and Shigehiko Kanaya, 2011, Bootstrapping Jamu Dataset to Examine Assignment Consistency of Plants to Jamu Efficacy, The 2nd International Symposium on Temulawak (May 25-27 2011, Bogor Agricultural University, Bogor, Indonesia) (in Chapter 2)

 Farit Mochamad Afendi, Md Altaf-Ul-Amin, and Shigehiko Kanaya, 2011, Permutation Test in Evaluating the Significance of Plants in PLS-DA Model of Jamu Ingredients, The 7th Asian Crop Science Association Conference, ACSAC 2011 (September 27-30 2011, Bogor Agricultural University, Bogor, Indonesia) (in Chapter 4)

Appendices

List of plants serve as main ingredients

This appendix provides the list of plants serve as main ingredients based on permutation test of PLS-DA coefficients along with the paper that support the usage of the plants on a given efficacy.

No	Scientific Name	Paper's title	Author's name	Journal's name
Effica	cy: Urinary-related pro	oblems		
1	Alisma orientalis	Guaiane-type sesquiter-	Peng GP, Tian G,	Phytochemistry. 2003
		penoids from Alisma ori-	Huang XF, Lou FC.	Aug;63(8):877-81.
		entalis.		
2	Borreria hispida	Efek Infus Borreria	Yun Astuti, B.	Kongres Biologi Na-
		hispida Schum terhadap	Wahjoedi, Lucie Wid-	sional III, Oktober
		Batu Kandung Kemih	owati	1987, Purwokerto,
		Buatan pada Tikus		Indonesia
		Putih (Rat)		
				Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
3	Cucurbita pepo	Inhibition of	Gossell-Williams M,	J Med Food. 2006
		testosterone-induced	Davis A, O'Connor N.	Summer;9(2):284-6.
		hyperplasia of the		
		prostate of sprague-		
		dawley rats by pumpkin		
		seed oil.		
4	Imperata cylin-	Chemical interaction	Xuan TD, Toyama T,	J Agric Food
	drica	in the invasiveness of	Fukuta M, Khanh TD,	Chem. 2009 Oct
		cogongrass (Imperata	Tawata S.	28;57(20):9448-53.
		cylindrica (L.) Beauv.).		
5	Merremia mam-	-	-	-
	mosa			
6	Orthosiphon	Evaluation of the geno-	Muhammad H, Gomes-	J Ethnopharmacol
	stamineus	toxicity of Orthosiphon	Carneiro MR, Poa KS,	2011 Jan 27;133(2):647-
		stamineus aqueous ex-	De-Oliveira AC, Afzan	53. Epub 2010 Oct
		tract.	A, Sulaiman SA, Ismail	29.
			Z, Paumgartten FJ.	
7	Paeonia suffruti-	Platelet anti-	Koo YK, Kim JM, Koo	Pharmazie. 2010
	cosa	aggregatory and blood	JY, Kang SS, Bae K,	Aug;65(8):624-8.
		anti-coagulant effects	Kim YS, Chung JH,	
		of compounds isolated	Yun-Choi HS.	
		from Paeonia lactiflora		
		and Paeonia suffruti-		
		cosa.		
8	Phellodendron chi-	-	-	-
0	nense	A 1 1		
9	Phyllanthus uri-	Antioxidative and car-	Chularojmontri L,	Biol Pharm Bull. 2005
	naria	dioprotective effects of	Wattanapitayakul SK,	Jul;28(7):1165-71.
		Phyllanthus urinaria L.	Herunsalee A, Charu-	
		on doxorubicin-induced	chongkolwongse S,	
		cardiotoxicity.	Niumsakul S, Srichairat	
10	Diantago maior	Uonotonnotesting	S. Trol I. Orbol: H. Erton	Indian I Dhammand
10	Plantago major	Hepatoprotective and	Trel I, Ozbek H, Erten	Indian J Pharmacol
		anti-inflammatory ac-	R, Oner AC, Cengiz N,	2009 Jun;41(3):120-4.
		tivities of Plantago	Yilmaz O.	
		major L.		
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
11	Prunus cerasus	Diuretic effect of pow-	Hooman N, Mojab F,	Pak J Pharm Sci. 200
		dered Cerasus avium	Nickavar B, Pouryousefi-	Oct;22(4):381-3.
		(cherry) tails on healthy	Kermani P.	
		volunteers.		
12	Pygeum africanum	The natural com-	Roell D, Baniahmad A.	Mol Cell Endocrino
		pounds atraric acid		2011 Jan 30;332(1
		and N-butylbenzene-		2):1-8. Epub 2010 Oc
		sulfonamide as antag-		19.
		onists of the human		
		androgen receptor and		
		inhibitors of prostate		
		cancer cell growth		
13	Serenoa repens	Long-Term Efficacy of	Sinescu I, Geavlete P,	Urol Int. 2011 Feb 8
		Serenoa repens Treat-	Multescu R, Gangu C,	[Epub ahead of print]
		ment in Patients with	Miclea F, Coman I,	
		Mild and Moderate	Ioiart I, Ambert V, Con-	
		Symptomatic Benign	stantin T, Petrut B, Fe-	
		Prostatic Hyperplasia.	ciche B.	
14	Smilax zeylanica	-	-	-
15	Solanum lycoper-	Toxicological evaluation	Soares-Mota MR,	Exp Toxicol Patho
	sicum	of 10% Solanum ly-	Schwarz A, Bernardi	2010 Sep; $62(5)$:549-53
		cocarpum St. Hill	MM, Maiorka PC,	Epub 2009 Aug 11.
		fruit consumption in the	Spinosa Hde S.	
		diet of growing rats:		
		hematological, biochem-		
		ical and histopathologi-		
1.0	a 1 .	cal effects.		
16	Sonchus arvensis	Prevention of CCl4-	Khan RA, Khan MR,	Food Chem Toxico
		induced nephrotoxicity	Sahreen S, Bokhari J.	2010 Aug-Sep;48(8
		with Sonchus asper in		9):2469-76. Epub 201
17	Soya max	rat.	_	Jun 13.
	Soya max			Continued on next pag

continued	from	previous	page
-----------	------	----------	------

No	Scientific Name	Paper's title	Author's name	Journal's name
18	Strobilanthes cris- pus	Anticancer activity of a sub-fraction of dichloromethane extract of Strobilanthes crispus	Yaacob NS, Hamzah N, Nik Mohamed Kamal NN, Zainal Abidin SA, Lai CS, Navaratnam V,	BMC Complement Al- tern Med. 2010 Aug 5;10:42.
		on human breast and prostate cancer cells in vitro.	Norazmi MN.	
19	Wolfiporia extensa	-	-	-
20	Zea mays	An orientational exam- ination of the effects of extracts from mixtures	Masteikov R, Klimas R, Samura BB, Savickas A, Samura BA, Belaij SI,	Ceska Slov Farm. 2007 Apr;56(2):85-9.
		of herbal drugs on se- lected renal functions].	Samura IB, Rabiskov M, Chalupov Z, Berna- toniene J.	
Effica 1	cy: Disorders of appetit Caesalpinia sappan	te Toxicity evaluation of	Sireeratawong S, Piyab-	J Med Assoc Thai. 2010
1	Cacsarpinia Sappan	sappan wood extract in rats.	han P, Singhalak T, Wongkrajang Y, Tem- siririrkkul R, Punsrirat J, Ruangwises N, Saraya S, Lerdvuthisopon N,	Dec;93 Suppl 7:S50-7.
2	Cassia angustifolia	Portal vein thrombosis related to Cassia angus- tifolia.	Jaijoy K. Soyuncu S, Cete Y, Nokay AE.	Clin Toxicol (Phila). 2008 Sep;46(8):774-7.
3	Cassia fistula	Antiulcer activity of ethanol leaf extract of Cassia fistula.	Karthikeyan S, Gob- ianand K.	Pharm Biol. 2010 Aug;48(8):869-77.
4	Crataegus pinnati-	Synergetic effect and	Ye XL, Huang WW,	J Agric Food Chem
	fida	structure-activity rela-	Chen Z, Li XG, Li P,	2010 Mar 10;58(5):3132-
		tionship of 3-hydroxy-	Lan P, Wang L, Gao Y,	8.
		3-methylglutaryl coen-	Zhao ZQ, Chen X.	
		zyme A reductase		
		inhibitors from Cratae-		
		man in the La Day		
		gus pinnatifida Bge.		

Scientific Name	Paper's title	Author's name	Journal's name
Curcuma aerugi- nosa	Efektivitas Ekstrak Temu Hitam (Curcuma Aeruginosa,) Dan Temu Lawak (Curcuma Xanthorhiza) Sebagai Kontrol Helminthia- sis Terhadap Packed Cell Volume (Pcv) Pada Anak Kambing	Rositawati Indrati	Jurnal Universitas Brawijaya
Curcuma heyneana	Peranakan Etawah Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibi- tion of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF- kappaB pathway in LPS-stimulated murine macrophages.	Cho W, Nam JW, Kang HJ, Windono T, Seo EK, Lee KT.	Int Immunopharmacol. 2009 Aug;9(9):1049-57. Epub 2009 Apr 24.
Galla lusitania	-	-	-
Garcinia cambogia	Attenuation of colitis injury in rats using Garcinia cambogia extract.	CC, Acedo SC, Miranda DD, Ribeiro ML, Pe- drazzoli J Jr, Gambero	Phytother Res. 2009 Mar;23(3):324-9.
Guazuma ulmifolia	The anti-diabetic prop- erties of Guazuma ul- mifolia Lam are me- diated by the stimula- tion of glucose uptake in normal and diabetic adipocytes without in-	Alonso-Castro AJ, Salazar-Olivo LA.	J Ethnopharmacol. 2008 Jul 23;118(2):252- 6. Epub 2008 Apr 12.
	Curcuma aerugi- nosa Curcuma heyneana Galla lusitania Garcinia cambogia	Curcuma aerugi- nosaEfektivitasEkstrak Temu Hitam (Curcuma Aeruginosa,)nosaTemu Hitam (Curcuma Xanthorhiza)Sebagai KontrolKontrolHelminthia- sisTerhadap Packed CellCurcuma heyneanaZedoarondiolisolated from the rhizoma of Curcuma heyneanaCurcuma heyneanaZedoarondiolisolated from the rhizoma of Curcuma heyneanaCurcuma heyneanaZedoarondiolisolated from the rhizoma of Curcuma heyneana is involved in the inhibi- tion of iNOS, COX-2 and pro-inflammatory cytokinesNew YorkinesGalla lusitania Garcinia cambogia-Attenuation of colitis injury in rats using GarciniaGuazuma ulmifoliaThe anti-diabetic prop- erties of Guazuma ul- mifoliaThe anti-diabetic prop- erties of Guazuma ul- mifolia	Curcuma aerugi Efektivitas Ekstrak Rositawati Indrati nosa Temu Hitam (Curcuma Aeruginosa,) Dan Temu Lawak (Curcuma Xanthorhiza) Sebagai Kontrol Helminthia- sis Terhadap sis Terhadap Packed Cell Volume (Pev) Pada Anak Kambing Peranakan Etawah Curcuma heyneana Zedoarondiol isolated Cho W, Nam JW, Kang from the rhizoma of HJ, Windono T, Seo Curcuma heyneana is EK, Lee KT. involved in the inhibition of iNOS, COX-2 and pro-inflammatory cytokines via cytokines via the downregulation of NF- kappaB pathway in LPS-stimulated murine macrophages. - - - Galla husitania - dos Reis SB, de Oliveira injury in rats using CC, Acedo SC, Miranda Garcinia cambogia Attenuation of colitis dos Reis SB, de Oliveira - Guazuma ulmifolia The anti-diabetic prop- Alonso-Castro AJ, Guazuma ulmifolia The anti-diabetic prop- Alonso-Castro

continued from previous page

durata Roxb. inhibits Por- phyromonas gingi- valis supernatant- induced matrix metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. 24. Epub 2009 Ma 11 Laminaria japonica Luteolin isolated from the flowers of Lonicera japonica suppresses inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. Kang OH, Choi JG, Lee Molecules. 2010 Jan JH, Kwon DY. 12 Litsea chinensis Euthobtanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh The in vitro anti- gatial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants pachit S, Siripanth C, 2004 Nov 18. Parasitol Res. 2000 Jan;95(1):17-21. Epul giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants pachit S, Siripanth C, 2004 Nov 18. 14 Parameria laevi- gata Pengaruh ekstrak kulit kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan Lydia Irawati Soesilo Undergraduate theses o Unika Widya Mandab Surabaya, Indonesia	No	Scientific Name	Paper's title	Author's name	Journal's name
24. Epub 2009 Ma valis supernatant- induced 9. induced matrix metalloproteinase-9 9. expression via signal transduction in human oral epidermoid cells. Kang OH, Choi JG, Lee Molecules. 2010 Jai 11 Laminaria japonica Luteolin isolated from the flowers of Lonicera japonica Kang OH, Choi JG, Lee Molecules. 2010 Jai 12 Litsea chinensis Ethnobotanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh The in vitro anti- gardial activity of hata re used for self- Janjaroen K, Sawang- medication by AIDS jaroen K. Parasitol Res. 200 13 Murraya panicu- gardial activity of hata are used for self- Janjaroen K, Sawang- medication by AIDS jaroen K. Parasitol Res. 2004 Nov 18. 14 Parameria laevi- gata Pengaruh ekstrak kulit Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan Lydia Irawati Soesilo Undergraduate theses o Unila Widya Madala	10	Kaempferia pan-	Kaempferia pandurata	Yanti, Anggakusuma,	J Ethnopharmacol
 valis supernatant- induced matrix metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. Laminaria japonica Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jan the flowers of Lonicera JH, Kwon DY. 18;15(1):385-98. japonica suppresses inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. Litsea chinensis Ethnobotanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh The in vitro anti- squardial activity of hadhirasakul S, Phong- gardial activity of hadhirasakul S, Phong- jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, patients in southern Thailand. Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus puth jantan 		durata	Roxb. inhibits Por-	Gwon SH, Hwang JK.	2009 Jun 22;123(2):315
 induced matrix metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. Laminaria japonica Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jai the flowers of Lonicera JH, Kwon DY. 18;15(1):385-98. japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Litsea chinensis Ethnobotanical Investi- Dinesh Kumar Tiwari Anthropologist, 5(3) gation of Some Medic-inal Plants Availed by Gond Tribe of Nao-radehi Wild Life Sanctuary, Madhya Pradesh Murraya panicu- The in vitro anti- Sawangjaroen N, Sub- Parasitol Res. 200 lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paicht S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang-medication by AIDS jaroen K. patients in southern Thailand. Parameria laevi Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses of gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 			phyromonas gingi-		24. Epub 2009 Ma
metalloproteinase-9 expression via signal transduction in human oral epidermoid cells. Kang OH, Choi JG, Lee Molecules. 2010 Jan 11 Laminaria japonica Luteolin isolated from the flowers of Lonicera JH, Kwon DY. 18;15(1):385-98. 12 Litsea chinensis Ethnobotanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh Dinesh Kumar Tiwari Anthropologist, 5(3) Anthropologist, 5(3) 13 Murraya panicu- lata The in vitro anti- giardial activity of badhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants patients in southern Thailand. Parameria laevi- pengaruh ekstrak kulit Lyda irawati Soesilo Undergraduate theses of Unidergraduate theses of Unidergraduate theses of Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan			valis supernatant-		9.
expression via signal transduction in human oral epidermoid cells. Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jan the flowers of Lonicera JH, Kwon DY. 18;15(1):385-98. japonica suppresses inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. Ethnobotanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of hadhirasakul S, Phong- japoich S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan			induced matrix		
expression via signal transduction in human oral epidermoid cells. Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jan the flowers of Lonicera JH, Kwon DY. 18;15(1):385-98. japonica suppresses inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. Ethnobotanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of hadhirasakul S, Phong- japoich S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan			metalloproteinase-9		
 transduction in human oral epidermoid cells. Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jau the flowers of Lonicera JH, Kwon DY. 18;15(1):385-98. japonica suppresses inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. Litsea chinensis Ethnobotanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh Murraya panicu- Iata giardial activity of kata are used for self- that are used for self- aminers in southern Thailand. Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 			-		
 and epidermoid cells. Laminaria japonica Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jau the flowers of Lonicera JH, Kwon DY. 18;15(1):385-98. japonica suppresses inflammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. Litsea chinensis Ethnobotanical Investi- Dinesh Kumar Tiwari Anthropologist, 5(3) gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao-radehi Wild Life Sanctuary, Madhya Pradesh Murraya panicu- The in vitro anti- Sawangjaroen N, Sub- Parasitol Res. 2000 lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang-medication by AIDS jaroen K. patients in southern Thailand. Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses of gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 			1 0		
11 Laminaria japonica Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jau 11 Laminaria japonica Luteolin isolated from Kang OH, Choi JG, Lee Molecules. 2010 Jau 12 Litsea chinensis infammatory mediator release by blocking NF-kappaB and MAPKs activation pathways in HMC-1 cells. 12 Litsea chinensis Ethnobotanical Investigation of Some Medican and Ashok Yadav 201-202 (2003) 13 Murraya panicular ary, Madhya Pradesh The in vitro antigation of Sawangjaroen N, Sub-raasitol Res. 2000 Parasitol Res. 2000 13 Murraya paniculata giardial activity of hadhirasakul S, Phong-radehi Wild Life Sanctuary, Madhya Pradesh Jamjaroen K, Sawang-medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o Unika Widya Mandali Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan					
japonica suppresses inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. 22 Litsea chinensis Ethnobotanical Investi- Dinesh Kumar Tiwari Anthropologist, 5(3) gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan	11	Laminaria japonica	-	Kang OH, Choi JG, Lee	Molecules. 2010 Jan
japonica suppresses inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. 22 Litsea chinensis Ethnobotanical Investi- Dinesh Kumar Tiwari Anthropologist, 5(3) gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of hadhirasakul S, Phong- lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan			the flowers of Lonicera	JH, Kwon DY.	18;15(1):385-98.
 inflammatory mediator release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. 12 Litsea chinensis Ethnobotanical Investi- Dinesh Kumar Tiwari Anthropologist, 5(3) gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- The in vitro anti- Sawangjaroen N, Sub- Parasitol Res. 2000 lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- Pengaruh ekstrak kulit Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 			japonica suppresses		
release by blocking NF- kappaB and MAPKs activation pathways in HMC-1 cells. 22 Litsea chinensis Ethnobotanical Investi- gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of hadhirasakul S, Phong- gation by AIDS jaroen K, Sawang- medication by AIDS jaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan					
 kappaB and MAPKs activation pathways in HMC-1 cells. Litsea chinensis Ethnobotanical Investi- Dinesh Kumar Tiwari Anthropologist, 5(3) gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao-radehi Wild Life Sanctuary, Madhya Pradesh Murraya panicu- The in vitro anti- Sawangjaroen N, Sub- Parasitol Res. 2000 lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang-medication by AIDS jaroen K. patients in southern Thailand. Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses of gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 			•		
 activation pathways in HMC-1 cells. 12 Litsea chinensis Ethnobotanical Investi- gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of extracts from plants paichit S, Siripanth C, 2004 Nov 18. 14 Parameria laevi- gata Pengaruh ekstrak kulit Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 					
 HMC-1 cells. Litsea chinensis Ethnobotanical Investi- gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh Murraya panicu- lata Ite in vitro anti- giardial activity of hadhirasakul S, Phong- activity of hadhirasakul S, Phong- gatients from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- patients in southern Thailand. Parameria laevi- gata Pengaruh ekstrak kulit Laevigata) terhadap terhadap <l< td=""><td></td><td></td><td></td><td></td><td></td></l<>					
 Litsea chinensis Ethnobotanical Investi- Dinesh Kumar Tiwari Anthropologist, 5(3) gation of Some Medic- and Ashok Yadav 201-202 (2003) inal Plants Availed by Gond Tribe of Nao-radehi Wild Life Sanctuary, Madhya Pradesh Murraya panicu- The in vitro anti- Sawangjaroen N, Sub- Parasitol Res. 2004 lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang-medication by AIDS jaroen K. patients in southern Thailand. Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 					
gation of Some Medic- inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of hadhirasakul S, Phong- lata giardial activity of hadhirasakul S, Phong- sectracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- that are used for self- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan	12	Litsea chinensis		Dinesh Kumar Tiwari	Anthropologist, 5(3)
 inal Plants Availed by Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh Murraya panicu- lata Iata giardial activity of hadhirasakul S, Phong- extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- medication by AIDS jaroen K. patients in southern Thailand. Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 			gation of Some Medic-	and Ashok Yadav	
Gond Tribe of Nao- radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata giardial activity of hadhirasakul S, Phong- gata Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan			-		
radehi Wild Life Sanctu- ary, Madhya Pradesh 13 Murraya panicu- lata The in vitro anti- Sawangjaroen N, Sub- Parasitol Res. 2000 giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan			•		
 ary, Madhya Pradesh Murraya panicu- Iata giardial activity of hadhirasakul S, Phong- giargial activity of hadhirasakul S, Siripanth C, guota Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses of gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 					
 Murraya panicu- The in vitro anti- Sawangjaroen N, Sub- Parasitol Res. 2003 lata giardial activity of hadhirasakul S, Phong- Jan;95(1):17-21. Epul extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Laevigata) terhadap nafsu makan dan bobot badan tikus putih jantan 					
extracts from plants paichit S, Siripanth C, 2004 Nov 18. that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Unika Widya Mandala Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan	13	Murraya panicu-		Sawangjaroen N, Sub-	Parasitol Res. 2008
that are used for self- Jamjaroen K, Sawang- medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Unika Widya Mandala Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan		lata	giardial activity of	hadhirasakul S, Phong-	Jan;95(1):17-21. Epul
medication by AIDS jaroen K. patients in southern Thailand. 14 Parameria laevi- gata kayu rapat (Parameria Unika Widya Mandala Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan			extracts from plants	paichit S, Siripanth C,	2004 Nov 18.
patients in southern Thailand. 14 Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Unika Widya Mandala Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan			that are used for self-	Jamjaroen K, Sawang-	
Thailand. 14 Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Unika Widya Mandala Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan			medication by AIDS	jaroen K.	
Thailand. 14 Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Unika Widya Mandala Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan			patients in southern	-	
14 Parameria laevi- Pengaruh ekstrak kulit Lydia Irawati Soesilo Undergraduate theses o gata kayu rapat (Parameria Unika Widya Mandala Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan			-		
Laevigata) terhadap Surabaya, Indonesia nafsu makan dan bobot badan tikus putih jantan	14	Parameria laevi-		Lydia Irawati Soesilo	Undergraduate theses o
nafsu makan dan bobot badan tikus putih jantan		gata	kayu rapat (Parameria		Unika Widya Mandala
nafsu makan dan bobot badan tikus putih jantan			Laevigata) terhadap		Surabaya, Indonesia
jantan					
jantan			badan tikus putih		
I continued an work was					Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
15	Phyllanthus acidus	Effects of Phyllanthus	Jain NK, Lodhi S, Jain	Zhong Xi Yi Jie He Xu
		acidus (L.) Skeels fruit	A, Nahata A, Singhai	Bao. 2011 Jan;9(1):49
		on carbon tetrachloride-	AK.	56.
		induced acute oxidative		
		damage in livers of rats		
		and mice.		
16	Polygonum multi-	Antimutagenic property	Zhang H, Jeong BS, Ma	J Environ Patho
	florum	of an herbal medicine,	TH.	Toxicol Oncol
		Polygonum multifto-		1999;18(2):127-30.
		rum Thunb. detected		
		by the Tradescantia		
		micronucleus assay.		
17	Punica granatum	Antidiabetic effect of	Bagri P, Ali M, Aeri V,	Food Chem Toxicol
		Punica granatum flow-	Bhowmik M, Sultana S.	2009 Jan;47(1):50-4
		ers: effect on hyperlipi-		Epub 2008 Oct 4.
		demia, pancreatic cells		
		lipid peroxidation and		
		antioxidant enzymes in		
		experimental diabetes.		
18	Rheum tanguticum	The beneficial effect	Liu L, Guo Z, Lv Z, Sun	Int Immunopharmacol
		of Rheum tanguticum	Y, Cao W, Zhang R, Liu	2008 Nov;8(11):1481-92
		polysaccharide on pro-	Z, Li C, Cao S, Mei Q.	Epub 2008 May 28.
		tecting against diarrhea,		
		colonic inflammation		
		and ulceration in rats		
		with TNBS-induced		
		colitis: the role of		
		macrophage mannose		
		receptor in inflam-		
		mation and immune		
1.0		response.	.	
19	Terminalia catappa	Antidiabetic activity	Nagappa AN, Thakur-	J Ethnopharmacol
		of Terminalia catappa	desai PA, Venkat Rao N,	2003 Sep; 88(1): 45-50.
		Linn fruits.	Singh J.	

continued	from	previous	page
-----------	------	----------	------

No	Scientific Name	Paper's title	Author's name	Journal's name
20	Theae sinensis	Natural products: A	Vasudeva N, Yadav N,	Chin J Integr Med. 2012
		safest approach for obe-	Sharma SK	Jun;18(6):473-80. Epub
		sity		2012 Jul 22
21	Zingiber pur-	Inhibition of human	Ficker CE, Smith ML,	J Ethnopharmacol
	pureum	pathogenic fungi by	Susiarti S, Leaman DJ,	2003 Apr;85(2-3):289
		members of Zingib-	Irawati C, Arnason JT.	93.
		eraceae used by the		
		Kenyah (Indonesian		
		Borneo).		
Effica	acy: Disorders of mood	,		
1	Baeckea frutescens	-	-	-
2	Brassica nigrae	Preliminary studies	Anand P, Murali KY,	Indian J Exp Biol. 200
		on antihyperglycemic	Tandon V, Chandra R,	Aug;45(8):696-701.
		effect of aqueous extract	Murthy PS.	
		of Brassica nigra (L.)		
		Koch in streptozotocin		
		induced diabetic rats.		
3	Carica papaya	Anticonvulsant activ-	Wahab A, Ul Haq R,	Phytother Res. 200
		ities of nutmeg oil of	Ahmed A, Khan RA,	Feb;23(2):153-8.
		Myristica fragrans.	Raza M.	
4	Eleutherococcus	Effects of various	Kimura Y, Sumiyoshi	J Ethnopharmacol
	senticosus	Eleutherococcus sen-	М.	2004 Dec;95(2-3):447
		ticosus cortex on		53.
		swimming time, natural		
		killer activity and corti-		
		costerone level in forced		
		swimming stressed mice.		
5	Euphorbia hirta	-	-	-
6	Ipomoea reptana	-	-	-
7	Leucas lavandulifo-	-	-	-
	lia			
8	Moschosma	-	-	-
	polystachium			
				Continued on next page

continued from previous page

Myristica fragrans			
	AMP-activated protein kinase (AMPK) acti- vators from Myristica fragrans (nutmeg) and	Nguyen PH, Le TV, Kang HW, Chae J, Kim SK, Kwon KI, Seo DB, Lee SJ, Oh WK.	Bioorg Med Chem Lett 2010 Jul 15;20(14):4128 31. Epub 2010 Jun 10.
Polygala glomerata	their anti-obesity effect. Benzophenone C- glucosides from Polygala	Li CJ, Zhang DM, Yu SS.	J Asian Nat Prod Res 2008 Mar-Apr;10(3
Valeriana javanica	glomerata Lour.	_	4):329-36.
Zingiber pur- pureum	Phenylbutenoid dimers isolated from Zingiber purpureum exert neu- rotrophic effects on cul- tured neurons and en- hance hippocampal neu- rogenesis in olfactory bulbectomized mice	Matsui N, Kido Y, Okada H, Kubo M, Nakai M, Fukuishi N, Fukuyama Y, Akagi M.	Neurosci Lett. 2012 Ma 28;513(1):72-7. Epul 2012 Feb 11
·			
Allium sativum	garlic (Allium sativum) extract or a-tocopherol + magnesium associa- tion to reduce metabolic	0	Phytother Res 2010 Nov 17. doi 10.1002/ptr.3344. [Epub ahead of print]
Andrographis pan- iculata	Undetectable anti- bacterial activity of Andrographis panicu- lata (Burma) wall. ex	Leelarasamee A, Trakul- somboon S, Sittisom- wong N.	J Med Assoc Thai. 1990 Jun;73(6):299-304.
Apium graveolens	ness. Gastric antiulcer, anti- secretory and cytopro- tective properties of cel- ery (Apium graveolens) in rats.	Al-Howiriny T, Alsheikh A, Alqasoumi S, Al- Yahya M, ElTahir K, Rafatullah S.	Pharm Biol. 2010 Jul;48(7):786-93.
	Valeriana javanica Zingiber pur- pureum cy: Gastrointestinal dis Allium sativum Andrographis pan- iculata	Polygala glomeratafragrans (nutmeg) and their anti-obesity effect. Benzophenone C- glucosides from Polygala glomerata Lour.Valeriana javanica-Zingiber pur- pureumPhenylbutenoid dimers isolated from Zingiber purpureum exert neu- rotrophic effects on cul- tured neurons and en- hance hippocampal neu- rogenesis in olfactory bulbectomized miceY. Gastrointestinal disordersOmpared ability of garlic (Allium sativum) extract or a-tocopherol 4 magnesium associa- tion to reduce metabolic disorders and oxidative stress in diabetic rats.Andrographis pan- iculataUndetectable anti- bacterial activity of Andrographis panicu- lata (Burma) wall. ex ness.Apium graveolensGastric antiulcer, anti- secretory and cytopro- tective properties of cel-	Fragrans (nutmeg) and their anti-obesity effect.Lee SJ, Oh WK.Polygala glomerataBenzophenoneC-glucosides from Polygala glomerata Lour.S.Valeriana javanicaZingiberpur-Phenylbutenoid dimersyureumisolated from Zingiber purpureum exert neu- rotrophic effects on cul- tured neurons and en- hance hippocampal neu- rogenesis in olfactory bulbectomized miceOkada H, Kubo M, Nakai M, Fukuishi N, Fukuyama Y, Akagi M.201Gastrointestinal disorders0Allium sativumCompared ability of disorders and oxidative stress in diabetic rats.0Andrographis pan- iculataUndetectable anti- dardrographis pan- lata (Burma) wall. ex ness.Leelarasamee A, Trakul- somboon S, Sittisom- wong N.Apium graveolensGastric antiulcer, anti- scretory and cytopro- A, Alqasoumi S, Al- tective properties of cel-Yahya M, ElTahir K,

No	Scientific Name	Paper's title	Author's name	Journal's name
4	Citrus amblycarpa	Analisis GC-MS dan daya anti bakteri minyak atsiri Citrus amblycarpa (Hassk)	Sri Mulyani, Susilowati and Maslan Maniur Hutabarat	Majalah Farmasi In- donesia, 20(3), 127–132, 2009
		Ochse		
5	Clausena anisum-	-	-	-
6	olens Cocos nucifera	Evaluation of the use	Al-Adhroey AH, Nor	J Ethnopharmacol.
0		of Cocos nucifera as	ZM, Al-Mekhlafi HM,	2011 Jan 26. [Epub
		antimalarial remedy in	Amran AA, Mahmud R.	ahead of print]
		Malaysian folk medicine.	Annan AA, Mannuu It.	anead of printj
7	Curcuma aerugi-	Antimicrobial activity	Kamazeri TS, Samah	Asian Pac J Trop Med.
	nosa	and essential oils of	OA, Taher M, Susanti	2012 Mar;5(3):202-9.
		Curcuma aeruginosa,	D, Qaralleh H.	
		Curcuma mangga, and		
		Zingiber cassumunar		
		from Malaysia		
8	Daucus carota	Antispasmodic activity	Gambhir SS, Sen SP,	Indian J Physiol Phar-
		of the tertiary base of	Sanyal AK, Das PK.	macol. 1979 Jul-
		Daucus carota, Linn. seeds.		Sep;23(3):225-8.
9	Euphorbia thymi-	Antioxidant and antivi-	Lin CC, Cheng HY,	J Biomed Sci. 2002 Nov-
	folia	ral activities of Euphor-	Yang CM, Lin TC.	Dec;9(6 Pt 2):656-64.
		bia thymifolia L.		
10	Foeniculum vulgare	Beneficial effects of	Birdane FM, Cemek M,	World J Gastroenterol.
		Foeniculum vulgare on	Birdane YO, Glin I,	2007 Jan 28;13(4):607-
		ethanol-induced acute	Bykokuroglu ME.	11.
		gastric mucosal injury		
		in rats.		
$11 \\ 12$	Grewia salutaris Magnolia officinalis	- Drotostino effect of	- Wu XN Vu CH Co: W	- J Ethnopharmacol.
14	magnona omemalis	Protective effect of a	Wu XN, Yu CH, Cai W,	1
		polyphenolic rich ex-	Hua J, Li SQ, Wang W.	
		tract from Magnolia		ahead of print]
		officinalis bark on in-		
		fluenza virus-induced		
		pneumonia in mice.		~
				Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
13	Melaleuca leuca-	Efek Analgetika Ekstrak	Pratita Febri Setyo	Undergraduate thesis
	dendra	Etanol Daun Kayu	Tuhu	Universitas Muham
		Putih (Melaleuca leuca-		madiyah Surakarta
		dendron L) pada Mencit		
14	Momordica charan-	Jantan Anti-hyperglycemic and	Tripathi UN, Chandra	Indian J Biochen
	tia	anti-oxidative effect of	D.	Biophys. 2010
		aqueous extract of Mo-		Aug;47(4):227-33.
		mordica charantia pulp		0, ()
		and Trigonella foenum		
		graecum seed in alloxan-		
		induced diabetic rats.		
15	Morinda citrifolia	Effects of Morinda	Mahattanadul S,	J Ethnopharmacol
		citrifolia aqueous	Ridtitid W, Nima	2010 Dec 14. [Epul
		fruit extract and its	S, Phdoongsombut	ahead of print]
		biomarker scopoletin on	N, Ratanasuwon P,	
		reflux esophagitis and	Kasiwong S.	
16	Nigella sativa	gastric ulcer in rats. Phytochemical and bi-	Michel CG, El-Sayed	Drug Test Anal
		ological investigation of	NS, Moustafa SF, Ez-	2011 Feb 9. doi
		the extracts of Nigella	zat SM, Nesseem DI, El-	10.1002/dta.225. [Epul
		sativa L. seed waste.	Alfy TS.	ahead of print]
17	Olea europaea	Olive (Olea europaea	Esmaeili-Mahani S,	J Ethnopharmacol
		L.) leaf extract elic-	Rezaeezadeh-Roukerd	2010 Oct 28;132(1):200
		its antinociceptive ac-	M, Esmaeilpour K, Ab-	5. Epub 2010 Aug
		tivity, potentiates mor-	basnejad M, Rasoulian	14.
		phine analgesia and sup-	B, Sheibani V, Kaeidi	
		presses morphine hyper-	A, Hajializadeh Z.	
18	Pandanus amarvlli-	algesia in rats. Aktivitas Senyawa	Dede Sukandar, Sandra	Jurnal Valensi Vol 1, No
10	folius	Antidiabetes Ektrak	Hermanto, Imamah Al	6 (2010)
	101105	Etil Asetat Daun Pan-	Mabrur	0 (2010)
		dan Wangi (Pandanus		
		Amaryllifolius Roxb.)		
				Continued on next page

continued	from	previous	page
-----------	------	----------	------

No	Scientific Name	Paper's title	Author's name	Journal's name
19	Pandanus conoideus	Uji hambatan tumori- genesis sari buah merah (Pandanus conoideus	Abdul Munim, Ret- nosari Andrajati, Heni Susilowati	Majalah Ilmu Kefar- masian, Vol. III, No. 3, Desember 2006, 153 -
		lam.) terhadap tikus putih betina yang diinduksi 7,12 dimetil-		161
20	Phaleria papuana	benz(a)antrasen (dmba) Pengaruh Pemberian Ekstrak Buah Phale- ria papuana terhadap Aktivitas Fagosito-	R.R. Dyah Ayu Nopi- tasari	Undergraduate thesis Universitas Diponegoro Indonesia
21	Psidium guajava	sis Makrofag Mencit Balb/c Ethyl acetate extract of Psidium guajava inhibits IgE-mediated	Han EH, Hwang YP, Kim HG, Park JH, Choi JH, Im JH, Khanal T,	javascript:AL_get(this, 'jour', 'Food Chem Toxicol.');
22	Schisandra chinen-	allergic responses by blocking FceRI signal- ing. [Phytotherapeutic as-	Park BH, Yang JH, ChoiJM, Chun SS, Seo JK,Chung YC, Jeong HG.Opletal L, Krenkov M,	Ceska Slov Farm. 2001
	sis	 pects of diseases of the circulatory system. 7. Schisandra chinen- sis (Turcz.) Baill.): its composition and 	Havlckov P.	Jul;50(4):173-80.
23	Silybum marianum	biological activity]. Silymarin treatment re- duces granuloma and hepatic fibrosis in exper-	Mata-Santos HA, Lino FG, Rocha CC, Paiva CN, Castelo Branco	Parasitol Res. 2010 Nov;107(6):1429-34. Epub 2010 Aug 7.
24	Spirulina	imental schistosomiasis. The effects of Spirulina on anemia and immune function in senior citi- zens.	MT, Pyrrho Ados S. Selmi C, Leung PS, Fischer L, German B, Yang CY, Kenny TP, Cysewski GR, Gershwin ME.	Cell Mol Immunol. 2011 Jan 31. [Epub ahead of print]
				Continued on next pag

continued from previous page

		continued from	previous page	
No	Scientific Name	Paper's title	Author's name	Journal's name
25	Symplocos odor- atissima	-	-	-
26	Syzygium cumini	Alpha-glucosidase	Shinde J, Taldone T,	Carbohydr Res. 2008
		inhibitory activity	Barletta M, Kunaparaju	May 19;343(7):1278-81.
		of Syzygium cumini	N, Hu B, Kumar S,	Epub 2008 Mar 18.
		(Linn.) Skeels seed	Placido J, Zito SW.	
		kernel in vitro and in		
		Goto-Kakizaki (GK)		
		rats.		
Effica	cy: Female reproductiv	e organ problems		
1	Achillea santolina	Chemical composition	Tuberoso CI, Kowalczyk	J Agric Food
		and antioxidant, antimi-	A, Coroneo V, Russo	Chem. 2005 Dec
		crobial, and antifungal	MT, Dess S, Cabras P.	28;53(26):10148-53.
		activities of the essential		
		oil of Achillea ligustica		
		all.		
2	Allium fistulosum	Anti-ischemia steroidal	Lai W, Wu Z, Lin H, Li	J Nat Prod. 2010 Jun
		saponins from the seeds	T, Sun L, Chai Y, Chen	25;73(6):1053-7.
		of Allium fistulosum.	W.	
3	Areca catechu	Antiovulatory and abor-	Shrestha J, Shanbhag T,	Indian J Pharmacol.
		tifacient effects of Areca	Shenoy S, Amuthan A,	2010 Oct; 42(5): 306-11.
		catechu (betel nut) in fe-	Prabhu K, Sharma S,	
		male rats.	Banerjee S, Kafle S.	
1	Artemisia cina	Studies on monieziasis	Bashtar AR, Hassanein	Parasitol Res. 2011
		of sheep I. Prevalence	M, Abdel-Ghaffar F, Al-	Jan;108(1):177-86.
		and antihelminthic ef-	Rasheid K, Hassan S,	Epub 2010 Sep 24.
		fects of some plant ex-	Mehlhorn H, Al-Mahdi	
		tracts, a light and elec-	M, Morsy K, Al-Ghamdi	
_		tron microscopic study.	A.	
5	Baeckea frutescens	Phloroglucinols from	Fujimoto Y, Usui S,	Phytochemistry. 1996
3	Conongium adar	Baeckea frutescens.	Makino M, Sumatra M.	Feb;41(3):923-5.
5	Canangium odora-	-	-	-
	tum			
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
7	Cimicifuga race-	Gene expression pro-	Gaube F, Wolfl S, Pusch	BMC Pharmacol. 2007
	mosa	filing reveals effects of	L, Kroll TC, Hamburger	Sep 20;7:11.
		Cimicifuga racemosa	М.	
		(L.) NUTT. (black		
		cohosh) on the estrogen		
		receptor positive human		
		breast cancer cell line		
		MCF-7.		
8	Coriandrum	Post-coital antifertility	Al-Said MS, Al-Khamis	J Ethnopharmacol.
	sativum	activity of the seeds of	KI, Islam MW, Parmar	1987 Nov;21(2):165-73.
		Coriandrum sativum in	NS, Tariq M, Ageel AM.	
		rats.		
9	Curcuma longa	Curcumin and genistein,	Verma SP, Salamone E,	Biochem Biophys Res
		plant natural products,	Goldin B.	Commun. 1997 Apr
		show synergistic in-		28;233(3):692-6.
		hibitory effects on the		
		growth of human breast		
		cancer MCF-7 cells		
		induced by estrogenic		
		pesticides.		
10	Curcuma zedoaria	[Effect of Curcuma ze-	Xu XB, Qin XM, Xu JD,	Zhongguo Zhong
		doaria (Berg.) Bosc on	Pang JJ.	Yao Za Zhi. 2001
		the myoelectric activity		May;26(5):334-7.
		of uterus in rats and		
		study of its mechanisms]		
11	Elaeocarpus gran-	-	-	-
	diflora			
12	Elephantopus	-	-	-
	scaber			
				Continued on next page

continued from previous page				
No	Scientific Name	Paper's title	Author's name	Journal's name
13	Ficus deltoidea	Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic ac- tivity by preventing tyrosinase activity in vitro and by suppress- ing tyrosinase gene expression in B16F1	Oh MJ, Abdul Hamid M, Ngadiran S, Seo YK, Sarmidi MR, Park CS.	Arch Dermatol Res. 2010 Oct 28. [Epub ahead of print]
		melanoma cells.		
14	Galla lusitania	-	-	-
15	Garcinia atroviridis	Atrovirisidone B, a new prenylated depsidone with cytotoxic prop- erty from the roots of	Permanaa D, Abas F, Maulidiani, Shaari K, Stanslas J, Ali AM, La- jis NH.	Z Naturforsch C. 2005 Jul-Aug;60(7-8):523-6.
		Garcinia atroviridis.		
16	Hemigraphis col-	-	-	-
17	orata Kaempferia angus- tifolia	Deteksi Kandungan Kimia dan Efek Ok- sitosik Fraksi Tidak Larut Etanol Infusa Daun Kaempferia angustifolia Roscue ter- hadap Uterus Marmut	Pramono S and Sumas- tuti R	Majalah Farmasi In- donesia, 14(3), 114 - 118, 2003
		Terpisah		
18	Kaempferia pan- durata	Cytotoxic mechanism of flavonoid from Temu Kunci (Kaempferia pan- durata) in cell culture of human mammary carcinoma.	Sukardiman, Darwanto A, Tanjung M, Darmadi MO.	Clin Hemorheol Micro- circ. 2000;23(2-4):185- 90.
				Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
19	Lantana camara	Antibacterial Activity of Lantana camara	Barreto F, Sousa E, Campos A, Costa J, Ro-	J Young Pharm. 2010 Jan;2(1):42-4.
		Linn and Lantana	drigues F.	
		montevidensis Brig Ex-		
		tracts from Cariri-Cear,		
20	. ,	Brazil.		
20	Lepiniopsis ter- natensis	-	-	-
21	Ligusticum acu-	-	-	-
	tilobum			
22	Nigella sativa	Effect of Nigella sativa	Farah IO, Begum RA.	Biomed Sci Instrum
		(N. sativa L.) and ox-		2003; 39: 359- 64.
		idative stress on the sur-		
		vival pattern of MCF-7		
		breast cancer cells.		
23	Nyctanthes arbor-	Tranquilizing, antihis-	Saxena RS, Gupta B,	J Ethnopharmacol
	tritis	taminic and purgative	Lata S.	2002 Aug;81(3):321-5.
		activity of Nyctanthes		
		arbor tristis leaf extract.		
24	Ocimum sanctum	Antifertility screening of	Vohora SB, Garg SK,	Indian J Med Res. 1969
		plants. 3. Effect of	Chaudhury RR.	May;57(5):893-9.
		six indigenous plants on		
		early pregnancy in al-		
		bino rats.		
25	Parameria laevi-	Uji khasiat analgetika	Sundari, Dian; Nuratmi,	Media Penelitian dar
	gata	infus Kayu Rapet	Budi and Gusmali, Desy	Pengembangan Kese
		(Parameria Laevigata	М.	hatan vol. 15 no. 04
		(Juss.) Moldenke) pada		(2005)
		mencit putih		
26	Phaseolus radiatus	-	-	-
27	Piper betle	Antifertility effect of	Adhikary P, Banerji J,	Indian J Exp Biol. 1989
		Piper betle Linn. ex-	Chowdhury D, Das AK,	Oct;27(10):868-70.
		tract on ovary and testis	Deb CC, Mukherjee SR,	
		of albino rats.	Chatterjee A.	
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
28	Pluchea indica	Isolation of pure com-	Biswas R, Dutta PK,	Phytomedicine. 2007
		pound $R/J/3$ from	Achari B, Bandyopad-	Aug;14(7-8):534-7.
		Pluchea indica (L.)	hyay D, Mishra M, Pra-	Epub 2006 Dec 15.
		Less. and its anti-	manik KC, Chatterjee	
		amoebic activities	TK.	
		against Entamoeba		
		histolytica.		
29	Prunus persica	Evaluation of oriental	Kang SC, Lee CM, Choi	Phytother Res. 2000
		medicinal herbs for es-	H, Lee JH, Oh JS, Kwak	Nov;20(11):1017-9.
		trogenic and antiprolif-	JH, Zee OP.	
		erative activities.		
30	Psophocarpus	Antimicrobial activi-	Sasidharan S, Zuraini Z,	Foodborne Pathog Dis
	tetragonolobus	ties of Psophocarpus	Yoga Latha L, Sangetha	2008 Jun;5(3):303-9.
		tetragonolobus (L.) DC	S, Suryani S.	
		extracts.		_
31	Punica granatum	Chemopreventive	Kim ND, Mehta R, Yu	Breast Cance
		and adjuvant ther-	W, Neeman I, Livney	Res Treat. 2002
		apeutic potential of	T, Amichay A, Poirier	Feb;71(3):203-17.
		pomegranate (Punica	D, Nicholls P, Kirby A,	
		granatum) for human	Jiang W, Mansel R, Ra-	
		breast cancer.	machandran C, Rabi T,	
			Kaplan B, Lansky E.	
$32 \\ 33$	Quercus lusitanica Sauropus androgy-	- Effect of Sauropus an-	- Soka S, Alam H, Boen-	- J Nutrigenet Nutrige
55	nus	drogynus leaf extracts	jamin N, Agustina TW,	nomics. 2010;3(1):31-6
	iius	on the expression of	Suhartono MT.	Epub 2010 Aug 26.
		1	Sunartono M1.	Epub 2010 Aug 20.
		prolactin and oxy-		
		tocin genes in lactating \mathbf{DALB}/\mathbf{C} miss		
34	Sesbania grandi-	BALB/C mice. Evaluation of anticancer	Sreelatha S, Padma PR,	J Ethnopharmacol
	flora	activity of ethanol ex-	Umasankari E.	2011 Jan 18. [Epul
		tract of Sesbania gran-		ahead of print]
		diflora (Agati Sesban)		· · · · · · · · · · · · · · · · · · ·
		against Ehrlich ascites		
		carcinoma in Swiss al-		
		caromonia in pwibb al-		

Continued on next page

_

No	Scientific Name	Paper's title	Author's name	Journal's name
35	Solanum verbaci- folium	Antibacterial activity of plants used in tra- ditional medicines of Ghana with particular	Pesewu GA, Cutler RR, Humber DP.	J Ethnopharmacol 2008 Feb 28;116(1):102 11. Epub 2007 Nov 17.
36	Sparganium stoloniferum	reference to MRSA. Inhibitory effects of Ori- ental herbal medicines on IL-8 induction in lipopolysaccharide- activated rat	Lee GI, Ha JY, Min KR, Nakagawa H, Tsurufuji S, Chang IM, Kim Y.	Planta Med. 1994 Feb;61(1):26-30.
37	Tamarindus indica	macrophages. Antimicrobial activ- ity of extracts from Tamarindus indica L. leaves.	Escalona-Arranz JC, Pres-Roses R, Urdaneta- Laffita I, Camacho-Pozo MI, Rodrguez-Amado J, Licea-Jimnez I.	Pharmacogn Mag. 2010 Jul;6(23):242-7.
38	Terminalia bellirica	Evaluation of antidepressant-like activity of aqueous and ethanolic extracts of Terminalia bellirica Roxb. fruits in mice.	Dhingra D, Valecha R.	Indian J Exp Biol. 200' Jul;45(7):610-6.
39	Tetranthera brawas	-	-	-
40	Trifolium pratense	Seasonal variation of red clover (Trifolium pratense L., Fabaceae) isoflavones and estro- genic activity.	Booth NL, Overk CR, Yao P, Totura S, Deng Y, Hedayat AS, Bolton JL, Pauli GF, Farnsworth NR.	J Agric Food Chem 2006 Feb 22;54(4):1277 82.
Effica	cy: Musculoskeletal and	d connective tissue disorders		
1	Alpinia galanga	Alpinia galanga ex- tracts downregulate interleukin-1-induced matrix metallopro- teinases expression in human synovial fibroblasts.	Pothacharoen P, Choocheep K, Phi- tak T, Pompimon W, Kongtawelert P.	In Vitro Cell Dev Bio Anim. 2010 Dec 4 [Epub ahead of print]
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
2	Angelica sinensis	Effect of Angelica sinen-	Yang Q, Populo SM,	Clin Chim Acta. 200
		sis on the proliferation of	Zhang J, Yang G, Ko-	Oct;324(1-2):89-97.
		human bone cells.	dama H.	
3	Atractylodis	[Effects of lactone	Liu Y, Ye F, Qiu GQ,	Di Yi Jun Yi D
	Macrocephala	I from Atractylodes	Zhang M, Wang R, He	Xue Xue Bao. 200
		macrocephala Koidz	QY, Cai Y.	Oct;25(10):1308-11.
		on cytokines and		
		proteolysis-inducing fac-		
		tors in cachectic cancer		
		patients].		
4	Cibotium barometz	Antioxidative, tyrosi-	Lai HY, Lim YY, Tan	Biosci Biotechno
		nase inhibiting and	SP.	Biochem. 200
		antibacterial activities		Jun;73(6):1362-6. Epu
		of leaf extracts from		2009 Jun 7.
		medicinal ferns.		
5	Cinnamomum sin-	-	-	-
	tok			
6	Cistanches salsa	(2E,6R)-8-hydroxy-2,6-	Yamaguchi K, Shi-	Biosci Biotechno
		dimethyl-2-octenoic	nohara C, Kojima S,	Biochem. 199
		acid, a novel anti-	Sodeoka M, Tsuji T.	Apr;63(4):731-5.
		osteoporotic monoter-		
		pene, isolated from		
_		Cistanche salsa.		
7	Clematis chinensis	Triterpenoid saponins	Liu LF, Ma XL, Wang	J Asian Nat Prod Res
		from the roots of Clema-	YX, Li FW, Li YM,	2009;11(5):389-96.
8	Cola acuminata	tis chinensis Osbeck. Content of polyphenolic	Wan ZQ, Tang QL. Atawodi SE, Pfundstein	J Agric Foo
0	Cola acuminata	compounds in the Nige-	B, Haubner R, Spiegel-	Chem. 2007 No
			halder B, Bartsch H,	
		rian stimulants Cola ni- tida ssp. alba, Cola	Owen RW.	28;55(24):9824-8. Epu 2007 Nov 3.
		- ,		2007 1107 5.
		nitida ssp. rubra A.		
		Chev, and Cola acumi-		
		nata Schott & Endl and		
		their antioxidant capac-		
		ity.		

continued	from	previous	page

No	Scientific Name	Paper's title	Author's name	Journal's name
9	Cola nitida	Effects of some tradi-	Benie T, Duval J, Thieu-	Phytother Res. 2003
		tional plant extracts on	lant ML.	Aug;17(7):748-55.
		rat oestrous cycle com-		
		pared with Clomid.		
10	Cordyceps sinensis	Water extract of Cordy-	Mizuha Y, Yamamoto	Biofactors.
		ceps sinensis (WECS)	H, Sato T, Tsuji M,	2007;30(2):105-16.
		inhibits the RANKL-	Masuda M, Uchida M,	
		induced osteoclast dif-	Sakai K, Taketani Y,	
		ferentiation.	Yasutomo K, Sasaki H,	
			Takeda E.	
11	Curcuma xanthor-	Antiinflammatory effect	Ozaki Y.	Chem Pharm Bull
	rhiza	of Curcuma xanthor-		(Tokyo). 1990
		rhiza Roxb, and its ac-		Apr;38(4):1045-8.
		tive principles.		
12	Cyperus rotundus	Antifatigue effect of	Jung KA, Han D, Kwon	J Med Food. 2007
		Rubus coreanus Miquel	EK, Lee CH, Kim YE.	Dec; 10(4): 689-93.
13	Dioscorea opposite	extract in mice. Evaluation of the	Xia L, Lenaghan SC,	Colloids Surf B Bioin-
10	Dioscorea opposite	nanofibrillar structure	Wills AB, Chen Y,	terfaces. 2011 Nov
		of Dioscorea oppositeex-	Zhang M.	1;88(1):425-31. Epub
		tract for cell attachment	Zhang M.	2011 Jul 18.
14	Epimedium brevi-	Epimedium brevicor-	Chiu JH, Chen KK,	Int J Impot Res. 2006
	cornum	num Maxim extract	Chien TM, Chiou WF,	Jul-Aug;18(4):335-42.
		relaxes rabbit corpus	Chen CC, Wang JY, Lui	Epub 2006 Jan 5.
		cavernosum through	WY, Wu CW.	I
		multitargets on nitric		
		oxide/cyclic guano-		
		sine monophosphate		
		signaling pathway.		
15	Equisetum debile	Chemical constituents of	Tan JM, Qiu YH, Tan	J Asian Nat Prod Res.
		Equisetum debile	XQ, Tan CH, Xiao K.	2011 Sep;13(9):811-6.
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
16	Euchresta hors-	Euchresta horsfieldii	Kim JH, Kim D, Kim J,	J Ethnopharmacol
	fieldii	Benn. activates per-	Hwang JK.	2011 Jan 7;133(1):244-7
		oxisome proliferator-		Epub 2010 Oct 20.
		activated receptor a		
		and regulates expression		
		of genes involved in		
		fatty acid metabolism		
		in human HepG2 cells.		
17	Eurycoma longifo-	The anti-osteoporotic	Shuid AN, Abu Bakar	Aging Male. 2010 Sep
	lia	effect of Eurycoma	MF, Abdul Shukor	28. [Epub ahead of
		Longifolia in aged	TA, Muhammad N,	[print]
		orchidectomised rat	Mohamed N, Soelaiman	
		model.	IN.	
18	Justicia gendarussa	Anti-arthritic potential	Paval J, Kaitheri SK,	Clinics (Sao Paulo)
		of the plant Justicia gen-	Potu BK, Govindan S,	2009;64(4):357-62.
		darussa Burm F.	Kumar RS, Narayanan	
19	Vacuurfania	Antino cicontino actin	SN, Moorkoth S.	I Ethnonhommood
19	Kaempferia galanga	Antinociceptive activ- ity of the methanolic	Ridtitid W, Sae-Wong C, Reanmongkol W,	J Ethnopharmacol 2008 Jul 23;118(2):225-
	galaliga	extract of Kaempfe-	Wongnawa M.	30. Epub 2008 Apr
		ria galanga Linn. in	wongnawa wi.	11.
		experimental animals.		11.
20	Languas galanga	1'-acetoxychavicol ac-	Ito K, Nakazato T, Xian	Cancer Res. 2005 May
		etate is a novel nuclear	MJ, Yamada T, Hozumi	15;65(10):4417-24.
		factor kappaB inhibitor	N, Murakami A, Ohi-	
		with significant activ-	gashi H, Ikeda Y, Kizaki	
		ity against multiple	М.	
		myeloma in vitro and in		
		vivo.		
21	Massoia aromatica	Tinjauan beberapa sifat	Iskandar, M.I.;Ismanto,	Warta tumbuhan obat
		dan manfaat tumbuhan	Agus	Indonesia, Vol 5 No.2: 7
		masoyi (Massoia aro-		8
		maticum BECC.)		

continued from previous page

	Scientific Name	Paper's title	Author's name	Journal's name
22	Myristica fragrans	Machilin A isolated from	Lee SU, Shim KS, Ryu	Planta Med. 2009
		Myristica fragrans stim-	SY, Min YK, Kim SH.	Feb;75(2):152-7. Epub
		ulates osteoblast differ-		2008 Dec 18.
		entiation.		
23	Orthosiphon	In vitro effects of ac-	Pan Y, Abd-Rashid BA,	Chem Biol Interact.
	stamineus	tive constituents and ex-	Ismail Z, Ismail R, Mak	2011 Mar 15;190(1):1-8
		tracts of Orthosiphon	JW, Pook PC, Er HM,	Epub 2011 Jan 27.
		stamineus on the ac-	Ong CE.	
		tivities of three major		
		human cDNA-expressed		
		cytochrome P450 en-		
		zymes.		
24	Oryza sativa	Molecular mechanisms	Shalini V, Bhaskar S,	Int Immunopharmacol
		of anti-inflammatory	Kumar KS, Mohanlal S,	2012 Sep;14(1):32-8.
		action of the flavonoid,	Jayalekshmy A, Helen	Epub 2012 Jun 15.
		tricin from Njavara rice	А.	
		(Oryza sativa L.) in		
		human peripheral blood		
		mononuclear cells:		
		Possible role in the		
- -	D	inflammatory signaling.		
25	Panax ginseng	Panax ginseng.	Kiefer D, Pantuso T.	Am Fam Physician.
				2003 Oct 15;68(8):1539-
26	Panax pseudogin-	Trilinolein preserves	Chan P, Niu CS, Cheng	42. Pharmacology. 1996
	seng	mitochondria ultra-	JT, Tsao CW, Tsai SK,	Apr;52(4):216-25.
	0	structure in isolated	Hong CY.	F -)(-)
		rat heart subjected		
		rat heart subjected to global ischemia		
		to global ischemia		
		to global ischemia through antioxidant		
		to global ischemia		

No	Scientific Name	Paper's title	Author's name	Journal's name
27	Pausinystalia	Endothelin-like action of	Ajayi AA, Newaz M,	Methods Find Exp
	yohimbe	Pausinystalia yohimbe	Hercule H, Saleh M,	Clin Pharmacol. 2003
		aqueous extract on	Bode CO, Oyekan AO.	Dec; 25(10): 817-22.
		vascular and renal re-		
		gional hemodynamics in		
		Sprague Dawley rats.		
28	Pimpinella pruat-	Status Penelitian Pur-	Ireng Darwati and Ika	Buletin Plasma Nutfah
	jan	woceng (Pimpinella	Roostika	Vol.12 No.1 Th.2006
		alpina Molk.) di In-		
		donesia		
29	Piper nigrum	Pharmacological basis	Mehmood MH, Gilani	J Med Food. 2010
		for the medicinal use of	AH.	Oct;13(5):1086-96.
		black pepper and piper-		
		ine in gastrointestinal		
		disorders.		
30	Piper retrofractum	Chemical constituents	Nakatani N, Inatani R,	Environ Health Per-
		of peppers (Piper spp.)	Ohta H, Nishioka A.	spect. 1986 Aug;67:135-
		and application to food		42.
		preservation: naturally		
		occurring antioxidative		
		compounds.		
31	Plantago major	Hepatoprotective and	Trel I, Ozbek H, Erten	Indian J Pharmacol.
		anti-inflammatory ac-	R, Oner AC, Cengiz N,	2009 Jun;41(3):120-4.
		tivities of Plantago	Yilmaz O.	
		major L.		
32	Sida rhombifolia	Anti-arthritic activity of	Gupta SR, Nirmal SA,	Nat Prod Res.
		various extracts of Sida	Patil RY, Asane GS.	2009; 23(8): 689-95.
33	Sonchus arvensis	rhombifolia aerial parts.	Xia Z, Qu W, Lu H, Fu	Fitoterania 2010
00	Souchus ai vensis	Sesquiterpene lactones		Fitoterapia. 2010
		from Sonchus arvensis	J, Ren Y, Liang J.	Jul;81(5):424-8. Epub
		L. and their antibac-		2009 Dec 16.
		terial activity against		
		Streptococcus mutans		
		ATCC 25175.		
				Continued on next page

continued from previous page

119

No	Scientific Name	Paper's title	Author's name	Journal's name
34	Spatholobus suberectus	Effect of different ingre- dients in traditional Ko-	Bajracharya P, Lee EJ, Lee DM, Shim SH, Kim	Arch Pharm Res. 2009 Nov;32(11):1555-63.
		rean medicine for hu-	KJ, Lee SH, Bae JJ,	
		man uterine leiomyoma	Chun SS, Lee TK, Kwon	
		on normal myometrial	SH, Choi I.	
		and leiomyomal smooth		
		muscle cell proliferation.		
35	Syzygium polyan-	Biological activity and	Kusuma IW, Kuspradini	J Acupunct Meridian
	thum	phytochemical analysis	H, Arung ET, Aryani F,	Stud. 2011 Mar;4(1):75-
		of three Indonesian	Min YH, Kim JS, Kim	9.
		medicinal plants,	YU.	
		Murraya koenigii, Syzy-		
		giumpolyanthum and		
De	Talinum panicula-	Zingiber purpurea. Khasiat dan Keamanan	Ven Asterti Neemaka	Lithang Daplace Indone
36	-		Yun Astuti Nugroho	Litbang Depkes Indone-
	tum	Som Jawa (Talinum paniculatum Gaertn)		sia
		paniculatum Gaertn) dan Kolesom (Talinum		
		triangulare wild)		
37	Tribulus terrestris	Effect of Tribulus ter-	Arcasoy HB, Eren-	Boll Chim Farm. 1998
		restris L. saponin mix-	memisoglu A, Tekol Y,	Dec;137(11):473-5.
		ture on some smooth	Kurucu S, Kartal M.	
		muscle preparations: a		
		preliminary study.		
38	Zingiber aro-	Antitumor activity of	Kirana C, McIntosh GH,	Nutr Cancer.
	maticum	extract of Zingiber	Record IR, Jones GP.	2003;45(2):218-25.
		aromaticum and its		
		bioactive sesquiter-		
		penoid zerumbone.		
39	Zingiber officinale	Effects of ginger (Zin-	Shen CL, Hong KJ, Kim	J Med Food. 2003
		giber officinale Rosc.)	SW.	Winter; $6(4)$: 323-8.
		on decreasing the pro-		
		duction of inflammatory		
		mediators in sow os-		
		teoarthrotic cartilage		
		explants.		
				Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
40	Zingiber zerumbet	Anti-inflammatory effect of zerumbone on acute and chronic inflammation models in mice.	Sulaiman MR, Perimal EK, Akhtar MN, Mo- hamad AS, Khalid MH, Tasrip NA, Mokhtar F, Zakaria ZA, Lajis NH,	Fitoterapia. 201 Oct;81(7):855-8. Epu 2010 May 28. Epu
			Israf DA.	
Effica	cy: Pain and inflamma Allium cepae	Antibacterial and an- tioxidant activities of quercetin oxidation products from yellow onion (Allium cepa)	Ramos FA, Takaishi Y, Shirotori M, Kawaguchi Y, Tsuchiya K, Shibata H, Higuti T, Tadokoro T, Takeuchi M.	J Agric Foo Chem. 2006 Ma 17;54(10):3551-7.
2	Alstonia scholaris	skin. Pharmacological evalua- tion of Alstonia schol- aris: anti-inflammatory	Shang JH, Cai XH, Feng T, Zhao YL, Wang JK, Zhang LY, Yan M, Luo	J Ethnopharmaco 2010 May 27;129(2):174 81. Epub 2010 Feb 26.
3	Angelica sinensis	and analgesic effects. Antiinflammatory effect of tetramethylpyrazine	XD. Ozaki Y.	Chem Pharm Bu (Tokyo). 199
4	Asarum sieboldii	and ferulic acid. Mechanism of anti- nociceptive effects of Asarum sieboldii Miq. radix: potential role of bradykinin, histamine and opioid receptor-	Kim SJ, Gao Zhang C, Taek Lim J.	Apr;40(4):954-6. J Ethnopharmacc 2003 Sep;88(1):5-9.
5	Blumea balsam- ifera	mediated pathways. Anti-obesity effect of Blumea balsamifera extract in 3T3-L1 preadipocytes and adipocytes.	Kubota H, Kojima- Yuasa A, Morii R, Huang X, Norikura T, Rho SN, Matsui-Yuasa I.	Am J Chin Mee 2009;37(5):843-54.
				Continued on next pag

	Scientific Name	Paper's title	Author's name	Journal's name
6	Carthamus tincto-	Protective effect of dried	Wang CC, Choy CS, Liu	J Sci Food Agric. 2011
	rius	safflower petal aqueous	YH, Cheah KP, Li JS,	Jan 30;91(2):218-25.
		extract and its main	Wang JT, Yu WY, Lin	
		constituent, carthamus	CW, Cheng HW, Hu	
		yellow, against	CM.	
		lipopolysaccharide-		
		induced inflamma-		
		tion in RAW264.7		
		macrophages.		
7	Cinchona suc-	Antimalarial activity	Andrade-Neto VF,	J Ethnopharmacol.
	cirubra	of Cinchona-like plants	Brando MG, Stehmann	2003 Aug;87(2-3):253-6.
		used to treat fever and	JR, Oliveira LA, Krettli	
		malaria in Brazil.	AU.	
8	Cinnamomum	[Study on antiinflamma-	Li H, Huang L, Zhou A,	Zhongguo Zhong
	camphora	tory effect of different	Li X, Sun J.	Yao Za Zhi. 2009
		chemotype of Cinnamo-		Dec; 34(24): 3251-4.
		mum camphora on rat		
		arthritis model induced		
		by Freund's adjuvant].		
9	Cinnamomum cas-	Antiproliferative Activ-	Ng LT, Wu SJ.	Evid Based Comple-
	sia	ity of Cinnamomum cas-		ment Alternat Med.
		sia Constituents and Ef-		2009 Dec 28. [Epub
		fects of Pifithrin-Alpha		ahead of print]
		on Their Apoptotic Sig-		
		naling Pathways in Hep		
10	C'	G2 Cells.		D M 1 L 1000 L 00
10	Cinnamomum	The Croonian Lectures	T. Lauder Brunton	Br Med J. 1889 June 22;
	cullilawan	on the Relationship be-		1(1486): 13891397.
		tween Chemical Struc-		
		ture and Physiological		
11	Cocos nucifera	Action Characterization of	Rinaldi S, Silva DO,	J Ethnopharmacol.
±±	Cocos nuclicia	the antinociceptive	Bello F, Alviano CS, Al-	2009 Apr 21;122(3):541-
		and anti-inflammatory	viano DS, Matheus ME,	 Epub 2009 Feb
		and anti-inflammatory activities from Cocos	Fernandes PD.	-
			remanues r'D.	7.
		nucifera L. (Palmae).		Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
12	Coleus scutellari-	Aktivitas antibakteri ek-	Bintang, Maria; Kusta-	Undergraduate thesis
	oides	strak daun Jawer Ko-	man, Eman	Bogor Agricultuta
		tok (Coleus scutellari-		University
		oides (L.)Benth.)		
13	Commiphora	Anti-inflammatory and	Su S, Wang T, Duan JA,	J Ethnopharmacol
	myrrha	analgesic activity of dif-	Zhou W, Hua YQ, Tang	2010 Dec 15. [Epul
		ferent extracts of Com-	YP, Yu L, Qian DW.	ahead of print]
		miphora myrrha.		
14	Curcuma zedoaria	Inhibition of in-	Oh OJ, Min HY, Lee	Arch Pharm Res. 200'
		ducible prostaglandin	SK.	Oct;30(10):1236-9.
		E2 production and		
		cyclooxygenase-2 ex-		
		pression by curdione		
		from Curcuma zedoaria.		
15	Cymbopogon nar-	Comparative chemical	Abena AA, Gbenou JD,	Afr J Tradit Comple
	dus	and analgesic proper-	Yayi E, Moudachirou	ment Altern Med. 200'
		ties of essential oils of	M, Ongoka RP, Ouamba	Feb 16;4(3):267-72.
		Cymbopogon nardus	JM, Silou T.	
		(L) Rendle of Benin and		
		Congo.		
16	Echinacea pur-	Bactericidal and anti-	Sharma SM, Anderson	Phytomedicine. 2010
	purea	inflammatory properties	M, Schoop SR, Hudson	Jul;17(8-9):563-8. Epul
		of a standardized	JB.	2009 Dec 29.
		Echinacea extract		
		(Echinaforce): dual ac-		
		tions against respiratory		
		bacteria.	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
17	Foeniculum vulgare	Antiinflammatory, anal-	Choi EM, Hwang JK.	Fitoterapia. 2004
		gesic and antioxidant ac-		Sep;75(6):557-65.
		tivities of the fruit of		
18	Gaultheria punc-	Foeniculum vulgare.	_	_
10	tata			
19	Graptophyllum	Antiinflammatory effect	Ozaki Y, Sekita S,	Chem Pharm Bul
	pictum	of Graptophyllum pic-	Soedigdo S, Harada M.	(Tokyo). 1989
	-	tum (L.) Griff.	U , 1000	Oct;37(10):2799-802.
		× /		Continued on next page

continued from previous page	
------------------------------	--

No	Scientific Name	Paper's title	Author's name	Journal's name
20	Gynura segetum	Anti-angiogenic activity	Seow LJ, Beh HK, Ma-	J Ethnopharmacol
		of Gynura segetum leaf	jid AM, Murugaiyah V,	2010 Dec 15. [Epub
		extracts and its frac-	Ismail N, Asmawi MZ.	ahead of print]
		tions.		
21	Hedyotis corym-	Hepatoprotective stud-	Sadasivan S, Latha PG,	J Ethnopharmacol
	bosa	ies on Hedyotis corym-	Sasikumar JM, Ra-	2006 Jun 30;106(2):245-
		bosa (L.) Lam.	jashekaran S, Shyamal	9. Epub 2006 Feb
			S, Shine VJ.	21.
22	Helicteres isora	Antioxidant and Antidi-	Suthar M, Rathore GS,	Indian J Pharm Sci.
		abetic Activity of He-	Pareek A.	2009 Nov;71(6):695-9.
		licteres isora (L.) Fruits.		
23	Mentha arvensis	Inhibition of immuno-	Shin TY.	Immunopharmacol
		logic and nonimmuno-		Immunotoxicol. 2003
		logic stimulation-		May;25(2):273-83.
		mediated anaphylactic		
		reactions by the aque-		
		ous extract of Mentha		
		arvensis.		
24	Mentha piperita	Antispasmodic effect	de Sousa AA, Soares	J Ethnopharmacol
		of Mentha piperita	PM, de Almeida AN,	2010 Jul 20;130(2):433-
		essential oil on tracheal	Maia AR, de Souza EP,	6. Epub 2010 May
		smooth muscle of rats.	Assreuy AM.	19.
25	Moschosma	Repellency of volatile	Rajkumar S, Jebanesan	Trop Biomed. 2005
	polystachium	oils from Moschosma	А.	Dec; 22(2): 139-42.
		polystachyum and		
		Solanum xanthocarpum		
		against filarial vector		
		Culex quinquefasciatus		
24	NT	say.		
26	Notopterygium in-	Analgesic component of	Okuyama E, Nishimura	Chem Pharm Bul
	cisum	Notopterygium incisum	S, Ohmori S, Ozaki Y,	(Tokyo). 1993
		Ting.	Satake M, Yamazaki M.	May;41(5):926-9.

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
27	Panax pseudogin- seng	Adaptogenic activity of Indian Panax pseudo- ginseng.	Dua PR, Shanker G, Srimal RC, Saxena KC, Saxena RP, Puri A, Dhawan BN, Shukla	Indian J Exp Biol. 1989 Jul;27(7):631-4.
28	Parkia roxburghii	Two novel lectins from Parkia biglandulosa	YN, Thakur RS,Husain A. Kaur N, Singh J, Kam- boj SS, Agrewala JN,	Protein Pept Lett. 2005 Aug;12(6):585-95.
		and Parkia roxburghii: isolation, physicochem- ical characterization, mitogenicity and anti- proliferative activity.	Kaur M.	
29	Pinus merkusii	-	-	-
30	Pistacia lentiscus	Antiinflammatory and	Mahmoudi M,	Eur Rev Med Phar-
		antioxidant activities of	Ebrahimzadeh MA,	macol Sci. 2010
		gum mastic.	Nabavi SF, Hafezi S,	Sep;14(9):765-9.
91	Dellis and Rolls	For location of within on	Nabavi SM, Eslami Sh.	Dhatathar Day 2000
31	Rubia cordifolia	Evaluation of nitric ox-	Basu S, Hazra B.	Phytother Res. 2006
		ide scavenging activity, in vitro and ex vivo,		Oct;20(10):896-900.
		of selected medicinal		
		plants traditionally		
		used in inflammatory diseases.		
32	Ruta angustifolia	[Alkaloids from Ruta an-	Vasudevan TN, Luckner	Pharmazie. 1968 Sep
		gustifolia Pers., Ruta	М.	9;23(9):520-1.
		chalepensis L., Ruta-		
		graveolens L. and Ruta		
		montana Mill].		
33	Sanguisorba offici-	Anti-asthmatic effect of	Lee NH, Lee MY, Lee	Int J Mol Med. 2010
	nalis	Sanguisorba officinalis	JA, Jung DY, Seo CS,	Aug;26(2):201-8.
		L. and potential role	Kim JH, Shin HK.	
		of heme oxygenase-1 in		
		an ovalbumin-induced		
		murine asthma model.		

_

No	Scientific Name	Paper's title	Author's name	Journal's name
34	Sophora japonica	Anti-inflammatory action of legume	Kim BH, Chung EY, Min BK, Lee SH, Kim	Planta Med. 2003 May;69(5):474-6.
		isoflavonoid sophorico-	MK, Min KR, Kim Y.	
		side through inhibition	, -,	
		on cyclooxygenase-2		
		activity.		
35	Syzygium aro-	Anti-nociceptive and	Tanko Y, Mohammed A,	Afr J Tradit Comple-
	maticum	anti-inflammatory	Okasha MA, Umar AH,	ment Altern Med. 2008
		activities of ethanol	Magaji RA.	Jan 22;5(2):209-12.
		extract of syzygium		
		aromaticum flower bud		
		in Wistar rats and mice.		
36	Typhonium flagelli-	[Pharmacological study	Zhong Z, Zhou G, Chen	Zhong Yao Cai. 2001
	forme	on the extracts from	X, Huang P.	Oct;24(10):735-8.
		Typhonium flagelliforme		
		Blume].		
37	Usnea misaminen-	Aktivitas Antibakteri	Sutiningsih, Dwi and .	Undergraduate Thesis
	sis	Fraksi Metanol Kayu	Sulistyani	University Diponegoro
		Angin (Usnea mis-		
		aminensis (Vain) Not)		
		terhadap Mycobac-		
		terium Tuberculosis		
		H37Rv		
38	Zingiber officinale	Repeated oral admin-	Ueda H, Ippoushi K,	Biosci Biotechnol
		istration of a squeezed	Takeuchi A.	Biochem. 2010 Nov
		ginger (Zingiber offici-		23;74(11):2248-52.
		nale) extract augmented		Epub 2010 Nov 7.
		the serum corticos-		
		terone level and had		
		anti-inflammatory		
		properties.		
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
39	Zingiber officinale	Comparative an-	Dugasani S, Pichika	J Ethnopharmacol.
		tioxidant and anti-	MR, Nadarajah VD,	2010 Feb 3;127(2):515-
		inflammatory effects	Balijepalli MK, Tandra	20. Epub 2009 Oct
		of [6]-gingerol, [8]-	S, Korlakunta JN.	13.
		gingerol, [10]-gingerol		
		and [6]-shogaol.		
Effica	cy: Respiratory disease	s		
1	Abrus precatorius	Potent antiplatelet,	Kuo SC, Chen SC, Chen	Planta Med. 1995
		anti-inflammatory and	LH, Wu JB, Wang JP,	Aug;61(4):307-12.
		antiallergic isoflavan-	Teng CM.	
		quinones from the roots		
		of Abrus precatorius.		
2	Amomum com-	Anti-asthmatic effects	Lee JA, Lee MY, Seo	Biosci Biotechnol
	pactum	of an Amomum com-	CS, Jung da Y, Lee NH,	Biochem. 2010 Sep
		pactum extract on	Kim JH, Ha H, Shin HK.	23;74(9):1814-8. Epub
		an ovalbumin (OVA)-		2010 Sep 7.
		induced murine asthma		
		model.		
3	Blumea balsam-	Anticancer activities	Norikura T, Kojima-	Am J Chin Med.
	ifera	and mechanisms of	Yuasa A, Shimizu	2008;36(2):411-24.
		Blumea balsamifera ex-	M, Huang X, Xu S,	
		tract in hepatocellular	Kametani S, Rho SN,	
		carcinoma cells.	Kennedy DO, Matsui-	
			Yuasa I.	
4	Borreria hispida	Potential role of Borre-	Vasanthi HR, Mukher-	J Cardiovasc Pharma-
		ria hispida in ameliorat-	jee S, Lekli I, Ray D,	col. 2009 Jun;53(6):499-
		ing cardiovascular risk	Veeraraghavan G, Das	506.
-	Caller and a	factors.	DK.	L N. A. D. J. 1000
5	Ceiba pentandra	Two new sesquiterpene	Rao KV, Sreeramulu K,	J Nat Prod. 1993
		lactones from Ceiba	Gunasekar D, Ramesh	Dec; 56(12): 2041-5.
		pentandra.	D.	
				Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
6	Citrus aurantium	Chinese Guidelines for Diagnosis and Treat- ment of Influenza	Nan-shan Zhong, Yi- min Li, Zi-feng Yang, Chen Wang, You-ning Liu, Xing-wang Li,	J Thorac Dis.2011 December;3(4): 274289.doi:10.3978/j.issn.207 1439.2011.10.01
			Yue-long Shu, Guang-fa Wang, Zhan-cheng Gao, Guo-hua Deng, Li-xian He, Xiu-ming Xi, Bin Cao, Kun-ling Shen, Hao Wu, Ping-an Zhou, Qing-quan Li, Influenza Diagnosis and Treat- ment Expert Panel of the Chinese Ministry of	
7	Clausena anisum-		Health	
1	olens	-	-	-
8	Clerodendron squa- matum	Isolasi 5,7,4' trihidroksi flavon (apigenin) dari tumbuhan obat sipanggie-panggie (Clerodendron squama-	Mon, Irma	Eksakta, 2002, Vol 2: 8- 13
9	Costus speciosus	tum Vahl). Antituberculosis poten- tial of some ethnobotan- ically selected Malaysian	Mohamad S, Zin NM, Wahab HA, Ibrahim P, Sulaiman SF, Zaharilud- din AS, Noor SS.	J Ethnopharma- col. 2011 Feb 16;133(3):1021-6. Epub 2010 Nov 19.
10	Echinacea pur- purea	plants. Bactericidal and anti- inflammatory properties of a standardized Echinacea extract (Echinaforce): dual ac- tions against respiratory bacteria.	din AS, Noor SS. Sharma SM, Anderson M, Schoop SR, Hudson JB.	2010 Nov 19. Phytomedicine. 2010 Jul;17(8-9):563-8. Epub 2009 Dec 29.
				Continued on next page

continued from previous page

128

No	Scientific Name	Paper's title	Author's name	Journal's name
11	Elephantopus	Evaluation of antiasth-	Sagar R, Sahoo HB.	Indian J Pharmacol
	scaber	matic activity of ethano-		2012 May;44(3):398-401
		lic extract of Elephanto-		
		pus scaber L. leaves.		
12	Eriobotrya japon-	Anti-inflammatory and	Cha DS, Eun JS, Jeon	J Ethnopharmacol
	ica	antinociceptive proper-	Н.	2010 Dec 21. [Epub
		ties of the leaves of Eri-		ahead of print]
		obotrya japonica.		
13	Euphorbia hirta	Analgesic, antipyretic	Lanhers MC, Fleurentin	Planta Med. 1993
		and anti-inflammatory	J, Dorfman P, Mortier	Jun;57(3):225-31.
		properties of Euphorbia	F, Pelt JM.	
		hirta.	~ . ~	
14	Foeniculum vulgare	Activity against drug	Camacho-Corona Mdel	Phytother Res. 2008
		resistant-tuberculosis	R, Ramrez-Cabrera MA,	Jan;22(1):82-5.
		strains of plants used	Santiago OG, Garza-	
		in Mexican traditional	Gonzlez E, Palacios Ide	
		medicine to treat tu-	P, Luna-Herrera J.	
		berculosis and other		
		respiratory diseases.		
15	Forsythia suspensa	Antioxidant and an-	Qu H, Zhang Y, Wang	J Pharm Pharmacol
		tibacterial activity	Y, Li B, Sun W.	2008 Feb; 60(2): 261-6.
		of two compounds		
		(forsythiaside and forsy-		
		thin) isolated from		
10		Forsythia suspensa.	T · 3/F) T · 3/3/ T · T 3/	
16	Fritillaria cirrhosa	Identification of bulb	Li YF, Li YX, Lin J, Xu	Planta Med. 2003
		from Fritillaria cirrhosa	Y, Yan F, Tang L, Chen	Feb;69(2):186-8.
		by PCR with specific	F.	
17	Glochidion rubrum	primers. Penapisan Aktivitas	Rahmadewita	Undergraduate Thesis
11	Giocinaioli Tubrulli	Farmakologi dan Pe-	Rammauewita	2006, University of An
		nentuan LD50 Ekstrak		
				dalas
		Etanol Daun Gambiran		
		(Glochidion rubrum Bl.)		

continued from previous page	continued	from	previous	page
------------------------------	-----------	------	----------	------

No	Scientific Name	Paper's title	Author's name	Journal's name
18	Glycyrrhiza uralen- sis	Preparative purifica- tion of glycyrrhizin extracted from the root of liquorice using high- speed counter-current	Jiang Y, Lu HT, Chen F.	J Chromatogr A. 2004 Apr 9;1033(1):183-6.
19	Harpagophytum procumbens	chromatography. Analgesic, antiinflam- matory and antidiabetic properties of Harpago- phytum procumbens DC (Pedaliaceae) sec- ondary root aqueous	Mahomed IM, Ojewole JA.	Phytother Res. 2004 Dec;18(12):982-9.
20	Illicium verum	extract. Antimicrobial prop- erties of star anise (Illicium verum Hook	De M, De AK, Sen P, Banerjee AB.	Phytother Res. 2002 Feb;16(1):94-5.
21	Kaempferia galanga	f). Antinociceptive and anti-inflammatory ac- tivities of the aqueous extract of Kaempferia galanga leaves in animal	Sulaiman MR, Zakaria ZA, Daud IA, Ng FN, Ng YC, Hidayat MT.	J Nat Med. 2008 Apr;62(2):221-7. Epub 2007 Nov 29.
22	Mentha arvensis	models. Anti-Candida activity of Brazilian medicinal plants.	Duarte MC, Figueira GM, Sartoratto A, Re- hder VL, Delarmelina C.	J Ethnopharmacol. 2005 Feb 28;97(2):305- 11. Epub 2005 Jan
23	Merremia mam- mosa	Uji Daya Hambat My- cobacterium Tuberculo- sis Dari Umbi Bidara Upas (Merremia mam-	Mangestuti Agil, Noor Erma Sugianto, Rr. Retno Widyowati, Neny Purwitasari	5. DIPA-RM STRATNAS, 2010
24	Messua ferrea	mosa Hall) Antibacterial potential- ity of Mesua ferrea Linn. flowers.	Mazumder R, Dastidar SG, Basu SP, Mazumder A, Singh SK.	Phytother Res. 2004 Oct;18(10):824-6.
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
25	Nasturtium in- dicum	-	-	-
26	Piper betle	The effect of betel quid	Harrison O, Linjim W,	P N G Med J. 2006 Mar-
		chewing on the Achilles	Adeniyi KO.	Jun;49(1-2):47-51.
		tendon reflex time		
27	Piper cubeba	Tablet Hisap Ekstrak	Hilda Ismail, Fajri Nu-	Program Kreativitas
		Kemukus (Piper cubeba	groho, Khafidoh Kurni-	Mahasiswa Gagasan
		L.f) Sebagai Ekspek-	asih	Tertulis Didanai DIKTI
		toran pada Penyakit		2010
		Bronkitis		
28	Plantago major	Pengaruh Pemberian	Rinny Oktafiani Arief	Undergraduate Thesis,
		Ekstrak Daun Sendok		2010, Universitas Negeri
		(Plantago mayor L.)		Surakarta.
		terhadap Hitung Sel		
		Mast Intestinum pada		
		Mencit Balb/C Model		
		Asma Alergi		
29	Prunus armeniaca	Antinociceptive effect of	Hwang HJ, Kim P, Kim	Biol Pharm Bull. 2008
		amygdalin isolated from	CJ, Lee HJ, Shim I, Yin	Aug;31(8):1559-64.
		Prunus armeniaca on	CS, Yang Y, Hahm DH.	
		formalin-induced pain in		
		rats.		
30	Salix alba	[A short history of anti-	Pasero G, Marson P.	Reumatismo. 2010 Apr-
		rheumatic therapy. II.		Jun;62(2):148-56.
		Aspirin].		
31	Stachytarpheta ja-	Antinociceptive and	Sulaiman MR, Zakaria	Med Princ Pract.
	maicensis	anti-inflammatory ef-	ZA, Chiong HS, Lai SK,	2009;18(4):272-9. Epub
		fects of Stachytarpheta	Israf DA, Azam Shah	2009 Jun 2.
		jamaicensis (L.) Vahl	TM.	
		(Verbenaceae) in ex-		
		perimental animal		
		models.		
	Strobilanthes cris-	-	-	-
32				

continued	from	previous	page
-----------	------	----------	------

No	Scientific Name	Paper's title	Author's name	Journal's name
33	Syzygium aro- maticum	[Cytomegalovirus infec- tion and its possible	Shiraki K, Yukawa T, Kurokawa M, Kageyama	Nippon Rinsho. 1998 Jan;56(1):156-60.
34	Thymus vulgaris	treatment with herbal medicines]. Relaxant effect of	S. Boskabady MH, Aslani	Phytother Res. 2006
		Thymus vulgaris on guinea-pig tracheal chains and its possible	MR, Kiani S.	Jan;20(1):28-33.
35	Vitex trifolia	mechanism(s). Flavonoids from Vitex trifolia L. inhibit cell cy- cle progression at G2/M	Li WX, Cui CB, Cai B, Wang HY, Yao XS.	J Asian Nat Prod Res. 2005 Aug;7(4):615-26.
		phase and induce apop- tosis in mammalian can- cer cells.		
36	Zingiber officinale	Ginger attenuates acetylcholine-induced contraction and Ca2+ signalling in murine airway smooth muscle	Ghayur MN, Gilani AH, Janssen LJ.	Can J Physiol Pharmacol. 2008 May;86(5):264-71.
		cells.		
Effica	cy: Wounds and skin in	nfection		
1	Aleurites moluc- cana	Anti-microbial activity and anti-complement activity of extracts	Locher CP, Burch MT, Mower HF, Berestecky J, Davis H, Van Poel	J Ethnopharmacol. 1995 Nov 17;49(1):23- 32.
		obtained from selected Hawaiian medicinal	B, Lasure A, Vanden Berghe DA, Vlietinck	
2	Aloe vera	plants. Influence of Aloe vera on the glycosaminoglycans	AJ. Chithra P, Sajithlal GB, Chandrakasan G.	J Ethnopharmacol. 1998 Jan;59(3):179-86.
		in the matrix of healing dermal wounds in rats.		
3	Anacardium occi- dentale	Effects of Anacardium occidentale stem bark	Olajide OA, Aderogba MA, Adedapo AD,	J Ethnopharmacol. 2004 Dec;95(2-3):139-
		extract on in vivo in- flammatory models.	Makinde JM.	42.
		nominatory models.		Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
4	Andrographis pan-	Anti-malarial activity of	Dua VK, Ojha VP, Roy	J Ethnopharmacol.
	iculata	some xanthones isolated	R, Joshi BC, Valecha	2004 Dec;95(2-3):247-
		from the roots of Andro-	N, Devi CU, Bhatnagar	51.
		graphis paniculata.	MC, Sharma VP, Sub-	
			barao SK.	
5	Aquilaria sinensis	Laxative effects of agar-	Kakino M, Tazawa S,	BMC Complement Al-
		wood on low-fiber diet-	Maruyama H, Tsuruma	tern Med. 2010 Nov
		induced constipation in	K, Araki Y, Shimazawa	15;10:68.
		rats.	M, Hara H.	
6	Canangium odora-	Sensitization to fra-	Roesyanto-Mahadi ID,	Contact Dermatitis.
	tum	grance materials in	Geursen-Reitsma AM,	1990 Apr;22(4):212-7.
		Indonesian cosmetics.	van Joost T, van den	
_	a .		Akker TW.	
7	Carica papaya	Topical Antimicrobials	Tianhong Dai, Ying-	Recent Pat Antiinfect
		for Burn Wound Infec-	Ying Huang, Sulbha	Drug Discov. 2010 June
		tions	K. Sharma, Javad	1; 5(2): 124151.
			T. Hashmi, Divya B.	
			Kurup, Michael R.	
0	Cassia alata	In	Hamblin Bannuaamu K. Bataki	I Ethnonhormood
8	Cassia alata	In vitro antifungal	Ponnusamy K, Petchi-	J Ethnopharmacol
		activity of indirubin	ammal C, Mohankumar	2010 Oct 28;132(1):349-
		isolated from a South	R, Hopper W.	54. Epub 2010 Aug
		Indian ethnomedicinal		5.
		plant Wrightia tinctoria		
9	Cassia siamea	R. Br. Synthesis and structure-	Morita H, Tomizawa	Bioorg Med Chem. 2009
0	Cassia sianica	activity relationships of	Y, Deguchi J, Ishikawa	Dec 15;17(24):8234-40.
		cassiarin A as poten-	T, Arai H, Zaima K,	Epub 2009 Oct 13.
		tial antimalarials with	Hosoya T, Hirasawa	Epub 2003 Oct 15.
		vasorelaxant activity.	Y, Matsumoto T, Ka-	
		vasoreiazanti activity.	mata K, Ekasari W,	
			Widyawaruyanti A,	
			Wahyuni TS, Zaini NC, Honda T	
			Honda T.	

Lipopolysaccharide- KI, Park HS, Cho YB, me Induced Proinflam- Lee HJ, Lee WS, Ryu 20 matory Mediators by CH, Ha YL, Lee do H, Er Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-?B Signal Pathway. 11 Citrus hystrix Chemical composition Waikedre J, Dugay CH and antimicrobial activ- A, Barrachina I, Her- AJ ity of the essential oils renknecht C, Cabalion from New Caledonian P, Fournet A. Citrus macroptera and Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pl- Cucumis sativus on Okuyama T. De	ournal's name
Induced Proinflam- Lee HJ, Lee WS, Ryu 20 matory Mediators by CH, Ha YL, Lee do H, EF Citrus aurantium L. in Kim JA, Kim GS. Macrophage RAW 264.7 Cells via NF-?B Signal Pathway. 11 Citrus hystrix Chemical composition Waikedre J, Dugay CH and antimicrobial activ- ity of the essential oils renknecht C, Cabalion From New Caledonian P, Fournet A. Citrus macroptera and Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- fungal, antiaflatoxigenic and antioxidant activ- ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pl. Cucumis sativus on Okuyama T. De melanin production in	vid Based Comple
matory Mediators by CH, Ha YL, Lee do H, Er Citrus aurantium L. in Kim JA, Kim GS. Macrophage RAW 264.7 Cells via NF-?B Signal Pathway. Chemical composition Waikedre J, Dugay CH and antimicrobial activ- and antimicrobial activ- A, Barrachina I, Her- ity of the essential oils renknecht C, Cabalion from New Caledonian P, Fournet A. Citrus sinensis Chemical profile, anti- Singh P, Shukla R, Fo fungal, antiaflatoxigenic rand antioxidant activ- Singh S, Mishra PK, Er ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL- limonene. I 13 Cocos nucifera 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Ph Cucumis sativus on Okuyama T. nelanin production in Er	ent Alternat Med
Citrus aurantium L. in Macrophage RAW 264.7 Cells via NF-?B Signal Pathway. 11 Citrus hystrix Chemical composition Waikedre J, Dugay CH and antimicrobial activ- ity of the essential oils renknecht C, Cabalion from New Caledonian P, Fournet A. Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- ity of Chemical profile, anti- singh P, Shukla R, Fo fungal, antiaflatoxigenic and antioxidant activ- ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Er	011;2011. pii: 248592
Macrophage RAW 264.7 Cells via NF-?B Signal Pathway. 11 Citrus hystrix Chemical composition Waikedre J, Dugay CH and antimicrobial activ- ity of the essential oils renknecht C, Cabalion from New Caledonian P, Fournet A. Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Er	pub 2010 Sep 21.
Cells via NF-?B Signal Pathway. 11 Citrus hystrix Chemical composition Waikedre J, Dugay Ch and antimicrobial activ- ity of the essential oils renknecht C, Cabalion from New Caledonian P, Fournet A. Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- Singh P, Shukla R, Fo fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pli Cucumis sativus on Okuyama T. De melanin production in Eg	
11 Citrus hystrix Pathway. 11 Citrus hystrix Chemical composition Waikedre J, Dugay Chandmin and antimicrobial activ-A, Barrachina I, Her-Arrity of the essential oils renknecht C, Cabalion From New Caledonian P, Fournet A. 12 Citrus sinensis Chemical profile, anti-Singh P, Shukla R, Foorfungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ-Singh S, Mishra PK, Errity of Citrus maxima Dubey NK. 12 Citrus sinensis L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Ph. Cucumis sativus on Okuyama T.	
 Citrus hystrix Chemical composition Waikedre J, Dugay CH and antimicrobial activ- ity of the essential oils renknecht C, Cabalion from New Caledonian P, Fournet A. Citrus macroptera and Citrus hystrix. Citrus sinensis Chemical profile, anti- Singh P, Shukla R, Fo fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL- limonene. Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. Cucumis sativus on Okuyama T. Demelanin production in Epitodepite 	
and antimicrobial activ- ity of the essential oils from New Caledonian P, Fournet A. Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pl. Cucumis sativus on Okuyama T. De melanin production in Eg	
 ity of the essential oils renknecht C, Cabalion From New Caledonian P, Fournet A. Citrus macroptera and Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- Singh P, Shukla R, Fo fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- Singh S, Mishra PK, Ep ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Ep 	hem Biodivers. 201
 from New Caledonian P, Fournet A. Citrus macroptera and Citrus hystrix. 12 Citrus sinensis Chemical profile, anti- Singh P, Shukla R, Fo fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- Singh S, Mishra PK, Ep ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in 	pr;7(4):871-7.
Citrus macroptera and Citrus hystrix. 12 Citrus sinensis 12 Citrus sinensis 13 Cocos nucifera 14 Cucumis sativus Citrus macroptera and Citrus macroptera and Citrus hystrix. Chemical profile, anti- Singh P, Shukla R, Fo fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- Singh S, Mishra PK, Ep ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera 14 Cucumis sativus 14 Cucumis sativus 15 Citrus macroptera and Malaysian folk medicine. 14 Cucumis sativus 15 Citrus macroptera and Malaysian folk medicine. 16 Cucumis sativus on 17 Cucumis sativus on 18 Cucumis sativus on 19 Chemical profuction in 19 Citrus macroptera and Citrus 10 Citrus macroptera 10 Citrus macroptera 10 Citrus macroptera 11 Cucumis sativus on 12 Citrus macroptera 13 Citrus 14 Cucumis sativus 15 Citrus macroptera 16 Citrus 17 Citrus macroptera 18 Citrus 19 Citrus macroptera 19 Citrus macroptera 19 Citrus macroptera 19 Citrus macroptera 10 Citrus macroptera 10 Citrus macroptera 10 Citrus macroptera 11 Citrus 11 Citrus 12 Citrus 13 Cocos nucifera 13 Cocos nucifera 14 Citrus 14 Citrus 15 Citrus 16 Citrus 17 Citrus 17 Citrus 18 C	
Citrus hystrix. 12 Citrus sinensis 12 Citrus sinensis 13 Cocos nucifera 14 Cucumis sativus 14 Cucumis sativus Citrus hystrix. Chemical profile, anti- Chemical profile, anti- Chemical profile, anti- Singh P, Shukla R, Fo fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- Singh S, Mishra PK, Er ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Malaysian folk medicine. 14 Cucumis sativus 15 Citrus sativus 16 Citrus maxima Malaysian folk medicine. 17 Cucumis sativus on Cucumis sativus on Cucumis sativus on Cucumis sativus on Cucumis matimalarial remedy in Cucumis sativus on Cucumis sativus	
 12 Citrus sinensis Chemical profile, anti-Singh P, Shukla R, Fo fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ-Singh S, Mishra PK, Ep ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck essential oils and their cyclic monoterpene, DL-limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Ep 	
fungal, antiaflatoxigenic Prakash B, Kumar A, 20 and antioxidant activ- Singh S, Mishra PK, Er ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Er	
and antioxidant activ- Singh S, Mishra PK, Eg ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Eg	ood Chem Toxicol
ity of Citrus maxima Dubey NK. Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pla Cucumis sativus on Okuyama T. De melanin production in Ep	010 Jun;48(6):1734-40
Burm. and Citrus sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Er	pub 2010 Apr 9.
sinensis (L.) Osbeck es- sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pla Cucumis sativus on Okuyama T. De melanin production in Ep	
sential oils and their cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Ep	
cyclic monoterpene, DL- limonene. 13 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pla Cucumis sativus on Okuyama T. De melanin production in Ep	
 1.3 Cocos nucifera Iimonene. 2.3 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 2.4 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Ep 	
 L3 Cocos nucifera Evaluation of the use Al-Adhroey AH, Nor J of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. L4 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pla Cucumis sativus on Okuyama T. Demelanin production in Equation 	
of Cocos nucifera as ZM, Al-Mekhlafi HM, 20 antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, PL Cucumis sativus on Okuyama T. De melanin production in Ep	
antimalarial remedy in Amran AA, Mahmud R. ah Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pla Cucumis sativus on Okuyama T. De melanin production in EF	Ethnopharmacol
Malaysian folk medicine. 14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pl. Cucumis sativus on Okuyama T. De melanin production in Ep	011 Jan 26. [Epu]
14 Cucumis sativus Inhibitory effect of Kai H, Baba M, Pl. Cucumis sativus on Okuyama T. De melanin production in Ep	nead of print]
Cucumis sativus on Okuyama T. De melanin production in EF	
melanin production in Ep	lanta Med. 200
	ec;74(15):1785-8.
molanoma B16 colle	pub 2008 Nov 13.
by downregulation of	
tyrosinase expression.	

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
15	Curcuma heyneana	Zedoarondiol isolated from the rhizoma of Curcuma heyneana is involved in the inhibi- tion of iNOS, COX-2 and pro-inflammatory cytokines via the downregulation of NF- kappaB pathway in LPS-stimulated murine	Cho W, Nam JW, Kang HJ, Windono T, Seo EK, Lee KT.	Int Immunopharmacol. 2009 Aug;9(9):1049-57. Epub 2009 Apr 24.
16	Cymbopogon nar- dus	macrophages. Comparative chemical and analgesic proper- ties of essential oils of Cymbopogon nardus (L) Rendle of Benin and	Abena AA, Gbenou JD, Yayi E, Moudachirou M, Ongoka RP, Ouamba JM, Silou T.	Afr J Tradit Comple- ment Altern Med. 2007 Feb 16;4(3):267-72.
17	Dioscorea opposite	Congo. The effect of Chinese herbal medicines on TNF-a induced matrix metalloproteinase- 1, -9 activities and interleukin-8 secretion	Mei-Hsien LEE, Yi- Yuan YANG, Yu-Hui TSAI, Yueh-Lun LEE, Po-Yuan HUANG, I- Jen HUANG, Kur-Ta CHENG, and Sy-Jye LEU	Botanical Studies (2008) 49: 301-309.
18	Eclipta prostrata	Leishmanicidal activity of saponins isolated from the leaves of Eclipta prostrata and Gymnema sylvestre.	Khanna VG, Kannabi- ran K, Getti G.	Indian J Pharmacol. 2009 Feb;41(1):32-5.
19 20	Elettaria speciosa Hibiscus sabdariffa	- Hibiscus sabdariffa L. water extract inhibits the adipocyte differenti- ation through the PI3-K and MAPK pathway.	- Kim JK, So H, Youn MJ, Kim HJ, Kim Y, Park C, Kim SJ, Ha YA, Chai KY, Kim SM, Kim KY, Park R.	- J Ethnopharmacol. 2007 Nov 1;114(2):260- 7. Epub 2007 Aug 19. Continued on next page

No	Scientific Name	Paper's title	Author's name	Journal's name
21	Hydrocotyle asiat- ica	Cardioprotective activ- ity of Hydrocotyle asi- atica L. in ischemia- reperfusion induced my- ocardial infarction in	Pragada RR, Veeravalli KK, Chowdary KP, Routhu KV.	J Ethnopharmacol. 2004 Jul;93(1):105-8.
22	Jasminum sambac	rats. Sensitization to fra- grance materials in Indonesian cosmetics.	Roesyanto-Mahadi ID, Geursen-Reitsma AM, van Joost T, van den Akker TW.	Contact Dermatitis. 1990 Apr;22(4):212-7.
23	Lavandula angusti- folia	Lavandula angustifolia Miller: English laven-	Denner SS.	Holist Nurs Pract. 2009 Jan-Feb;23(1):57-64.
24	Melaleuca alterni-	der. Tea tree oil in the treat-	Tong MM, Altman PM,	Australas J Dermatol.
25	folia Mentha piperita	ment of tinea pedis. Anti-nociceptive and anti-inflammatory effects of some Jorda-	Barnetson RS. Atta AH, Alkofahi A.	1992;33(3):145-9. J Ethnopharmacol. 1998 Mar;60(2):117-24.
26	Olea europaea	nian medicinal plant extracts. Wound repair poten- tial of Olea europaea L. leaf extracts revealed by in vivo experimen-	Koca U, Sntar I, Akkol EK, Yilmazer D, Alper M.	J Med Food. 2011 Jan-Feb;14(1-2):140-6. Epub 2010 Dec 4.
27	Oryza sativa	tal models and compar- ative evaluation of the extracts' antioxidant ac- tivity. Anti-inflammatory effects of peptide frag- ments of H2A histone and Oryza Sativa Japonica protein.	Schussheim Y, As- chner M, Brodsky B, Proscura E, Erlanger- Rosengarten A, Feld- man R, Shapira E, Wormser U.	Peptides. 2011 Jan;32(1):125-30. Epub 2010 Nov 3.
				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
28	Pachyrrhizus ero-	Studies on the con-	Phrutivorapongkul	Chem Pharm Bul
	sus	stituents of seeds of	A, Lipipun V, Ruan-	(Tokyo). 2002
		Pachyrrhizus erosus and	grungsi N, Watanabe T,	Apr;50(4):534-7.
		their anti herpes simplex	Ishikawa T.	
		virus (HSV) activities.		
29	Phyllanthus em-	Amla (Emblica offici-	Baliga MS, Dsouza JJ.	Eur J Cancer Prev
	blica	nalis Gaertn), a wonder		2011 Feb 10. [Epu
		berry in the treatment		ahead of print]
		and prevention of can-		
		cer.		
30	Pluchea indica	-	-	-
31	Pogostemon cablin	Analgesic and Anti-	Lu TC, Liao JC, Huang	Evid Based Comple
		Inflammatory Activities	TH, Lin YC, Liu CY,	ment Alternat Med
		of the Methanol Ex-	Chiu YJ, Peng WH.	2009 Nov 20. [Epu]
		tract from Pogostemon		ahead of print]
		cablin.		
32	Portulaca oleracea	Characterization of	Dong CX, Hayashi K,	Chem Pharm
		structures and antiviral	Lee JB, Hayashi T.	Bull (Tokyo)
		effects of polysaccha-		2010;58(4):507-10.
		rides from Portulaca		
33	Rosa chinensis	oleracea L. Fungitoxic properties of	Tripathi SC, Dixit SN.	Experientia. 1977 Fel
55	Rosa chinensis	Rosa chinensis Jacq.	mpatin 50, Dixit 50.	-
34	Salvia coccinea	-	-	15;33(2):207-9. -
35	Santalum album	Chemopreventive effects	Dwivedi C, Abu-	Eur J Cancer Prev
		of sandalwood oil on	Ghazaleh A.	1997 Aug;6(4):399-401.
		skin papillomas in mice.		
36	Strychnos ligust-	-	-	-
	rina			
37	Tagetes erecta	In vitro antiplasmodial	Gupta P, Vasudeva N.	Pharm Biol. 2010
		and antimicrobial po-		Nov;48(11):1218-23.
		tential of Tagetes erecta		Epub 2010 Sep 6.
		roots.		
_				Continued on next page

continued from previous page

No	Scientific Name	Paper's title	Author's name	Journal's name
38	Theobroma cacao	Repression of calcitonin gene-related peptide ex-	Abbey MJ, Patil VV, Vause CV, Durham PL.	J Ethnopharmacol. 2008 Jan 17;115(2):238-
		pression in trigeminal neurons by a Theo-		48. Epub 2007 Oct5.
39	Tinospora tubercu- lata	broma cacao extract. Inhibition of nitric ox- ide release by an aque-	Yokozawa T, Wang TS, Chen CP, Hattori M.	Phytother Res. 2000 Feb;14(1):51-3.
	lata	ous extract of Tinospora tuberculata.	Chen Or, nation M.	reb,14(1).31-3.
40	Trigonella foenum-	Anti-hyperglycemic and	Tripathi UN, Chandra	Indian J Biochem
	graecum	anti-oxidative effect of	D.	Biophys. 2010
		aqueous extract of Mo-		Aug;47(4):227-33.
		mordica charantia pulp		
		and Trigonella foenum		
		graecum seed in alloxan-		
41	Vanilla planifolia	induced diabetic rats. Inhibition of bacterial	Choo JH, Rukayadi Y,	$javascript:AL_get(this,$
		quorum sensing by	Hwang JK.	'jour', 'Lett Appl
		vanilla extract.		Microbiol.');
42	Vetiveria zizan-	Evaluation of antiox-	Kim HJ, Chen F, Wang	J Agric Food Chem.
	ioides	idant activity of ve-	X, Chung HY, Jin Z.	2005 Oct 5;53(20):7691-
		tiver (Vetiveria zizan-		5.
		ioides L.) oil and iden-		
		tification of its antioxi-		
		dant constituents.		
43	Zanthoxylum acan-	-	-	-
	thopodium			

continued from previous page